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ABSTRACT 

 
 Researchers predict a world population of approximately 9.5 billion people by the year 

2050.  Current resources, including the amount of meat that is produced, would not be able to 

sustain that population.  Therefore, the current dissertation research was completed to assist in 

improving reproductive efficiency.  A third of pregnancies are “lost”, or spontaneously aborted 

with unknown reason(s).  Therefore, research has been directed towards improving reproductive 

efficiency, especially in regards to proper ovarian function in both pregnant and non-pregnant 

females. 

Numerous factors influence reproduction including hormones, growth and angiogenic 

factors, nutritional plane, and supplements such as arginine (Arg), a semi-essential amino acid 

and precursor for proteins, polyamines, and nitric oxide (NO).  Nitric oxide is a reactive gas 

molecule made naturally in the body and is critical for angiogenesis, which is the development of 

blood vessels, generally capillaries, from pre-existing blood vessels to allow for blood flow to 

specific tissues.  During a female’s reproductive cycle, certain reproductive tissues undergo rapid 

changes including vascular development and regression, and tissue growth and regression.  One 

of those tissues, the corpus luteum (CL), is critical for pregnancy as the tissue produces 

progesterone (P4), a pregnancy maintenance hormone.  Therefore, the objective of this research 

was to investigate how manipulation of the NO system via Arg supplementation to nutritionally 

compromised ewes impacts ovarian function and endocrine activity in non-pregnant sheep. 
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CHAPTER 1: LITERATURE REVIEW 

 

Nutritional Effects on Reproduction 

 

Nutritional Effects on Metabolic Hormones 

Hormones are molecules released by a specific group of cells within an endocrine system 

that are capable of influencing changes in another group of cells.  Hormones, along with the 

nervous system, control the body's responses to internal and external stimuli and are carried to 

their target cells in the bloodstream (Nussey and Whitehead, 2001).  Hormones have the ability 

to cause a physiological change within the body by binding at the target cell, which has produced 

a specific hormone receptor (Neave, 2008).  When a hormone binds to its corresponding 

receptor, it causes a conformational change in the receptor's shape; the shape change allows the 

receptor to fit with other cell molecules in a way it previously could not, thus initiating new 

activities in the cell (Neave, 2008). While a hormone reaches the majority of tissues and cells 

within the body, only some cells produce corresponding receptors, which are then sensitive to a 

specific hormone’s actions.  

 Insulin is a peptide hormone produced by beta cells within the pancreas and regulates the 

metabolism of carbohydrates and fats through increasing the absorption of glucose from blood 

plasma to skeletal muscle; it also inhibits the production of glucose by the liver (Sonksen and 

Sonksen, 2000).  Insulin is produced and stored in the body as a hexamer (a unit composed of six 

insulin molecules), with the active form being a monomer (Mayer, 2007).  The hexamer is an 

inactive form but has long-term stability, while the biologically active form is a monomer 

(Mayer, 2007).  Specific transporter proteins in myocyte and adipocyte cell membranes allow 

glucose from the blood to enter a cell; these transporters being directly under the control of 
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insulin (De Meyts, 2004).  Low blood insulin concentrations will prevent glucose from entering 

the cells, while higher concentrations will allow for cell glucose entry.  Activation of insulin 

receptors causes internal cellular mechanism changes that directly affect the cellular uptake of 

glucose (De Meyts, 2004).  Specifically, when insulin binds the extracellular portion of the alpha 

subunit of the insulin receptor, it causes a conformational change, activating the kinase domain 

residing on the beta subunit within the intracellular receptor.  The activated kinase domain 

autophosphorylates tyrosine residues on the C-terminus of the receptor, resulting in an increase 

in glucose 4 transporters (GLUT 4) present in the cell membrane (Huang et al., 2004).  A 

negative energy balance has been associated with changes in metabolic hormones, including 

insulin concentrations; specifically, a negative energy balance is associated with 

hypoinsulinemia (Kiyma et al., 2004; Wade and Jones, 2005; Ferraretto et al., 2014).  

Oppositely, positive energy balance has been reported to result in increased insulin in ruminant 

species (Armstrong et al., 2003; Grazul-Bilska et al., 2012; Kaminski et al., 2015), as well as 

glucose uptake.  Insulin is responsible for regulating over 100 genes, most at the level of 

transcription, in many different organs including the ovary (Poretsky et al., 1999).  Insulin 

receptors are widely expressed on several ovarian cells and tissues, including granulosa, theca, 

and stromal tissues (Poretsky et al., 1984, 1999; Hernandez et al., 1992; Samoto et al., 1993), 

leading some researchers to postulate that insulin has a direct effect on ovarian development 

and/or function (Samoto et al., 1993).  Moreover, in vitro studies have demonstrated that insulin 

stimulates ovarian steroidogenesis by granulosa and theca cells, increasing androgens, estrogens, 

and progesterone production in tissues from women (Willis et al., 1996; McGee et al., 1996), and 



 

3 
 

 

sows (Barbieri et al., 1983, 1994), and that this increase is mainly mediated by changes in insulin 

receptor expression (Poretsky et al., 1999).   

 Leptin is a metabolic protein consisting of 167 amino acids (Baratta, 2002) produced 

predominantly by white adipose tissue, as well as brain (Burguera et al., 2000), skeletal muscle, 

mammary epithelial cells (Casabiell et al., 1997), bone marrow, and ovaries (Ryan et al., 2002).   

After leptin is secreted, it circulates in free-form, or with carrier proteins (Sinha et al., 1996), to 

cross the blood brain barrier (BBB), wherein it binds to the hypothalamic leptin receptors and to 

neuropeptide Y (NPY) neurons in the arcuate nucleus, providing information about the energy 

stores within the body (Meister et al., 2000; Sahu et al., 2004).  Leptin signaling functions as a 

feedback mechanism to the brain to regulate food intake and maintain body weight 

(Pelleymounter et al., 1995).  Short-term (12 h) or long-term (two to eight weeks) of overfeeding 

results in an increase in adipocyte leptin expression, as well as circulating leptin in healthy 

humans and other species (Kolaczynski et al., 1996; Spicer et al., 2001; Chilliard et al., 2005; 

Kiani et al., 2013;  Kaminski et al., 2015).  Leptin is also involved with adaptation to energy 

deprivation (Klok et al., 2007).  Specifically, fasting for three days results in a significant 

decrease in peripheral leptin concentrations (Kolaczynski et al., 1996; Weigle et al., 1997).  

Leptin is also involved with pubertal development and reproductive functions (Hamm et al., 

2004).  Mice with two defective Ob genes, the gene responsible for expressing leptin, not only 

have metabolic issues such as being obese, but also are infertile, have fewer ovarian follicles 

(Barash et al., 1996), impaired folliculogenesis, and increased granulosa cell apoptosis (Ryan et 

al., 2002; Hamm et al., 2004).   
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Insulin-like growth factor 1 (IGF-1) is a protein consisting of 70 amino acids produced 

predominately by the liver as an endocrine hormone.  Approximately 98% of IGF-1 is bound to 

one of six proteins, is regulated by insulin, and its primary action is mediated by binding to either 

its specific receptor (IGF-1R) or the insulin receptor (Mayer, 2007).  The IGF-1R is considered 

the more physiologically active receptor as it binds IGF-1 at a significantly higher affinity 

(Huang et al., 2004).  By binding its corresponding receptor, IGF-1 activates the AKT signaling 

pathway, stimulating cell growth and proliferation, as well as inhibiting programmed cell death 

(Huang et al., 2004).  It should be noted that IGF-1 is also the primary activator for growth 

hormone (GH), which is produced form the anterior pituitary gland (Blogowska et al., 2001).  

Once released into the blood stream, GH stimulates the liver to produce IGF-1, which in turn 

stimulates body growth.  While IGF-1 is produced throughout life, the highest rates are during 

pubertal growth and the lowest concentrations are produced during infancy and old age (Scarth, 

2006).  While an increase in protein consumption increases IGF-1 concentrations in humans, it 

appears to be independent of total caloric consumption (Scarth, 2006).  Other factors that 

influence IGF-1 production include genetics, stress levels, body mass index, nutritional plane 

(Scarth, 2006), and insulin (Poretsky et al., 1988).  Moreover, dietary restriction can rapidly 

reduce IGF-1 concentrations, and in vivo studies with rats and women demonstrated that 

hyperinsulinemia upregulates IGF-1R expression in the ovaries (Poretsky et al., 1988; Samoto et 

al., 1993).  On the other hand, overfeeding enhances serum IGF-1 concentrations in several 

species including sheep (Armstrong et al., 2001, 2003; Ginther et al., 2004, Adamiak et al., 2005; 

Kaminski et al., 2015). There is a functional link between IGF-1 and ovarian function, as IGF-1R 

and FSH receptor co-localize in both small and preovulatory follicle granulosa cells (Zhou et al., 
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1997).  In granulosa cells, IGF-1 enhances FSH actions by mechanisms that are not entirely clear 

(Orly, 2000).  Mice that are not capable of producing IGF-1 or its receptor exhibit severe ovarian 

follicular growth retardation (Baker et al., 1996; Burks et al., 2000; Richards et al., 2002).   

Nutritional Effects on Reproductive Hormones  

 Nutrition has a significant impact on reproductive hormones, ovarian follicle and corpora 

lutea (CL) function, oocyte competence, and fertility (McEvoy et al., 1995; Wrenzycki et al., 

2000; Kwong et al., 2000; Boland et al., 2001; Armstrong et al., 2001, 2003; Da Silva et al., 

2002).  An animal, when in a negative energy balance, must use its own body energy stores (as 

opposed to energy from food intake) in an effort to reverse the energy deficit, resulting in 

negative effects on both the hypothalamic-pituitary level as well as the reproductive system 

(Scaramuzzi et al., 2006).   

While follicle stimulating hormone (FSH) and luteinizing hormone (LH) are critical 

signaling hormones for follicular growth, ovulation, and luteinization, their actions are directly 

dependent upon other signaling pathways, including those of metabolic hormones like insulin 

(Poretsky et al., 1999; Richards et al., 2002) and leptin (Ryan et al., 2002; Hamm et al., 2004).  

Tatman et al. (1990) reported that the LH content within the pituitary was lower in ewes with 

decreased body condition scores (BCS).  Moreover, researchers have observed suppressed LH 

mRNA expression in underfed ewes (Kile et al., 1991).  While long-term feed restriction can 

cause anestrous in cattle due to insufficient circulating LH (Rhodes et al., 1995, 1996), short-

term effects cause either decreased preovulatory surges of LH (Kiyma et al., 2004) or no changes 

to LH concentrations (Abecia et al., 1995).  Conversely, researchers have also reported no 
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differences in LH concentrations in ewes of high and low nutritional plane during the weeks 

prior to mating (Rhind et al., 1985).    

Serum FSH concentrations were greater in chronically underfed heifers compared to 

controls (Rhodes et al., 1996; Bossis et al., 1999; Mackey et al., 2000).  Researchers postulate 

the different responses of LH and FSH concentrations are due to differences in storage of the 

hormones (Diskin et al., 2003).  Specifically, LH is produced and stored in the pituitary, while 

very little FSH is stored (McNeilly et al., 1995) and once synthesized, is constitutively secreted 

(Farnworth et al., 1995).  Regardless of hormonal storage, there is little evidence to suggest that 

negative energy balance has any direct effects on ovine ovarian function that are independent of 

its effects on the hypothalamo-pituitary axis (Lozana et al., 2003; Kiyma et al., 2004).  Several 

researchers have suggested and agreed on the “ovarian hypothesis” that altered nutrition first 

influences metabolic hormones, such as insulin or leptin, and secondarily, the ovary by 

modulating gonadotropin action (Beitz et al., 1985; Downing and Scaramuzzi, 1991; Diskin et a., 

2003), having effects on FSH and LH.   

Serum concentrations of estradiol (E2) have been reported to be lower in fasted ewes 

when compared to control ewes (Adams et al., 1997; Kiyma et al., 2004) and rats (Oukonyong et 

al., 2000).  Grazul-Bilska et al (2012) demonstrated greater serum E2 concentration in underfed 

than overfed FSH-treated ewes.  The decreased E2 concentrations following short-term feed 

deprivation may be due to reduced ovarian follicular development caused by suppressed serum 

gonadotropin concentrations (Gougeon, 1996).  Additionally, Adams et al. (1994) reported not 

only that undernourished ewes exhibited less E2 secretion, but a simultaneous reduced metabolic 
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clearance rate of the hormone, which may explain the overall lower peripheral concentration 

observed in nutritionally restricted ewes (Adams et al., 1994, 1997).   

A direct relationship between nutritional plane and P4 concentrations have been reported 

in ewes and heifers, with overfed ewes having greater P4 when compared to control or underfed 

ewes (Kaminski et al., 2015; Armstrong et al., 2006).  However, an inverse relationship between 

nutritional plane and P4 have also been demonstrated, with decreased nutrition resulting in 

increased P4 concentrations in ewes (Williams and Cumming, 1982; Parr et al., 1982; Rhind et 

al., 1989; Kiyma et al., 2004), sows (Dyck et al., 1980; Miller et al., 1999), and cows (Donaldson 

et al., 1970; Jordan and Swanson, 1979; Rabiee et al., 2001; Ferraretto et al., 2014).  The effect 

of decreased nutritional quantity causing increased peripheral P4 concentrations has been 

hypothesized to be due to multiple reasons including P4 metabolism and clearance rate (Kiyma 

et al., 2004; Parr et al., 1993; Smith et al., 2006).  There are conflicting reports as to whether 

greater CL number can produce greater P4 concentrations.  For example, Amiridis et al. (2002) 

demonstrated a linear relationship between CL number and P4 concentrations, while Lamond et 

al. (1972) reported increased CL numbers do not have greater plasma P4 concentrations in sheep.  

In our studies, a greater number of CL was associated with greater serum P4 concentration 

(Grazul-Bilska et al. 2007; Kaminski et al. 2015), Furthermore, it has been suggested that 

animals provided inadequate nutrition may have prolonged P4 catabolism (Kiyma et al., 2004).  

In addition, nutritional changes have altered hepatic metabolism of steroids, slowing clearing 

rates in livestock (Parr et al., 1993; as reviewed by Smith et al., 2006).  Lastly, the catabolism of 

adipose tissues releases previously stored P4 into the circulatory system in cows (i.e. animals 

losing weight, and therefore metabolizing fat tissues, may actually have an increase in peripheral 
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P4 as it is freed from fat) (Hamudikuwanda et al., 1996).  It should be noted that increased P4 

concentrations in underfed animals is not likely due to increased adrenal synthesis of P4, as 

serum concentrations of cortisol from differing nutritional treatments have not been observed 

(Kiyma et al., 2004).         

Positive energy balance due to excess dietary intake also causes changes in production 

and functions of reproductive hormones.  Parr (1992) demonstrated that overfed ewes had lower 

peripheral P4 concentrations, and attributed the change to an increase in P4 clearance rate rather 

than to decrease P4 secretion rates.   In cows fed increased dry matter intake (DMI), 

Sangsritavong et al. (2002) observed increased blood flow to the liver, which was associated 

with increased metabolic clearance of P4 and E2 and, therefore, decreased peripheral P4. 

Nutritional Effects on Ovarian Function 

While early studies focused primarily on nutritional effects to the hypothalamic-pituitary 

axis, more recent investigations have hypothesized that nutritional changes and, therefore, 

changes to metabolic hormones have a direct effect on the ovary (Coop et al., 1966; Parr, 1992; 

Gong et al., 2002; Viñoles et al., 2010).  In fact, direct effects of nutrition on ovarian function 

including effects on folliculogenesis (Coop et al., 1966; Diskin et al., 2003; Viñoles et al., 2010), 

oocyte quality, ovulation rates, luteal function, and fertility in several species have been reported 

(Coop et al., 1966; Botkin et al., 1988; Dunn and Moss, 1992; O’Callaghan and Boland, 1999; 

Papadopoulos et al., 2001; Borowczyk et al., 2006; Grazul-Bilska et al., 2012). It should be noted 

that differences caused by positive or negative energy balances can occur before any detectable 

changes to the body, such as changes in BW or BCS (Scaramuzzi et al., 2006).   
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Numerous studies have demonstrated that increased dietary energy and/or protein, BW, 

and/or BCS resulted in increased ovarian follicular recruitment resulting in enhanced number of 

visible follicles in sheep (Coop et al., 1966; Xu et al., 1989; Abecia et al., 2006).  Conversely, 

other researchers have demonstrated that overfeeding and underfeeding did not affect the number 

of both small and large follicles when compared to controls in sheep (Abecia et al., 1995, 1997; 

Borowczyk et al., 2006; Grazul-Bilska et al., 2012).  However, nutrient restriction has been 

associated with reduced ovulation in FSH-treated and not treated ewes (Lassoued et al., 2004) 

and in ewes treated with FSH (Yaakub et al., 1997).  Nutrient restriction three to six days prior to 

ovulation has also been associated with reduced dominant follicle size (Murphy et al., 1991) and 

ovulations for prostaglandin-treated heifers (Mackey et al., 1999).   

Researchers have reported specific times during the mature ewe’s life wherein nutritional 

effects are more critical (Robinson et al., 2006).  For example, if nutrient restriction occurs when 

follicles are emerging from the primordial pool and become committed to growth, which occurs 

six months prior to the breeding season, it results in reduced ovarian follicle numbers, and 

therefore ovulation, at mating time (Robinson et al., 2006).   

Nutritional Effects on Oocyte Quality 

  The effects of plane of nutrition on oocyte quality have been evaluated in both non-

stimulated and FSH-stimulated in sheep and cows.  However, nutrient intake effects on oocyte 

quality are frequently contradictory, demonstrating no effects, or either negative or positive 

effects in ruminant and other species (McEvoy et al., 1995; O’Callaghan et al., 2000; Boland et 

al., 2001; Lozano et al., 2003; Peura et al., 2003; Grazul-Bilska et al., 2012).   
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While high nutritional plane feeding has been reported to increase oocyte quality in 

spontaneously ovulating ewes, the opposite was true in FSH-treated animals, which have a lower 

ovulation rate compared with ewes offered diets of twice maintenance energy requirements 

(Yaakub et al., 1997).  Overfeeding FSH-treated ewes resulted in negative effects on oocyte 

quality as determined by decreased in vitro cleavage rates (Papadopoulos et al., 2001; Lozano et 

al., 2003; Grazul-Bilska et al., 2012).  While reasons for these changes are not well understood, it 

has been postulated that an excess of rumen degradable components cause elevated ammonia 

concentrations in follicular fluid (FF), which cause a detrimental environment for the oocyte 

(Rooke et al., 2004).   

Yaakub et al. (1997) reported interchromatin granule detachment from the nucleus in 

oocytes from non-stimulated underfed ewes, which may account for decreased cleavage rates.  

Researchers have also reported underfeeding having a negative impact on oocyte quality in 

superovulated ewes, resulting in lower oocyte cleavage rates after IVF when compared to 

controls (Yaakub et al., 1997; Snijders et al., 2000; Borowczyk et al., 2006; Grazul-Bilska et al., 

2012).  In dairy cows, Jorritsma et al. (2004) observed that greater concentrations of non-

esterified fatty acids (NEFA), which are elevated in underfed animals, reduced granulosa cell 

proliferation and delayed oocyte maturation as well.  Conversely, other researchers have reported 

a greater proportion of ova were considered viable in underfed FSH-treated ewes when 

compared to those derived from overfed ewes (McEvoy et al., 1995; Lozano et al., 2003).  

Differences in reported results could be due to different species or breeds utilized, plane of 

nutrition and/or length of nutritional treatments.     
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  Excess or reduction in caloric intake result in changes to endogenous lipid content within 

the oocyte (Metwally et al., 2007; Robker et al., 2011).  Mammalian oocytes have an 

intracellular lipid reserve that, while varying between species and not completely understood in 

terms of function, appears to be vital for early embryonic development (Dunning and Robker, 

2012).  Lipid droplets, which serve as triglyceride storage sites, are composed of a neutral lipid 

core enclosed by a phospholipid monolayer and an outer coat layer that regulates droplet size 

(Dunning and Robker, 2012).  The accumulation of lipids within the oocyte is thought to provide 

sustaining energy to a preimplantation embryo (Ferguson and Leese, 2006).  Triglyceride stores 

decrease throughout in vitro oocyte maturation in cows (Ferguson and Leese, 1999) and sows 

(Sturmey and Leese, 2003).  Therefore, it has been postulated that a greater cytoplasmic store of 

lipids might be advantageous to the oocyte as it undergoes high-energy demanding processes, 

such as fertilization and cleavage (Castaneda et al., 2013).  On the other hand, it has been 

reported that the accumulation of excess intracellular lipids within cells leads to increased 

concentrations of free fatty acids, which are subject to both oxidative damage and highly reactive 

lipid peroxidases.  These damages can ultimately lead to intracellular organelle damage, 

predominantly to the endoplasmic reticulum (ER) and mitochondria (Borradaile et al., 2006).  

Exposure of the ER to high concentrations of free fatty acids causes alterations in ER function 

and lead to the production and accumulation of unfolded proteins (Diakogiannaki et al., 2008), 

which then activates the unfolded protein uptake response (UPR).  The UPR includes cell arrest, 

protein degradation (Rutkowski et al., 2004), and if not corrected, can lead to cell apoptosis 

(Kaufman et al., 1999).  Furthermore, studies in obese female mice have demonstrated that 

obesity induces slower blastocyst development and an altered trophectoderm to inner cell mass 
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(ICM) ratio (Minge et al., 2008).  These oocytes also contain increased lipid content, 

mitochondrial activity changes, and show signs of ER stress (Wu et al., 2010).  However, it 

remains unclear as to whether nutritional effects on oocytes is a result that occurs during 

folliculogenesis or is instigated immediately before conception (Dunning and Robker, 2012).     

Nutritional Effects on Early Embryonic Development 

Fertilization rates and early embryonic development are affected by the mother’s 

nutritional plane.  Nutritional effects may be one of many factors leading to the 20 to 30% of 

early pregnancy loss observed in ewes (Edey, 1969).  For nutrient restricted ewes, an increase in 

unfertilized ova (Rhind et al., 1989), reduced development to morula and blastocysts after IVF 

(Rhind et al., 1989; Abecia et al., 1995; Borowczyk et al., 2006; Grazul-Bilska et al., 2012), and 

increased fetal and neonatal mortality in sheep (Wallace et al., 2004) have been reported.  

Additionally, others have shown that underfeeding resulted in decreased embryonic development 

during the first two weeks post-fertilization in sheep (Parr et al., 1987; Abecia et al., 1997).   

Overfeeding has also resulted in decreased cleavage rates after IVF in ewes 

(Papadopoulos et al., 2001; Borowczyk et al., 2006; Grazul-Bilska et al., 2006; Zhu et al., 2010).  

McEvoy et al. (1995) reported that excessive feeding in superovulated ewes resulted in a reduced 

number of embryos developing to the blastocyst stage.  Furthermore, Abecia et al. (2006) 

hypothesized that “overfeeding during follicle recruitment and oocyte maturation imparts a 

legacy of embryonic loss and developmental retardation.”  While reasons for seemingly 

contradictory results are not readily evident, inconsistent results discussed here may be due to 

differences in experimental design, such as duration of over/underfeeding, diet composition, time 
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of nutritional treatment, breed utilized and/or culture conditions (Botkin et al., 1988; Grazul-

Bilska et al., 2012)  

Angiogenesis 

Angiogenic Process 

The organization of vascular network structures has enthralled scientists for many years 

(Carmeliet, 2000; Conway et al., 2001) and Aristotle first described it as such: 

“…the system of blood vessels in the body may be compared to those of water-courses which 

are constructed in gardens: they start from one source, or spring, and branch off into 

numerous channels, and then into still more, and so on progressively, so as to carry a supply 

to every part of the garden”.   

The body’s vessel formation and function, however, is obviously much more complex.  

The three main processes that initially form and later remodel blood vessels are termed 

vasculogenesis, angiogenesis, and arteriogenesis (Carmeliet, 2004).  Vasculogenesis describes 

the de novo blood vessel formation throughout embryogenesis, while angiogenesis refers to new 

capillary branching and remodeling from preexisting vessels (Risau and Flamme, 1995).  

Arteriogenesis denotes existing arterial reconstruction to increase luminal diameter in response 

to increased blood flow (Heil et al., 2006).  In healthy adults, angiogenesis is infrequent, 

occurring during tissue repair, some pathological conditions and within the female reproductive 

system (D’Amore and Klagsbrun, 1989; Reynolds et al., 2002).   

Vascular changes are possible due to cell differentiation, proliferation, migration and 

tissue remodeling to form new blood vessel structures (Folkman and Klagsburn, 1987; Risau, 

1997).  Angiogenesis (Fig. 1.1) first commences with vasodilation, an expansion of the blood 
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vessel, due to increased nitric oxide (NO) (Carmeliet, 2000) and an increase in vascular 

permeability (Distler et al., 2002).   

 

Figure 1.1. Creation of new blood vessels by angiogenesis via endothelial cell migration, 
proliferation, and creation of new basement membranes.   
 

