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ABSTRACT 

This year (2015), according to the AGA’s (American Gaming Association) research, nearly 

about 40 million people filled out about 70 million March Madness brackets (Moyer, 2015). Their 

objective is to correctly predict the winners of each game. This paper used the probability self-

consistent (PSC) model (Shen, Hua, Zhang, Mu, Magel, 2015) to make the prediction of all 63 

games in the NCAA Men's Division I Basketball Tournament. PSC model was first introduced by 

Zhang (2012). The Logit link was used in Zhang’s (2012) paper to connect only five covariates 

with the conditional probability of a team winning a game given its rival team. In this work, we 

incorporated fourteen covariates into the model. In addition to this, we used another link function, 

Cauchit link, in the model to make the predictions. Empirical results show that the PSC model 

with Cauchit link has better average performance in both simple and doubling scoring than Logit 

link during the last three years of tournament play. 

In the generalized linear model, maximum likelihood estimation is a popular method for 

estimating the parameters; however, convergence failures may happen when using large dimension 

covariates in the model (Griffiths, Hill, Pope, 1987). Therefore, in the second phase in this study, 

Bayesian inference is used for estimating in the parameters in the prediction model. Bayesian 

estimation incorporates prior information such as experts’ opinions and historical results in the 

model. Predictions from three years of March Madness using the model obtained from Bayesian 

estimation with Logit link will be compared to predictions using the model obtained from 

maximum likelihood estimation.     
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1. INTRODUCTION 

1.1. Research Objective 

NCAA March Madness is a phenomenon that catches sports fans’ eyes from the second 

week of March through the first week of April. The NCAA tournaments are an American tradition 

that sends millions of fans into a synchronized frenzy each year. It's this chaos that gives the 

tournament its March Madness nickname. This work will focuses on bracketing the NCAA Men’s 

Division I Basketball Tournament based on probability self-consistent (PSC) model. This model 

was first introduced by Zhang (2012). The Logit link was used in his paper to connect the five 

covariates with the conditional probability of a team winning a game given its rival team. 

Maximum likelihood estimation was applied to estimate the unknown coefficients.  

In this work, we will first employ the Cauchit link to the PSC model for use in bracketing 

for March Madness (Shen et al., 2015), we will also consider using more covariates in the model. 

Bracket development using the Cauchit link and Logit link will be completed and compared with 

the actual results from March Madness over a 3 year period of time.  

In the second phase, we will develop Bayesian estimation in place of maximum likelihood 

estimation for use in the PSC model with Logit link. Bracketing with Logit link will be done using 

Bayesian inference and compared to the actual results obtained from March Madness.  

1.2. The Playing Rule and Structure 

The National Collegiate Athletic Association (NCAA) Men's Division I Basketball 

Tournament, more commonly known as March Madness, is a single-elimination tournament that 

starts each March. Before describing the model, we provide a short introduction to the NCAA 

March Madness for those who might not be familiar.  
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Currently 68 college basketball teams are playing in each year. They are divided into four 

regions (East, South, Midwest, and West) and each team is ranked from 1 to 16 in its region. Eight 

of 68 teams first play four games, which are called the First4. Finally, 64 teams are determined 

and brackets are filled out. After six rounds, namely, Round64 (Rd64), Round32 (Rd32), Sweet16, 

Elite8, Final4 and the Championship, the national title is awarded to the team with six wins. In 

Rd64, 64 teams play 32 games, 32 teams play 16 games in Rd32, 16 teams play 8 games in 

Sweet16, 8 teams play 4 games in Elite8, 4 teams play 2 games in Final4, and 2 teams fight for the 

Championship. Starting with Rd64, there are 63 games played each year (NCAA Basketball 

Championship, 2015). Figure 1 shows the NCAA Men’s Division I Basketball Tournament bracket 

and complete tournament results in 2014-2015 season.   

1.3.  Qualifying Procedure 

There are more than three hundred eligible Division I teams only, and 68 teams make it 

into the March Madness. The 68 qualifying teams are from two bids: Automatic bids; and at-large 

bids (2015 NCAA Basketball Tournament, 2015). There are 32 teams who qualify from automatic 

bids, with 31 of these bids granted to the winner of the conference tournament championship. The 

only exception is the Ivy League which does not hold a conference tournament. For this league, 

the bid goes to the team with the best regular-season record. However, if two or more teams are 

tied for the best regular-season record, the league will hold a one-game playoff between the top 

two (or a series of such playoffs if more than two teams are tied) (NCAA basketball selection 

process, 2015). Table 1 shows the Automatic qualifiers in 2015 March Madness.  

The remaining 36 at-large bids are granted by the NCAA Selection Committee to the teams 

it feels are the best 36 teams that did not receive automatic bids. Even though each conference 

receives only one automatic bid, the selection committee may select any number of at-large teams 
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from each conference (NCAA basketball selection process, 2015). The at-large teams generally 

come from college basketball's top conferences, including the ACC, The American, Atlantic-10, 

Big 12, Big East, Big Ten, Conference USA, Mountain West, Pac-12, and SEC. Table 2 is at-large 

qualifiers in 2015 March Madness (2015 NCAA Basketball Tournament, 2015). 

Table 1. Automatic qualifiers for the 2015 NCAA March Madness 

Conference Team Conference Team 
ACC Notre Dame MAC Buffalo 

America East Albany MEAC Hampton 
A–10 VCU Missouri Valley Northern Iowa 

American SMU Mountain West Wyoming 
Atlantic Sun North Florida Northeast Robert Morris 

Big 12 Iowa State Ohio Valley Belmont 
Big East Villanova Pac-12 Arizona 
Big Sky Eastern Washington Patriot Lafayette 

Big South Coastal Carolina SEC Kentucky 
Big Ten Wisconsin Southern Wofford 
Big West UC Irvine Southland Stephen F. Austin 
Colonial Northeastern SWAC Texas Southern 
C-USA UAB Summit North Dakota State 
Horizon Valparaiso Sun Belt Georgia State 

Ivy League Harvard West Coast Gonzaga 
MAAC Manhattan WAC New Mexico State 
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Figure 1. NCAA 2015 March Madness bracket with complete tournament results (This template 
is downloaded from: www.samplewords.com/ncaa-blank-printable-tournament-bracket/)  
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Table 2. At-large qualifiers for the 2015 NCAA March Madness 

Conference Team Conference Team 
ACC Virginia Big 12 Baylor 
ACC Louisville Big 12 Oklahoma State 
ACC North Carolina State Big East Butler 
ACC Duke Big East Providence 
ACC North Carolina Big East Georgetown 

American Cincinnati Big East St. John's 
Atlantic 10 Dayton Big East Xavier 
Atlantic 10 Davidson Missouri Valley Wichita State 

Big 10 Maryland Mountain West Boise State 
Big 10 Purdue Mountain West San Diego State 
Big 10 Indiana Pac 12 Utah 
Big 10 Michigan State Pac 12 UCLA 
Big 10 Iowa Pac 12 Oregon 
Big 10 Ohio State SEC Louisiana State 
Big 12 Kansas SEC Georgia 
Big 12 West Virginia SEC Arkansas 
Big 12 Texas SEC Ole Miss 
Big 12 Oklahoma West Coast BYU 

 

Before the bracket of 64 teams is put together each year, eight teams - the four lowest-

seeded automatic qualifiers and the four lowest-seeded at-large teams will play in the First Four. 

The winners of these games advance to the Rd64. The two winning teams from automatic bids 

will be seeded 16 and the winners from at-large bids will be seeded 11 (NCAA Basketball 

Championship, 2015). The First Four games played in 2015 March Madness are shown in Table 3 

(2015 NCAA Basketball Tournament, 2015). 
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Table 3. First Four games in 2015 NCAA March Madness 

At-large Automatic At-large Automatic 
 West Region (11) Midwest Region (16) East Region (11) South Region (16) 

BYU Hampton Boise State North Florida 
Ole Miss Manhattan Dayton Robert Morris 

 

In terms of bracketing the result of NCAA Men’s Division I Basketball Tournament, this 

work will only focus on the last six rounds of the tournament beginning with Rd64. The First4 

games will be excluded. 

1.4. Bracket Scoring System 

Two types of scoring systems will be considered: one is the doubling scoring system, and 

the other is the simple scoring system (Shen et al., 2015). There are 6 rounds in the tournament. 

Under the doubling points system, for each correct pick, one point will be awarded in the first 

round, two points will be awarded in the second round, four points will be awarded in the third 

round, and so on. In this system, one might not care about the individual rounds since predicting 

the correct champion is worth as much as the entire Rd64 combined. The system puts more weight 

on later rounds rather than the first several rounds.  

Under the simple system: each correct pick will be awarded one point regardless of which 

round. In this system, one really cares about every single game in the whole tournament with no 

prediction discrimination existing among rounds. Table 4 is the summary of the NCAA Men’s 

Division I Basketball Tournament scoring system. 

Table 4. Scoring systems 

  Rd64 Rd32 Sweet16 Elite8 Final4 Championship total 
Number of games 32 16 8 4 2 1 63 

Simple 1 1 1 1 1 1 63 
Doubling 1 2 4 8 16 32 192 
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2. LITERATURE REVIEW 

For predicting outcomes of games in the NCAA tournament, Schwertman, Schenk and 

Holbrook (1996) used seed position to estimate the probability of each of the 16 seeds winning the 

regional tournament. It seems reasonable to use some function of seed positions because seeds 

were determined by a consensus of experts. 

Magel and Unruh (2013) used both least squares regression and logistic regression to 

determine the key factors that influence the NCAA Men’s Division I college basketball games. 

Least squares regression was used to develop a model to predict point spread, and logistic 

regression was used to develop a model to estimate the probability of winning a game. Magel and 

Unruh found four in-game statistics to be significant in both the least squares regression model 

and the logistic regression model. The in-game statistics found to be significant were free throw 

attempts, defensive rebounds, assists and turnovers. 

Nelson (2012) used a logistic regression model to predict the probability that the higher 

seeded team beat the lower seeded team in each of the 63 games in March Madness. Bayesian 

inference was used in identifying the model that best fits the data as well as finding the coefficients 

of regression. The prior density for each coefficient 𝛽𝛽𝑖𝑖 (𝑖𝑖 = 0,1, … ,𝑛𝑛) was assumed follow normal 

distribution with mean µ𝑖𝑖 and variance 𝜎𝜎𝑖𝑖2, where µ0 = µ1 = ⋯ = µ𝑛𝑛 and 𝜎𝜎02 = 𝜎𝜎12 = ⋯ = 𝜎𝜎𝑛𝑛2 in 

Bayesian estimation. 

Rating Percentage Index, commonly known as the RPI, is a rating system based on a team's 

wins and losses and its strength of schedule (Rating Percentage Index, 2015). It is the method that 

NCAA Basketball Selection Committee used to pick at-large bids and determine the seed in the 

tournament. The current formula is given as follows: 

RPI =  (WP × 0.25) + (OWP × 0.50) + (OOWP × 0.25) (1) 
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where WP is Winning Percentage, OWP is Opponents' Winning Percentage and OOWP is 

Opponents' Opponents' Winning Percentage. One can fill out a bracket using the value of RPI. In 

a single game, the team with higher RPI will go to the next round. Therefore, the team with the 

highest RPI value will win the entire tournament. 

 Jeff Sagarin has been providing ratings for USA TODAY since 1985 (Sagarin ratings, 

2015). He uses each team’s regular season statistics to create a single rating for each team. Exact 

details for this method are not publicly available, so one cannot know the exact method behind this 

rating system. The rating is available on USA TODAY and one can complete the bracket with it. 

Pomeroy’s College Basketball Ratings were first published in 2003 by Ken Pomeroy 

(Pomeroy ratings, 2015). This rating was built upon Pythagorean winning percentage (Pyth) which 

has the formula:  

Pyth =
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 

where AdjO is the adjusted offensive efficiency, an estimate of the offensive efficiency (points 

scored per 100 possessions) that a team would have against the average Division I defense; AdjD 

is the adjusted defensive efficiency, an estimate of the defensive efficiency (points allowed per 

100 possessions) that a team would have against the average Division I offense; and x is an 

exponent that is empirically determined. This x was assigned 10.25 since 2012. However it was 

updated recently. Equivalent to the RPI and Sagarin’s rating, before the March Madness, Pyth for 

each NCAA Division I team is available on kenpom.com and one can complete the bracket with 

it.  

West (2006, 2008) proposes an ordinal logistic regression model and expectation 

(restricted OLRE model) on 𝜋𝜋𝑖𝑖𝑖𝑖, the probability of team i has k winnings in the tournament as 

follows: 

(2) 
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𝜋𝜋𝑖𝑖𝑖𝑖 =
exp (α𝑘𝑘 + 𝒙𝒙𝒊𝒊′𝛃𝛃)

1 + exp (α𝑘𝑘 + 𝒙𝒙𝒊𝒊′𝛃𝛃)
−�𝜋𝜋𝑖𝑖𝑖𝑖

𝑘𝑘−1

𝑗𝑗=0

 

where α𝑘𝑘  is the intercept for k winnings with k = 0, 1, … , k. 𝒙𝒙𝒊𝒊 is a vector of values for team i on 

the predictor variables, 𝛃𝛃 is a vector of coefficients associated with the predictor variables, and 

rthe last term presents the cumulative sum of the probabilities of winning j games (j = 0, 1, … , k −

1). This term would be equal to 0 for k = 0. Putting all 𝜋𝜋𝑖𝑖𝑖𝑖(𝑖𝑖 = 1, 2, … ,64; 𝑘𝑘 = 0,1, … ,6) in a 64 

× 7 matrix, West (2006) requires the sums of each column must be equal to 32, 16, 8, 4, 2, 1, and 

1, respectively. Zhang (2012) rewrote the restricted OLRE model in the form of restricted 

proportional odds model. The second term on the right hand side of equation (3) is moved to the 

left side, then the model (3) can be written as follows 

� 𝑃𝑃
(𝑍𝑍𝑖𝑖 ≤ 𝑘𝑘) =

exp(α𝑘𝑘 + 𝒙𝒙𝒊𝒊′𝛃𝛃)
1 + exp(α𝑘𝑘 + 𝒙𝒙𝒊𝒊′𝛃𝛃) ,𝑘𝑘 = 0, … ,5

𝑃𝑃(𝑍𝑍𝑖𝑖 ≤ 6) = 1                                                          
 

Subject to 

�𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘)
64

𝑖𝑖=1

= 26−𝑘𝑘, k = 1,2, … ,6 

where 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) is the probability that team i wins at least k games. All of the probabilities 

 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘), can be put into a matrix having 64 rows and 6 columns. Each row would represent 

one of the 64 teams. Column 1 would be the estimated probabilities for each team winning at least 

1 game.  Column 2 would be the estimated probabilities for each team winning at least 2 games. 

Columns 3 to 6 would be the estimated probabilities for each team winning at least 3 to 6 games. 

The sum of column 1 equals 32. The sum of columns 2 through 6 equals 16, 8, 4, 2, and 1, 

respectively. The restriction on the sum of the column does not guarantee the legitimacy of the 

(3) 

(4) 

(5) 

9 
 



model. It is still possible that given two teams playing each other in the first round that the 

probabilities of each winning the game will not add up to 1 (Shen et al., 2015). 

Zhang (2012) filled out his bracket by using the probability self-consistent (PSC) model 

with Logit link function. 𝐼𝐼𝑖𝑖𝑖𝑖
(𝑘𝑘) is an indicator variable denoting the result of the game between team 

i and team j in the 𝑘𝑘𝑡𝑡ℎ round of the tournament and 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) be the conditional probability of team i 

defeating team j in the 𝑘𝑘𝑡𝑡ℎ round , i.e.,  

𝐼𝐼𝑖𝑖𝑖𝑖
(𝑘𝑘) = �1, 𝑖𝑖𝑖𝑖 𝑖𝑖𝑡𝑡ℎ team wins;

0, 𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ team wins.
 

𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) = 𝑃𝑃�𝐼𝐼𝑖𝑖𝑖𝑖

(𝑘𝑘) = 1|𝑍𝑍𝑗𝑗 ≥ 𝑘𝑘 − 1,𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘 − 1� 

Then a logistic conditional probability model has been structured as follows, 

log
𝑝𝑝𝑖𝑖𝑖𝑖

(𝑘𝑘)

1 − 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) = (𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋)′𝛃𝛃(𝒌𝒌)   k = 1,2, … ,6 

where (𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋) is the vector of the predictor variables spread between team i and team j, and 

𝛃𝛃(𝒌𝒌)are the associated coefficients in the 𝑘𝑘𝑡𝑡ℎ round. These logistic conditional probability models 

imply 

𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) = 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘 − 1)(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘|𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘 − 1) 

                               = 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘 − 1) � 𝑃𝑃�𝑍𝑍𝑗𝑗 ≥ 𝑘𝑘 − 1�
𝑗𝑗⋲𝑂𝑂𝑖𝑖

(𝑘𝑘)

𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘)  

where 𝑂𝑂𝑖𝑖
(𝑘𝑘) is the set of all the rival teams that team i may encounter in the 𝑘𝑘𝑡𝑡ℎ  round. 𝑍𝑍𝑖𝑖 is self-

consistent which means  

� 𝑃𝑃�𝑍𝑍𝑗𝑗 ≥ 𝑘𝑘� = 1
𝑗𝑗⋲𝑈𝑈𝑖𝑖

(𝑘𝑘)

 

(6) 

(7) 

(8) 

(9) 

(10) 
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where 𝑈𝑈𝑖𝑖
(𝑘𝑘) = ⋃𝑗𝑗=0

(𝑘𝑘) 𝑂𝑂𝑖𝑖
(𝑗𝑗)  , and 𝑂𝑂𝑖𝑖

(0) = 𝑖𝑖 . Note 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 1) = 𝑝𝑝𝑖𝑖𝑖𝑖
(1) , then 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘)(𝑘𝑘 > 1) can be 

computed iteratively based on 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) in the logistic regression model. Once all the 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘), 𝑖𝑖 =

1, … ,64 and 𝑘𝑘 = 1, … ,6 are obtained, then the team that has the largest 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) will be picked 

as the winning team in 𝑈𝑈𝑖𝑖
(𝑘𝑘) of the kth round. Like the restricted OLRE model, the PSC model can 

be written into a matrix form as well. The probabilities 𝑃𝑃�𝑍𝑍𝑗𝑗 ≥ 𝑘𝑘� can be placed in a 64 × 6 matrix. 

In the probability matrix of the PSC model,  not only the sums of each column are required to be 

32, 16, 8, 4, 2 and 1, respectively, but also the 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) for all possible teams in 𝑈𝑈𝑖𝑖
(𝑘𝑘) have to 

add up to 1.  
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3. PROBABILITY SELF-CONSISTENT MODEL WITH CAUCHIT LINK 

3.1. Introduction of Cauchit Link 

In the PSC model, 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) denotes the conditional probability of team i winning against team 

j in the 𝑘𝑘𝑡𝑡ℎ round. Instead of using the Logit link function, this study will use another link function, 

Cauchit link, to connect the linear predictor with conditional probability 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘).  

Cauchit link function is another symmetric link function for binary response (Koenker and 

Yoon, 2009). When using it in the PSC model, the conditional probability model (8) can be 

structured as follows:  

tan (π�𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) −

1
2
� = �𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋�

′
𝛃𝛃(𝒌𝒌) k = 1,2, … ,6 

Comparing with the Logit distribution, the Cauchit distribution has heavier tails, hence the 

Cauchit link is useful when the value for linear prediction is extreme in either direction. Figure 2 

shows the plots of both Cauchit link function and Logit link function. The y axis represents the 

conditional probability 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘)  and x axis denotes the linear predictor �𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋�

′
𝛃𝛃(𝒌𝒌) , where the 

vector (𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋) represents difference of the covariates (such as the average assists per game in 

regular season, and adjusted offensive efficiency from Pomeroy’s Ratings) between team i and 

team j, and 𝛃𝛃(𝒌𝒌) are the associated coefficients. In a single game, if two teams have approximately 

the same strength, they will have very similar values in the covariates, then the vector (𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋) is 

around 0. Therefore, the value of linear predictor of the probability that team i winning the game 

should be close to zero. In this case, the two link functions, Logit and Cauchit link, have similar 

performance. However, the difference between the two link functions appears when the linear 

predictor of team i winning the game has extreme (small negative or large positive) values. In the 

PSC model, a very large absolute value of linear predictor implies the strengths’ of two teams are 

(11) 
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not equal since one team must have larger value in some of the covariates than the other team. In 

extreme cases, when using Logit link function, the conditional probability of the weak team beats 

the strong team (𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘)) will be close to 0, while the Cauchit link has a larger value on 𝑝𝑝𝑖𝑖𝑖𝑖

(𝑘𝑘). The 

Cauchit link gives the weak team a chance of winning the game.  

To illustrate it, let us consider a simple example with only two covariates: average assists 

per game in regular season and adjusted offensive efficiency (AdjO) in Pomeroy’s Ratings. 

Assuming the coefficients for these two covariates are 0.1 and 0.2, respectively, if the weak team 

(i) has value 14 and 97 for these two covariates, while strong team (j) has larger values of 22 and 

118 respectively, then the linear predictor for computing 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) is derived as(14 − 22) × 0.1 +

(97 − 118) × 0.2 = −5. When using the Cauchit link functions, 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘), the probability of the weak 

team beating the strong team is 0.0628. Using the Logit link function, the probability is 0.0067. 

Overall, we believe it is more appropriate to use the Cauchit link function in sports events 

rather than Logit link function because this does happen in sports, especially in a one game 

elimination tournament such as March Madness.  
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Figure 2. Plots of Cauchit link function and Logit link function 

 

3.2. Application  

Magel and Unruh (2013) determined that four in-game statistics such as defensive 

rebounds and free throw attempts in the regular season are significant in predicting the game 

results, while in Zhang’s research (2012), five candidate covariates, including only one regular 

seasonal in-game statistics (Assist to Turnover Ratio in Regular Season) were used. Therefore in 

this study, the total of fourteen covariates, including eight regular seasonal average statistics 

(ESPN, 2015), were considered for possible usage in the PSC model with Cauchit link. Other than 

these eight covariates, meanwhile, seed number (ESPN, 2015), ASM (Team rankings, 2015), 

SAGSOS (Sagarin ratings, 2015), Pyth, AdjO and AdjD (Pomeroy ratings, 2015) have been 

considered as covariates. Out of these six variables, Seed numbers are decided by the NCAA 

Basketball Selection Committee based upon the Rating Percentage Index (RPI). ASM is short for 
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average scoring margin. It highly correlated to the winning percentage. SAGSOS measures the 

team’s opponents’ strength. Pyth, AdjO and AdjD come from the Pomeroy Rating system. All the 

data in our work are collected from 2002-2003 season through 2013-2014 season (12 seasons). 

The covariates are listed in Table 5.  

Table 5. Covariates used in the model 

FGM Field Goals Made Per Game in Regular Season  
3PM 3-Point Field Goals Made Per Game in Regular Season 
FTA Free Throws Made Per Game in Regular Season  
ORPG Offensive Rebounds Per Game in Regular Season  
DRPG Defensive Rebounds Per Game in Regular Season 
APG Assists Per Game in Regular Season 
PFPG Personal Fouls Per Game in Regular Season 
SEED Seed Number 
ASM Average Scoring Margin  
SAGSOS Sagarin Proxy for Strength of schedule (Sagarin ratings) 
ATRATIO Assist to Turnover Ratio in Regular Season 
Pyth Pythagorean Winning Percentage (Pomeroy ratings)  
AdjO Adjusted Offensive Efficiency (Pomeroy ratings) 
AdjD Adjusted Defensive Efficiency (Pomeroy ratings) 

 

3.3. Model Selection 

Three models are constructed using PSC method with Cauchit link to predict the results in 

March Madness. The first model was developed for predicting all 32 Rd64 games. The second 

model was developed for predicting all 16 Rd32 games. Round3 through 6 (Sweet16, Elite8, Final4 

and Championship) are combined into one model to overcome the convergence problem in the 

MLE.  
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To select the best model that can explain the data in each round (Rd64, Rd32, Sweet16 - 

Championship), the corrected Akaike Information Criterion (AICc) is applied for model selection 

with all possible combinations of predictive variables being considered. The computation form is 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = −2 log−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜 +
2𝑘𝑘𝑘𝑘

𝑘𝑘 − 𝑁𝑁 − 1
 

 k is the number of parameters and N is the number of games involved in fitting the model. 

Comparing with form of AIC, AICc can be written as 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 +
2𝑘𝑘(𝑘𝑘 + 1)
𝑁𝑁 − 𝑘𝑘 − 1

 

Burnham and Anderson (2012) suggested using AICc when the number of covariates is 

large, especially, when the ratio N
k
≤ 40. The total number of models is ∑ �14

𝑘𝑘 �
14
𝑘𝑘=1 =16384 in each 

round (Rd64, Rd32, Sweet16 - Championship). We will use the model with the smallest AICc as 

our prediction model in each round. 

3.4. Prediction Result 

To predict the 2015 NCAA March Madness, 384 Rd64 games (from 2002-2003 season 

through 2013-2014 season) were used to fit the conditional probability model (8) in order to predict 

the 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) for 32 Rd64 games. There were 192 Rd32 games (from 2002-2003 season through 2013-

2014 season) used to fit the conditional probability model (8) in order to predict the 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) for 16 

Rd32 games in 2015 March Madness. There were 96 Sweet16 games, 48 Elite8 games, 24 Final4 

games and 12 Championship games (from 2002-2003 season through 2013-2014 season) 

combined, the total of 180 games, to fit the conditional probability model (8) in order to predict 

the 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) for the rest of games in 2015 March Madness. Once the predicted 𝑝𝑝𝑖𝑖𝑖𝑖

(𝑘𝑘)  was computed, we 

can put it into model (9) to derive the 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) for 𝑘𝑘 > 1 (Note 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 1) = 𝑝𝑝𝑖𝑖𝑖𝑖
(1)).  

(12) 

(13) 
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Table 6. Summary of the three models for PSCM with Cauchit link (2015 March Madness) 

Rd64 coefficients Std. Error p-value 
FGM 0.2565 0.0960 0.0076 
DRPG -0.1617 0.0928 0.0813 
APG -0.2073 0.1027 0.0435 
Seed 0.0827 0.0508 0.1035 
AdjO 0.3579 0.0693 <0.0001 
AdjD -0.4175 0.0802 <0.0001 

SAGSOS -0.1268 0.0631 0.0446 
 

Rd32 coefficients Std. Error p-value 
FTA -0.1031 0.0613 0.0929 
Seed 0.2634 0.0964 0.0063 
AdjO 0.4165 0.1080 <0.0001 
AdjD -0.5301 0.1337 <0.0001 

 
Sweet16 -

Championship coefficients Std. Error p-value 

seed 0.1498 0.0794 0.0591 
AdjO 0.3489 0.0889 <0.0001 
AdjD -0.3594 0.0983 0.0003 

ATRATIO -2.4113 1.0658 0.0237 
 

Table 6 has the estimated coefficients for the selected model in each round (Rd64, Rd32, 

Sweet16 - Championship). It is not hard to imagine that some of the in-game statistics are 

correlated. For instance, usually, with more assists, the team will make more field goals, so these 

two variables are positively correlated. Hence, the slight collinearity issue cannot be avoided in 

this study. Even though the slight collinearity does not reduce the predictive power or reliability 

of the model, it affects the interpretation of the coefficients. It is no surprise that the variable seed, 

AdjO and AdjD have been selected in all three models. Seed number is decided by the NCAA 

Basketball Selection Committee and AdjO and AdjD are from Pomeroy’s College Basketball 

Ratings. Both of them can be treated as the experts’ opinions. The in-game statistics in each model 

can be thought of as the adjustment of the experts’ judgments. 
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Table 10 shows the probability matrix using PSC model with Cauchit link. One can fill out 

the bracket based upon this matrix. The team predicted to advance to the k+1 round is the team 

with the highest 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) in set 𝑈𝑈𝑖𝑖
(𝑘𝑘). For instance, in Rd32, 𝑈𝑈𝑖𝑖

(𝑘𝑘) = {1, 2, 3, 4},𝑃𝑃(𝑍𝑍1 ≥ 2) =

0.9253, 𝑃𝑃(𝑍𝑍2 ≥ 2) = 0.0014, 𝑃𝑃(𝑍𝑍3 ≥ 2) = 0.0604, 𝑃𝑃(𝑍𝑍4 ≥ 2) = 0.0129. The team predicted 

to advance to the Sweet16 from these 4 teams is team 1 (Kentucky) since it has the highest 

𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) = 0.9253. 

Figure 3 gives the predicted bracket based on the probability matrix. Matching up with the 

true bracket, the wrong teams predicted are highlighted. The accuracy for each round with single 

and doubling scoring systems are given in Table 7. To compare the Cauchit link PSC model with 

Logit link PSC model and restricted OLRE model, the other two models were developed using the 

same covariates. Three different models were constructed for the Logit link PSC model as well. 

To make the comparison of three methods on equal terms, we used all fourteen variables as 

possible covariates and the same model selection criteria in the Logit link PSC model (restricted 

OLRE model used all fourteen covariates directly since the model selection is not required in this 

method). Table 8 and 9 gives the estimated coefficients for the Logit link PSC model and restricted 

OLRE model. 

Table 7. Prediction accuracy for PSCM with Cauchit link (2015 March Madness) 

  Rd64 Rd32 Sweet16 Elite8 Final4 Championship total PCT 
Correct 

pick 26 11 5 1 0 0 43 68.25% 

Simple 26 11 5 1 0 0 43 68.25% 
Doubling 26 22 20 8 0 0 76 39.58% 
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Table 8. Summary of the three models for PSC model with Logit link (2015 March Madness) 

Rd64 coefficients Std. Error p-value 
ORPG 0.0954 0.0601 0.1128 
DRPG -0.0952 0.0637 0.1347 
Seed 0.0626 0.0426 0.1420 
AdjO 0.2662 0.0385 <0.0001 
AdjD -0.3135 0.0448 <0.0001 

SAGSOS -0.1126 0.0490 0.0214 
 

Rd32 coefficients Std. Error p-value 
FTA -0.0943 0.0519 0.0691 
Seed 0.2279 0.0710 0.0013 
AdjO 0.3693 0.0647 <0.0001 
AdjD -0.4623 0.0795 <0.0001 

 
Sweet16 -

Championship coefficients Std. Error p-value 

seed 0.1428 0.0675 0.0345 
AdjO 0.3526 0.0620 <0.0001 
AdjD -0.3354 0.0653 <0.0001 

ATRATIO -2.3455 0.8918 0.0085 
 

Table 9 Summary of the restricted OLRE model for 2015 March Madness 

Intercepts Value Standard error 
𝛼𝛼1 -15.2813 1.176 
𝛼𝛼2 -13.3504 1.1796 
𝛼𝛼3 -11.8942 1.1932 
𝛼𝛼4 -10.6899 1.2105 
𝛼𝛼5 -9.6174 1.2319 
𝛼𝛼6 -8.5883 1.2681 

 
Covariate FGM 3PM FTA AdjO AdjD ORPG DRPG 

Coefficient 0.2024 0.0962 0.0473 0.5386 -0.6605 0.0455 -0.0510 
Standard error 0.0659 0.0690 0.0367 0.0383 0.0443 0.0555 0.0533 

Covariate PFPG Seed ASM SAGSOS ATRATIO APG Pyth 
Coefficient -0.0104 -0.0128 -0.2026 -0.0616 0.7375 -0.1337 -11.8962 

Standard error 0.0532 0.0360 0.0429 0.0282 0.6478 0.0709 1.4901 
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The selected models for both PSC methods returned similar covariates and coefficients 

except the model for Rd64 in this year. However, when predicting the 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘), it will have greater 

predicted value when using Cauchit link function than Logit link function if the covariates between 

team i and team j have large absolute values. The restricted OLRE model developed 6 different 

models (one for each actual round). The six models shared the same coefficients of the covariates, 

but each model has its own intercept. All fourteen covariates were used in the restricted OLRE 

model. However, the convergence problem occurs in this year’s prediction with this method. The 

coefficient of the variable Pyth has a large negative value, which means with higher value of Pyth, 

the higher the probability that a team will lose. It contradicts with the definition of Pyth in the 

Pomeroy’s ratings . Therefore, the prediction based upon the restricted ORLE model is not reliable 

in this year. 

From the probability matrix (Table 10, 11), it is clear that the probability self-consistency 

holds for the PSC model with both link functions. For instance, in Rd64, for all 32 games, when 

two teams are playing each other, the sum of the probabilities of each of the two teams winning 

the game is one. Furthermore, let us take Midwest Region as an example, all sixteen teams in this 

region have a chance to get the regional championship. The summation of 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 4) for all sixteen 

teams (highlighted in red color in Table 10) is equal to one. The restricted OLRE model does not 

have this property. From the matrix in Table 12, it is apparent that, the restricted OLRE model 

does not necessarily satisfy the probability self-consistency. For example, every paired team in the 

Rd64 has  (𝑍𝑍𝑖𝑖 ≥ 1) + 𝑃𝑃�𝑍𝑍𝑗𝑗 ≥ 1� ≠ 1 . In the first game of the Midwest region, the winning 

probabilities for Kentucky and Hampton are 0.9988 and 0.0346 respectively. The summation of 

these two probabilities is not equal to one. The comparison of accuracy for these three methods is 

found in Section 5.  

