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ABSTRACT 

Recommender systems apply numerous knowledge discovery techniques to suggest the 

preferred products, information, or service on contextual data. In our study, we utilize the 

recommender system for analyzing and measuring the network dynamics. The dynamic factors 

such as change in network shape or data size affect the performance of the networks and make it 

harder for the optimization techniques to be used for finding the optimum solution. In our 

research, we focused on the monitoring and analyzing the dynamic factors involved in two 

networks: (a) body area networks and (b) road networks; and based on the study proposed the 

efficient solution for mitigating the negative effects of the dynamic factors involved using 

recommender systems.  

In body area networks, we monitored the dynamically changing body area sensors data 

and studied the correlation between the sensors’ location and activity recognition. We proposed a 

cloud based framework that has employed a feature descriptor called Local Energy-based Shape 

Histogram (LESH) to preserve the maximum information of local energy. We have also used the 

Wearable Action Recognition Database (WARD) dataset to perform the experiments. Based on 

our study we proposed the best combination of sensors for various activities recognition. 

In road networks, we monitored the congestion during large-scale emergency evacuation 

and proposed efficient route recommendation service that helps in fast and safe evacuation. To 

respond to emergencies in a fast and an effective manner, it is of critical importance to have 

efficient evacuation plans that lead to minimum road congestion. The existing approaches, 

mostly based on multi-objective optimizations, are not scalable enough when involve numerous 

time varying parameters, such as traffic volume, safety status, and weather conditions. In this 

study, we propose a new scalable emergency evacuation service that recommends the evacuees 
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with the most preferred routes towards safe locations during a disaster. The evacuees are directed 

towards those routes that are safe and have least congestion resulting in decreased evacuation 

time. The results indicated the improved efficiency of our service for average evacuation times 

and evacuation delays. 
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1. INTRODUCTION 

1.1. Introduction  

In this chapter, we discuss the introduction of the research we have performed during 

Ph.D. We carried out our research on the monitoring and analysis of dynamically changing 

factors on different networks for finding efficient solutions using recommender systems. In 

our research studies, we took the cases of two different networks: body area networks and 

road networks. In our first case study, we analyzed the body area network and monitored the 

effect of location of sensor on the activity recognition. Based on our study, we 

recommended the best possible combination of sensors’ locations for different  activities 

recognition. In the second phase of our study, we took the scenario of large scale 

evacuation. We monitored and analyzed the congestion being created due to the dynamic 

road conditions such as road densities and provide efficient route recommendation service 

architecture. 

1.2. Activity Recognition in Body Area Networks  

The rapid advancements in Information and Communication Technologies (ICTs) 

have significantly influenced the healthcare domain. The capabilities of conventional 

clinical healthcare and patient monitoring systems are being enhanced to improve the 

quality of care by offering remote patient monitoring services and pervasive access to health 

information [1.1], [1.2]. The remote patient monitoring services are effective means of 

communicating the symptoms and vital signs to the doctors remotely so that the patients 

could be informed early about the physiological deteriorations and possible remedies [1.3]. 

To obtain the information from patients about the observed conditions and for subsequent 
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transmission to the physicians, Wireless Sensor Networks (WSNs) and Body Area Networks 

(BANs) are employed. Recently the use of BANs for patient monitoring and remote care 

delivery has increased because of their ability of integrating the on-body sensors and 

wearable devices, smart phones, Personal Digital Assistants (PDAs), and various other 

computing devices into a unified system [1.4],[ 1.5]. The wearable devices and smart band-

aids are attached to different body locations to determine certain metrics , such as daily 

energy expenditure as a result of patients’ activities, body temperatures, oxygen saturation, 

blood pressure, and heart rate monitoring [1.6], [1.7].  

In addition, the research has also emphasized on the recognition of the activities 

performed by the human subjects, such as walking and falling of elderly people [1.8]. 

Various devices, such as pedometers and accelerometers that are equipped with sensors are 

being used for monitoring the activities like motion, walk, and exercise. Nonetheless, the 

location of sensors and wearable devices on human body plays a significant role in 

accurately recognizing the human activities. The signals that are captured while performing 

the activities are highly dependent on the location of the sensors on the body [1.9]. It is 

possible that the same activity may generate different signals when the location of the on -

body sensors is changed. Usually, the sensor location and human activity recognition are 

considered as two separate problems. However, it is important to contemplate the 

relationship between the sensor location and activity recognition because the correct 

placement of on-body sensors is a factual characterization for the diagnosis and subsequent 

treatment [1.10]. For example, the temperature of different areas of human body even 

measured with the same device varies. Therefore, in healthcare settings requiring the 

clinical and medication procedures to be adopted based on the observations provided by 



3 
 

wearable monitoring devices, the incorrect placement of on-body sensing devices in each 

use can misguide the clinicians and doctors. Therefore, it is important that the sensors 

should be located at appropriate locations on body to appropriately utilize the collected data. 

Moreover, combination of sensors at different body locations also affects the recognition 

accuracy. Therefore, finding the best combination of sensors at different locations on body 

is also an important task.   

Currently, the BANs are utilizing the smart phones and handheld devices to ensure 

the ubiquitous access to the healthcare information and services. However, due to the 

architectural limitations in terms of CPU speed and memory[1.11], the mobile devices seem 

inadequate to handle huge volumes of data being generated unceasingly. Therefore, it is the 

high time to integrate the BANs with the Mobile Cloud Computing (MCC) to not only offer 

pervasive health services but also to manage the large volumes of data. Cloud computing 

services are already being used in the healthcare domain due to the key benefits, such as 

scalability, availability, and cost effectiveness [1.12]. The cloud computing model liberates 

the organizations of the protracted tasks of infrastructure management and development. All 

of the computational and storage tasks are delegated to the third-party cloud servicers and 

the users only pay for using the cloud services [1.13]. As stated earlier that the BANs 

generate huge volumes of data every second, the data generated by several BANs is difficult 

to handle using the ordinary computing devices. Therefore, it is quite feasible that the data 

generated by sensing devices is stored to the cloud environment and can be made available 

to the doctors and physicians on demand [1.11]. Storing the data to the cloud servers will 

also reinforce the reliability. For example, if the mobile device loses some data due the low 

battery or any other reason, the data backup is available on the cloud and even if the mobile 
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device is switched off, the execution of the application is not interrupted because it is 

running in the cloud.       

This paper proposes a cloud based framework for activity recognition and to 

investigate the effects of the on-body sensors’ location on the performance of activity 

recognition. The signals generated as a result of human activities are largely dependent upon 

the location of the on-body sensors due to the high likelihood of generating a different 

signal for the same activity on a different body location. Therefore, a true characterization 

of human activities plays a pivotal role in remotely monitoring the patients requiring 

therapies and treatments for orthopedic and sports injuries. The sensor data generated by the 

wearable devices is transmitted to the mobile devices that are subsequently forwarded to the 

cloud server. The application running in the cloud is responsible for classifying the actions 

by extracting the features from the continuous data streams. To make the process of activity 

recognition more effective, an important task is to extract features from the sensor data 

comprising of human subjects’ movements and activities. The data transformation to feature 

space causes the dimensionality reduction. As a result, data with multiple dimensions can be 

represented in few or even one dimension in feature space. The local energy response varies 

with the change in position and the energy generated as a result of movements is distributed 

in the body. Therefore, to preserve the maximum information of local energy, we employ a 

methodology called Local Energy-based Shape Histogram (LESH). The LESH features are 

primarily used in computer vision tasks, such as shape based image retrieval, object 

tracking, object recognition. The reduction of the data to a fixed size LESH feature helps in 

detecting the changes in the data as the small changes appears up as large in the fixed size 

vector. We represent the sensor data by means of vectors where each vector represents the 
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underlying information or energy of the local event with very high level of transformation. 

The goal of the local feature extraction technique is to represent the local regions in the 

sensor data matrix/vector effectively and comprehensively. To handle the local energy 

responses that change with the activity, we generate local histogram by summing the local 

energy along with the filter orientation in a local region of the sensor data matrix/vector. 

The feature extraction phase is followed by the applying the classification algorithm on the 

features data. We employed three classifiers namely, Simple Logistic Regression (SLR), 

Naïve Bayes classifier, and Sequential Minimal Optimization (SMO) to perform the task of 

activity recognition. Moreover, to investigate effects of sensor location on correct 

identification of activities, we used the Wearable Action Recognition Database (WARD) 

dataset [1.8]. The WARD dataset contains the data for thirteen activities collected from five 

body sensors located at different positions of 20 different persons.  

1.3. Route Recommendation during Large-Scale Evacuation 

Natural and man-made disasters, such as tsunamis, earthquakes, floods, and 

epidemics pose a significant threat to human societies. In response to the growing number of 

recent disasters, such as the Colorado flood, Oklahoma tornado, Japan’s earth quake, 

Katrina hurricane, and in particular, the Red River crest that causes flood almost every year 

in Fargo, North Dakota, the importance and scope of emergency evacuation systems have 

grown tremendously over the past decade [1.14]. Well-planned evacuation operations and 

identification of appropriate rescue routes before and during a disaster play a significant 

role in saving lives and minimizing casualties.  

Generally, transportation planning departments consider the peak traffic demands 

during normal workdays and on special occasions [1.15], [1.16]. However, it is almost 



6 
 

impossible to conceive transportation plans for emergency situations, due to which large 

volumes of traffic involved in mass evacuations is likely to exceed the capacity of road 

networks that may lead to loss of human lives. For example, due to the lack of proper 

evacuation plan, 25 people lost their lives in the first 30 minutes while attempting to flee 

their Oakland Hills neighborhood in California during a wildfire in the year 1991. 

Moreover, reports indicate that the inefficient evacuation planning in case of the Katrina and 

Rita hurricane resulted in a heavy traffic jam on the interstates. A similar traffic jam 

occurred for 20 hours after a winter storm in Atlanta, USA, in January 2014, as the 

transportation network was incapable of handling the traffic congestion caused by snow and 

accidents. To prevent such incidents, emergency evacuation plans must be developed to 

ensure the availability of safest and most efficient evacuation routes for the residents of a 

structure, region, or city. 

The objective of this paper is to develop a scalable service that can guide evacuees 

towards safe and least congested routes during a disaster. With the integration of Intelligent 

Transportation System (ITS), the proposed MacroServ service is capable of computing the 

efficient traffic flows leading to minimum congestion of the roads during an emergency 

evacuation. 

Several works, such as [1.17]–[ 1.20], have applied multi-objective optimization in 

evacuation modeling. Generally, optimization-based evacuation models consider several 

assumptions to optimize parameters, such as route length, shelter locations, and evacuation 

times. However, as discussed in [1.15], most of the times such assumptions are performance 

limiting or unrealistic, and do not precisely depict the dynamics of real-life emergency 
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situations. Moreover, the following are the limitations of most of the optimization -based 

evacuation models that negatively affect the performance of such systems [1.15].  

A few evacuation models simulate the traffic flow with static road network 

characteristics that do not truly depict the real emergency scenarios [1.18], [1.21]. For 

instance, numerous time varying behavioral, managerial, and stochastic factors, such as 

number of evacuees and traffic conditions, are involved during an evacuation [1.21]. Such 

factors may lead to congestion of the paths that were otherwise suggested as optimal by the 

evacuation modeling approaches. 

If time factor is added to optimization problems, such that the static network is 

expanded over the planning horizon for every time interval, then the corresponding problem 

space becomes extremely large and there are no known polynomial algorithms for solving 

such problems [1.19]. 

Evacuation modeling in most of the optimization-based approaches is formulated as 

a network flow optimization problem [1.19], [1.22]. However, such approaches are not 

scalable for the real-world large-sized evacuation networks, due to the high computational 

complexities. Moreover, such problems are also considered to be NP-hard because of the 

multi-commodity nature, as evacuees are differentiated by the origin-destination pairs 

[1.20]. Therefore, solving for the travel demand rates and route flow rates requires 

simulation, as a closed form expression cannot be captured with optimization models [1.23]. 

As mentioned earlier, the optimization-based evacuation models consider 

assumptions for various parameters, such as road capacities, traffic volumes, route 

distances, and population sizes [1.15]. However, such assumptions can become invalid 
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during a real emergency scenario due to variations in weather conditions, unforeseen 

conditions of traffic, and possible destruction of transportation infrastructure.  

To address the abovementioned limitations, in this paper we propose a scalable 

service that is capable of performing real-time simulation of dynamic large-scale 

transportation networks during emergency scenarios. Simulation based evacuation planning 

by emergency management agencies require faster execution of large-scale vehicular traffic 

flows. Therefore, we utilize parallel computing to achieve the required scale, size, and speed 

of the computations. Our proposed service integrates with the ITS to obtain real-time traffic 

data and utilizes our proposed algorithm to compute the maximum flow of routes and route 

costs among disaster sites and safety locations [1.24]. Based on the route costs, our 

proposed service redirects the traffic on alternate preferred routes before the congestion can 

occur. In this way, evacuees are guided towards the most preferred routes that have the 

minimum possible risk and the least amount of congestion.  

Massive evacuations involve many stochastic factors, such as, degree of compliance 

of evacuees to evacuation calls, rate of evacuees departing from each household/ area, 

behavior of drivers, unforeseen traffic loads, and road conditions on transportation network. 

To depict such factors in our model, we make use of probability distributions, such as (a) 

Poisson distribution [1.25] and (b) Weibull distribution [1.25]. The aforementioned 

probability distributions allow us to model emergency evacuation scenarios that closely 

match with the realistic scenarios. 

As a case study, we performed our simulations on the real map of City of Fargo, ND, 

USA where the Red River crest causes flood almost every year. The gradient (slope) of the 

Red River averages five inches per mile of length, and drops to 1.5 inches per mile in the 
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region of Drayton-Pembina [1.26]. Due to lack of slope, the Red River tends to pool and 

cause floods. To model our system, we obtained the data, including road capacities, traffic 

volumes, speed limits, contours’ elevations, historic crest levels of Red River, and historic 

flood affected areas, from the City of Fargo [1.27] and North Dakota Department of 

Transportation (NDOT) [1.28]. For our simulations, we considered the population of size 

108,000 living at Red River flood zones that needs to be evacuated during a flood. 

Moreover, the transportation network consists of 7,370 road links and 2,800 intersections.  