The increase in NO transcriptionally upregulates vascular endothelial growth factor 

(VEGF) expression (Kimura et al., 2000).  In addition, before endothelial cells can migrate from 

existing blood vessel, they must be loosened from their vessel matrix.  The preexisting vessel’s 

organized destruction is regulated by increased angiopoietin (ANGPT) 2 expression.  Similar to 

ANGPT1, ANGPT2 binds Tie (tyrosine kinase with immunoglobulin and epidermal growth 

factor homology domain) 2 but, instead of causing phosphorylation, ANGPT2 simply blocks 

ANGPT1-mediated Tie2 receptor activation.  This change is involved in detaching smooth 

muscle cells (SMC) and loosening the matrix (Maisonpierre et al., 1997; Gale and Yancopoulos, 

1999).  Enhanced VEGF expression increases blood vessel permeability, allowing extravasation, 

or leakage, of plasma proteins (Senger et al., 1983; Dvorak et al., 1995), which pass through the 

blood vessel and are responsible for laying down a basic “scaffold” for the new blood vessel.  
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However, permeability has to be tightly controlled, as excessive vascular leakage can have 

negative implications, such as blood vessel collapse (Carmeliet, 2000).  The redistribution of 

platelet endothelial cell adhesion molecule (PECAM)-1 and ANGPT 1 helps modulate the blood 

vessel wall permeability (Eliceiri et al., 1999; Gale and Yancopoulos, 1999).  ANGPT1 is a Tie2 

receptor ligand and an inhibitor of vascular permeability, tightening preexisting vessels 

(Thurston et al., 2000).  Several matrix metalloproteinase (MMP) partake in angiogenesis by 

degrading matrix molecules and by initiating growth factors action within the extracellular 

matrix (Coussens et al., 1999; reviewed in Nelson et al., 2000).  Once the vessel matrix is more 

permeable and has been infiltrated with plasma proteins, local vessel conditions are favorable for 

cell proliferation and migration of endothelial cells from the capillary walls (Nguyen et al., 2001; 

Distler et al., 2002).  At this phase, capillary tubules migrate towards angiogenic stimuli 

(Folkman and Haundenschild, 1979; Gross et al., 1983).  Blood vessels are then able to “sprout”, 

or expand, and during further vascular maturation, capillaries can fuse to form larger vessels like 

arterioles and venules (Karamysheva, 2008).            

Ovarian Angiogenesis   

Ovarian structures, such as follicles and the corpus luteum (CL), undergo a cyclic growth 

and regression, and depend upon the continuous hemodynamic changes (Collins et al., 1991; 

Redmer and Reynolds, 1996; Reynolds et al., 2000; Reynolds and Redmer, 2001).   

Follicular development is contingent upon adequate microvasculature (Hirshfield, 1991), 

as both nutrients and hormones are supplied through diffusion from blood vessels of the thecal 

layer to the granulosa cell layer, under control of gonadotropins and other factors leading to 

follicular development.  In fact, follicles with reduced DNA synthesis of follicular endothelial 
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cells are associated with reduced vascular development and atresia (Greenwald, 1989). After the 

primordial germ cells (PGC) undergo mitosis, they form oogonium and then primary oocytes.  

While the majority of ovarian follicles recruited into a growing pool will undergo atresia, a few 

antral follicles (the number varying among species) will continue to develop and become 

preovulatory follicles.  Development and growth of a follicle is dependent upon healthy 

vascularization.  Capillaries of the theca interna form a vast network, known as the capillary 

wreath, which exists close to the basement membrane.  While blood flow decreases at the apex 

of the Graafian follicle, it actually increases around the base of the follicle (Brannstrom et al., 

1998), facilitating follicular rupture and ovulation.  As ovulation nears, the wreath capillaries 

enlarge and form wide sinusoids (Ellinwood et al., 1979; Reynolds et al., 2005).  Researchers 

have postulated that changes in capillary wreath structure allow for permeability of the granulosa 

cell layer for capillary invasion after ovulation, an event necessary to support quick CL growth 

(Redmer et al., 2001).   

Ovulation is dependent upon the change of blood flow to ovarian follicles.  Ovulation has 

been compared with an inflammatory response, due to the active follicular hyperemia, increase 

in prostaglandin release, and synthesis of the hyaluronic-rich extracellular matrix that occurs 

(Richards et al., 2008).  Together, the oocyte and surrounding granulosa cells ovulate from the 

antral follicle.   

After ovulation, the vasculature system is rapidly growing in the developing CL 

(Dharmarajan et al., 1985; Redmer et al., 2001).  The angiogenic activity in the developing CL 

includes destruction of the basement membrane that separated the granulosa and theca cell layers 

of the Graafian follicle, followed by capillary development into the formerly avascular granulosa 
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cell layer (Meyer and McGeachie, 1988; Reynolds et al., 2000; Reynolds et al., 2005).  This 

capillary growth is extensive and necessary for providing crucial nutrients to luteal cells, and 

allowing for efficient outflow of P4 produced and secreted by luteal cells; because of this, the CL 

receives the majority of the ovarian blood supply (Reynolds et al., 1986; Niswender and Nett, 

1988; Reynolds et al., 1994).  Maturation of the CL, during the luteal phase, includes 

stabilization and maturation of blood vessels.  During this time, pericytes from the theca 

capillaries migrate into the granulosa cell area, and multiply so that a great percentage of mature 

CL vessels contain pericytes (Goede et al., 1998; Reynolds and Redmer, 1999).    

The length of angiogenic processes within CL varies among species, but the growth 

phase lasts eight to ten days in ruminants (Reynolds et al., 2002).  The majority, between 50 to 

85%, of cellular proliferation that occurs within the developing CL occurs within the 

microvascular structures (Reynolds et al., 1994, 2002; Christenson and Stouffer, 1997) and the 

CL pericytes and endothelial cells encompass about 40-70% of the total  cell population 

(Reynolds et al., 2000; Reynolds et al., 2002).  Since the majority of the luteal call compostion 

are vascular cells, the majority of steroidogenic cells in the mature CL are in contact with one or 

more capillaries (Dharmarajan et al., 1985; Redmer et al., 2001).   

Prostaglandin F2α (PGF2α) is the main luteolytic hormone, with the main action being to 

decrease ovarian blood flow and control luteolysis (Knickerbocker et al., 1988; Niswender et al., 

2000).  There is evidence that capillary endothelial cells are involved in the luteolytic cascade 

(Smith and Meidan, 2014) described in more detail in several reviews (Townson, 2006; 

Skarzynski and Ferreira‐Dias, 2008; Miyamoto et al., 2010).  PGF2α enhances permeability of 

endothelial cell and inhibits cell proliferation within luteal tissues (Davis, 2010).  Binding of 
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PGF2α to specific membrane receptors on the luteal cell results in rapid activation of 

phospholipase C, the release of intracellular Ca2+ from the endoplasmic reticulum (ER), and the 

activation of phosphokinase C (PKC) (Davis and Rueda, 2002).  When PGF2α is administered in 

vivo, an acute increase in blood flow is observed between 30 minutes and 2 hours post-injection 

(Acosta et al., 2002), suggesting the initial increase in blood flow induced by PGF2α injection 

during mid-luteal cycle commences the luteolytic cascade (Acosta and Miyamoto, 2004).  

Administration of PGF2α also induced cyclooxygenase COX-2 expression between one and four 

hours post-injection in the ewe (Tsai and Wiltbank, 1997), and is hypothesized to be partially 

responsible for the increase in CL blood flow during mid-cycle PGF2α release (Acosta and 

Miyamoto, 2004).  Shortly after PGF2α administration and blood flow increase, capillary 

alterations appear followed by a decrease in P4 secretion and CL volume (Acosta and Miyamoto 

et al., 2004).   

Regulation of Ovarian Angiogenesis and Angiogenic Factors 

For angiogenesis to successfully occur, a complex array of highly regulated angiogenic 

factors interact with several cell and tissue types (Goede et al., 1998).  Angiogenic factors are 

responsible for stimulating angiogenesis within growing tissues and several are present within 

the ovary including members of VEGF, ANGPT and FGF families of growth factors (Reynolds 

et al., 1994; Goede et al., 1998; Neufeld et al., 1999; Grazul-Bilska et al., 2001). 

Vascular Endothelial Growth Factor 

While there are several molecules known to serve as angiogenesis regulators, not all are 

specific to vascular endothelial cells and only some are able to directly influence endothelial 

cells in culture (Karamysheva et al., 2008).  One critical signaling cascade for angiogenic 
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regulation involves vascular endothelial growth factor (VEGF).  The homodimeric glycoprotein 

of 45 kD is a potent mitogen for vascular endothelial cells (Leung et al., 1989; Geva and Jaffe, 

2000) and also increases vessel permeability (Senger et al., 1983; Ferrara and Davis-Smith, 

1997).  Five known VEGF isoforms differ in molecular weight and binding abilities varying 

amongst isoform.  Two isoforms are bound in the extracellular matrix (ECM), while the other 

three forms are secreted (Park et al., 1993).  Growth factors from the VEGF family such as 

VEGF or PGF exert cellular biological effects by binding to specific receptors, FLT (FMS-like 

tyrosine kinase) 1, KDR and FLT4 located on endothelial cell membranes (Davis et al., 1996). 

These receptors belong to the receptor tyrosine kinase (RTK) family of proteins (as reviewed by 

Karamysheva, 2008).   

In vivo studies have demonstrated that VEGF stimulates angiogenesis in the ovaries 

including the CL (Leung et al., 1989; Redmer et al., 1996, 2001).  VEGF expression is not only 

great during CL vascular development in ovine tissues (Redmer et al., 1996; Redmer et al., 

2001), but have also observed that VEGF remains at greater expression during the mid-luteal 

phase when compared to early-and mid-luteal phases, suggesting VEGF is also a survival factor 

for newly developed blood vessels (Alon et al., 1995; Moreira et al., 2007).  Thecal pericytes 

expressing VEGF invade the granulosa cell layer within hours of ovulation (Redmer et al., 

2001), appearing to be one of the major angiogenic factors in the female reproductive organs 

(Reynolds et al., 2002).  Moreover, thecal-derived perivascular cells may direct the developing 

vascular system within the early CL due to high VEGF expression (Reynolds et al., 2000; 

Redmer et al., 2001).  In cultured ovine luteal cells, VEGF mRNA expression is increased by 

30% after LH treatment (Toutges et al., 1999).  In addition, treatment with an antibody to VEGF 
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neutralizes approximately 65% of the endothelial chemotactic activity of ovine (Reynolds et al., 

2000) and primates (Fraser et al., 1999) CL.      

Several studies have demonstrated the expression and importance of VEGF within the 

female reproductive system, for angiogenic and other processes.  During follicular recruitment 

and development, VEGF expression from theca cells in growing follicles is increased by 

gonadotropins and leads to increased vascular network in theca layer (Mattioli et al., 2001).  As 

folliculogenesis continues, FF, which is a derivative from plasma, accumulates.  As theca cell 

VEGF secretion increases, vascular permeability also increases (Levin et al., 1998), resulting in 

further accumulation of antral FF (Kamat et al., 1995).  Mattioli et al. (2001) observed that 

follicles with greater E2 concentrations also had greater VEGF concentrations, and suggested 

increased vascular permeability induced by VEGF facilitates the delivery of androgen 

precursors, such as selected lipids, to theca cells.  Theca androgens are then aromatized in the 

avascular granulosa cell layer and form E2.  Further evidence of the importance of VEGF in 

folliculogenesis and steroidogenesis include the observation that administration of a VEGF 

antibody to monkey follicles at the periovulatory stage prevents follicle development and E2 

synthesis (Zimmermann et al., 2001).  Additionally, reduced follicular vascularity and DNA 

synthesis are observed in follicles undergoing atresia (Greenwald, 1989) and may actually 

mediate follicular selection, as dominant follicles have more vascular theca (Zeleznik et al., 

1981; Redmer et al., 1996).    

Redmer et al. (2001) reported that pericytes produce and secrete VEGF in sheep CL, and 

CL growth and P4 production depends on proper blood supply stimulated by VEGF (Ferrara et 

al., 1998).  In fact, administering an antibody to VEGF, and thereby neutralizing VEGF activity, 
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resulted in suppressed luteal endothelial cell proliferation, restricted development of 

microvasculature, and decreased P4 production in rats (Ferrara et al., 1998) and monkeys (Fraser 

et al., 1999, 2000). 

While VEGF is a potent angiogenic factor, its effects are known to be different in 

developing versus adult organisms.  In fact, the importance of VEGF and its corresponding 

receptors for vascular development has been well documented in genetically engineered mice 

lacking these proteins (Fong et al., 1995; Shalaby et al., 1995; Carmeliet et al., 1996).  Gerber et 

al. (1999) demonstrated that VEGF inhibition via administration of mFLT (1-3)-IgG, a soluble 

VEGF receptor chimeric protein, in newborn mice pups but not in adult mice caused insufficient 

maturation of blood vessels and significant apoptotic changes.  Loss of VEGF dependence may 

result from development and involvement of pericytes (Gerber et al., 1999).  As mentioned 

previously, VEGF also increases blood vessel permeability (Senger et al., 1983; Dvorak et al., 

1995).  Under hypoxic conditions, VEGF mRNA expression is increased (Dor et al., 2001), and 

is also increased by other angiogenic factors, such as fibroblast growth factors (FGF).   

Placental Growth Factors 

Placental growth factor (PGF) was the second member of the VEGF family discovered 

and, as the name refers,t was originally cloned from a human placenta cDNA library (Maglione 

et al., 1991).  Similar to other members of the VEGF family, isoforms exist due to alternative 

splicing (Maglione et al., 1993; Ferrara et al., 2003); it is secreted as a glycosylated homodimer.  

As for receptor binding, PGF binds VEGFR with almost native affinity (Keyt et al., 1996).         

The involvement of PGF in angiogenesis processes has been confirmed through gain-of-

function research and was first reported as a pro-angiogenic factor by Ziche et al. (1997).  In 
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transgenic mice overexpressing PGF in epidermal layers, increased number and branching of 

dermal blood vessels with both a significant increase of smooth muscle surrounding vessels and 

also vascular leakiness has been obsterved (Odorisio et al., 2002).  Gain and loss of function 

experiments have also demonstrated that PGF stimulates angiogenesis in multiple ways.  By 

acting on growth, migration, and survival of endothelial cells, PGF can stimulate vessel growth 

directly (Ziche et al., 1997; Carmeliet et al., 2001; Fischer et al., 2007).  Placental growth factor 

also partakes in blood vessel maturation by increasing the proliferation and recruitment of SMC 

and supporting fibroblast proliferation (Yonekura et al., 1999; Bellik et al., 2005).   

Within the adult female reproductive tract, PGF is expressed in the ovary, including 

granulosa cells, and is present in FF (Hou et al., 2014; Tal et al., 2014).  VEGF and PGF 

concentrations within FF are positively correlated with follicular size, and may mediate ovarian 

follicle angiogenesis and dominant follicle selection, as well as contribution to oocyte 

development in women undergoing IVF (Hou et al., 2014).  The PGF is expressed in human 

endothelial cells (Yonekura et al., 1999).  In adult PGF knock out (KO) mice, impairment of 

angiogenesis and arteriogenesis during pathological conditions, such as tumor growth, have been 

reported (Carmeliet et al., 2001).  In a double KO for PGF and endothelial nitric oxide synthase 

(eNOS), loss of function has also demonstrated the importance of PGF (Papapetropoulos et al., 

1997).  This enzyme and its product, NO, are a downstream target for VEGF and the mice have 

hind-limb ischemia and increased death rates.  This mouse model represented the first 

experimental animal model of defective angiogenesis demonstrating the interactions between 

PGF and eNOS (Gigante et al., 2006).  Further, gain and loss of function studies have 



 

23 
 

 

demonstrated that PGF promotes angiogenesis by acting directly on endothelial cells, stimulating 

their growth, migration, and survival (Ziche et al., 1997; Adini et al., 2002; Fischer et al., 2007).  

Angiopoietins  

While the VEGF signaling system initiates vascular development and remodeling, 

ANGPT1, 2, and 4 and their corresponding RTK receptors Tie1 and 2 (tyrosine kinase with 

immunoglobulin and epidermal growth factor homology domains 1 and 2; Dumont et al., 1992; 

Sato et al., 1993) are involved with capillary maturation and stabilization, permeability, and 

inflammation (Fukuhara et al., 2008).  Specifically, ANGPT1 is expressed in pericytes that cover 

mature blood vessels (Suri et al., 1996) and ANGPT2 is expressed by endothelial cells and 

specialized tip cells (leading endothelial cells at the tips of vascular sprouts which coordinate 

multiple processes during angiogenesis; Siemerink et al., 2013) of sprouting blood vessels 

(Holash et al., 1999; del Toro et al., 2010).  Within endothelial cells, ANGPT2 is stored in 

secretory granules known as Weibel-Palade bodies.  Expression of ANGPT2 is increased in 

hypoxic conditions or during an inflammatory response (Fiedler et al., 2004).  Angiopoietins 

form unique multimeric structures, and a more complex multimer known as a tetramer, is 

required for Tie2 activation (Davis et al., 2003).  Because of the unique structure of ANGPT, Tie 

receptor complexes, unlike classic RTK receptors, are believed to be comprised of several 

receptor units that are activated by multimeric ligands (Davis et al., 2003).  When ANGPT1 

expression increases, Tie receptors are quickly translocated to cell-cell junctions wherein they 

arrange to make complexes that are capable of moving across the endothelial cell junctions 

(Fukuhara et al., 2008; Saharinen et al., 2008).  Once activated and in this subcellular location, 

the ANGPT1-Tie2 complex mediates endothelial cell survival, stabilization, and anti-
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inflammatory functions (Fukuhara et al., 2008; Sako et al., 2009).  In endothelial cells that are 

mobile, matrix-bound ANGPT1 activates Tie2 in cell matrices, which mediates changes in 

adhesion and cell mobility (Fukuhara et al., 2008).  As mentioned previously, ANGPT1 is also 

responsible for controlling vascular permeability and leakage caused by VEGF (Thurston et al., 

1999).    

Angiopoietin-specific Tie receptors are expressed in the blood and lymphatic 

endothelium and in some immunological cells, such as Tie2 positive macrophages (TEMs) 

(Mazzieri et al., 2011).  Blood flow and shear stress are considered common regulators of Tie1 

expression (Chen-Konak et al., 2003; Porat et al., 2004).  Mice offspring deficient in Tie1 

receptors die from embryonic day (E) 13.5 to birth; they have edema, hemorrhage, and poor 

endothelial cell structure (Puri et al., 1995; Sato et al., 1995).  Mice offspring lacking Tie2 

receptors die at an earlier stage (E10.5), with the most prominent defect being the lack of proper 

cardiac endothelial lining development and failure of remodeling in capillaries (Dumont et al., 

1994).  

 Chowdhury et al. (2010) reported that the ANGPT proteins are present in both granulosa 

and theca cells of the ovine ovarian follicle, but and that ANGPT mRNA was consistently 

expressed at greater concentrations in theca compared to granulosa cells.  In addition, ANGPT 

levels of expression are related to the stage of the estrous cycle and to follicle size (Chowdhury 

et al., 2010).  Vonnahme et al. (2006) observed no change in ANGPT1 mRNA expression in 

ovine CL after PGF2α-induced regression, while the expression of ANGPT2 decreased just 8 h 

post-PGF2α injection.  Oppositely, in the bovine CL, researchers have reported ANGPT1 mRNA 

decreased and there were no changes in the expression of ANGPT2 mRNA during luteal 
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regression.  Together, these data demonstrate that the expression pattern of ANGPT in luteal 

tissues is species specific (Vonnahme et al., 2006). 

Local administration of ANGPT to ovarian follicles have demonstrated that ANGPT are 

critical for both follicular development and ovulation.  Administration of anti-ANGPT1 antibody 

resulted in a delay in rat follicular development (Parborell et al., 2008).  Additionally, Xu et al. 

(2005) demonstrated that delivery of ANGPT2 to the preovulatory follicle not only prevents 

ovulation, but also terminates the menstrual cycle in rhesus monkeys.  Within the CL, ANGPT2 

is postulated to be involved in luteal tissue regression, as enhanced expression of ANGPT2 

mRNA occurs in late-luteal tissues when compared to mid-luteal tissues in humans (Sugino et 

al., 2005).   

Basic Fibroblast Growth Factors  

Fibroblast growth factors (FGF) were one of the first angiogenic proteins identified 

(Shing et al., 1984), now having at least 22 factors within the family.  Of these known proteins, 

they are 30 to 70% identical in their primary amino acid sequences (Cross et al., 2001) and are 

heparin-binding proteins.  FGF signaling regulates embryonic development, such as 

mesenchymal-epithelial signaling (De Moerlooze et al., 2000) and development of organ systems 

(Yamaguchi et al., 1994), and assists in cell proliferation, differentiation, and survival (Baird et 

al., 1986).  Endothelial cells have been reported to express the FGF-2 gene and synthesize 

bioactive FGF-2 protein (Schweigerer et al., 1987). 

The most studied FGFs, those being FGF-1 (acidic) and FGF-2 (basic), lack cytoplasmic 

sequences for extracellular secretion, which is in contrast to the majority of growth factors that 

are capable of being released from producer cells (Gospodarowicz et al., 1974).  This varying 
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system of FGF export has led to varying beliefs for its role in angiogenesis, such as extracellular 

sequestration and release suggested by Vlodavsky et al. (1991).  However, exact export 

mechanisms of FGF proteins are still not well understood (Lieu et al., 2011).  Multiple proteins 

to which FGFs bind have been identified.  First, FGFs bind with high affinity to heparan sulfate 

proteoglycans (HSPGs), which are located on cellular surfaces and within the extracellular 

matrix (Vlodavsky et al., 1991).  HSPGs modulate FGF effects under in vivo and in vitro 

conditions (Jaye et al., 1992).  Secondly, FGFs bind to four structurally related RTK receptors 

known as receptor (FGFR)-1, -2, -3, and -4, each with differing functions (Johnson and 

Williams, 1993).  Mice embryos lacking FGFR-1 or -2 expression died prior to gastrulation 

(Deng et al., 1997; Xu et al., 1998), and FGFR-1 is necessary for both the development and 

maintenance of embryonic blood vessels (Lee et al., 2000).  Disruption of FGFR-3 results in 

mice offspring with skeletal overgrowth and deafness (Colvin et al., 1996).  Lastly, FGFR-4 has 

been reported to be involved with metabolism and FGFR-4 KO mice have a glucose intolerance 

(Wu et al., 2009).         

While some FGFs are expressed during embryonic development exclusively, for 

example, FGF-3, 4, 8, 15, and 19, others such as FGF-1, 2, 5-7, 9-14, and 20-23 are expressed in 

both embryonic and adult tissues (review in Ornitz and Itoh, 2001). Within the ovary, FGF was 

one of the first angiogenic proteins found (Gospodarowicz et al., 1985) and has been identified in 

ovaries of livestock species (Stirling et al., 1991; Jablonka-Shariff et al., 1997; Reynolds et al., 

2000), and specifically the CL of sheep (Grazul-Bilska et al., 1993; Doraiswamy et al., 1998, 

Vonnahme et al., 2006).  The FGF-2 mRNA pattern of expression in bovine CL closely mimics 

that of angiogenic activity (Stirling et al., 1991) and FGF-2 mRNA is stimulated by LH, the 
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major luteotropic hormone in livestock (Redmer et al., 1987, 1988).  Moreover, in vitro 

incubation of luteal conditioned media with an FGF antibody immunoneutralized approximately 

80% of angiogenic activity in the cow, sow, and ewe (Reynolds et al., 2000).  A study utilizing 

endothelial cells derived from bovine CL demonstrated that FGF-1 was not expressed in 

endothelial cells, and that FGF-2 together with VEGF up-regulated both KDR and FLT receptors 

in vitro (Gabler et al., 2004). Schams et al. (1994) demonstrated that vascular cells express FGF-

2 in a phase-dependent manner in the bovine CL, while fibroblasts are known to increase in 

number in the regressing CL of several species including sheep (Farin et al. 1986, Sawyer et al. 

1990).  In fact, Vonnhamme et al. (2006) reported that FGF-2 mRNA expression first increased 

after induction of CL regression and then decreased.  

Regulation of Corpora Lutea Function 

Corpora Lutea Growth   

 Before ovulation, the antral follicle consists of a fluid, known as liquor folliculi, 

surrounded by an avascular layer of granulosa cells, a basement membrane and theca layer (as 

reviewed in Hazzard and Stouffer, 2000).  It is evident from many studies that the critical 

stimulus for luteinization is the luteinizing hormone (LH) surge that initiates ovulation 

(Kaltenbach et al., 1968; Murphy et al., 2004).  Moreover, the LH surge has long-term effects on 

the steroidogenic capability of luteal cells, including maintenance of cytochrome P450 enzyme 

(P450scc) and steroidogenic acute regulatory protein (StAR; Juengel et al., 1995; Murphy et al., 

2004), both necessary for P4 production.    