20 
 



Table 10. PSC model (Cauchit link) probability matrix in 2015 March Madness using MLE 

 Seed TEAM k=1 k=2 k=3 k=4 k=5 k=6 
M

ID
W

E
ST

 
1 Kentucky 0.9677 0.9253 0.8722 0.8055 0.6451 0.5658 

16 Hampton 0.0323 0.0014 0.0001 0.0000 0.0000 0.0000 
8 Cincinnati 0.8074 0.0604 0.0373 0.0099 0.0010 0.0001 
9 Purdue 0.1926 0.0129 0.0042 0.0006 0.0000 0.0000 
5 West Virginia 0.7603 0.4419 0.0426 0.0108 0.0011 0.0001 

12 Buffalo 0.2397 0.1156 0.0089 0.0015 0.0001 0.0000 
4 Maryland 0.4940 0.1568 0.0136 0.0028 0.0003 0.0000 

13 Valparaiso 0.5060 0.2858 0.0211 0.0034 0.0003 0.0000 
6 Butler 0.5684 0.1425 0.0497 0.0072 0.0008 0.0001 

11 Texas 0.4316 0.2938 0.1899 0.0343 0.0061 0.0016 
3 Notre Dame 0.9385 0.5596 0.2467 0.0389 0.0053 0.0009 

14 Northeastern 0.0615 0.0041 0.0003 0.0000 0.0000 0.0000 
7 Wichita St 0.8652 0.7056 0.3529 0.0574 0.0082 0.0015 

10 Indiana 0.1348 0.0271 0.0043 0.0004 0.0000 0.0000 
2 Kansas 0.8567 0.2528 0.1542 0.0271 0.0045 0.0010 

15 New Mexico St 0.1433 0.0145 0.0020 0.0002 0.0000 0.0000 

W
E

ST
 

1 Wisconsin 0.9562 0.9038 0.8004 0.2998 0.0853 0.0533 
16 Coastal Carolina 0.0438 0.0036 0.0004 0.0000 0.0000 0.0000 
8 Oregon 0.4915 0.0439 0.0115 0.0010 0.0001 0.0000 
9 Oklahoma St 0.5085 0.0487 0.0209 0.0028 0.0003 0.0000 
5 Arkansas 0.8645 0.1660 0.0178 0.0016 0.0001 0.0000 

12 Wofford 0.1355 0.0126 0.0008 0.0000 0.0000 0.0000 
4 North Carolina 0.8809 0.7724 0.1442 0.0249 0.0036 0.0006 

13 Harvard 0.1191 0.0490 0.0041 0.0003 0.0000 0.0000 
6 Xavier 0.5430 0.1821 0.0177 0.0023 0.0002 0.0000 

11 Ole Miss 0.4570 0.1272 0.0134 0.0019 0.0002 0.0000 
3 Baylor 0.7828 0.6283 0.1088 0.0277 0.0048 0.0010 

14 Georgia St 0.2172 0.0624 0.0044 0.0004 0.0000 0.0000 
7 Virginia Commonwealth 0.3451 0.0317 0.0102 0.0014 0.0001 0.0000 

10 Ohio State 0.6549 0.0794 0.0386 0.0077 0.0010 0.0002 
2 Arizona 0.9620 0.8874 0.8067 0.6280 0.2313 0.1848 

15 Texas Southern 0.0380 0.0015 0.0001 0.0000 0.0000 0.0000 

E
A

ST
 

1 Villanova 0.9590 0.8973 0.7361 0.4609 0.3444 0.0760 
16 Lafayette 0.0410 0.0022 0.0001 0.0000 0.0000 0.0000 
8 NC State 0.6233 0.0619 0.0112 0.0014 0.0002 0.0000 
9 LSU 0.3767 0.0386 0.0065 0.0008 0.0001 0.0000 
5 Northern Iowa 0.9369 0.8020 0.2125 0.0678 0.0266 0.0034 

12 Wyoming 0.0631 0.0076 0.0004 0.0000 0.0000 0.0000 
4 Louisville 0.8858 0.1780 0.0324 0.0058 0.0012 0.0001 

13 UC Irvine 0.1142 0.0124 0.0008 0.0001 0.0000 0.0000 
6 Providence 0.6556 0.1156 0.0156 0.0019 0.0003 0.0000 

11 Dayton 0.3444 0.0633 0.0076 0.0009 0.0001 0.0000 
3 Oklahoma 0.9283 0.8150 0.2294 0.0651 0.0246 0.0031 

14 Albany 0.0717 0.0061 0.0004 0.0000 0.0000 0.0000 
7 Michigan St 0.7437 0.0964 0.0273 0.0040 0.0007 0.0001 

10 Georgia 0.2563 0.0265 0.0073 0.0010 0.0002 0.0000 
2 Virginia 0.9489 0.8741 0.7122 0.3904 0.2821 0.0583 

15 Belmont 0.0511 0.0030 0.0002 0.0000 0.0000 0.0000 

SO
U

T
H

 

1 Duke 0.9472 0.8122 0.5260 0.3433 0.1254 0.0200 
16 Robert Morris 0.0528 0.0031 0.0002 0.0000 0.0000 0.0000 
8 San Diego St 0.7236 0.1466 0.0397 0.0105 0.0014 0.0001 
9 St. John's 0.2764 0.0382 0.0058 0.0009 0.0001 0.0000 
5 Utah 0.8272 0.7531 0.3770 0.2231 0.0706 0.0103 

12 Stephen F. Austin 0.1728 0.1104 0.0213 0.0046 0.0005 0.0000 
4 Georgetown 0.8942 0.1320 0.0297 0.0076 0.0010 0.0001 

13 Eastern Washington 0.1058 0.0045 0.0003 0.0000 0.0000 0.0000 
6 SMU 0.6520 0.2498 0.0658 0.0137 0.0019 0.0002 

11 UCLA 0.3480 0.0917 0.0180 0.0026 0.0003 0.0000 
3 Iowa State 0.9192 0.6519 0.1890 0.0443 0.0070 0.0007 

14 UAB 0.0808 0.0066 0.0005 0.0000 0.0000 0.0000 
7 Iowa 0.4533 0.0679 0.0249 0.0043 0.0005 0.0000 

10 Davidson 0.5467 0.0817 0.0147 0.0016 0.0001 0.0000 
2 Gonzaga 0.9430 0.8465 0.6868 0.3435 0.1106 0.0163 

15 North Dakota St 0.0570 0.0040 0.0003 0.0000 0.0000 0.0000 
    summation 32 16 8 4 2 1 
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Figure 3. PSC model (Cauchit link) bracket in 2015 March Madness using MLE 
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Table 11. PSC model (Logit link) probability matrix in 2015 March Madness using MLE 

 Seed TEAM k=1 k=2 k=3 k=4 k=5 k=6 
M

ID
W

E
ST

 
1 Kentucky 0.9989 0.9971 0.9923 0.9728 0.7667 0.6976 

16 Hampton 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 
8 Cincinnati 0.7143 0.0024 0.0014 0.0004 0.0000 0.0000 
9 Purdue 0.2857 0.0005 0.0002 0.0000 0.0000 0.0000 
5 West Virginia 0.7562 0.4172 0.0035 0.0009 0.0000 0.0000 

12 Buffalo 0.2438 0.1147 0.0005 0.0001 0.0000 0.0000 
4 Maryland 0.4330 0.1577 0.0010 0.0002 0.0000 0.0000 

13 Valparaiso 0.5670 0.3105 0.0011 0.0001 0.0000 0.0000 
6 Butler 0.4191 0.1150 0.0408 0.0006 0.0000 0.0000 

11 Texas 0.5809 0.3689 0.2268 0.0076 0.0008 0.0002 
3 Notre Dame 0.9476 0.5152 0.2636 0.0062 0.0005 0.0001 

14 Northeastern 0.0524 0.0008 0.0000 0.0000 0.0000 0.0000 
7 Wichita St 0.8894 0.7171 0.3289 0.0072 0.0005 0.0001 

10 Indiana 0.1106 0.0226 0.0033 0.0000 0.0000 0.0000 
2 Kansas 0.8098 0.2500 0.1357 0.0039 0.0004 0.0001 

15 New Mexico St 0.1902 0.0104 0.0009 0.0000 0.0000 0.0000 

W
E

ST
 

1 Wisconsin 0.9901 0.9833 0.9216 0.3429 0.0560 0.0357 
16 Coastal Carolina 0.0099 0.0003 0.0000 0.0000 0.0000 0.0000 
8 Oregon 0.4269 0.0061 0.0017 0.0000 0.0000 0.0000 
9 Oklahoma St 0.5731 0.0103 0.0046 0.0002 0.0000 0.0000 
5 Arkansas 0.8274 0.1694 0.0039 0.0001 0.0000 0.0000 

12 Wofford 0.1726 0.0116 0.0000 0.0000 0.0000 0.0000 
4 North Carolina 0.8226 0.7388 0.0672 0.0049 0.0001 0.0000 

13 Harvard 0.1774 0.0802 0.0008 0.0000 0.0000 0.0000 
6 Xavier 0.5232 0.1686 0.0038 0.0002 0.0000 0.0000 

11 Ole Miss 0.4768 0.1187 0.0033 0.0002 0.0000 0.0000 
3 Baylor 0.8561 0.6653 0.0525 0.0081 0.0003 0.0001 

14 Georgia St 0.1439 0.0475 0.0004 0.0000 0.0000 0.0000 
7 Virginia Commonwealth 0.4621 0.0055 0.0016 0.0001 0.0000 0.0000 

10 Ohio State 0.5379 0.0256 0.0121 0.0012 0.0000 0.0000 
2 Arizona 0.9967 0.9688 0.9263 0.6422 0.1747 0.1358 

15 Texas Southern 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 

E
A

ST
 

1 Villanova 0.9972 0.9831 0.8204 0.5294 0.3811 0.0670 
16 Lafayette 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 
8 NC State 0.5080 0.0079 0.0013 0.0001 0.0000 0.0000 
9 LSU 0.4920 0.0090 0.0012 0.0001 0.0000 0.0000 
5 Northern Iowa 0.9565 0.8250 0.1655 0.0530 0.0205 0.0010 

12 Wyoming 0.0435 0.0042 0.0000 0.0000 0.0000 0.0000 
4 Louisville 0.8627 0.1644 0.0115 0.0015 0.0002 0.0000 

13 UC Irvine 0.1373 0.0064 0.0000 0.0000 0.0000 0.0000 
6 Providence 0.6177 0.0886 0.0057 0.0003 0.0000 0.0000 

11 Dayton 0.3823 0.0594 0.0028 0.0001 0.0000 0.0000 
3 Oklahoma 0.9456 0.8497 0.2045 0.0452 0.0157 0.0007 

14 Albany 0.0544 0.0022 0.0000 0.0000 0.0000 0.0000 
7 Michigan St 0.6622 0.0341 0.0100 0.0009 0.0001 0.0000 

10 Georgia 0.3378 0.0069 0.0018 0.0001 0.0000 0.0000 
2 Virginia 0.9882 0.9588 0.7752 0.3693 0.2386 0.0318 

15 Belmont 0.0118 0.0001 0.0000 0.0000 0.0000 0.0000 

SO
U

T
H

 

1 Duke 0.9809 0.8437 0.5977 0.3853 0.1563 0.0159 
16 Robert Morris 0.0191 0.0002 0.0000 0.0000 0.0000 0.0000 
8 San Diego St 0.7400 0.1377 0.0359 0.0070 0.0005 0.0000 
9 St. John's 0.2600 0.0184 0.0025 0.0002 0.0000 0.0000 
5 Utah 0.7026 0.6653 0.3083 0.1678 0.0516 0.0036 

12 Stephen F. Austin 0.2974 0.1764 0.0271 0.0050 0.0003 0.0000 
4 Georgetown 0.9445 0.1581 0.0285 0.0061 0.0005 0.0000 

13 Eastern Washington 0.0555 0.0002 0.0000 0.0000 0.0000 0.0000 
6 SMU 0.6645 0.2986 0.0619 0.0116 0.0011 0.0000 

11 UCLA 0.3355 0.1092 0.0132 0.0014 0.0001 0.0000 
3 Iowa State 0.8763 0.5879 0.1566 0.0381 0.0052 0.0001 

14 UAB 0.1237 0.0044 0.0001 0.0000 0.0000 0.0000 
7 Iowa 0.6276 0.0546 0.0204 0.0028 0.0002 0.0000 

10 Davidson 0.3724 0.0326 0.0063 0.0004 0.0000 0.0000 
2 Gonzaga 0.9783 0.9124 0.7415 0.3742 0.1277 0.0101 

15 North Dakota St 0.0217 0.0004 0.0000 0.0000 0.0000 0.0000 
    summation 32 16 8 4 2 1 
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Table 12. Restricted OLRE model probability matrix in 2015 March Madness using MLE 
 

 Seed TEAM k=1 k=2 k=3 k=4 k=5 k=6 
M

ID
W

E
ST

 
1 Kentucky 0.9988 0.9890 0.9458 0.8235 0.6112 0.3788 

16 Hampton 0.0346 0.0090 0.0029 0.0008 0.0002 0.0001 
8 Cincinnati 0.3773 0.0987 0.0283 0.0080 0.0026 0.0011 
9 Purdue 0.2734 0.0689 0.0201 0.0056 0.0018 0.0008 
5 West Virginia 0.7354 0.2813 0.0856 0.0255 0.0085 0.0035 

12 Buffalo 0.3473 0.0896 0.0258 0.0073 0.0024 0.0010 
4 Maryland 0.4669 0.1290 0.0369 0.0106 0.0035 0.0015 

13 Valparaiso 0.1833 0.0458 0.0136 0.0038 0.0012 0.0006 
6 Butler 0.6543 0.2196 0.0645 0.0189 0.0063 0.0026 

11 Texas 0.6363 0.2084 0.0609 0.0178 0.0059 0.0024 
3 Notre Dame 0.8999 0.5279 0.1995 0.0647 0.0223 0.0089 

14 Northeastern 0.0497 0.0128 0.0041 0.0011 0.0003 0.0002 
7 Wichita St 0.8098 0.3626 0.1171 0.0357 0.0120 0.0049 

10 Indiana 0.3366 0.0865 0.0249 0.0070 0.0023 0.0010 
2 Kansas 0.9296 0.6148 0.2581 0.0877 0.0307 0.0123 

15 New Mexico St 0.0809 0.0206 0.0064 0.0017 0.0006 0.0003 

W
E

ST
 

1 Wisconsin 0.9960 0.9647 0.8431 0.5898 0.3238 0.1571 
16 Coastal Carolina 0.0460 0.0118 0.0038 0.0010 0.0003 0.0002 
8 Oregon 0.5096 0.1456 0.0417 0.0120 0.0039 0.0017 
9 Oklahoma St 0.4893 0.1375 0.0394 0.0113 0.0037 0.0016 
5 Arkansas 0.6385 0.2097 0.0614 0.0180 0.0059 0.0025 

12 Wofford 0.0959 0.0243 0.0075 0.0020 0.0006 0.0003 
4 North Carolina 0.8797 0.4806 0.1727 0.0549 0.0187 0.0075 

13 Harvard 0.1498 0.0375 0.0113 0.0031 0.0010 0.0005 
6 Xavier 0.6512 0.2176 0.0639 0.0187 0.0062 0.0026 

11 Ole Miss 0.4179 0.1118 0.0320 0.0091 0.0030 0.0013 
3 Baylor 0.8679 0.4565 0.1601 0.0504 0.0172 0.0069 

14 Georgia St 0.1608 0.0402 0.0121 0.0033 0.0011 0.0005 
7 Virginia Commonwealth 0.6870 0.2420 0.0720 0.0212 0.0071 0.0029 

10 Ohio State 0.5287 0.1537 0.0441 0.0127 0.0042 0.0018 
2 Arizona 0.9956 0.9614 0.8303 0.5670 0.3034 0.1450 

15 Texas Southern 0.0365 0.0094 0.0030 0.0008 0.0003 0.0001 

E
A

ST
 

1 Villanova 0.9917 0.9301 0.7260 0.4157 0.1905 0.0839 
16 Lafayette 0.0076 0.0020 0.0007 0.0002 0.0001 0.0000 
8 NC State 0.5123 0.1467 0.0421 0.0121 0.0040 0.0017 
9 LSU 0.4038 0.1071 0.0307 0.0087 0.0028 0.0012 
5 Northern Iowa 0.8106 0.3636 0.1175 0.0359 0.0121 0.0049 

12 Wyoming 0.0549 0.0141 0.0045 0.0012 0.0004 0.0002 
4 Louisville 0.6824 0.2387 0.0708 0.0209 0.0069 0.0029 

13 UC Irvine 0.1285 0.0323 0.0098 0.0027 0.0009 0.0004 
6 Providence 0.6607 0.2238 0.0659 0.0194 0.0064 0.0027 

11 Dayton 0.3004 0.0763 0.0221 0.0062 0.0020 0.0009 
3 Oklahoma 0.9212 0.5877 0.2383 0.0797 0.0277 0.0111 

14 Albany 0.0374 0.0097 0.0031 0.0008 0.0003 0.0001 
7 Michigan St 0.7056 0.2561 0.0768 0.0227 0.0076 0.0031 

10 Georgia 0.4844 0.1356 0.0388 0.0111 0.0037 0.0016 
2 Virginia 0.9829 0.8667 0.5695 0.2637 0.1056 0.0440 

15 Belmont 0.0432 0.0112 0.0036 0.0009 0.0003 0.0002 

SO
U

T
H

 

1 Duke 0.9753 0.8189 0.4829 0.2026 0.0772 0.0316 
16 Robert Morris 0.0535 0.0137 0.0043 0.0012 0.0004 0.0002 
8 San Diego St 0.5197 0.1498 0.0430 0.0124 0.0041 0.0017 
9 St. John's 0.5729 0.1740 0.0502 0.0146 0.0048 0.0020 
5 Utah 0.8762 0.4733 0.1688 0.0535 0.0182 0.0073 

12 Stephen F. Austin 0.2225 0.0556 0.0164 0.0045 0.0015 0.0007 
4 Georgetown 0.7485 0.2934 0.0900 0.0269 0.0090 0.0037 

13 Eastern Washington 0.0710 0.0181 0.0057 0.0015 0.0005 0.0002 
6 SMU 0.5849 0.1800 0.0520 0.0151 0.0050 0.0021 

11 UCLA 0.5360 0.1569 0.0451 0.0130 0.0043 0.0018 
3 Iowa State 0.9152 0.5696 0.2259 0.0748 0.0259 0.0104 

14 UAB 0.1194 0.0300 0.0092 0.0025 0.0008 0.0004 
7 Iowa 0.5995 0.1876 0.0544 0.0158 0.0052 0.0022 

10 Davidson 0.4809 0.1342 0.0384 0.0110 0.0036 0.0015 
2 Gonzaga 0.9641 0.7571 0.3957 0.1520 0.0557 0.0226 

15 North Dakota St 0.0684 0.0175 0.0055 0.0015 0.0005 0.0002 
    summation 32 16 8 4 2 1 
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4. BAYESIAN INFERENCE 

In the previous section, there is only one model being used to estimate the results of the 

entire last four rounds using the PSC method and either the Cauchit or Logit link. However, we 

can imagine how different between the Sweet16 and Championship on the atmosphere around the 

arena, the pressures in each player and coach. These can reflect in the spread statistics. So using 

only one model to explain all games in these four rounds is inappropriate. Therefore if we can 

develop a model for each round separately, especially on the last few rounds, the estimation would 

be more accurate. 

