ADAPTATION OF QUALITY PROTEIN MAIZE (ZEA MAYS L.) TO NORTHERN U.S.

CORN BELT

A Dissertation Submitted to the Graduate Faculty Of the North Dakota State University of Agriculture and Applied Science

> By Naiyuan Dong

In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Department: Plant Sciences

June 2015

Fargo, North Dakota

North Dakota State University Graduate School

Title

ADAPTATION OF QUALITY PROTEIN MAIZE (ZEA MAYS L.) TO NORTHERN U.S. CORN BELT

By

Naiyuan Dong

The Supervisory Committee certifies that this disquisition complies with North Dakota State

University's regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Marcelo J. Carena

Chair

Dr. Wenhao Dai

Dr. Michael S. McMullen

Dr. Luis del Rio

Approved:

6/16/2015

Date

Dr. Richard Horsley

Department Chair

ABSTRACT

There is a need to increase the value of crops and develop the next generation of healthier products. Quality protein maize (Zea mays L.) is an option but has never been adapted to short – season environments. Quality protein maize (QPM) with homozygous embryo and endosperm for mutant allele o_2 at the α -zeins regulatory gene *opaque-2* shows about 60 to 100% increase in lysine and tryptophan essential amino acids when comparing with non-QPM maize. The objectives of this research were to adapt QPM genotypes to the northern U.S. through the NDSU Early QPM Program, and to evaluate the agronomic potential of early generation QPM lines and hybrids developed by the NDSU maize breeding program for the northern USA. Fifty-four inbred lines, including 47 QPM donor lines from the Iowa State University (ISU) maize breeding program, six experimental lines from the NDSU maize breeding program and one ex-PVP line from industry, were selected to produce 94 early-QPM backcross populations. Based on the earliness, protein content, and amino acid levels of lysine, 218 BC₁S₂ lines were selected for testcrosses with industry testers. Experiments evaluating testcrosses were arranged in 12×12 and 10 x 10 partially balanced lattice designs across three environments in 2013 and 2014. Based on this evaluation, totally 48 S₂ lines were selected for further development, 17 of them representing the Stiff Stalk (SS) heterotic group and 31 representing the non-SS-group. Selected lines provided unique advanced inbred lines with hybrid combinations showing not only above average grain yield, dry down, and protein content but also, high levels of lysine, tryptophan, and methionine. The results of this research show, for the first time, the successful adaptation of QPM genotypes to short-season environments. The NDSU maize-breeding program has developed the first high quality maize products through the EarlyQPM and EarlyQPMF (for feedstock) national programs.

ACKNOWLEDGEMENTS

Sincere thanks to my advisor, Dr. Marcelo J. Carena, for his guidance, patient, and support throughout my Ph. D program, always inspiring me passion for breeding and other life aspects. Sincere thanks also to my other committee members Dr. Wenhao Dai, Dr. Michael S. McMullen, and Dr. Luis del Rio for accepting to serve in my supervisory committee and for reviewing this manuscript.

I want to give my special thanks to our retired technician Duane Wanner, former technician Gregory Lammers, technician Van Mitchell, and graduate students Junyun Yang, Tonette Laude, Md. Abdullah Al Bari and Santosh Sharma, all within the NDSU corn-breeding program, for giving me valuable suggestions and great help in my research. I also want to thank Jiaye Li, Nabin Karki, and everyone who offered precious time helping me to collect field data.

I am also thankful to my Master's advisor, Dr. Qingyu Wang, and Jilin University Plant Sciences Chair, Dr. Hongyu Pan, for helping me with this opportunity to educate abroad and pursuing higher degree in plant breeding.

Finally, thanks to my mother, Yamin Qiao and father, Baichun Dong, and other family members, without their support I would not be here for pursuing Ph. D degree. Very special thanks to my wife, Hao Li, for her constant company, especially helping me taking care of our daughter, Emma when I was finishing this dissertation.

iv

DEDICATION

I would like to dedicate this research dissertation to my wife, Hao Li, and my daughter,

Emma Z. Dong.

TABLE OF CONTENTS

ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
DEDICATION	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
INTRODUCTION	
LITERATURE REVIEW	4
Need of Quality Protein Maize(QPM)	4
Development of QPM	5
Genetics of QPM	
Methods to develop QPM	
Utility of QPM	
MATERIALS AND METHODS	
Materials	
Methods	
RESULTS AND DISCUSSION	
S ₀ to S ₂ selection	
Correlation among traits	

Analysis of variance and selections among S ₂ lines	
GENERAL CONCLUSION	47
REFERENCES	

LIST (OF	TABL	ES
--------	----	------	----

<u>Fable</u> Pag	<u>ge</u>
2.1. High lysine/tryptophan maize mutants	. 6
2.2. Protein fraction distribution of endosperm samples of normal and soft maize endosperm (<i>o2</i>)	. 6
3.1. Genetic background of QPM maize lines utilized in this study	17
3.2. Genetic background of non-QPM lines utilized in this study	19
3.3. Genetic background and heterotic groups of maize backcrosses utilized in this study	20
3.4. Company and experimental checks utilized in this study	21
 4.1. Lysine (LYS), methionine (MET), protein (PRO), and cysteine (CYS) and levels of each selected maize filial generation. (BC₁S₁ was not included because of environmental stress in 2011 summer nursery and there were not enough seeds for NIR screen). 	1
 Phenotypic correlation coefficients among maize traits measured on 127 test-crosses across 6 environments for trial 1 of non-Stiff Stalk group (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper) 	34
4.3. Phenotypic correlation coefficients among maize traits measured on 83 test-crosses across 6 environments for trial 2 of Stiff Stalk group (2013 Fargo, 2013 Casselton, 2013 Prosper,2014 Fargo, 2014 Casselton, 2014 Prosper)	35
4.4. Selected S2 maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 1 (non-Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits	36
4.5. Selected S2 maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 2 (Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits	42

LIST OF FIGURES

Figure	Page
1.1. U.S. feed grain production during 2014 – 2015 season	2
2.1. Breeding methods used to develop QPM	14
2.2. Pig fed high lysine/tryptophan maize (larger animal labeled QPM or Q4) compared with its sibling fed normal maize (labeled normal or N4)	16

INTRODUCTION

Maize (*Zea mays* L.) is an important crop for food, animal feed, and industrial raw materials. Maize is also the leading world cereal in both total yield (720 million tons) and in per unit area yield (FAO, 2009). As a C4 plant, maize is more efficient using solar radiation than other cereals. With such a significant yield potential, it is known as the "Queen of Cereals". The progenitor of maize has been identified as a form of teosinte (*Zea mays ssp. parviglumis*) by different studies utilizing molecular techniques (Doebley, 2004). Maize also has an extensive geographical distribution, and could be planted from the equator to above 50° on both hemispheres, which is well beyond the tropical and subtropical areas, including extreme conditions. The top maize producing country is the United States of America (U.S.), and then followed China, Mexico, Brazil and Argentina (USDA, ERS, 2015).

The U.S. is the largest maize producer with approximately 32 million hectares planted to maize. Approximately 20 percent of the maize being exported to other countries makes U.S. the major player in the world trade market. Maize is also the primary U.S. feed grain, approximately 43 % of total maize production was used as animal feed, accounting for more than 90 percent of total feed grain production and use (Figure 1.1). Maize is planted in most of U.S. states, but heartland region including Illinois, Iowa, Indiana, eastern South Dakota and Nebraska, western Kentucky and Ohio, and the northern two-thirds of Missouri are the main production area. Among those states, Iowa and Illinois are the top maize-producing states, typically account for one-third of the U.S. crop (USDA, ERS, 2015)

Figure 1.1. U.S. feed grain production during 2014 – 2015 season. (USDA, ERS, 2015)

Globally, approximately 15 % of the total protein and 20 % of the total calories derived from food crops came from maize (National Research Council, 1988). However, the common maize currently lacks the full range of amino acids, especially essential ones like lysine and tryptophan, which human and other animals (e.g. pig and chick) cannot synthesize by their own metabolic systems and playing an important role in synthesizing protein completely.

Quality protein maize (QPM) with homozygous recessive *o2* gene shows about 60 to 100% increase in lysine and tryptophan. Because of the increasing content of these two essential amino acids, digestibility and nitrogen uptake are also increased compared to normal maize, and therefore, the biological value of QPM is about 80%, whereas that of regular maize is 40 to 57% (Bressani, 1992).

The content and quality of protein in maize has been increased due to genetic improvement. However, adaptation of QPM genotypes to various environments has been challenging because of the complex genetic background of QPM. One of the long-term goals of the NDSU maize-breeding program is to develop the next generation of short-season healthier products through the NDSU EarlyQPM and NDSU EarlyQPMF national programs.

In our research, 47 QPM lines were crossed with NDSU early-maturing lines and hybrids to produce NDSU early-maturing QPM lines adapted to the northern USA. The NDSU earlymaturing QPM lines will meet the environmental requirements of northern U.S. and Canada for high quality of protein. Meanwhile, the research is designed to move U.S. Corn Belt dent QPM unique germplasm northward. This research is also the first to assess the incorporation of exotic QPM germplasm as the donor for high protein quality with the target to enhance the nutrition and healthy diet in the northern U.S. Corn Belt.

The specific objectives of this research are to:

1) Adapt QPM genotypes to the northern U.S. through the NDSU Early QPM Program;

2) Determine if derived QPM lines are new competitive sources of short-season elite and healthier hybrids

LITERATURE REVIEW

Need of Quality Protein Maize(QPM)

Improving nutritional quality of agricultural crops for a healthy diet is a global goal. This is particularly important in cereal crops since the benefits can be applied to millions of people in a rapid, efficient and effective manner without changing traditional food habits.

Maize (*Zea mays* L.) is planted on more than 177 million hectares all over the world (FAOSTAT, 2015), and hundreds of millions of people in developing countries are dependent on maize as a main food. Maize provides 15 to 56% of the total daily calories of people in about 25 developing countries mainly in Africa (Prasanna et al., 2001). As estimated by FAO food balance sheets (Krivanek et al., 2007), in Africa, 20 % of the total calories and 17 to 60% of people's total daily protein is supplied by maize. These values were estimated only based on average per capita, so specific groups, like infants, are even more dependent on maize within these countries. Maize is their major source of dietary protein and studies already proved there is direct relationship between low protein quality of maize and children and adults becoming sick. For countries where maize is the primary food, rapid growth rate of children does need protein sufficient foods (Millward and River, 1989).

Maize grain with poor amino acid balance is well known and the need for improving its nutritional value was acknowledged long time ago (Osborne and Mendel, 1914). Dependence of maize as a primary protein source puts people at risk for dietary protein deficiency since maize proteins, like most of the cereal crops proteins, lack two essential amino acids, lysine and tryptophan. These amino acids cannot be synthesized by the metabolism of monogastric animals (e.g., pigs and chickens) and humans to complete protein synthesis. Protein deficiency, especially in children, causes 'kwasshiorkor', a potentially fatal syndrome characterized by

initial growth failure, irritability, skin lesions, edema, and fatty liver. So for people who rely heavily on maize as their main food, maize cultivars with improved amino acid profile are necessary.

Development of QPM

In the maize grain, both the endosperm and embryo contain protein but the embryo protein is superior in quality. However, since the endosperm constitutes the bulk of the grain, it is estimated it may contribute approximately 80 % of the total kernel protein (Zuber and Helm, 1975). The bulk of maize endosperm protein is comprised of zein which is composed of a class of alcohol soluble proteins that are specific to the maize endosperm (Prassana et al., 2001). The zeins contain one major class (α -zeins) and three minor classes (β , γ , δ -zeins). Zeins are the most abundant proteins in the grain endosperm and, particularly, the α -zein (Fraction II in Table 2.2), which are poor in lysine and tryptophan (Gibbon and Larkins, 2005). The ideal approach to improve the nutrition value of maize grain could be suppression of lysine-deficient zein fraction without changing the contribution of other fractions (Vasal, 2002). Decreasing the zein protein propertion causes an elevation of non-zein protein fractions rich in lysine and tryptophan.

Improving the nutritional quality of the maize endosperm protein can be dated back to 1960s. Several natural maize mutants containing higher lysine and tryptophan were identified during the 1960s and 1970s: *opaque-2 (o2), floury-2 (fl2), opaque-7 (o7), opaque-6 (o6)*, and *floury-3 (fl3)* (Table 2.1).

Mutant gene	Allele	Researchers	Year of discovery
opaque-2	o2	Mertz, Bates and Nelson	1964
floury-2	fl2	Nelson, Mertz and Bates	1965
opaque-7	<i>o</i> 7	McWhirter	1971
opaque-6	06	Ma and Nelson	1975
floury-3	fl2	Ma and Nelson	1975

Table 2.1. High lysine/tryptophan maize mutants

Table 2.2. Protein fraction distribution of endosperm samples of normal and soft maize endosperm (o2)

Protein fraction		Percentage of total protein(g/100 g protein)		
		Tuxpeno-1 normal	Tuxpeno- <i>o2</i> soft	
Number	Name	endosperm	endosperm	
Ι	Albumins, globulins and soluble	6.6	17.0	
	nitrogen			
II	Zeins (alpha, beta, delta, gamma)	48.7	9.7	
III	Zein like	14.0	13.4	
IV	Glutelin like	9.2	17.2	
V	Glutelin	17.0	34.5	
	Residue	4.5	8.1	

Source: Cited by Bjarnason and Vasal (1992)

Among all these protein maize mutants, the *o2* mutation was the first discovered and identified in a maize field located in Connecticut, USA (Vietmeyer, 2000). It was also proved to be the most appropriate genetic material for breeding programs aimed to develop high quality maize. At the beginning stage of developing QPM, both *o2* and *fl2* genes were used separately or together. However, the utilization of *fl2* was eventually discontinued (Bjarnason and Vasal, 1992; Vasal, 2000; Vasal, 2001).

