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ABSTRACT

This year (2015), according to the AGA’s (American Gaming Association) research, nearly
about 40 million people filled out about 70 million March Madness brackets (Moyer, 2015). Their
objective is to correctly predict the winners of each game. This paper used the probability self-
consistent (PSC) model (Shen, Hua, Zhang, Mu, Magel, 2015) to make the prediction of all 63
games in the NCAA Men's Division | Basketball Tournament. PSC model was first introduced by
Zhang (2012). The Logit link was used in Zhang’s (2012) paper to connect only five covariates
with the conditional probability of a team winning a game given its rival team. In this work, we
incorporated fourteen covariates into the model. In addition to this, we used another link function,
Cauchit link, in the model to make the predictions. Empirical results show that the PSC model
with Cauchit link has better average performance in both simple and doubling scoring than Logit
link during the last three years of tournament play.

In the generalized linear model, maximum likelihood estimation is a popular method for
estimating the parameters; however, convergence failures may happen when using large dimension
covariates in the model (Griffiths, Hill, Pope, 1987). Therefore, in the second phase in this study,
Bayesian inference is used for estimating in the parameters in the prediction model. Bayesian
estimation incorporates prior information such as experts’ opinions and historical results in the
model. Predictions from three years of March Madness using the model obtained from Bayesian
estimation with Logit link will be compared to predictions using the model obtained from

maximum likelihood estimation.
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1. INTRODUCTION
1.1.Research Objective

NCAA March Madness is a phenomenon that catches sports fans’ eyes from the second
week of March through the first week of April. The NCAA tournaments are an American tradition
that sends millions of fans into a synchronized frenzy each year. It's this chaos that gives the
tournament its March Madness nickname. This work will focuses on bracketing the NCAA Men’s
Division | Basketball Tournament based on probability self-consistent (PSC) model. This model
was first introduced by Zhang (2012). The Logit link was used in his paper to connect the five
covariates with the conditional probability of a team winning a game given its rival team.
Maximum likelihood estimation was applied to estimate the unknown coefficients.

In this work, we will first employ the Cauchit link to the PSC model for use in bracketing
for March Madness (Shen et al., 2015), we will also consider using more covariates in the model.
Bracket development using the Cauchit link and Logit link will be completed and compared with
the actual results from March Madness over a 3 year period of time.

In the second phase, we will develop Bayesian estimation in place of maximum likelihood
estimation for use in the PSC model with Logit link. Bracketing with Logit link will be done using
Bayesian inference and compared to the actual results obtained from March Madness.

1.2. The Playing Rule and Structure

The National Collegiate Athletic Association (NCAA) Men's Division | Basketball
Tournament, more commonly known as March Madness, is a single-elimination tournament that
starts each March. Before describing the model, we provide a short introduction to the NCAA

March Madness for those who might not be familiar.



Currently 68 college basketball teams are playing in each year. They are divided into four
regions (East, South, Midwest, and West) and each team is ranked from 1 to 16 in its region. Eight
of 68 teams first play four games, which are called the First4. Finally, 64 teams are determined
and brackets are filled out. After six rounds, namely, Round64 (Rd64), Round32 (Rd32), Sweet16,
Elite8, Final4 and the Championship, the national title is awarded to the team with six wins. In
Rd64, 64 teams play 32 games, 32 teams play 16 games in Rd32, 16 teams play 8 games in
Sweet16, 8 teams play 4 games in Elite8, 4 teams play 2 games in Final4, and 2 teams fight for the
Championship. Starting with Rd64, there are 63 games played each year (NCAA Basketball
Championship, 2015). Figure 1 shows the NCAA Men’s Division | Basketball Tournament bracket
and complete tournament results in 2014-2015 season.

1.3. Qualifying Procedure

There are more than three hundred eligible Division | teams only, and 68 teams make it
into the March Madness. The 68 qualifying teams are from two bids: Automatic bids; and at-large
bids (2015 NCAA Basketball Tournament, 2015). There are 32 teams who qualify from automatic
bids, with 31 of these bids granted to the winner of the conference tournament championship. The
only exception is the lvy League which does not hold a conference tournament. For this league,
the bid goes to the team with the best regular-season record. However, if two or more teams are
tied for the best regular-season record, the league will hold a one-game playoff between the top
two (or a series of such playoffs if more than two teams are tied) (NCAA basketball selection
process, 2015). Table 1 shows the Automatic qualifiers in 2015 March Madness.