In the PSC model, insufficiently small sample size is still a large obstacle for developing a 

model for each round separately. When using maximum likelihood estimation, Griffiths et al. 

(1987) found that there is significant bias for small samples due to the convergence issue. Even 

though twelve season’s data were collected as training data, there is only one Championship game, 

two Final4 games, four Elite8 games and eight Sweet16 games in each season, respectively. Hence, 

the sample sizes for each of the last 4 rounds are not large enough. Developing a separate model 

for last four rounds could not be accomplished by using maximum likelihood estimation. In this 

case, another estimation method, Bayesian Inference has been considered to estimate the 

conditional probability 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘).  

The one advantage of Bayesian inference is that it does not have the convergence issue 

when using small size samples. By using Bayesian estimation, we can construct a model for each 

round separately. In addition, the other advantage of using the Bayesian inference is that it can 

augment the precision of the prediction for the current year’s March Madness by the incorporation 

of prior information such as experts’ opinions and historical results. When there is good prior 

information, the Bayesian approach will enable one to form the prior distribution with the 
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consideration of this information. To illustrate these two advantages, the PSC model with Logit 

link under Bayesian inference will be introduced in this section (In SAS 9.3, Cauchit link is not a 

build-in link function in the “PROC MCMC” statement, so we only use Logit link function in our 

study). 

Based on the Bayes theorem, we can write (Rashwan and El dereny, 2012) 

P(parameters|data) ∝ P(parameters)P(data|parameters) 

The first term on the right-hand side is called prior density, often described as “what is known” 

about the parameters before estimation. The second term is the joint distribution of the observed 

random variable y given estimated parameters, known as likelihood function. The left-hand side 

is the posterior density of the parameters given the current data. The posterior density can be seen 

as a mixture of the prior information and current information (Green, 2003). The Bayesian 

inference for logistic regression analysis usually follows three steps: The likelihood function of 

the data is written down; appropriate prior distribution is found over estimated parameters to form 

the posterior distribution over all parameters; and samples are drawn from posterior distribution 

and used to estimate the mean value as the coefficients. 

4.1. The Likelihood Function 

Suppose y is a random variable that follows Bernoulli distribution with probability p. If n 

independent random variables (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) are observed, the generalized linear model is given 

by 

    𝑔𝑔(p𝑖𝑖) = 𝑥𝑥𝑖𝑖1𝛽𝛽1+⋯+ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑘𝑘 = 𝜂𝜂𝑖𝑖 ,     𝑖𝑖 = 1, … ,𝑛𝑛 

where 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖  are the k covariates, 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑘𝑘  are the estimated intercept and coefficients 

corresponding to each covariates and n is the total number of games. Here 𝑔𝑔(. ) is a link function, 

(14) 
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which connect the linear predictor 𝜂𝜂𝑖𝑖  and the response variable. Using the Logit link, the model 

can be expressed as 

𝑔𝑔(𝑝𝑝𝑖𝑖) = log �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = 𝜂𝜂𝑖𝑖 

Solving the equation w.r.t 𝑝𝑝𝑖𝑖, the result can be written as:  

𝑝𝑝𝑖𝑖 =
exp(𝜂𝜂𝑖𝑖)

1 + exp(𝜂𝜂𝑖𝑖)
 

and the distribution of  𝑓𝑓(𝑦𝑦𝑖𝑖|𝜂𝜂𝑖𝑖) is given by 

𝑓𝑓(𝑦𝑦𝑖𝑖|𝜂𝜂𝑖𝑖) = (𝑝𝑝𝑖𝑖)𝑦𝑦𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)1−𝑦𝑦𝑖𝑖 =  �
exp (𝜂𝜂𝑖𝑖)

1 + exp(𝜂𝜂𝑖𝑖)
�
𝑦𝑦𝑖𝑖
�

1
1 + exp(𝜂𝜂𝑖𝑖)

�
1−𝑦𝑦𝑖𝑖

 

Therefore the likelihood function for given covariates and corresponding coefficients is 

L(𝐘𝐘|𝑿𝑿,𝛃𝛃) = �𝑓𝑓(𝑦𝑦𝑖𝑖|𝜂𝜂𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= exp��𝑦𝑦𝑖𝑖𝜂𝜂𝑖𝑖

𝑁𝑁

𝑖𝑖=1

���
1

1 + exp (𝜂𝜂𝑖𝑖)
�

𝑛𝑛

𝑖𝑖=1

 

4.2.  The Prior Distribution of Logistic Coefficients 

A prior distribution for a parameter is often assessed by experts’ judgments and historical 

results. In the basketball games, even though there exists plenty of prior information, there are 

only few related with the model coefficients 𝛃𝛃. Usually, it is very difficult to introduce a prior 

distribution on the estimated coefficients 𝛃𝛃  immediately. However, we can form a prior 

distribution on the winning probability, and then relate this prior distribution to the coefficients 𝛃𝛃 

to get the prior density of 𝛃𝛃 indirectly.  

Breiter and Carlin (1997) computed the winning probabilities based on seed number. The 

probability of seed i team beats seed j team is defined as ℎ𝑖𝑖𝑖𝑖 = 𝑗𝑗
𝑖𝑖+𝑗𝑗

. For instance, probability of 

team with seed number 1 beats the team with seed number 16 is 16
16+1

= 0.941. The seed number 

is decided by the NCAA selection committee according to the performance in the regular season. 

(15) 

(16) 

(17) 

(18) 
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Therefore, this information can be used to form the prior density in Bayesian inference. Table 13 

gives the probability matrix based upon the seed number. Notice this probability matrix is identical 

for each region and tournament year. 

In general, let us introduce a variable  ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙) to represent the probability of team i beats team 

j for game 𝑙𝑙 in the samples. One possible prior density on winning probability ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙) can be formed 

by assuming each ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙) has mean ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)  and variance ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙)(1 − ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)), where ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙) is computed by 

ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙) =

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗
(𝑙𝑙)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
(𝑙𝑙) + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗

(𝑙𝑙) 

In (19) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
(𝑙𝑙)and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗

(𝑙𝑙) denote the seed number of team i and team j in game 𝑙𝑙 respectively, 

moreover, 𝑙𝑙 = 1, … , n, where n is the total sample size, for example, twelve seasons data were 

collected in our study, then n=384 for Rd64, n=192 for Rd32, n=96 for Sweet16, n=48 for Elite8, 

n=24 for Final4, and n=12 for Championship. ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙) is observed from last twelve seasons in our 

study. Table 14 gives the matchup information for Championship in recent twelve years. For 

example, in the last year’s March Madness, Connecticut (i) with seed number 7 faced number 8 

seeded team Kentucky (j) in the Championship, the winning probability ℎ𝑖𝑖𝑖𝑖
(12) can be assumed 

follow some distribution with mean ℎ�𝑖𝑖𝑖𝑖
(12) = 8

7+8
= 0.4 and variance ℎ�𝑖𝑖𝑖𝑖

(12)�1 − ℎ�𝑖𝑖𝑖𝑖
(12)� = 0.24.  

 

 

 

 

 

(19) 
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Table 13. Probability matrix based upon the seed number 

    j 
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 .500 .667 .750 .800 .833 .857 .875 .889 .900 .909 .917 .923 .929 .933 .938 .941 
2 .333 .500 .600 .667 .714 .750 .778 .800 .818 .833 .846 .857 .867 .875 .882 .889 
3 .250 .400 .500 .571 .625 .667 .700 .727 .750 .769 .786 .800 .813 .824 .833 .842 
4 .200 .333 .429 .500 .556 .600 .636 .667 .692 .714 .733 .750 .765 .778 .789 .800 
5 .167 .286 .375 .444 .500 .545 .583 .615 .643 .667 .688 .706 .722 .737 .750 .762 
6 .143 .250 .333 .400 .455 .500 .538 .571 .600 .625 .647 .667 .684 .700 .714 .727 
7 .125 .222 .300 .364 .417 .462 .500 .533 .563 .588 .611 .632 .650 .667 .682 .696 
8 .111 .200 .273 .333 .385 .429 .467 .500 .529 .556 .579 .600 .619 .636 .652 .667 
9 .100 .182 .250 .308 .357 .400 .438 .471 .500 .526 .550 .571 .591 .609 .625 .640 

10 .091 .167 .231 .286 .333 .375 .412 .444 .474 .500 .524 .545 .565 .583 .600 .615 
11 .083 .154 .214 .267 .313 .353 .389 .421 .450 .476 .500 .522 .542 .560 .577 .593 
12 .077 .143 .200 .250 .294 .333 .368 .400 .429 .455 .478 .500 .520 .538 .556 .571 
13 .071 .133 .188 .235 .278 .316 .350 .381 .409 .435 .458 .480 .500 .519 .536 .552 
14 .067 .125 .176 .222 .263 .300 .333 .364 .391 .417 .440 .462 .481 .500 .517 .533 
15 .063 .118 .167 .211 .250 .286 .318 .348 .375 .400 .423 .444 .464 .483 .500 .516 
16 .059 .111 .158 .200 .238 .273 .304 .333 .360 .385 .407 .429 .448 .467 .484 .500 

 
 

Table 14. Matchup information in NCAA March Madness Championship games from season 
2002-2003 through 2013-2014 (n=12). 

Season 𝑙𝑙 Team i (seed number) Team j (seed number) Mean of ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙) Variance of ℎ𝑖𝑖𝑖𝑖

(𝑙𝑙) 
02 - 03 1 Syracuse (3) Kansas (2) 0.400 0.24 
03 - 04 2 Georgia Tech (3) Connecticut (2) 0.400 0.24 
04 - 05 3 Illinois (1) North Carolina (1) 0.500 0.25 
05 - 06 4 UCLA (2) Florida (3) 0.600 0.24 
06 - 07 5 Florida (1) Ohio State (1) 0.500 0.25 
07 - 08 6 Kansas (1) Memphis (1) 0.500 0.25 
08 - 09 7 Michigan State (2) North Carolina (1) 0.333 0.222 
09 - 10 8 Butler (5) Duke (1) 0.167 0.139 
10 - 11 9 Connecticut (3) Butler (8) 0.727 0.198 
11 - 12 10 Kentucky (1) Kansas (2) 0.667 0.222 
12 - 13 11 Louisville (1) Michigan (4) 0.800 0.16 
13 - 14 12 Connecticut (7) Kentucky (8) 0.533 0.249 
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 log�
ℎ𝑖𝑖𝑖𝑖

(𝑙𝑙)

1−ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙)� was assumed to be normal distribution, the mean and variance derived as  

𝑙𝑙𝑙𝑙𝑙𝑙 �
ℎ𝑖𝑖𝑖𝑖

(𝑙𝑙)

1 − ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙)�~𝑁𝑁(µ𝑙𝑙,σ𝑙𝑙2) = 𝑁𝑁�𝑙𝑙𝑙𝑙𝑙𝑙

ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙)

1 − ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙) ,

1

ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙) �1 − ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)�
� 

by Delta method (Oehlert, 1992).  

Now define a column vector 𝒉𝒉𝒊𝒊𝒊𝒊 = (ℎ𝑖𝑖𝑖𝑖
(1),ℎ𝑖𝑖𝑖𝑖

(2), … ,ℎ𝑖𝑖𝑖𝑖
(𝑛𝑛))′ , then  𝑙𝑙𝑙𝑙𝑙𝑙 � 𝒉𝒉𝒊𝒊𝒊𝒊

1−𝒉𝒉𝒊𝒊𝒊𝒊
�  follows a 

multivariate normal distribution with dimension n.  

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝒉𝒉𝒊𝒊𝒊𝒊

1 − 𝒉𝒉𝒊𝒊𝒊𝒊
�~𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛

⎝

⎛�

µ1
µ2
⋮
µ𝑛𝑛

� ,

⎣
⎢
⎢
⎡σ1

2 0
0 σ22

⋯ 0
⋱ ⋮

⋮ ⋱
0 …

⋱ 0
0 σ𝑛𝑛2⎦

⎥
⎥
⎤

⎠

⎞ 

(21) is the prior density for 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝒉𝒉𝒊𝒊𝒊𝒊
1−𝒉𝒉𝒊𝒊𝒊𝒊

�. Now we need to connect the probability 𝒉𝒉𝒊𝒊𝒊𝒊  with the 

coefficient 𝛃𝛃  to find the prior density on 𝛃𝛃.  

Let π(𝛃𝛃) denotes the prior distribution of 𝛃𝛃. To introduce a π(𝛃𝛃) with respect to 𝒉𝒉𝒊𝒊𝒊𝒊, a 

logistic function is used to connect 𝐡𝐡𝒊𝒊𝒊𝒊 and 𝜷𝜷,   

log�
𝐡𝐡𝒊𝒊𝒊𝒊

1 − 𝐡𝐡𝒊𝒊𝒊𝒊
� = 𝑿𝑿′𝛃𝛃 

where X is the covariate matrix. The least square approximation for 𝛃𝛃 can be written as: 

𝛃𝛃 = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ log�
𝐡𝐡𝒊𝒊𝒊𝒊

1 − 𝐡𝐡𝒊𝒊𝒊𝒊
� 

The density of 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝒉𝒉𝒊𝒊𝒊𝒊
1−𝒉𝒉𝒊𝒊𝒊𝒊

� has already been derived in (21). According to the basic theory of linear 

algebra on expected value and covariance matrices, the prior distribution of β is developed as 

(20) 

(21) 

(22) 

(23) 
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𝜷𝜷~𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛

⎝

⎛(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ �

µ1
µ2
⋮
µ𝑛𝑛

� , (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′

⎣
⎢
⎢
⎡σ1

2 0
0 σ22

⋯ 0
⋱ ⋮

⋮ ⋱
0 …

⋱ 0
0 σ𝑛𝑛2⎦

⎥
⎥
⎤

((𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′)′

⎠

⎞ 

  = 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛�µ𝜷𝜷,𝜮𝜮𝜷𝜷� 

Then the probability density function for 𝜷𝜷 can be written as  

π(𝛃𝛃) =
1

(2π)
𝑛𝑛
2�𝜮𝜮𝜷𝜷�

1
2

exp �−
1
2
�𝛃𝛃 − µ𝜷𝜷�

′
𝜮𝜮𝜷𝜷−𝟏𝟏�𝛃𝛃 − µ𝜷𝜷�� 

Notice that this is not the only way that we can form the π(𝛃𝛃) based on ℎ𝑖𝑖𝑖𝑖
(𝑘𝑘), for instance, we can 

assume ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙)follows some distribution with mean ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)  and variance �ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙)�1 − ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)��
2
. In this case, 

the prior distribution of β has distribution: 

𝜷𝜷~𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 �(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′ �

µ1
µ2
⋮
µ𝑛𝑛

� , (𝑿𝑿′𝑿𝑿)−𝟏𝟏� 

The covariance matrix of prior distribution π(𝛃𝛃) is only related with the covariate matrix X. 

4.3. The Posterior Distribution of Logistic Coefficient 

The posterior distribution is derived by multiplying the density function of prior 

distribution (25) by the full likelihood function (18). Then the posterior distribution is defined by 

𝜋𝜋(𝜷𝜷|𝒀𝒀,𝑿𝑿) ∝ 𝜋𝜋(𝜷𝜷)L(𝐘𝐘|𝑿𝑿,𝛃𝛃) 

= ��
1

σj√2π
exp�−

(βj − µβj)
2

2σ𝑗𝑗2
��

k

j=1

exp��𝑦𝑦𝑖𝑖𝜂𝜂𝑖𝑖

𝑁𝑁

𝑖𝑖=1

���
1

1 + exp(𝜂𝜂𝑖𝑖)
�

𝑁𝑁

𝑖𝑖=1

 

Equation (27) represents the posterior probability distribution of β, and under these 

distribution statistical inference can be carried out by using Bayesian method. 