Although *o*2 was the main gene used for increasing the levels of lysine and tryptophan in the maize endosperm protein, undesirable effects associated with the *o*2 gene were identified. Still, major emphasis was placed on utilization of the *o*2 mutant (NRC, 1988; Glover, 1992; Villegas et al., 1992). Maize grain with homozygous recessive *o*2 (*o*2*o*2) was shown to have higher lysine and tryptophan levels than maize grain with heterozygous *o*2 (*O*2*o*2) or homozygous dominant (*O2O2*) at the opaque-2 locus (Crow and Kermicle, 2002). Bressani (1992) showed that by increasing the level of lysine and tryptophan in the maize endosperm, the biological value of maize protein was doubled. The different amount of protein content between high lysine and common maize was approximate 10 %. Therefore, to achieve the ideal amino acid level, people would need to approximately consume more than two times common maize (FAO, 1992).

After learning the nutritional benefits of the *o2* mutation, maize breeding programs all over the world started transforming their normal endosperm inbred lines and populations to *o2* versions by applying direct backcross approach (Gevers, 1995; Prasanna et al., 2001). However, severely negative pleiotropic effects associated with *o2* allele challenged its the practical utilization when direct transform was involved in breeding programs (Bjarnason and Vasal, 1992; Prasanna et al., 2001). These included, compared to common maize, reduction of grain yield, low grain density, greater susceptibility to ear rot, slow rate of grain dry-down, soft and chalky kernel phenotype vulnerable to insect attack and fungal infection; which resulted in reduced germination rate and greater kernel breakage (Vasal et al., 1984a; Bjarnason and Vasal, 1992; Glover, 1992; Villegas et al., 1992; Moro et al., 1995; Lin et al., 1997; Prasanna et al.,2001; Vasal, 2001). In the food market, where most of consumers and producers preferred maize products hard endosperm type, soft endosperm texture is not acceptable (Krivanek et al., 2007). As a consequence, most of the breeding program gave up the pactical use of *o2* mutation in the field.

In order to overcome the pleiotropic effects of *o2* gene, specific selection strategy for hard endosperm was emphasized within *o2* breeding processes. Many reports showed challenges in breeding QPM processes with inheritance of *o2* gene (Bjarnason and Vasal, 1992; Lopes and Larkins, 1996). QPM breeding programs in CIMMYT were initially focused on converting normal endosperm populations from tropical and subtropical lowland areas to *o2* versions by using backcross-cum-recurrent selection methodology (Vasal et al., 1980, 1984). This modified backcross method (Figure 1.) focused on accumulating hard endosperm types while maintaining protein quality and quantity (NRC, 1988; Bjarnason and Vasal, 1992; Villegas et al., 1992; Prasanna et al., 2001; Vasal, 2001).

When working with *o*2 maize it was essential to overcome not only the negative pleiotropic effects to improve the endosperm protein quality but also to improve the negative agronomic characteristics at the same time. Several research groups had independently succeeded in developing *o*2/*o*2 germplasm with acceptable agronomic characteristics, and had designated those as Quality Protein Maize (QPM) (Gevers and Lake, 1992; Prasanna et al., 2001; Vasal et al., 2002). The term QPM now is referred to maize with the homozygous recessive *o*2 alleles, high levels of lysine and tryptophan without the negative pleiotropic effects, and hard endosperm (Vasal, 2001). Modern QPM's appearance and performance is now similar to regular maize without the mutation and can only be reliably differentiated through laboratory tests (Villegas et al., 1992). In addition, QPM is non-GMO, and all the breeding process does not involve genetic engineering (Pixley and Bjarnason, 1993).

In the process of developing QPM, the role of CIMMYT was essential. QPM populations developed by CIMMYT were largely used directly as open pollinated varieties (OPV's) or single plants were selected from these genetically broad-based populations to develop new inbred lines for hybrid production (Vasal et al., 1980; 1984b; Villegas et al., 1992). Since then, adapted (tropical and subtropical genotypes) QPM populations, inbreds, and hybrids were widely used all

over the world for developing high-lysine/tryptophan maize (Bjarnason and Vasal, 1992; Villegas et al., 1992; Vasal, 2001).

In order to fulfill the increasing needs, especially for developing countries, QPM hybrid programs at CIMMYT were founded in 1985(Bjarnason and Vasal, 1992; Vasal et al., 1993b; Vasal, 2001). Several advantages were identified in QPM hybrids over the OPV's: i) increased grain yield performance through hybrids' heterosis effect; ii) relatively easier to purify and maintenance of inbreds with respect to agronomic traits, genetic modifiers and protein quality; iii) decrease the cost on laboratory facilities for monitoring the protein quality of inbreds; iv) uniformity and stability of the final hybrid products with respect to kernel modification; v) involvement of the private seed industry in the QPM adaptation and utilization (Gevers and Lake, 1992; Pixley and Bjarnason, 1993; Vasal et al., 1993a; 1993b; CIMMYT, 2000; Vasal, 2001; Hadji, 2004). Therefore, developing inbred lines and hybrid products were becoming the priority of CIMMYT (Bhatnagar et al., 2004; Hadji, 2004; Xingming et al., 2004).

University of Kwazulu-Natal, South Africa and the Crow's Hybrid Seed Company at Milford, Illinois, USA were the institutions that continued to improve the protein quality of maize other than CIMMYT (Vasal, 2000; Prasanna et al., 2001). The maize-breeding programs in South Africa put great efforts to the development of QPM and had developed high-lysine maize inbred lines, hybrids, and OPVs with excellent agronomic and quality performance (Gevers and Lake, 1992; Hohls et al., 1996; Bhatnagar et al., 2004). The *o2* hybrid with good yield and quality for animal feed developed from Crow's Hybrid Seed Company was reported (Mertz, 1995). Another company in the USA, Texas A&M, had successfully adapted QPM to southern USA, and inbreds and hybrids products with hard endosperm, competitive yield and high protein quality were reported (Betran et al., 2003a; b; c). With continuous efforts, the

9

geographical distribution of QPM was extending. Cultivars (both OPV's and hybrids) with improved protein quality have been adapted to various environmental conditions like temperate, tropical highland, and subtropical and tropical lowland. However, no research was conducted to develop short-season QPM genotypes.

Genetics of QPM

Generally, high lysine and tryptophan maize (QPM) involves three distinct genetic systems (Vasal, 2002; Vivek et al, 2008): 1)*o2* gene in a homozygous recessive state; 2) modifiers/enhancers of *o2o2*-containing endosperm to maintain higher lysine and tryptophan; 3) genes that modify the endosperm type of *o2o2* genotypes from soft to hard.

Study revealed that the possible function of o2 gene was encoding a transcription factor involved in zein synthesis (Schmidt et al., 1990). The o2 gene that in homozygous recessive state causes a decrease synthesis of the α -zein fraction of the endosperm protein and a corresponding increase in the proportion of non-zein proteins (Vivek et al., 2008). These non-zein proteins naturally have higher levels of lysine and tryptophan (Gibbon and Lakins, 2005). Therefore, in QPM, the proportion of non-zein is higher, which predisposes o2 maize to have higher levels of lysine and tryptophan (Vasal, 1992). However, Vivek (2008) concluded that the recessive condition (o2o2) alone did not ensure the quality of maize protein as it just predisposed maize to have them.

The second essential genetic system, *o2* modifiers/enhancers, is needed. Across genetically diverse backgrounds, the levels of lysine range from 1.5 % to 2.8 % in common maize and 2.6 % to 5.0 % in *o2* maize (Moro et al., 1996). Therefore, if there are no modifiers/enhancers selected in the breeding process (e.g., if there is no monitoring during the breeding processes), the developed cultivars will end up with *o2o2* genotype and

lysine/tryptophan levels equivalent to those in common maize. This is because lower limits of lysine and tryptophan in *o2o2* maize overlapping the upper limits in normal maize (Vivek et al., 2008). Lysine and tryptophan levels are highly correlated (Hernandez and Bates, 1969; Vivek et al., 2008). Therefore, monitoring for either of the amino acids can be used for analyzing protein quality, to reduce laboratory costs (Krivanek et al., 2007; Vivek et al., 2008). Multi-genic effects controlling amino acid content have been reported (Wang et al., 2001; Wu et al., 2002). Eventually, it becomes apparent that the simple genetic nature of *o2* maize has been converted to a classic polygenic QPM system and must be manipulated as such in breeding programs.

Previous study shown (Wallace et al., 1990) that the *o2*-modified (hard endosperm) grains contained approximately twice amount of γ -zein compared to the *o2*-original mutants, which implied an increased level of γ -zein proteins likely put added value to the recovery of a hard endosperm from a soft endosperm phenotype. These modifying loci that control γ -zein production can easily be selected by the light-table method (Vivek et al., 2008).

Methods to develop QPM

By utilizing recurrent selection techniques to accumulate genetic modifiers in *o2* backgrounds (Lonnquist, 1964; Bjarnason and Vasal, 1992) and by recombining of superior hard endosperm *o2* families, CIMMYT had successfully developed new QPM cultivars, mainly for tropical and subtropical regions. These materials were similar in grain yield and other agronomic properties to common maize (Villegas et al., 1980; Ortega et al., 1991; Bjarnason and Vasal, 1992; Villegas et al., 1992) and used as QPM donor stocks and populations for further improvement (Vasal, 2000; Prasanna et al., 2001). The development of QPM donor stocks then led to QPM germplasm development in different genetic backgrounds using an innovative breeding procedure, termed as "modified backcrossing-cum-recurrent selection" (Figure 2.1).

Consequently, a substantial amount of QPM populations and pools possessing different ecological adaptation, maturity, grain color and texture were developed (Vasal et al., 1984b; Vasal, 2001).

Normal maize genotypes that can resist major biotic and abiotic stresses of the region were converted to QPM. For instance, considerable efforts were put in the formation of maize streak virus resistant varieties by converting resistant genotypes (Vivek et al, 2008). Pedigree breeding is commonly used, whereby the best performing inbred lines, complementary in different traits, are crossed to establish new segregating families. Three types of crosses provided a choice of breeding strategies (Krivanek et al., 2007): QPM x QPM, QPM x normal, and QPM x normal backcross conversion. Within each of these segregating populations, successive inbreeding of the material was made to develop new inbred lines while keeping continual selection on the three important QPM genetic systems (recessive mutant allele of *o2*, endosperm modifiers, and amino acid modification).

The history to develop QPM germplasm is relatively short. Most breeding programs considered starting with conventional approaches by converting their non-QPM inbred lines to QPM versions through backcrossing or pedigree crosses within elite non-QPM germplasm and elite QPM donors. An alternative or supplementary approach could be the utilization of molecular markers to assist in the selection of *o2* genotypes. No matter which basic approach is chosen, the following are two unique and essential steps involved in developing QPM germplasm (Vivek et al, 2008): 1) Identification of homozygous recessive (*o2o2*) condition and hard endorsperm simultaneously through F2 to F5 generation in a family or population; 2) Confirmation of QPM quality and quantity through the process.

To identify both homozygous recessives and hard endosperm, Vivek (2008) suggested the use of the light table to help in the selection of genotypes. Several studies also reported the use of marker-assisted selection (MAS) to help selection (Dreher et al., 2003; Babu et al., 2005; Krivanek et al.,2007). However, the use of MAS has shown many challenges, among them, cost and lack of efficient markers for indirect selection for the traits of interest. For conventional breeding, Vivek (2008) reported the use of QPM inbred lines as *o2* donor parents and non-QPM elite lines as recurrent parents (Figure 2.1). The time to convert non-QPM lines is estimated at 4.5 years if two seasons per year are possible. Less time would be possible with winter nurseries offering more than one season per year, especially if short-season maize genotypes are available.

Figure 2.1. Breeding methods used to develop QPM Source: Vivek B.S., A.F. Krivanek, N. Palacios-Rojas, S. Twumasi-Afriyie, and A.O. Diallo. 2008. *Breeding Quality Protein Maize (QPM): Protocols for Developing QPM Cultivars*. Mexico, D.F.: CIMMYT

Season 8 (((AxB)xB)xB)xB))=BC3F3 = Seed Increase of converted line

Figure 2.1. Breeding methods used to develop QPM (continued) Source: Vivek B.S., A.F. Krivanek, N. Palacios-Rojas, S. Twumasi-Afriyie, and A.O. Diallo. 2008. *Breeding Quality Protein Maize (QPM): Protocols for Developing QPM Cultivars*. Mexico, D.F.: CIMMYT

Utility of QPM

Maize with high lysine and tryptophan has been applied to feeding studies in both animals and humans.

Pigs fed with a high lysine/tryptophan maize diet gained weight roughly at twice the rate of pigs fed only on a common maize diet without additional protein supplements. An equal amount of QPM substituted for normal maize in pig feed diets can maintain the amino acid balance and decrease the use of synthetic lysine (Burgoon et al., 1992)

Figure 2.2. Pig fed high lysine/tryptophan maize (larger animal labeled QPM or Q4) compared with its sibling fed normal maize (labeled normal or N4) Source: Crops Research Institute, Kumasi, Ghana; Animal Science Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, and Sasakawa Global 2000

Human nutrition studies found that: children fed with QPM had less sick days, a better

chance to escape death from diarrhea and other infections, reduced stunting and better growth-

enhancing capabilities than those fed with normal maize (Akuamoa-Boateng, 2002).