The remaining 36 at-large bids are granted by the NCAA Selection Committee to the teams
it feels are the best 36 teams that did not receive automatic bids. Even though each conference

receives only one automatic bid, the selection committee may select any number of at-large teams



from each conference (NCAA basketball selection process, 2015). The at-large teams generally
come from college basketball's top conferences, including the ACC, The American, Atlantic-10,
Big 12, Big East, Big Ten, Conference USA, Mountain West, Pac-12, and SEC. Table 2 is at-large

qualifiers in 2015 March Madness (2015 NCAA Basketball Tournament, 2015).

Table 1. Automatic qualifiers for the 2015 NCAA March Madness

Conference Team Conference Team
ACC Notre Dame MAC Buffalo
America East Albany MEAC Hampton
A-10 VCU Missouri Valley Northern lowa
American SMU Mountain West Wyoming
Atlantic Sun North Florida Northeast Robert Morris
Big 12 lowa State Ohio Valley Belmont
Big East Villanova Pac-12 Arizona
Big Sky Eastern Washington Patriot Lafayette
Big South Coastal Carolina SEC Kentucky
Big Ten Wisconsin Southern Wofford
Big West UC Irvine Southland Stephen F. Austin
Colonial Northeastern SWAC Texas Southern
C-USA UAB Summit North Dakota State
Horizon Valparaiso Sun Belt Georgia State
Ivy League Harvard West Coast Gonzaga
MAAC Manhattan WAC New Mexico State
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Figure 1. NCAA 2015 March Madness bracket with complete tournament results (This template

is downloaded from: www.samplewords.com/ncaa-blank-printable-tournament-bracket/)



Table 2.

At-large qualifiers for the 2015 NCAA March Madness

Conference Team Conference Team
ACC Virginia Big 12 Baylor
ACC Louisville Big 12 Oklahoma State
ACC North Carolina State Big East Butler
ACC Duke Big East Providence
ACC North Carolina Big East Georgetown

American Cincinnati Big East St. John's

Atlantic 10 Dayton Big East Xavier

Atlantic 10 Davidson Missouri Valley Wichita State
Big 10 Maryland Mountain West Boise State
Big 10 Purdue Mountain West San Diego State
Big 10 Indiana Pac 12 Utah
Big 10 Michigan State Pac 12 UCLA
Big 10 lowa Pac 12 Oregon
Big 10 Ohio State SEC Louisiana State
Big 12 Kansas SEC Georgia
Big 12 West Virginia SEC Arkansas
Big 12 Texas SEC Ole Miss
Big 12 Oklahoma West Coast BYU

Before the bracket of 64 teams is put together each year, eight teams - the four lowest-
seeded automatic qualifiers and the four lowest-seeded at-large teams will play in the First Four.
The winners of these games advance to the Rd64. The two winning teams from automatic bids
will be seeded 16 and the winners from at-large bids will be seeded 11 (NCAA Basketball
Championship, 2015). The First Four games played in 2015 March Madness are shown in Table 3

(2015 NCAA Basketball Tournament, 2015).



Table 3. First Four games in 2015 NCAA March Madness

At-large Automatic At-large Automatic
West Region (11) | Midwest Region (16) | East Region (11) | South Region (16)
BYU Hampton Boise State North Florida
Ole Miss Manhattan Dayton Robert Morris

In terms of bracketing the result of NCAA Men’s Division | Basketball Tournament, this
work will only focus on the last six rounds of the tournament beginning with Rd64. The First4
games will be excluded.

1.4.Bracket Scoring System

Two types of scoring systems will be considered: one is the doubling scoring system, and
the other is the simple scoring system (Shen et al., 2015). There are 6 rounds in the tournament.
Under the doubling points system, for each correct pick, one point will be awarded in the first
round, two points will be awarded in the second round, four points will be awarded in the third
round, and so on. In this system, one might not care about the individual rounds since predicting
the correct champion is worth as much as the entire Rd64 combined. The system puts more weight
on later rounds rather than the first several rounds.