 

 

(24) 

(25) 

(26) 

(27) 
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4.4. Estimation 

The Bayesian point estimate is the parameter vector that minimizes the expected loss 

function. If the loss function is quadratic form (𝜷𝜷� − 𝜷𝜷)2, then the mean of the posterior probability 

distribution in (27) is the “minimum expected loss” (MELO) estimator (Green, 2003).  

4.5. Sampling Algorithms 

Random sampling from posterior distribution is a key step in Bayesian analysis. 

Nonetheless, only a few well-known probability distributions are ready for use. So some sampling 

methods have to be used in Bayesian estimation. 

The MCMC procedure is a general purpose Markov chain Monte Carlo (MCMC) 

simulation procedure that is designed to fit Bayesian models. In SAS 9.3 (SAS Institute, Cary NC), 

the statement “PROC MCMC” uses Metropolis algorithm with a normal proposal distribution to 

obtain the posterior samples as default (How PROC MCMC Works, 2015). The Metropolis 

algorithm is named after the American physicist and computer scientist Nicholas C. Metropolis. It 

is used to obtain random samples from any arbitrary distribution of any dimension (Chib and 

Greenberg, 1995). Suppose we want to draw samples from a multivariate distribution with full 

joint posterior probability density function π (𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑘𝑘). The first step of Metropolis algorithm 

is to initialize the sample value for each random variable. The next step is to generate a candidate 

sample 𝛽𝛽1
(𝑐𝑐),𝛽𝛽2

(𝑐𝑐), … ,𝛽𝛽𝑘𝑘
(𝑐𝑐) from the proposal distribution q(. |𝛽𝛽1

(𝑖𝑖−1),𝛽𝛽2
(𝑖𝑖−1), … ,𝛽𝛽𝑘𝑘

(𝑖𝑖−1)). And then 

calculate an acceptance probability 

α = min�1,
π (𝛽𝛽1

(𝑐𝑐),𝛽𝛽2
(𝑐𝑐), … ,𝛽𝛽𝑘𝑘

(𝑐𝑐)|𝐘𝐘,𝐗𝐗)

π (𝛽𝛽1
(𝑖𝑖−1),𝛽𝛽2

(𝑖𝑖−1), … ,𝛽𝛽𝑘𝑘
(𝑖𝑖−1)|𝐘𝐘,𝐗𝐗)

� 

Now the acceptance probability for this candidate sample is α (Introduction to Bayesian 

Analysis Procedures, 2015). The algorithm is self-repeating, so theoretically, it can be carried out 

as long as required. The algorithm is given in Figure 4. Suppose the m data vectors are accepted 

(28) 
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�𝛽𝛽1
(𝑙𝑙),𝛽𝛽2

(𝑙𝑙), … ,𝛽𝛽𝑘𝑘
(𝑙𝑙).  𝑙𝑙 = 1,2, … ,𝑚𝑚� from posterior distribution. By MCMC method, then we can 

find accurate Bayesian estimate for vector β is: 

𝜷𝜷� ≈
∑ 𝛽𝛽(𝑙𝑙)𝑚𝑚
𝑙𝑙=1

𝑚𝑚
 

 

Initialize 𝛽𝛽0
(0),𝛽𝛽1

(0), … ,𝛽𝛽𝑘𝑘
(0) 

for iteration i = 1, 2, . . . do  
      Propose𝛽𝛽0

(𝑐𝑐),𝛽𝛽1
(𝑐𝑐), … ,𝛽𝛽𝑘𝑘

(𝑐𝑐) ∼ q(. |𝛽𝛽1
(𝑖𝑖−1),𝛽𝛽2

(𝑖𝑖−1), … ,𝛽𝛽𝑘𝑘
(𝑖𝑖−1)) 

      Acceptance Probability:  

á = min�1,
π (𝛽𝛽1

(𝑐𝑐),𝛽𝛽2
(𝑐𝑐), … ,𝛽𝛽𝑘𝑘

(𝑐𝑐)|𝐘𝐘,𝐗𝐗)

π (𝛽𝛽1
(𝑖𝑖−1),𝛽𝛽2

(𝑖𝑖−1), … ,𝛽𝛽𝑘𝑘
(𝑖𝑖−1)|𝐘𝐘,𝐗𝐗)

� 

       u ∼  Uniform (u;  0, 1) 
       if u < α then  
           Accept the candidate sample: 𝛽𝛽1

(𝑖𝑖),𝛽𝛽2
(𝑖𝑖), … ,𝛽𝛽𝑘𝑘

(𝑖𝑖) ← 𝛽𝛽1
(𝑐𝑐),𝛽𝛽2

(𝑐𝑐), … ,𝛽𝛽𝑘𝑘
(𝑐𝑐) 

       else  
            Reject the proposal: 𝛽𝛽1

(𝑖𝑖),𝛽𝛽2
(𝑖𝑖), … ,𝛽𝛽𝑘𝑘

(𝑖𝑖) ← 𝛽𝛽1
(𝑖𝑖−1),𝛽𝛽2

(𝑖𝑖−1), … ,𝛽𝛽𝑘𝑘
(𝑖𝑖−1) 

       end if 
end for 

Figure 4. Metropolis algorithm 

 

4.6. Application 

The Bayesian estimation first applies on the conditional probability model (8) in order to 

predict the 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) in 2015 NCAA March Madness. We will use all covariates mentioned on Section 

3. However, in Pomeroy’s Ratings, Pyth is derived from both AdjO and AdjD (Pomeroy ratings, 

2015). To avoid the severe collinearity problem caused by high correlation between Pyth and 

AdjO, and Pyth and AdjD, the variable Pyth was excluded. Meanwhile, the variable seed number 

was used to generate the prior density of coefficients 𝜷𝜷 (19). Therefore, it was removed also. Now, 

the total of twelve covariates were considered in the Bayesian inference. Six models were 

(29) 
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developed using PSC method with Logit link. The first model was developed for predicting all 32 

Rd64 games. The second model was developed for predicting all 16 Rd32 games. The third, fourth, 

fifth and sixth round models ware developed for predicting 8 Sweet16 games, 4 Elite8 games, 2 

Final4 games and 1 championship game, respectively. All of the data used in this work were 

collected from 2002-2003 season through 2013-2014 season (12 seasons). 

The number of samples from the Metropolis algorithm was assigned 10,000,000 in this 

work. However, we will not use all these samples because the procedure of Metropolis algorithm 

cannot guarantee all 10,000,000 samples are independent and identically distributed. Although the 

Markov chain eventually converges to the target distribution, the initial samples may not converge 

to the desired distribution (Metropolis–Hastings algorithm, 2015). For this reason, the first half of 

the iterations were used as a burn-in period, resulting in an initial 5,000,000 iterations thrown 

away. By doing this, one can guarantee the remaining 5,000,000 samples are from an identical 

distributions. Since the samples are drawn iteratively, the correlation between two samples from 

successive iterations is very high. To acquire independent samples, a common strategy is to thin 

the MCMC in order to reduce sample autocorrelations (Link and Eaton, 2011). In our study, the 

thinning rate was assigned as 2,000, which means for the remaining 5,000,000 samples, we only 

keep one sample in every 2,000 samples simulation. Consequently, (10,000,000−5,000,000)
2,000

= 2,500 

samples were collected for each model and now these samples can be considered as from an 

independent samples from identical distributions. Table 15 gives the summaries of the posterior 

distribution for the Rd64 model. It reports the posterior mean, standard deviation, 2.5% and 97.5% 

percentile for the distribution. The mean value is used as estimated coefficients in Bayesian 

estimation. These 2.5% and 97.5% percentile are known as credible interval in Bayesian statistics 

(Jaynes, 1976), which is analogous to confidence interval in Non-Bayesian statistics used for 
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interval estimation. As an example, Figure 5, shows the trace, autocorrelation and the univariate 

density plot for the first two covariates (FGM, 3PM). The trace plot appears stationary, the 

autocorrelations are close to zero, and the density plots are relatively smooth. Therefore the 2,500 

samples can be assumed from an independent identical distribution. Table 16 gives the estimated 

coefficient (samples means) for all six models. Once the predicted 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) are computed, using the  

procedures in Section 3, we need to put the conditional probability 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) into model (9) to derive 

the 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) for 𝑘𝑘 > 1 (Note 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 1) = 𝑝𝑝𝑖𝑖𝑖𝑖
(1)), and then put all 𝑃𝑃(𝑍𝑍𝑖𝑖 ≥ 𝑘𝑘) (k = 1,2, … ,6) into 

the probability matrix (Table 18). The accuracy using simple and doubling scoring systems for 

year 2015’s bracket (Figure 6) using Bayesian estimation is given in Table 17.     

Table 15. Summary table for posterior distribution in 2015 March Madness Rd64 model 

Posterior Summaries 

Parameter N Mean Standard 
Deviation 

2.5% 
percentile 

97.5% 
percentile 

FGM  2500 0.0527 0.0603 -0.0563 0.1774 
3PM 2500 0.00648 0.0637 -0.1102 0.138 
FTA  2500 0.00512 0.0346 -0.0611 0.0756 

ORPG 2500 0.025 0.0482 -0.0666 0.1196 
DRPG 2500 -0.0071 0.0512 -0.103 0.0989 
APG 2500 -0.0294 0.0667 -0.1587 0.1091 
PFPG 2500 0.0404 0.0509 -0.0553 0.144 

ATRATIO 2500 0.4239 0.6404 -0.795 1.6478 
AdjO 2500 0.2066 0.0338 0.1379 0.2714 
AdjD 2500 -0.2361 0.0387 -0.3159 -0.1652 
ASM 2500 -0.1216 0.045 -0.2107 -0.0351 

SAGSOS 2500 -0.1096 0.0396 -0.1885 -0.0356 
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Table 16. Estimated coefficients (mean of posterior distribution) for 2015 March Madness using 
Bayesian inference (standard deviation of posterior distribution given in parenthesis)  

Parameter Rd64 Rd32 Sweet16 Elite8 Final4 Champs 

FGM  0.0527 
(0.0603) 

0.1134 
(0.0845) 

0.1109 
(0.1405) 

-0.0225 
(0.1946) 

0.2021 
(0.3965) 

0.1956 
(1.949) 

3PM 0.00648 
(0.0637) 

0.0793 
(0.0861) 

0.1223 
(0.1272) 

-0.1671 
(0.2332) 

0.6263 
(0.5706) 

0.7705 
(1.0141) 

FTA 0.00512 
(0.0346) 

-0.0265 
(0.0531) 

0.0257 
(0.0739) 

0.0535 
(0.1223) 

-0.1492 
(0.2029) 

-0.3023 
(0.356) 

ORPG 0.025 
(0.0482) 

0.0198 
(0.0688) 

0.0468 
(0.1027) 

-0.00949 
(0.1212) 

0.245 
(0.4387) 

0.279 
(0.4724) 

DRPG -0.00712 
(0.0512) 

-0.0444 
(0.0667) 

0.0613 
(0.0973) 

-0.1072 
(0.1947) 

0.2132 
(0.2277) 

0.1641 
(3.9657) 

APG -0.0294 
(0.0667) 

-0.0498 
(0.0905) 

0.00773 
(0.1272) 

-0.049 
(0.217) 

-0.00232 
(0.4206) 

0.4318 
(4.9482) 

PFPG 0.0404 
(0.0509) 

-0.0388 
(0.0704) 

0.0649 
(0.1011) 

0.019 
(0.1443) 

-0.0623 
(0.2886) 

-0.067 
(1.3861) 

ATRATIO 0.4239 
(0.6404) 

-0.2554 
(0.9118) 

-0.5118 
(1.1752) 

-0.00566 
(2.2451) 

-3.4968 
(3.3122) 

-9.0191 
(29.9698) 

AdjO 0.2066 
(0.0338) 

0.2231 
(0.0464) 

0.3192 
(0.0719) 

0.2856 
(0.0999) 

0.4547 
(0.1833) 

0.3545 
(0.5545) 

AdjD -0.2361 
(0.0387) 

-0.2736 
0.0568) 

-0.365 
(0.0896) 

-0.2905 
(0.123) 

-0.5438 
(0.1926) 

-0.2109 
(1.286) 

ASM -0.1216 
(0.045) 

-0.0985 
(0.0604) 

-0.2262 
(0.0988) 

-0.1008 
(0.1342) 

-0.4241 
(0.264) 

-0.3006 
(0.6069) 

SAGSOS -0.1096 
(0.0396) 

-0.0899 
(0.0567) 

-0.0614 
(0.0881) 

-0.0948 
(0.1101) 

-0.2334 
(0.2256) 

-0.1654 
(0.4296) 
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Figure 5. Diagnostics plots for posterior distribution on covariate FGM (beta1) and 3PM (beta2) 
 

Table 17. Prediction accuracy for PSC model (Logit link) using Bayesian estimation in 2015 
March Madness 

  Rd64 Rd32 Sweet16 Elite8 Final4 Championship total PCT 
Correct 

pick 26 9 5 2 0 0 42 66.67% 

Simple 26 9 5 2 0 0 42 66.67% 
Doubling 26 18 20 16 0 0 80 41.67% 
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Table 18. PSCM (Logit link) probability matrix in 2015 March Madness using Bayesian Est. 

 Seed TEAM k=1 k=2 k=3 k=4 k=5 k=6 
M

ID
W

E
ST

 
1 Kentucky 0.9345 0.8381 0.7667 0.6674 0.2136 0.0324 
16 Hampton 0.0655 0.0049 0.0001 0.0000 0.0000 0.0000 
8 Cincinnati 0.5607 0.1065 0.0355 0.0130 0.0065 0.0016 
9 Purdue 0.4393 0.0505 0.0182 0.0040 0.0009 0.0002 
5 West Virginia 0.6414 0.3985 0.1023 0.0498 0.0251 0.0109 
12 Buffalo 0.3586 0.1622 0.0202 0.0048 0.0016 0.0002 
4 Maryland 0.6070 0.2951 0.0473 0.0131 0.0083 0.0030 
13 Valparaiso 0.3930 0.1442 0.0097 0.0010 0.0004 0.0001 
6 Butler 0.4574 0.1887 0.0591 0.0106 0.0053 0.0010 
11 Texas 0.5426 0.2404 0.0977 0.0160 0.0136 0.0092 
3 Notre Dame 0.8445 0.5518 0.2168 0.0459 0.0157 0.0043 
14 Northeastern 0.1555 0.0191 0.0007 0.0000 0.0000 0.0000 
7 Wichita St 0.6633 0.3136 0.1347 0.0294 0.0093 0.0007 
10 Indiana 0.3367 0.0999 0.0296 0.0019 0.0015 0.0013 
2 Kansas 0.8806 0.5666 0.4605 0.1430 0.1253 0.0700 
15 New Mexico St 0.1194 0.0198 0.0009 0.0001 0.0000 0.0000 

W
E

ST
 

1 Wisconsin 0.9373 0.8180 0.5685 0.3489 0.1976 0.0246 
16 Coastal Carolina 0.0627 0.0062 0.0003 0.0000 0.0000 0.0000 
8 Oregon 0.5385 0.0995 0.0415 0.0051 0.0044 0.0037 
9 Oklahoma St 0.4615 0.0764 0.0294 0.0063 0.0047 0.0024 
5 Arkansas 0.7718 0.3411 0.0804 0.0153 0.0067 0.0017 
12 Wofford 0.2282 0.0416 0.0010 0.0001 0.0000 0.0000 
4 North Carolina 0.7951 0.5466 0.2762 0.0759 0.0515 0.0280 
13 Harvard 0.2049 0.0707 0.0028 0.0003 0.0001 0.0000 
6 Xavier 0.5500 0.2490 0.0628 0.0164 0.0098 0.0031 
11 Ole Miss 0.4500 0.1629 0.0299 0.0065 0.0045 0.0019 
3 Baylor 0.7593 0.5224 0.1937 0.0737 0.0635 0.0504 
14 Georgia St 0.2407 0.0656 0.0027 0.0004 0.0000 0.0000 
7 Virginia Commonwealth 0.6704 0.1606 0.0656 0.0156 0.0114 0.0029 
10 Ohio State 0.3296 0.0654 0.0146 0.0023 0.0005 0.0001 
2 Arizona 0.9445 0.7707 0.6306 0.4333 0.2180 0.0207 
15 Texas Southern 0.0555 0.0033 0.0001 0.0000 0.0000 0.0000 