The main goal of our research was to develop the next generation of healthier products by

adapting QPM genotypes to the northern U.S. through the NDSU Early QPM Program

MATERIALS AND METHODS

Materials

Fifty-three inbred lines, including 47 QPM donor lines from the ISU maize breeding program, 5 experimental lines from the NDSU maize breeding program and one ex-PVP line from industry, were selected to produce 94 elite x elite single-cross hybrids. The target was to develop NDSU short-season-QPM lines. NDSU lines developed from improved genetically broad-based populations with above average grain quality performance and earliness. QPM donor lines were originally developed at CIMMYT and adapted to central U.S. Corn Belt conditions by crossing CIMMYT genetic materials with elite Iowa lines (Tables 3.1 and 3.2). Elite and current industry testers were used in this study representing Stiff Stalk (SS) and non-SS heterotic groups: were T1 (SS type), and T2 (non-SS type).

	Recurrent		
Inbred	Parent	Source of QPM [†]	Origin of Iowa maize lines
QPM 1	B91	CLQ06901	
QPM 2	B91	CLQ06901	Iowa Corn Borer Synthetic No. 1(R)C8
QPM 3	B95	CLQ06901	
QPM 4	B95	CLQ06901	Iowa Corn Borer Synthetic No. 1(R)C8
QPM 5	B95	CLQ06901	
QPM 6	B97	CLQ06901	
QPM 7	B97	CLQ06901	Louis Com Boron Symphotic No. 1/B)CO
QPM 8	B97	CLQ06901	Iowa Com Borer Synthetic No. 1(K)C9
QPM 9	B97	CLQ06901	
QPM 10	B98	CLQ06901	
QPM 11	B98	CLQ06901	
QPM 12	B98	CLQ06901	BS11(FR)C5
QPM 13	B98	CLQ06901	
QPM 14	B98	CLQ06901	

Table 3.1. Genetic background of QPM maize lines utilized in this study

		Recurrent		
_	Inbred	Parent	Source of QPM	Origin of Iowa maize lines
	QPM 15	B98	CLQ06901	
	QPM 16	B98	CLQ06901	BS11(FR)C5
	QPM 17	B98	CLQ06901	
	QPM 18	B99	CLQ06901	
	QPM 19	B99	CLQ06901	
	QPM 20	B99	CLQ06901	Iowa Corn Borer Synthetic No. $1(R)C10$
	QPM 21	B99	CLRQ00502	Iowa Com Borer Synthetic No. 1(K)C10
_	QPM 22	B99	CLRQ00502	
	QPM 23	B100	CLQ06901	
	QPM 24	B100	CLRQ00502	B85 x H99
	QPM 25	B100	CLRQ00502	
	QPM 26	B113	CLQ06901	
	QPM 27	B113	CLQ06901	
	QPM 28	B113	CLQ06901	
	QPM 29	B113	CLQ06901	
	QPM 30	B113	CLQ06901	BS11(FR)9
	QPM 31	B113	CLQ06901	
	QPM 32	B113	CLQ06901	
	QPM 33	B113	CLQ06901	
	QPM 34	B113	CLQ06901	
	QPM 35	B104	CLQ06901	DC12 (C)/C5
	QPM 36	B104	CLQ06901	BS13 (5)C3
	QPM 37	B109	CLRQ00502	Deceylored D72
	QPM 38	B109	CLRQ00502	Kecovered B/3
	QPM 39	B110	CLQ06901	
	QPM 40	B110	CLQ06901	BS13(S)C5
	QPM 41	B110	CLQ06901	
	QPM 42	B111	CLQ06901	DSSS(D)C0
	QPM 43	B111	CLQ06901	B999(K)CA
	QPM 44	B114	CLQ06901	
	QPM 45	B114	CLQ06901	Deal 41 decelored by CDO OVT
	QPM 46	B114	CLQ06901	Pool 41, developed by CIMIMY I
	OPM 47	B114	CLRQ00502	

Table 3.1. Genetic background of QPM maize lines utilized in this study (continued)

[†]:CLQ06901 is a direct derivative of QPM population 69 (Templado Amarillo QPM). It has intermediate maturity and a yellow flint grain type. CLRQ00502 is a recycled QPM line representing subtropical population 502. There is little genetic relationship between the two lines. Both of them were developed by CIMMYT

		Heterotic	
Inbred	Genetic background	Group [†]	Source
ND2000	[NDSCD(M)C8-3-2-1-1-1-1]	SS	NDSU
ND2006	[NDSBF(LM)C7(HGR)C4-1-1-2-1-2]	SS	NDSU
ND06-36	[(B73xMo17)]-87-1-1-1-1 derived]	SS	NDSU
ND05-73	NDCG(FS)C0	SS	NDSU
ND291	[NDSM(M)C1-1-1-1-1-2	Non-SS	NDSU
LH162	Mo17, ND246	Non-SS	Ex-PVP

Table 3.2. Genetic background of non-QPM lines utilized in this study

[†]: SS, Stiff stalk group; Non-SS, non-Stiff stalk group

Methods

Field Evaluation

Mating design and field trials (Early QPM breeding scheme)

All 53 lines were separated, based on genetic background, into three heterotic groups: stiff stalk group (SS), non-stiff stalk group (Non-SS), and unrelated group (UR). Early x late QPM crosses within heterotic groups were made in the 2009 New Zealand winter production nursery (north island). Backcrosses (BC₁:S₀) were produced between QPM crosses and elite early-maturing donors in the 2010 Fargo summer breeding nursery. Genotypes flowering 10 or more days later than the recurrent parent were discarded. BC₁:S₁ early-generation lines representing at least two heterotic groups were produced in the 2011 Fargo summer breeding nursery. BC₁:S₂ lines were selected and produced in the 2012 Fargo summer breeding nursery. Test-crosses of best early generation lines with industry testers representing the opposite heterotic group were made in the 2012 New Zealand winter nursery while screening of early generation lines for cold tolerance was made in the 2012 New Zealand winter production screening nursery (south island) All single-cross hybrids made from selected BC₁:S₂ high quality lines and industry testers were evaluated in replicated field trials including 14 commercial checks and three NDSU experimental hybrids (Table 3.3 and 3.4).

Female		Male	Heterotic Group [†]
QPM 1 X ND291	Х	ND291	Non-SS
QPM 2 X LH162	Х	LH162	Non-SS
QPM 3 X ND291	Х	ND291	Non-SS
QPM 4 X LH162	Х	LH162	Non-SS
QPM 5 X LH162	Х	LH162	Non-SS
QPM 6 X ND291	Х	ND291	Non-SS
QPM 7 X ND291	Х	ND291	Non-SS
QPM 8 X LH162	Х	LH162	Non-SS
QPM 9 X LH162	Х	LH162	Non-SS
QPM10 X ND291	Х	ND291	Non-SS
QPM11 X ND291	Х	ND291	Non-SS
QPM12 X ND291	Х	ND291	Non-SS
QPM13 X ND291	Х	ND291	Non-SS
QPM14 X LH162	Х	LH162	Non-SS
QPM15 X LH162	Х	LH162	Non-SS
QPM16 X LH162	Х	LH162	Non-SS
QPM17 X LH162	Х	LH162	Non-SS
QPM18 X ND291	Х	ND291	Non-SS
QPM19 X LH162	Х	LH162	Non-SS
QPM20 X LH162	Х	LH162	Non-SS
QPM21 X ND291	Х	ND291	Non-SS
QPM22 X LH162	Х	LH162	Non-SS
QPM23 X LH162	Х	LH162	Non-SS
QPM24 X LH162	Х	LH162	Non-SS
QPM25 X ND291	Х	ND291	Non-SS
QPM26 X ND291	Х	ND291	Non-SS
QPM27 X ND291	Х	ND291	Non-SS
QPM28 X ND291	Х	ND291	Non-SS
QPM29 X ND291	Х	ND291	Non-SS
QPM30 X LH162	Х	LH162	Non-SS
OPM31 X LH162	X	LH162	Non-SS

Table 3.3. Genetic background and heterotic groups of maize backcrosses utilized in this study

Female		Male	Heterotic Group
QPM32 X LH162	Х	LH162	Non-SS
QPM33 X LH162	Х	LH162	Non-SS
QPM34 X LH162	Х	LH162	Non-SS
QPM35 X ND2000	Х	ND2000	SS
QPM36 X ND2006	Х	ND2006	SS
QPM37 X ND2000	Х	ND2000	SS
QPM38 X ND2006	Х	ND2006	SS
QPM39 X ND2000	Х	ND2000	SS
QPM40 X ND2006	Х	ND2006	SS
QPM41 X ND06-36	Х	ND06-36	SS
QPM42 X ND05-73	Х	ND05-73	SS
QPM43 X ND2006	Х	ND2006	UR
QPM44 X ND2006	Х	ND2006	UR
QPM45 X ND2000	Х	ND2000	UR
QPM46 X ND291	Х	ND291	UR
QPM47 X LH162	Х	LH162	UR

Table 3.3. Genetic background and heterotic groups of maize backcrosses utilized in this study (continued)

[†]: SS, Stiff stalk group; Non-SS, non-Stiff stalk group

Table 3.4. Company	v and ex	perimental	checks	utilized	in this	studv
	, and on	permittent	enteento	aunder	III UIIID	Decide y

Company	Hybrid Name	Relative maturity
Pioneer	Brand 39V07	80
	38N88	92
	39N99	89
Monsanto	DKC 35-43	85
	DKC 33-54	83
	DKC 36-34	86
	DKC 30-20	80
	DKC 48-12	98
	DKC 38-03	88
	DKC 31-09	95
Syngenta	N29T-3000GT Brand	92
NDSU	TR3622 x ND2004	95
NDSU	ND2004 x LH176	98
NDSU	TR3622 x ND2000	87
Thurston	TR3622 x TR4010	93
Thurston	TR3030 x TR3622	87
Thurston	GP2678 X TR3046	90

Field trials were arranged in 12 x 12 and 10 x 10 partial balanced lattice experimental designs for stiff stalk and non-stiff stalk tester groups respectively, at three North Dakota locations (Fargo, Casselton and Prosper), in 2013 and 2014. Therefore, a total of six environments were utilized for each heterotic group as each location x year combination was considered an environment in this study. The experiment units of this study were one-row plot which were planted by four-row planter (Almaco) with 45 kernels first and then thinned to 40 plants after 6-leaf stage to maintain approximately 80,000 plants per ha. Fertilizer was used to field trials with: 225 kg ha⁻¹ of Nitrogen, 55 kg ha⁻¹ of Phosphorus, and 55 kg ha⁻¹ of Potassium. Herbicide and hand weeding was applied to produce high grain yields in each location. Plots were harvest by one-row combine (Almaco) and by same time, approximately 0.5 kg of grain was sampled from bulked ears per plot for grain quality screen in the lab. A total of 2928 samples were collected in two year.

Traits evaluated

The following traits were measured:

1) Grain yield (YIELD): grain weight harvested by combine for each plot, adjusted to Mg ha⁻¹ with constant moisture of 15.5%;

2) Grain moisture at harvest (MOIST): harvest moisture in percentage, collected directly by combine;

3) Test weight (TWT): wet test weight, collected directly by combine;

4) Stand (STAN): plant counting for each plot, conducted before harvest, final plant density of each plot was adjusted to plants ha⁻¹;

5) Root lodging (PRL): Percentage of root lodged plants per plot relative to stand. Root lodging meant when the angle between ground and stalk equal or less the 70 $^{\circ}$;

6) Stalk lodging (PSL): Percentage of stalk lodged plants per plot relative to stand. Stalk lodging meant when stalk was broken underneath the first ear above the ground;

7) Days to anthesis (DA): the number of the days from planting till 50% of the plants from the plot were shedding pollen;

8) Days to silking (DS): the number of the days from planting till 50% of the plants from the plot had silk emerged;

9) Grain quality: grain quality traits included: protein content and quality (lysine, methionine, cysteine), oil content, starch content. These traits were measured by the Near-Infrared machine, Dickey John OmegaAnalyzerG (Bruins Instrument). The calibrations for protein content, oil content, and starch content used the Iowa State database from crop years 1990-2003. The calibrations for lysine, cysteine, and methionine amino acid used the Iowa State database from crop years 2006-2009. All the measurements and calibrations were developed under the spectral range 850-1048 nm and no National Type Evaluation Program (NTEP) data were involved in this study.

Data Analyses

Data from each environment were analyzed using SAS version 9.3 (SAS Institute, 2009). Genotypes were considered as a fixed factor whereas all other sources of variation (replication, blocks within replication, and environment) were treated as random factors. Missing values were estimated based on the method described by Cochran and Cox (Cochran and Cox, 1957). The linear model of the lattice design for this study was:

$$Y_{ijk} = \mu + \beta_i + \delta_j(\beta_i) + \tau_k + \varepsilon_{ijk}$$

in which Y_{ijk} is the observation of the k^{th} treatment in j^{th} incomplete block at the i^{th} replicate, β_i is the effect of i^{th} replicate, $\delta_j(\beta_i)$ is the effect of j^{th} block at the i^{th} replicate, τ_k is the effect of the k^{th} treatment, and ε_{ijk} is the intra-block error of the Y_{ijk} observation.

Analysis of variance for each location was performed using the PROC LATTICE procedure from SAS. If the relative efficiency of the lattice design was greater than 105 % comparing it to a randomized complete block design (RCBD) then means adjusted by incomplete blocks were used. If efficiency was lower than 105 %, then unadjusted means were utilized in analyses. The PROC GLM procedure from SAS was used for combined analyses across environments with use of adjusted or unadjusted means from each trait and location. The "10x rule of thumb" procedure for homogeneity of variances was used, in which combined analyses across environments were applied if the largest error variance was not 10 times greater than the smallest one (Patterson and Silvey, 1980). The combined error mean square (pooled error) was calculated by pooling the correspondent individual error mean square weighed by their degrees of freedom (Gomez and Gomez, 1984):

Pooled EMS =
$$\frac{\sum f_i s_i^2}{\sum f_i}$$

where f_i is the degree of freedom for the correspondent EMS at i^{th} location, s_i^2 is the EMS at i^{th} location.