Our simulation results indicate that the traditional evacuation plans devised by the 

disaster management agencies are inefficient to handle sudden loads of traffic during an 

emergency. The sudden evacuations result in traffic jams due to which evacuation time 

increases. When the evacuees are directed towards the preferred routes using our proposed 

service, the overall evacuation time significantly decreases. Moreover, the simulation results 

indicate that the evacuation performance measures are largely dependent on the highway 

network structure and the number of vehicles produced in an emergency planning zone. In 

summary, our proposed service is designed to: (a) act as a decision making tool that will 

enable transportation departments to evaluate and review the emergency evacuation plans by 

simulating various disaster scenarios, and (b) recommend preferred and efficient routes to 

the evacuees during the course of a disaster by making use of high-end sensors and the ITS. 

1.4. Research Goals and Objectives 

The objective of our research is to utilize the recommender systems as an analysis 

tool to measure the network dynamics and to provide efficient solutions for the respective 

networks. For case studies, we took body area networks and road networks. In body area 

network, we picked our goal as the finding the correlation between the sensors’ locations 
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and activity recognition. Based on correlation, we proposed the best combination of the 

sensors’ locations for efficient recognition of different activities.  In road networks, we 

aimed at the goal of providing efficient, safe, and fast route recommendation during large 

scale evacuation.  
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2. RELATED WORK 

2.1. Correlation between Sensor Locations and Activity Recognition 

    In this section, we present some of the research works that are related to sensor 

location and human activity recognition in pervasive healthcare monitoring systems. Yang et 

al. [2.1] used low-bandwidth wearable sensors for the classification of continuous human 

action. In the proposed framework, ℓ1-minimization based approach is used for 

classification of valid action segments and rejection of the outlying actions. Contrary to the 

past approaches that recognize single action, the approach by Yang et al. [2.1] is capable of 

recognizing multiple human actions and utilizes five wearable sensors to recognize thirteen 

action categories. The approach presented in [2.1] is distributed in the sense that a sensor 

node becomes active only when an event is detected and transmits the local information to 

the server. The server utilizes a global classifier to receive the data from the sensors and 

optimizes the local sensor decisions. However, the approach requires the sensor to be 

installed on a fixed location on human body that may limit the accuracy in case when the 

sensor is misplaced.  

Amini et al. [2.2] presented a technique to automatically recognize the location of 

on-body wearable devices to ensure the correct and accurate measurements in health 

monitoring systems. Accelerometers are used to capture the motion data and the device 

location is estimated through the supervised and unsupervised time series methods for data 

analysis. Another approach that co-recognizes the sensor location and human activities is 

presented in [2.3]. The authors used the compressed sensing theory to reconstruct the sparse 

signals captured from inertial human activities and subsequently classified the activities 
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signals to determine the location of the signals on human body. The approach presented in 

[2.3] uses only one sensor on the body to recognize the human activity without necessitating 

a fixed location for the sensor. Zhang et al. [2.4] also used compressed sensing theory. The 

activity signals from all of the classes of training set are represented as the sparse linear 

combinations via ℓ1-minimization. In [2.5], a Linear Discriminant Analysis (LDA) based 

approach for feature extraction is applied and classification is performed using Artificial 

Neural Networks (ANNs). The group features, such as autoregressive model coefficients, tilt 

angle, and signal magnitude area are extracted. The approach is claimed to have accuracy of 

97.76% for activities classification and transitions. Our approach is different from the above 

approaches in the sense that we use the local energy to determine the activities performed by 

the subjects. Moreover, contrary to the approach presented in [2.3] that relies on one body 

sensor, we use five on-body sensors and our approach is capable accurately recognizing the 

activities with multiple sensors simultaneously.  

2.2. Route Recommendation during Evacuation 

Numerous studies conducted in the past addressed various perspectives of emergency 

evacuation modeling, such as route finding [2.6], shelter site selection [2.7], evacuees’ 

behavior [2.8], and traffic control strategies [2.9]. In recent years, there has been a growing 

interest in the multi-objective optimization techniques for evacuation route finding problem.  

The authors in [2.10] studied demand-based strategies for aggregate-level routing 

with and without congestion. The authors proposed a network flow model that optimized an 

evacuation specific lexicographic objective function. The function computes the time 

dependent evacuation routes for each of the source. However, being a combinatorial 

optimization problem, the proposed approach is difficult to be solved for large realistic 
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networks. Therefore, the authors utilized two heuristics to solve the problem, but with a 

tradeoff of solution quality. Lim et al. [2.6] modeled evacuation problem as network flow 

optimization problem. The static network is expanded over the planning horizon for each 

time interval. However, this makes the optimization problem extremely large to solve. 

Therefore, the authors proposed a heuristic based solution that utilized Dijkstra’s algorithm 

to compute evacuation paths, and a greedy algorithm to find the maximum flow and exit 

schedule for each path at each time interval. In a similar study, the authors in [2.11] utilized 

mixed integer programming for a dynamic network flow optimization problem. The authors 

proposed a heuristic solution that was applied over the time expanded transportation 

network, where the time horizon was divided into intervals of equal length. However, time 

expansion of the network made optimization problem infeasible for large scale evacuation 

scenarios. Coutinho-Rodrigues et al. [2.7] proposed a multi-objective optimization problem 

to find evacuation paths and the location of shelters for urban evacuation planning. The 

authors considered many objectives for optimization, such as path lengths, path risks, 

evacuation times, lengths of backup paths, and number of shelters. The set of primary routes 

between disaster site and shelter locations were generated with a bi-objective shortest path 

approach by considering the path lengths and path risks. The model was tested on a smaller 

network with limited roads and intersections.  

Stepanov et al. [2.12] proposed an integer programming formulation for route 

assignment that utilized M/G/c/c state dependent queues to address congestion and time 

delays on road links. The authors computed a set of evacuation routes with kth shortest path 

algorithm, and then utilized M/G/c/c model to evaluate the travel time along the shortest 

paths. A drawback in such approach is that the shortest paths may become congested during 



17 
 

real evacuation scenarios due to the presence of numerous unforeseen random factors, such 

as traffic accidents and weather conditions. The authors in [2.8] developed a traffic 

simulation framework that assigns evacuees with the predefined routes at the beginning of 

evacuations. During the journey the evacuees were able to change the routes. The authors 

studied the effect of non-compliance of evacuation orders by evacuees during evacuations. 

However, the architectures and implementation details of the proposed framework were not 

discussed. El-Sergany et al. [2.13] proposed a framework for flood disaster management and 

a transport distribution model for evacuations. The authors utilized linear programming on a 

small scale scenario with trip distribution matrix among the affected sites and destination 

shelters.  

Huang et al. [2.14] presented a centralized traffic control framework for emergency 

vehicles. The authors utilized A* algorithm to compute three types of paths: (a) primary 

path between source and destination, (b) secondary path that is disjoint of the primary path, 

and (c) a path that connects both the primary and the secondary paths. However, authors did 

not mention any details about the implementation and test data of their framework.  

Abdelgawad et al. [2.15] presented a multi-objective optimization framework that 

combines the vehicular traffic and mass transit system for emergency evacuation. The paper 

investigated the three objectives: (a) minimum in-vehicle travel time, (b) minimum at-origin 

waiting time, and (c) minimum fleet cost in case of mass transit. However, the authors have 

not included the real-time changing parameter such as road conditions that affect the real -

world evacuation. 

It is noteworthy to mention that most of the aforementioned optimization-based 

evacuation models are unable to scale well for large-scale evacuation scenarios. Therefore, 
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most of the techniques employ various heuristics to reduce the solution space, which results 

in sub-optimal route recommendations. In contrast to the optimization-based approaches, 

there also exist some commercial/non-commercial traffic simulation packages, such as 

INDY [2.16], PARAMICS [2.17], DynusT [2.18], and TransCAD [2.19]. Among the 

aforementioned, the PARAMICS [2.17] is commercial software and has been utilized mostly 

for micro-scale simulations. However, a common problem that most of such packages suffer 

from is the lack of scalability, especially when the network size is large and different from 

the network under normal conditions. Therefore, to address scalability, we utilized parallel 

computing in our proposed simulation framework.  
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3. ON THE CORRELATION OF SENSOR LOCATION AND 

HUMAN ACTIVITY RECOGNITION IN BODY AREA 

NETWORKS (BANS) 

This paper
1
 is submitted to IEEE System Journal (ISJ). 

3.1. Introduction 

 The rapid advancements in Information and Communication Technologies (ICTs) 

have significantly influenced the healthcare domain. The capabilities of conventional 

clinical healthcare and patient monitoring systems are being enhanced to improve the 

quality of care by offering remote patient monitoring services and pervasive access to health 

information [3.1], [3.2]. The remote patient monitoring services are effective means of 

communicating the symptoms and vital signs to the doctors remotely so that the patients 

could be informed early about the physiological deteriorations and possible remedies [3.3]. 

To obtain the information from patients about the observed conditions and for subsequent 

transmission to the physicians, Wireless Sensor Networks (WSNs) and Body Area Networks 

(BANs) are employed. Recently the use of BANs for patient monitoring and remote care 

delivery has increased because of their ability of integrating the on-body sensors and 

wearable devices, smart phones, Personal Digital Assistants (PDAs), and various other 

                                                 
1
 The material in this chapter was co-authored by Muhammad Usman Shahid Khan, Assad 

Abbas, Mazhar Ali, Muhammad Jawad, Samee U. Khan, Keqin Li, and Albert Y. Zomaya. 

Muhammad Usman Shahid Khan had primary responsibility for conducting experiments and 

collecting results. Muhammad Usman Shahid Khan was the primary developer of the 

conclusions that are advanced here. Muhammad Usman Shahid Khan also drafted and revised all 

versions of this chapter. 
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computing devices into a unified system [3.4],[ 3.5]. The wearable devices and smart band-

aids are attached to different body locations to determine certain metrics , such as daily 

energy expenditure as a result of patients’ activities, body temperatures, oxygen saturation, 

blood pressure, and heart rate monitoring [3.6], [3.7].  

In addition, the research has also emphasized on the recognition of the activities 

performed by the human subjects, such as walking and falling of elderly people [3.8]. 

Various devices, such as pedometers and accelerometers that are equipped with sensors are 

being used for monitoring the activities like motion, walk, and exercise. Nonetheless, the 

location of sensors and wearable devices on human body plays a significant role in 

accurately recognizing the human activities. The signals that are captured while performing 

the activities are highly dependent on the location of the sensors on the body [3.9]. It is 

possible that the same activity may generate different signals when the location of the on-

body sensors is changed. Usually, the sensor location and human activity recognition are 

considered as two separate problems. However, it is important to contemplate the 

relationship between the sensor location and activity recognition because the correct 

placement of on-body sensors is a factual characterization for the diagnosis and subsequent 

treatment [3.10]. For example, the temperature of different areas of human body even 

measured with the same device varies. Therefore, in healthcare settings requiring the 

clinical and medication procedures to be adopted based on the observations provided by 

wearable monitoring devices, the incorrect placement of on-body sensing devices in each 

use can misguide the clinicians and doctors. Therefore, it is important that the sensors 

should be located at appropriate locations on body to appropriately utilize the collected data. 

Moreover, combination of sensors at different body locations also affects the recognition 
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accuracy. Therefore, finding the best combination of sensors at different locations on body 

is also an important task.   

Currently, the BANs are utilizing the smart phones and handheld devices to ensure 

the ubiquitous access to the healthcare information and services. However, due to the 

architectural limitations in terms of CPU speed and memory[3.11], the mobile devices seem 

inadequate to handle huge volumes of data being generated unceasingly. Therefore, it is the 

high time to integrate the BANs with the Mobile Cloud Computing (MCC) to not only offer 

pervasive health services but also to manage the large volumes of data. Cloud computing 

services are already being used in the healthcare domain due to the key benefits, such as 

scalability, availability, and cost effectiveness [3.12]. The cloud computing model liberates 

the organizations of the protracted tasks of infrastructure management and development. All 

of the computational and storage tasks are delegated to the third-party cloud servicers and 

the users only pay for using the cloud services [3.13]. As stated earlier that the BANs 

generate huge volumes of data every second, the data generated by several BANs is difficult 

to handle using the ordinary computing devices. Therefore, it is quite feasible that the data 

generated by sensing devices is stored to the cloud environment and can be made available 

to the doctors and physicians on demand[3.11]. Storing the data to the cloud servers will 

also reinforce the reliability. For example, if the mobile device loses some data due the low 

battery or any other reason, the data backup is available on the cloud and even if the mobile 

device is switched off, the execution of the application is not interrupted because it is 

running in the cloud.       

This paper proposes a cloud based framework for activity recognition and to 

investigate the effects of the on-body sensors’ location on the performance of activity 
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recognition. The signals generated as a result of human activities are largely dependent upon 

the location of the on-body sensors due to the high likelihood of generating a different 

signal for the same activity on a different body location. Therefore, a true characterization 

of human activities plays a pivotal role in remotely monitoring the patients requiring 

therapies and treatments for orthopedic and sports injuries. The sensor data generated by the 

wearable devices is transmitted to the mobile devices that are subsequently forwarded to the 

cloud server. The application running in the cloud is responsible for classifying the actions 

by extracting the features from the continuous data streams. To make the process of activity 

recognition more effective, an important task is to extract features from the sensor data 

comprising of human subjects’ movements and activities. The data transformation to feature 

space causes the dimensionality reduction. As a result, data with multiple dimensions can be 

represented in few or even one dimension in feature space. The local energy response varies 

with the change in position and the energy generated as a result of movements is distributed 

in the body. Therefore, to preserve the maximum information of local energy, we employ a 

methodology called Local Energy-based Shape Histogram (LESH). The LESH features are 

primarily used in computer vision tasks, such as shape based image retrieval, object 

tracking, object recognition. The reduction of the data to a fixed size LESH feature helps in 

detecting the changes in the data as the small changes appears up as large in the fixed size 

vector. We represent the sensor data by means of vectors where each vector represents the 

underlying information or energy of the local event with very high level of transformation. 

The goal of the local feature extraction technique is to represent the local regions in the 

sensor data matrix/vector effectively and comprehensively. To handle the local energy 

responses that change with the activity, we generate local histogram by summing the local 
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energy along with the filter orientation in a local region of the sensor data matrix/vector. 

The feature extraction phase is followed by the applying the classification algorithm on the 

features data. We employed three classifiers namely, Simple Logistic Regression (SLR), 

Naïve Bayes classifier, and Sequential Minimal Optimization (SMO) to perform the task of 

activity recognition. Moreover, to investigate effects of sensor location on correct 

identification of activities, we used the Wearable Action Recognition Database (WARD) 

dataset [3.8]. The WARD dataset contains the data for thirteen activities collected from five 

body sensors located at different positions of 20 different persons. The main contributions 

of the proposed framework are as follows: 

 We successfully applied image feature extraction approach called LESH to 

extract the features from the signals generated as a result of human activities. 