E
A

ST
 

1 Villanova 0.9663 0.8206 0.7300 0.5028 0.3355 0.2444 
16 Lafayette 0.0337 0.0017 0.0000 0.0000 0.0000 0.0000 
8 NC State 0.5452 0.0971 0.0483 0.0122 0.0083 0.0069 
9 LSU 0.4548 0.0805 0.0365 0.0059 0.0043 0.0040 
5 Northern Iowa 0.8511 0.6502 0.1357 0.0733 0.0409 0.0292 
12 Wyoming 0.1489 0.0320 0.0004 0.0000 0.0000 0.0000 
4 Louisville 0.6417 0.2480 0.0464 0.0148 0.0064 0.0040 
13 UC Irvine 0.3583 0.0699 0.0027 0.0002 0.0001 0.0000 
6 Providence 0.6870 0.2098 0.0756 0.0255 0.0101 0.0066 
11 Dayton 0.3130 0.0662 0.0076 0.0014 0.0001 0.0001 
3 Oklahoma 0.9032 0.7106 0.4309 0.1352 0.1262 0.1134 
14 Albany 0.0968 0.0135 0.0002 0.0000 0.0000 0.0000 
7 Michigan St 0.5560 0.1698 0.0709 0.0130 0.0086 0.0075 
10 Georgia 0.4440 0.0948 0.0304 0.0072 0.0041 0.0029 
2 Virginia 0.8944 0.7192 0.3838 0.2085 0.0916 0.0344 
15 Belmont 0.1056 0.0162 0.0005 0.0000 0.0000 0.0000 

SO
U

T
H

 

1 Duke 0.8671 0.6464 0.4670 0.2991 0.1177 0.0928 
16 Robert Morris 0.1329 0.0145 0.0004 0.0000 0.0000 0.0000 
8 San Diego St 0.4048 0.1490 0.0341 0.0150 0.0049 0.0030 
9 St. John's 0.5952 0.1901 0.0757 0.0275 0.0122 0.0087 
5 Utah 0.6834 0.4418 0.1937 0.1053 0.0307 0.0200 
12 Stephen F. Austin 0.3166 0.0974 0.0152 0.0036 0.0001 0.0001 
4 Georgetown 0.8737 0.4422 0.2132 0.1290 0.0529 0.0385 
13 Eastern Washington 0.1263 0.0186 0.0008 0.0000 0.0000 0.0000 
6 SMU 0.4630 0.1963 0.0636 0.0302 0.0035 0.0021 
11 UCLA 0.5370 0.2254 0.0901 0.0258 0.0156 0.0135 
3 Iowa State 0.7604 0.5285 0.3381 0.1450 0.0806 0.0667 
14 UAB 0.2396 0.0498 0.0046 0.0004 0.0001 0.0001 
7 Iowa 0.5376 0.1935 0.0682 0.0263 0.0071 0.0047 
10 Davidson 0.4624 0.1532 0.0466 0.0049 0.0017 0.0015 
2 Gonzaga 0.8630 0.6314 0.3882 0.1879 0.0367 0.0215 
15 North Dakota St 0.1370 0.0219 0.0006 0.0000 0.0000 0.0000 

  Column summation 32 16 8 4 2 1 
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Figure 6. PSC model (Logit link) bracket in 2015 March Madness using Bayesian estimation 
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5. COMPARISON OF PREDICTION ACCURACY IN THE PAST THREE YEARS 

The precision in using the restricted OLRE model (2006, 2008), the PSC model with 

Cauchit link (MLE), the PSC model with Logit link (MLE, Bayesian estimation) are computed for 

the last three years. Moreover, other popular prediction methods or rating system such as Pomeroy 

and RPI ratings are also incorporated into the comparison. In each year, under MLE, the Logit link 

and Cauchit link PSC methods used all fourteen variables as candidate covariates with same model 

selection criteria. Both of these methods developed three models: one for predicting all 32 Rd64 

games; one for predicting all 16 Rd32 games; and one for predicting all 15 remaining games.  

Under Bayesian estimation, twelve covariates were used to construct six models under the 

PSC method with Logit link. The first model was developed for predicting all 32 Rd64 games. The 

second model was developed for predicting all 16 Rd32 games. The third, fourth, fifth and sixth 

models were developed for predicting 8 Sweet16 games, 4 Elite8 games, 2 Final4 games and 1 

championship game, respectively. Two prior densities have been used considered in Bayesian 

inference. Prior 1 was introduced in Section 4, It assumes ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙)  has mean ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)   and variance 

ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙)�1 − ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)�. The other prior assumes ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙) has mean ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)  and variance �ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙)�1 − ℎ�𝑖𝑖𝑗𝑗

(𝑙𝑙)��
2
. The 

variance of this prior distribution is not related with observed value ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙). It is only related to the 

covariate matrix 𝑿𝑿. The restricted OLRE model developed one model for each actual round as 

well. For Pomeroy and RPI ratings, we just complete the bracket with the value of Pyth and RPI 

(In a single game, the team with higher Pyth or RPI value will win the game). 

Table 19 shows the prediction accuracy in the past three years. In our work, to predict 2015 

March Madness and compute the accuracy, March Madness data from 2002-2003 season through 

2013-2014 season (12 seasons) are used as the training data to fit the PSC model and restricted 

OLRE model (Since Pomeroy and RPI rating systems do not need historical data, Pyth and RPI 
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value from the current year were used to make the predictions). Fourteen covariates were 

considered in the MLE (Logit, Cauchit link and restricted OLRE model), and twelve covariates 

were used in the Bayesian estimation model (Logit link).  Similarly, 11 seasons’ data (from 2002-

2003 season through 2012-2013) were used as training data to make predictions and compute the 

accuracy for 2014 March Madness. And 10 seasons’ data (from 2002-2003 season through 2011-

2012) were used as training data to make predictions and compute the accuracy for 2013 March 

Madness. Notice when using Bayesian estimation to predict 2013 and 2014 March Madness, the 

sample sizes for the last round are only 10 and 11 for these two years. These sample sizes are less 

than the number of covariates used in the model, and therefore 𝑿𝑿′𝑿𝑿 is a singular matrix in (24) 

when forming the prior density. Hence, the last two rounds have to be combined to acquire a non-

singular matrix under Bayesian inference.   

Overall, the PSC models has better performances than other popular prediction methods. 

For some years, the restricted OLRE model has similar accuracy when comparing with the PSC 

models. However, the restricted OLRE model uses all covariates to fit the model, and this may 

lead to a risk when using maximum likelihood estimation. The high dimension of covariates results 

in a greater chance to have the convergence problem. For this reason, the restricted OLRE model 

has a bad performance for 2015 March Madness. Different from maximum likelihood estimation, 

Bayesian estimation can avoid the convergence problem even with a high dimension of covariates.  

When using the Logit link function, Bayesian estimation with prior 1 and prior 2 correctly 

predicted almost three and one more games, respectively, than MLE on average because it 

incorporates the experts’ opinions as a prior information. Also in Bayesian estimation, high 

dimensional parameter was used to explain the data while not having the large risk of convergence 

issues. 
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Comparing the PSC model with two different link functions, Cauchit link had better 

performance in 2014 March Madness because that year’s tournament had more lower-seeded 

teams winning against their higher-seeded opponents. Indeed the two teams with seed number 7 

(Connecticut) and 8 (Kentucky) went to the final. Each of these teams beat four higher seeded 

opponents after Rd64 and then met in the final. This was the first time that the championship game 

did not have a team with seed number 1,2 or 3. As we mentioned in Section 3, when using Cauchit 

link, there is always a chance that a weak team can beat a strong team. Therefore when such a case 

happens several times in a year of the tournament, Cauchit link would have done better. 

Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness 

2013 
March 

Madness 

PSCM 
Logit link 

(MLE) 

PSCM 
Logit link 
(Bayesian-

prior1a) 

PSCM 
Logit link 
(Bayesian- 

prior2b) 

PSCM 
Cauchit 

Link 
(MLE) 

restricted 
OLRE 
model 

Pomeroy RPI 

Correctly 
Predicted 47 47 42 47 48 41 34 

Simple 
System 74.60% 74.60% 66.67% 74.60% 76.19% 65.08% 53.97% 

Doubling 
System 75.00% 77.60% 61.98% 75.00% 78.13% 61.46% 28.13% 

        

        

2014 
March 

Madness 

PSCM 
Logit link 

(MLE) 

PSCM 
Logit link 
(Bayesian-

prior1) 

PSCM 
Logit link 
(Bayesian- 

prior2) 

PSCM 
Cauchit 

Link 
(MLE) 

restricted 
OLRE 
model 

Pomeroy RPI 

Correctly 
Predicted 34 43 40 39 38 38 36 

Simple 
System 53.97% 68.25% 63.50% 61.90% 60.32% 60.32% 57.14% 

Doubling 
System 53.65% 40.10% 35.93% 58.33% 32.29% 31.25% 31.77% 

 

 

42 
 



Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness 
(continued) 

2015 
March 

Madness 

PSCM 
Logit link 

(MLE) 

PSCM 
Logit link 
(Bayesian-

prior1) 

PSCM 
Logit link 
(Bayesian- 

prior2) 

PSCM 
Cauchit 

Link 
(MLE) 

restricted 
OLRE 
model 

Pomeroy RPI 

Correctly 
Predicted 43 42 45 43 24 43 43 

Simple 
System 68.25% 66.67% 71.43% 68.25% 38.10% 68.25% 68.25% 

Doubling 
System 43.23% 41.67% 48.96% 39.58% 19.80% 40.63% 45.83% 

 

Average 
PSCM 

Logit link 
(MLE) 

PSCM 
Logit link 
(Bayesian-

prior1) 

PSCM 
Logit link 
(Bayesian
- prior2) 

PSCM 
Cauchi
t Link 
(MLE) 

restricted 
OLRE 
model 

Pomeroy RPI 

Correctly 
Predicted 41.3 44 42.3 43 36.7 40.7 37.7 

Simple 
System 65.61% 69.84% 67.15% 68.25

% 58.20% 64.55% 59.79
% 

Doubling 
System 57.29% 53.12% 48.96% 57.64

% 43.41% 44.45% 35.24
% 

a: prior 1 assumes ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙)follows some distribution with mean ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)  and variance ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙)�1 − ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)� 

b: prior 2 assumes ℎ𝑖𝑖𝑖𝑖
(𝑙𝑙)follows some distribution with mean ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)  and variance �ℎ�𝑖𝑖𝑖𝑖
(𝑙𝑙)�1 − ℎ�𝑖𝑖𝑖𝑖

(𝑙𝑙)��
2
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6. DISCUSSION 

 Based upon the bracket accuracy of past three seasons’ tournament, PSC model has better 

performance than other methods (restricted OLRE model, Pomeroy, RPI). Comparing two link 

functions in PSC model, Logit link successfully predicts 124 games out of 189 games and the 

Cauchit link has 129 games. They have very similar performance when there is no surprises during 

the whole tournament. However, like 2014 March Madness, with several weaker teams beating 

stronger teams, the performance of Cauchit link exceeded the performance of the Logit link in 

both simple and doubling scoring systems.  

Bayesian estimation using two different priors for the PSC model with Logit link 

successfully predicts 132 and 127 games out of 189 games, respectively. Compared with 124 

games of maximum likelihood estimation in Logit link. The models using Bayesian estimation 

have better accuracy in the simple scoring system. However, for the doubling points system, they 

are no better than the MLE. The reason for this may be that only the seed number is accounted for 

in the prior density. Seed number may not be significantly important for teams that have already 

won several tournament games. Additionally, when the prior information is based on empirical 

data, such as winning probability from the last decade rather than information based only on 

experts’ opinions, then the Bayesian methods are usually less controversial (Bland and Altman, 

1998). In future research, one could use a rating system based on both historical results and experts’ 

opinions. The performance of Bayesian inference might be improved in this model. In addition, in 

SAS 9.3, Cauchit link is not a build-in link function in the “PROC MCMC” statement. The Cauchit 

link function could not be used in the PSC model using Bayesian estimation. Future research could 

include building this link function and thereby possibly increasing prediction accuracy.   
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When using Bayesian estimation, the models with two different prior densities yielded 

different accuracies. The model with prior 2 has better performance in the 2015 March Madness, 

while the model with prior 1 has better performance in the two previous years. Hence, future 

research could also be conducted using different priors.     
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APPENDIX A. R CODE FOR PROBABILITY SELF-CONSISTENCY MODEL WITH 

CAUCHIT LINK  

options(max.print=100000000)  

g<- function(x) !all(x==0) 

setwd("E:/NDSU/Su's research/regular season") 

BB<-read.csv("NCAA_U5D.csv",header=T) 

m<- 12*64 

X<- BB[1:m,2:15] 

Zeros <- rep(0,14)  

Ones <- rep(1,14)  

Cs<-expand.grid(Map(c, Zeros, Ones))  

Cs<-cbind(Cs,NA, NA) 

colnames(Cs) <- 

c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10","V11","V12","V13","V14","AICc","

converge") 

tn<- nrow(Cs) 

 

#1st round# 

a<- seq(from=1, to=m-1, by=2) 

b<- seq(from=2, to=m, by=2) 

Z1<- as.matrix(X[a,]-X[b,]); 

Y1<- as.matrix(cbind(BB$R1[a],BB$R1[b])) 

rowSums(Y1) 
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n<- m/2 

C1<- Cs 

mod.0<- glm(Y1~ 0,family=binomial(link=cauchit)) 

C1[1,15]<- -2*sum(Y1*log(0.5)); C1[1,16]<- mod.0$converged 

for (j in 2:tn) { 

WX1<- Z1*matrix(as.numeric(C1[j,1:14]),nrow=n,ncol=14,byrow=T) 

WX1<- WX1[,apply(WX1,2,g)]  

mod<-glm(Y1~0+WX1,family=binomial(link=cauchit)) 

fit <- mod$fitted.values 

p.hat<- c(fit, 1-fit) 

p<- sum(as.numeric(C1[j,1:14])) 

C1[j,15]<- -2*sum(Y1*log(p.hat))+2*p*n/(n-p-1) 

C1[j,16]<- mod$converged 

                } 

 

C1.new <- C1[order(C1$AICc),] 

C1.new[1,] 

WX.1<- Z1*matrix(as.numeric(C1.new[1,1:14]),nrow=n,ncol=14,byrow=T) 

WX.1<- WX.1[,apply(WX.1,2,g)] 

cc1.ind<- colnames(WX.1) 

mod1<- glm(Y1~0+WX.1,family=binomial(link=cauchit)) 
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#2nd round# 

id2<- which(BB$R1==1) 

a<- seq(from=1, to=m/2-1, by=2) 

b<- seq(from=2, to=m/2, by=2) 

Z2<- as.matrix(X[id2[a],]-X[id2[b],]); 

Y2<- as.matrix(cbind(BB$R2[id2[a]],BB$R2[id2[b]])) 

rowSums(Y2) 

C2<- Cs 

n<- m/4 

mod.0<- glm(Y2~ 0,family=binomial(link=cauchit)) 

C2[1,15]<- -2*sum(Y2*log(0.5)); C2[1,16]<- mod.0$converged 

for (j in 2:tn) { 

WX2<- Z2*matrix(as.numeric(C2[j,1:14]),nrow=n,ncol=14,byrow=T) 

WX2<- WX2[,apply(WX2,2,g)] 

mod<-glm(Y2~ 0+WX2,family=binomial(link=cauchit)) 

p<- sum(as.numeric(C2[j,1:14])) 

fit <- mod$fitted.values 

p.hat<- c(fit, 1-fit) 

C2[j,15]<- -2*sum(Y2*log(p.hat))+2*p*n/(n-p-1) 

C2[j,16]<- mod$converged 

} 

C2.new <-C2[order(C2$AICc),] 

C2.new[1,] 
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WX.2<- Z2*matrix(as.numeric(C2.new[1,1:14]),nrow=n,ncol=14,byrow=T) 

WX.2<- WX.2[,apply(WX.2,2,g)] 

cc2.ind<- colnames(WX.2) 

mod2<- glm(Y2~ 0+WX.2,family=binomial(link=cauchit)) 

 

 

#3rd, 4th, 5th, 6th round# 

id2<- which(BB$R2==1) 

a<- seq(from=1, to=m/4-1, by=2) 

b<- seq(from=2, to=m/4, by=2) 

Z3<- as.matrix(X[id2[a],]-X[id2[b],]); 

Y3<- as.matrix(cbind(BB$R3[id2[a]],BB$R3[id2[b]])) 

 

id2<- which(BB$R3==1) 

a<- seq(from=1, to=m/8-1, by=2) 

b<- seq(from=2, to=m/8, by=2) 

Z4<- as.matrix(X[id2[a],]-X[id2[b],]); 

Y4<- as.matrix(cbind(BB$R4[id2[a]],BB$R4[id2[b]])) 

 

#5th round# 

id2<- which(BB$R4==1) 

a<- seq(from=1, to=m/16-1, by=2) 

b<- seq(from=2, to=m/16, by=2) 
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Z5<- X[id2[a],]-X[id2[b],]; 

Y5<- cbind(BB$R5[id2[a]],BB$R5[id2[b]]) 

 

#6th round# 

id2<- which(BB$R5==1) 

a<- seq(from=1, to=m/32-1, by=2) 

b<- seq(from=2, to=m/32, by=2) 

Z6<- X[id2[a],]-X[id2[b],]; 

Y6<- cbind(BB$R6[id2[a]],BB$R6[id2[b]]) 

 