Fisher's Protected Least Significant Difference (LSD) was used to compare the differences among genotype means.

RESULTS AND DISCUSSION

So to S₂ selection

According to previous studies on developing QPM (Vasal 2002; Vivek et al., 2008), the quality level of each generation was monitored to develop inbred lines having high level of lysine (Table 4.1). Based on average pollination dates (data not shown) and quality data, the earliest 11 backcross populations ($BC_1:S_0$) with high level of lysine were selected. These populations were sent to the Iowa State University Grain Quality Laboratory to determine the amino acid level with the chemical method with two objectives in mind: 1) to compare the quality data from our NIR machine and the chemical method to determine possible rank changes for selection; 2) to determine the populations' quality level for further development. The results (data not shown) showed that there were no significant differences of ranking within the 11 populations and among populations and checks. In addition, the lysine and tryptophan levels of backcross populations were almost two times (2x) higher when compared with checks.

The ears from the selected populations were planted as ear-to row in 2011 and 2012 Fargo summer breeding nurseries to produce S_2 early generations for testcrosses and inbreeding. At this point, two backcross populations were discarded due to above average stalk-lodging leaving the total number of selected backcross population to nine. S_2 bulk seed from each early generation line from all backcross populations was screened by NIR machine and, based on the results, top BC₁S₂ with high level of lysine and protein content, which were list in Table 4.1, were grown in our 2012 New Zealand winter nursery for testcrossing (Table 4.1) with elite industry testers.

Correlation among traits

Positive correlation coefficients were observed between protein content and cysteine and methionine levels for both non-Stiff Stalk (Trial 1) and Stiff Stalk groups (Trial 2). Weak and negative correlations were present between grain protein and yield (Table 4.2 and 4.3). As a consequence, most of selected S_2 testcrosses did not show higher yield than the mean of the checks. Large negative correlation between starch and protein content were determined. This is in agreement with studies indicating a significant negative relationship between starch content and crude protein yield (Harrelson et al., 2008; Idikut et al., 2009).

From the result, the whole-grain protein content and quality had weak relationship with other agronomic traits. This is consistent with previous studies indicating that whole-grain protein content and quality are generally negatively correlated or having lack of relationship with other agronomic traits (Hall, 1972; Hilliard and Daynard, 1974; Bhatia and Rabson, 1987; Leeson et al., 1993; Reed et al., 1993; Dale, 1994; Pixley and Bjarnason, 2002). This conclusion was also supported by animal feeding studies as well (Patterson et al., 1993; Birkelo et al., 1994; Johnston, 1995; Weichenthal et al., 1998). Knowledge on relationships between economic important traits and lysine and tryptophan content is limited. Our results showed that lysine had a weak relationship with all other quality and agronomic traits evaluated except in trial 1 (non-stiff stalk group) where lysine and methionine levels had a strong correlation among them (ρ =0.75, P<0.001). This is encouraging in order to combine, during selection, favorable traits without much concern about undesirable linkages.

Analysis of variance and selections among S₂ lines

The selection intensity was 20 % for both trials to maintain enough genetic variability for further development and keeping program manageable. Significantly differences were observed

among hybrids for all agronomic and quality traits in both experiments. We also found significant genotype by environmental interaction (G x E) for yield and most agronomic and quality traits. Trial mean values of selected S_2 lines are shown in Table 4.4 and 4.5. The basis of selection used to keep top lines for further inbreeding and testcrossing was based on above average grain yield, test weight, protein, lysine, and methionine means; as well as below average grain moisture, root and stalk lodging, days to anthesis, and days to silking, relative to the commercial checks.

Agronomic traits

Grain yield is, often, inversely related to most grain quality traits. Our purpose was to find S₂ testcrosses with reasonably higher yield, along with elevated grain quality traits when compared to commercial checks. None of the selected S₂ testcrosses yielded higher than the top yielding checks in both trials (Table 4.4 and 4.5). In trial 1, the highest and lowest grain yield was observed in [(QPM19 X LH162) x (LH162)-15]-2-2 x T1 (8.6 Mg ha⁻¹) and [(QPM19 X LH162) x (LH162)-4]-1-3 x T1 (5.2 Mg ha⁻¹), respectively, while the mean of the checks was 7.5 Mg ha⁻¹ (Table 4.4). There were eight S₂ testcrosses out of the 31 selected testcrosses that had statistically similar grain yield to the highest yielding check (Table 4.4). In trial 2, [(QPM38 X ND2006) x (ND2006)-5]-5-2 x T2 (7.3 Mg ha⁻¹) was the highest grain yield observed among all 17 selected testcrosses, while [(QPM43 X ND2006) x (ND2006)-18]-3-3 x T2 (6.2 Mg ha⁻¹) was the lowest, while the mean of the checks was 6.6 Mg ha⁻¹ (Table 4.5). All the selected hybrids had statistically similar yield to the mean of the checks (Table 4.5). However, eight of the 17 S₂ selected testcrosses had the potential to out yield checks.

Harvest grain moisture is as important as grain yield for short-season maize breeding programs, especially as this is the first attempt to adapt QPM germplasm to North Dakota. In

trial 1, grain moisture ranged from 11.8 % in [(QPM19 X LH162) x (LH162)-13]-7-2 x T1 to 14.4 % in [(QPM19 X LH162) x (LH162)-15]-2-2 x T1 (Table 4.4). Out of the 31 selected S₂ testcrosses, 19 S₂ testcrosses had comparable moisture content to the mean of the checks (12.8 %). In trial 2, grain moisture ranged from 13.4 % to 16.2 % (Table 4.5). [(QPM38 X ND2006) x (ND2006)-5]-5-3 x T2 had the lowest harvest moisture, while [(QPM43 X ND2006) x (ND2006)-18]-1-1 x T2 had the highest (Table 4.5). In this case, seven of the 17 selected S₂ testcrosses had comparable moisture content to the average shown in checks (13.4 %) (Table 4.5). The data showed, after adaptation, original late QPM lines were well adapted to short-season environment with relative low harvest moisture.

Percent root lodging ranged from 0 % to 13.1 %, and percent stalk lodging ranged from 0.8 % to 6.3 % for trial 1 (Table 4.4). For trial 2, percent root lodging ranged from 0 % to 9.9 %, and percent stalk lodging ranged from 8.1 % to 23.4 % (Table 4.5). These values were not statistically different between S₂ testcrosses and checks. Plant and ear height were in suitable ranges for all selected S₂ testcrosses in both trials (Table 4.4 and 4.5). However, for days to anthesis and days to silking, only a few selected S₂ testcrosses were found to have statistically similar values when compared to the earliest checks.

Grain quality traits

All the selected S₂ testcrosses and trial checks had statistically similar test weight values in both trials. In trial 1, grain protein content ranged from 106.0 g kg⁻¹ to 88.8 g kg⁻¹ for selected S₂ testcrosses. The mean of selected S₂ testcrosses was 98.5 g kg⁻¹, while the mean of the checks was 91.6 g kg⁻¹. As a consequence, 23 out of 31 selected testcrosses had significantly higher protein content than checks. In trial 2, grain protein content ranged from 102.2 g kg⁻¹ to 94.4 g kg⁻¹ for selected S₂ testcrosses. The mean of the selected S₂ testcrosses was 98.4 g kg⁻¹, while the mean of the checks was 88.9 g kg⁻¹. All selected testcrosses had significantly higher protein content then the checks consequence of our EarlyQPM breeding scheme.

For lysine content, 25 of the selected S_2 testcrosses had statistically higher values than checks in trial 1, in which [(QPM14 X LH162) x (LH162)-2]-5-3 x T1 had the greatest lysine content (3.44 g kg-1), while the mean of checks was 3.07 g kg-1 (Table 4.4). In trial 2, lysine content ranged from 3.14 g kg-1 to 3.05 g kg-1, the mean of selected S2 testcrosses was 3.08 g kg-1, while the mean of checks was 3.00 g kg-1. In this trial, there were not statistically differences between selected S₂ testcrosses and checks (Table 4.5).

Methionine is the third limiting amino acid in maize used in non-ruminant diets after lysine and tryptophan, and it is the first limiting amino acid in legumes (Scott et al., 2004). In trial 1, 18 out of 31 selected S₂ testcrosses showed statistically higher methionine content than checks, while in trial 2, all the selected S₂ testcrosses had statistically higher methionine content then checks (Table 4.4 and 4.5). These results showed the potential of these unique and new short-season products for high quality maize feeding diets.

For cysteine, the overall experimental mean of EarlyQPM testcrosses was higher than the mean of the checks in both trials (2.14 vs. 2.10 g Kg⁻¹,for trial 1 and 2.30 vs. 2.16 g Kg⁻¹ for trial 2)...Seventeen of the selected S_2 testcrosses had higher cysteine content than the checks (Table 4.4) in trial 1, while all the selected S_2 testcrosses had higher cysteine content than checks (Table 4.5) in trial 2.

In trial 1, grain oil content ranged from 44.00 g Kg⁻¹ to 41.2 g Kg⁻¹. The mean of the selected S₂ testcrosses was higher than the mean of the checks (44.74 vs. 43.58 g Kg⁻¹). [(QPM19 X LH162) x (LH162)-13]-1-1 x T1, showed the top experiment value of 46.86 g Kg⁻¹. In trial 2, 13 selected S₂ testcrosses had statistically higher values than the mean of the checks. The top hybrid for oil content was [(QPM38 X ND2006) x (ND2006)-5]-2-2 x T2 with 50.50 g Kg⁻¹ oil content.

By comparing two heterotic group trials (trial 1 vs. trial 2), non-stiff stalk group had relatively higher potential to develop high lysine products and stiff stalk group had relatively higher potential to develop high methionine and cysteine products. The reasons should due to their different genetic background. The observed potential trend will be confirmed in the future inbred line development process. Since this was only S₂ stage, there was no soft-endosperm kernels were observed, but kernel hardiness will be another concern with monitoring levels of lysine and earliness during the further early-QPM development. All the selected S₂ lines will be in next cycle of self-pollination in Fargo nursery, and testcross with more testers for each heterotic group, cross between heterotic group will be released as a consequence of this research and numerous publications are expected to be published as well. Populations will follow recurrent selection for improving grain quality protein further.

Filial		LYS	MET	PRO	CYS
Generation	Pedigree	$(g Kg^{-1})$	$(g Kg^{-1})$	$(g Kg^{-1})$	$(g Kg^{-1})$
F_1	QPM14 x LH162	4.31	4.16	180.89	3.05
	QPM15 x LH162	4.36	4.10	178.05	3.06
	QPM19 x LH162	3.90	3.32	139.21	2.49
	QPM20 x LH162	3.89	3.68	146.58	2.74
	QPM21 x ND291	3.27	3.07	131.14	2.27
	QPM22 x LH162	3.73	3.42	142.35	2.57
	QPM24 x LH162	3.56	3.32	142.02	2.59
	QPM38 x ND2006	3.77	3.40	141.03	2.64
	QPM43 x ND2006	3.76	3.33	130.82	2.53
BC_1S_0	(QPM14 x LH162) x LH162	3.15	2.85	144.82	2.59
	(QPM15 x LH162) x LH162	3.23	2.88	144.71	2.63
	(QPM19 x LH162) x LH162	3.09	2.63	132.97	2.44
	(QPM20 x LH162) x LH162	3.04	2.63	132.70	2.46
	(QPM21 x ND291) x ND291	3.20	2.86	142.93	2.61
	(QPM22 x LH162) x LH162	3.13	2.78	135.89	2.53
	(QPM24 x LH162) x LH162	3.18	2.83	141.54	2.55
	(QPM38 x ND2006) x ND2006	3.14	2.78	135.94	2.54
	(QPM43 x ND2006) x ND2006	3.39	2.89	140.75	2.57
BC_1S_2	[(QPM14 X LH162) x (LH162)-1]-1	4.61	3.74	165.46	2.86
	[(QPM14 X LH162) x (LH162)-1]-3	3.88	3.33	160.57	2.81
	[(QPM14 X LH162) x (LH162)-14]-1	3.89	3.36	164.25	2.83
	[(QPM14 X LH162) x (LH162)-14]-2	3.81	3.37	164.67	2.83
	[(QPM14 X LH162) x (LH162)-2]-5	4.21	3.50	162.66	2.81
	[(QPM14 X LH162) x (LH162)-2]-8	4.68	3.82	164.01	2.91
	[(QPM14 X LH162) x (LH162)-3]-4	3.77	3.54	166.83	2.95
	[(QPM14 X LH162) x (LH162)-3]-7	3.75	3.24	158.74	2.74
	[(QPM14 X LH162) x (LH162)-6]-3	3.96	3.40	161.10	2.83
	[(QPM14 X LH162) x (LH162)-7]-9	3.92	3.28	163.22	2.82
	[(QPM14 X LH162) x (LH162)-8]-2	3.98	3.41	164.23	2.91
	[(QPM14 X LH162) x (LH162)-9]-1	3.84	3.34	161.15	2.82
	[(QPM14 X LH162) x (LH162)-9]-2	4.32	3.65	165.69	2.88
	[(QPM14 X LH162) x (LH162)-9]-4	4.00	3.50	162.31	2.89
	[(QPM15 X LH162) x (LH162)-11]-6	4.11	3.49	163.80	2.89
	[(QPM15 X LH162) x (LH162)-12]-6	3.70	3.27	165.10	2.86

Table 4.1. Lysine (LYS), methionine (MET), protein (PRO), and cysteine (CYS) levels of each selected maize filial generation. (BC₁S₁ was not included because of environmental stress in 2011 summer nursery and there were not enough seeds for the NIR screen)