To the best of our knowledge, the LESH approach has not been used in past 

for feature extraction in BANs.  

Fig.3.1. Proposed System Architecture for Activities Recognition 
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 The performance in terms of activity recognition is evaluated by applying 

classifiers, such as the SLR, Naïve Bayes, and the SMO.  

 We also investigate the effects of sensor location and the best combination of 

sensors on activity recognition using the WARD dataset.  

 We propose the assimilation of cloud computing services to handle large 

amount of sensors data with the mobile devices to ensure the ubiquitous 

access to health data for remote monitoring.     

The paper is organized as follows. Section 3.2 presents the proposed framework for 

activity recognition. Section 3.3 presents a detailed analysis by elaborating the effects of 

sensor location on activity recognition. The related work is discussed in Section 3.4 whereas 

Section 3.5 concludes the paper.  

3.2. The Proposed Framework 

The proposed framework comprises of two major modules namely, (a) the 

preprocessing component and (b) the activity recognition module. Each of the modules is 

presented below. The architecture of the proposed framework is presented in Fig. 3.1.  

3.2.1. Preprocessing Component 

    The first step in the proposed framework for activity recognition is to capture the 

motion signals through the deployment of on-body sensors. We adopted the sensor 

deployment methodology presented by Yang et al. [3.8] to effectively model and monitor 

the full body motion. The details about the location of the five sensors used are given in 

Table 3.1. 
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    In the proposed framework, the activities performed by the subjects cause the 

generation of signals. The framework uses the integrated devices, such as the smart phones, 

PDAs, and laptops to receive the sensor data in the form of signals. However, due to the 

intrinsic limitations of the aforementioned integrated devices in terms of processing, 

storage, and memory, the data received from the wearable sensors is forwarded to the cloud 

servers. 

Table 3.1. Locations of On-Body Sensors  

Sensor # Body Location 

Sensor 1  Outside center of the lower left forearm joint. The y-axis 

of the gyroscope points to the hand. 

Sensor 2  Outside center of the lower right forearm joint. The y-axis 

of the gyroscope points to the hand. 

Sensor 3  Front center of the waist. The x-axis of the gyroscope 

points down. 

Sensor 4  Outside center of the left ankle. The y-axis of the 

gyroscope points to the foot. 

Sensor 5  Outside center of the right ankle. The y-axis of the 

gyroscope points to the foot. 

 

3.2.2. Activity Recognition 

The proposed framework causes the generation of large volumes of data from the 

wearable sensors as a result of the human activities that is subsequently forwarded to the 

cloud environment. The use of cloud computing services in the proposed environment is 

appropriate due to the ability to procure on-demand computing and storage services [3.14]. 

Therefore, it is certainly desirable to delegate the task of activity recognition to the cloud. 

The client application running in the cloud is responsible for performing the task of activity 

recognition by first extracting the features from the continuous data streams and then using 

the classification algorithms to classify the activities. The tasks of feature extraction and 

classification are presented in Section 2.2.1.     
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3.2.2.1. Feature Extraction and Classification 

     To increase the classification accuracy of activity recognition in BANs, an 

important task is feature extraction from the sensor data. Various studies, such as [3.7] and 

[3.9] have focused on extracting features from the activities like walking or non -walking. 

The aforementioned approaches lack in extracting the robust features to correctly identify 

the activities involving frequent transitions, for example walking forward, turning left, and 

jogging. Consequently, the recognition accuracy for the activities involving inter -posture 

transitions might be low. Therefore, robust feature extraction approaches are needed to 

attain the higher recognition accuracy.  

Local feature extraction is a method to describe a local region/part of a matrix/vector 

by using a specific measure or transformation rules. The method calculates a unique solution 

of the local region for any specific event. Whenever the same event occurs, same contents of 

matrix/vector will encounter at the same place. Therefore, same unique solution will be 

found again. However, the solution has certain degree of invariance related to the noise 

present in the sensor. The goal of the local feature extraction technique is to represent local 

regions in the sensor data matrix/vector effectively and comprehensively. In body sensor 

networks, the sensor data is represented by either a high dimensional vector containing joint 

movements data during an activity (that is also called as holistic representation) or a set of 

vectors where each vector represents the underlying information of the local event with the 

very high level of transformation (local representation). The features in the aforesaid 

histogram have good capabilities to differentiate between the disparities among various 

activities. 
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In this paper, we use a feature descriptor named Local Energy-based Shape 

Histogram (LESH) that uses local energy model for features perception [3.15]. The method 

has been used successfully in the applications, such as image processing [3.16] and data 

mining [3.10]. The local energy (information) of the matrix is obtained by Gabor Filtering 

method [3.17]. The local energy model was first proposed by Morrone and Owens in 1987 

[3.18]. The model states that features are preserved at points where the local frequency 

components are in the phase for maximum amount of time during an event, as shown in Eq. 

(3.1). 

𝐸(𝑋) = 𝑚𝑎𝑥
∅(𝑋)∈[0,2𝜋]

−
∑ 𝐴𝑛𝑐𝑜𝑠 (∅𝑛(𝑥) − ∅(𝑥))𝑛

∑ 𝐴𝑛𝑛
                   (3.1) 

 

In Eq. (3.1),  An and ∅n are the magnitude and phase of the n-th Fourier component. 

The magnitude and phase information of the local region is extracted by convolving the 

sensor data matrix/vector with a bank of Gabor wavelet kernels. The produced result is a 

complex value that gives magnitude and phase of each of the local regions of the sensor data 

matrix/vector. 

𝐺𝑢,𝑣(𝑒𝑛, 𝑜𝑛) = 𝑀 ∗ ℵ𝑢,𝑣(𝑧),  (3.2) 

where the bank of Gabor kernel is ℵu,v, M is the sensor data matrix and u, and v are 

the scale and orientation that are selected as 5 and 8, respectively. The discrete cosine 

transformation is applied as a filter to get the proper weighting of each region and a noise 

cancellation factor T. Therefore, the local energy is calculated as:  

𝐸 =
∑ 𝑊(𝑥)⌊𝐴𝑛(𝑥)(cos(𝜑𝑛(𝑥) − �̅�(𝑥)) − |sin(𝜑𝑛(𝑥) − �̅�(𝑥))|) − 𝑇⌋  

∑ 𝐴𝑛(𝑥) + 휀𝑛
 (3.3) 
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The value of E is normalized by summing all of the frequency components in the 

region that make the local magnitude and phase of the region independent of the overall 

magnitude and phase of the matrix. Motivated by the described facts of local energy 

response that changes with the change in activity, we generate a local histogram by 

summing the local energy along with the filter orientation in a local region of the sensor 

data matrix/vector. The local histograms are extracted for each region of the matrix and then 

concatenated together to form a feature descriptor vector for each activity and sensor. The 

features represent the local energy model during various activities and postures. We also 

assign a label tag to each region of the matrix/vector. The labels are useful in obtaining the 

information of the local region having the highest energy among all of the local regions. The 

local histogram h is calculated as: 

ℎ𝑎,𝑏 = ∑ 𝑤𝑎 × 𝐸 × 𝛿(𝐿 − 𝑏)      (3.4) 

Where b is the current bin of the histogram, L is the label tag vector, E is the local 

energy described in Eq. (3.3), and w is the Gaussian weighted function. Each sensor has a 

tri-axial accelerometer and a bi-axial gyroscope. Each axis in the accelerometer and the 

gyroscope is reported as a 12-bit value to the node, indicating the values in the range of ±2g 

and ±500◦/s for the accelerometer and gyroscope, respectively. The size of the sensor data is 

445×5, where 5 corresponds to the sensor readings from 3-axis accelerometer and 2-axis 

gyroscope on one sensor node, and t=445 represents the length of the trial sequence. As the 

frequency of the sensor is 100Hz, the time step will be 0.01second and total activity time is 

4.45 seconds. Motivated by the fact that the local energy response varies with respect to the 

change in position and rotation, the position changing pattern measured by the 

accelerometer and rotation changing pattern measured by gyroscope is unique for every 
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activity in our case. In Eq. 3.3, the normalization by adding the amplitudes of all of the 

elements, makes it independent of the variation in the data of accelerometer and gyroscope, 

and also makes it invariant to the sensor noise Therefore, to preserve maximum information 

of local energy, we segment our sensor data into sixteen regions and measure local energy 

from the accelerometer and gyroscope data by convolving with the Gabor filter of scale five 

(5) and orientation eight (8), as shown in Eq. (3.3). As the column length of the sensor data 

is five, the scale length in Gabor filter is selected as five. The orientation of the filter is 

selected by hit and trial method. To extract the maximum information from the sensor data, 

we made eight bins local histogram for each of the sixteen regions corresponding to 8 -filter 

orientation. Each bin in the histogram defines a unique energy level and we place all the 

energy data points obtained from Eq. (3.3) into corresponding energy level. That makes a 

unique 8 bins energy histogram of the local region for any specific event. As stated earlier, 

we divided our sensor data matrix M into sixteen equal parts that makes a total of 16 

histograms. Therefore, the histograms are combined to generate a 16×8 = 128 -dimensional 

feature vector for each sensor data. Moreover, 128-dimensional feature vector is easy to use 

in recognition rather than whole 445×5 sensor data. Furthermore, the LESH feature vector is 

unique for every activity. Therefore, the use of LESH in activity recognition improves 

overall accuracy of the algorithm. 

       To investigate the effects of sensor location on the activity recognition, the task 

following the feature extraction using the LESH based approach is the classification of 

activities. Therefore, we used three classifiers namely the Simple Logistic Regression 

(SLR), Naïve Bayes classifier, and Sequential Minimal Optimization (SMO). The 
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performance of each of the classifiers in terms of activity recognition and their correlation 

with the sensor location are detailed in Section 3.3. 

  Table 3.2.  Activity Classes in the WARD Dataset 

Activity 

No. 

Action Class Activity 

No. 

Action Class 

1 Rest at Standing (ReSt) 

 

8 Turn right 

(TuRi) 

 

2 Rest at Sitting (ReSi)  

 

9 Go upstairs 

(Up)  

 

3 Rest at Lying (ReLi):  

 

10 Go downstairs 

(Down)  

 

4 Walk forward (WaFo) 

 

11 Jog (Jog)  

 
5 Walk forward left-circle (WaLe)  

 

12 Jump (Jump)  

 
6 Walk forward right-circle (WaRi)  

 

13 Push wheelchair 

(Push) 

 

7 Turn left (TuLe)  

 

  

 

3.3. Performance Evaluation 

We used the WARD dataset to evaluate the performance in terms of activity 

recognition. The brief description of each of the classifiers used is given below.   

Simple Logistic Regression (SLR): The SLR is a standard classification method used 

to predict the class labels of categorical dependent variable on the basis of one or more 

features [3.19]. A logistic function is used to model the probabilities that describe the 

possible outcomes.  

Naïve Bayes: Naïve Bayes is a probabilistic classifier with high predictive 

capabilities. The model operates on the assumption of high attribute or feature independence 

to exhibit high prediction capabilities [3.20].  

Sequential Minimal Optimization (SMO): The SMO is the learning algorithm for 

Support Vector Machines (SVMs) and utilizes the analytic Quadratic Programming (QP). 

The SMO works in an iterative manner by breaking the problem in a series of small sub -
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problems that are subsequently solved analytically. Besides the disease classification, the 

SMO has been used for human activity recognition [3.21].  The performance was evaluated 

by using a common accuracy metric called F-measure. The F-measure is the harmonic mean 

of both the precision and recall values. F-measure is calculated as below:  

F − measure =
2TP

2TP + TP + FN 
     (3.5) 

 We used k-fold cross validation with k=10 to determine the classification accuracy. 

In k-fold cross validation method, the dataset is divided into k-folds. One of the folds is 

selected as the testing fold whereas the remaining k-1 folds work as the training folds 

[3.22]. An advantage of repeating the process k-times is that all of the examples in the 

dataset are utilized for analysis.  

Results exhibit that the location of sensors on body plays significant role in the 

activity recognition with precision. The accuracy in terms of F-measure obtained from the 

three classifiers for the thirteen different activities listed in Table 3.2 and for five different 

sensor locations are presented in Fig. 3.2 (a) – Fig.3.2 (m).    

We tested the activity recognition accuracy by applying, (a) one sensor, (b) three 

sensors, and (c) all five sensors. It can be observed from Fig. 3.2 (a) that for Activity 1 

(ReSt), by using all of the five sensors resulted in more than 86% F-measure score for the 

Naïve Bayes. The F-measure score for the SLR and SMO with all the five sensors were also 

observed approximately 81% for Activity 1.  However, using the Naïve Bayes classification 

technique with only Sensor 1, Activity 1 was recognized with 85% score. Interestingly, by 

using different combinations of sensors, the recognition of Activity 1 is even more 

increased. For example, with Naïve Bayes and the combination of Sensor 1, Sensor 2, and 

Sensor 3, the F-measure score increases up to 95% (as shown in Table 3.4). Similarly, for 
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the same activity with Sensor1, Sensor 3, and Sensor 4, the recognition rate of the SMO 

classification technique was 91%. The complete F-measure scores for all the activities by 

using different sensors for the Naïve Bayes, the SLR, and the SMO are presented in Table 

3.4, Table 3.5, and Table 3.6, respectively.  

The F-measure scores for recognition of Activity 2 (ReSi) are presented in Fig. 3.2 

(b). Using all of the five sensors for the three classifiers resulted in recognition accuracy of 

68% for Activity 2. However, when tested with different combinations of three sensors, the 

results increased to 78% with the Naïve Bayes and 74% with the SLR. Each of the sensors 

namely, Sensor 1, Sensor 2, and Sensor 5 played important role in the highly precise 

recognition of Activity 2 using the Naïve Bayes classification technique. However, it was 

observed that using Sensor 4 with any combination of sensors resulted in a reduced 

recognition rate. A similar observation was made for Sensor 2 with the SLR classifier.  

For Activity 3 (ReLi), it can be observed from Fig. 3.2 (c) and Table 3.4—Table 3.6 

that not only the combination of Sensor 2, Senor 3, and Sensor 4 results in high recognition 

but they are also able to individually recognize the Activity 3 with the high F -measure 

score. However, the F-measure score using the Naïve Bayes remains up to 77% with the 

combination of Sensor 1, Senor 2, and Sensor 3. On the other hand, the combination of 

Sensor 2, Sensor 3, and Sensor 4 turned out with approximately 92% F-measure score using 

the SMO classification technique. The score in recognizing the Activity 4 (WaFo) were 

reasonably high using all of the five sensors at the same time with the SLR and SMO 

techniques whereas the accuracy for the same activity by applying the Naïve Bayes was 

observed extremely low as shown in Fig 3.2 (d). However, with Naïve Bayes, Sensor 3 

individually exhibited high accuracy of 41% while low accuracy results were observed with 
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all of the combinations of different sensors. For Activity 4, the combination of Sensors 1, 

Sensor 3, and Sensor 4 turned out with the maximum F-measure score of 55% using the  

Naïve Bayes classification technique. 