Z=as.matrix(rbind(Z3,Z4,Z5,Z6)) 

Y=as.matrix(rbind(Y3,Y4,Y5,Y6)) 

 

rowSums(Y) 

C6<- Cs 

n<- m/8+m/16+m/32+m/64 

mod.0<- glm(Y~ 0,family=binomial(link=cauchit)) 

C6[1,15]<- -2*sum(Y*log(0.5)); C6[1,16]<- mod.0$converged 

for (j in 2:tn) { 

WX<- Z*matrix(as.numeric(C6[j,1:14]),nrow=n,ncol=14,byrow=T) 

WX<- WX[,apply(WX,2,g)] 

mod<-glm(Y~ 0+WX,family=binomial(link=cauchit)) 

p<- sum(as.numeric(C6[j,1:14])) 
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fit <- mod$fitted.values 

p.hat<- c(fit, 1-fit) 

C6[j,15]<- -2*sum(Y*log(p.hat))+2*p*n/(n-p-1) 

C6[j,16]<- mod$converged 

} 

C6.new <- C6[order(C6$AICc),] 

C6.new[1,] 

 

WX<- Z*matrix(as.numeric(C6.new[1,1:14]),nrow=n,ncol=14,byrow=T) 

WX<- WX[,apply(WX,2,g)] 

cc.ind<- colnames(WX) 

mod3<- mod4<- mod5<- mod6 <- glm(Y~ 0+WX, family=binomial(link=cauchit)) 

cc1<- ncol(WX.1); cc2<- ncol(WX.2);  

cc3<- cc4<- cc5<- cc6<- ncol(WX)  

 

########## Bracketing ############ 

p<- matrix(NA,nrow=64,ncol=6)   #Probability matrix# 

w<- BB[(m+1):(m+64),2:15] 

 

 

#1st round prediction# 

a1<- seq(from=1, to=63, by=2) 

b1<- seq(from=2, to=64, by=2) 
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z<- w[a1,colnames(w) %in% cc1.ind]-w[b1,colnames(w) %in% cc1.ind]; n<- nrow(z) 

p[a1,1] <- temp<- 

atan(rowSums(z*matrix(as.numeric(mod1$coef),nrow=n,ncol=cc1,byrow=T),na.rm=T))/pi+0.5 

p[b1,1] <- 1-temp 

 

#2nd round prediction# 

nu<- 2^(6-2) 

for (t in 1:nu) { 

ri<-2^(2-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;  

 

for (s in (ini+1):mi) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc2.ind]-w[mi+i,colnames(w) %in% cc2.ind]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod2$coef),nrow=n,ncol=cc2,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,1]*p[mi+i,1]*pc 

                } 

p[s,2]<- psum 

                 }  

 

for (s in (mi+1): ui) { 

psum<- 0 
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for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc2.ind]-w[ini+i,colnames(w) %in% cc2.ind]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod2$coef),nrow=n,ncol=cc2,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,1]*p[ini+i,1]*pc 

                } 

p[s,2]<- psum 

                      } 

       } 

 

for (t in 1:nu) { 

ri<-2^(2-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri; 

cat(sum(p[(ini+1):ui,2]), "\n") 

                } 

                 

#3rd round prediction# 

nu<- 2^(6-3) 

for (t in 1:nu) { 

ri<-2^(3-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;  

 

for (s in (ini+1):mi) { 

psum<- 0 

for (i in 1:ri) { 
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z<- w[s,colnames(w) %in% cc.ind]-w[mi+i,colnames(w) %in% cc.ind]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod3$coef),nrow=n,ncol=cc3,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,2]*p[mi+i,2]*pc 

                } 

p[s,3]<- psum 

                 }  

 

for (s in (mi+1): ui) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod3$coef),nrow=n,ncol=cc3,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,2]*p[ini+i,2]*pc 

                } 

p[s,3]<- psum 

                      } 

       } 

 

for (t in 1:nu) { 

ri<-2^(3-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri; 

cat(sum(p[(ini+1):ui,3]), "\n") 

58 
 



                } 

           

#4th round prediction# 

nu<- 2^(6-4) 

for (t in 1:nu) { 

ri<-2^(4-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;  

 

for (s in (ini+1):mi) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc.ind]-w[mi+i,colnames(w) %in% cc.ind]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod4$coef),nrow=n,ncol=cc4,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,3]*p[mi+i,3]*pc 

                } 

p[s,4]<- psum 

                 }  

 

for (s in (mi+1): ui) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z) 

59 
 



pc<- 

atan(rowSums(z*matrix(as.numeric(mod4$coef),nrow=n,ncol=cc4,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,3]*p[ini+i,3]*pc 

                } 

p[s,4]<- psum 

                      } 

       } 

 

for (t in 1:nu) { 

ri<-2^(4-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri; 

cat(sum(p[(ini+1):ui,4]), "\n") 

                }  

     

#5th round prediction# 

nu<- 2^(6-5) 

for (t in 1:nu) { 

ri<-2^(5-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;  

 

for (s in (ini+1):mi) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc.ind]-w[mi+i,colnames(w) %in% cc.ind]; n<- nrow(z)  
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pc<- 

atan(rowSums(z*matrix(as.numeric(mod5$coef),nrow=n,ncol=cc5,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,4]*p[mi+i,4]*pc 

                } 

p[s,5]<- psum 

                 }  

 

for (s in (mi+1): ui) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod5$coef),nrow=n,ncol=cc5,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,4]*p[ini+i,4]*pc 

                } 

p[s,5]<- psum 

                      } 

       } 

 

for (t in 1:nu) { 

ri<-2^(5-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri; 

cat(sum(p[(ini+1):ui,5]), "\n") 

                }  

61 
 



 

#6th round prediction# 

nu<- 2^(6-6) 

for (t in 1:nu) { 

ri<-2^(6-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;  

 

for (s in (ini+1):mi) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,1:14]-w[mi+i,1:14]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod6$coef),nrow=n,ncol=cc6,byrow=T),na.rm=T))/pi+0.5  

psum<- psum+p[s,5]*p[mi+i,5]*pc 

                } 

p[s,6]<- psum 

                 }  

 

for (s in (mi+1): ui) { 

psum<- 0 

for (i in 1:ri) { 

z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z) 

pc<- 

atan(rowSums(z*matrix(as.numeric(mod6$coef),nrow=n,ncol=cc6,byrow=T),na.rm=T))/pi+0.5  
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psum<- psum+p[s,5]*p[ini+i,5]*pc 

                } 

p[s,6]<- psum 

                      } 

       } 

 

for (t in 1:nu) { 

ri<-2^(6-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri; 

cat(sum(p[(ini+1):ui,6]), "\n") 

                }  

 

Ex<- rowSums(p) 

AC<- rowSums(BB[(m+1):(m+64),16:21]) 

 

Q<- matrix(NA,nrow=64,ncol=6)   #bracteting matrix# 

 

for (r in 1:6) { 

nu<- 2^(6-r) 

for (t in 1:nu) { 

ri<-2^r; ini<-(t-1)*ri; mi<-ini+1; ui<-ini+ri;  

idmax<- which.max(p[mi:ui,r])+ini 

for (s in mi:ui) { 

Q[s,r]<- (s==idmax)*1 
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                 } 

                } 

               } 

colSums(Q) 

 

da<- data.frame(BB[(m+1):(m+64),1],round(p,4),round(Ex,4),Q,AC) 

write.csv(da,file="NCAA2014_pred_Cauchy_nn.csv") 

 

###Bracketing and Computing Accuracy### 

R<- as.matrix(BB[(m+1):(m+64),16:21]) 

 

1-(sum(abs(Q-R))/2)/63  #accuracy of bracketing using single scoring system# 

ds<- matrix(c(1,2,4,8,16,32),6,1) 

1- sum((abs(Q-R)%*%ds)/2)/192  #accuracy of bracketing using double scoring system# 
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APPENDIX B. R AND SAS CODE FOR BAYESIAN INFERENCE WITH LOGIT LINK 

B.1. R Code Part 

options(scipen=999) 

setwd("F:/NDSU/Su's research/Bayesian/seed_wtpyth/2015/round5") 

BB<-read.csv("round1_matrix.csv",header=T) 

attach(BB) 

n<-12*64/2 

pp<- 1/( p*(1- p)) 

v<- diag(pp[1:n]) 

H1<- as.matrix(BB[1:n,1:12]) 

Ex<-solve(t(H1)%*%H1)%*%t(H1)%*%log(p/(1-p)) 

Var<-(solve(t(H1)%*%H1)%*%t(H1))%*%v%*%t((solve(t(H1)%*%H1)%*%t(H1))) 

round(Ex, 5) 

round(Var, 5) 

 

B.2. SAS Code Part 

data U5D; 

infile "F:\NDSU\Su's research\Bayesian\NCAA_U5D.csv" dsd missover dlm=',' firstobs=2; 

informat Team $30.; 

input TEAM FGM _3PM FTA ORPG DRPG APG PFPG seed AdjO AdjD ASM

 SAGSOS ATRATIO Pyth R1 R2 R3 R4 R5 R6 season 

$; 

a=_n_; 
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run; 

 

data  

temp1 (rename=(Team=Team1 FGM=FGM1 _3PM=_3PM1 FTA=FTA1 ORPG=ORPG1 

DRPG=DRPG1 APG=APG1 PFPG=PFPG1 AdjO=AdjO1 AdjD=AdjD1 ASM=ASM1 

SAGSOS=SAGSOS1 ATRATIO=ATRATIO1 Pyth=Pyth1 R1=y seed=seed1)) 

temp2 (rename=(Team=Team2 FGM=FGM2 _3PM=_3PM2 FTA=FTA2 ORPG=ORPG2 

DRPG=DRPG2 APG=APG2 PFPG=PFPG2 AdjO=AdjO2 AdjD=AdjD2 ASM=ASM2 

SAGSOS=SAGSOS2 ATRATIO=ATRATIO2 Pyth=Pyth2 seed=seed2)); 

set U5D; 

if mod(a,2)=1 then output temp1; 

if mod(a,2)=0 then output temp2; 

run; 

 

data R1; 

merge temp1 temp2; 

FGM=FGM1-FGM2; _3PM=_3PM1-_3PM2; FTA=FTA1-FTA2; ORPG=ORPG1-ORPG2; 

DRPG=DRPG1-DRPG2; APG=APG1-APG2;PFPG=PFPG1-PFPG2;ATRATIO=ATRATIO1-

ATRATIO2; 

AdjO=AdjO1-AdjO2;AdjD=AdjD1-AdjD2;ASM=ASM1-ASM2;SAGSOS=SAGSOS1-

SAGSOS2;Pyth=Pyth1-pyth2; 

p=1-seed1/(seed1+seed2); 

where season^='14_15'; 
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keep TEAM1 TEAM2 FGM _3PM FTA ORPG DRPG APG PFPG ASM SAGSOS 

ATRATIO  season y p AdjO AdjD; 

run; 

 

proc mcmc data=R1 nbi=5000000 nmc= 5000000 nthin=2000   diag=(mcse ess) 

outpost=R1_out; seed=0; 

ARRAY beta[12]; 

parms beta 0; 

ODS output PostSummaries=Post; 

ARRAY mu0[12]  

(0.01473 0.0002 0.00774 0 0.0248 -0.01029 -0.00382 0.11102

 0.06422 -0.07324 0.00225 0.05093); 

ARRAY sigma0[12,12]  

(0.00749 0.00109 0.00086 -0.00228 -0.00219 -0.00351 -

0.00123 0.00643 -0.00062 -0.00099 -0.00102 0.00001 

0.00109 0.00861 0.00133 0.00034 -0.00091 -0.00092 -

0.00205 -0.00463 -0.00047 -0.001  -0.00094 0.00001 

0.00086 0.00133 0.00251 -0.00115 -0.00128 0.00001 -

0.0013  0.00705 -0.0006 -0.00026 -0.00028 0.00038 

-0.00228 0.00034 -0.00115 0.00486 0.00087 -0.00034  

0.0003  0.01111 0.00008 0.00038 0.00021 -0.00028 

-0.00219 -0.00091 -0.00128 0.00087 0.00554 -0.00104 

0.00199 0.01632 0.00067 0.00003 -0.0005 -0.00058 
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-0.00351 -0.00092 0.00001 -0.00034 -0.00104 0.00918 -

0.00052 -0.04945 0.00088 -0.00031 -0.00035 -0.00054 

-0.00123 -0.00205 -0.0013 0.0003  0.00199 -0.00052 

0.00516 0.01562 0.00078 -0.00008 -0.00018 -0.00046 

0.00643 -0.00463 0.00705 0.01111 0.01632 -0.04945  

0.01562 0.86795 -0.0059 -0.0055 -0.01317 -0.00237 

-0.00062 -0.00047 -0.0006 0.00008 0.00067 0.00088  

0.00078 -0.0059 0.0025  -0.002  -0.00233 -0.00258 

-0.00099 -0.001  -0.00026 0.00038 0.00003 -0.00031 -

0.00008 -0.0055 -0.002  0.00314 0.00316 0.00278 

-0.00102 -0.00094 -0.00028 0.00021 -0.0005 -0.00035 -

0.00018 -0.01317 -0.00233 0.00316 0.00449 0.00276 

0.00001 0.00001 0.00038 -0.00028 -0.00058 -0.00054 -

0.00046 -0.00237 -0.00258 0.00278 0.00276 0.00367); 

prior beta ~  MVN(mu0, sigma0); 

p = 

logistic(beta[1]*FGM+beta[2]*_3PM+beta[3]*FTA+beta[4]*ORPG+beta[5]*DRPG+beta[6]*A

PG+beta[7]*PFPG+beta[8]*ATRATIO+beta[9]*AdjO+beta[10]*AdjD+beta[11]*ASM+beta[12

]*SAGSOS); 

model y ~ binary(p); 

run; 