The CL forms after the oocyte is released from the antrum of the follicle at ovulation, and 

is the primary source of the gestational-support hormone progesterone (P4) (Diaz et al., 2002).  
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Luteal formation is essential for early embryonic development, implantation, and viviparity 

within most mammalian species (Murphy, 2004).  This structure is capable of phenomenal 

growth, rivaling even the fastest growing tumors (Reynolds et al., 2000), due to synergistic 

changes within vasculature.  In fact, during its growth phase, the CL doubles in size and cell 

number every 60 to 70 hours (Reynolds et al., 1994).  The capillaries expand by “sprouting”, or 

penetrating, into the previously avascular granulosa cell layer to form the dense capillary 

network in the developing luteal tissue, which, within the female reproductive tract, receive some 

of the highest blood flow rates per unit of tissue and exhibit a high rate of metabolism (Reynolds 

et al., 1986).  The CL is a unique endocrine gland due to its transient nature and is comprised of 

endothelial, small and large luteal, pericytes, smotth muscle cells, immune and fibroblastic cells 

(Lei et al., 1991).     

Corpora Lutea Differentiation  

 In livestock species, the granulosa and theca cells contribute to CL morphology 

(Reynolds et al., 2002), and rapid invasion of these cells, along with thecal-derived perivascular 

cells (Redmer et al., 2000; Redmer et al., 2001), allow for proper CL vascularization and 

development.  In ewes, small luteal cells are 12 to 20 µm in diameter, believed to be of follicular 

thecal cell origin, contain LH receptors, respond to both LH or cAMP with a 5 to 15 fold 

increase in P4 secretion, and often contain lipid droplets (Niswender et al., 2002).  Even within 

the mature CL, theca cells are found in close association with vascular elements and express 

genes associated with CL differentiation, such as the LH receptor, StAR, and low-density 

lipoprotein receptors (LDLr).  Large luteal cells are greater than 20 µm, are primarily of 

granulosa cell origin, secrete more P4 than small cells, and while containing LH receptors, are 
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not responsive to LH or cGMP with increased P4 production (Niswender et al., 2002).  There can 

be as much as a 10-fold increase in granulosa cell volume during luteinization (Smith et al., 

1994).  Among mammalian species, steroid production (P4) of luteal tissue is two or three times 

greater than steroid production (E2) of follicles (Murphy et al., 2004).  There are major increases 

within the functional CL in the expression of proteins that make up both high-density lipoprotein 

(HDL) and LDL cholesterol importation pathways during luteinization (Plotkin et al., 2002; 

Niswender et al., 2002), as cholesterol transportation to the inner mitrochondrial membrane is the 

rate-limiting step in P4 biosynthesis (Murphy et al., 2004).      

Corpora Lutea Regression 

Prostaglandin F2α is the primary luteolysin at the late luteal phase of the estrous cycle or 

at the end of pregnancy in several species (Carlson and Gole, 1978) and is produced by the 

uterus (as reviewed in McCracken et al., 1999; Diaz et al., 2002).  The CL, while refractory to 

the luteolytic action of PGF2α in the early luteal phase, becomes responsive to PGF2α once the 

CL is mature in several species (Marcinkiewicz et al. 1992; Boiti et al. 1998, 2001; Davis and 

Rueda, 2002).  Activation of luteolysis occurs by PGF2α binding to its receptor within the large 

luteal cells (Niswender et al., 2002), which activates phospholipase C, causing the release of 

intracellular Ca2+ from the endoplasmic reticulum and activating of PKC isoforms (McGuire et 

al., 1994; Davis and Rueda, 2002).  This signaling pathway results in further increase of PGF2α 

release from the uterus, and also stimulates the release of oxytocin from the pituitary gland in 

ruminants (Davis and Rueda, 2002; Sirois et al., 2004).  The feedback loops formed between 

PGF2α and oxytocin serve as luteolytic signals, with the CL acting as an amplifier (Sirois et al., 

2004).  Structural luteolysis also results in physical destruction and regression from the ovary 
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(Davis and Rueda et al., 2002; Bowen-Shauver and Gibori, 2004).  This action is stimulated by 

an acute increase in luteal blood flow as the possible trigger of the luteolytic cascade (Acosta et 

al., 2002).  PGF2α is released by the uterus and stimulates both NO production and release in 

peripheral arteriolar vasculature of the mature CL (Friden et al., 2000; Miyamoto et al., 2005).  

An increase in NO production leads to an increase in blood flow to the CL.  This also increases 

shear stress and PGF2α, the latter increasing angiotensin II secretion from microvilli within the 

CL (Miyamoto et al., 2005).  These changes are partially responsible for later vasoconstriction 

and regression in the CL.  

It should be noted that while PGF2α is no longer contested as a mammalian luteolysin 

(Sirois et al., 2004), it remains unclear if it is directly responsible for luteal cell death.  In the 

ewe, luteal cells that produce PGF2α receptor (FP) are not the first to die during PGF2α-induced 

luteolysis (Davis and Rueda, 2002).  In fact, subluteolytic administration of PGF2α in ewes can 

reduce P4 secretion without resulting in a major loss of luteal cells, leading researchers to 

postulate that the prostaglandin has an indirect effect on luteolysis in certain species (McCracken 

et al., 1999; Davis et al., 2002). 

Arginine 

Arginine Effects on Vascular Function 

Arginine (Arg) is an amino acid (aa) that was first discovered in seedlings (Schultz and 

Steiger, 1886) and later in animal proteins (Hedin, 1895).  Research commenced in the late 

1940’s led to the classification of Arg as a semi-essential aa, as dietary Arg was required for 

growth of the chick (Klose et al., 1938) and rat pup (Wolf and Corley, 1939), but not for healthy 

adult rats (Borman et al., 1946).  Around the same time, researchers also reported that Arg was 
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required for creatine synthesis (Foster et al., 1939).  Arg is a precursor for multiple cell 

regulators including cell signaling molecules glutamate, agmatine, and NO (Palmer et al., 1998) 

(Figure 1.2).  Polyamines, which are necessary for ion channel function (Williams, 1997), are 

also derivatives of Arg.   

While Arg can be acquired exogenously through the diet, 40% of dietary Arg is 

catabolized by the small intestine before it can enter the blood stream (Wu and Morris, 1998).  

The majority of endogenously acquired Arg is derived from the intestinal-renal pathway.  Within 

the small intestine, the enterocyte is responsible for citrulline or arginine synthesis from 

glutamine and glutamate (Wu and Knabe, 1995).  These precursors are catabolized by the small 

intestine (Windmueller and Spaeth, 1975), both being major precursors for endogenously 

synthesized Arg (Wu, 1998).  The small intestine produces and releases citrulline into the blood 

circulation wherein it is extracted by the kidneys and stoichiometrically converted to Arg by 

enzymes arginosuccinate synthase (ASS) and arginosuccinate lyase (ASL) (Dhanakoti et al., 

1990).  The kidneys synthesize approximately 60% of net Arg in adult mammals (Dhanakoti et 

al., 1990; Yu et al., 1996).  With only 5-15% of endogenous synthesis being de novo, the major 

contributor to Arg flux is whole-body protein turnover, or “protein recycling” (taken from Wu 

and Morris, 1998).  However, evidence supports the theory that Arg synthesized within the urea 

cycle is not available for hepatic NO synthesis (Pastor et al., 1995) and that Arg from 

extracellular fluid is the preferred substrate for NO production by endothelial cells (Forstermann 

et al., 1994; Kurz and Harrison, 1997; Wu et al., 1998).     
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In Vivo Arginine Supplementation 

 Arginine supplementation has improved NO-dependent endothelial-stimulated relaxation 

(Figure 1.2) in patients with high cardiovascular risk factors and common cardiovascular 

disorders (such as coronary artery disease and heart failure) (Wu and Meininger et al., 2000; 

Maxwell and Cooke, 2001).  Researchers have reported that feeding an Arg- or protein-deficient 

diet to young rats not only decreases plasma Arg concentrations and also prevents maximal 

synthesis of NO (Wu et al., 1999).  Others have observed that supplementation of rumen-

protected Arg to non-pregnant ewes has resulted in increased blood flow to ovaries (Saevre et al., 

2011).  Recently, however, Kaminski et al. (2015) reported no changes in serum metabolites or 

hormones in non-pregnant ewes of various nutritional planes treated with Arg.  

 Supplementation of Arg to pregnant animals (through diet or injected intravenously) has 

also been investigated, with the goal being to potentially increase NO and, therefore, vasodilation 

of blood vessels.  Sows supplemented with Arg had a 22% increase in the number of live piglets 

born (Mateo et al., 2007) and by 30% in rats (Zeng et al., 2008).  Ewes provided additional Arg 

during late gestation had increased offspring number (Luther et al., 2009) and lamb birth weights 

(De Boo et al., 2005) compared to control offspring.  Moreover, ewe lambs were 12% heavier at 

birth when dams were supplemented with Arg i.v. when compared to ewe lambs from untreated 

dams (McCoard et al., 2013).   
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Figure 1.2. Arginine metabolism. Arginine can be derived from exogenous sources (dietary 
components) or endogenous sources (intestinal-renal pathway) and can be converted to several 
metabolites including creatine, citrulline, agmatine, and nitric oxide.  Arginine can also be 
utilized within the urea cycle.  Conversion of Arg is catalyzed by several enzymes and/or 
metabolic factors including arginine decarboxylase (ADC), arginase 1 (ARG1), glycine 
amidinotransferase (GATM), and nitric oxide synthase (NOS). NO, nitric oxide. 

 

When undernourished ewes were provided Arg supplementation, fetal growth restriction 

was prevented and lamb birth weight was enhanced by 21% (Lassala et al., 2010).  However, to 

our knowledge, the effects of Arg supplementation to non-pregnant animals of different 

nutritional planes on reproductive processes have not been investigated in detail. 

In Vitro Arginine Supplementation 

Mouse follicle culture absent of Arg resulted in significantly reduced follicle survival and 

ovulation, with nearly half the follicles surviving when compared to control cultures containing 

Arg (Mitchell et al., 2004).  Researchers have also observed varying morphological development 
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when comparing follicles grown with or without Arg, with those grown in the absence of Arg 

generally having dark granulosa cells, degenerating cells, and/or prematurely releasing a nude 

oocyte (Mitchell et al., 2004).   

However, the addition of Arg to Arg-free medium has resulted in a significantly greater 

follicle survival rate when compared even to a control, complete medium (Mitchell et al., 2004).  

Researchers have reported that in vitro Arg supplementation to d 16 ovine conceptuses resulted 

in a 12-fold increase in proliferation of trophectoderm cells (Kim et al., 2011).   

Conversely, elevated Arg inhuman FF has been associated with reduced oocyte retrieval 

and in vitro fertilization rates (Bodis et al., 2010).  Furthermore, researchers have observed 

attenuated LH-stimualted P4 secretion from granulosa cells obtained from nutritionally 

compromised ewes (Grazul-Bilska et al., 2015).  Together, these studies suggest that there may 

be an optimal dose of Arg necessary for normal luteal cell function.   

Nitric Oxide 

Nitric Oxide Production and Function 

Nitric oxide is a mediator of many physiological mammalian processes, including 

reproductive functions (Ignarro et al., 1990; Biswas et al., 1998).  Nitric oxide, also known as 

endothelial-derived relaxing factor (EDRF), was first named by Dr. Robert Furchgott (Furchgott 

and Zawadski, 1980).  Dr. Furchgott, along with other researchers, discovered this free radical 

gas and some of its various actions; the most researched focusing on vascular smooth muscle cell 

(VSMC) relaxation.  NO is a small biological product of mammalian cells (Nathan, 1992) and 

has a half-life of less than 5 seconds (Palmer et al., 1987). 
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There are three isoform enzymes responsible for NO production from Arg.  The brain, 

vascular endothelium, and macrophages were the first areas where these enzymes were 

discovered to play a specific function, hence the nomenclature (Forstermann et al., 1991; Stuehr 

and Griffith, 1992).  While termed neuronal constitutive NO synthase (NOS I or nNOS), 

endothelial constitutive NO synthase (NOS III or eNOS), and inducible NO synthase (NOS II or 

iNOS), these isoforms are distributed across a wide spectrum of cell types (Stuehr and Griffith, 

1992).  Production of NO induced by iNOS occurs with a delay of approximately six to eight 

hours after stimulation, yet once induced, iNOS is active for hours or even days and produces 

NO in 1000-fold larger quantities than the constitutive forms (Huang et al., 1993; Nathan Xie, 

1994; Beck et al., 1999; Moncada et al., 2002).  Together, nNOS and eNOS are responsible for 

the continuous basal release of NO and both enzymes require the calcium-calmodulin complex 

for activation (Griffith and Stuehr, 1995; Snyder, 1995).  Researchers have also reported that a 

cell type can express more than one NOS isoform (Radomski et al., 1990; Suschek et al., 1993).   

Increased intracellular calcium (Ca2+) concentrations initiate a cascade of events leading 

to eNOS or nNOS activation.  Intracellular Ca2+ both binds calmodulin (CaM) to form calcium-

calmodulin complexes and regulates the binding of CaM to target proteins.  Therefore, by 

binding to CaM, Ca2+ causes significant conformational changes with the hydrophobic face of 

the target recognition site (O’Neil and DeGrado, 1990). This allows electron transport from 

NADPH within the reductase group to the heme-containing active site, facilitating the 

conversion of O2 and Arg to NO and citrulline (Abu-Soud et al., 1994).  It should be noted that 

maximal NOS activity is dependent upon substrate availability and co-factors NADPH, flavin 

mononucleotide (FMN), flavin adenine dinucleotide (FAD), and tetrahydrobiopterin (THB), and 
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the availability of these factors determines the cellular rates of NO synthesis (Morris and Billiar, 

1994; Davies et al., 1995).  These dependencies for NO production implies that metabolic 

activity pathways either generate or compete for these cofactors (whether during normal 

physiological or pathological conditions) can be important to determining cellular NO 

production rates.  Additionally, NO can regulate its own activity.  Assreuy et al. (1993) 

demonstrated that NO synthesis is not linear after 20 minutes, suggesting the possibility of a 

negative feed-back inhibition.  Once NO is produced, it can carry out multiple functions in two 

different ways: 1) by binding and activating soluble guanylyl cyclase (sGC), or 2) through s-

nitrosylation (Assreuy et al., 1993). 

The short half-life of NO dictates its mediation of many biological functions.  NO 

produced by endothelial cells, diffuses into the blood and binds to the heme group within 

hemoglobin in the red blood cells, or diffuses to pericytes and SMC (Foster et al., 2009).  

However, as Foster et al. (2009) explains “…hemes do not generally elicit cellular signaling 

involving posttranslational modifications of proteins and thus an explanation for most NO-based 

bioactivity was not apparent.”  Within smooth muscle cells, NO binds to the heme group of sGC 

(Stone and Marletta, 1994) (Figure 1.2), which seems to be the most relevant target of NO at low 

concentrations (Maul et al., 2003).  This binding catalyzes dephosphorylation (cleavage of two 

phosphate groups) of guanosine triphosphate (GTP) to 3΄, 5΄-cyclic guanosine monophosphate 

(cGMP), which serves as a second messenger for many important cellular functions and also 

activates protein kinase G (PKG) (Denninger and Marletta, 1999).  Cyclic GMP then induces 

VSMC relaxation by inhibiting cellular Ca2+ entry.  Cellular Ca2+ entry inhibition by activated 

cGMP activates K+ channels, which leads to VSMC hyperpolarization (Denninger and Marletta, 
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1999).  This activity stimulates a cGMP-dependent kinase, myosin light-chain kinase (MLCK), 

which dephosphorylates myosin light-chains, as the name implies, and causes muscle cell 

relaxation and, therefore, dilation of the NO-exposed blood vessel (Denninger and Marletta, 

1999) (Figure 1.3).  Blood vessel dilation allows for increased amounts of O2 and nutrients that 

can be delivered to appropriate tissues.  Increased concentrations of cAMP also activates, in turn, 

three vital signaling pathways, including 1) cGMP-regulated ion channels, 2) cGMP-regulated 

protein kinases, and 3) cGMP-dependent protein kinases and phosphatases (as reviewed in Beck 

et al., 1999).  Furthermore, NO and its downstream signaling cascades also are responsible for 

platelet aggregation prevention (Ignarro et al., 1999), increasing endothelial cell proliferation 

(Morbidelli et al., 1996; Ziche et al., 1997) and migration (Ziche et al., 1994), and act as a 

neurotransmitter and mediator of the immune system (Bredt et al., 1999) in mammals.  Since 

there is only a limited amount of guanylyl cyclase (GC) enzyme present in one SMC, and once 

all GC enzyme have been activated, additional NO cannot initiate any further dilation.  Instead, 

unused NO will be appropriated as a nitrosothiol bound to hemoglobin in red blood cells (RBCs) 

for future usage (Burke, 2002).  
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Figure 1.3. Mechanism of blood vessel relaxation induced by NO.  L-Arginine (L-Arg) is 
converted to nitric oxide (NO) via enzyme nitric oxide synthase (NOS) within the endothelial 
cells.  Nitric oxide then diffuses into the smooth muscle cells where it can bind guanylate cyclase 
(GC), causing an increase in cyclic guanosine monophosphate (cGMP), which then causes an 
increase in Protein Kinase G (PKG).  The increase in PGK reduced intracellular calcium (Ca++) 
concentrations, allowing for smooth muscle cell relaxation and dilation of the blood vessel.   

 

A second way in which NO can carry out various actions in cell signaling transduction is 

through s-nitrosylation, through the formation of S-nitroso-proteins, what are collectively termed 

SNO-proteins.  S-nitrosylation is the result of the attachment of NO to a thiol sidechain of, 

generally, a cysteine (Cyst) residue (Foster et al., 2003; Hess et al., 2005; Sen and Snyder, 2010).  

Nitric oxide can actually interact with and modify many different cellular molecules including 

other free radicals, redox regulators (such as glutathionine), and macromolecules (such as DNA 

and other proteins) and there are over 3,000 SNO-proteins currently known (Benhar et al., 2009).  

There are many types of post-translational modifications, such as palmitoylation, 
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phosphorylation, ubiquitation, sumolation, acetylation, and others (Stamler and Meissner, 2001).  

S-nitrosylation is similar to these in modifications in multiple ways (Stamler and Meissner, 

2001); for example, both S-nitrosylation and many of these processes lead to covalent 

modifications of proteins.  However, the post-translational modifications listed above are driven 

by enzymes, whereas S-nitrosylation is reliant strictly upon the chemical reactivity between the 

NO molecule and its target.  SNO-proteins are often within close proximity to eNOS or nNOS, 

providing a type of compartmentalization within cells (Lima et al., 2010).  While protein S-

nitrosylation is vital for many cellular changes, hypo- or hyper-S-nitrosylation of target proteins, 

and, therefore, alterations in protein function can contribute to many human ailments such as 

cardiovascular, musculoskeletal, and nervous system disorders (Foster et al., 2009; Gu et al., 

2010).  

Nitric Oxide and NOS Localization and Expression in Follicles and Corpora Lutea 

   Detection of both eNOS and/or iNOS in stroma, granulosa, and theca cells of rat, mouse 

and/or ovine ovarian follicles have been reported (Van Voorhis et al., 1995; Zackrisson et al., 

1996; Jablonka-Shariff and Olson, 1997; Grazul-Bilska et al., 2006).  Moreover, researchers 

have reported that eNOS mRNA was expressed in the blood vessels of developing and pre-

ovulatory follicles (Grazul-Bilska et al. (2006).  A distinct cell-specific eNOS and iNOS 

expression pattern depends on the stage of the estrous cycle (Zackrisson et al., 1996; Jablonka-

Shariff and Olson, 1997; Grazul-Bilska et al., 2006).  In sows, eNOS immunoreactivity increased 

in parallel with follicular size; there were lesser eNOS expression concentrations in smaller 

follicles and greater expression in larger follicles (Tao et al., 2004).  In contrast, no 

immunoreactivity for iNOS was found in primordial, early antral follicle or the cumulus oocyte 
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complexes (COC) aspirated from small and medium follicles in porcine ovaries; however, the 

large follicle-enclosed oocyte had weak immunoreactivity to iNOS (Tao et al., 2004).  While 

most tissues only express iNOS in response to immune stimuli (such as trauma or infection), 

iNOS expression in mature ovaries has been observed (Zackrisson et al., 1996).  Nitric oxide 

synthase has also been localized in luteal tissues; Vega et al. (1998) detected the expression of 

eNOS in mid- and early, and to a lesser extent, in late CL.  Additionally, an 

immunohistochemical study in women indicated that both eNOS and iNOS were expressed in 

mid-luteal CL, eNOS being the more abundant enzyme present.  Through immunoreactivity, all 

NOS isoforms have been observed in luteal cells from early-, mid-, and late-luteal phase bovine 

CL (Zerani et al., 2013).   

Nitric Oxide Functions in Female Reproduction 

It should also be noted that one of the major contributors to eNOS expression, and 

therefore NO production, is VEGF (Ku et al., 1993; Van der Zee et al., 1997; Kroll and 

Waltenberger, 1998; Duda et al., 2004).  Nitric oxide, in turn, assists in VEGF expression 

regulation and angiogenesis (Chin et al., 1997; Reynolds et al., 2000, 2002; Beckman et al., 

2006).  An existence of a paracrine loop was postulated, wherein endothelial cells secrete NO, 

stimulating perivascular VEGF production, which then stimulated endothelial expression of 

eNOS.  Within the ovarian structure, this paracrine loop would provide a “feed-forward” system 

to increase vasodilation and angiogenesis, which are vital to proper ovarian function (Reynolds 

et al., 2002).   

Researchers have postulated that E2 is one of the major reproductive hormones regulating 

NO production in the vasculature and reproductive tract, indicating that E2 stimulates vascular 
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NO by upregulating eNOS and/or inhibiting superoxide anion production in ewes (Van Buren et 

al., 1992) and guinea pigs (Weiner et al., 1994). 

Because NO inhibits apoptotic DNA fragmentation in granulosa cells, researchers 

postulate that NO is an important modulator and vital for follicular development and survival 

factor (Tilly and Tilly, 1995).  Supporting this is the observation that NO concentration within 

FF increases with follicular development and are correlated with increased E2 concentrations 

(Rosselli et al., 1994, 1998).   

Studies utilizing NO donors and inhibitors have demonstrated the growth-promoting 

effects of NO to ovarian follicle granulosa cells since 1) NO donors increase epidermal growth 

factor receptors on granulosa cells, while 2) NO synthesis inhibitors decrease these same 

receptors (Hattori et al., 1996).  To investigate the role of NO in the ovulatory process, 

researchers utilized NOS inhibitors Ng-methyl-L-arginine and aminoguanidine, which resulted in 

a dose-dependent reduction of hCG-induced ovulation in rats (Shukovski and Tsafriri, 1994).  

The administration of a NO donor reversed the anti-ovulatory effect, suggesting NOS is involved 

in ovulation.  Because NOS inhibition reduced ovulation by approximately 54% in rats, it has 

been postulated that NO is also involved in the ovulation process.  

Nitric oxide regulates oocyte meiotic maturation in rodents (Jablonka-Shariff et al., 1999) 

and in vitro (Kazuo et al., 2001).  Bu et al. (2003) reported data supporting the theory that NO 

could have dual actions pertaining to meiotic maturation, acting in some instances as a stimulator 

and in other cases as an inhibitor, depending on NO concentration, and hypothesized that the 

action of NO on oocyte maturation acts through the cGMP pathway.  An oocyte within a 

Graafian follicle is arrested in the first meiotic division; high concentrations of cAMP and cGMP 
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in the oocyte are necessary for this arrest phase, and NO is a known cGMP stimulator (Eppig et 

al., 1991, 2004).  An LH surge leads to a systematic decrease in NO concentrations and, 

therefore, a decrease in cAMP and cGMP, allowing for meiotic resumption (Eppig et al., 2004).  

When Bu et al. (2003) supplemented medium with sodium nitrioprusside (SNO; a NO donor) 

polar body extrusion was inhibited.  Oppositely, low concentrations of SNP had stimulatory 

effects on oocytes.  This paradox led researchers to postulate that NO can have opposing effects, 

dependent upon NO concentration, on oocyte maturation.  Moreover, the evaluation of 

nitrite/nitrate concentrations in culture medium revealed that a low concentration of NO (30.69 ± 

5.06 µmol) stimulated meiotic maturation of mouse oocytes, while a high concentration (59.88 ± 

8.07 µmol) inhibited it.  Similar results have been demonstrated in livestock species.  The 

administration of NOS inhibitors during in vitro oocyte pre-maturation and/or at maturation 

affect embryo development and quality, causing a decrease in bovine (Bilodeau-Goeseels, 2007; 

Schwarz et al., 2010), porcine (Tao et al., 2004) and caprine (Amale et al., 2013). 

Furthermore, Dong et al. (1999) have demonstrated that NO donor diethylenetriamine 

(DETA-NONOate) increased in a dose-dependent manner P4 secretion by rat ovaries.  