Fig. 3.2 (e) presents the F-measure scores for the Activity 5 (WaLe). Again, the 

Naïve Bayes classification was observed significantly low in recognizing the Activity 5. 

Using the Naïve Bayes, the highest F-measure score of 45% was observed with the 

combination of Sensor 1, Senor 4, and Sensor 5 (as shown in Table 3.4). The SLR 

classification technique recognized the Activity 5 with 68% F-measure score with the 

combination of Sensor 1, Sensor 3, and Sensor 5 (as shown in Table 3.5). For Activity 5, the 

SMO produced the highest accuracy (63%) only when all of the five sensors were used 

together. 

The F-measure scores for the recognition of Activity 6 (WaRi) are presented in Fig. 

3.2 (f). The SLR and the SMO classification techniques produced the highest score of 59% 

when all the sensors were used together. The Naïve Bayes classification technique 

recognizes the Activity 6 with 52% accuracy when the combination of Senor 1, Sensor 4, 

and Sensor 5 is used.   

   The Naïve Bayes classification technique performed better in recognizing the 

Activity 7 (TuLe) as shown in Fig. 3.2 (g) with 65% F-measure score. The SLR 

classification technique recognized the Activity 7 with approximately 71% with the 

combination of Senor 3, Sensor 4, and Sensor 5 as shown in Table 3.4. The SMO recognized 

the Activity 7 with 67% accuracy with the combination of Sensor 1, Sensor 4, and Sensor 5 

(as shown in Table 3.6). 
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Activity 8 (TuRi) is best recognized using combination of Senor 3, Sensor 4, and 

Sensor 5 with 74% F-measure as shown in Table 3.4 using the SLR. The SMO recognized 

the Activity 8 with 70% accuracy with different combinations of three sensors as shown in 

Table 3.5. With only Sensor 5, the SMO can recognize the activity with 60% score. The 

Naïve Bayes classifier with the combination of Sensor 1, Sensor 4, and Sensor 5 as shown 

in Fig. 3.2 (h) recognized the Activity 8 with 62% accuracy.  

Fig. 3.2 (i) shows the F-measure scores for recognizing the Activity 9 (Up) using the 

three classification techniques. The SLR and SMO recognize the Activity 9 with high ac 

curacy when all of the sensors are used. The F- measure score using the SLR reaches up to 

92% with the combination of Sensor 3, Sensor 4, and Sensor 5.  

Fig. 3.2 (j) presents the F-measure score for recognition of Activity 10 (Down). The 

three classification techniques recognized the Activity 10 with high accuracy when all of the 

sensors were used.  However, the for Naïve Bayes, the F-measure score reaches up to 77% 

with the combination of Sensor 1, Sensor 3, and Sensor 4 . The SLR recognized the Activity 

10 with 74% accuracy when using the combination of Sensor 1, Sensor 2, and Sensor 3. 

Similarly, the SMO recognized the Activity 10 with 70% accuracy with combination of 

Sensor 1, Sensor 2, and Sensor 3. It can be observed for Fig. 3.2 (k), that using all the five 

sensors together yielded high recognition accuracy for Activity 11 (Jog). The F -measure 

score for the SMO was observed the highest (81%) when the combination of Sensor 1, 

Sensor 3, and Sensor 4 is used. The Naïve Bayes recognized the Activity 11 with 74% score 

when the combination of Sensor 1, Sensor 3, and Sensor 4 was used. The recognition 

accuracy of the SLR was approximately 76% with the combination of Sensor 1, Sensor 3, 

and Sensor 4.  
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     Fig. 3.2 (l) shows the F-measure scores of the three classification techniques with 

individual sensors and using all the five sensors together for Activity 12 (Jump).  Each of 

the three classifiers exhibited recognition accuracy for Activity 12 with the Sensor 4. 

However, using the combination of three sensors, such as Sensor 1, Sensor 2, and Sensor 4, 

the SMO achieved the accuracy of 84%. Similarly, the Naïve Bayes exhibited accuracy of 

81% with the combination of Sensor 1, Sensor 4, and Sensor 5 that is slightly better than 

that of Sensor 4 as shown in Table 3.3. On the other hand, the SLR was able to achieve the 

highest accuracy of 76% with the combination of Sensor 1, Sensor 2, and Sensor 5 for 

Activity 12. 

    Fig. 3.2 (m) shows the F-measure scores for the recognition of Activity 13 (Push) 

using the three different classification techniques. The SMO accurately recognizes the 

Activity 13 with 90% accuracy using the Sensor 1 alone. However, using the combination of 

Sensor 1, Sensor 2, and Sensor 3, the F-measure scores increased to 92%. The SLR 

recognized the Activity 13 with 90% accuracy using the combination of Sensor 2, Sensor 3, 

and Sensor 4. Similarly, the Naïve Bayes recognized the activity with 85% score using the 

combination of Sensor 1, Sensor 2, and Sensor 3. It can be observed from the analysis in 

terms of activity recognition accuracy as depicted in Table 3.4—Table 3.6  and Fig 3.2—

Fig. 3.14 that neither a single classification technique can precisely recognize all of the 

activities nor any single combination of sensors works best for all the activities. However, 

we reach an interesting conclusion that considering the transient nature of the most of the 

activities in the WARD dataset, using more than one sensor simultaneously yielded high 

recognition accuracy. Table 3.3 summarizes the results that represent the best combination 

of sensors and classification technique to recognize the particular activity.  
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(a) F-measure Score for Activity 1 (b) F-measure Score for Activity 2 (c) F-measure Score for Activity 3 

(d) F-measure Score for Activity 4 (e) F-measure Score for Activity 5 (f) F-measure Score for Activity 6 

(g) F-measure Score for Activity 7 (h) F-measure Score for Activity 8 (i) F-measure Score for Activity 9 

(j) F-measure Score for Activity 10 (k) F-measure Score for Activity 11 (l) F-measure Score for Activity 12 

Fig.3.2. F-measure Scores for Different Activities (a) to (m) 
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Activity Combination 

of Sensors 

Technique Highest F-

Measure 

score 

a1 1,2,3 Naïve Bayes 0.95 

a2 1,2,5 Naïve Bayes 0.78 

a3 2,3,4 SMO 0.92 

a4 All 5 Sensors SMO 0.67 

a5 1,3,5 SLR 0.68 

a6 1,4,5 SLR 0.6 

a7 3,4,5 SLR 0.71 

a8 3,4,5 SLR 0.74 

a9 3,4,5 SLR 0.92 

a10 1,3,4 Naïve Bayes 0.77 

a11 1,3,4 SMO 0.81 

a12 1,2,4 SMO 0.83 

a13 1,2,3 SMO 0.92 

3.4. Related Work 

    In this section, we present some of the research works that are related to sensor 

location and human activity recognition in pervasive healthcare monitoring systems. Yang et 

al. [3.8] used low-bandwidth wearable sensors for the classification of continuous human 

action. In the proposed framework, ℓ1-minimization based approach is used for 

classification of valid action segments and rejection of the outlying actions. Contrary to the 

past approaches that recognize single action, the approach by Yang et al. [3.8] is capable of 

recognizing multiple human actions and utilizes five wearable sensors to recognize thirteen 

(m) F-measure Score for Activity 13 

Table 3.3. Summarized Results Depicting the Best Combinations 
of Sensors for Activity Recognition 

Fig.3.2. F-measure Scores for Different Activities (a) to (m) (continued) 



40 
 

action categories. The approach presented in [3.8] is distributed in the sense that a sensor 

node becomes active only when an event is detected and transmits the local information to 

the server. The server utilizes a global classifier to receive the data from the sensors and 

optimizes the local sensor decisions. However, the approach requires the sensor to be 

installed on a fixed location on human body that may limit the accuracy in case when the 

sensor is misplaced.  

Amini et al. [3.10] presented a technique to automatically recognize the location of 

on-body wearable devices to ensure the correct and accurate measurements in health 

monitoring systems. Accelerometers are used to capture the motion data and the device 

location is estimated through the supervised and unsupervised time series methods for data 

analysis. Another approach that co-recognizes the sensor location and human activities is 

presented in [3.9]. The authors used the compressed sensing theory to reconstruct the sparse 

signals captured from inertial human activities and subsequently classified the activities 

signals to determine the location of the signals on human body. The approach presented in 

[3.9] uses only one sensor on the body to recognize the human activity without necessitating 

a fixed location for the sensor. Zhang et al. [3.23] also used compressed sensing theory. The 

activity signals from all of the classes of training set are represented as the sparse linear 

combinations via ℓ1-minimization. In [3.24], a Linear Discriminant Analysis (LDA) based 

approach for feature extraction is applied and classification is performed using Artificial 

Neural Networks (ANNs). The group features, such as autoregressive model coefficients, tilt 

angle, and signal magnitude area are extracted. The approach is claimed to have accuracy of 

97.76% for activities classification and transitions. Our approach is different from the above 

approaches in the sense that we use the local energy to determine the activities performed by 
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the subjects. Moreover, contrary to the approach presented in [3.9] that relies on one body 

sensor, we use five on-body sensors and our approach is capable accurately recognizing the 

activities with multiple sensors simultaneously.  

3.5. Conclusions 

We presented a cloud based framework that integrates the cloud computing services 

with the BANs for human activity recognition. We also investigated the effects of on-body 

sensor locations on accuracy of activity recognition. Due to the varying energy responses 

that change with the position and rotation, we employed a methodology called Local Energy 

Based Shape Histogram (LESH) for feature extraction. The purpose of feature extraction 

was to represent the local regions in the sensor data matrix more comprehensively that 

ultimately results in the improved recognition accuracy. The LESH approach preserves 

maximum information about local energy by segmenting the sensors data in various regions. 

Three classifiers namely, the SLR, Naïve Bayes, and the SMO were used to study the 

relationship between the sensor location and human activity recognition. A detailed analysis  

shows that the task of activity recognition is highly dependent on the location of on -body 

sensors. Particularly, for the activities that are more dynamic and transient, using more than 

one sensor on different body locations simultaneously yields high recognition accuracy. The 

presented framework effectively integrates the cloud computing services with the BANs and 

has potential to be adopted practically for remote patient monitoring and therapies.  
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Table 3.4. Detailed Results for Different Combinations of Sensors for Naïve Bayes 

Class S 1 S 2 S 3 S 4 S 5 

All 

5 

S 

123 

S 

124 S125 

S 

134 

S 

135 S145 

S 

234 

S 

235 

S 

245 

S 

345 

a1 0.78 0.71 0.35 0.36 0.29 0.81 0.85 0.87 0.78 0.91 0.79 0.88 0.6 0.58 0.55 0.42 

a2 0.56 0.28 0.3 0.26 0.36 0.68 0.62 0.68 0.6 0.74 0.69 0.53 0.5 0.49 0.42 0.35 

a3 0.6 0.7 0.8 0.68 0.52 0.76 0.74 0.73 0.83 0.86 0.77 0.73 0.87 0.78 0.74 0.83 

a4 0.25 0.1 0.3 0.47 0.47 0.67 0.41 0.59 0.45 0.61 0.6 0.63 0.44 0.59 0.53 0.46 

a5 0.27 0.33 0.43 0.31 0.11 0.63 0.54 0.37 0.32 0.62 0.68 0.5 0.43 0.45 0.49 0.65 

a6 0 0.1 0.21 0.34 0.44 0.59 0.22 0.47 0.44 0.48 0.5 0.6 0.43 0.48 0.43 0.46 

a7 0.15 0.19 0.21 0.62 0.38 0.56 0.39 0.51 0.36 0.52 0.4 0.64 0.47 0.38 0.59 0.71 

a8 0.21 0.36 0.39 0.67 0.58 0.61 0.5 0.51 0.55 0.6 0.67 0.67 0.47 0.55 0.67 0.74 

a9 0.15 0.06 0.26 0.67 0.72 0.88 0.4 0.5 0.56 0.62 0.74 0.75 0.74 0.82 0.9 0.92 

a10 0.35 0.3 0.43 0.33 0.43 0.7 0.74 0.41 0.56 0.54 0.7 0.51 0.48 0.5 0.65 0.6 

a11 0.52 0.36 0.46 0.31 0.5 0.73 0.63 0.71 0.68 0.76 0.7 0.65 0.75 0.65 0.45 0.73 

a12 0.47 0.49 0.47 0.61 0.53 0.74 0.6 0.74 0.76 0.7 0.62 0.75 0.65 0.59 0.7 0.75 

a13 0.85 0.53 0.24 0.35 0.16 0.84 0.78 0.84 0.84 0.73 0.84 0.84 0.9 0.78 0.72 0.39 

Table 3.5. Detailed Results for Different Combinations of Sensors for the SLR 

Class S 1 S 2 S 3 S 4 S 5 

All 

5 

S 

123 

S 

124 

S 

125 

S 

134 

S 

135 

S 

145 

S 

234 

S 

235 

S 

245 

S 

345 

a1 0.78 0.71 0.35 0.36 0.29 0.81 0.85 0.87 0.78 0.91 0.79 0.88 0.6 0.58 0.55 0.42 

a2 0.56 0.28 0.3 0.26 0.36 0.68 0.62 0.68 0.6 0.74 0.69 0.53 0.5 0.49 0.42 0.35 

a3 0.6 0.7 0.8 0.68 0.52 0.76 0.74 0.73 0.83 0.86 0.77 0.73 0.87 0.78 0.74 0.83 

a4 0.25 0.1 0.3 0.47 0.47 0.67 0.41 0.59 0.45 0.61 0.6 0.63 0.44 0.59 0.53 0.46 

a5 0.27 0.33 0.43 0.31 0.11 0.63 0.54 0.37 0.32 0.62 0.68 0.5 0.43 0.45 0.49 0.65 

a6 0 0.1 0.21 0.34 0.44 0.59 0.22 0.47 0.44 0.48 0.5 0.6 0.43 0.48 0.43 0.46 

a7 0.15 0.19 0.21 0.62 0.38 0.56 0.39 0.51 0.36 0.52 0.4 0.64 0.47 0.38 0.59 0.71 

a8 0.21 0.36 0.39 0.67 0.58 0.61 0.5 0.51 0.55 0.6 0.67 0.67 0.47 0.55 0.67 0.74 

a9 0.15 0.06 0.26 0.67 0.72 0.88 0.4 0.5 0.56 0.62 0.74 0.75 0.74 0.82 0.9 0.92 

a10 0.35 0.3 0.43 0.33 0.43 0.7 0.74 0.41 0.56 0.54 0.7 0.51 0.48 0.5 0.65 0.6 

a11 0.52 0.36 0.46 0.31 0.5 0.73 0.63 0.71 0.68 0.76 0.7 0.65 0.75 0.65 0.45 0.73 

a12 0.47 0.49 0.47 0.61 0.53 0.74 0.6 0.74 0.76 0.7 0.62 0.75 0.65 0.59 0.7 0.75 

a13 0.85 0.53 0.24 0.35 0.16 0.84 0.78 0.84 0.84 0.73 0.84 0.84 0.9 0.78 0.72 0.39 