Filial		LYS	MET	PRO	CYS
Generation	Pedigree	$(g Kg^{-1})$	$(g Kg^{-1})$	$(g Kg^{-1})$	(g Kg ⁻¹)
BC_1S_2	[(QPM15 X LH162) x (LH162)-15]-7	3.93	3.28	161.25	2.79
	[(QPM15 X LH162) x (LH162)-16]-2	4.21	3.53	161.28	2.83
	[(QPM15 X LH162) x (LH162)-19]-1	3.90	3.42	165.44	2.90
	[(QPM15 X LH162) x (LH162)-19]-2	3.97	3.46	165.07	2.91
	[(QPM15 X LH162) x (LH162)-19]-7	4.03	3.36	166.29	2.92
	[(QPM15 X LH162) x (LH162)-7]-1	3.87	3.29	160.60	2.77
	[(QPM19 X LH162) x (LH162)-13]-1	4.05	3.41	160.34	2.84
	[(QPM19 X LH162) x (LH162)-13]-7	4.07	3.43	164.72	2.82
	[(QPM19 X LH162) x (LH162)-15]-2	3.80	3.28	158.97	2.8
	[(QPM19 X LH162) x (LH162)-15]-7	3.92	3.37	164.14	2.87
	[(QPM19 X LH162) x (LH162)-4]-1	3.99	3.16	159.28	2.66
	[(QPM19 X LH162) x (LH162)-4]-5	3.95	3.50	167.94	2.95
	[(QPM19 X LH162) x (LH162)-9]-1	3.81	3.30	165.07	2.86
	[(QPM20 X LH162) x (LH162)-1]-6	4.01	3.37	162.38	2.83
	[(QPM20 X LH162) x (LH162)-12]-8	4.04	3.56	166.21	2.96
	[(QPM20 X LH162) x (LH162)-4]-9	3.75	3.19	158.59	2.75
	[(QPM20 X LH162) x (LH162)-7]-5	3.81	3.18	165.79	2.79
	[(QPM20 X LH162) x (LH162)-9]-1	4.01	3.45	163.92	2.92
	[(QPM20 X LH162) x (LH162)-9]-4	3.75	3.36	159.23	2.85
	[(QPM20 X LH162) x (LH162)-9]-5	3.99	3.26	158.62	2.75
	[(QPM21 X ND291) x (ND291)-13]-5	3.65	3.02	162.59	2.77
	[(QPM21 X ND291) x (ND291)-2]-3	3.73	3.19	161.58	2.73
	[(QPM21 X ND291) x (ND291)-4]-4	3.94	3.08	161.12	2.72
	[(QPM21 X ND291) x (ND291)-5]-7	3.66	3.05	160.72	2.73
	[(QPM21 X ND291) x (ND291)-7]-5	3.46	3.00	159.91	2.75
	[(QPM21 X ND291) x (ND291)-8]-1	3.67	3.24	166.59	2.87
	[(QPM22 X LH162) x (LH162)-2]-2	3.85	3.24	165.07	2.82
	[(QPM22 X LH162) x (LH162)-8]-1	4.44	3.30	159.44	2.72
	[(QPM24 X LH162) x (LH162)-2]-3	4.05	3.36	164.81	2.9
	[(QPM24 X LH162) x (LH162)-3]-1	3.79	3.26	163.07	2.84
	[(QPM38 X ND2006) x (ND2006)-1]-3	3.81	3.21	159.04	2.82
	[(QPM38 X ND2006) x (ND2006)-10]-2	3.78	3.15	150.64	2.70
	[(QPM38 X ND2006) x (ND2006)-12]-3	3.91	3.44	164.90	2.96
	[(QPM38 X ND2006) x (ND2006)-2]-1	3.75	3.27	157.68	2.83
	[(QPM38 X ND2006) x (ND2006)-3]-1	3.82	3.30	162.60	2.81
	[(QPM38 X ND2006) x (ND2006)-3]-2	4.05	3.12	150.38	2.58

Table 4.1. Lysine (LYS), methionine (MET), protein (PRO), and cysteine (CYS) level of each selected maize filial generation. (BC₁S₁ was not included because of environmental stress in 2011 summer nursery and there were not enough seeds for the NIR screen) (continued)

Filial		LYS	MET	PRO	CYS
Generation	Pedigree	(g Kg ⁻¹)	$(g Kg^{-1})$	(g Kg ⁻¹)	(g Kg ⁻¹)
BC_1S_2	[(QPM38 X ND2006) x (ND2006)-3]-3	3.89	3.19	154.07	2.83
	[(QPM38 X ND2006) x (ND2006)-5]-5	3.81	3.37	162.73	2.87
	[(QPM38 X ND2006) x (ND2006)-6]-1	3.96	3.68	165.50	3.11
	[(QPM38 X ND2006) x (ND2006)-6]-3	3.70	3.25	154.33	2.75
	[(QPM38 X ND2006) x (ND2006)-6]-5	3.89	3.28	156.76	2.81
	[(QPM43 X ND2006) x (ND2006)-1]-1	3.91	3.39	158.94	2.87
	[(QPM43 X ND2006) x (ND2006)-1]-3	3.98	3.37	159.59	2.84
	[(QPM43 X ND2006) x (ND2006)-10]-5	3.89	3.25	155.15	2.71
	[(QPM43 X ND2006) x (ND2006)-11]-3	3.70	3.29	157.39	2.80
	[(QPM43 X ND2006) x (ND2006)-16]-6	3.93	3.18	154.38	2.72
	[(QPM43 X ND2006) x (ND2006)-16]-7	3.84	3.15	150.16	2.62
	[(QPM43 X ND2006) x (ND2006)-17]-4	3.73	3.15	150.51	2.75
	[(QPM43 X ND2006) x (ND2006)-18]-1	4.08	3.41	159.17	2.82
	[(QPM43 X ND2006) x (ND2006)-18]-3	3.92	3.28	157.18	2.76
	[(QPM43 X ND2006) x (ND2006)-18]-4	3.97	3.34	158.6	2.81
	[(QPM43 X ND2006) x (ND2006)-2]-5	3.67	3.25	157.94	2.82
	[(QPM43 X ND2006) x (ND2006)-4]-1	3.91	3.38	157.39	2.78
	[(QPM43 X ND2006) x (ND2006)-8]-1	3.75	3.13	151.83	2.69
	[(QPM43 X ND2006) x (ND2006)-8]-2	3.93	3.44	162.95	2.90
	[(QPM43 X ND2006) x (ND2006)-8]-3	4.07	3.30	154.95	2.74
	[(QPM38 X ND2006) x (ND2006)-5]-2	3.89	3.13	151.6	2.68

Table 4.1. Lysine (LYS), methionine (MET), protein (PRO), and cysteine (CYS) level of each selected maize filial generation. (BC_1S_1 was not included because of environmental stress in 2011 summer nursery and there were not enough seeds for the NIR screen) (continued)

	YIELD	MOIST	TWT	DA	DS	STAN	PRL	PSL	MET	PRO	OIL	STARCH	CYS
	‡												
MOIST	0.21 ^{*§}												
TWT	0.26***	0.05											
DA	0.13	0.35***	-0.12										
DS	0.12	0.38***	-0.13	0.97***									
STAN	0.34***	0.03	-0.02	-0.07	-0.03								
PRL	-0.06	0.16	-0.07	0.31***	0.30***	-0.13							
PSL	-0.27**	-0.01	-0.09	0.09	0.08	-0.28***	0.39***						
MET	-0.26**	0.04	-0.10	-0.02	0.03	0.11	-0.18*	-0.35***					
PRO	-0.43***	-0.03	-0.04	-0.04	0.00	-0.05	-0.06	-0.15	0.85***				
OIL	0.15*	0.07^{*}	-0.01	0.08^{*}	0.13*	0.25**	-0.09*	-0.35***	0.32***	0.10			
STARCH	0.25**	0.02	0.09	-0.04	-0.09	-0.12	0.09	0.35***	-0.87***	-0.83***	-0.61***		
CYS	-0.40***	0.02	0.03	-0.18*	-0.17*	-0.02	-0.09*	-0.07*	0.73***	0.86***	-0.02	-0.63***	
LYS	-0.17*	- 0.11*	-0.27***	0.11*	0.15**	0.15*	-0.08	-0.32***	0.75***	0.59***	0.43***	-0.79***	0.32**
													*

Table 4.2. Phenotypic correlation coefficients among maize traits measured on 127 test-crosses across 6 environments for trial 1 of non-Stiff Stalk group (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper[†])

[†]: MOIST data were from 5 environments except 2013 Prosper; TWT data were from 5 environments except 2014 Casselton; RL data were from 5 environments except 2014 Fargo; DA and DS data were from 2013 Fargo, 2013 Prosper, 2014 Fargo, 2014 Prosper.

*:MOIST, harvest moisture; TWT, harvest test weight; DA, days to anthesis emergence; DS, days to silking; STAN, plant stands per ha; PRL,

percentage of root lodging; PSL, percentage of stalk lodging; MET, Methionine; PRO, protein; CYS, Cysteine; LYS, Lysine.

§: Green shows positive correlation and red shows negative correlation; color gradient indicates the level of significance.

***, significant at p=0.001 level; **, significant at p=0.01 level; *, significant at p=0.05 level.

Table 4.3. Phenotypic correlation coefficients among maize traits measured on 83 test-crosses across 6 environments for trial 2 of Stiff Stalk group (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper[†])

	YIELD	MOIST	TWT	DA	DS	STAND	PRL	PSL	MET	PRO	OIL	STARCH	CYS
MOIST	0.14 [‡]												
TWT	-0.02	-0.32**											
DA	0.58***	0.47***	-0.27**										
DS	0.53***	0.49***	-0.30**	0.97***									
STAND	0.23*	-0.24*	0.17	0.05	0.03								
PRL	0.13	0.42***	-0.26**	0.40^{***}	0.41***	-0.09							
PSL	-0.14	0.13	0.06	0.04	0.07^{*}	-0.21*	-0.03						
MET	-0.19	0.38***	-0.07	-0.04	0.06	-0.25*	0.27**	0.17					
PRO	-0.28**	0.27**	0.00	-0.20*	-0.10	-0.28**	0.24*	0.22^{*}	0.92***				
OIL	0.16	0.39***	-0.21*	0.29**	0.35***	-0.19	0.26**	0.15	0.29**	0.28**			
STARCH	0.13	-0.35***	0.13	0.01	-0.09	0.29**	-0.30**	-0.22*	-0.85***	-0.90***	-0.64***		
CYS	-0.32***	0.32**	0.09	-0.20*	-0.08	-0.26**	0.17	0.30**	0.82***	0.88^{***}	0.27**	-0.80***	
LYS	-0.04	0.05	-0.30**	-0.01	0.01	-0.12	0.16	0.06	0.57***	0.48***	0.12	-0.48***	0.20*

[†]: MOIST data were from 5 environments except 2013 Prosper; RL data were from 4 environments except 2013 Prosper and 2014 Prosper; DA and DS data were from 2013 Fargo, 2013 Prosper, 2014 Fargo, 2014 Prosper.

[‡]: Green shows positive correlation and red shows negative correlation; color gradient indicates the level of significance.

***, significant at p=0.001 level; **, significant at p=0.01 level; *, significant at p=0.05 level

Table 4.4. Selected $S_2 \times T$ maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 1 (non-Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits

Pedigree	YIELD	MOIST [†]	TWT	DA	DS	EH	PH	PRL	PSL
	(Mg ha ⁻¹)	(%)	$(Kg hL^{-1})$	(days)	(days)	(cm)	(cm)	(%)	(%)
[(QPM14 X LH162) x (LH162)-2]-5-3 x T1	6.7	12.5	72.6	64.5	65.0	86.0	203.3	0.0	0.8
[(QPM19 X LH162) x (LH162)-4]-1-2 x T1	5.6	12.9	73.8	65.1	65.4	93.6	204.6	1.4	1.6
[(QPM15 X LH162) x (LH162)-11]-6-2 x T1	5.5	12.5	72.9	63.7	63.5	87.6	199.0	0.1	4.5
[(QPM19 X LH162) x (LH162)-13]-1-1 x T1	6.4	13.4	74.3	67.3	67.5	107.4	219.5	8.4	5.0
[(QPM19 X LH162) x (LH162)-13]-1-2 x T1	6.8	12.5	73.9	67.4	67.7	95.6	214.3	5.5	3.8
[(QPM22 X LH162) x (LH162)-8]-1-2 x T1	5.9	12.8	70.8	66.3	66.4	92.1	207.8	2.7	5.5
[(QPM14 X LH162) x (LH162)-9]-4-2 x T1	5.9	12.8	72.6	66.9	67.6	92.5	208.5	0.6	3.3
[(QPM14 X LH162) x (LH162)-14]-2-2 x T1	6.4	12.4	72.9	65.2	65.7	95.5	215.4	1.7	1.4
[(QPM14 X LH162) x (LH162)-2]-5-1 x T1	6.6	12.2	73.8	65.9	66.0	89.5	205.1	1.5	1.1
[(QPM22 X LH162) x (LH162)-8]-1-1 x T1	7.0	12.5	73.9	66.3	66.9	100.9	216.5	3.2	3.6
[(QPM14 X LH162) x (LH162)-3]-4-3 x T1	6.0	12.5	75.1	66.3	66.2	92.5	208.8	1.1	1.0
[(QPM19 X LH162) x (LH162)-13]-7-1 x T1	5.2	12.8	72.5	65.4	65.8	86.9	197.3	0.0	4.1
[(QPM19 X LH162) x (LH162)-4]-5-2 x T1	6.5	12.5	72.6	67.4	67.9	92.9	211.6	2.1	2.9
[(QPM14 X LH162) x (LH162)-9]-2-2 x T1	6.2	12.8	72.2	64.7	64.6	85.2	200.7	0.8	3.4
[(QPM22 X LH162) x (LH162)-8]-1-3 x T1	7.5	13.5	74.6	66.6	67.4	104.9	226.6	13.1	3.8
[(QPM14 X LH162) x (LH162)-14]-2-1 x T1	6.5	12.7	71.0	66.5	67.1	91.3	213.4	0.7	4.9
[(QPM14 X LH162) x (LH162)-1]-1-1 x T1	7.7	13.5	73.6	64.8	65.1	100.3	214.0	1.2	5.4
[(QPM15 X LH162) x (LH162)-19]-2-1 x T1	6.3	13.4	74.2	66.0	66.4	93.0	213.6	3.0	2.8
[(QPM14 X LH162) x (LH162)-14]-1-1 x T1	5.7	12.4	71.7	66.1	66.0	96.8	211.0	3.2	4.9
[(QPM20 X LH162) x (LH162)-1]-6-3 x T1	6.8	13.3	74.6	65.7	66.3	99.7	215.0	2.8	3.2
[(QPM14 X LH162) x (LH162)-9]-4-1 x T1	6.4	13.2	75.4	65.3	65.8	94.0	210.5	2.4	2.2
[(QPM19 X LH162) x (LH162)-9]-1-2 x T1	6.2	12.7	74.8	65.0	65.3	88.6	206.8	0.4	2.3