Moreover, NO was capable of reversing the PGF2α -induced inhibition of rat ovarian P4 

secretion in vitro (Dong et al., 1999), which is contradictory to the findings of other researchers 

utilizing rat CL (Motta et al., 1999).  The latter researchers suggested the involvement of NO in 

CL regression, reporting that increased NO production increases PGF2α concentrations during 

the last two days of luteal development, demonstrating a positive feedback mechanism between 

the two to ensure CL regression (Motta et al., 1999).    
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While PGF2α is considered to be the main luteolytic hormone, several studies examining 

the direct effects of PGF2α on bovine populations of steroidogenic luteal cells demonstrate that 

the addition of PGF2α alone does not inhibit basal P4 production from large luteal cells (Alila et 

al., 1988; Meidan et al., 1992; Girsh et al., 1995; Okuda et al., 1998) and actually stimulates P4 

secretion from small luteal cells (Okuda et al., 1998; Skarzynski and Okuda, 2000).  Due to these 

results, researchers have suggested that some other biomolecule produced within the CL may be 

responsible for mediating PGF2α and CL regression (Meidan et al., 1998; Korzekwa et al., 2006).  

Therefore, it has been postulated that NO acted as a mediator for PGF2α in bovine luteal tissue 

(Jaroszewski et al., 2000), as in vitro NO donors inhibit P4 secretion from bovine luteal cells 

(Skarzynski and Okuda, 2000; Jaroszewski et al., 2003) and enhances luteolytic activity 

(Jaroszewski et al., 2000).  Supporting the suggestion that NO mediates luteolytic activity are the 

cumulating results that demonstrate 1) decreased NO concentration via NO inhibitors to luteal 

cell cultures result in increased P4 concentrations in women (Van Voorhis et al., 1994), rabbits 

(Gobbetti et al., 1999), and cows (Skarzynski and Okuda, 2000; Jaroszewski et al., 2003), and 2) 

increased NO concentration within luteal cell culture by administration of NO donors in rats 

(Motta and Gimeno, 1997), rabbits (Gobbetti et al., 1999) and cows (Jaroszewski et al., 2003).  

An inverse relationship between treatment of spermine NO complex (an NO donor) to luteal cell 

cultures and luteal cell viability has been observed in bovine (Jaroszewski et al., 2003).  

Consequently, P4 inhibition after spermine-NO complex administration may be due to luteal cell 

viability reduction.  Conflicting results regarding NO inhibitors have also been demonstrated; 

Olson et al. (1996) reported the supplementation of NO synthase inhibitor Nω –nitro-L-arginine 

methyl ester reduced endogenous NO production, but did not affect P4 production from 
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luteinized rat ovaries.  Differing results reported could be due to different NO donor or 

inhibitors, culture conditions (e.g., length of culture, different media, different cell concentration 

and others), and/or species.      

Nitric Oxide Synthase Knockout Animals and Reproduction 

Female eNOS KO mice lack eNOS within tissues, including lack of immunoreactivity 

within the ovary (Drazen et al., 1999).  Mice treated with L-NAME, (L-NG-nitroarginine methyl 

ester) a NOS inhibitor, are characterized by shorter estrous cycles (Drazen et al., 1999), impaired 

follicular and oocyte growth, a decreased follicular cohort, abnormal meiotic maturation, reduced 

ovulation rates, and increased oocyte death rates when compared to wild type (WT) control mice 

(Jablonka-Shariff et al., 1999; Drazen et al., 1999; Pallares et al., 2008).  Specifically, Jablonka-

Shariff (1999) utilized eNOS deficient mice to demonstrate altered steroidogenesis, abnormal 

estrous cycles, and reduced ovulation in rats.  These results, along with other studies 

demonstrating altered ovarian blood flow after NO inhibition (Jablonka-Shariff et al., 1999), 

suggest that role of eNOS in the ovulatory process is to enhance ovarian blood flow to the 

developing follicle (Kassab et al., 1998).  Pregnant eNOS KO mice also have narrowed uterine 

arteries when compared to WT mice (Kulandavelu et al., 2012), demonstrating the importance of 

NO to arterial structural changes.  The absence of functional iNOS through KO has no effect on 

ovulation in rodents (Hefler and Gregg, 2002).  Instead, while expression of iNOS in the rodent 

ovary is profuse (Hefler and Gregg, 2002), NO derived from iNOS stimulated by interleukin-1β 

was reported to be a vital mediator of cell death and to stimulate tissue remodeling events during 

in vivo ovulation (Ellman et al., 1993).  Together, these data demonstrate that NO is involved in 
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the maintenance of ovarian vascular function, as well as the regulation of follicle and luteal 

tissue angiogenesis (Grazul-Bilska et al., 2006).    
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CHAPTER 2: LUTEAL FUNCTION DURING THE ESTROUS CYCLE IN ARGININE-

TREATED EWES FED DIFFERENT PLANES OF NUTRITION: CELL 

PROLIFERATION, VASCULARIZATION, AND EXPRESSION OF ANGIOGENIC 

FACTORS 

Abstract 

 

Numerous factors influence corpus luteum (CL; luteal tissue) function and includes 

hormones, growth and angiogenic factors, nutritional plane, and supplements such as arginine 

(Arg), a semi-essential amino acid and precursor for proteins, polyamines, and nitric oxide (NO).  

During the estrous cycle, the CL undergoes rapid changes including vascular development and 

regression, and tissue growth and regression.  The aim of this study was to determine if Arg 

supplementation to nutritionally compromised ewes impacts 1) progesterone (P4) concentrations 

in serum and luteal tissue, 2) luteal vascularity, cell proliferation, endothelial nitric oxide 

synthase (eNOS), and receptor soluble guanylate cyclase (sGCβ) protein and mRNA expression, 

and 3) luteal mRNA expression for selected angiogenic factors during the estrous cycle.  Ewes 

were categorized by weight and randomly assigned to one of three different nutritional planes: C 

(2.14 Mcal/kg; n=37), O (2xC; n=37), and U (60% of C; n=37) beginning 60 days prior to Arg-

treatment.  After estrus synchronization, ewes from each diet were assigned randomly to one of 

two treatments; Arg (L-Arg-HCl; 155 µmol Arg/kg BW) or saline (~10 ml).  Serum and CL were 

collected at the early, mid and late luteal phases.  The present study demonstrates that 1) 

nutritional plane affects ovulation rates, serum P4 concentrations, and KDR mRNA expression, 

2) Arg affects luteal vascularity and the NO system and 3) luteal vascularity, cell proliferation, 

and the VEGF systemdepends on the stage of the estrous cycle, and 3).  These data indicate that 
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plane of nutrition and Arg supplementation can alter vascularization and expression of related 

angiogenic factors in luteal tissue during the estrous cycle.  In addition, our data further support 

previous observations that the VEGF and NO systems are involved in the regulation of luteal 

function throughout the estrous cycle in sheep.   

Introduction 

 

The CL forms after ovulation and is the primary source of the gestational-support 

hormone P4 (Corner and Allen, 1929; Diaz et al., 2002).  During its growth phase, the CL 

doubles in size and cell number every 60-70 hours and is capable of tremendous growth due to 

coordinated changes within vasculature (Reynolds et al., 1994).  The CL receive some of the 

highest blood flow rates per unit of tissue, exhibit a high rate of metabolism, and contain 

parenchymal (e.g., steroidogenic) and non-parenchymal cells (e,g., fibroblasts, immune cells and 

vascular cells such as pericytes, smooth muscle cells and endothelial cell) (Reynolds et al., 2000; 

Redmer et al., 2001; Grazul-Bilska et al., 2001).  Vascular cells comprise 40-70% of the total 

cell population within the mature CL, and the majority of steroidogenic cells within the CL are in 

direct contact with one or more capillaries (Reynolds et al., 1992, 2000).  

Nutritional plane, including either undernutrition or overnutrition, impacts several female 

reproductive functions including follicular growth (Diskin et al., 2003; Webb et al., 2004, 2007), 

oocyte quality (Rhind et al., 1989: Grazul-Bilska et al., 2012), ovulation (O’Callaghan and 

Boland, 1999), luteal function and hormone production (Abecia et al., 1997; Parr et al., 1987; 

Armstrong et al., 2003; Diskin et al., 2003; Kaminski et al., 2015).  Additional studies regarding 

inadequate diet effects on ovarian function in ewes is important as the nutrient uptake of grazing 

ewes in the western United States is often less than 50% of the National Research Council’s 
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(NRC) recommendation (NRC, 1985) (Thomas and Kott, 1995).  Moreover, the ewe is a 

seasonal breeder, becoming pregnant in late fall or early winter in the US; this results in the 

majority of gestation coinciding with winter, when grazing forages are of lower quality 

(Hoaglund et al., 1992).   

Arginine is a semi-essential amino acid obtained through exogenous (via diet; Mertz et 

al., 1952; Wu and Morris, 1998) and endogenous (via intestinal-renal pathway; Windmueller and 

Spaeth, 1981; Wakabayashi and Jones, 1983; Wu and Knabe, 1995) sources.  While Arg is a 

precursor for proteins and polyamines, it is also a physiological nitrogen donor for nitric oxide 

synthase (NOS) that catalyzes NO formation.  In addition, whether through competitive 

inhibition of Arg (Morris and Billiar, 1994; Carter et al., 2004) or through a low-Arg diet (Wu et 

al., 1999; Wu and Meininger, 2002), reduced systemic Arg concentration impairs NO 

production.  Moreover, several studies have demonstrated that NO production catalyzed by 

eNOS is primarily determined by extracellular Arg bioavailability (Hallemeesch et al., 2002; 

Hardy et al., 2002; Rajapakse et al., 2009; Shin et al., 2011).    

It has been clearly demonstrated that NO is one of the major regulators of vascular 

development and angiogenesis within the ovary (Reynolds et al., 2002), and has been implicated 

in the regulation of luteal function (Motta et al., 1999, 2001).  For several species including cows 

and sheep, effectors of the NO system have direct effects on steroidogenesis in luteal tissues 

(Vega et al., 1998; Mitsube et al., 1999; Dong et al., 1999; Skarzynski et al., 2000; Jaroszewski 

et al., 2001, 2003; Hurwitz et al., 2002).  Three NOS isoforms, endothelial (eNOS), neuronal 

(nNOS), and/or inducible (iNOS) have been detected in the luteal cells during early-, mid-, and 

late-luteal phases in several species (Skarzynski et al., 2003; Rosiansky-Sultan et al., 2006; 



 

82 
 

 

Grazul-Bilska et al., 2006; Zerani et al., 2013).  Hurwitz et al. (2002) reported that iNOS-

mediated NO production is involved in regulation of prostaglandin synthesis in rat luteal cells, 

which may alter P4 synthesis.   

One of the major regulators of eNOS expression, and therefore NO production, is 

vascular endothelial growth factor (VEGF) (Ku et al., 1993; Van der Zee et al., 1997; Kroll and 

Waltenberger, 1999; Duda et al., 2004).  Nitric oxide, in turn, is involved in regulation of VEGF 

expression and thus angiogenesis (Chin et al., 1997; Reynolds et al., 2000, 2002; Beckman et al., 

2006).  The existence of a paracrine loop, wherein endothelial cells secrete NO, stimulating 

perivascular VEGF production, which then stimulate endothelial expression of eNOS has been 

proposed for reproductive tissues (Reynolds et al., 2002).  Within the ovarian structure, this 

paracrine loop would provide a “feed-forward” system to increase vasodilation and angiogenesis, 

which are vital to proper ovarian function (Reynolds et al., 2002).   

The CL growth and regression, as well as vascularization, is regulated by numerous 

factors including members of the VEGF, angiopoietins (ANGPT), and fibroblast growth factor 

(FGF) families and the NO system (Friden et al., 2000; Boiti et al., 2002; Miyamoto et al., 2005; 

Vonnahme et al., 2006; Beckman et al., 2006).  The VEGF family of proteins including VEGF, 

placental growth factor (PGF) and receptors FLT and KDR is considered to be one of the major 

regulators of angiogenesis and vascular function (Ferrara, 1999; Geva and Jaffe et al., 2000; 

Hoeben et al., 2004).  Another importan regulators of angiogenesis, angiopoietins (ANGPT)-1 

and -2 are produced exclusively by endothelial cells, are responsible for blood vessel maturation 

or destabilization, respectively, and bind receptor Tie (tyrosine kinase with immunoglobulin and 

epidermal growth factor homology domains) 1 and 2 (Dumont et al., 1992; Sato et al., 1993).  
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Basic fibroblast growth factor (FGF2) is one of many fibroblast growth factors and is involved in 

regulation of angiogenesis and tissue growth (Baird et al., 1985; Kottakis et al., 2011).  FGF2 

binds its receptor FGFR2 (Johnson and Williams, 1993).   

Objectives and Hypotheses 

 We hypothesized that inadequate nutrition (either diet excess or restriction) would result 

in negative effects on CL function, while Arg would restore function as evaluated by serum and 

luteal P4 concentrations, vascularization, cell proliferation, expression of eNOS and NO receptor 

sGC proteins, and mRNA expression of selected angiogenic factors in CL.  Therefore, the aim of 

this study was to evaluate the effects of nutritional plane and Arg on 1) CL number and weight, 

2) serum P4 concentration and P4 content in CL, 3) CL vascularization and cell proliferation as 

measured by protein expression of CD31 and Ki67, respectively, 4) luteal eNOS and sGC-beta 

protein expression, and 5) luteal mRNA expression of eNOS, GUCY1B3, VEGF, PGF, FLT, 

KDR, ANGPT1, ANGPT2, TIE2, FGF2 and FGF2R during the estrous cycle.  

Materials and Methods 

All animal procedures performed were approved by the North Dakota State University 

Institutional Animal Care and Use Committee (#A12013). 

Animals and Experimental Design  

Animal treatments, diet composition and experimental design are described in detail by 

Kaminski et al. (2015).  Briefly, non-pregnant, non-lactating Rambouillet ewes (n = 111, 

between 3 to 5 years of age and of similar genetic background) were penned individually at the 

Animal Nutrition and Physiology Center on the NDSU campus.  Ewes were stratified by weight 

and randomly assigned to one of three nutritional plane treatments: control (C; n = 37) received a 



 

84 
 

 

maintenance diet (760 g/kg BW/day), overfed (O; n = 37) received 2 x C, and underfed (U; n = 

37) received 0.6 x C 60 days prior to the onset of the estrous cycle (day 0).  Ewes were fed their 

individual diets twice daily at 0800 h and 1500 h.  Ewes were weighed and BCS was evaluated 

on a 5-point scale (1 = extremely thin and 5 = obese) by the same individual once weekly.  Diets 

were adjusted weekly to ensure the proper BW.  Body condition score was achieved by day 0 

and maintained throughout the estrous cycle until completion of experiment on day 15 (late-

luteal phase of the first estrous cycle), or day 21 or day 26 (early-luteal phase or mid-luteal phase 

of the second estrous cycle, respectively) of Arg.  Estrus was synchronized by insertion of a 

controlled internal drug release device for 14 days.  Based on previous results (Grazul-Bilska et 

al., unpublished), approximately 36 h after CIDR removal, ewes were in estrus, and treated as 

day 0 of the estrous cycle.  At day 0, ewes were randomly assigned to Arg or saline (Sal) groups, 

and Arg or Sal injections were initiated at 0700 h.   

Jugular vein cannulations were conducted 5-7 days prior to day 0 of the estrous cycle. 

Neck wool was removed by shearing, the area was disinfected with betadine, and wiped with 

sterile gauze and 70% ethyl alcohol.  Approximately 10 minutes before cannulation, a local 

anesthetic (lidocaine HCl, 2%, sterile, Phoenix Scientific Inc., St. Joseph, MO) was injected 

subcutaneously into two sites (approximately 1 mL/site) along the jugular vein. The sheep were 

restrained manually, the skin was incised, and a sterile cannulation needle (12-gauge, Popper & 

Sons Inc., New Hyde Park, N.Y.) was inserted into the jugular vein, parallel to the trachea near 

the middle of the neck. Immediately after inserting the needle, a sterile cannula (outer diameter 

[O.D.] 2.16 mm, inner diameter [I.D.] 1.02 mm, Silastic Laboratory Tubing, DOW Corning 

Corporation, Midland, MI) was inserted through the needle into the jugular vein and the needle 
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was carefully removed. The length of the cannula was 25 cm (20 cm was inserted inside the 

jugular vein and 5 cm was allowed to remain outside). The cannula was flushed with sterile 

saline solution to make sure it was functional. The cannula was then filled with sterile heparin 

(sodium salt from porcine intestinal mucosa; Sigma, St. Louis, MO) in saline (300 IU of 

heparin/mL) solution and sealed with a sterile stopper. The outside portion of the cannula was 

attached to the skin via surgical tape, staples, and silicone glue. The skin around the cannula was 

washed to with sterile water, wiped with sterile gauze, and rinsed with 70% ethyl alcohol to 

remove traces of blood. 

Arginine or Saline Treatment  

Ewes in the Sal group received 5-10 mL three times daily of sterile saline solution, while 

ewes in the Arg group received a dose of 155 µmol Arg/kg BW three times daily (Sigma, St. 

Louis, MO) as previously described by Kaminski et al. (2015) in 5-10 mL via the jugular 

cannula.  Ewes received Arg or Sal for 15, 21, or 26 days.  Arg or Sal injections were initiated on 

day 0 of the estrous cycle and occurred three times daily (0700, 1400, 2100 h) until the end of 

experiment. After each injection, 1 cc of heparin solution was placed into the cannula to prevent 

blood from clotting within the tubing. 

Tissue and Blood Collection 

Ovaries and blood samples were collected at the early- or mid-luteal phase of the second 

estrous cycle, or late-luteal phase of the first estrous cycle.  These luteal stages correspond to day 

21, 26, or 15 of Arg or Sal.  Blood samples were centrifuged, and serum was stored at -20˚C 

until P4 analysis.  The number of CL was recorded, and CL were dissected from the ovary and 

weighed. Corpora lutea from each ewe was divided into four portions: the first portion was fixed 
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in 10% neutral buffered formalin (NBF) for immunohistochemistry, the second portion was fixed 

in Carnoy’s solution for immunohistochemistry, the third portion (approximately 20-50 mg) was 

immediately frozen on dry ice and stored at -80 C until homogenization in PBS (100 mg/1 ml), 

and the fourth portion (20-50 mg) was placed in 600 uL buffer RLT (Qiagen, Valencia, CA) in a 

nuclease-free 2.0 mL tube and homogenized using a 7 mm generator on a Polytron homogenizer 

for 10-15 seconds, then frozen on dry ice and stored at -80˚C prior to RNA extraction. 

Progesterone Analysis 

Progesterone concentrations from serum and homogenized luteal tissue were determined 

using a chemiluminescence immunoassay (Immulite 1000, Siemens), as previously described 

(Kaminski et al., 2015).  Briefly, a progesterone kit utilizes a solid phase, competitive 

immunoassay using enzyme-labeled chemiluminescent technology.  Each sample was run as 50 

µL duplicates. Beads coated with polyclonal rabbit anti-P4 antibodies are utilized for the initial 

solid phase.  Alkaline phosphatase conjugated to P4 is used for the liquid phase.  Samples and 

reagents are mixed and incubated for thirty minutes, during which sample P4 competes with 

enzyme-conjugated P4 in reagent for limited antibodies on the bead.  Centrifugal washes remove 

unbound sample and enzyme conjugate.  Lastly, chemiluminescent substrate is added and the 

luminescent signal that is generated is indicative of P4 concentration.  The intra-assay CV was 

6.9% for serum P4 and 5.2% for luteal P4. 

Immunohistochemistry  

All tissues were sectioned using a Leica rotary microtome (Leica RM 2255, Nussloch, 

Germany) and mounted on poly-L-lysine treated slides (Fisher Scientific, Pittsburg, PA).  Tissue 

sections were deparaffinized in xylene and rehydrated in decreasing concentrations of alcohol in 
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water and then washed in distilled water.  Tissue sections underwent antigen recovery (2100 

Retriever, Prestige Medical, Lancashire, England) for 20 minutes in a 10 mM sodium citrate 

buffer with 0.05 Tween (pH 6).  Slides were allowed to cool at room temperature for 20 minutes 

and then washed in TBST (0.1% Tween 20) twice for 5 minutes each.  Tissue sections were 

blocked with 10% normal goat serum for 20 minutes at room temperature.  Afterwards, tissue 

sections were incubated with a specific primary antibody followed by incubation with a 

secondary antibody.  Table 2.1 presents fixatives used, tissue thickness, and source and dilution 

of primary and secondary antibodies for all antigens immunodetected in this experiment.  Tissue 

sections were then washed twice for five minutes in distilled water at room temperature and 

cover slipped using Prolonged Gold with DAPI (Life Technologies, Eugene, OR). 

Image Generation and Analysis 

Photomicrographs were taken with a Zeiss Imager M2 epifluorescence microscope 

equipped with Zeiss piezo automated stage and AxioCam HRm camera (Zeiss Inc., Thornwood, 

NY).  All images were taken where distribution of steroidogenic and accessory cells is relatively 

uniform; areas with connective tissue tracts were avoided.  The percentage of area that exhibited 

positive fluorescent staining for CD31, Ki67, eNOS, or sGC was evaluated quantitatively with an 

image analysis system (Image Pro-Plus, Media Cybernetics, Silver Spring, MD) as described 

previously (Grazul-Bilska et al., 2006; Vonnahme et al., 2006).  For each CL, three randomly 

chosen fields were evaluated in each tissue section. 

 

 



 

 
 

 

  

Table 2.1. Tissue fixation, tissue section thickness, and antibodies used for immunohistochemistry to detect Ki67, 
CD31, eNOS, and sGC proteins in the CL. 

ANTIGEN PURPOSE FIXATIVE 

TISSUE 

THICKNESS 

1⁰⁰⁰⁰ ANTIBODY, 

DILUTION, 

INCUBATION 

TIME 

2⁰⁰⁰⁰ ANTIBODY, 

DILUTION, 

INCUBATION 

TIME REFERENCES 

CD31 
Endothelial 
cell marker  

NBF 15 µm 

CD31 rabbit 
polyclonal, item # 
ab28364, Abcam 

Biotech Company, 
San Fransisco, CA; 

1:100; overnight 

CF 633 goat anti-
rabbit, item # 
20122-0.5mL, 
Biotium, San 

Fransisco, CA; 
1:100;    1 hour 

Redmer et al., 2013 

Ki67 
Cell 

proliferation 
marker 

NBF 5 µm 

Ki67 mouse 
monoclonal, item # 
VP-k452, Vector 

Labs, Burlingame, 
CA; 1:100; 
overnight 

Alexa 568 goat anti-
mouse, item # 
A110040, Life 
Technologies, 
Carlsbad, CA; 
1:200; 1 hour 

Grazul-Bilska et al., 
2013; 2014 

eNOS 

Endothelial 
nitric oxide 

synthase 
marker 

Carnoy's 5 µm 

Anti-eNOS/NOS 
III purified mouse, 
item # 610297, BD 
Biosciences, San 
Jose, CA; 1:250; 

overnight 

Alexa 647 goat anti-
mouse, item # 

A21235, Invitrogen, 
Eugene, OR; 1:200: 

1 hour 

Grazul-Bilska et al., 
2006 

sGC 

Soluble 
guanylate 
cyclase 
marker 

NBF 5 µm 

Guanylate cyclase 
β rabbit polyclonal, 

item # 160897, 
Cayman Chemical, 

Ann Arbor, MI; 
1:500; 1 hour 

CF 633 goat anti-
rabbit, item # 
20122-0.5mL, 
Biotium, San 

Fransisco, CA; 
1:100;    1 hour 
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Background fluorescence was minimal and was adjusted to the same level for each section by the 

image analysis system.  Data were expressed as percentage of positive staining out of tissue area 

within each field.   

Quantitative Polymerase Chain Reaction (qPCR) 

TaqMan probe-primer sets (Applied Biosystems, Life Technologies Grand Island, NY) 

for 11 ovine genes (eNOS3, GUCY1B3, VEGF, PGF, FLT, KDR, ANGPT-1, ANGPT-2, Tie-2, 

FGF2 and FGFR) were used as previously described (Redmer et al., 2005; Grazul-Bilska et al., 

2013).  Quantifications of total RNA were completed via reading absorbance on a Synergy H1 

Microplate Reader (Bioteck, Winooski, VT).  Reverse transcription was utilized to produce 

cDNA (Quantitect RT Kit, Qiagen, Valencia, CA), from 1 μg of RNA.  Gene expression was 

determined (7500 Fast Applied Biosystem Instrument, Life Technologies, Grand Island, NY) and 

data was analyzed using the comparative CT method using 18s rRNA as the normalizing gene 

(Livak and Schmittgen, 2001). 

Statistical Analysis 

Data was analyzed as a 3x3x2 factorial, with interactions evaluated.  Data for BW, BCS, 

P4 concentration in serum and luteal tissues, CL weights, area of positive staining, and luteal 

angiogenic factor mRNA expression were analyzed using general linear model (GLM) 

procedures of SAS (SAS Institute Inc. 2011, Base SAS® 9.3 Procedures Guide. Cary, NC: SAS 

Institute Inc.).  When an F-test was significant, differences between specific means were 

evaluated by using least significant difference test (Kirk, 1982). Means were considered different 

when P<0.05.  Data are expressed as mean±SEM. 
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Results 

 
A summary of observed results are presented in Table 2.2.   