Table 3.6.  Detailed Results for Different Combinations of Sensors for the SMO 

Class S 1 S 2 S 3 S 4 S 5 

All 

5 

S 

123 

S 

124 

S 

125 

S 

134 

S 

135 

S 

145 

S 

234 

S 

235 

S 

245 

S 

345 

a1 0.73 0.7 0.19 0.24 0.11 0.81 0.74 0.77 0.81 0.65 0.64 0.65 0.59 0.49 0.53 0.3 

a2 0.35 0.33 0.15 0.15 0.24 0.68 0.65 0.6 0.68 0.5 0.5 0.51 0.51 0.46 0.46 0.25 

a3 0.46 0.83 0.76 0.78 0.34 0.76 0.81 0.84 0.87 0.9 0.7 0.8 0.92 0.76 0.81 0.81 

a4 0.09 0.04 0.27 0.27 0.05 0.67 0.3 0.54 0.22 0.65 0.49 0.6 0.56 0.43 0.37 0.41 

a5 0 0.09 0.21 0.38 0.16 0.63 0.36 0.38 0.24 0.44 0.36 0.48 0.42 0.42 0.41 0.5 

a6 0 0 0.04 0.26 0.17 0.59 0.12 0.45 0.2 0.5 0.27 0.48 0.32 0.5 0.49 0.5 

a7 0 0.05 0.05 0.48 0.34 0.56 0.17 0.62 0.39 0.51 0.49 0.67 0.51 0.46 0.59 0.64 

a8 0.05 0.11 0.26 0.3 0.61 0.61 0.32 0.33 0.51 0.45 0.7 0.7 0.47 0.55 0.58 0.7 

a9 0 0 0.05 0.5 0.67 0.88 0.07 0.56 0.6 0.5 0.54 0.67 0.52 0.63 0.68 0.82 

a10 0.38 0.22 0.53 0.16 0.32 0.7 0.7 0.53 0.67 0.68 0.68 0.62 0.59 0.65 0.48 0.59 

a11 0.6 0.46 0.15 0.2 0.23 0.73 0.65 0.71 0.77 0.81 0.75 0.74 0.62 0.65 0.44 0.55 

a12 0.49 0.25 0.21 0.69 0.52 0.74 0.61 0.83 0.75 0.81 0.74 0.83 0.67 0.69 0.69 0.68 

a13 0.9 0.75 0.06 0.17 0.12 0.84 0.92 0.9 0.9 0.73 0.88 0.9 0.87 0.89 0.83 0.23 
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4. MACROSERV: A ROUTE RECOMMENDATION SERVICE 

FOR LARGE-SCALE EVACUATIONS 

This paper
1
 is submitted to IEEE Transactions on Service Computing (TSC) and is in 

the second round of review. 

4.1. Introduction 

Natural and man-made disasters, such as tsunamis, earthquakes, floods, and 

epidemics pose a significant threat to human societies. In response to the growing number of 

recent disasters, such as the Colorado flood, Oklahoma tornado, Japan’s earth quake, 

Katrina hurricane, and in particular, the Red River crest that causes flood almost every year 

in Fargo, North Dakota, the importance and scope of emergency evacuation systems have 

grown tremendously over the past decade [4.1]. Well-planned evacuation operations and 

identification of appropriate rescue routes before and during a disaster play a signi ficant 

role in saving lives and minimizing casualties.  

4.1.1. Motivation  

Generally, transportation planning departments consider the peak traffic demands 

during normal workdays and on special occasions [4.2], [4.3]. However, it is almost 

impossible to conceive transportation plans for emergency situations, due to which large 

                                                 
1
 The material in this chapter was co-authored by Muhammad Usman Shahid Khan, Osman 

Khalid, Ying Huang, Rajiv Ranjan, Fan Zhang, Junwei Cao, Bharadwaj Veeravalli, Samee U. 

Khan, Keqin Li, and Albert Zomaya. Muhammad Usman Shahid Khan had primary 

responsibility for conducting experiments and collecting results. Muhammad Usman Shahid 

Khan was the primary developer of the conclusions that are advanced here. Muhammad Usman 

Shahid Khan also drafted and revised all versions of this chapter. 
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volumes of traffic involved in mass evacuations is likely to exceed the capacity of road 

networks that may lead to loss of human lives. For example, due to the lack of proper 

evacuation plan, 25 people lost their lives in the first 30 minutes while attempting to flee 

their Oakland Hills neighborhood in California during a wildfire in the year 1991. 

Moreover, reports indicate that the inefficient evacuation planning in case of the Katrina and 

Rita hurricane resulted in a heavy traffic jam on the interstates. A similar traffic jam 

occurred for 20 hours after a winter storm in Atlanta, USA, in January 2014, as the 

transportation network was incapable of handling the traffic congestion caused by snow and 

accidents. To prevent such incidents, emergency evacuation plans must be developed to 

ensure the availability of safest and most efficient evacuation routes for the residents of a 

structure, region, or city. 

The objective of this paper is to develop a scalable service that can guide evacuees 

towards safe and least congested routes during a disaster. With the integration of Intelligent 

Transportation System (ITS), the proposed MacroServ service is capable of computing the 

efficient traffic flows leading to minimum congestion of the roads during an emergency 

evacuation. 

4.1.2. Research Problem  

Several works, such as [4.4]–[4.7], have applied multi-objective optimization in 

evacuation modeling. Generally, optimization-based evacuation models consider several 

assumptions to optimize parameters, such as route length, shelter locations, and evacuation 

times. However, as discussed in [4.2], most of the times such assumptions are performance 

limiting or unrealistic, and do not precisely depict the dynamics of real-life emergency 
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situations. Moreover, the following are the limitations of most of the optimization -based 

evacuation models that negatively affect the performance of such systems [4.2].  

A few evacuation models simulate the traffic flow with static road network 

characteristics that do not truly depict the real emergency scenarios [4.5], [4.8]. For 

instance, numerous time varying behavioral, managerial, and stochastic factors, such as 

number of evacuees and traffic conditions, are involved during an evacuation [4.8]. Such 

factors may lead to congestion of the paths that were otherwise suggested as optimal by the 

evacuation modeling approaches. 

If time factor is added to optimization problems, such that the static network is 

expanded over the planning horizon for every time interval, then the corresponding problem 

space becomes extremely large and there are no known polynomial algorithms for solving 

such problems [4.6]. 

Evacuation modeling in most of the optimization-based approaches is formulated as 

a network flow optimization problem [4.6], [4.9]. However, such approaches are not 

scalable for the real-world large-sized evacuation networks, due to the high computational 

complexities. Moreover, such problems are also considered to be NP -hard because of the 

multi-commodity nature, as evacuees are differentiated by the origin-destination pairs [4.7]. 

Therefore, solving for the travel demand rates and route flow rates requires simulation, as a 

closed form expression cannot be captured with optimization models [4.10]. 

As mentioned earlier, the optimization-based evacuation models consider 

assumptions for various parameters, such as road capacities, traffic volumes, route 

distances, and population sizes [4.2]. However, such assumptions can become invalid during 
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a real emergency scenario due to variations in weather conditions, unforeseen conditions of 

traffic, and possible destruction of transportation infrastructure.  

The immediate repercussion of the above listed limitations is the suboptimal 

performance of optimization-based evacuation models.  

4.1.3. Methods and Contributions 

To address the abovementioned limitations, in this paper we propose a scalable 

service, MacroServ, that is capable of performing real-time simulation of dynamic large-

scale transportation networks during emergency scenarios. Simulation based evacuation 

planning by emergency management agencies require faster execution of large -scale 

vehicular traffic flows. Therefore, we utilize parallel computing to achieve the required 

scale, size, and speed of the computations. The MacroServ service integrates with the ITS to 

obtain real-time traffic data and utilizes our proposed algorithm to compute the maximum 

flow of routes and route costs among disaster sites and safety locations [4.11]. Based on the 

route costs, the MacroServ service redirects the traffic on alternate preferred routes before 

the congestion can occur. In this way, evacuees are guided towards the most preferred routes 

that have the minimum possible risk and the least amount of congestion.  

Massive evacuations involve many stochastic factors, such as, degree of compliance 

of evacuees to evacuation calls, rate of evacuees departing from each household/ area, 

behavior of drivers, unforeseen traffic loads, and road conditions on transportation network. 

To depict such factors in our model, we make use of probability distributions, such as (a) 

Poisson distribution [4.12] and (b) Weibull distribution [4.12]. The aforementioned 

probability distributions allow us to model emergency evacuation scenarios that closely 

match with the realistic scenarios. 
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As a case study, we performed our simulations on the real map of City of Fargo, ND, 

USA where the Red River crest causes flood almost every year. The gradient (slope) of the 

Red River averages five inches per mile of length, and drops to 1.5 inches per mile in the 

region of Drayton-Pembina [4.13]. Due to lack of slope, the Red River tends to pool and 

cause floods. To model our system, we obtained the data, including road capacities, traffic 

volumes, speed limits, contours’ elevations, historic crest levels of Red River, and historic 

flood affected areas, from the City of Fargo [4.14] and North Dakota Department of 

Transportation (NDOT) [4.15]. For our simulations, we considered the population of size 

108,000 living at Red River flood zones that needs to be evacuated during a flood. 

Moreover, the transportation network consists of 7,370 road links and 2,800 intersections.  

Our simulation results indicate that the traditional evacuation plans devised by the 

disaster management agencies are inefficient to handle sudden loads of traffic during an 

emergency. The sudden evacuations result in traffic jams due to which evacuation time 

increases. When the evacuees are directed towards the preferred routes using our MacroServ 

service, the overall evacuation time significantly decreases. Moreover, the simulation results 

indicate that the evacuation performance measures are largely dependent on the highway 

network structure and the number of vehicles produced in an emergency planning zone. In 

summary, the MacroServ service is designed to: (a) act as a decision making tool that will 

enable transportation departments to evaluate and review the emergency evacuation plans by 

simulating various disaster scenarios, and (b) recommend preferred and efficient routes to 

the evacuees during the course of a disaster by making use of high-end sensors and the ITS. 

The remainder of this chapter is organized as follows. The MacroServ service 

architecture is described in Section 4.2. In Section 4.3, we discuss the importance and role 
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of sensors in emergency scenarios. Section 4.4 presents the design and modeling of our 

approach. Experimentation results are discussed in Section 4.5. In Section 4.6, we discuss 

the related work, and Section 4.7 concludes the chapter. 

4.2. Service Architecture 

The MacroServ is designed as a route recommendation service that computes the 

preferred routes on a transportation network during the emergency evacuation scenarios. To 

make such service scalable, the parallel computing architecture is utilized on a cluster setup. 
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We provide the details about various components of the service architecture with an 

example in the upcoming subsections. 

4.2.1. Major Components 

4.2.1.1. Road Side Units 

As depicted in Fig. 4.1, the collection of traffic information is performed by Road 

Side Units (RSU). The RSUs consist of sensors deployed mostly on the intersections to 

capture the road characteristics and disaster related information, such as average speed of 

vehicles, average number of vehicles, rain intensity, flood level, and road’s extreme 

temperature conditions (See Section 3). The collected information is transferred to the route 

recommendation service, where the route computation takes place.  

4.2.1.2. Route Recommendation Service 

The basic purpose of route recommendation service is to perform the real-time 

analysis of the sensory data received through ITS and compute preferred routes for the 

evacuees that are least congested and at least risk. Fig. 4.1 depicts the top level components 

of the service, and the computational details, complexity, as well as empirical evaluation of 

the service are thoroughly investigated in the subsequent sections of the paper. The sensory 

data as input workload to the service consists of current traffic and disaster related 

information that is relayed to the route computation algorithm. The route computation 

algorithm running on cluster nodes computes a subset of routes that have the sufficient 

capacity to allow maximum traffic flow with minimum delay. The service relays the 

information about the computed set of preferred routes to the emergency management 
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department to take appropriate decisions during evacuations, as well as to the evacuees for 

traffic guidance through RSU, navigation devices, and other means of communication, such 

as radio or smart phones.   

4.2.2. An Example Scenario 

Fig. 4.1 also presents an example scenario of the proposed MacroServ service 

architecture. While the evacuation is in progress, the vehicles are following different routes 

on a city’s transportation network. The road congestion information is communicated from 

the RSU sensors to the Traffic Control Center (TCC), as shown in Step 1 from where it is 

communicated to route recommendation service (Step 2). The route recommendation service 

utilizes computer cluster and route computation algorithm to compute the alternate routes 

with the maximum flow capacity (Step 3). The vehicles approaching towards congested road 

links are warned in advance, and are provided with alternate preferred routes on the 

navigation devices to prevent congestion (Step 4 and Step 5).   

4.3. ITS and Disaster Management 

An ITS is a combination of advanced sensing technologies used in transportation 

engineering to monitor traffic and road infrastructure, and to assist users for a better traffic 

management and safe travelling [4.16]. A basic ITS could include several essential 

components, such as: (a) a sensing system, (b) a communication system, (c) roadside units 

including traffic signal control system and movable signs, and (d) a notification system that 

includes car navigation and disaster warning system. In addition, advanced modeling 

techniques are also intensively used with a combination of an ITS for traffic predictions an d 

guidance based on historical baseline data. 
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A sensing system plays a critical role and provides basis for any decisions made from 

the ITS. Achieving an accurate and reliable monitoring system for traffic and infrastructure 

behavior has attracted worldwide attention. Vehicle-based sensing systems are usually used 

for transportation infrastructure assessments while infrastructure-based systems can be 

applied for both traffic and infrastructure monitoring [4.19].  