Under the simple system: each correct pick will be awarded one point regardless of which
round. In this system, one really cares about every single game in the whole tournament with no
prediction discrimination existing among rounds. Table 4 is the summary of the NCAA Men’s

Division | Basketball Tournament scoring system.

Table 4. Scoring systems

Rd64 | Rd32 | Sweetl6 | Elite8 | Final4 | Championship | total
Number of games 32 16 8 4 2 1 63
Simple 1 1 1 1 1 1 63
Doubling 1 2 4 8 16 32 192




2. LITERATURE REVIEW

For predicting outcomes of games in the NCAA tournament, Schwertman, Schenk and
Holbrook (1996) used seed position to estimate the probability of each of the 16 seeds winning the
regional tournament. It seems reasonable to use some function of seed positions because seeds
were determined by a consensus of experts.

Magel and Unruh (2013) used both least squares regression and logistic regression to
determine the key factors that influence the NCAA Men’s Division | college basketball games.
Least squares regression was used to develop a model to predict point spread, and logistic
regression was used to develop a model to estimate the probability of winning a game. Magel and
Unruh found four in-game statistics to be significant in both the least squares regression model
and the logistic regression model. The in-game statistics found to be significant were free throw
attempts, defensive rebounds, assists and turnovers.

Nelson (2012) used a logistic regression model to predict the probability that the higher
seeded team beat the lower seeded team in each of the 63 games in March Madness. Bayesian
inference was used in identifying the model that best fits the data as well as finding the coefficients
of regression. The prior density for each coefficient g; (i = 0,1, ..., n) was assumed follow normal
distribution with mean y; and variance o/, where gy = py = -+ = g, and ¢ = g = - = g2 in
Bayesian estimation.

Rating Percentage Index, commonly known as the RPI, is a rating system based on a team's
wins and losses and its strength of schedule (Rating Percentage Index, 2015). It is the method that
NCAA Basketball Selection Committee used to pick at-large bids and determine the seed in the
tournament. The current formula is given as follows:

RPI = (WP x 0.25) + (OWP x 0.50) + (OOWP X 0.25) (1)



where WP is Winning Percentage, OWP is Opponents’ Winning Percentage and OOWP is
Opponents' Opponents' Winning Percentage. One can fill out a bracket using the value of RPI. In
a single game, the team with higher RPI will go to the next round. Therefore, the team with the
highest RPI value will win the entire tournament.

Jeff Sagarin has been providing ratings for USA TODAY since 1985 (Sagarin ratings,
2015). He uses each team’s regular season statistics to create a single rating for each team. Exact
details for this method are not publicly available, so one cannot know the exact method behind this
rating system. The rating is available on USA TODAY and one can complete the bracket with it.

Pomeroy’s College Basketball Ratings were first published in 2003 by Ken Pomeroy
(Pomeroy ratings, 2015). This rating was built upon Pythagorean winning percentage (Pyth) which
has the formula:

Adjo*

Pyth =
Y = Adjox + adjD~

@)

where AdjO is the adjusted offensive efficiency, an estimate of the offensive efficiency (points
scored per 100 possessions) that a team would have against the average Division | defense; AdjD
is the adjusted defensive efficiency, an estimate of the defensive efficiency (points allowed per
100 possessions) that a team would have against the average Division | offense; and x is an
exponent that is empirically determined. This x was assigned 10.25 since 2012. However it was
updated recently. Equivalent to the RPI and Sagarin’s rating, before the March Madness, Pyth for
each NCAA Division | team is available on kenpom.com and one can complete the bracket with
it.