During nutritional and Arg treatments, C maintained BW and BCS, O gained 4.1±1.3 kg, 

and U lost 15.5±0.6 kg; for O, BCS increased by 1.1±0.1 and U decreased by 0.5±0.1.   

The CL number, and thus the ovulation rate, was greater (P<0.05) in O and C ewes when 

compared to U ewes and was not affected by Arg, and therefore combined data are presented 

(Fig. 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. Summary of effects of control (C), overfed (O), or underfed (U) plane of 
nutrition, arginine (Arg) or saline (Sal), early-(early), mid-(mid), or late-(late) estrous 
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phase, and their interactions on several measurements of reproductive function.   
Treatments Measurements* Observed change 

Nutritional 
Plane 

Ovulation rate 
Serum P4 concentrations 
(tendency) 
CD31 protein (tendency) 

Greater in O and C vs U  
Greater in O vs C or U 
 
Greater in C vs O or U 

Arginine  CD31 protein 
GUCY1B3 mRNA 
(tendency) 

Greater in Sal vs Arg  
Greater in Arg vs Sal 

Stage of the 
estrous cycle 

CL weight  
Serum and luteal P4  
CD31 protein  
Ki67 protein 
eNOS protein  
VEGF mRNA  
ANGPT2 mRNA 

Greater in mid and late vs early 
Greater in mid vs early or late 
Greater in early vs mid or late 
Greater in early vs mid vs late 
Greater in mid vs early or late 
Greater in early and mid vs late 
Greater at mid vs early or late 

Interactions 

Ki67 (nutrition by Arg by 
stage of luteal phase) 
 

eNOS mRNA (Arg by 
stage of luteal phase) 
 

 

KDR mRNA (nutrition by 
Arg by stage of luteal 
phase) 

Greatest in U and least in O in early 
treated with Arg 
 
Greater in Arg in mid in all nutrition 
groups 
 
 
Greatest in C and U vs O in mid 
treated with Arg  
 

*Measurements that were significantly (P<0.05) or tended (P<0.1) to be significantly 
affected are listed. 
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Figure 2.1. The number of CL in control (C), overfed (O), or underfed (U) ewes.  a,b P<0.05, 
means ±SEM with different superscripts differ.  

 

The CL weight was greater (P<0.0001) at mid- and late-luteal phase when compared to 

early-luteal phase, and was not affected by nutritional plane or Arg, and therefore combined data 

are presented (Fig. 2.2).  Serum P4 concentration was greater (P<0.0001) at mid-luteal phase 

when compared to early- or late-luteal phases (Fig. 2.3), tended to be greater (P=0.18) in O 

compared to U (1.7±0.2, vs. 1.4±0.2, respectively), and was intermediate in C (1.5±0.2).   

 

 

Figure 2.2. The weight of CL at early-, mid-, or late-luteal phases of the estrous cycle. a,b P<0.05, 

means ±SEM with different superscripts differ. 
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Figure 2.3. The concentration (ng/ml) of progesterone in serum at early-, mid-, or late-luteal 

phases of the estrous cycle. a,b P<0.05, means ±SEM with different superscripts differ. 

Concentration of P4 in luteal tissues was greater (P=0.001) in mid- than early- or late-

luteal phase (Fig. 2.4).  Serum and luteal tissue P4 concentrations were not affected by Arg.   

CD31 protein was immunodetected in luteal tissues and was localized to blood vessels 

throughout the estrous cycle (Fig. 2.5A, B).  CD31 protein expression was greater (P<0.0001) in 

early- compared to mid- or late-luteal phase (Fig. 2.5C).  Overall, compared to Sal, Arg 

decreased (P<0.02) CD31 expression and thus luteal vascularity; and CD31 expression tended 

(P=0.1) to be greater in C than U.  A tendency (P=0.09) for Arg, nutritional plane, and stage of 

the estrous cycle interactions demonstrated less CD31 expression in Arg ewes at the early-luteal 

phase in C ewes. 
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Figure 2.4. The concentration (μg/g of tissue) of progesterone in CL at early-, mid-, or late-luteal 

phases of the estrous cycle. a,b P<0.05, means ±SEM with different superscripts differ. 
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Figure 2.5. Representative images of CD31 (marker of vascularization) positive staining 

(purple) in an early- (A) and mid-luteal (B) phase CL, and expression of CD31 in CL from ewes 

at early, mid-, or late-luteal phases of the estrous cycle (C).  a,b P<0.05, means ± SEM with 

different superscripts differ.   

Ki67 protein was immunodetected in the nuclei of luteal cells throughout the estrous 

cycle (Fig. 2.6A, B, C).  Luteal cell proliferation was greatest (P<0.0001) during the early-luteal 

phase, less at mid-luteal phase, and least at the late-luteal phase (Fig. 2.6D).  A tendency 

(P=0.07) for Arg and stage of the estrous cycle interactions demonstrated greater cell 

proliferation in Arg ewes in the early-luteal phase compared to similarly treated ewes in the mid- 

or late-luteal phase of the estrous cycle in all nutritional groups.   

The eNOS protein was immunodetected and localized to blood vessels of the luteal tissue 

throughout the estrous cycle (Fig. 2.7A, B).  Expression of eNOS was greater (P<0.01) at mid-

luteal phase compared to at early or late-luteal phases, and was not affected by nutritional plane 

or Arg, therefore combined data are presented (Fig. 2.7C).  For eNOS mRNA, Arg by stage of 
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the estrous cycle interaction (P<0.04) demonstrated greater expression in Arg than Sal-treated 

ewes during the mid-luteal phase.   
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Figure 2.6.  Representative images of Ki67 (marker of vascularization) positive staining 
(yellow) in early- (A), mid- (B), and late-luteal (C) phase CL, control (D).  Non-proliferating 
cells stained purple (DAPI).  Labeling index (graph; percentage of Ki67 positive cells out of total 
cells/tissue area) in CL at early-, mid-, or late-luteal phases of the estrous cycle (E).  a,b,c P<0.05, 
means ± SEM with different superscripts differ. 
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Figure 2.7. Representative images of endothelial nitric oxide synthase (eNOS) positive (pink) 

staining in early- (A) and mid-luteal (B) phase CL.  Non-stained cells (blue; DAPI). Control 

slide (C).  eNOS protein staining (graph; % positive staining out of total tissue area) in the ovine 

CL at early- mid- or late-luteal phases of the estrous cycle. a, bP<0.05, means ±SEM with 

different superscripts differ. 
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The presence of sGC protein was immunodetected in luteal blood vessels (Fig. 2.8) and 

expression was similar in all groups (data not shown) throughout the estrous cycle.  GUCY1B3 

mRNA expression tended (P=0.09) to be greater in Arg ewes, but was not affected by nutritional 

plane or stage of the estrous cycle. In addition, interactions (P<0.02) between Arg and stage of 

the estrous cycle demonstrated an increased GUCY1B3 mRNA expression in luteal tissue from 

Arg compared to Sal ewes at the mid-luteal phase. 

 

Figure 2.8. Representative image of soluble guanylyl cyclase (sGC) positive staining (pink) in 

early-, mid-, and late-luteal phase CL (A).   

Expression of VEGF mRNA was greater (P=0.02) at early- and mid- compared to late-

luteal phase (Fig. 2.9) and was not affected by Arg or nutritional plane.  Expression of KDR and 

ANGPT2 mRNA was greater (P< 0.02) at the mid-luteal phase than at early or late-luteal phases 

and was not affected by Arg or nutritional plane therefore combined data are presented.  For 

KDR mRNA, nutritional plane by Arg by luteal phase interactions (P=0.05) demonstrated that in 

mid-luteal stage, expression was greater in 1) Arg than Sal C ewes, and 2) Arg C and U 

compared to O ewes treated with Arg (Fig. 2.10).  Expression of ANGPT2 mRNA was greater 

(P=0.01) in mid- compared to early- and late-luteal tissues (Fig. 2.11).  
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Figure 2.9. Vascular endothelial growth factor (VEGF) mRNA expression in CL at early-, mid-, 

or late-luteal phases of the estrous cycle.  a,b P<0.05, means ± SEM with different superscripts 

differ.   

 

Figure 2.10. KDR mRNA expression in CL at early-, mid-, and late-luteal phases of the estrous 

cycle in ewes treated with arginine (Arg) or saline (Sal) on control (C), overfed (O) or underfed 

(U) nutritional planes.  a, b, c P<0.05, means ± SEM with different superscripts differ.  
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Figure 2.11. Angiopoietin-2 (ANGPT-2) mRNA expression in CL at early-, mid-, or late-luteal 

phases of the estrous cycle.  a,b P<0.05, means ± SEM with different superscripts differ.   

Expression of ANGPT1, TIE2, FGF2, FGF2R, PGF, and FLT mRNA in luteal tissues 

was similar in all treatment groups and stages of the estrous cycle (data not shown).  

Discussion 

The present study demonstrates that nutritional plane and/or Arg affects several 

measurements of luteal function including ovulation rates, serum P4 concentrations, luteal 

vascularity and cell proliferation, and mRNA expression of eNOS and KDR. 

Ovulation rates were greater in O and C compared to U ewes. The association between 

nutritional plane and ovulation rate has been previously described by several researchers.  Prior 

studies have reported a positive correlation between higher BCS and ovulations rates (Gunn and 

Doney, 1975; Smith, 1995; Rhind et al., 1989; Xu et al., 1989; Abecia et al., 1997), and that 

lower BCS lead to low ovulation rates in the ewe (Keisler and Buckrell, 1997; Lassoued et al., 

2004).  When an animal is in a negative energy balance, the animal must use its own energy 

stores in an effort to reverse the energy deficit, resulting in negative effects on both the 
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hypothalamic-pituitary axis as well as the reproductive system (Scaramuzzi et al., 2006).  

Additionally, restricted nutritional planes lead to a multitude of hormonal imbalances including, 

but not limited to, elevated plasma growth hormone (GH), the inhibition of gonadotropin-

releasing hormone (GnRH), reduced ovulation rates, and even caused anovulation (Scaramuzzi 

et al., 2006).  Follicular populations and ovulation rates are reported to be very sensitive to 

nutritional plane alterations in the ewe (Scaramuzzi et al., 2006).  Therefore, adequate nutrition 

should be provided to an animal to achieve normal ovulation rate, and thus, lambing rates.  

Although our results concerning nutritional effects on ovulation rates in ewes are reflective of 

previous reports (Coop, 1966; Boland et al., 1988; O’Callaghan and Boland, 1999), our study 

demonstrated that ovulation rate was not affected by Arg supplementation.  We hypothesize, that 

supplements Arg is not involved in the regulation of ovulation rate in non-pregnant sheep.  

Further studies should be undertaken to elucidate the mechanism(s) of interactions between 

nutritional plane and ovulation rate.     

In this study, CL weight, serum P4 concentration, P4 luteal content, eNOS protein 

expression, and VEGF mRNA expression were greatest at the mid-luteal phase indicating normal 

luteal development and function (Stabenfeldt et al., 1969; Niswender and Nett, 1988; Grazul-

Bilska et al., 2006).  CL weight was not affected by nutritional plane or Arg, but serum P4 was 

greater in O than U ewes.  Similarly, Kaminski et al., (2015) observed increased serum P4 

throughout the estrous cycle in O ewes.  In contrast, increased serum P4 concentrations during 

the first estrous cycle on reduced nutrient intake in cows (Donaldson et al., 1970; Jordan and 

Swanson, 1979) and ewes (Cumming et al., 1971) have been reported.  However, if cows remain 

on a restricted nutritional intake, peripheral P4 concentrations are significantly reduced in later, 
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consecutive estrous cycles (Gombe and Hansel, 1973; Beal et al., 1978; Rodrigues et al., 2011).  

This subsequent decrease in P4 may be attributed to a further depletion in adipose tissue, and 

therefore adipose-stored P4.  It has been demonstrated that a considerable amount of P4 can be 

stored in adipose tissues and released into circulation if the fat is metabolized (Hamudikuwanda 

et al., 1996).  These findings could explain why the present study demonstrated a tendency for 

serum P4 to be lower in underfed ewes when compared to overfed ewes.  These ewes lost 15% 

of their initial BW, and thus fat storage was depleted, as reflected by decreased BW and BCS.  

Scaramuzzi et al. (2006) describes “negative and positive energy balances” to highlight the 

differences that occur between nutritional plane and reproduction.  When a ewe’s caloric 

requirement is greater than her intake, she is considered to be in a "negative energy balance”, 

while one that is consuming an excess of calories is considered to have a “positive energy 

balance”.  These changes to an animal’s metabolic state, and the underlying homeostasis, also 

affect reproductive performance.          

The present study demonstrated that CD31 expression, and therefore vascularity of the 

ovine luteal tissue was greatest at the early-luteal phase.  Similar data of luteal vascularity were 

previously reported for cow (Miyamoto et al., 2005) and primate (Fraser and Lunn, 2001).  In 

fact, 50 to 85% of the cells that are present as the growing CL are endothelial cells and pericytes 

(Christenson and Stouffer, 1996; Reynolds et al., 2000; Redmer et al., 2001).  During the early 

luteal phase, angiogenesis is quickly progressing in order to establish a blood vessel network 

(Reynolds et al., 2000).  The rapid microvasculature growth rate is critical for proper CL 

development and function, and inadequate ovarian blood supply has been associated with 

abnormal, decreased luteal function (Hazzard et al., 2002; Reynolds et al., 2000).  Furthermore, 
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decreased vascularity is characteristic for luteal regression during the late luteal phase 

(Knickerbocker et al., 1988; Reynolds et al., 2000; Vonnahme et al., 2006).   

In our study, Arg reduced vascularity at the early-luteal phase in C ewes.  However, 

studies regarding the cardiovascular system have demonstrated improvements of endothelial-

dependent vasodilation or blood pressure reduction after Arg-treatment to animal models or 

patients with cardiovascular disease (Girerd et al., 1990; Creager et al., 1992; Cooke et al., 1992; 

Clarkson et al., 1996; Palloshi et al., 2004; Dong et al., 2011). Since luteal vascularity was 

decreased in Arg C ewes at the early-luteal phase, endothelial cells may have prematurely 

senesced due to increased Arg concentration.  In fact, it has been reported that Arg could cause 

senescence of human endothelial cell in vitro (Scalera et al., 2009; Xiong et al., 2014).  However, 

decreased vascularity in Arg-treated ewes was not associated with changes in P4 secretion in this 

study, thus Arg did not affect the major luteal function.  Additional research is required to 

elucidate the association between Arg and endothelial cell function in the ovary.  

In the present study, cell proliferation was greatest in the early-, less at the mid-, and least 

at the late-luteal phase, which corresponds to luteal growth, differentiation and regression, 

respectively (Jablonka-Shariff et al., 1993).  In addition, pattern of cell proliferation was similar 

to vascular development during the estrous cycle.  The CL is one of the fastest growing tissues 

(Jablonka-Shariff et al., 1993) and within just a few days post-ovulation, the ovine CL can weigh 

more than 500 mg (Farin et al., 1986; Jablonka-Shariff et al., 1993).  

Similar to previous observations, eNOS protein was localized within luteal tissue 

vasculature in ewes in this study (Al-Gubory et al., 2005, Grazul-Bilska et al., 2006).  The 

current data demonstrate that eNOS protein expression was greatest at the mid-luteal phase when 
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compared to early- or late-luteal phase.  In contrast to our results, previous studies have reported 

greater eNOS protein expression in the CL from the early-luteal phase in sheep (Al-Gubory et 

al., 2005; Grazul-Bilska et al., 2006).  These differences are likely due to methodological 

differences including antibody sensitivity, detection technique (fluorescence vs colorimetric), 

and image analysis program.  Although eNOS expression was localized to luteal blood vessels, 

pattern of expression of CD31 (marker of vascularization) and eNOS differed.  We hypothesize 

that CD31 marks presence of the vascular bed and may not play any additional function in 

regulation of blood vessel function in the CL. In addition, since eNOS plays a regulatory 

function in the CL, its expression depends not only on the number of vascular cells but also on 

regulatory role. 

 In the current study, Arg affected luteal vascularity, as well as eNOS and GUCY1B3 

mRNA expression, depending on the stage of the estrous cycle.  Since Arg is a precursor for 

many components, including NO, supplementing Arg in excess could enhance NO production.  

In fact, several previous studies have demonstrated that NO production is primarily determined 

by extracellular Arg bioavailability in bovine (Hardy et al., 2002) and human (Xiong et al., 2014) 

endothelial cells, and that Arg administration for just 30 minutes results in an increase of NO 

production (Xiong et al., 2014).     

Luteal expression of GUCY1B3 mRNA but not sGC protein tended to be affected by Arg 

in our study.  However, neither was affected by plane of nutrition or stage of the estrous cycle.  

Grazul-Bilska et al. (2006) reported similar results, as GUCY1B3 mRNA expression was 

unchanged in luteal tissue throughout the estrous cycle.  It can be speculated that, since sGC is 
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the main receptor for NO, as serum Arg increased, the receptor gene expression increased as 

well.    

In the present study, VEGF mRNA expression was greatest at the early- and mid-luteal 

phase and VEGF receptor KDR mRNA expression was influenced by nutritional plane and Arg 

depending on the stage of the estrous cycle.  VEGF is an important regulator of blood vessel 

permeability, protease production, endothelial cell proliferation and migration to initiate 

angiogenesis, survival of endothelial cells, and normal blood vessel function (Alon et al., 1995; 

Ferrara and Davis-Smyth, 1997; Gerber et al., 1998).  We postulate that during the early-luteal 

phase specific concentration of VEGF expression is required to regulate angiogenesis, and 

during the mid-luteal phase VEGF may be required to control blood vessel permeability and 

endothelial cell function.  Our findings are similar to a previous studies, wherein VEGF and/or 

receptor KDR were detected in luteal tissues of women (Sugino et al., 2000), sow (Kaczmarek et 

al., 2006), water buffalo (Papa et al., 2006), cow (Berisha et al., 2000), mare (Al-zí abi et al., 

2003; Müller et al., 2009), monkey (Ravindranath et al., 1992; Fisher et al., 2013), and ewe 

(Redmer et al., 1996; Vonnahme et al., 2006).  Furthermore, increased VEGF mRNA expression 

during the mid-luteal phase was observed in women and mares (Al-zí abi et al., 2003; Papa et al., 

2006; Müller et al., 2009, respectively).  Inhibition of VEGF clearly demonstrated critical 

importance of the VEGF system for luteal function in several species (Ferrara et al., 1998; 

Kuhnert et al., 2008; Fraser et al., 2000; Zimmermann et al., 2001; Hazzard et al., 2002). In fact, 

VEGF inhibition resulted in decreased luteal vasularization, angiogenesis, endothelial cell 

proliferation and/or decreased P4 secretion in rats, mice and primates (Ferrara et al., 1998; 

Kuhnert et al., 2008; Fraser et al., 2000; Zimmermann et al., 2001; Hazzard et al., 2002).   
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In the present study, ANGPT2 mRNA expression was greatest at mid-luteal phase when 

compared to the early- or late-luteal phase, and expression of ANGPT1 mRNA was similar at all 

stages of luteal development.  Similarly, no change in ANGPT1 mRNA expression, but increased 

ANGPT2 mRNA expression was observed in ovine and bovine CL after PGF2α administration 

(Vonnahme et al., 2006; Berisha et al., 2010). 

Our hypothesis was based on previous observations for pregnant animals, demonstrating 

that Arg potentially benefitted placental function and increased the number of offspring born 

(Mateo et al., 2007; Zeng et al., 2008; Luther et al., 2009) and offspring body weights (de Boo et 

al., 2005; Lassala et al., 2010) in sheep and rats.  However, Arg to non-pregnant ewes, while 

changing luteal vascularity, demonstrated no change in ovulation rate, CL weight, or P4 

production.  The limited effects of Arg on ovarian function in the present study may be due to 

the fact that Arg is a semi-essential amino acid in non-pregnant animals.  Further research is 

required to determine potential Arg benefits in non-pregnant females.   

In summary, we have demonstrated that 1) nutritional plane affects ovulation rates, serum 

P4 concentrations, and KDR mRNA expression, 2) P4 concentrations, luteal tissue vascularity, 

cell proliferation, eNOS protein, and the VEGF system change during the estrous cycle, and 3) 

Arg affects luteal vascularity and the NO system during the estrous cycle.  These data indicate 

that plane of nutrition and/or Arg can alter P4 secretion, vascularization and expression of 

selected angiogenic factors in the CL during the estrous cycle.  In addition, our data further 

support previous observations that the VEGF and NO systems are involved in luteal function 

throughout the estrous cycle in sheep.   
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CHAPTER 3: ARGININE (ARG) EFFECTS ON EARLY EMBRYONIC 

DEVELOPMENT AND OOCYTE LIPID DROPLET CONTENT IN OVERFED AND 

UNDERFED SHEEP 

Abstract    

Plane of nutrition may affect reproductive function, including oocyte quality.  We have 

recently demonstrated that nutritional plane and/or in vivo arginine (Arg) supplementation (a 

precursor for proteins, nitric oxide and polyamines) affected selected ovarian functions such as 

ovulation rate and luteal function.  However, the effects of nutritional plane and in vitro Arg on 

ovine oocyte lipid droplet accumulation and ability to be fertilized have not been studied.  We 

hypothesized that high concentrations of Arg in maturation, fertilization, and culture media 

would affect function of oocytes collected from nutritionally compromised ewes.   Ewes (n = 43) 

were stratified by weight and randomly assigned to one of three nutritional groups: control (C, 

maintenance control), overfed (O, 2xC) or underfed (U, 0.6xC).  Control ewes were fed to 

maintain BW and offered 760 g/kg BW/day.  Each ewe was fed half her total pelleted diet 

individually twice daily.  Diets contained 2.4 Mcal of ME/kg and 13% crude protein (dry matter 

basis).  Estrus was synchronized by a 14-day treatment with CIDRs and estrus (day 0) was 

estimated to be approximately 36 h after CIDR removal.  Follicular development was induced by 

twice daily injections of follicle stimulating hormone (FSH) on days 13 and 14 of the estrous 

cycle.  On day 15 of the estrous cycle, the number of visible follicles was determined and 

oocytes were collected.  Cumulus oocyte complexes (COC) from two ewes of the same 

nutritional treatment were pooled (n=7-9 pools for each nutritional treatment) for in vitro 

maturation (IVM) and fertilization (IVF).  Half of the oocytes (n=16-30) from each pool were 
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incubated with low (0.004-0.247 mM) or high (2 mM) Arg concentrations in maturation, 

fertilization, and culture media.  During the ten week nutritional treatments, C maintained BW, O 

gained 13.2 ± 1.2 kg, and U lost 7.3 ± 0.7 kg. Increases in BCS were observed by 0.5 ± 0.1 and 

1.2 ± 0.1 for C and O ewes, respectively, but decreased by 0.3 ± 0.2 for U ewes.  The number of 

visible follicles was similar in all treatment groups.  On day four after IVM, accumulation of 

lipid droplets in unfertilized oocytes was determined using BODIPY staining followed by image 

analysis.  After IVF, developing embryos were evaluated throughout a six-day culture period.  

Lipid droplet accumulation was the greatest (P<0.0001) in O, less in C, and least in U (23.2 ± 

1.0, 17.0 ± 1.3 and 11.8 ± 0.7%, respectively), and high Arg tended (P<0.1) to increase (17.8 ± 

1.3 vs. 16.2 ± 1.3%) lipid droplet quantity regardless of nutritional plane.  Cleavage rate was less 

(P<0.03) in high than low Arg (53.2 ± 5.9 vs. 35.8 ± 5.1%), and was not affected by nutritional 

plane.  Morula formation rate was affected by a nutritional plane x high Arg interaction.  These 

data demonstrate that nutritional plane did not affect follicular development measured by the 

number of visible follicles, but affected accumulation of lipid droplets in oocytes, and morula 

formation rate.  Further, high Arg in medium decreases the rate of cleavage.  Thus, plane of 

nutrition affects oocyte function and quality, possibly through lipid droplet accumulation.  Also, 

high Arg during in vitro maturation, fertilization and early embryonic development has 

detrimental effects on oocyte quality.  The mechanism of regulation of oocyte function and 

quality by diet and/or Arg remains to be elucidated. 

Introduction 

 Assisted reproductive technologies (ART) over the last 20 years, have found many 

applications in agriculture (Grazul-Bilska, 2003).  Continuous progress has been made in modern 
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embryology in order to improve production of good quality oocytes and embryos.  The major 

ways leading to the improvements of in vitro embryo production are through improvements of 

culture conditions and/or quality of gametes through diet manipulation of donor animals.  Thus, 

numerous experiments have been performed to improve in vitro culture conditions for embryo 

production (Thompson, 1998; Guler et al., 2000; Rizos et al., 2002; Borowczyk et al., 2006; 

Grazul-Bilska et al., 2006).  In addition, numerous studies have been performed to evaluate the 

effects of specific plane of nutrition on reproductive performance to maintain high reproductive 

efficiency for several species including sheep and cows (O’Callaghan et al., 2000; Lozano et al., 

2003; Peura et al., 2003; Yaakub et al., 1999; Armstrong et al., 2001; Webb et al., 2004; 

Scaramuzzi et al., 2006; Grazul-Bilska et al., 2012). 