run; 
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	The remaining 36 at-large bids are granted by the NCAA Selection Committee to the teams it feels are the best 36 teams that did not receive automatic bids. Even though each conference receives only one automatic bid, the selection committee may select...
	Table 1. Automatic qualifiers for the 2015 NCAA March Madness
	Figure 1. NCAA 2015 March Madness bracket with complete tournament results (This template is downloaded from: www.samplewords.com/ncaa-blank-printable-tournament-bracket/)
	Table 2. At-large qualifiers for the 2015 NCAA March Madness
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	Pomeroy’s College Basketball Ratings were first published in 2003 by Ken Pomeroy (Pomeroy ratings, 2015). This rating was built upon Pythagorean winning percentage (Pyth) which has the formula:
	Pyth=,,𝐴𝑑𝑗𝑂-𝑥.-,𝐴𝑑𝑗𝑂-𝑥.+,𝐴𝑑𝑗𝐷-𝑥..
	where AdjO is the adjusted offensive efficiency, an estimate of the offensive efficiency (points scored per 100 possessions) that a team would have against the average Division I defense; AdjD is the adjusted defensive efficiency, an estimate of the d...
	West (2006, 2008) proposes an ordinal logistic regression model and expectation (restricted OLRE model) on ,𝜋-𝑖𝑘., the probability of team i has k winnings in the tournament as follows:
	,𝜋-𝑖𝑘.=,exp⁡(,α-𝑘.+,𝒙-𝒊.′𝛃)-1+exp⁡(,α-𝑘.+,𝒙-𝒊.′𝛃).−,𝑗=0-𝑘−1-,𝜋-𝑖𝑘..
	where ,α-𝑘. is the intercept for k winnings with k=0, 1,…, k. ,𝒙-𝒊. is a vector of values for team i on the predictor variables, 𝛃 is a vector of coefficients associated with the predictor variables, and rthe last term presents the cumulative sum ...
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	3. Probability self-consistenT model with cauchit link
	3.1. Introduction of Cauchit Link
	In the PSC model, ,𝑝-𝑖𝑗-(𝑘). denotes the conditional probability of team i winning against team j in the ,𝑘-𝑡ℎ. round. Instead of using the Logit link function, this study will use another link function, Cauchit link, to connect the linear predi...
	Cauchit link function is another symmetric link function for binary response (Koenker and Yoon, 2009). When using it in the PSC model, the conditional probability model (8) can be structured as follows:
	tan⁡(π,,𝑝-𝑖𝑗-,𝑘..−,1-2..=,,,𝒙-𝒊.−,𝒙-𝒋..-′.,𝛃-,𝒌.. k=1,2,…,6
	Comparing with the Logit distribution, the Cauchit distribution has heavier tails, hence the Cauchit link is useful when the value for linear prediction is extreme in either direction. Figure 2 shows the plots of both Cauchit link function and Logit l...
	To illustrate it, let us consider a simple example with only two covariates: average assists per game in regular season and adjusted offensive efficiency (AdjO) in Pomeroy’s Ratings. Assuming the coefficients for these two covariates are 0.1 and 0.2, ...
	Overall, we believe it is more appropriate to use the Cauchit link function in sports events rather than Logit link function because this does happen in sports, especially in a one game elimination tournament such as March Madness.
	Figure 2. Plots of Cauchit link function and Logit link function
	3.2. Application
	Magel and Unruh (2013) determined that four in-game statistics such as defensive rebounds and free throw attempts in the regular season are significant in predicting the game results, while in Zhang’s research (2012), five candidate covariates, includ...
	Table 5. Covariates used in the model
	3.3. Model Selection
	Three models are constructed using PSC method with Cauchit link to predict the results in March Madness. The first model was developed for predicting all 32 Rd64 games. The second model was developed for predicting all 16 Rd32 games. Round3 through 6 ...
	To select the best model that can explain the data in each round (Rd64, Rd32, Sweet16 - Championship), the corrected Akaike Information Criterion (AICc) is applied for model selection with all possible combinations of predictive variables being consid...
	𝐴𝐼𝐶𝑐=−2,log-−𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑.+,2𝑘𝑁-𝑘−𝑁−1.
	k is the number of parameters and N is the number of games involved in fitting the model. Comparing with form of AIC, AICc can be written as
	𝐴𝐼𝐶𝑐=𝐴𝐼𝐶+,2𝑘(𝑘+1)-𝑁−𝑘−1.
	Burnham and Anderson (2012) suggested using AICc when the number of covariates is large, especially, when the ratio ,N-k.≤40. The total number of models is ,𝑘=1-14-,,14-𝑘...=16384 in each round (Rd64, Rd32, Sweet16 - Championship). We will use the m...
	3.4. Prediction Result
	To predict the 2015 NCAA March Madness, 384 Rd64 games (from 2002-2003 season through 2013-2014 season) were used to fit the conditional probability model (8) in order to predict the ,𝑝-𝑖𝑗-(𝑘). for 32 Rd64 games. There were 192 Rd32 games (from 20...
	Table 6. Summary of the three models for PSCM with Cauchit link (2015 March Madness)
	Table 6 has the estimated coefficients for the selected model in each round (Rd64, Rd32, Sweet16 - Championship). It is not hard to imagine that some of the in-game statistics are correlated. For instance, usually, with more assists, the team will mak...
	Table 10 shows the probability matrix using PSC model with Cauchit link. One can fill out the bracket based upon this matrix. The team predicted to advance to the k+1 round is the team with the highest 𝑃,,𝑍-𝑖.≥𝑘. in set ,𝑈-𝑖-(𝑘).. For instance,...
	Figure 3 gives the predicted bracket based on the probability matrix. Matching up with the true bracket, the wrong teams predicted are highlighted. The accuracy for each round with single and doubling scoring systems are given in Table 7. To compare t...
	Table 7. Prediction accuracy for PSCM with Cauchit link (2015 March Madness)
	Table 8. Summary of the three models for PSC model with Logit link (2015 March Madness)
	Table 9 Summary of the restricted OLRE model for 2015 March Madness
	The selected models for both PSC methods returned similar covariates and coefficients except the model for Rd64 in this year. However, when predicting the ,𝑝-𝑖𝑗-(𝑘)., it will have greater predicted value when using Cauchit link function than Logit...
	From the probability matrix (Table 10, 11), it is clear that the probability self-consistency holds for the PSC model with both link functions. For instance, in Rd64, for all 32 games, when two teams are playing each other, the sum of the probabilitie...
	Table 10. PSC model (Cauchit link) probability matrix in 2015 March Madness using MLE
	Figure 3. PSC model (Cauchit link) bracket in 2015 March Madness using MLE
	Table 11. PSC model (Logit link) probability matrix in 2015 March Madness using MLE
	Table 12. Restricted OLRE model probability matrix in 2015 March Madness using MLE
	4. Bayesian inference
	In the previous section, there is only one model being used to estimate the results of the entire last four rounds using the PSC method and either the Cauchit or Logit link. However, we can imagine how different between the Sweet16 and Championship on...
	In the PSC model, insufficiently small sample size is still a large obstacle for developing a model for each round separately. When using maximum likelihood estimation, Griffiths et al. (1987) found that there is significant bias for small samples due...
	The one advantage of Bayesian inference is that it does not have the convergence issue when using small size samples. By using Bayesian estimation, we can construct a model for each round separately. In addition, the other advantage of using the Bayes...
	Based on the Bayes theorem, we can write (Rashwan and El dereny, 2012)
	P,parameters-data.∝P,parameters)P(data-parameters.
	The first term on the right-hand side is called prior density, often described as “what is known” about the parameters before estimation. The second term is the joint distribution of the observed random variable y given estimated parameters, known as ...
	4.1. The Likelihood Function
	Suppose y is a random variable that follows Bernoulli distribution with probability p. If n independent random variables (,𝑦-1.,,𝑦-2.,…, ,𝑦-𝑛.) are observed, the generalized linear model is given by
	𝑔,,p-𝑖..=,𝑥-𝑖1.,𝛽-1.,+…+𝑥-𝑖𝑘.,𝛽-𝑘.=,𝜂-𝑖.,     𝑖=1,…,𝑛
	where ,𝑥-𝑖1.,…,,𝑥-𝑖𝑘. are the k covariates, ,𝛽-0.,,𝛽-1.,…,,𝛽-𝑘. are the estimated intercept and coefficients corresponding to each covariates and n is the total number of games. Here 𝑔,.. is a link function, which connect the linear predicto...
	𝑔,,𝑝-𝑖..=,log-,,,𝑝-𝑖.-1−,𝑝-𝑖....=,𝜂-𝑖.
	Solving the equation w.r.t ,𝑝-𝑖., the result can be written as:
	,𝑝-𝑖.=,,exp-,,𝜂-𝑖...-1+exp(,𝜂-𝑖.).
	and the distribution of  𝑓,,𝑦-𝑖.-,𝜂-𝑖.. is given by
	,𝑓,,𝑦-𝑖.-,𝜂-𝑖..=,,,𝑝-𝑖..-,𝑦-𝑖..,,1−𝑝-𝑖..-,1−𝑦-𝑖..=, ,,exp⁡(,𝜂-𝑖.)-1+exp(,𝜂-𝑖.)..-,𝑦-𝑖..,,,1-1+exp(,𝜂-𝑖.)..-1−,𝑦-𝑖..
	Therefore the likelihood function for given covariates and corresponding coefficients is
	L,𝐘-𝑿,𝛃.=,𝑖=1-𝑛-𝑓,,𝑦-𝑖.-,𝜂-𝑖...=,exp-,,𝑖=1-𝑁-,𝑦-𝑖.,𝜂-𝑖....,𝑖=1-𝑛-,,1-1+exp⁡(,𝜂-𝑖.)...
	4.2.  The Prior Distribution of Logistic Coefficients
	A prior distribution for a parameter is often assessed by experts’ judgments and historical results. In the basketball games, even though there exists plenty of prior information, there are only few related with the model coefficients 𝛃. Usually, it ...
	Breiter and Carlin (1997) computed the winning probabilities based on seed number. The probability of seed i team beats seed j team is defined as, ℎ-𝑖𝑗.=,𝑗-𝑖+𝑗.. For instance, probability of team with seed number 1 beats the team with seed number...
	In general, let us introduce a variable  ,ℎ-𝑖𝑗-(𝑙). to represent the probability of team i beats team j for game 𝑙 in the samples. One possible prior density on winning probability ,ℎ-𝑖𝑗-(𝑙). can be formed by assuming each ,ℎ-𝑖𝑗-(𝑙). has mea...
	,,ℎ.-𝑖𝑗-(𝑙).=,,𝑠𝑒𝑒𝑑-𝑗-(𝑙).-,𝑠𝑒𝑒𝑑-𝑖-(𝑙).+,𝑠𝑒𝑒𝑑-𝑗-(𝑙)..
	In (19) ,𝑠𝑒𝑒𝑑-𝑖-(𝑙).and ,𝑠𝑒𝑒𝑑-𝑗-(𝑙). denote the seed number of team i and team j in game 𝑙 respectively, moreover, 𝑙=1,…,n, where n is the total sample size, for example, twelve seasons data were collected in our study, then n=384 for Rd...
	Table 13. Probability matrix based upon the seed number
	Table 14. Matchup information in NCAA March Madness Championship games from season 2002-2003 through 2013-2014 (n=12).
	,log-,,,ℎ-𝑖𝑗-(𝑙).-1−,ℎ-𝑖𝑗-(𝑙).... was assumed to be normal distribution, the mean and variance derived as
	,𝑙𝑜𝑔-,,,ℎ-𝑖𝑗-(𝑙).-1−,ℎ-𝑖𝑗-(𝑙)....~𝑁,,µ-𝑙.,,σ-𝑙-2..=𝑁,𝑙𝑜𝑔,,,ℎ.-𝑖𝑗-,𝑙..-1−,,ℎ.-𝑖𝑗-,𝑙...,,1-,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙.....
	by Delta method (Oehlert, 1992).
	Now define a column vector ,𝒉-𝒊𝒋.=(,ℎ-𝑖𝑗-,1..,,ℎ-𝑖𝑗-,2..,…,,ℎ-𝑖𝑗-,𝑛..)′, then  ,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋.... follows a multivariate normal distribution with dimension n.
	,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋....~,𝑀𝑉𝑁-𝑛.,,,,,µ-1.-,µ-2..-,⋮-,µ-𝑛....,,,,,σ-1-2.-0-0-,σ-2-2..-,⋯-0-⋱-⋮.-,⋮-⋱-0-….-,⋱-0-0-,σ-𝑛-2.....
	(21) is the prior density for ,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋..... Now we need to connect the probability ,𝒉-𝒊𝒋.  with the coefficient 𝛃  to find the prior density on 𝛃.
	Let π(𝛃) denotes the prior distribution of 𝛃. To introduce a π(𝛃) with respect to ,𝒉-𝒊𝒋., a logistic function is used to connect ,𝐡-𝒊𝒋. and 𝜷,
	,log-,,,𝐡-𝒊𝒋.-1−,𝐡-𝒊𝒋....=,𝑿-′.𝛃
	where X is the covariate matrix. The least square approximation for 𝛃 can be written as:
	𝛃=,(,𝑿-′.𝑿)-−𝟏.𝑿′,log-,,,𝐡-𝒊𝒋.-1−,𝐡-𝒊𝒋....
	The density of ,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋.... has already been derived in (21). According to the basic theory of linear algebra on expected value and covariance matrices, the prior distribution of β is developed as
	𝜷~,𝑀𝑉𝑁-𝑛.,,(,𝑿-′.𝑿)-−𝟏.𝑿′,,,,µ-1.-,µ-2..-,⋮-,µ-𝑛....,,,,𝑿-′.𝑿.-−𝟏.𝑿′,,,,σ-1-2.-0-0-,σ-2-2..-,⋯-0-⋱-⋮.-,⋮-⋱-0-….-,⋱-0-0-,σ-𝑛-2....(,,,𝑿-′.𝑿.-−𝟏.𝑿′)′.
	,=𝑀𝑉𝑁-𝑛.,,µ-𝜷.,,𝜮-𝜷..
	Then the probability density function for 𝜷 can be written as
	π,𝛃.=,1-,,2π.-,𝑛-2..,,,𝜮-𝜷..-,1-2...,exp-,−,1-2.,,𝛃−,µ-𝜷..-′.,,𝜮-𝜷.-−𝟏.,𝛃−,µ-𝜷....
	Notice that this is not the only way that we can form the π(𝛃) based on ,ℎ-𝑖𝑗-(𝑘)., for instance, we can assume ,ℎ-𝑖𝑗-(𝑙).follows some distribution with mean ,,ℎ.-𝑖𝑗-(𝑙).  and variance ,,,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙....-2.. In this case, ...
	𝜷~,𝑀𝑉𝑁-𝑛.,,(,𝑿-′.𝑿)-−𝟏.𝑿′,,,,µ-1.-,µ-2..-,⋮-,µ-𝑛....,,,,𝑿-′.𝑿.-−𝟏..
	The covariance matrix of prior distribution π(𝛃) is only related with the covariate matrix X.
	4.3. The Posterior Distribution of Logistic Coefficient
	The posterior distribution is derived by multiplying the density function of prior distribution (25) by the full likelihood function (18). Then the posterior distribution is defined by
	𝜋,𝜷-𝒀,𝑿.∝𝜋,𝜷.L,𝐘-𝑿,𝛃.
	=,j=1-k-,,1-,σ-j.,2π..,exp-,−,,(,β-j.−,μ-,β-j..)-2.-,2σ-𝑗-2......,exp-,,𝑖=1-𝑁-,𝑦-𝑖.,𝜂-𝑖....,𝑖=1-𝑁-,,1-1+,exp-,,𝜂-𝑖......
	Equation (27) represents the posterior probability distribution of β, and under these distribution statistical inference can be carried out by using Bayesian method.
	4.4. Estimation
	The Bayesian point estimate is the parameter vector that minimizes the expected loss function. If the loss function is quadratic form ,(,𝜷.−𝜷)-2., then the mean of the posterior probability distribution in (27) is the “minimum expected loss” (MELO) ...
	4.5. Sampling Algorithms
	Random sampling from posterior distribution is a key step in Bayesian analysis. Nonetheless, only a few well-known probability distributions are ready for use. So some sampling methods have to be used in Bayesian estimation.
	The MCMC procedure is a general purpose Markov chain Monte Carlo (MCMC) simulation procedure that is designed to fit Bayesian models. In SAS 9.3 (SAS Institute, Cary NC), the statement “PROC MCMC” uses Metropolis algorithm with a normal proposal distr...
	α=,min-,1,,π (,𝛽-1-,𝑐..,,𝛽-2-,𝑐..,…,,𝛽-𝑘-,𝑐..|𝐘,𝐗)-π (,𝛽-1-,𝑖−1..,,𝛽-2-,𝑖−1..,…,,𝛽-𝑘-,𝑖−1..|𝐘,𝐗)...
	Figure 4. Metropolis algorithm
	4.6. Application
	The Bayesian estimation first applies on the conditional probability model (8) in order to predict the ,𝑝-𝑖𝑗-(𝑘). in 2015 NCAA March Madness. We will use all covariates mentioned on Section 3. However, in Pomeroy’s Ratings, Pyth is derived from bo...
	The number of samples from the Metropolis algorithm was assigned 10,000,000 in this work. However, we will not use all these samples because the procedure of Metropolis algorithm cannot guarantee all 10,000,000 samples are independent and identically ...
	Table 15. Summary table for posterior distribution in 2015 March Madness Rd64 model
	Table 16. Estimated coefficients (mean of posterior distribution) for 2015 March Madness using Bayesian inference (standard deviation of posterior distribution given in parenthesis)
	Figure 5. Diagnostics plots for posterior distribution on covariate FGM (beta1) and 3PM (beta2)
	Table 17. Prediction accuracy for PSC model (Logit link) using Bayesian estimation in 2015 March Madness
	Table 18. PSCM (Logit link) probability matrix in 2015 March Madness using Bayesian Est.
	Figure 6. PSC model (Logit link) bracket in 2015 March Madness using Bayesian estimation
	5. COMPARISON OF PREDICTION ACCURACY IN THE PAST THREE YEARS
	The precision in using the restricted OLRE model (2006, 2008), the PSC model with Cauchit link (MLE), the PSC model with Logit link (MLE, Bayesian estimation) are computed for the last three years. Moreover, other popular prediction methods or rating ...
	Under Bayesian estimation, twelve covariates were used to construct six models under the PSC method with Logit link. The first model was developed for predicting all 32 Rd64 games. The second model was developed for predicting all 16 Rd32 games. The t...
	Table 19 shows the prediction accuracy in the past three years. In our work, to predict 2015 March Madness and compute the accuracy, March Madness data from 2002-2003 season through 2013-2014 season (12 seasons) are used as the training data to fit th...
	Overall, the PSC models has better performances than other popular prediction methods. For some years, the restricted OLRE model has similar accuracy when comparing with the PSC models. However, the restricted OLRE model uses all covariates to fit the...
	When using the Logit link function, Bayesian estimation with prior 1 and prior 2 correctly predicted almost three and one more games, respectively, than MLE on average because it incorporates the experts’ opinions as a prior information. Also in Bayes...
	Comparing the PSC model with two different link functions, Cauchit link had better performance in 2014 March Madness because that year’s tournament had more lower-seeded teams winning against their higher-seeded opponents. Indeed the two teams with se...
	Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness
	Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness (continued)
	a: prior 1 assumes ,ℎ-𝑖𝑗-(𝑙).follows some distribution with mean ,,ℎ.-𝑖𝑗-(𝑙).  and variance ,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙...
	b: prior 2 assumes ,ℎ-𝑖𝑗-(𝑙).follows some distribution with mean ,,ℎ.-𝑖𝑗-(𝑙).  and variance ,,,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙....-2.
	6. DISCUSSION
	Based upon the bracket accuracy of past three seasons’ tournament, PSC model has better performance than other methods (restricted OLRE model, Pomeroy, RPI). Comparing two link functions in PSC model, Logit link successfully predicts 124 games out of...
	Bayesian estimation using two different priors for the PSC model with Logit link successfully predicts 132 and 127 games out of 189 games, respectively. Compared with 124 games of maximum likelihood estimation in Logit link. The models using Bayesian ...
	When using Bayesian estimation, the models with two different prior densities yielded different accuracies. The model with prior 2 has better performance in the 2015 March Madness, while the model with prior 1 has better performance in the two previou...
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