West (2006, 2008) proposes an ordinal logistic regression model and expectation
(restricted OLRE model) on m;;, the probability of team i has k winnings in the tournament as

follows:



k-1

exp(ay + x;'B)

- - ~ 3
1+ exp(ay + x;'B) Tik ®)

Tk
=0

~.

where ay, is the intercept for k winnings with k = 0, 1, ..., k. x; is a vector of values for team i on
the predictor variables, B is a vector of coefficients associated with the predictor variables, and
rthe last term presents the cumulative sum of the probabilities of winning jgames (j = 0,1, ...,k —
1). This term would be equal to 0 for k = 0. Putting all 7;, (i = 1,2, ...,64;k = 0,1, ...,6) in a 64
x 7 matrix, West (2006) requires the sums of each column must be equal to 32, 16, 8, 4, 2, 1, and
1, respectively. Zhang (2012) rewrote the restricted OLRE model in the form of restricted
proportional odds model. The second term on the right hand side of equation (3) is moved to the

left side, then the model (3) can be written as follows

exp(ay, + x;B)

P(Z; <k) = ,k=0,..,5
(Zi<i) 1 + exp(oy + xiB)
_ (4)
P(Z;<6)=1
Subject to

64
Z P(Z, = k) =26, k=12,..6 (5)
=1

where P(Z; = k) is the probability that team i wins at least k games. All of the probabilities
P(Z; = k), can be put into a matrix having 64 rows and 6 columns. Each row would represent
one of the 64 teams. Column 1 would be the estimated probabilities for each team winning at least
1 game. Column 2 would be the estimated probabilities for each team winning at least 2 games.
Columns 3 to 6 would be the estimated probabilities for each team winning at least 3 to 6 games.
The sum of column 1 equals 32. The sum of columns 2 through 6 equals 16, 8, 4, 2, and 1,

respectively. The restriction on the sum of the column does not guarantee the legitimacy of the



model. It is still possible that given two teams playing each other in the first round that the
probabilities of each winning the game will not add up to 1 (Shen et al., 2015).

Zhang (2012) filled out his bracket by using the probability self-consistent (PSC) model

(k)

with Logit link function. I;;~ is an indicator variable denoting the result of the game between team

i and team j in the k" round of the tournament and pi(]'.‘) be the conditional probability of team i

defeating team j in the k%" round , i.e.,

o _[Lif i*" team wins; (6)
b 0, if j*™™ team wins.
p =PI =112, 2k-1,2, 2 k- 1) )

Then a logistic conditional probability model has been structured as follows,

()
Pij _
— =
1- 'pl.(j 4

log (xi—x)'B® k=12..,6 (8)

where (x; — x;) is the vector of the predictor variables spread between team i and team j, and

B®are the associated coefficients in the k" round. These logistic conditional probability models

imply
9)
=P(Z;=2k-1) Z P(Zj > k—1)p{
jeo®

where Oi(k) is the set of all the rival teams that team i may encounter in the k" round. Z; is self-

consistent which means

z P(Zizk)=1 (10)

()
]GUL.

10



i =

where U = U}Z)OOI.U) ,and 0{” =i. Note P(Z; = 1) = pl.(jl), then P(Z; = k)(k > 1) can be

computed iteratively based on p-(k)

ij in the logistic regression model. Once all the P(Z; = k),i =

1,..,64 and k = 1, ...,6 are obtained, then the team that has the largest P(Z; > k) will be picked
as the winning team in Ul.(k) of the k™ round. Like the restricted OLRE model, the PSC model can

be written into a matrix form as well. The probabilities P(Z; > k) can be placed in a 64 x 6 matrix.

In the probability matrix of the PSC model, not only the sums of each column are required to be

32, 16, 8, 4, 2 and 1, respectively, but also the P(Z; = k) for all possible teams in Ui(k) have to

add up to 1.