Infrastructure sensors can be installed either on the side or top of road, or can be 

embedded inside the roads also known as in-road reflectors [4.17], [4.18]. In the past 

decades, numerous infrastructure sensors were placed around cities and towns in United 

States, resulting in a network of ITS for better state and national traffic management.  

The collection of road traffic information can be achieved through in -road detectors. 

Inductive loop sensor, as shown in Fig. 4.2(a) is one example of the commonly applied 

infrastructure traffic sensor. Fig. 4.2(b) shows a typical road-side communication unit.  

4.4. Design and Modeling 

In this section, we present the design and model of the proposed route 

recommendation service. Due to a disaster’s evolution in space and time, the network 

characteristics, such as vehicles’ speed and road capacity vary with time. Some roads may 

suffer blockade over time due to congestion, whereas a few roads may become inaccessible 

Fig.4.2. Traffic and Disaster Sensors 
(a) (b) 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=W99sORSFnQy_bM&tbnid=zMYQQNQ8Flwf5M:&ved=0CAUQjRw&url=https://www.fhwa.dot.gov/publications/research/operations/its/06139/chapt5b.cfm&ei=WFP-UpuZKoi2yAH8goDoCw&bvm=bv.61190604,d.aWc&psig=AFQjCNGYZOZLtUzRcsJss_ypC_FeyQrAZg&ust=1392485019904015
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after being hit by the disaster (e.g., flood). Capturing the important time evolving variations 

in the road infrastructure will only make the model more realistic.  

We model the traffic at macro-scale level, where the vehicles act as intelligent agents 

carrying evacuees from sources to destinations. The MacroServ service computes real -time 

preferred routes for the evacuees. Consequently, the autonomous agents make dynamic route 

choices based on the congestion level on roads, distance from the destination, road safety 

condition, and capacity in safety shelters. The dynamic re-routing of vehicles more closely 

depicts a realistic scenario, as with the advancement in ITS and sensors, most of the 

vehicles nowadays are equipped with radio and GPS based navigation systems [4.11]. 

Therefore, the vehicles can interpret road conditions in advance by the help of navigation 

systems, as well as through the updates on radio. In the following subsections, we discuss 

the various phases of our proposed model. 

4.4.1. Network Design 

To create the transportation network, we imported the map of City of Fargo from the 

OpenStreetMap API [4.20] that has a database of world maps, and the regional maps can be 
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exported in XML format. For each road segment (between two intersections), the 

information from the ITS about traffic volumes, speed limits, number of lanes, segment 

length, and contour elevations, has been stored in the database as indicated in Fig. 4.3. The 

aforementioned information has been obtained from NDOT [4.15]. Moreover, the 

intersections are also stored in database as nodes with unique identifiers (Fig. 4.3).  

Based on the past records of flooding in the City of Fargo, the areas that are at higher 

risk of getting affected by the Red River flood are marked on the map as evacuation zones. 

Safety shelters are defined on the map locations that are not at risk of flooding.  

4.4.2. Evacuee’s Departure Rate 

In this phase, we present a way of estimating the average number of vehicles 

departing from each home within a disaster affected area. Specifically, we need to find the 

time distribution of the evacuating vehicles. To make such estimations, it is important to 

know the population size of the particular area under consideration. However, the 

population size is a random factor that varies between day and night. People are more likely 

to be at work places during the day and at home during night time or weekends. In our 

model, we intend to introduce the maximum traffic load on the transportation network from 

the disaster affected area. Therefore, we assume that the people are at home when the 

disaster warning is announced. Moreover, we also assume that in a given time interval, 

vehicles originating from the homes make a discrete count, such as 0, 1, 2,…, or n number 

of vehicles. Therefore, to represent the vehicle departure rate, we utilized Poisson 

distribution [4.12] given as: 
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P[X = q] =
λq ∙ e−λ

q!
. (4.1) 

 

The above equation indicates the probability that there would be q number of vehicle 

departures, where λ is the mean number of departures per time interval. The Poisson 

distribution is commonly used in queuing theory, and describes the probability that q events 

will occur within a time period, given that the time between two events is a random number 

that is independent of the time of the previous events [4.12]. For our given scenario, at a 

given time interval, some houses have no or a few vehicles coming out, most have some 

vehicles emerging, and a few houses have most vehicles departing. Moreover, the vehic le 

departures are also independent of each other. Under such circumstances, we considered the 

Poisson distribution to be more appropriate to depict the vehicular departures during an 

evacuation scenario. The primary reason for such selection is that just a single parameter, 

mean value λ, needs to be configured in simulations to evaluate the effect of varying number 

of departing vehicles during an evacuation depending on the number of residents at home.  

4.4.3. Departure Times 

The purpose of this phase is to model the rate of vehicles entering the transportation 

network following the evacuation instructions. For model accuracy, it is imperative to 

consider the evacuees’ behavior in response to the evacuation orders. The evacuees’ decision 

about when to leave depends on factors, such as, severity of the disaster, social status, and 

the availability of information and transport. Some people may prefer to stay behind to look 

after their property. In general, it is more likely that a few people leave initially, then the 

evacuations reach the peak value, and gradually slow down as most of the population have 

already evacuated. Such an evacuation behavior can be depicted with a response curve as 
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stated in Fig. 4.4 that indicates the percentage of people departing in each time interval. The 

evacuation response curve can be expressed with probability density function of Weibull 

distribution [4.12], given as: 

f(x; α, β) = {

β

α
(

x

α
)

β−1

× e−(
x
α

)
β

, x ≥ 0,
 

0.                                otherwise

 (4.2) 

In above equation, the parameter α > 0 is the scale parameter, and β > 0 is the shape 

parameter of the distribution. If the parameter x represents the time taken in departure, then 

the Weibull gives a distribution that has departure rate proportional to a power of time. The 

values of α and β can be configured to analyze the impact of evacuees’ compliance behavior 

during the emergency evacuations. Compared to the Poisson and Uniform distributions, the 

Weibull distribution more closely depicts the evacuee’s behavior due to the asymmetric 

nature of the curve, as indicated in Fig. 4.4.  

4.4.4. Safety Shelter Selection 

This step computes the set of safety shelters for evacuating vehicles. The simplest 

approach is to assign safety shelters that are at the shortest distances from the vehicles. 



59 
 

However, this may result in overcrowding of shelters when most of the vehicles prefer to 

reach the nearest shelters. An alternate approach is to manually designate shelters for the 

evacuees in various areas. However, the aforementioned approach is not efficient, as the 

roads leading to manually designated shelters may become inaccessible due to congestion or 

other factors. 

In our model, we adopt a probabilistic approach of assigning shelters to evacuees. 

We consider the real-time varying factors, such as road traffic, congestion, distance, risk 

level, and capacity of the shelter. In this way, evacuees are recommended a set of shelters 

that are most preferable in the current time interval.  

4.4.5. Route Selection 

In this step, the route recommendation service computes the preferred routes for the 

vehicles during evacuation. The service allows individuals to take decisions about route 

selection at road intersections. For an intersection, the service maintains a route table that 

contains least travel costs from the intersection to each of the destinations. Cost is based on 

flow capacity, maximum speed limit, density of traffic, length, and travel time of the road 

link. The total cost of a route between an intersection and the destination shelter is the sum 

of the costs of individual road segments. As a disaster has tendency to expand outwards 

from the epicenter, such as in the case of wild fire, tornado, and floods, the roads which are 

not affected by disaster yet may get hit by the disaster at a later time. Therefore, costs are 

computed by also taking into consideration the disaster affected roads. The information 

about road damage is provided at real-time by the high-end ITS sensors. As indicated in 

Table 4.1, if a vehicle is heading for Shelter 2, then at the intersection, the least cost towards 

Shelter 2 is 13 that is for the route 3. Moreover, the costs indicated in Table 4.1 are dynamic 
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and are adjusted at real-time according to the road congestions. Therefore, when more 

vehicles enter a road segment, the overall speed of the vehicles decrease and the cost is 

recalculated. In the following subsections, we present the cost calculation and route 

recommendation algorithm. 

4.4.5.1. Route Cost Calculation 

The route cost is the time it will take a vehicle to traverse a route to reach the destination 

shelter. When traffic capacity of a route is greater, then the vehicles will take lesser time in 

traversing the route, and smaller will be the route cost. Let Lk be the length of a road segment k, 

which has Nk number of lanes, and ℓ be the average length of vehicles passing through the road 

segment. The maximum possible traffic flow capacity of the road segment k is given as: 

Table 4.2. Road Congestion Example 

𝑻𝟏 𝑻𝟐 𝑻𝟑 

 𝐹𝑘 = 4 × 50 = 200 
 𝑆𝑘 = 200/4 = 50 
 𝐶𝑘 = 300/50 = 6 

 𝐹𝑘 = 4 × 50 = 200 
 𝑆𝑘 = 200/5 = 40 
 𝐶𝑘 = 300/40
= 7.5 

 𝐹𝑘 = 4 × 50 = 200 
 𝑆𝑘 = 200/7 = 28.5 
 𝐶𝑘 = 300/28.5
= 10.5 

Table 4.3. Notations and Description 

𝐺 Graph representing the transportation network 

𝐻(𝑟) Sub-graph, representing a region 𝑟 

𝑋𝑥𝑧 
Set of routes between an intersection x and 

destination z 

𝑔 A group of people 

𝑙𝑚 Location of person m 

𝑍 Set of shelters 

Table 4.1. Route Cost Table Maintained by Each Intersection 

Route 
ID 

Shelter 1 Shelter 2 Shelter 3 Shelter 4 
… 

1 11 65 32 35 … 

2 43 34 54 31 … 

3 23 13 31 33 … 

4 24 21 45 36 … 

… … … … … … 
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fk =
Lk × Nk

ℓ
. (4.3) 

Equation (4.3) computes the maximum number of vehicles that can traverse the road 

segment without congestion at a given time interval. In normal situations, inter -vehicular 

distance depends on speed of vehicles. More the speed, higher would be the inter -vehicular 

distance. However, we assume that during the time of disaster, it is almost impossible for 

the vehicles to maintain appropriate  inter-vehicular distance, because, evacuees are trying 

to save their lives, so traffic laws are difficult to apply. Suppose, the number of vehicles 

currently travelling through the road segment k is denoted as τk. Then, the extent of 

congestion experienced by the road segment k is given by:  

ck =
τk

fk
. (4.4) 

If we let sk
max to denote the maximum allowed speed limit of the road segment k, 

then the free flow (Fk) of vehicles currently traversing the road segment is given as:  

Fk = fk × sk
max. (4.5) 

With τk number of vehicles travelling through the link, the maximum possible speed 

can be computed as: 

Sk =
Fk

τk
. (4.6) 

Finally, we compute the travel cost of road segment k given by: 

Ck =
Lk

Sk
. (4.7) 
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The cost in the above equation is dynamic and varies with time as the numbers of 

vehicles on the road segment vary. An Illustrative Example: We present an example of the 

cost computation with the support of Table 4.2 and Fig. 4.5. Suppose, at the time interval T1, 

the road segment CD has maximum capacity of four vehicles (fCD = 4) and the maximum 

speed limit sCD
max = 50 km/h. The free flow of vehicles according to (5) is given as FCD =

200. As indicated in Fig. 4.5(a), the current number of vehicles on link is τCD = 4, so by 

using (6), we get the maximum possible speed as SCD = 200/4 = 50. If the length of the 

link is LCD = 300m, then the travel time cost is given as CCD = 300/50 = 6 (Table 4.2, 

Column 1). As one more vehicles enter the link CD, the total number of vehicles becomes 

τCD = 5 (Fig. 4.5(b)), and the travel cost is increased to 7.5. In Fig. 4.5(c), when the number 

of vehicles on link CD reaches 7, then the link cost becomes 10.5 (Table 4.2, Column 3), 

which is an indication of road congestion, and consequently the vehicles are travelling with 

reduced speeds. Therefore, the incoming vehicles are redirected to other routes with the 

smaller cost (indicated by arrows in Fig. 4.5(c). In the following subsection, we present our 

algorithm that computes the preferred routes for the evacuating vehicles.  

(a) (b) (c) 
Fig.4.5. Route Cost Update: (a) No Congestion, (b) Slight Congestion, and (c) Alternate Route Selection Due to 

High Congestion. The Arrow Sign Shows the Directions to the Next Intersection During Evacuation at 

Intersection C. 
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Fig.4.6. Map of City of Fargo   
Population at risk Intersection Safety Shelter 

  

  

Red River 

4.4.5.2. Route Computation Algorithm 

Fig. 4.6 depicts a portion of the map of City of Fargo that we considered as a case 

study in this paper. The three main items on the map are disaster risk areas,  intersections, 

and safety shelters. During the evacuation, the residents in affected areas flee towards safety 

shelters, and are guided about the routes on intersections. We denote the road network with 

a graph notation: G = (V, E), where V is the set of vertices representing intersections, and E 

is the set of links that represent roads. Table 4.3 indicates the set of notations used in this 

subsection. The real-time processing of graph of up to the scale of a city is very resource 

intensive task and is not feasible to be performed by a single computational node. Therefore, 

the graph G is logically split into several sub-graphs, and each sub-graph is processed on a 

separate node using MPI on the HPC cluster. We denote a sub-graph by H(r), r = 1, 2, 3, … , n, 

such that H(1) ∪ H(2) ∪ H(3) ∪ … ∪ H(n) = G. Between any two regions H(a) and H(b), we 

define a set of overlapping points as boundary points Bab. The boundary points are the 

intersection nodes that are common to both the regions, such that Bab = H(a) ∩ H(b). 

Suppose, evacuees in region H(a) are recommended a shelter that is located in the region 

H(r), where r ≠ a. As a first step, the evacuees are routed towards a boundary point pi ∈
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{Bak = H(a) ∩ H(k)} that has the minimum congestion and risk at the current time interval 

(determined through ITS). Here, H(k) is the region adjacent to H(a), and located on the 

shortest and safest path towards the target shelter. On reaching the boundary point pi using 

least cost paths, as the next step, vehicles are routed within the same region H(k) based on 

route cost computations. If k=r, then the vehicles have reached the desired region, where the 

target shelter is located. Otherwise, the aforementioned procedure will be repeated to further 

route the vehicles towards new boundary point.  