Proper oocyte function and quality, and early embryonic development are critical for 

embryonic survival (Krisher et al., 2003).  These processes are regulated by several intrinsic 

(e.g., hormones) and extrinsic (e.g., nutrition and other environmental factors) factors (Boland et 

al., 2001; Burdge et al., 2007; Wu et al., 2010; Grazul-Bilska et al., 2012; Castaneda et al., 

2013).  Nutrition during the periconception period has been demonstrated to influence 

reproductive outcomes such as changes in hormone production, oocyte lipid content, and 

fertilization rates (Robinson et al., 1990; Webb et al., 2004; Kakar et al., 2005; Borowczyk et al., 

2006; Castaneda et al., 2013; Grazul-Bilska et al., 2012).  However, contradictory results have 

been reported for the effects of a high or low nutritional plane on oocyte quality (Papadopoulos 

et al., 2001; Lozano et al., 2003; Borowczyk et al., 2006) and early embryonic development in 

livestock species (Mantovani et al., 1993; Creed et al., 1994; Nolan et al., 1998; Lozano et al., 

2003; Kakar et al., 2005; Grazul-Bilska et al., 2012; Rattay et al., 1980; Smith et al., 1983).  In 
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fact, researchers have reported positive, negative and no effect of plane of nutrition on oocyte 

quality and early embryonic development and differing results likely depended on duration of 

nutritional treatment, hormones used, animal breed, and/or culture conditions (McEvoy et al., 

1995; O’Callaghan et al., 2000; Boland et al., 2001; Lozano et al., 2003; Peura et al., 2003; 

Grazul-Bilska et al., 2012). 

 Arginine, which can be derived exogenously through the diet or endogenously via the 

intestinal-renal pathway, is a precursor for nitric oxide (NO), proteins, and polyamines (Wu et 

al., 2009, 2013). The NO system is involved in the regulation of oocyte development, 

angiogenesis, proper vascular function, ovulation, and luteolysis (Rosselli et al., 1998; Gregg et 

al., 2003; Wu et al., 2009; Zeng et al., 2013).  A few studies utilizing swine oocytes have 

demonstrated that Arg in media used for in vitro maturation, fertilization and/or embryo culture 

enhance oocyte developmental competence and/or early embryonic development (Hong and Lee, 

2007; Bauer et al., 2011).       

 The associations between nutrition, lipid content, and function of the oocyte have been 

identified for several species (Ferguson and Leese, 2006; Wu et al., 2010; Yang et al., 2012; 

Castaneda et al., 2013; Auclair et al., 2013; Crocco et al., 2013; Hiraga et al., 2013).  Nutritional 

plane affects lipid droplet accumulation or depletion within cells, including the mouse oocyte 

(Wu et al., 2010).  Lipids appear to be an important source of energy during oocyte growth, 

maturation and fertilization (Barcelo-Fimbres and Seidel, 2011; Jungheim et al., 2011; Aardema 

et al., 2013; Auclair et al., 2013; Castadena et al., 2013; Hiraga et al., 2013).  Furthermore, lipid 

accumulation in oocytes has been associated with developmental competence of oocytes in cows 
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and sows (Castaneda et al., 2013; Hiraga et al., 2013).  Lipid storage is reduced during the 

fertilization stage to formation of a two-cell embryo (Ferguson and Leese, 1999). 

Objectives and Hypothesis 

We hypothesized that high concentrations of Arg in maturation, fertilization and culture 

media will affect function of oocytes collected from ewes fed adequate (maintenance control), 

excess or restricted diets.  Therefore, the objective of this study was to evaluate the in vitro 

effects of Arg on oocyte lipid droplets accumulation, in vitro fertilization and early embryonic 

development in overfed to underfed FSH-treated ewes. 

Materials and Methods 

Animals and Experimental Design 

 All procedures performed were approved by the North Dakota State University 

Institutional Animal Care and Use Committee (#A12013).  The study commenced in August and 

ended in November, during the natural breeding season for sheep in the northern hemisphere.  

Non-pregnant, non-lactating Rambouillet ewes (n=43) between three to five years of age and of 

similar genetic background were individually penned at the Animal Nutrition and Physiology 

Center.  Ewes were stratified by weight and randomly assigned into one of three dietary 

treatments: control (C; n = 14) ewes received a maintenance diet (100% NRC requirements), 

overfed (O; n = 13) ewes received 2.0 x C, and underfed (U; n = 16) ewes were fed 60.6 x C 60 

days prior to the onset of the estrous cycle (day 0).  Ewes were fed half their individual diet twice 

daily (at 0800 h and 1500) and had ad libitum access to water.  For the duration of the 

experiment, body weights (BW) and body condition scores (BCS) were determined weekly.  

Diets were adjusted weekly to ensure the proper BW and BCS was achieved by day 0, and 
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maintained until completion of experiment on day 15 of the estrous cycle.  Estrus was 

synchronized by vaginal insertion of a controlled internal drug release (CIDR) device for 14 

days.  Based on previous results (Grazul-Bilska et al., unpublished), 36 h after CIDR removal, 

ewes were considered in estrus and treated as day 0 (d 0) of the estrous cycle.  All ewes were 

injected twice daily (morning and evening) with FSH (FSH-P; Sioux Biochemical, Sioux Center, 

IA, USA) on days 13 (5 mg/injection) and 14 (4 mg/injection) following estrus as described 

previously (Grazul-Bilska et al., 2012).  On day 15 of the estrous cycle, ovaries were collected, 

immersed in phosphate-buffered saline (PBS), and transported to the laboratory in an incubator 

(37-39°C).  

Oocyte Collection and Processing 

 Oocyte collection, processing, fertilization, and culture have been described in detail by 

Grazul-Bilska et al. (2003, 2006, 2012).  Briefly, the number of visible small (< 3mm) and large 

(>3mm) follicles on each ovary was determined and oocytes were isolated by opening each 

visible follicle with a sterile scalpel blade and flushing it two to three times with oocyte 

collection medium with heparin (Sigma, St. Louis, MO).  Under a stereomicroscope, oocytes 

were recovered from each dish and transferred to a petri dish containing fresh collection medium 

without heparin.  Oocytes were then evaluated and categorized as healthy or atretic based on 

their morphology (Grazul-Bilska et al., 2006, 2012).  Oocytes from two ewes of the same 

nutritional plane were combined and divided into two groups.  One group of oocytes was 

randomly allotted to incubation in maturation, fertilization and culture media with low Arg 

concentration (247.02, 4.41 and 49.59 µM, respectively), while the other oocyte group 

underwent the same procedures but in media with high Arg concentration (2-2.3 mM).  All 
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oocytes were then washed three times in maturation medium (TCM-199 containing 10% fetal 

bovine serum, ovine FSH [5 μg/ml; oFSH-RP-1; NIAMDD-NIH, Bethesda, MD], ovine LH [5 

μg/ml; oLH-26; NIADDK-NIH], estradiol [1 μg/ml; Sigma St. Louis, MO], glutamine [2 mM; 

Sigma], sodium pyruvate [0.25 mM; Sigma], epidermal growth factor [10 ng/ml; Sigma] and 

penicillin/streptomycin [100 units/ml penicillin and 100 μg/ml streptomycin]).  

In Vitro Maturation  

Oocytes were matured in vitro in maturation medium for 24 h at 39°C in 5% CO2 and 

95% air followed by cumulus cell removal using a solution of 1% (wt/vol) hyaluronidase (Type 

I; Sigma) in PBS.  The oocytes were again evaluated for health based on morphology. Oocytes 

classified as healthy were used for IVF and were transferred to fertilization medium consisting of 

synthetic oviductal fluid (SOF) prepared in our laboratory and 2% heat-inactivated sheep serum 

collected from sheep on day 0-1 of the estrous cycle. 

In Vitro Fertilization and Embryo Culture 

 Frozen capacitated semen from one Hampshire ram was thawed, and viable and unviable 

sperm were separated using the swim up technique.  Sperm (0.5-1.0x106 sperm/ml) were added 

to the IVF medium containing healthy oocytes and incubated for 18 h at 39ºC, 5% O2, 5% CO2 

and 90% N2.  The presumptive zygotes were washed three times with culture medium without 

glucose (SOF supplemented with BSA, glutamine, MEM amino acids, BME amino acids 

[Sigma] and penicillin/streptomycin) and cultured in fresh culture medium for 24 h at 39ºC, 5% 

O2, 5% CO2 and 90% N2.  The number of cleaved oocytes in each treatment group was 

determined and the embryos were transferred to culture medium containing glucose (1.5 mM).  

After 48 h, the developmental stage was evaluated and embryos were transferred to the fresh 
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culture medium with glucose.  The rate of cleavage (number of cleaved vs. non-cleaved oocytes), 

and the rate of early embryonic development (time and percentage reaching stage of morula) 

were evaluated every second day during a total of six days of culture.  Data was compared 

among treatment groups. 

Staining of Lipid Droplets and Image Analysis 

 Three days after IVF, all non-cleaved oocytes (n=1-7/culture) were separated from 

embryos.  Sperm was removed from oocytes by repeated pipetting with a 150 μm diameter 

micropipette.  Unfertilized, naked oocytes fixed in 10% formalin solution were stained with 

BODIPY (1 µg/ml; Molecular Probes; Eugene, OR) followed by staining with DAPI present in 

mounting media (ProLong; Life Technologies, Grand Island, NY).  Lipid droplets were 

visualized with BODIPY 493/503 using 488 nm excitation and 503 nm emission wavelengths.  

Images of oocytes were generated using a Zeiss Axiovision microscope (Carl Zeiss, Thornwood, 

NY).  Then, percentage of area occupied by lipid droplets out of the total oocyte area was 

determined by image analysis (ImagePro-Plus ver. 5.0 count module; Media Cybernetics, 

Rockville, MD).  

Statistical Analysis 

 Data was analyzed as a 3x3x2 factorial, with interactions evaluated.  All data are reported 

as mean ± SEM.  Data for BW and BCS, number of follicles and oocytes, and oocyte quality 

parameters (e.g., the rates of cleavage and morula formation) for control, overfed and underfed 

ewes were analyzed statistically by using the general linear models program of the Statistical 

Analysis System (SAS User’s Guide, 2014).  For all other parameters, the model included 

nutritional plane and Arg.  When F-tests were significant, differences between specific means 
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were evaluated by using Least Significant Difference test (Kirk, 1982).  In addition, data for the 

percentage of oocytes cleaved, and the rate of morula and blastocyst formation (%) were 

analyzed by using Chi-square analysis (SAS 2014). 

Results 

 During the 10-week nutritional treatments, C ewes maintained BW and BCS, while O 

ewes gained and U ewes lost BW and BCS (Table 3.1).  Plane of nutrition did not affect 

(P=0.15) the number of visible ovarian follicles (Table 3.1).  Cleavage rate was decreased 

(P<0.03) by high Arg, but was not affected by plane of nutrition (Table 3.2).  Morula formation 

tended (P=0.14) to be affected by plane of nutrition, being greater (P=0.14) in C and U than O 

group and was not affected by Arg (Table 3.2).  Accumulation of lipid droplets was affected 

(P<0.0001) by plane of nutrition, being greatest in O, less in C, and least in U ewes (Table 3.2, 

Figure 3.1) and was not affected by Arg (P=0.16).  

Table 3.1. Efects of nutritional plane on ovarian follicle number, and body weight (BW) 
and body condition score (BCS) for ewes. 
Measurement Control Overfed Underfed P value 
Number of ewes 14 13 16  
Total follicles 
(n) 

30.9 ± 2.8 26.4 ± 2.0 24.2 ± 2.4 0.150 

Initial BW (kg) 53.9 ± 1.4 55.0 ± 1.0 52.5 ± 2.0 0.552 
Final BW (kg) 55.9 ± 1.5a 68.2 ± 1.3b 45.2 ± 2.0c 0.0001 
Difference in 
BW (kg)** 

1.9 ± 0.8a 13.2 ± 1.2b -7.3 ± 0.7c 0.0001 

ADG (kg) 0.03 ± 0.01a 0.18 ± 0.02b -0.10 ± 0.01c 0.0001 
Initial BCS  2.7 ± 0.1 2.7 ± 0.1 2.6 ± 0.1 0.959 
Final BCS 3.1 ± 0.1a 3.9 ± 0.1b 2.3 ± 0.2c 0.0001 
Difference in 
BCS** 

0.5 ± 0.1a 1.2 ± 0.1b -0.3 ± 0.2c 0.0001 

All values (mean ± SEM) are expressed per ewe. 
**Difference between initial and final BW or BCS. 

 



 

 

 

 

 

 

   

Table 3.2. Effects of nutritional plane and arginine (Arg) or saline (Sal) treatment on cleavage and morula rates, and 
liquid droplet content in oocytes. 
Measurement 

Control3 Control+Arg Overfed3 Overfed+Arg Underfed Underfed+Arg Diet Arg 
Diet 

x 
Arg 

Number of 
cultures4 

7 7 8 8 9 9    

Oocytes for 
IVF (n) 

29.8 ± 
4.4 

30.4 ± 3.4 
18.1 ± 

2.4 
19.0 ± 2.8 

16.8 ± 
3.2 

18.4 ± 2.9 0.001 0.690 0.984 

Percent 
cleaved (%) 

60.4 ± 
8.0a 

32.8 ± 9.5bc 
45.3 ± 
8.8ac 

31.5 ± 9.8bc 
51.8 ± 
10.7ac 

41.9 ± 8.5ac 0.592 0.030 0.637 

Percent 
morula (%) 

36.0 ± 
9.9a 

22.2 ± 8.7abc 
19.1 ± 
12.0abc 

10.9 ± 4.4b 
32.7 ± 
10.2ac 

33.8 ± 10.3ac 0.140 0.386 0.742 

Lipid droplet 
content (%) 

15.7 ± 
1.1a 

17.0 ± 2.1ab 
22.4 ± 
1.7c 

23.9 ± 1.2c 
11.0 ± 
0.8d 

12.4 ± 1.1bd 0.0001 0.157 0.954 

*All values (mean ± SEM) are expressed per culture. 
1Ewes were fed a maintenance (control), overfed (2 x control), or underfed (0.6 x control) diet. 
2To determine lipid droplet content, unfertilized oocytes (n=1-7/culture) were fixed in formalin solution on day 3 after 
fertilization, and stained with BODIPY (1 µg/ml) followed by image analysis to determine percentage of positively 
stained area/oocyte. 
3Concentration of arginine in maturation, fertilization, and culture media was 247.02, 4.41, and 49.59 µM, respectively.  
For Arg-treatment groups, 2 mM of Arg (Sigma) were added.  Average concentration of Arg in follicular fluid was 
97.52 ± 22.4 µM. 
4For one culture, oocytes from two ewes of the same nutritional treatment were pooled. 
 a-dmeans±SEM; values with different superscripts differ within a row. 
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Figure 3.1. Representative image of BODIPY staining of lipid droplets (green) in a non-mature 
(GV stage; left) and a mature (MII stage; right) oocyte from a control ewe.  Oocyte DNA is 
stained with DAPI (blue). 

Discussion 

    The present study demonstrated that nutritional plane affected morula formation and lipid 

droplet accumulation in oocytes, while high Arg affected cleavage rate.  Furthermore, plane of 

nutrition did not affect the number of visible follicles.  Other researchers have also demonstrated 

that overfeeding and underfeeding ewes did not affect number of small or large follicles when 

compared to control fed ewes (Abecia et al., 1995, 1997; Peura et al., 2003; Borowczyk et al., 

2006; Grazul-Bilska et al., 2012).  Additionally, the number of follicles was similar in lactating 

dairy cows (not treated with FSH) that received a low or high energy diet for approximately 25 

weeks postpartum (Kendrick et al., 1999) and in yearling beef heifers (not treated with FSH) fed 

ad libitum or 0.75 x ad libitum for 100 days (Tripp et al., 2000).  Conversely, the association 

between nutritional plane and changes to follicular development has been previously described in 

ewes (Coop et al., 1966; Yaakub et al., 1997; O’Callaghan et al., 2000; Viñoles et al., 2010).  In 

addition, excess nutrition caused decreased follicle numbers recruited during follicular wave 

turnover in cattle (Stagg et al., 1995).  Researchers have postulated that overnutrition can cause 
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these changes due to altered endocrine profiles of FSH and E2, since a positive energy balance 

often results in abnormally high FSH secretions and reduced E2 concentrations (Scaramuzzi et 

al., 2006).  Abecia et al. (2006) hypothesized, “overfeeding during follicle recruitment and 

oocyte maturation imparts a legacy of embryonic loss and developmental retardation.”  

Undernutrition has also been associated with lower follicle numbers in cattle (Rhodes et al., 

1996; Robinson et al., 2006), as well as decreased ovulation rates in sheep (Lassoued et al., 

2004).  A negative energy balance causes inhibition of GnRH secretion from the hypothalamus, 

prevents FSH increases, and inhibits luteinizing hormone (LH) pulsatility (Scaramuzzi et al., 

2006).  While long-term feed restriction can cause anestrous in cattle due to insufficient 

circulating LH (Rhodes et al., 1995, 1996), short-term effects cause either decreased 

preovulatory surges of LH (Kiyma et al., 2004) or no changes to LH concentrations (Abecia et 

al., 1995).  Varying results of nutritional plane on follicle number reported could be due to 

dissimilarities in experimental design, such as different breeds, nutritional treatment lengths, 

and/or dietary compositions (Botkin et al., 1988; Grazul-Bilska et al., 2012). 

 In the present study, the high Arg concentration in medium decreased the rate of 

cleavage.  Silva et al. (2014) recently demonstrated similar detrimental effects of high Arg in 

IVF medium; a significant reduction in cleavage and blastocyst rates was observed when high 

Arg (50 mM) was added to medium.  Negative Arg effects on oocyte and cleavage rates may 

occur through increased NO production, as NO concentrations are primarily determined by 

extracellular Arg bioavailability (Hallemeesch et al., 2002; Hardy et al., 2002; Rajapakse et al., 

2009).  Previous studies have demonstrated the detrimental effects Arg can have on other cell 

types; for example, additional Arg to human endothelial cells for only 30 minutes increases NO 
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production (as detected by increased staining of 4,5-diaminofluorescein-2 diacetate [DAF-2DA], 

a marker of NO) and stimulates cell senescence (Xiong et al., 2014).  These high concentrations 

of NO can also lead to detrimental effects on the oocyte.  For example, high concentrations of 

sodium nitroprusside (SNP; a NO donor) in maturation medium have inhibited mouse oocyte 

meiotic development (Bu et al., 2003; Viana et al., 2006).  While high NO concentrations are 

detrimental to cells, others have demonstrated that the presence of NO can be beneficial or non-

harming to oocytes.  For example, low concentrations of SNP have had no stimulatory effects on 

bovine meiotic maturation (Viana et al., 2006) or stimulatory effects on mouse oocyte meiotic 

maturation (Bu et al., 2003).  Still yet, Goud et al. (2008) reported that NO actually extends the 

oocyte temporal window for fertilization while L-NAME decreased fertility, demonstrating the 

importance of NO presence in oocytes.  Similarly, the presence of NOS inhibitors during in vitro 

oocyte maturation reduced embryo development and quality in cows (Bilodeau-Goeseels, 2007; 

Schwarz et al., 2010), sows (Tao et al., 2004) and goat does (Amale et al., 2013).  These results 

have led researchers to hypothesize that NO can have opposing effects, dependent upon NO 

concentration; Bu et al. (2003) reported that NO at a concentration 30.69±5.06 µmol stimulated 

meiotic maturation of mouse oocytes, while a concentration of 59.88±8.07 µmol was inhibitory.   

 Morula formation was affected by nutritional plane but not by Arg in the present study, 

with greater morula formation in C and U than O.  Previous researchers have reported similar 

results, with the proportion of developing morula being less (Grazul-Bilska et al., 2012) or 

tending to be less (Borowczyk et al., 2006) in O and U ewe compared to C ewes.  In fact, several 

studies indicate that changes to nutritional plane, and therefore BCS, are associated with effects 

on early embryonic development (Snijders et al., 2000; Lozano et al., 2003).   
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  In our study, lipid droplet accumulation within unfertilized oocytes was affected by 

nutritional plane, similar to observations in cattle (Ferguson and Leese, 1999; Leroy et al., 2005), 

swine (Sturmey and Leese, 2003; Prates et al., 2013, 2014), mice (Wu et al., 2010), and women 

(Yang et al., 2012).  It has been suggested that a specific lipid composition within the oocyte is 

vital for proper preimplantation development (Sturmey and Leese, 2003; Lapa et al., 2011; Prates 

et al., 2014).  Lipid droplets are believed to be produced within the endoplasmic reticulum (ER), 

deposited within the ER membrane, and then join together to form a globule wherein they are 

covered by a cytoplasmic phospholipid monolayer (Suzuki et al., 2011).  Because lipid droplets 

are found in close proximity with organelles associated with cellular metabolism, for example 

mitochondria, ER, and endosomes (Ambruosi et al., 2009; Sturmey et al., 2006; Thiele and 

Spandl, 2008; Walther and Farese, 2009;), researchers have suggested that lipid droplets are used 

as an energy source for the oocyte (Sturmey and Leese, 2003; Sturmey et al., 2006; Gilchrist et 

al., 2008).  The amount of lipid droplets contained within the oocyte is believed to be critical to 

the changing metabolic pathways utilized by the oocyte and throughout early embryonic 

development (Ferguson and Leese, 1999; Sturmey and Leese, 2003; Prates et al., 2013).  During 

cleavage, the pentose phosphate pathway (PPP) is utilized; however, succeeding embryonic 

development preferentially uses glycolysis and β-oxidation, with the activity increasing during 

compaction and blastocyst formation (Sturmey and Leese, 2003; Gandhi et al., 2001; Swain et 

al., 2001).  Moreover, the varying lipid contents (higher in O and lower in U ewe oocytes 

compared to C ewe oocytes) observed in the present study and in previous studies (cited above) 

may account for the previously reported link between nutrition plane, cleavage rates, and early 

embryonic development (Grazul-Bilska et al., 2012).          
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 The present study demonstrated that 1) nutritional plane does not alter visible follicle 

number but can alter morula formation and lipid droplet accumulation in oocytes, and 2) high 

Arg concentration in medium decreased cleavage rates.  This data indicated that nutritional 

management is important to donor animals providing oocytes for assisted reproductive 

technologies (ART), as nutrition can impact both fertilization rates as well as early embryonic 

development, as demonstrated here.  Lastly, high Arg concentrations in medium are detrimental 

to fertilization rates and early embryonic development in ewes.  Future investigations addressing 

nutrition and/or specific medium supplements should provide insight into the underlying 

mechanisms associated with alterations in the efficiency of in vitro fertilization and early 

embryonic development.    

References 

 

Aardema, H., F. Lolicato, C. H. A. van de Lest, J. F. Brouwers, A. B. Vaandrager, H. T. A van 
Tol, B. A. J. Roelen, P. Vos, J. B. Helms, B. M. Gadella. 2013. Bovine cumulus cells 
protect maturing oocytes from increased fatty acid levels by massive intracellular lipid 
storage. Biol. Repro. 88: 164. 
 

Abecia, J. A., C. Sosa, F. Forcada, A. Meikle. 2006. The effect of undernutrition on the 
establishment of pregnancy in the ewe. Reprod. Nutr. Dev. 46: 367-78. 
 

Abecia, J. A., S. M. Rhind, T. A. Bramley, S. R. McMillen. 1995. Steroid production and LH 
 receptor concentrations of ovarian follicles and corpora lutea and associated rates of ova 
 wastage in ewes given high and low levels of food intake before and after mating. J. 
 Anim. Sci. 60: 57-62. 
 
Abecia, J. A., J. M. Lozano, F. Forcada, L. Zarazaga. 1997. Effect of level of dietary energy and 
 protein on embryo survival and progesterone production on day eight of pregnancy in 
 Rasa Aragonesa ewes. Anim. Reprod. Sci. 48: 209-18. 
 
Amale, M. H., A. Z. Shahne, S. Nasrollahi. 2013. Effects of nitric oxide synthase inhibition on 
 goat oocyte meiotic maturation. Arch. Tierz. 25: 255-63. 
 
Ambruosi, B., G. M. Lacalandra, A. I. Iorga, T. De Santis, S. Mugnier, R. Matarrese, G. Goudet, 



 

134 
 

 

and M. E. Dell’Aquila. 2009. Cytoplasmic lipid droplets and mitochondrial distribution 
in equine oocytes: implications on oocyte maturation, fertilization and developmental 
competence after ICSI." Theriogenology. 71: 1093-104. 

 
Armstrong, D. G., T. G. McEvoy, G. Baxter, J. J. Robinson, C. C. Hogg, K. J. Woad, R. kakar, 
 K. D. Sinclair. 2001. Effect of dietary energy and protein on bovine follicular dynamics  
 and embryo production in vitro: associations with the ovarian insulin-like growth factor 
 system. Biol. Reprod. 64; 1624-32. 
 