Table 4.4. Selected S₂ x T maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 1 (non-Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

Pedigree	YIELD	MOIST	TWT	DA	DS	EH	PH	PRL	PSL
	(Mg ha ⁻¹)	(%)	$(Kg hL^{-1})$	(days)	(days)	(cm)	(cm)	(%)	(%)
[(QPM19 X LH162) x (LH162)-4]-1-3 x T1	5.2	12.7	73.0	65.9	66.5	96.6	214.0	0.4	3.9
[(QPM19 X LH162) x (LH162)-13]-7-2 x T1	5.7	11.8	71.7	65.3	65.6	86.1	197.2	0.0	5.4
[(QPM14 X LH162) x (LH162)-2]-8-3 x T1	6.9	13.0	74.9	65.6	66.5	97.7	215.3	0.3	6.3
[(QPM19 X LH162) x (LH162)-15]-2-1 x T1	7.8	14.3	74.8	67.5	67.3	100.2	222.9	1.1	6.7
[(QPM14 X LH162) x (LH162)-7]-9-3 x T1	7.5	13.8	74.3	65.9	66.1	101.6	219.4	3.3	3.3
[(QPM19 X LH162) x (LH162)-15]-2-2 x T1	8.6	14.4	75.0	67.7	68.0	102.6	225.4	1.9	2.9
[(QPM24 X LH162) x (LH162)-2]-3-3 x T1	7.3	13.6	73.6	66.2	66.4	97.6	213.1	0.2	2.7
[(QPM19 X LH162) x (LH162)-15]-2-3 x T1	7.2	13.4	75.6	65.9	66.3	100.9	223.1	2.9	4.9
[(QPM15 X LH162) x (LH162)-19]-7-1 x T1	7.6	13.2	74.1	67.1	67.3	95.7	214.3	4.0	1.6
Checks:									
Pioneer Brand 39V07	5.9	11.8	70.7	62.5	62.6	97.3	202.4	0.7	5.8
Pioneer 38N88	7.9	12.8	75.3	65.4	65.0	104.7	213.9	1.5	2.0
Pioneer 39N99	7.9	13.1	74.3	64.4	64.8	95.2	213.0	1.4	1.6
Monsanto DKC 35-43	6.2	12.2	78.0	66.4	66.2	94.6	212.3	0.1	3.1
Monsanto DKC 33-54	6.3	11.5	74.8	63.3	63.1	83.1	202.2	0.3	2.2
Monsanto DKC 36-34	8.1	12.9	74.1	63.5	63.7	83.1	209.3	0.1	0.5
Monsanto DKC 30-20	5.8	11.7	72.5	62.4	62.7	88.9	212.9	0.5	0.9
Monsanto DKC 48-12	9.4	14.5	72.0	69.0	68.8	98.5	223.9	4.1	0.7
Monsanto DKC 38-03	9.5	13.4	74.8	65.3	65.1	90.7	220.4	1.4	2.4
Monsanto DKC 31-09	7.4	11.9	74.3	62.1	62.6	81.9	211.3	0.7	0.3
Syngenta N29T-3000GT Brand	9.3	12.8	70.1	69.0	68.7	112.6	228.5	3.9	0.3
TR3622 x ND2004	7.2	13.2	76.6	63.9	64.3	87.8	207.3	0.1	1.8
ND2004 x LH176	6.0	14.5	77.8	63.0	63.3	91.7	205.5	1.9	1.1

Table 4.4. Selected S₂ x T maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 1 (non-Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

Pedigree	Yield	Moisture	Weight	DA	DS	EH	PH	PRL	PSL
	(Mg ha ⁻¹)	(%)	$(Kg hL^{-1})$	(days)	(days)	(cm)	(cm)	(%)	(%)
Checks:									
TR3622 x ND2000	7.1	12.6	73.1	62.8	63.4	91.9	202.5	0.8	11.0
TR3622 x TR4010	7.3	12.8	76.1	65.9	66.2	95.4	219.2	1.9	2.3
TR3030 x TR3622	8.5	13.5	73.5	66.1	66.5	100.0	215.5	2.6	1.1
GP2678 X TR3046	7.9	12.4	73.9	66.2	66.5	102.3	228.0	0.3	0.8
Mean of slections [§]	6.6	13.0	73.6	66.0	66.3	95.0	211.9	2.3	3.5
Checks mean [¶]	7.5	12.8	74.2	64.8	64.9	94.1	213.4	1.3	2.2
Exp. Mean [#]	6.38	13.04	73.77	65.85	66.06	94.75	211.52	2.58	4.28
EMS	1.49	0.62	11.36	1.85	2.36	28.58	57.36	23.16	27.41
LSD, 0.05	2.39	1.55	6.61	2.67	3.01	10.48	14.84	9.43	10.26
CV,%	19.13	6.05	4.57	2.07	2.33	5.64	3.58	186.31	122.35

Table 4.4. Selected $S_2 \times T$ maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 1 (non-Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

Pedigree	PRO	LYS	MET	CYS	OIL	STARCH
	(g Kg ⁻¹)					
[(QPM14 X LH162) x (LH162)-2]-5-3 x T1	104.058	3.436	2.380	2.219	46.183	694.770
[(QPM19 X LH162) x (LH162)-4]-1-2 x T1	106.000	3.393	2.319	2.247	43.567	697.503
[(QPM15 X LH162) x (LH162)-11]-6-2 x T1	105.874	3.379	2.379	2.337	42.671	697.523
[(QPM19 X LH162) x (LH162)-13]-1-1 x T1	98.500	3.369	2.216	2.139	49.004	696.830
[(QPM19 X LH162) x (LH162)-13]-1-2 x T1	97.844	3.338	2.191	2.110	47.069	700.315
[(QPM22 X LH162) x (LH162)-8]-1-2 x T1	99.199	3.334	2.159	2.159	44.431	702.182
[(QPM14 X LH162) x (LH162)-9]-4-2 x T1	104.977	3.331	2.358	2.233	44.516	697.445
[(QPM14 X LH162) x (LH162)-14]-2-2 x T1	101.231	3.327	2.256	2.156	44.744	700.085
[(QPM14 X LH162) x (LH162)-2]-5-1 x T1	97.184	3.323	2.184	2.132	45.887	702.043
[(QPM22 X LH162) x (LH162)-8]-1-1 x T1	98.712	3.320	2.240	2.158	44.014	703.205
[(QPM14 X LH162) x (LH162)-3]-4-3 x T1	102.452	3.319	2.302	2.232	44.638	699.112
[(QPM19 X LH162) x (LH162)-13]-7-1 x T1	94.074	3.316	2.140	2.142	45.932	704.259
[(QPM19 X LH162) x (LH162)-4]-5-2 x T1	99.751	3.307	2.196	2.161	44.788	701.127
[(QPM14 X LH162) x (LH162)-9]-2-2 x T1	99.769	3.304	2.194	2.197	44.038	702.222
[(QPM22 X LH162) x (LH162)-8]-1-3 x T1	102.495	3.283	2.209	2.213	44.233	699.231
[(QPM14 X LH162) x (LH162)-14]-2-1 x T1	91.454	3.281	2.093	2.021	46.622	706.259
[(QPM14 X LH162) x (LH162)-1]-1-1 x T1	97.656	3.272	2.186	2.132	45.085	702.618
[(QPM15 X LH162) x (LH162)-19]-2-1 x T1	99.071	3.272	2.205	2.115	46.125	700.233
[(QPM14 X LH162) x (LH162)-14]-1-1 x T1	101.803	3.272	2.253	2.203	45.857	697.656
[(QPM20 X LH162) x (LH162)-1]-6-3 x T1	96.106	3.264	2.169	2.104	45.249	704.262
[(QPM14 X LH162) x (LH162)-9]-4-1 x T1	99.931	3.264	2.194	2.160	45.366	700.972
[(QPM19 X LH162) x (LH162)-9]-1-2 x T1	100.411	3.263	2.221	2.177	43.839	701.899

Table 4.4. Selected $S_2 \times T$ maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 1 (non-Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

Pedigree	PRO	LYS	MET	CYS	OIL	STARCH
	(g Kg ⁻¹)					
[(QPM19 X LH162) x (LH162)-4]-1-3 x T1	99.576	3.263	2.213	2.176	43.235	703.406
[(QPM19 X LH162) x (LH162)-13]-7-2 x T1	95.031	3.262	2.143	2.130	45.177	705.109
[(QPM14 X LH162) x (LH162)-2]-8-3 x T1	97.877	3.260	2.178	2.113	43.544	704.546
[(QPM19 X LH162) x (LH162)-15]-2-1 x T1	92.154	3.218	2.112	2.066	44.485	708.236
[(QPM14 X LH162) x (LH162)-7]-9-3 x T1	93.522	3.180	2.093	2.096	43.476	708.042
[(QPM19 X LH162) x (LH162)-15]-2-2 x T1	88.738	3.142	2.005	2.045	43.609	712.068
[(QPM24 X LH162) x (LH162)-2]-3-3 x T1	95.680	3.122	2.117	2.140	44.670	704.801
[(QPM19 X LH162) x (LH162)-15]-2-3 x T1	93.165	3.118	2.075	2.082	43.766	708.403
[(QPM15 X LH162) x (LH162)-19]-7-1 x T1	98.331	3.105	2.144	2.219	41.240	707.332
Checks:						
Pioneer Brand 39V07	91.935	3.169	2.099	2.164	41.245	711.530
Pioneer 38N88	88.130	3.174	2.059	2.019	44.319	712.840
Pioneer 39N99	87.739	2.974	2.029	2.065	46.864	710.269
Monsanto DKC 35-43	90.961	3.075	2.079	2.108	41.706	713.108
Monsanto DKC 33-54	94.492	3.104	2.044	2.120	42.117	709.463
Monsanto DKC 36-34	92.317	3.035	2.098	2.110	43.285	710.039
Monsanto DKC 30-20	96.950	3.116	2.140	2.182	41.486	709.842
Monsanto DKC 48-12	84.248	3.046	1.947	1.962	46.080	714.417
Monsanto DKC 38-03	87.130	3.147	1.989	2.039	42.662	715.612
Monsanto DKC 31-09	91.845	3.055	2.015	2.095	45.279	709.326
Syngenta N29T-3000GT Brand	90.165	3.232	2.065	2.007	44.064	710.683
TR3622 x ND2004	99.695	3.013	2.128	2.226	42.301	706.519
ND2004 x LH176	93.998	3.011	2.184	2.220	45.320	708.430

Table 4.4. Selected $S_2 \times T$ maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 1 (non-Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

			/			
Pedigree	PRO	LYS	MET	CYS	OIL	STARCH
	(g Kg ⁻¹)					
Checks:						
TR3622 x ND2000	95.519	2.971	2.058	2.174	45.482	708.082
TR3622 x TR4010	87.672	2.893	1.996	2.082	43.489	715.896
TR3030 x TR3622	92.977	3.048	2.044	2.091	45.152	708.461
GP2678 X TR3046	92.202	3.104	2.113	2.110	39.980	712.272
Mean of selections	98.472	3.279	2.198	2.155	44.744	702.377
Checks mean	91.646	3.069	2.064	2.104	43.578	710.988
Exp. Mean	96.447	3.182	2.137	2.143	43.865	705.810
EMS	0.2641	0.0002	0.0001	0.0001	0.0415	0.259
LSD, 0.05	10.073	0.246	0.235	0.183	3.992	9.971
CV,%	0.53	0.39	0.56	0.44	0.46	0.07

[†]:MOIST, harvest moisture; TWT, harvest test weight; DA, days to anthesis emergence; DS, days to silking; PRL, percentage of root lodging; PSL, percentage of stalk lodging; PRO, protein; LYS, Lysine; MET, Methionine; CYS, Cysteine.

[§] mean of selected entries, [¶]mean of checks, [#] mean of experiment.

Selection were carried out by sorting yield in descending order and then sorting by lysine level in descending order, then selected S_2 testcrosses were screened for lower moisture, higher test weight, lower per cent root and stalk lodging, and lower days to anthesis and silking, higher protein, and methionine. The basis of selection was comparing the selected S_2 testcrosses with best check and mean values of checks for respective traits.