As indicated in Algorithm 4.1, the PARFOR loop executes in parallel for each of the 

regions (Line 2). Within a region, route cost tables are updated in parallel using (7) for 

every intersection and shelter (Line 3–Line 11). There can be more than one route possible 

between an intersection and a safety shelter, and each route consists of numerous road 

segments. If the destination shelter lies within the same region, then the Line 6 filters out a 

Algorithm 4.1. Route Recommendation 

 
1: while time interval 𝑡 ≤ 𝑇𝑒𝑛𝑑 do 

2:    PARFOR region 𝐻(𝑟) ∈ 𝐺 do 

3:       PARFOR intersection 𝑥 ∈ 𝐻(𝑟) do 

4:           for each shelter 𝑧 ∈ 𝑍 do 

5:              If z ∈ 𝐻(𝑟) then 

6:                Route cost  𝜉(𝑥𝑧) = 𝑚𝑖𝑛 {∑ 𝐶𝑒} ,𝑒∈𝑗   ∀𝑗 ∈ 𝑋𝑥𝑧 

7:              else 

8:                Route cost  𝜉(𝑥𝑝𝑖) = 𝑚𝑖𝑛 {∑ 𝐶𝑒} ,𝑒∈𝑗   ∀𝑗 ∈ 𝑋𝑥𝑝𝑖
 

9:              end if 

10:           end for           

11:        end PARFOR 

12:        for each 𝑔 in area 𝐴 ∈ 𝐻(𝑟) do 

13:           𝐷 = 𝐺𝑒𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑔) 

14:           for each 𝑚 ∈ 𝑔 do 

15:              𝑚𝑜𝑣𝑒(𝑚, 𝐷)  

16:           end for 

17:       end for 

18:    end PARFOR 

19: end while 
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route that has the minimum travel cost between an intersection x and shelter z. Otherwise,  

the minimum travel cost is calculated between the shelter x and the boundary point pi as 

indicated in Line 8. For various groups of evacuees in the disaster affected area (A), the 

preferred destination shelters are selected using GetDestination function in Line 13 that is 

defined in Algorithm 4.2. Algorithm 4.2 selects only those shelters from the set of shelters 

that still have space to accommodate more people (Line 2). We assume that shelter space 

information is available by the help of sensors installed at each shelter. The Line 3 to Line 7 

of Algorithm 4.2 computes the minimum travel cost of each evacuee in the group g from 

each shelter. The shelter whose average travel cost is minimum from all the group members 

is considered as the one satisfying the group members and is selected as the destination 

shelter (Algorithm 4.2, Line 8 to Line 10). An example scenario of the aforementioned 

destination selection is when members of a family are at different locations in a city during 

the time of disaster, and they want to gather at a place that is at shortest travel costs for each 

member. On selection of the destination shelter, the Line 14 to Line 16 of the Algorithm 4.1 

moves each group member towards destination shelter. More precisely, in the real 

emergency scenario, the move function is meant to recommend the evacuees with least cost 

route towards the destination. The move function also handles the boundary condition, such 

that when a vehicle reaches the boundary of a region H(r), the current region hands over  the 

vehicular details to the new region. Such a case may arise when the destination shelter is not 

located in the same region from where the vehicle has initiated evacuation.  

4.4.5.2.1. Time Complexity 

The time complexity of the MacroServ is based on the time complexity of the 

Algorithm 4.1. From the Line 4 to Line 9, the Algorithm 4.1 calculates the cost of all the 
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routes from a single intersection to all of the shelters and boundary points. For z shelters 

and j routes from an intersection to a shelter, the time complexity is O(z×j) and for p 

boundary points, the time complexity is O(p×j). The time complexity of the Algorithm 4.1 

from the Line 4 to Line 9 is O(z×j+p×j). The number of boundary points p is much larger 

than the number of shelters. Therefore, the time complexity is equivalent to O(p×j). For i 

intersections, the time complexity is O(i×p×j). For h regions the time complexity is 

O(h×i×p×j). In Line 13, the destination is selected for each group by calling the Algorithm 

4.2.  

In Line 1 of the Algorithm 4.2, all the members of the group are retrieved with time 

complexity O(1). All the shelters having space are selected in the Line 2 that takes O(z). The 

time complexity of the Algorithm 4.2 from Line 3 to 7 is O(m×z), where m is the number of 

the users in the group. The time complexity of the Line 8 is O(m). Therefore, the to tal time 

complexity of the Algorithm 4.2 is O(z+m×z+m+1) that is equivalent to O(m×z).  

The Line 13 in the Algorithm 4.1 uses Algorithm 4.2 so its time complexity is 

O(m×z). For g number of groups, the time complexity increases to O(g×m×z). The time 

Algorithm 4.2. Get Destination Shelter 

Input: A group 𝑔 of people  

Output: A shelter 𝒮 that is preferred by every member 
of group 

1: 𝑄 ← Retrieve group members from 𝑔  

2: 𝑉′ ← 𝑔𝑒𝑡𝑆ℎ𝑒𝑙𝑡𝑒𝑟𝑠( ) // shelters that have space 

3: for each member 𝑚 ∈ 𝑄 do 

4:     for each shelter 𝑣 ∈ 𝑉′ do 

5:         𝑃[𝑚][𝑣] = min 𝑐(𝑗)(𝑙𝑚, 𝑣), ∀𝑗 ∈ 𝑋𝑙𝑚,   𝑣  

6:     end for 

7: end for 

8: 𝑅𝑎𝑛𝑘[𝑣] ← 𝑎𝑣𝑔(𝑃) 

9: 𝒮 = 𝑣𝑚𝑖𝑛(𝑅𝑎𝑛𝑘) 

10: return 𝒮 
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complexity of the Line 14 to Line 16 is O(m) that increases to O(g×m) for g number of 

groups. For Line 2 to Line 18, the time complexity becomes O(h×(i×p×j+g×m×z)). The 

algorithm iterates Tend times. Therefore, the total time complexity of the Algorithm 4.1 is 

O(Tend×h×(i×p×j+g× m×z)). By executing the algorithm in parallel, the time complexity of 

the Algorithm 4.1 is reduced to O(Tend×(p×j +g×m×z)). 

4.5. Performance Evaluation 

In this section, we evaluate the performance of the proposed MacroServ service. We 

implemented the route cost computation algorithm in C++ using OpenMPI library [4.21]. 

The experiments are performed on HPC cluster established in North Dakota State University 

(NDSU), Fargo, ND, USA [4.22]. The cluster nodes have the following specifications: quad-

core Intel X5550 @ 2.67GHz with 48GB ECC DDR3 1333MHz (8GB DIMMs), 160GB 

7.2K RPM SATA HDD, 1x Myri-10G port, and dual Gigabit Ethernet ports. Fig. 4.6 

indicates the scenario considered in the simulations. The population settled at the Red 

River’s bank needs to be evacuated towards the safety shelter locations. The road 

intersections are equipped with ITS sensors to send alerts to the vehicles during the 

evacuations. The map is divided into 3 regions (zones). The total number of evacuees is 

about 108,000. If the given map is converted to a graph representation, then the graph has 

2,800 vertices with 7,370 edges.  

4.5.1. Performance Metrics 

The performance metrics considered in the simulations include: (a) evacuation times, 

(b) average travel time, (c) road congestion, and (d) population evacuated. The evacuation 

time indicates the time spent between the start of evacuation and when the last person 
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evacuates the affected area. The average travel time computes the average of travel times of 

all the evacuees. The road congestion is computed by (4) and indicates the amount of 

congestion experienced by a road segment at a given time interval. The population 

evacuated indicates the number of people who have fled from disaster area in a certain time 

interval. The performance of the system is observed by varying the parameters of the 

Poisson and Weibull distributions. 

4.5.2. Comparison Techniques 

To compare the performance of the MacroServ service, we considered two other 

evacuation approaches: (a) Dedicated and (b) Shortest-Path. In the first approach, the 

evacuating population follows only those routes that are predefined by the Fargo department 

of transportation [4.15]. The criterion of selection of dedicated routes is set by department 

of transportation, and the primary factor is the road capacity. Therefore, we considered the 

dedicated routes as a set of the interstates and main roads [4.14]. We developed the shortest-

path model (based on Dijkstra algorithm) that allows the evacuees to take the shortest routes 

from disaster site towards safety locations. The information about the changes in the road 
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conditions is made available to both the aforementioned baseline approaches to provide a 

fair comparison with the proposed MacroServ.  

4.5.3. Evaluation Results 

In this subsection, we present the evacuation performance of our proposed scheme in 

comparison to the abovementioned approaches. For each data point, the simulation is 

repeated 20 times to obtain the statistical significance of the results. In our experiments, we 

also introduced the damage to the roads by the disaster to analyze the impact on total 

evacuation and average travel time. For that purpose, we utilized Bernoulli distribution 

[4.12] to randomly mark roads as damaged beginning with destroying initially those roads 

that are geographically near to the disaster site, and as the simulation time proceeds, the 

road destruction is expanded outwards to mimic damage caused by the floods.  

4.5.3.1. Impact of Departure Rate 

Fig. 4.7 depicts average travel time of the vehicles by varying the departure rate of 

vehicles from the intersections. When the departure rate is lower, less than 3 vehicles per 

minute, the average travel time taken is almost same for all the three approaches. However, 

as the departure rate increases, the average travel time of Dedicated and Shortest -Path turns 

A
v
e
ra

g
e
 c

o
n
g
e
s
ti
o

n
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out to be higher than the MacroServ. This is an expected outcome, as the aforementioned 

approaches do not take into account the current traffic flow rate on roads. As people tend to 

adopt the shortest route for evacuations, the roads become congested and road’s traffic flow 

rate is dropped. Same is the reason for Dedicated approach as arrival of too many vehicles 

on limited set of roads results in congestion of such roads.  

4.5.3.2. Impact of Congestion 

Fig. 4.8 compares the three approaches for congestion on the roads near the shelters 

with respect to time. Initially, due to heavy congestion in case of Dedicated and Shortest -

Path, very few cars are able to reach the roads leading towards shelters. Therefore, the 

congestion on the roads is shown lesser for Dedicated and Shortest -Path in the Fig. 4.8. 

Alternatively, the vehicles quickly reached the roads near shelters for the MacroServ 

scheme, which resulted in higher congestion in the first few minutes. However, the 

congestion decreases subsequently as most of the vehicles have reached the shelters. 

Moreover, congestion level decreases relatively at lower rate in the case of Dedicated and 

Shortest-Path. This is due to the fact that both the approaches do not consider traffic flow 
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Fig.4.9. Average Evacuations per Minute with Varying Shape Parameter in Weibull distribution: (a) α=6, β=1, and 

λ=5, and (b) α=6, β=2, and λ=5 
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capacity while computing routes, and as a result evacuees are guided towards short but 

congested roads.  

4.5.3.3. Impact of Shape (𝜷) of Weibull Distribution 

In this simulation, we inspect the impact of evacuations with respect to time. The 

β=1 in Fig. 4.9(a) indicates that most of the people have departed immediately after disaster 

warning from the affected site. The sudden significant increase in departing population 

resulted in an overall increase in the evacuation times. The β=2 (Fig. 4.9(b)) is the 

approximate mean around the scaling parameter, which creates the similar curve indicated in 

Fig. 4.4. As reflected from Fig. 4.9(b), the total evacuation time with β=2 is lesser than the 

evacuation time with β=1 in Fig. 4.9(a). The most probable reason is that with β=2, few 
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Fig. 4.10. Effect of Road Damage by Varying Departure Time (Scale Parameter α) with β=2: (a) Average 

Total Evacuations under Normal Conditions, (b) Average Total Evacuations under Damaged Conditions, (c) 

Average Travel Time under Normal Condition, and (d) Average Travel Time under Damaged Conditions. 
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people are expected to be evacuated initially, then evacuations go to a peak value and 

gradually decrease, which results in the less congestion of roads. The slow departure puts 

less load on the road network and results in lesser evacuation time. Fig. 4.9 indicates that an 

organized evacuation with gradual departure performs much better than a random immediate 

evacuation approach. However, whether the evacuation is organized or not, the MacroServ 

scheme yields shorter evacuation time and evacuates more population per minute as 

compared to the other approaches. Especially, within one hour of issuing evacuation 

comments, the MacroServ service doubles the amount of evacuees when compared with the 

other two approaches. This accounts for the fact that the evacuees are directed towards the 

roads with maximum flow rate.  

4.5.3.4. Impact of Average Departure Time  

Fig. 4.10 presents the results for varying the departure time that is determined by the 

parameter α. As it can be seen in Fig. 4.10(a), under normal road conditions, when the 

average departure time of the evacuees increases, the average total evacuation times become 

similar for MacroServ, Dedicated, and Shortest-path. The similarity in evacuation times of 

the three approaches is due of the low density of traffic on roads. As inter -arrival times of 

vehicles entering road network have increased, this leads to the lesser congestion on roads. 

Moreover, increased departure time also results into the increased evacuation times. Fig. 

4.10(b) depicts the evacuation times under damaged road conditions. The MacroServ takes 

half of the time for evacuations as compared to the time taken by the other approaches . 

Alternatively, Shortest-Path does not consider the road condition and congestion while 

computing the routes. This may lead to traffic jams when vehicles move towards the 

damaged roads, resulting in increased congestion and total evacuation times. Fig. 4.10(c) 
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shows the average travel time versus departure time, α. The average travel time decreases as 

the departure time increases under normal road conditions. Similar to Fig. 4.9, it can be seen 

from Fig. 4.10(c) that as people are taking more time in departure, there would be less 

congestion on the roads, and average travel times for the three approaches becomes similar. 

Under damaged road network (Fig. 4.10(d)), MacroServ outperforms the other two schemes 

because of the most preferred route recommendation strategy.  

 

4.5.3.5. Impact of Road Damage Probability 

The simulations are performed to analyze the effect of road infrastructure damage on 

the three evacuation schemes. Fig. 4.11(a) indicates that with the increase in road damage 

probability, the average travel time also increases. However, the MacroServ scheme has 

lesser increase in travel time as compared to the other two approaches. The reason for the 

aforementioned behavior is that the evacuees are not directed towards damaged routes in the 

case of MacroServ, and consequently, the vehicle speeds are not reduced. Fig. 4.11(b) 

depicts the effect of damage recovery time of roads on the average travel time. When 
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Fig.4.11. Impact of (a) Road Damage Probability and (b) Recovery 

Time, on Average Travel Time with α=6, β=2, λ=5, and p=0.01 
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damage to the road network occurs, the vehicles are diverted towards paths that are slightly 

longer than the damaged ones. When the recovery time is smaller, such as 12 minutes, more 

vehicles arrive back on the shortest paths and cause congestion that causes more delay. Wi th 

increase in the recovery time (18 to 30 minutes), more cars were diverted to longer paths, 

and few remaining cars came back on the shortest path, and traveled with less congestion. 