Auclair, S., R. Uzbekov, S. Elis, L. Sanchez, I. Kireev, L. Lardic, R. Dalbies-Tran, S. Uzbekova. 

2013. Absence of cumulus cells during in vitro maturation affects lipid metabolism in 
bovine oocytes. Am. J. Pphysiol-Endoc. M. 304: E599-613. 
 

Barceló-Fimbres, M., G. E. Seidel. 2011. Cross-validation of techniques for measuring lipid 
content of bovine oocytes and blastocysts. Theriogenology. 75: 434-44. 
 

Bauer, B. K., L. D. Spate, C. N. Murphy, and R. S. Prather. 2011. Arginine Supplementation in 
vitro increases porcine embryo development and affects mRNA transcript expression. 
Reprod. Fert. Devel. 23: 107. 
 

Bilodeau‐Goeseels, S., M. Sasseville, C. Guillemette, F. J. Richard. 2007.  Effects of adenosine 
 monophosphate‐activated kinase activators on bovine oocyte nuclear maturation in 
 vitro. Mol. Reprod. Dev. 74: 1021-34. 
 
Boland, M. P., P. Lonergon, D. O’Callaghan. 2001. Effect of nutrition on endocrine parameters, 

ovarian physiology, and oocyte and embryo development. Theriogenology. 55: 1323-40. 
 

Borowczyk, E., J. S. Caton, D. A. Redmer, J. J. Bilski, R. M. Weigl, K. A. Vonnahme, P.  
P. Borowicz, J. D. Kirsch, K.C. Kraft, L. P. Reynolds, A. T. Grazul-Bilska. 2006. Effects 

 of plane of nutrition on in vitro fertilization and early embryonic development in sheep. J. 
 Anim. Sci. 84: 1593-9. 

 
Bu, S., G. Xia, Y. Tao, L. Lei, B. Zhou. 2003. Dual effects of nitric oxide on meiotic maturation 

of mouse cumulus cell-enclosed oocytes in vitro. Mol. Cell. Endocrinol. 207: 21-30. 
 

Burdge, G. C., M. A. Hanson, J. L. Slater-Jefferies, K. A. Lillycrop. 2007. Epigenetic regulation 
of transcription: a mechanism for inducing variations in phenotype (fetal programming) 
by differences in nutrition during early life. Brit. J. Nutr. 97: 1036-46. 
 

Castaneda, C. A., P. Kaye, M. Pantaleon, N. Phillips, S. Norman, R. Fry, J. D. Michael. 2013. 
Lipid content, active mitochondria and brilliant cresyl blue staining in bovine oocytes. 
Theriogenology. 79: 417-22. 

Coop, I. E. 1996. Effect of flushing on reproductive performance of ewes. J. Agr. Sci. 67: 305-
 23. 



 

135 
 

 

 
Creed, J., T. G. McEvoy, J. J. Robinson, R. P. Aitken, R. M. Palmer, and I. Robertson. 1994. The 

effect of preovulatory nutrition on the subsequent development of superovulated sheep 
ova in an in vitro culture system. Anim. Prod. 58: 447. 
 

Crocco, M. C., Kelmansky, D. M., & Mariano, M. I. 2013. Does serum cause lipid-droplet 
accumulation in bovine embryos produced in vitro, during developmental days 1 to 4. J. 
Assist. Reprod. Gen. 30: 1377-88. 
 

Farese, R. V., T. C. Walther. 2009. Lipid droplets finally get a little RESPECT. Cell. 139: 855 
60. 
 

Ferguson, E.M., H. J. Leese. 2006. A potential role for triglyceride as an energy source during 
 bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 73:1195-
 201. 
 
Gandhi, A. P., M. Lane, D. K. Gardner, and R. L. Krisher. 2001. Substrate utilization in porcine 

embryos cultured in NCSU23 and G1. 2/G2. 2 sequential culture media. Mol. Reprod. 
Dev. 58: 269-75. 
 

Gilchrist, R. B., M. Lane, J. G. Thompson. 2008. Oocyte-secreted factors: regulators 
of cumulus cell function and oocyte quality. Hum. Reprod. Update. 14: 159-77. 
 

Goud, P. T., P. Anuradha, M. P. Goud, P. Diamond, B. Gonik, H. M. Abu-Soud. 2008. Nitric 
oxide extends the oocyte temporal window for optimal fertilization. Free. Rad. Biol. 
Med. 45: 453-9. 
 

Grazul-Bilska, A. T., E. Borowczyk, J. J. Bilski, L. P. Reynolds, D. A. Redmer, J. S. Caton,  
K. A. Vonnahme. 2012. Overfeeding and underfeeding have detrimental effects on 
oocyte quality measured by in vitro fertilization and early embryonic development in 
sheep. Domest. Anim. Endocrin. 43: 289-98. 
 

Grazul-Bilska, A. T., J. T. Choi, J. J. Bilski, R. M. Weigl, J. D. Kirsch, K. C. Kraft, L. P. 
Reynolds, and D. A. Redmer. 2003. Effects of epidermal growth factor on early 
embryonic development after in vitro fertilization of oocytes collected from ewes treated 
with follicle stimulating hormone. Theriogenology. 59: 1449-57. 
 

Grazul-Bilska, A. T., E. Borowczyk, W. Arndt, J. Evoniuk, M. O’neil, J. J. Bilski, R. M. Weigl, 
J. D. Kirsch, K. C. Kraft, K. A. Vonnahme, D. A. Redmer, L. P. Reynolds,  
and J. S. Caton. 2006. Effects of overnutrition and undernutritionn on in vitro  
fertilization (IVF) and early embryonic development in sheep. Biol. Reprod. 4: 579-87. 
 

Gregg, A. R. 2003. Mouse models and the role of nitric oxide in reproduction. Curr. Pharm. 
Design. 9: 391-8. 



 

136 
 

 

 
Guler, A., N. Poulin, P. Mermillod, M. Terqui, and Y. Cognie. 2000. Effect of growth factors, 

EGF and IGF-I, and estradiol on in vitro maturation of sheep oocytes. Theriogenology. 
54: 209-18.  
 

Hallemeesch, M. M., W. H. Lamers, and N. E. P. Deutz. 2002. Reduced arginine availability and 
nitric oxide production. Clin. Nutr. 21: 273-9. 
 

Hardy, T. A., J. M. May. 2002. Coordinate regulation of L-arginine uptake and nitric oxide 
synthase activity in cultured endothelial cells. Free. Rad. Biol. Med. 32: 122-31. 
 

Hiraga, K., Y. Hoshino, K. Tanemura, E. Sato. 2013. Selection of in vitro-matured porcine 
oocytes based on localization patterns of lipid droplets to evaluate developmental 
competence. J. Reprod. Develop. 59: 405. 
 

Jungheim, E. S., G. A. Macones, R. R. Odem, B. W. Patterson, S. E. Lanzendorf, V. S. Ratts, K. 
H. Moley. 2011. Associations between free fatty acids, cumulus oocyte complex 
morphology and ovarian function during in vitro fertilization. Fertil. Steril. 95: 1970-4. 
 

Kakar, M. A., S. Maddocks, M. F. Lorimer, D. O. Kleemann, S. R. Rudiger, K. M. Hartwich, 
and S. K. Walker. 2005. The effect of peri-conception nutrition on embryo quality in the 
superovulated ewe. Theriogenology. 64: 1090-103. 
 

Kendrick, K. W., T. L. Bailey, A. S. Garst, A. W. Pryor, A. Ahmadzadeh, R. M. Akers, W. E. 
Eyestone, R. E. Pearson, and F. C. Gwazdauskas. 1999. Effects of energy balance on 
hormones, ovarian activity, and recovered oocytes in lactating Holstein cows using 
transvaginal follicular aspiration. J. Dairy. Sci. 82: 1731-41. 

 
Kiyma Z, B. M. Alexander, E. A. Van Kirk, W. J. Murdoch, D. M. Hallford, G. E. Moss. Effects 

of feed restriction on reproductive and metabolic hormones in ewes. J Anim Sci 2004, 82: 
2548-57. 
 

Krisher, R. L. 2003. The effect of oocyte quality on development. J. Anim. Sci. 82: E14-23. 
 
Lapa, M., C. C. Marques, S. P. Alves, M. I. Vasques, M. C. Baptista, I. Carvalhais, M. Silva 

Pereira, A. E. M. Horta, R. J. B. Bessa, and R. M. Pereira. 2011. Effect of trans‐10 cis‐12 
conjugated linoleic acid on Bovine Oocyte Competence and Fatty Acid Composition." 
Reprod. Domest. Anim. 46: 904-10. 
 
 

Leroy, J. L. M. R., Tom Vanholder, Bart Mateusen, Armand Christophe, Geert Opsomer, Aart de 
Kruif, Gaëtan Genicot, and Ann Van Soom. 2005. Non-esterified fatty acids in follicular 
fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. 
Reproduction. 130: 485-95. 



 

137 
 

 

 
Lozano, J. M., P. Lonergan, M. P. Boland, D. O'Callaghan. 2003. Influence of nutrition on the 

effectiveness of superovulation programmes in ewes: effect on oocyte quality and post-
fertilization development. Reproduction. 125: 543-53. 
 

McEvoy, T. G., J. J. Robinson, R. P. Aitken, P. A. Findlay, R. M. Palmer, I. S. Robertson. 1995. 
Dietary induced suppression of pre-ovulatory progesterone concentrations in 
superovulated ewes impairs the subsequent in vivo and in vitro development of their ova. 
Anim. Reprod. Sci. 38; 89-107.  
 

Nolan, R., D. O'callaghan, R. T. Duby, P. Lonergan, and M. P. Boland. 1998. The influence of 
short-term nutrient changes on follicle growth and embryo production following 
superovulation in beef heifers. Theriogenology. 50: 1263-74. 
 

O’Callaghan, D., M. P. Boland. 1999. Nutritional effects on ovulation, embryo development 
and the establishment of pregnancy in ruminants. Anim. Sci. 68: 299-314. 
 

O'callaghan, D., H. Yaakub, P. Hyttel, L. J. Spicer, and M. P. Boland. 2000. Effect of nutrition 
and superovulation on oocyte morphology, follicular fluid composition and systemic 
hormone concentrations in ewes. J. Reprod. Fertil. 118: 303-13.  
 

Papadopoulos, S., P. Lonergan, V. Gath, K. M. Quinn, A. C. O. Evans,  D. O’Callaghan, M. P. 
Boland. 2001. Effect of diet quantity and urea supplementation on oocyte and embryo 
quality in sheep. Theriogenology. 55: 1059-69. 
 

Peura, T. T., D. O. Kleemann, S. R. Rudiger, G. S. Nattrass, C. J. McLaughlan, and S. K. 
Walker. 2003. Effect of nutrition of oocyte donor on the outcomes of somatic cell nuclear 
transfer in the sheep. Biol. Reprod. 68: 45-50. 
 

Prates, E. G., S. P. Alves, C. C. Marques, M. C. Baptista, A. E. M. Horta, R. J. B. Bessa, R. 
M. Pereira. 2013. Fatty acid composition of porcine cumulus oocyte complexes (COC) 
during maturation: effect of the lipid modulators trans-10, cis-12 conjugated linoleic acid 
(t10, c12 CLA) and forskolin. In. Vitro. Cell. Dev.-An. 49: 335-45. 
 

Prates, E. G., J. T. Nunes, R. M. Pereira. 2014. A role of lipid metabolism during cumulus 
oocyte complex maturation: impact of lipid modulators to improve embryo 
production.2014.  Mediators. Inflamm. 2014. 
 

Rajapakse, N. W., D. L. Mattson. 2009. Role of L‐arginine in nitric oxide production in health 
and hypertension. Clin. Exp. Pharm. Phys. 36: 249-55. 

Rhodes , F. M., K. W. Entwistle, J. E. Kinder. 1996. Changes in ovarian function and 
gonadotrophin secretion preceding the onset of nutritionally induced anoestrus in Bos 
indicus heifers. Biol Reprod. 55: 1437-43. 
 



 

138 
 

 

Rhodes, F. M., L. A. Fitzpatrick, K. W. Entwistle, and G. De’ath. 1995. Sequential changes in 
ovarian follicular dynamics in Bos indicus heifers before and after nutritional anoestrus. 
J. Reprod. Fertil. 104: 41-9. 
 

Rizos, D., P. Lonergan, M. P. Boland, R. Arroyo-Garcia, B. Pintado, J. De La Fuente, A. 
Gutierrez-Adan. 2002. Analysis of differential messenger RNA expression between 
bovine blastocysts produced in different culture systems: implications for blastocyst 
quality. Biol. Reprod. 66: 589-95. 
 

Robinson, J. J. 1990. Nutrition in the reproduction of farm animals. Nutr. Res. Rev. 3: 253-276. 
 
Robinson, J. J., C. J. Ashworth, J. A. Rooke, L. M. Mitchell. T. G. McEvoy. 2006. Nutrition and 

fertility in ruminant livestock. Anim. Feed. Sci. Tech. 126: 259-76. 
 

Rosselli, Marinella, R. J. Keller, Raghvendra, K. Dubey. 1998. Role of nitric oxide in the 
biology, physiology and pathophysiology of reproduction. Hum. Reprod. Update. 4: 3-24. 
 

Scaramuzzi, R. J., B. K. Campbell, J. A. Downing, N. R. Kendall, M. Khalid, M. Munoz 
Gutierrez, A. Somchit. 2006. A review of the effects of supplementary nutrition in the 
ewe on the concentrations of reproductive and metabolic hormones and the mechanisms 
that regulate folliculogenesis and ovulation rate. Reprod. Nutr. Dev. 46: 339-54. 
 

Schwarz, K. R. L., P. R. L. Pires, T. H. C. de Bem, P. R. Adona, C. L. V. Leal. 2010. 
Consequences of nitric oxide synthase inhibition during bovine oocyte maturation on 
meiosis and embryo development. Reprod. Dom. Anim. 45: 75-80.  
 

Snijders, S. E., P. Dillon, D. O’Callaghan, M. P. Boland. 2000. Effect of genetic merit, milk 
yield, body condition and lactation number on in vitro oocyte development in dairy cows. 
Theriogenology. 53: 981-9. 
 

Stagg, K., M. G. Diskin, J. M. Sreenan, and J. F. Roche. 1995. Follicular development in long 
term anoestrous suckler beef cows fed two levels of energy postpartum. Anim. Reprod. 
Sci. 38:  49-61. 
 

Sturmey, R. G., H. J. Leese. 2003. Energy metabolism in pig oocytes and early embryos. 
Reproduction. 126: 197-204. 
 
 

Suzuki, M., Y. Shinohara, Y. Ohsaki, T. Fujimoto. 2011. Lipid droplets: size matters. J. Electron. 
Microsc. 60: S101-16. 
 

Swain, J. E., C. L. Bormann, R. L. Krisher. 2001. Development and viability of in vitro derived 
porcine blastocysts cultured in NCSU23 and G1. 2/G2. 2 sequential medium. 
Theriogenology. 56: 459-69. 



 

139 
 

 

 
Tao, Y., Z. Fu, M. Zhang, G. Xia, J. Yang, H. Xie. 2004. Immunohistochemical localization of 

inducible and endothelial nitric oxide synthase in porcine ovaries and effects of NO on 
antrum formation and oocyte meiotic maturation. Mol. Cell. Endocrin. 222: 93-103. 
 

Thiele, C., J. Spandl. 2008. Cell biology of lipid droplets. Curr. Opin. Cell. Biol. 20: 378-85. 
 
Thompson, J. G., N. W. Allen, L. T. McGowan, A. C. S. Bell, M. G. Lambert, and H. R. Tervit. 

1998. Effect of delayed supplementation of fetal calf serum to culture medium on bovine 
embryo development in vitro and following transfer. Theriogenology. 49: 1239-49. 

 
Tripp, M. W., J. C. Ju, T. A. Hoagland, J. W. Riesen, X. Yang, and S. A. Zinn. 2000. Influence 

of somatotropin and nutrition on bovine oocyte retrieval and in vitro development. 
Theriogenology. 53: 1581-90. 
 

Viana, K. S., M.C. Caldas-Bussiere, S. G. C. Matta, M. R. Faes, C. P. de Carvalho, C. R. 
Quirino. 2007. Effect of sodium nitroprusside, a nitric oxide donor, on the in vitro 
maturation of bovine oocytes. Anim. Reprod. Sci. 102: 217-27. 
 

Webb, R., P. C. Garnsworthy, J. G. Gong, D. G. Armstrong. 2004. Control of follicular growth: 
Local interactions and nutritional influences1, 2. J Anim Sci. 82: E63-74. 
 

Wu, G., F. W. Bazer, M. C. Satterfield, X. L., X. Wang, G. A. Johnson, R. C. Burghardt, Z. Dai, 
J. Wang, Z. Wu. 2013. Impacts of arginine nutrition on embryonic and fetal development 
in mammals. Amino Acids. 45: 241-56. 
 

Wu, L. L. Y., Dunning, K. R., Yang, X., Russell, D. L., Lane, M., Norman, R. J., R. L. Robker. 
2010. High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and 
decreased fertilization rates. Endocrinology. 151: 5438-45.  
 

Wu, X., H. Ge, B. Lemon, J. Weiszmann, J. Gupte, N. Hawkins, X. Li, J. Tang, R. Lindberg, Y. 
Li. 2009. Selective activation of FGFR4 by an FGF19 variant does not improve glucose 
metabolism in ob/ob mice. P. Nat. Acad. Sci. 1064: 14379-84. 
 

Xiong, Y., M. F. Fru, Y. Yu, J. P. Montani, X. F. Ming, Z. Yang. 2014. Long term exposure to 
L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 
signaling. Aging. Albany, NY. 6: 369. 
 

Yaakub, H., D. O'Callaghan, M. P. Boland. 1999. Effect of type and quantity of concentrates on 
superovulation and embryo yield in beef heifers. Theriogenology. 51: 1259-66. 
 

Yang, X., L. L. Wu, L. R. Chura, X. Liang, M. Lane, R. J. Norman, R. L. Robker. 2012. 
Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and 
impaired oocyte maturation in cumulus-oocyte complexes. Fertil. Steril. 97: 1438-43. 



 

140 
 

 

 
Zeng, X., X. Mao, Z. Huang, F. Wang, G. Wu, S. Qiao. 2013. Arginine enhances embryo 

implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early 
pregnancy. Reproduction. 145: 1-7. 
  



 

141 
 

 

CHAPTER 4: PROGESTERONE SECRETION BY OVINE LUTEAL CELLS: 

EFFECTS OF NITRIC OXIDE, SELECTED METABOLIC HORMONES, AND PLANE 

OF NUTRITION 

Abstract 

The aim of this study was to investigate the role of the nitric oxide (NO) system and 

metabolic hormones on in vitro progesterone (P4) secretion by luteal cells from early and mid-

luteal phases of the estrous cycle from overfed and underfed ewes.  Ewes were randomly 

assigned to one of three nutritional groups: control (C; 760 g/kg BW/d; 100% NRC 

requirements), overfed (O; 2.0 x C), or underfed (U; 0.6 x C).  Superovulation was induced by 

follicle stimulating hormone (FSH) injections.  On d 5 or d 10 of the estrous cycle, corpora lutea 

(CL) were collected counted, dissected from ovaries, and luteal cells isolated enzymatically.  

Then, luteal cells were cultured with or without DETA-NONOate (NO donor), L-NAME (NO 

synthase [NOS] inhibitor), arginine (Arg), adiponectin, and leptin for 24 h in the presence or 

absence of LH.  The number of CL tended (P=0.09) to be greater in C and O ewes when 

compared to U ewes.  For experiment 1, 1.0 and 0.1 mM of DETA-NONOate inhibited (P<0.05), 

1.0 mM L-NAME+LH stimulated, and Arg, adiponectin, and leptin did not have any effects on 

basal P4 secretion by luteal cells from mid-luteal phase C ewes.  In experiment 2, we observed 

that 1) DETA-NONOate decreased basal and LH-stimulated P4 secretion by luteal cells, 2) L-

NAME increased basal and/or LH-stimulated P4 secretion by luteal cells depends on stage of 

luteal cells and nutritional plane, 3) Arg and adiponectin did not affect basal or LH-stimulated P4 

secretion in early luteal cells, and 4) leptin increased basal P4 secretion by luteal cells from d 5 

from C and U ewes, but did not affect LH-stimulated P4 secretion.  In summary, this study 



 

142 
 

 

demonstrated that nutritional plane affects ovulation rate in FSH-treated ewes, DETA-NONOate 

decreases P4 secretion, L-NAME increases P4 secretion, and that leptin but not Arg or 

adiponectin are involved in the regulation of P4 secretion by luteal cells during the estrous cycle 

in ewes fed different nutritional planes.  This study provides novel information since the effects 

of the NO system, Arg, and metabolic hormones on luteal cell function have not been studied in 

association with nutritional plane in any species.   

Introduction 

The CL forms after the oocyte is released from the antral cavity of the ovarian follicle 

during ovulation.  Besides being the main source for P4, proper formation of the CL is essential 

for pregnancy establishment and support, early embryonic development, and implantation in 

most mammalian species (Hodgen et al., 1988; Diaz et al., 2002; Murphy, 2004).  Throughout 

the duration of each non-pregnant estrous cycle, luteal tissues exhibit both structural and 

functional changes, such as changes in weight and P4 production (Jablonka-Shariff et al., 1993; 

Niswender and Nett, 1994; Smith et al., 1994; Grazul-Bilska et al., 1998; Reynolds et al., 2006).  

Both intrinsic (e.g., endocrine system, immune system, growth factors) and extrinsic (e.g., 

environment including nutrition) factors can influence CL function and production of P4 in 

livestock (Jablonka-Shariff et al., 1993; Niswender and Nett, 1994; O’Callaghan and Boland, 

1999; Grazul-Bilska et al., 2012; Kaminski et al., 2015).    

Nutritional plane can affect serum concentrations of both metabolic hormones (for 

example leptin and adiponectin) and reproductive hormones (such as P4), as well as ovulation 

rates in non-pregnant animals (Flier et al., 2000; Vasselli et al., 2013; Kaminski et al., 2015; 

O’Callaghan and Boland, 1999; Abecia et al., 1997; Parr et al., 1987; Armstrong et al., 2003; 



 

143 
 

 

Diskin et al., 2003).  In turn, altered metabolic and reproductive hormone concentration(s) may 

affect follicular and luteal functions (Armstrong et al., 2003; Scaramuzzi et al., 2006; Grazul-

Bilska et al., 2012). 

Nitric oxide, a reactive free radical generated from Arg via NOS, acts as a regulator for 

several physiological systems (Moncada et al., 1991) including reproduction (Jaroszewski and 

Hansel, 2000; Skarzynski et al., 2000; Jaroszewski et al., 2003; Korzekwa et al., 2006).  For 

several species, including cattle and sheep, it has been demonstrated that effectors of the NO 

system have direct effects on steroidogenesis in luteal tissues (Van Voorhtis et a., 1994; Vega et 

al., 1998; Mitsube et al., 1999; Dong et al., 1999; Skarzynski et al., 2000; Jaroszewski et al., 

2001, 2003; Hurwitz et al., 2002).  Bovine luteal cells from the mid-luteal phase treated with NO 

donors inhibited P4 production, while treatment with NOS inhibitors increased P4 production 

(Jaroszewski et al., 2001; Skarzynski and Okuda, 2000).  Similarly, treatment with an NO donor 

decreased and NOS inhibitor increased P4 production by granulosa cells from ewes fed different 

nutritional planes (Grazul-Bilska et al., 2015).  However, the role of the NO system, and 

metabolic hormones (adiponectin and leptin) in regulation of P4 secretion by luteal cells from 

ewes fed different nutritional planes has yet to be investigated in detail.   

Objectives and Hypothesis 

We hypothesized that effectors of the NO system, adiponectin, and leptin would affect P4 

production by luteal cells from the early- and mid-luteal phases of the estrous cycle from 

nutritionally compromised ewes.  Therefore, the objective of this study was to determine the 

effects of a NO donor (DETA-NONOate), a NOS inhibitor (L-NAME), Arg (precursor for NO), 

and metabolic hormones leptin and adiponectin, on basal and luteinizing hormone (LH)-
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stimulated P4 secretion by luteal cells from early- and mid-luteal phases obtained from 

nutritionally compromised, FSH-treated ewes.   

Materials and Methods 

Animals and Experimental Design 

All animal procedures performed were approved by the North Dakota State University’s 

Institutional Animal Care and Use Committee (#A12013).  The study was initiated during the 

normal breeding season in August and finished in December.   

Non-pregnant, non-lactating Rambouillet ewes (n = 31) between 3-5 years of age and of 

similar genetic background, were individually penned at the Animal Nutrition and Physiology 

Center on the NDSU campus.  Ewes were stratified by weight and randomly assigned into one of 

three dietary treatments: control (C; n = 9) received a maintenance diet (100% NRC 

requirements), overfed (O; n = 12) received 200% NRC requirements, and underfed (U; n = 10) 

received 60% NRC requirements 60 days prior to the onset of the estrous cycle (d 0).  Ewes were 

fed half of their individual diet daily at 0800 and the remaining half at 1500.  Ewes were 

weighed once weekly for the duration of the experiment.  Diets were adjusted weekly for each 

ewe to ensure the proper nutritional plane was achieved at d 0, and maintained throughout the 

estrous cycle until completion of experiment on d 5 or d 10 of the second estrous cycle. The 

nutritional treatment is described in detail by Kaminski et al. (2015). 