Table 4.5. Selected $S_2 \times T$ maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 2 (Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits

Pedigree	Yield	MOIST [†]	Weight	DA	DS	EH	PH	PRL	PSL
	(Mg ha ⁻¹)	(%)	$(Kg hL^{-1})$	(days)	(days)	(cm)	(cm)	(%)	(%)
[(QPM43 X ND2006) x (ND2006)-10]-5-2 x T2	7.2	13.7	73.5	65.7	66.7	104.6	226.2	3.4	15.6
[(QPM43 X ND2006) x (ND2006)-18]-3-1 x T2	6.3	13.5	71.0	65.0	66.6	103.2	222.5	3.4	17.6
[(QPM43 X ND2006) x (ND2006)-8]-1-3 x T2	7.2	15.9	72.4	66.7	67.0	106.3	231.9	7.3	13.8
[(QPM38 X ND2006) x (ND2006)-8]-7-2 x T2	6.9	15.6	74.4	65.5	66.2	97.3	216.8	4.7	14.2
[(QPM38 X ND2006) x (ND2006)-5]-2-2 x T2	6.3	15.1	71.7	66.8	67.2	101.7	217.4	3.6	13.6
[(QPM43 X ND2006) x (ND2006)-8]-2-1 x T2	6.4	14.0	71.7	65.2	66.3	99.6	221.3	9.9	13.5
[(QPM43 X ND2006) x (ND2006)-17]-4-2 x T2	6.3	13.9	72.6	64.4	65.0	108.1	225.4	0.0	23.4
[(QPM43 X ND2006) x (ND2006)-1]-3-3 x T2	6.9	13.7	74.9	64.7	65.4	95.0	220.7	4.7	8.1
[(QPM38 X ND2006) x (ND2006)-5]-5-3 x T2	7.2	13.4	72.8	65.4	66.6	95.9	217.8	2.3	15.0
[(QPM38 X ND2006) x (ND2006)-3]-3-2 x T2	7.1	15.4	71.3	65.9	66.6	94.1	217.0	9.7	14.9
[(QPM43 X ND2006) x (ND2006)-18]-3-3 x T2	6.2	14.2	72.7	63.1	64.3	90.4	205.9	5.6	13.0
[(QPM43 X ND2006) x (ND2006)-11]-3-3 x T2	6.5	15.9	71.2	66.2	66.6	103.3	227.4	5.5	11.2
[(QPM43 X ND2006) x (ND2006)-10]-5-3 x T2	6.7	13.9	72.9	65.5	66.2	94.3	212.5	9.6	11.7
[(QPM43 X ND2006) x (ND2006)-17]-4-1 x T2	7.2	14.4	72.1	65.5	66.1	107.4	227.1	3.2	16.9
[(QPM38 X ND2006) x (ND2006)-5]-5-2 x T2	7.3	15.4	72.2	67.7	68.6	105.8	230.2	9.5	11.4
[(QPM43 X ND2006) x (ND2006)-18]-1-1 x T2	6.6	16.2	72.4	66.3	66.7	93.6	220.1	5.9	11.1
[(QPM38 X ND2006) x (ND2006)-3]-1-1 x T2	6.5	14.2	74.9	65.7	66.7	90.4	213.3	5.5	13.7
Checks:									
Pioneer Brand 39V07	5.8	12.2	72.7	63.3	64.2	100.4	210.7	0.0	9.1
Pioneer 38N88	7.9	13.7	73.1	67.3	67.3	103.9	217.5	0.0	8.5
Pioneer 39N99	6.8	14.0	73.8	65.3	65.9	97.4	218.0	3.0	8.3
Monsanto DKC 35-43	5.9	12.6	76.4	66.4	66.2	93.8	215.1	0.9	10.2

Table 4.5. Selected $S_2 \times T$ maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 2 (Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

Pedigree	Yield	MOIST	Weight	DA	DS	EH	PH	PRL	PSL
	(Mg ha ⁻¹)	(%)	$(Kg hL^{-1})$	(days)	(days)	(cm)	(cm)	(%)	(%)
Checks:									
Monsanto DKC 33-54	5.5	12.5	73.9	61.8	62.5	85.3	202.2	0.0	9.9
Monsanto DKC 36-34	7.2	13.2	75.2	63.9	64.2	83.5	210.1	0.7	9.2
Monsanto DKC 30-20	5.7	12.1	76.5	62.1	62.3	90.4	217.8	0.2	7.6
Monsanto DKC 48-12	7.6	15.4	70.6	69.3	69.7	99.2	227.8	9.0	10.7
Monsanto DKC 38-03	7.6	13.8	72.7	67.0	67.5	93.5	223.6	1.1	13.3
Monsanto DKC 31-09	6.4	12.3	72.8	62.3	62.8	85.9	216.3	2.0	7.9
Syngenta N29T-3000GT Brand	8.9	13.7	71.1	69.0	69.8	110.4	233.3	6.0	7.7
TR3622 x ND2004	5.5	13.7	74.1	63.9	64.3	88.6	211.0	5.0	15.6
ND2004 x LH176	5.2	15.2	75.4	63.3	63.7	90.6	207.6	2.0	13.5
TR3622 x ND2000	5.4	12.7	73.0	63.9	65.1	91.5	204.1	1.0	13.9
TR3622 x TR4010	6.8	14.1	75.2	66.2	66.7	96.8	221.5	7.0	10.2
TR3030 x TR3622	7.5	14.0	72.4	65.8	66.3	99.9	220.0	1.1	10.0
GP2678 X TR3046	7.3	13.1	72.3	66.8	66.8	105.0	236.1	2.6	8.7
Mean of selections [§]	6.75	14.60	72.62	65.60	66.40	99.48	220.78	5.51	14.05
Checks mean [¶]	6.64	13.43	73.60	65.14	65.59	95.06	217.20	2.45	10.25
Exp. Mean [#]	6.47	14.34	73.04	65.33	66.07	96.01	217.21	4.44	13.06
EMS	1.72	1.00	7.87	1.52	1.53	26.42	29.23	41.57	65.78
LSD, 0.05	2.57	1.96	5.50	2.41	2.43	10.08	10.60	12.64	15.90
CV,%	20.28	6.99	3.84	1.89	1.87	5.35	2.49	145.25	62.11

Table 4.5. Selected S₂ x T maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 2 (Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

Pedigree	PRO	LYS	MET	CYS	OIL	STARCH
	(g Kg ⁻¹)					
[(QPM43 X ND2006) x (ND2006)-10]-5-2 x T2	101.377	3.141	2.352	2.360	48.523	696.770
[(QPM43 X ND2006) x (ND2006)-18]-3-1 x T2	100.324	3.123	2.253	2.360	46.758	699.785
[(QPM43 X ND2006) x (ND2006)-8]-1-3 x T2	100.694	3.118	2.268	2.358	48.414	697.765
[(QPM38 X ND2006) x (ND2006)-8]-7-2 x T2	101.731	3.108	2.259	2.393	48.476	696.767
[(QPM38 X ND2006) x (ND2006)-5]-2-2 x T2	96.213	3.107	2.226	2.304	50.506	698.068
[(QPM43 X ND2006) x (ND2006)-8]-2-1 x T2	96.349	3.100	2.215	2.291	46.623	703.846
[(QPM43 X ND2006) x (ND2006)-17]-4-2 x T2	96.721	3.087	2.192	2.295	47.688	702.343
[(QPM43 X ND2006) x (ND2006)-1]-3-3 x T2	102.202	3.084	2.275	2.390	47.682	697.638
[(QPM38 X ND2006) x (ND2006)-5]-5-3 x T2	97.392	3.073	2.181	2.352	48.258	700.187
[(QPM38 X ND2006) x (ND2006)-3]-3-2 x T2	94.373	3.070	2.133	2.286	48.406	702.629
[(QPM43 X ND2006) x (ND2006)-18]-3-3 x T2	100.016	3.070	2.206	2.346	48.169	698.945
[(QPM43 X ND2006) x (ND2006)-11]-3-3 x T2	100.597	3.068	2.235	2.354	48.826	697.505
[(QPM43 X ND2006) x (ND2006)-10]-5-3 x T2	96.145	3.064	2.185	2.279	48.204	702.605
[(QPM43 X ND2006) x (ND2006)-17]-4-1 x T2	98.437	3.059	2.185	2.294	48.774	699.892
[(QPM38 X ND2006) x (ND2006)-5]-5-2 x T2	95.114	3.054	2.174	2.334	50.253	699.471
[(QPM43 X ND2006) x (ND2006)-18]-1-1 x T2	95.190	3.053	2.145	2.258	49.394	701.401
[(QPM38 X ND2006) x (ND2006)-3]-1-1 x T2	99.916	3.053	2.196	2.369	49.200	697.793
Checks:						
Pioneer Brand 39V07	91.908	3.170	2.116	2.203	43.692	708.974
Pioneer 38N88	85.162	3.079	2.007	2.062	47.019	713.009
Pioneer 39N99	85.166	2.941	1.973	2.118	48.938	710.146
Monsanto DKC 35-43	85.807	2.992	1.958	2.098	43.129	715.992

Table 4.5. Selected S₂ x T maize hybrids, from combined analyses across six environments (2013 Fargo, 2013 Casselton, 2013 Prosper, 2014 Fargo, 2014 Casselton, 2014 Prosper), of trial 2 (Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

Pedigree	PRO	LYS	MET	CYS	OIL	STARCH
	(g Kg ⁻¹)					
Checks:						
Monsanto DKC 33-54	90.835	3.019	1.989	2.163	44.078	710.299
Monsanto DKC 36-34	88.593	2.954	2.008	2.135	45.524	710.559
Monsanto DKC 30-20	94.446	3.049	2.100	2.258	43.712	708.634
Monsanto DKC 48-12	82.360	3.022	1.930	2.016	48.239	713.461
Monsanto DKC 38-03	83.134	3.017	1.979	2.110	46.409	714.272
Monsanto DKC 31-09	91.980	3.052	2.067	2.140	48.229	705.442
Syngenta N29T-3000GT Brand	85.512	3.003	2.030	2.038	45.961	712.255
TR3622 x ND2004	93.968	2.929	2.066	2.240	45.288	708.281
ND2004 x LH176	93.173	2.995	2.199	2.324	46.457	707.214
TR3622 x ND2000	94.769	2.997	2.064	2.268	47.564	706.057
TR3622 x TR4010	85.637	2.886	1.964	2.174	46.595	713.870
TR3030 x TR3622	90.340	3.029	2.112	2.195	47.519	707.002
GP2678 X TR3046	88.236	2.972	2.007	2.178	41.800	713.007

\mathcal{B}	0 0	0 - 7 -	., <u>o</u> ., <u>1</u>			(11)
Pedigree	PRO	LYS	MET	CYS	OIL	STARCH
	(g Kg ⁻¹)	(g Kg ⁻¹)	(g Kg ⁻¹)	(g Kg ⁻¹)	(g Kg ⁻¹)	(g Kg ⁻¹)
Mean of selections	98.40	3.084	2.217	2.331	48.480	699.612
Checks mean	88.88	3.006	2.034	2.160	45.891	710.499
Exp. Mean	95.25	3.027	2.152	2.300	47.488	703.561
EMS	0.2212	0.0001	0.0001	0.0001	0.0318	0.1851
LSD, 0.05	9.218	0.210	0.218	0.183	3.494	8.432
CV,%	0.49	0.35	0.52	0.41	0.38	0.06

Table 4.5. Selected $S_2 \times T$ maize hybrids, from combined analyses across six environments, of trial 2 (Stiff Stalk group), based on a relative combination of lower grain moisture, stalk/root-lodging and higher yield, grain quality, and nutritional traits (continued)

[†]:MOIST, harvest moisture; TWT, harvest test weight; DA, days to anthesis emergence; DS, days to silking; PRL, percentage of root lodging; PSL, percentage of stalk lodging; PRO, protein; LYS, Lysine; MET, Methionine; CYS, Cysteine.

[§] mean of selected entries, [¶]mean of checks, [#] mean of experiment.

Selection were carried out by sorting yield in descending order and then sorting by lysine level in descending order, then selected S₂ testcrosses were screened for lower moisture, higher test weight, lower per cent root and stalk lodging, and lower days to anthesis and silking, higher protein, and methionine. The basis of selection was comparing the selected S₂ testcrosses with best check and mean values of checks for respective traits.

GENERAL CONCLUSION

Based on the early-generation hybrid yield trials results, a totall of 48 S₂ lines were selected for further development (31 from the non-SS group and 17 from the SS-group). All the selected lines have potential to develop short season inbred lines and hybrids with high grain yield and protein content, high levels of lysine, tryptophan, and methionine.

The results of this research show, for the first time, the successful adaptation of QPM genotypes to short-season environments. NDSU, through its maize breeding program and the uniqueness of this particular project, lead the first national program to adapt Quality Protein Maize (QPM) genotypes to the northern U.S. and to extensively evaluate elite and adapted populations, lines, and hybrids for amino acid composition. As a consequence, we are providing added value to U.S. northern farmers and ranchers by developing NDSU corn hybrids for not only ethanol utilization but also for high quality protein products, the next generation of healthier hybrids through the NDSU EarlyQPM and EarlyQPMF programs.