Overall average travel time decreases slightly in case of Shortest-Path. The MacroServ 

approach is already using the road network efficiently and is not allowing congestion on the 

road, so effect of road damage is not observed in MacroServ.   

4.5.3.6. Impact of Population Growth 

In this simulation run, we evaluate the effect of damaged road network if the 

population is increased by 2% in each coming year [4.23]. Fig. 4.12 indicates that there 

would be very slight effect of increase in population on the average travel time for all the 

approaches. However, in contrast to the Dedicated and Shortest-Path the proposed 

MacroServ evacuation strategy is exhibiting the least average travel times in the future 

years. Therefore, we may conclude that MacroServ is capable of efficiently handling the 

evacuations with increased population size.  
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4.5.3.7. Scalability Analysis 

The simulations are performed to analyze the scalability of the MacroServ 

framework. An algorithm is known to be scalable if the algorithm can maintain the 

execution time in desirable limits even in case of large increase in workload by using 

additional processors.  

We split the map into smaller regions using two different techniques, Quadtree [4.32] 

and METIS [4.33].  Quadtree is a data structure technique most often used to partition a 

two-dimensional space by recursively subdividing it into four quadrants or regions. The 

procedure of creating the Quadtree-based partitioning begins with decomposing the region 

into four equal quadrants, subquadrants, and so on with each leaf node containing data 

corresponding to a specific sub-region based on a criteria. Each node in the tree either has 

exactly four children, or has no children (a leaf node) [4.32]. METIS [4.33] can partition an 

unstructured graph into a user-specified number k of partitions. We utilized METIS’s 

multilevel k-way partitioning algorithm [4.33] because it provides additional capabilities, 

such as minimize the resulting subdomain connectivity graph, enforce contiguous partitions, 

and minimize alternative objectives.  

Table 4.4. Quadtree vs METIS 

Technique 
Number of partitions 

1 4 8 16 

Quadtree 

Recommendation 

generation time (secs) 

91.17 

 

30.951 

 

21.984 

 

15.344 

 

Number of messages 0 297 1031 2129 

METIS 

Recommendation 

generation time (secs) 
91.17 29.394 23.712 15.828 

Number of messages 0 203 1049 2141 
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We varied the number of partitions in our simulations and observed the effects of 

such variation on parameters, such as recommendation generation time and inter -message 

exchange among the computational nodes. Both the aforementioned parameters are most 

significant as they determine the efficiency of the proposed framework. Table 4.4 presents 

the results of recommendation generation time and number of messages for both METIS and 

Quadtree. We considered the maximum of 16 partitions, as increasing the number of 

partitions results in some partitions becoming empty (carrying no nodes). An important 

observation related to partitioning was that the numbers of nodes were same in each of the 

sub-regions created by METIS, whereas they were different in the sub-regions resulted from 

Quadtree. Such observation had also an effect on the results. With lesser number of 

partitions and large sized sub-regions, both the average recommendation generation time 

and average number of messages passed were less in case of METIS as compared to 

Quadtree. However, as the number of partitions (each assigned to a processor) increases, the 

results of Quadtree and METIS became almost similar. Therefore, due to similarity in 

results for larger number of partitions, we preferred the Quadtree for further 

experimentation as Quadtree exhibits simplicity in terms of data handling and querying the 

partition from the map.  

In Fig. 4.13 and Fig. 4.14, we evaluated the aforementioned metrics for our proposed 

scheme MacroServ by varying the number of vertices in the map. We utilized Quadtree for 

map partitioning. 

Fig. 4.13 presents the effect of increasing the number of partitions (one partition per 

processor) as well as the size of map on the recommendation generation time. Results 

indicate that doubling the size of the region increases the recommendation generation time 
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by an average of 26%. The increase in single processor results in decrease in the 

recommendation generation time by an average of 9%. Moreover, it can be observed from 

the results that by increasing the number of processors, the MacroServ framework can 

efficiently provide recommendations for the large-scale datasets with little effect on the 

recommendation generation time. 

Fig. 4.14 shows the effect of increasing the number of partitions and map size on the 

average number of vehicles that travel from one zone to another (i.e., number of messages 

passed between processors). The results indicate that the increase in a single processor 

increases the average number of vehicles travelling from one zone to another by 39%. 

However, doubling the size of the map decreases the average number of vehicle crossing 

from one zone to another by 76%.  

Based on the results presented in Table 4.4, Fig. 4.13, and Fig. 4.14, it can concluded 

that the MacroServ is a scalable service, as it can efficiently handle the large sized map by 

increasing the number of processors.  
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4.6. Related Work  

Numerous studies conducted in the past addressed various perspectives of emergency 

evacuation modeling, such as route finding [4.6], shelter site selection [4.5], evacuees’ 

behavior [4.10], and traffic control strategies [4.24]. In recent years, there has been a 

growing interest in the multi-objective optimization techniques for evacuation route finding 

problem.  

The authors in [4.25] studied demand-based strategies for aggregate-level routing 

with and without congestion. The authors proposed a network flow model that optimized an 

evacuation specific lexicographic objective function. The function computes the time 

dependent evacuation routes for each of the source. However, being a combinatorial 

optimization problem, the proposed approach is difficult to be solved for large realistic 

networks. Therefore, the authors utilized two heuristics to solve the problem, but with a 

tradeoff of solution quality. Lim et al. [4.6] modeled evacuation problem as network flow 

optimization problem. The static network is expanded over the planning horizon for each 

time interval. However, this makes the optimization problem extremely large to solve. 

Therefore, the authors proposed a heuristic based solution that utilized Dijkstra’s algorithm 

to compute evacuation paths, and a greedy algorithm to find the maximum flow and exit 
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schedule for each path at each time interval. In a similar study, the authors in [4.9] utilized 

mixed integer programming for a dynamic network flow optimization problem. The authors 

proposed a heuristic solution that was applied over the time expanded transportation 

network, where the time horizon was divided into intervals of equal length. However, time 

expansion of the network made optimization problem infeasible for large scale evacuation 

scenarios. Coutinho-Rodrigues et al. [4.5] proposed a multi-objective optimization problem 

to find evacuation paths and the location of shelters for urban evacuation planning. The 

authors considered many objectives for optimization, such as path lengths, path risks, 

evacuation times, lengths of backup paths, and number of shelters. The set of primary routes 

between disaster site and shelter locations were generated with a bi-objective shortest path 

approach by considering the path lengths and path risks. The model was tested on a smaller 

network with limited roads and intersections.  

Stepanov et al. [4.7] proposed an integer programming formulation for route 

assignment that utilized M/G/c/c state dependent queues to address congestion and time 

delays on road links. The authors computed a set of evacuation routes with kth shortest path 

algorithm, and then utilized M/G/c/c model to evaluate the travel time along the shortest 

paths. A drawback in such approach is that the shortest paths may become congested during 

real evacuation scenarios due to the presence of numerous unforeseen random factors, such 

as traffic accidents and weather conditions. The authors in [4.10] developed a traffic 

simulation framework that assigns evacuees with the predefined routes at the beginning of 

evacuations. During the journey the evacuees were able to change the routes. The authors 

studied the effect of non-compliance of evacuation orders by evacuees during evacuations. 

However, the architectures and implementation details of the proposed framework were not 
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discussed. El-Sergany et al. [4.31] proposed a framework for flood disaster management and 

a transport distribution model for evacuations. The authors utilized linear programming on a 

small scale scenario with trip distribution matrix among the affected sites and destination 

shelters.  

Huang et al. [4.26] presented a centralized traffic control framework for emergency 

vehicles. The authors utilized A* algorithm to compute three types of paths: (a) primary 

path between source and destination, (b) secondary path that is disjoint of the primary path, 

and (c) a path that connects both the primary and the secondary paths. However, authors did 

not mention any details about the implementation and test data of their framework. 

Abdelgawad et al. [4.34] presented a multi-objective optimization framework that 

combines the vehicular traffic and mass transit system for emergency evacuation. The paper 

investigated the three objectives: (a) minimum in-vehicle travel time, (b) minimum at-origin 

waiting time, and (c) minimum fleet cost in case of mass transit. However, the authors have 

not included the real-time changing parameter such as road conditions that affect the real -

world evacuation. 

It is noteworthy to mention that most of the aforementioned optimization-based 

evacuation models are unable to scale well for large-scale evacuation scenarios. Therefore, 

most of the techniques employ various heuristics to reduce the solution space, which results 

in sub-optimal route recommendations. In contrast to the optimization-based approaches, 

there also exist some commercial/non-commercial traffic simulation packages, such as 

INDY [4.27], PARAMICS [4.28], DynusT [4.29], and TransCAD [4.30]. Among the 

aforementioned, the PARAMICS [4.28] is commercial software and has been utilized mostly 

for micro-scale simulations. However, a common problem that most of such packages suffer 



81 
 

from is the lack of scalability, especially when the network size is large and different from 

the network under normal conditions. Therefore, to address scalability, we utilized parallel 

computing in our proposed simulation framework.  

4.7. Conclusions  

In this paper, we presented a service architecture MacroServ that performs the real -

time route recommendations for the evacuees at the time of a disaster. The proposed service 

utilizes the live information extracted from the ITS and the road side sensors to calculate 

preferred evacuation paths that have maximum traffic flow capacity, least congestion, and 

travel cost. Unlike our approach, most of the existing work on disaster route 

recommendations is based on optimization techniques that compute a set of optimal routes 

under a specific set of parameters. However, optimization techniques are unable to precisely 

capture the effect of numerous stochastic and time-varying factors, which have significant 

influence on evacuations. Moreover, incorporating the stochastic factors in optimization 

models significantly increases the problem space and computation times. Therefore, to test 

the performance of the MacroServ service, we developed a scalable traffic simulation model 

that can be configured to simulate evacuations under different conditions and parameters. To 

achieve the desired level of scalability and speed we utilized parallel computing on a 

computer cluster that runs parallel instances of the real-time route computation algorithm. 

The evacuation simulations were performed on a real map of City of Fargo, USA consisting 

of 2,800 intersections, 7,370 roads, and a population size of 108,000. The simulation results 

indicated that by not routing the traffic towards the least congested routes during an 

emergency, the evacuations can suffer from massive traffic jams, which increases the 

evacuation times and waiting times. Moreover, the results provided best case estimates for 
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the evacuation times under a given set of parameters and stochastic factors. The evacuation 

simulations can allow the disaster management bodies to plan and optimize the traffic 

operations during a possible evacuation. Moreover, it provides a way to better analyze the 

critical network elements, the effect of evacuees’ behavior, and managerial factors on 

evacuations.  

In future, we intend to extend our model by incorporating more number of 

parameters to address the uncertain factors during emergency scenarios. For instance, a 

driver’s behavior may vary due to stress and fear. Moreover, evacuees’ compliance to the 

recommended routes and time of disaster also plays an important role in the road 

congestions. All such real-life parameters are having significance and must be considered in 

the design of emergency evacuation models.  
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5. CONCLUSIONS 

In this chapter, we discuss the conclusion of the research we have performed during 

Ph.D. We carried out our research on the monitoring and analysis of dynamically changing 

factors on different networks for finding efficient solutions. In our research studies, we took 

the cases of two different networks: body area networks and road networks. In our first case 

study, we analyzed the body area network and monitored the effect of location of sensor on 

the activity recognition. Based on our study, we recommended the best possible combination 

of sensors’ locations for different activities recognition. In the second phase of our study, we 

took the scenario of large scale evacuation. We monitored and analyzed the congestion 

being created due to the dynamic road conditions such as road densities and provide 

efficient route recommendation service architecture.  

We presented a cloud based framework that integrates the cloud computing services 

with the BANs for human activity recognition. We also investigated the effects of on-body 

sensor locations on accuracy of activity recognition. Due to the varying energy responses 

that change with the position and rotation, we employed a methodology called Local Energy 

Based Shape Histogram (LESH) for feature extraction. The purpose of feature extraction 

was to represent the local regions in the sensor data matrix more comprehensively that 

ultimately results in the improved recognition accuracy. The LESH approach preserves 

maximum information about local energy by segmenting the sensors data in various regions. 

Three classifiers namely, the SLR, Naïve Bayes, and the SMO were used to study the 

relationship between the sensor location and human activity recognition. A detailed analysis 

shows that the task of activity recognition is highly dependent on the location of on -body 

sensors. Particularly, for the activities that are more dynamic and transient, using more than 
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one sensor on different body locations simultaneously yields high recognition accuracy. The 

presented framework effectively integrates the cloud computing services with the BANs and 

has potential to be adopted practically for remote patient monitoring and therapies . 

In this thesis, we also presented service architecture MacroServ that performs the 

real-time route recommendations for the evacuees at the time of a disaster. The proposed 

service utilizes the live information extracted from the ITS and the road side sensors to 

calculate preferred evacuation paths that have maximum traffic flow capacity, least 

congestion, and travel cost. Unlike our approach, most of the existing work on disaster route 

recommendations is based on optimization techniques that compute a set of optimal routes 

under a specific set of parameters. However, optimization techniques are unable to precisely 

capture the effect of numerous stochastic and time-varying factors, which have significant 

influence on evacuations. Moreover, incorporating the stochastic factors in optimization 

models significantly increases the problem space and computation times. Therefore, to test 

the performance of the MacroServ service, we developed a scalable traffic simulation model 

that can be configured to simulate evacuations under different conditions and parameters. To 

achieve the desired level of scalability and speed we utilized parallel computing on a 

computer cluster that runs parallel instances of the real-time route computation algorithm. 

The evacuation simulations were performed on a real map of City of Fargo, USA consis ting 

of 2,800 intersections, 7,370 roads, and a population size of 108,000. The simulation results 

indicated that by not routing the traffic towards the least congested routes during an 

emergency, the evacuations can suffer from massive traffic jams, which increases the 

evacuation times and waiting times. Moreover, the results provided best case estimates for 

the evacuation times under a given set of parameters and stochastic factors. The evacuation 
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simulations can allow the disaster management bodies to plan and optimize the traffic 

operations during a possible evacuation. Moreover, it provides a way to better analyze the 

critical network elements, the effect of evacuees’ behavior, and managerial factors on 

evacuations.  

In future, we intend to extend our model by incorporating more number of 

parameters to address the uncertain factors during emergency scenarios. For instance, a 

driver’s behavior may vary due to stress and fear. Moreover, evacuees’ compliance to the 

recommended routes and time of disaster also plays an important role in the road 

congestions. All such real-life parameters are having significance and must be considered in 

the design of emergency evacuation models.  