Estrus was synchronized by insertion of a controlled internal drug release (CIDR) device 

for 14 days.  Based on previous results (Grazul-Bilska et al., unpublished), approximately 36 h 

after removal of the CIDR ewes were considered in estrus and treated as d0 of the estrous cycle.  

Ewes were injected twice daily (morning and evening) with follicle stimulating hormone (FSH-
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P; Sioux Biochemical, Sioux Center, IA, USA) on d 13, d 14, and d 15 of the estrous cycle (5 

mg/injection, 4 mg/injection, or 3 mg/injection, respectively) (Grazul-Bilska et al., 2012). 

Tissue and Blood Collection 

On d 5 or d 10 of the estrous cycle ovaries were collected, immersed in PBS and 

transported to the laboratory.  Then, CL were counted and dissected from ovaries, weighed, and 

minced for dissociation with collagenase (Sigma, St. Louis, MO) as previously described 

(Grazul-Bilska et al., 1991, 2001).  Blood samples were also collected on d 5 or d 10, centrifuged 

(20 min at 1,500g), and serum was stored at -20˚C until P4 analysis.   

Dissociation of Luteal Cells 

Minced luteal tissues were incubated in dissociation medium containing Hank’s balanced 

salt solution (HBSS; Gibco, Grand Island, NY) and collagenase (0.01% wt/vol), bovine serum 

albumin (BSA; 2%, wt/vol; Sigma, St. Louis, MO), penicillin (100 U/mL; Gibco, Grand Island, 

NY), and streptomycin (100 µgmL; Gibco, Grand Island, NY) in a shaking (100 cycles/min) 

water bath at 37 C in a capped 50-mL Erlenmeyer flasks.  After initial 15 min incubation, 

medium containing dispersed luteal cells was aspirated, and 2-3 mL of fresh dissociation 

medium was added to the remaining tissue.  After this initial collection and replacement, medium 

was aspirated and replaced every 7-10 minutes for ~10 incubations.  This process was continued 

for approximately 3 h, or until luteal tissues were completely dissociated.  At the end of 

collection, medium containing dispersed luteal cells was centrifuged (600 x g) for 5 min.  The 

pellet was washed three times with HBSS containing antibiotics (100 U penicillin and 100 µg 

streptomycin/mL) and then resuspended in the same medium via trituration with a siliconized 

Pasteur pipette.  The cell suspension was filtered through a sterile nylon filter with 70 µm pores 
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(Tetko, New York, New York) to remove pieces of tissue and then centrifuged (300 x g; 10 min).  

Cells were resuspended in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Grand Island, 

NY) plating medium containing 10% (vol/vol) calf serum (CS; Gibco, Grand Island, NY), 10% 

fetal bovine serum (FBS; Gibco, Grand Island, NY) and antibiotics (100 U penicillin and 100 µg 

streptomycin/mL).  Luteal cells were counted using a hemocytometer and viability was evaluated 

by trypan blue (Gibco, Grand Island, NY) exclusion.  The viability of freshly dispersed luteal 

cells was 87.1±2.4% and the proportion of large luteal cells in the total steroidogenic cell 

population was 8.25±1.6% for early and mid-luteal phases for all nutrition treatments.  

Experiment 1  

For the dose-response experiment, freshly dissociated luteal cells from d10 of the estrous 

cycle from control ewes (n = 4) were plated at a concentration of 250,000/well/ml with DMEM 

containing 10% FBS and 10 % CS at 37⁰ C in 5% CO2 in humidified air for 24 h.  After plating, 

media were changed to serum-free DMEM with penicillin/streptomycin (0.5 ml/well) and 

incubated for 24 h at 37⁰ C in 5% CO2 in humidified air in the presence or absence of the 

following treatments: DETA-NONOate (0.01, 0.1, or 1.0 mM; Cayman, Ann Arbor, MI, USA), 

L-NAME (0.1 or 1.0 mM; Cayman), Arg (1 or 2 mM; Sigma, St. Louis, MO), adiponectin (1, 3, 

or 10 µg/mL; BioVendor, Ashville, NC), and leptin (1.0, 10, or 100 ng/mL; RayBiotech Inc., 

Norcross, GA).  In addition, cells were incubated in the presence of LH (100 ng/mL; oLH-26; 

NIAKKK-NIH, USA) in media containing DETA-NONOate (0.01 mM), L-NAME (1 mM), Arg 

(1 or 2 mM), adiponectin (3 µg/mL), and leptin (10 ng/mL).  Treatment with dbcAMP (1 mM; 

Sigma) was used as a positive control.  As additional controls, DMSO (less than 1%; diluting 

factor for DETA-NONOate), DETA (1 mM; analog of the DETA-NONOate; Dow Chemical 
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Company, Midland, MI, USA), and D-NMME (1 mM; analog of L-NAME; Cayman) were used.  

Media were then collected for P4 analysis.  

Experiment 2  

Isolated luteal cells from d 5 and d 10 of the estrous cycle from C, O and U ewes were 

plated at a concentration of 250,000/well/ml with DMEM containing 10% FBS and 10 % CS at 

37⁰ C in 5% CO2 in humidified air for 24 h. Media then were changed to serum-free DMEM 

with penicillin/streptomycin (0.5 ml/well) and cells were incubated for 24 h at 37⁰ C in 5% CO2 

in humidified air with or without DETA-NONOate (1.0 mM), L-NAME (1.0 mM), arginine (1, 

mM), leptin (10 ng/mL), and adiponectin (3µg/mL), in the presence or absence of LH (100 

ng/ml).  Additional controls were used as described for experiment 1 above.  Media were then 

collected for P4 analysis.   

Progesterone Analysis 

Progesterone concentrations from serum and media were determined using a solid phase 

chemiluminescence, competitive binding immunoassay (Immulite 1000, Siemens), as previously 

described (Grazul-Bilska et al., 2014; Kaminski et al., 2015).  Each sample was run as 50 µL 

duplicates. Beads coated with polyclonal rabbit anti-P4 antibodies were utilized for the initial 

solid phase.  Alkaline phosphatase conjugated to P4 is used for the liquid phase.  Samples and 

reagents are mixed and incubated for thirty minutes, during which time sample P4 competes with 

reagent enzyme-conjugated P4.  Centrifugal washes remove unbound sample and enzyme 

conjugate.  Lastly, chemiluminescent substrate is added and the signal that is generated is 

indicative of P4 concentration.  The intra-assay CV for P4 in media was 14.3%. 
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Statistical Analysis 

Data were analyzed using the GLM program of SAS.  When the F-test was significant (P 

≤ 0.05), means were separated by using least significant differences.  

Results 

Initial BW and BCS were similar for all groups (56.3±1 kg and 2.8±0.05, respectively). 

During study duration, C maintained BW and BCS, O ewes gained (P<0.001) 15.8±1 kg and 

BCS increased to 3.2±1, and U ewes lost (P<0.001) 11.2±1 kg and BCS decreased to 2±0.1, 

similar to our previous studies (Borowczyk et al., 2006; Grazul-Bilska et al., 2012; Kaminski et 

al., 2015).  The number of CL tended (P=0.09) to be greater in C and O ewes when compared to 

U ewes (12.5±1.8, 12.3±2.1, 7.3±0.6, respectively).  Serum P4 was greater (P<0.05) in d10 

compared to d5 luteal cells (14.0±2.8 ng/mL and 7.0±1.2 ng/mL, respectively), but was not 

affected by nutritional plane. 

Experiment 1 

The dose-response experiment demonstrated that 1.0 mM and 0.1 mM doses of DETA-

NONOate were inhibitory, while 0.01 mM of DETA-NONOate or LNAME (either 1.0 or 0.1 

mM doses) did not affect basal P4 secretion (Fig. 4.1).  P4 secretion by luteal cells was increased 

~2-fold in the presence of LNAME+LH.  In addition, neither Arg, leptin nor adiponectin affected 

basal or LH-stimulated P4 secretion by luteal cells (data not shown). 

Experiment 2 

Basal P4 secretion by luteal cells was greater (P<0.0001) on d10 when compared to d5 

(18.3±2.4 ng/mL and 4.6±1.0 ng/mL, respectively; Fig. 4.2).  However, plane of nutrition did not 

affect basal P4 concentrations.  DETA-NONOate decreased (P<0.0001) basal and LH-stimulated 
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P4 secretion by luteal cells from d 5 and d 10 of the estrous cycle from all nutritional groups 

(range 0.42-fold -0.74-fold; Fig. 4.3), whereas, L-NAME increased (P<0.0001) basal P4 

secretion by luteal cells from d 5 and d 10 of the estrous cycle from all nutritional groups with 

the exception of cells from d 5 in C and d 10 in O ewes (1.18 ± 0.06 and 1.28 ± 0.04, 

respectively; Fig. 4.3).  In addition, L-NAME enhanced (P<0.05) LH-stimulated P4 secretion by 

luteal cells from d5 and d10 of the estrous cycle in C, and d 5 in U ewes (Fig. 4.3).  Arg and 

adiponectin did not affect basal or LH-stimulated P4 secretion by luteal cells from any day of the 

estrous cycle in any nutritional group (Fig. 4.3).  Leptin increased basal P4 secretion by luteal 

cells from d 5 from C and U ewes, but did not affect LH-stimulated P4 secretion by luteal cells 

from any day of the estrous cycle in any nutritional group.  Secretion of P4 by luteal cells from 

d5 and d10 of the estrous cycle was increased (P<0.0001) by dbcAMP (range 1.6-1.8-fold) in all 

nutritional groups (Fig. 4.3).   

Discussion 

This study demonstrated that nutritional plane affected ovulation rates but did not have 

any effects on in vitro P4 secretion by luteal cells from early and mid-luteal phases of the estrous 

cycle.  The number of CL, and thus ovulation rates, tended to be greater in C and O compared to 

U ewes after FSH-induced superovulation in our study. 
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Figure 4.1. The effects of DETA-NONOate (1.0, 0.1, or 0.01 mM) and LH + L-NAME (1.0 
mM) dose response on P4 secretion from d 5 luteal cells collected from control ewes.  * indicates 
P<0.05 compared to 1 (bold line).  
 

 

Figure 4.2. Basal progesterone (ng/mL) secretion from d 5 compared to d 10 luteal cells for 
control (C), overfed (O), and underfed (U) ewes.  The basal P4 concentration in media was 
4.6±1.0 ng/mL and 18.3±2.4 ng/mL on d5 and d10 of the estrous cycle, respectively. Data are 
combined for C, O, and U ewes because diet did not affect basal P4 secretion at any day.  
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Day 5 

 

 

 

Figure 4.3. The effects of DETA-NONOate (detaNO; NO donor), L-NAME (lname; NOS 
inhibitor), arginine (arg), leptin (lep) and adiponectin (adipo) on basal and LH (lh)-stimulated P4 
secretion by luteal cells from d 5 of the estrous cycle from control, overfed and underfed ewes 
treated with follicle stimulating hormone (FSH).  Dibutyryl cyclic adenosine monophosphate 
(dbcAMP), a factor that stimulates P4 secretion by luteal cells was used as a positive control, and 
DETA and D-NMME were used as controls for DETA-NONOate and L-NAME, respectively.  
Data are expressed as fold-change compared to cultures with no treatment (no treatment 
arbitrarily set as 1, and marked as a bold line).  Basal P4 concentration in media was 4.6±1.0 
ng/mL and 18.3±2.4 ng/mL on d 5 of the estrous cycle, respectively.  a-fP<0.05; values with 
different superscripts differ. * indicates P<0.05 compared to control set as 1 (bold line). 
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Day 10 

 

 

 

Figure 4.4. The effects of DETA-NONOate (detaNO; NO donor), L-NAME (lname; NOS 
inhibitor), arginine (arg), leptin (lep) and adiponectin (adipo) on basal and LH (lh)-stimulated P4 
secretion by luteal cells from d 10 of the estrous cycle from control, overfed and underfed ewes 
treated with follicle stimulating hormone (FSH).  Dibutyryl cyclic adenosine monophosphate 
(dbcAMP), a factor that stimulates P4 secretion by luteal cells was used as a positive control, and 
DETA and D-NMME were used as controls for DETA-NONOate and L-NAME, respectively.  
Data are expressed as fold-change compared to cultures with no treatment (no treatment 
arbitrarily set as 1, and marked as a bold line).  Basal P4 concentration in media was 4.6±1.0 
ng/mL and 18.3±2.4 ng/mL on d 10 of the estrous cycle, respectively.  a-fP<0.05; values with 
different superscripts differ. * indicates P<0.05 compared to control set as 1 (bold line). 
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In non-stimulated ewes, we have also observed lower ovulation rates in U than C and O 

ewes (see Chapter 2).  The association between nutritional plane and ovulation rate have also 

been reported for ewes by other researchers; for example higher BCS correlated positively with 

ovulations rates (Gunn and Doney, 1975; Smith, 1995; Rhind et al., 1989; Xu et al., 1989; 

Abecia et al., 1997), and lower BCS lead to low ovulation rates in the ewe (Keisler and Buckrell, 

1997; Lassoued et al., 2004).  Scaramuzzi et al. (2006) explained that when an animal is in a 

negative energy balance, the animal must use its own energy stores in an effort to reverse the 

energy deficit, resulting in negative effects on both the hypothalamic-pituitary level as well as 

the reproductive system leading to decreased ovulation rates.  Additionally, restricted nutritional 

planes lead to a multitude of hormonal imbalances including, but not limited to, elevated plasma 

growth hormone (GH), the inhibition of gonadotropin-releasing hormone (GnRH), reduced 

ovulation rates, and even anovulation (Scaramuzzi et al., 2006).  Follicular populations and 

ovulation rates are reported to be very sensitive to nutritional plane alterations in the ewe 

(Scaramuzzi et al., 2006).  Thus, optimal nutritional plane should be considered to achieve 

normal ovulation rates, and therefore, lambing rates. 

The current study supports previous reports that both serum and basal P4 secretion by 

ovine luteal cells were greater at d10 when compared to d5 of the estrous cycle (Borowczyk et 

al., 2007).  The CL growth phase lasts eight to ten days in ewes and is parallel to increasing P4 

production (Reynolds et al., 2002; Murphy et al., 2004).  There are major changes within the 

functional CL in the expression of proteins that make up both high-density lipoprotein (HDL), 

and LDL cholesterol importation pathways during luteinization (Plotkin et al., 2002; Niswender 

et al., 2002).  In fact, cholesterol transportation to the inner mitochondrial membrane is the rate-
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limiting step in P4 biosynthesis (Murphy et al., 2004).  These synergistic changes, along with 

alterations in other processes within the CL, allow for high secretion of P4 by luteal cells in the 

mid-luteal phase.    

The present study demonstrates that the NO donor DETA-NONOate decreased both basal 

and LH-stimulated P4 secretion by ovine luteal cells in ewes from early and mid-luteal phase in 

all nutrition groups. Similar, the in vitro treatment with NO donors (sodium nitroprusside, S-

nitroso-N-acetyl-DL-penicillamine, or spermine NONOate) of bovine luteal cells from the mid-

luteal phase resulted in inhibition of P4 production (Skarzynski and Okuda, 2000; Jaroszewski et 

al., 2001).  In addition, we have recently demonstrated that DETA-NONOate (NO donor) 

decreased P4 production by ovine granulosa cells in vitro (Grazul-Bilska et al., 2015).  Our 

findings support previous reports that NO donors decrease P4 secretion by luteal cells, and in 

addition, demonstrate that nutritional plane does not affect NO inhibitory effects on luteal 

function during the estrous cycle.      

Our present experiment confirmed results from previous in vitro studies demonstrating 

the inhibition of NO production via a nonselective NOS inhibitor, L-NAME results in increased 

basal P4 secretion by luteal cells from rabbits (Gobbetti et al., 1999) and cows (Skarzynski and 

Okuda, 2000; Jaroszewski et al., 2003; Korzekwa et al., 2004).  Similar, L-NAME enhanced in 

vitro P4 secretion by granulosa cells from ewes fed different nutritional planes (Grazul-Bilska et 

al., 2015).  Researchers utilizing NOS inhibitors in vivo reported that in vivo infusion of a NOS 

inhibitor at mid- and late-luteal phase in cows not only increased P4 secretion, but that it also 

increased the functional life of the CL (Jaroszewski et al., 2000; Skarzynski et al., 2003).  It has 

been postulated that the administration of PGF2α can cause an acute increase in blood flow in the 
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CL (Acosta et al., 2002), enhancing NO production from luteal endothelial cells (Korzekwa et 

al., 2004).  The increase in NO production from the mid- and late-luteal phase CL after the first 

few hours post- PGF2α may induce functional luteolysis including further blood flow changes to 

the CL and a decrease in P4 production (Skarzynski et al., 2003; Jaroszewski et al., 2000, 2003).   

Arg did not affect P4 production by luteal cells at any day of the estrous cycle and any 

nutritional group.  While Arg can be acquired exogenously through the diet, 40% of dietary Arg 

is catabolized by the small intestine before it can enter the blood stream (Wu and Morris, 1998).  

The majority of endogenously acquired Arg is derived from the intestinal-renal pathway.  Within 

the small intestine, the enterocyte is responsible for citrulline or arginine synthesis from 

glutamine and glutamate (Wu and Knabe, 1995); these precursors are then catabolized by the 

small intestine (Windmueller and Spaeth, 1975), both being major precursors for endogenously 

synthesized Arg (Wu, 1998).  While Arg is a precursor for NO, it is also necessary for 

polyamines, creatine, and agmatine production, all of which have enormous biological 

importance (Wu et al., 2009; Lefèvre et al., 2011). Further studies should be undertaken to 

determine if Arg and their derivatives may have additional effects on luteal function. 

We observed that leptin increased basal P4 secretion by luteal cells from the early luteal 

phase in C and U ewes, but did not affect LH-stimulated P4 secretion by luteal cells from any 

stage or nutritional group.  In rabbits, leptin decreased basal P4 secretion by luteal cells and it 

was suggested that leptin has a luteolytic role (Zerani et al. 2004).  Others have shown that leptin 

influence ovarian function including luteal function in women (Löffer et al., 2001), sows (Ruiz-

Cortés et al., 2003), and cows (Nicklin et al., 2007).  In fact, leptin may act as the critical link 

between adipose tissue and the reproductive system, indicating whether adequate energy reserves 



 

156 
 

 

are present for normal reproductive function (Moschos et al. 2002).  The leptin receptor is 

expressed on the bovine CL and leptin affected in vitro P4 secretion in bovine and equine luteal 

cells (Nicklin et al., 2007; Galvão et al., 2014).   

Changes in plasma leptin concentration has been associated with changes in P4 

concentration, reaching its peak during the luteal phase in women (Lugwig et al., 2000).  

However, in O ewes, leptin concentration was lower during the mid-luteal phase when plasma P4 

concentration is high (Kaminski et al. (2015).  In addition, Kaminski et al. (2015) demonstrated 

that in O ewes leptin and P4 concentrations were greater that in C or U ewes.  While it is evident 

that metabolic hormones can influence the production of steroidogenic hormones, further 

research is needed to explicate the relationship between metabolic state and luteal function. 

In the current study, adiponectin did not affect basal and LH-stimulated P4 secretion by 

ovine luteal cells.  It has been demonstrated that the adiponectin receptor 1 protein expression is 

greatest in early CL and that adiponectin plasma concentrations were significantly higher 

throughout the luteal phase than in the follicular phase, demonstrated its potential involvement in 

regulation of CL function in sows (Maleszka et al., 2014a).  Furthermore, inhibitory effects of 

adiponection on P4 secretion by porcine luteal cells in vitro have been reported (Maleszka et al., 

2014b).  Adiponectin is known to influence female reproduction including folliculogenesis, 

implantation (Dos Santos et al., 2012) and periovulatory changes (Palin et al., 2012).  However, 

the role of adiponectin in regulation of luteal function is rather unclear due to limited research in 

this area.  Our current results suggest that adiponectin is not involved in the regulation of P4 

secretion by luteal cells during the estrous cycle in ewes.   
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In summary, this study demonstrated that 1) nutritional plane affects ovulation rate in 

FSH-treated ewes; 2) DETA-NONOate decreased basal and LH-stimulated P4 secretion by luteal 

cells, 3) L-NAME increased basal and/or LH-stimulated P4 secretion by luteal cells and depends 

on stage of estrous cycle and nutritional plane, 4) Arg and adiponectin did not affect basal or LH-

stimulated P4 secretion, and 5) leptin increased basal P4 secretion by luteal cells from d5 from C 

and U ewes, but did not affect LH-stimulated P4 secretion.  Thus, we have supported previous 

reports that nutritional plane is critical for increasing ovulation rates, and have also demonstrated 

that the NO system and metabolic hormones play a role in modulating P4 secretion by ovine 

luteal cells during the estrous cycle in ewes fed different nutritional planes.  This study provides 

novel information since the effects of the NO system, Arg, and metabolic hormones on luteal cell 

function have yet to be studied in association with nutritional plane in any species.  The 

molecular pathway(s) of regulation in P4 secretion from luteal cells still requires further 

research.     
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CHAPTER 5: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Proper ovarian function is critical for reproductive performance in pregnant and non-

pregnant females.  However, while nutrition (McEvoy et al., 1995; Wrenzycki et al., 2000; 

Kwong et al., 2000; Boland et al., 2001; Armstrong et al., 2001; Lozano et al., 2003; Grazul-

Bilska et al., 2012) and the NO system (Okuda et al., 1998; Skarzynski and Okuda, 2000; Bu et 

al., 2003; Tao et al., 2004) are reported to influence reproduction, very limited information exists 

regarding the associations between nutritional plane, the NO system, and their collective 

influences on ovarian function in sheep.   

Feeding non-pregnant sheep to achieve different planes of nutrition (i.e. overfeeding or 

underfeeding) for a prolonged period of time resulted in different body conditions, ovulation 

rates in both non-stimulated and FSH-treated ewes, angiogenic factor expression in luteal tissues, 

serum P4 concentrations, and oocyte function when compared to control fed ewes in our study.  

Overfeeding and underfeeding may be negatively influencing reproduction in females through 

fat accumulation or depletion, as we also observed altered lipid droplet accumulation in oocytes.  

Based on this information, further research is warranted to determine the underlying molecular 

mechanisms associated with varying plane of nutrition and reported changes of lipid content in 

oocytes.  In addition, research is needed to determine if lipid content is altered in earlier-stage 

oocytes (such as primordial, primary, and secondary oocytes) and, therefore has long-term 

effects on female reproduction, as we only investigated mature oocytes in the current study. 

 It has been reported that Arg supplementation to pregnant animals (through diet or 

injected intravenously) resulted in an increase in the number of live offspring born (Mateo et al., 

2007; Zeng et al., 2008; Luther et al., 2009), heavier lamb birth weights (De Boo et al., 2005; 
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McCoard et al., 2013), and prevents fetal growth restriction when supplemented to underfed 

mothers (Lassala et al., 2010).  Our current study was performed using non-pregnant animals, 

and therefore it provides novel information regarding the effects of Arg supplementation on 

ovarian function in animals fed different nutritional plane.  In vivo Arg supplementation to non-

pregnant ewes resulted in increased luteal vascularity and selected angiogenic factor expression 

in luteal tissue, but did not affect ovulation rate, CL weight, and P4 production.  Additional 

research regarding Arg and the NO system is necessary to determine additional potential benefits 

in non-pregnant females.  Because Arg supplementation was associated with increased 

vascularization (as noted by increased endothelial cell marker CD31), but did not lead to changes 

in production of P4, future research is needed to determine factors that may influence P4 

production and could, therefore, be utilized to increase reproductive efficiency.   

Supplementation of Arg during in vitro maturation and fertilization resulted in increased 

lipid droplet accumulation in oocytes and decreased cleavage rates after in vitro fertilization, 

respectively.  Future research explaining how the oocyte, as well as reproductive tissues, 

utilize(s) Arg may assist in elucidating why Arg supplementation to pregnant mothers is 

beneficial, while supplementation to non-pregnant females has limited effects. 

In Chapter 4, we reported that the NO system and metabolic hormones play a role in 

modulating P4 secretion by ovine luteal cells during the estrous cycle in ewes fed different 

nutritional planes.  The data provide novel information since the effects of the NO system, Arg, 

and metabolic hormones on luteal cell function have yet to be studied in association with 

nutritional plane in any species.  However, supplemental research regarding the molecular 

pathway(s) of regulation in P4 secretion from luteal cells is still required. 
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 In summary, these studies contribute to the knowledge of nutritional plane and the NO 

system and how they influence reproduction in female livestock.  The results obtained provide 

beneficial knowledge for future research regarding the improvement of reproductive efficiency 

in females, which could additionally assist producers considering therapeutic supplements for 

reproductively-sound livestock.   
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