REFERENCES

- Akuamoa-Boateng, A. 2002. Quality Protein Maize: Infant Feeding Trials in Ghana. Ghana
 Health Service, Ashanti, Ghana. Cochran, W.G., and G.M. Cox. 1957. Experimental
 Design. 2nd ed. John Wiley & Sons, Inc. New York, NY.
- Babu, R., S.K. Nair, A. Kumar, S. Venkatesh, J.C. Sekhar, N.N. Singh, G. Srinivasan, and H.S.
 Gupta. 2005. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theoretical and Applied Genetics 111:888-897.
- Betran, F.J., A.J. Bockholt, F. Fojit, and G. Odvoy. 2003a. Registration of Tx807 maize line. Crop Sci. 43:1892-1893.
- Betran, F.J., A.J. Bockholt, F. Fojit, and L. Rooney. 2003b. Registration of Tx811 maize line. Crop Sci. 43:1893-1894.
- Betran, F.J., A.J. Bockholt, F. Fojit, and R. Waniska. 2003c. Registration of Tx802 maize line. Crop Sci. 43:1891-1892
- Bhatia, C.R. and R. Rabson. 1987. Relationship of grain yield and nutritional quality. In:R.A. Olson and K.I. Frey (eds) Nutritional quality of cereal grains: Genetics and agronomic management, American Scociety of Agronomy, Madison, WI. pp.11-14.
- Bhatnagar, S., F.J. Betran, and L.W. Rooney. 2004. Combining ability of quality protein maize inbreds. Crop Sci. 44:1997-2005.
- Birkelo, C.P., R.H. Pritchard, M. Buhman, S. Grosch, and C. Willms. 1994. Net energy of finishing diets containing light or normal test weight corn. South Dakota State Univ. Beef Rep. 94:2-4.

- Bjarnason, M., and S.K. Vasal. 1992. Breeding of quality protein maize (QPM). Plant Breeding Reviews 9:181-216.
- Bressani, R. 1992. Nutritional value of high-lysine maize in humans. In E.T. Mertz (ed.). Quality Protein Maize. American Association of Cereal Chemists, St. Paul, MN.
- Burgoon, K.G., J.A. Hansen, D.A. Knabe, and A.J. Bockholt. 1992. Nutritional value of quality protein maize for starter and finisher swine. Journal of Animal Science 70:811-817.
- CIMMYT. 2000. CIMMYT in 1999-2000: Science and Sustenance. CIMMYT, Mexico D.F., Mexico.
- Crow, J.F., and J. Kermicle. 2002. Oliver Nelson and quality protein maize. Genetics 160:819. Doebley, J. 2004. The genetics of maize evolution. Annu. Rev. Genet. 38: 37–59.
- Dale, N. 1994. Relationship between bushel weight, metabolizable energy, and protein content of corn from an adverse growing season. J. Appl. Poultry Res. 3:83-86.
- Doebley, J.F. 2004. The genetics of maize evolution. Annual Review of Genetics 38: 37-59
- Dreher, K., M. Khairallah, J.M. Ribaut, and M. Morris. 2003. Money matters (I): Costs of field and laboratory procedures associated with conventional and marker assisted maize breeding at CIMMYT. Molecular Breeding 11:221-234.
- FAO. 1992. Maize in human nutrition. FAO, Rome.
- FAO. 2009. Maize in human nutrition. FAO, Rome.
- Food and Agriculture Organization of the United Nations(FAO). 2015. Statistics Division [On line] available at http://faostat3.fao.org (accessed on 12 June 2015)
- Gevers, H.O. 1995. QPM breeding in Africa. In: B.A. Larkins and E.T. Martz (Eds.). Quality Protein Maize: 1964-1994. Proceedings of the International Symposium on Quality

Protein Maize. 1-3 December 1994, EMBRAPA/CNPMS, Sete Lagoas, Brazil. pp. 217-229

- Gevers, H.O., and J.K. Lake. 1992. Development of modified opaque-2 maize in South Africa.In: E. T Mertz (Eds.). Quality Protein Maize. American Association of Cereal Chemists, St. Poul, Minnesota, USA. pp. 49-78.
- Gibbon, B.C., and B.A. Larkins. 2005. Molecular genetic approaches to developing quality protein maize. Trends in Genetics 21:227-233.
- Glover, D.V., Corn Protein-Genetics, breeding, and value in foods and feeds, in quality protein maize, Mertz, E. T., Ed., American Association of Cereal Chemists, St. Paul, MN, 1992,9.
- Gomez, K.A., and A.A. Gomez. 1984. Statistical procedures for agricultural research. 2nd ed. Wiley, New York, NY.
- Graham, G.G., J. Lembcke, E. Lancho, and E. Morales. 1989. Quality protein maize: Digestibility and utilization by recovering malnourished infants. Pediatrics 83:416-421.
- Hadji, T.H. 2004. Combining ability analysis for yield and yield-related traits in quality protein maize (QPM) inbred lines. M.Sc. Thesis., School of graduate studies, Alemaya University, Ethiopia.
- Hall, G.E. 1972. Test weight changes of shelled corn during drying. Tans. ASAE 15:320-323.
- Harrelson, F.W., G.E. Erickson, T.J. Klopfenstein, D.S. Jackson and W.A. Fithian. 2008.
 Influence of corn hybrid, kernel traits and growing location on digestibility, animal science department Nebraska beef cattle reports. The Board of Regents of the Univ. of Nebraska.
- Helm, J.L., and M.S. Zuber. 1972. Inheritance of Pericarp Thickness in Corn Belt Maize. Crop Sci. 12: 428-430.

- Hernandez, H.H., and L.S. Bates. 1969. A modified method for rapid tryptophan analysis in maize. CIMMYT Research Bulletin no. 13.Ontario. Crop Sci. 14:546-548.
- Hilliard, J.H., and T.B. Daynard. 1974. Starch content, test wight, and other quality parameters of corn produced in different maturity areas of
- Hohls, T., P.E. Shanahan, G.P. Clarke, and H.O. Gevers. 1996. Genetic control of kernel modification found in South African quality protein maize inbred lines. Euphytica 87:103-109.
- Idikut, L., A.I. Atalay, S.N. Kara and A. Kamalak. 2009. Effect of hybrid on statch, protein and yields of maize grain. J. Anim. Vet. Adv. 8:1945-1947
- Johnston, J.L. 1995. Use of low-test-weight corn in swine diets and the lysine/protein relationship in corn. Swine Hlth. Prob. 3:161-164.
- Krivanek, A.F., H. De Groote, N.S. Gunaratna, A.O. Diallo, and D. Friesen. 2007. Breeding and disseminating quality protein maize (QPM) for Africa. African J. Biotech. 6: 312-324.
- Leeson, S., A. Yersin, and L. Volker. 1993. Nutritive value of 1992 corn crop. J. Appl. Pourtry Res. 2:208-213.
- Lin, K.R., A.J. Bockholt, C.W. Magill, and J.D. Smith. 1997. Changes in soluble endosperm proteins associated with selection of quality protein maize lines. Maydica 42:355-362.
- Lonnquist, J.H. 1964. Modification of the ear-to-row procedure for the improvement of maize populations. Crop Sci. 4:227-228.
- Lopes, M.A., and B.A. Larkins. 1996. Molecular biology and traditional breeding applied to the improvement of maize nutritional quality. In: B.W.S. Sobral (Ed.). The impact of plant molecular genetics. Birkhauser, Boston, USA. pp. 273-296.

- Mertz, E.T. 1995. Thirty years of opaque-2 maize. In: B.A. Larkins and E.T. Martz (Eds.).Quality protein maize: 1964-1994. Proceedings of the Intrnational Symposium on QualityProtein Maize. 1-3 December 1994, EMBRAPA/CNPMS, Sete Lagos, Brazil. 1-9.
- Millward, D., and J.P.W. Rivers. 1989. The need for indispensable amino acids: The concept of the anabolic drive. Diabetes Metabolism Reviews 5: 191-212.
- Moro, G.A., M.A. Lopes, J.E. Habben, B.R. Hamaker, and B.A. Larkins. 1995. Phenotypic effects of opaque-2 modifier genes in normal maize endosperm. Cereal Chemistry 72:94-99.
- Moro, G.L., J.E. Habben, B.R. Hamaker, and B.A. Larkins. 1996. Characterization of the variability in lysine content for normal and opaque-2 maize endosperm. Crop Sci. 36:1651-1659.
- National Research Council. 1988. Quality Protein Maize. National Academy Press, Washington, D.C.
- Ortega, A., C. De Leon, G. Granados, and S.K. Vasal. 1975. Disease-insect interactions in quality protein maize. In *High Quality Protein Maize*, Hutchinson Ross Publishing, Stroudsburg, PA, pp. 178-192.
- Osborne, T.B., and L.B. Mendel. 1914. Nutritive properties of maize kernel. Journal of Biological Chemistry 18:1-16.
- Patterson, H.D., and V. Silvey. 1980. Statutory and recommended list trails of crop varieties in the United Kingdom. J. R. Statics. Soc. 143:219-252.
- Patterson, R., J. Tuitoek, and L. Young. 1993. Nutritional value of immature corn of different stalk density for young pigs. J. Anim. Sci. 70 (Suppl.1):157(Abs.).

- Pixley, K.V., and M.S. Bjarnason. 2002. Stability of grain yield, endosperm modification, and protein quality of hybrid and open-pollinated quality protein maize cultivars. Crop Sci. 42:1882-1890.
- Prasanna, B.M., S.K. Vasal, B. Kassahun, and N.N. Singh. 2001. Quality Protein Maize. Current Sci. 81: 1308-1319.
- Reed, R., J.D. Latshaw, and M.S. Lilburn. 1993. The relationship between bushel weight, kernel weight, and nutrient content of commercial corn hybrids. Poultry Sci. 72:127.

SAS Institute Inc., SAS, Version 9.3, Cary, NC: SAS Institute Inc., 2009.

- Schmidt R.J., F.A. Burr, M.J. Aukerman, and B. Burr. 1990. Maize regulatory gene opaque-2 encodes a protein with a "leicine-zipper" motif that binds to zein DNA. Proc Natl Acad Sci USA 87:46-50
- Scott, M.P., S. Bhatnager, and J. Betran. 2004. Tryptophan and methionine levels in quality protein maize breeding germplasm. Maydica 49:303–311.
- United States Department of Agriculture (USDA). 2015. Economic Research Service [On line] available at http://www.ers.usda.gov (accessed on 06 May 2015).
- Vasal, S.K. 2000. The quality protein maize story. Food and Nutrition Bulletin 21:445-450.
- Vasal, S.K. 2001. High quality protein corn. *In* A.R. Hallauer (ed.) Specialty corns. CRC Press, Boca Raton, FL. p. 85–129.
- Vasal, S.K. 2002. Quality Protein Maize: Overcoming the Hurdles. Journal of Crop Production 6:193-227.
- Vasal, S.K., E. Villegas, and C.Y. Tang. 1984a. Recent advances in the development of quality protein maize germplasm at CIMMYT. In: Cereal Grain Protein Improvement (Eds.). International Atomic Energy Agency, Vienna. pp. 167-189.

- Vasal, S.K., E. Villegas, C.Y. Tang, J. Werder, and M. Read. 1984b. Combined use of two genetic systems in the development and improvement of quality protein maize. Kulturpflanze 32:171-185.
- Vasal, S.K., E. Villegas, M. Bjarnason, B. Gelaw, and P. Goertz. 1980. Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. In: W.G. Pollmer and R.H. Phipps (Eds.). Improvement of quality traits of maize for grain and silage use. Nijhoff, The Hague, Netherlands. pp. 37–71.
- Vasal, S.K., G. Srinivasan, C.G. Gonzales, D.L. Beck, and J. Crossa. 1993a. Heterosis and combining ability of CIMMYT's QPM maize germplasm. II. Subtropical. Crop Sci. 33: 51-55.
- Vasal, S.K., G. Srinivasan, S. Pandey, C.F. Gonzalez, D.L. Beck, and J. Crossa. 1993b. Heterosis and combining ability of CIMMYT's QPM maize germplasm. I. Lowland Tropical. Crop Sci. 33: 46-50.
- Vietmeyer, N.D. 2000. A drama in three long acts: the story behind the story of the development of quality-protein maize. Diversity 16:29-32.
- Villegas, E., S.K. Vasal, and M. Bjarnason. 1992. Quality protein maize What is it and how was it developed, p. 27- 48, *In* E. T. Mertz, ed. Quality Protein Maize. American Association of Cereal Chemists, St. Paul, Minnesota.
- Vivek B.S., A.F. Krivanek, N. Palacios-Rojas, S. Twumasi-Afriyie, and A.O. Diallo. 2008.Breeding quality protein maize (QPM): protocols for developing QPM cultivars. Mexico,D.F.: CIMMYT.

- Wallace, J.C., M.A. Lopes, E. Paiva, and B.A. Larkins. 1990. New methods for extraction and quantitation of zeins reveal a high content of Gamma-zein in modified opaque-2 maize. Plant Physiology 92:191-196.
- Wang, X.L., Y.M. Woo, C.S. Kim, and B.A. Larkins. 2001. Quantitative trait locus mapping of loci influencing elongation factor 1 alpha content in maize endosperm. Plant Physiology 125:1272-1282.
- Weichenthal, B.A., I.G. Rush, and B.G.V. Pelt. 1998. Light-test weight for growing and finishing steers. The Professional Animal Scientist 14:114-117.
- Wu, R.L., X.Y. Lou, C.X. Ma, X.L. Wang, B.A. Larkins, and G. Casella. 2002. An improved genetic model generates high resolution mapping of QTL for protein quality in maize endosperm. Proceedings of the National Academy of Sciences of the United States of America 99:11281-11286.
- Xingming, F., T. Jing, H. Bihua, and L. Feng. 2004. Analysis of combining ability and heterotic groups of yellow grain quality protein maize inbreds. In: D.K. Friesen and A.F.E. Palmer (Eds.). Integrated Approaches to Higher Maize Productivity in the New Millennium:
 Proceedings of the 7th Eastern and Southern Africa Regional Maize Conference. 5-11
 February 2002, CIMMYT/KARI, Nairobi, Kenya. pp. 143–148.
- Zuber,M.S., and J.L. Helm. 1975. Approches to improving protein quality in maize without the use of specific mutants, in high-quality protein maize. Hutchinson Ross Publishing. Stroudsburg,PA. 241