11



3. PROBABILITY SELF-CONSISTENT MODEL WITH CAUCHIT LINK

3.1.Introduction of Cauchit Link
In the PSC model, pi(]'."‘) denotes the conditional probability of team i winning against team
jinthe k" round. Instead of using the Logit link function, this study will use another link function,
Cauchit link, to connect the linear predictor with conditional probability pl.(]'.‘).
Cauchit link function is another symmetric link function for binary response (Koenker and

Yoon, 2009). When using it in the PSC model, the conditional probability model (8) can be

structured as follows:

1 /
tan(m <pl.(]'.‘) — E) = (xl- — x]-) Bk =1,2,..,6 (11)

Comparing with the Logit distribution, the Cauchit distribution has heavier tails, hence the
Cauchit link is useful when the value for linear prediction is extreme in either direction. Figure 2
shows the plots of both Cauchit link function and Logit link function. The y axis represents the
(k)

conditional probability p;;

and x axis denotes the linear predictor (x; — x;) %, where the
vector (x; — x;) represents difference of the covariates (such as the average assists per game in
regular season, and adjusted offensive efficiency from Pomeroy’s Ratings) between team i and
team j, and B are the associated coefficients. In a single game, if two teams have approximately
the same strength, they will have very similar values in the covariates, then the vector (x; — x;) is
around 0. Therefore, the value of linear predictor of the probability that team i winning the game
should be close to zero. In this case, the two link functions, Logit and Cauchit link, have similar
performance. However, the difference between the two link functions appears when the linear

predictor of team i winning the game has extreme (small negative or large positive) values. In the

PSC model, a very large absolute value of linear predictor implies the strengths’ of two teams are

12



not equal since one team must have larger value in some of the covariates than the other team. In

extreme cases, when using Logit link function, the conditional probability of the weak team beats
the strong team (pl.(]'.‘)) will be close to 0, while the Cauchit link has a larger value on pi(]'."‘). The

Cauchit link gives the weak team a chance of winning the game.

To illustrate it, let us consider a simple example with only two covariates: average assists
per game in regular season and adjusted offensive efficiency (AdjO) in Pomeroy’s Ratings.
Assuming the coefficients for these two covariates are 0.1 and 0.2, respectively, if the weak team

(i) has value 14 and 97 for these two covariates, while strong team (j) has larger values of 22 and

118 respectively, then the linear predictor for computing pi(]'."‘)is derived as(14 — 22) x 0.1 +

(97 — 118) x 0.2 = —5. When using the Cauchit link functions, pi(]'.‘), the probability of the weak
team beating the strong team is 0.0628. Using the Logit link function, the probability is 0.0067.
Overall, we believe it is more appropriate to use the Cauchit link function in sports events

rather than Logit link function because this does happen in sports, especially in a one game

elimination tournament such as March Madness.

13
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Figure 2. Plots of Cauchit link function and Logit link function

3.2. Application

Magel and Unruh (2013) determined that four in-game statistics such as defensive
rebounds and free throw attempts in the regular season are significant in predicting the game
results, while in Zhang’s research (2012), five candidate covariates, including only one regular
seasonal in-game statistics (Assist to Turnover Ratio in Regular Season) were used. Therefore in
this study, the total of fourteen covariates, including eight regular seasonal average statistics
(ESPN, 2015), were considered for possible usage in the PSC model with Cauchit link. Other than
these eight covariates, meanwhile, seed number (ESPN, 2015), ASM (Team rankings, 2015),
SAGSOS (Sagarin ratings, 2015), Pyth, AdjO and AdjD (Pomeroy ratings, 2015) have been
considered as covariates. Out of these six variables, Seed numbers are decided by the NCAA

Basketball Selection Committee based upon the Rating Percentage Index (RPI). ASM is short for

14



average scoring margin. It highly correlated to the winning percentage. SAGSOS measures the
team’s opponents’ strength. Pyth, AdjO and AdjD come from the Pomeroy Rating system. All the
data in our work are collected from 2002-2003 season through 2013-2014 season (12 seasons).

The covariates are listed in Table 5.

Table 5. Covariates used in the model

FGM Field Goals Made Per Game in Regular Season

3PM 3-Point Field Goals Made Per Game in Regular Season
FTA Free Throws Made Per Game in Regular Season
ORPG Offensive Rebounds Per Game in Regular Season
DRPG Defensive Rebounds Per Game in Regular Season
APG Assists Per Game in Regular Season

PFPG Personal Fouls Per Game in Regular Season

SEED Seed Number

ASM Average Scoring Margin

SAGSOS | Sagarin Proxy for Strength of schedule (Sagarin ratings)
ATRATIO | Assist to Turnover Ratio in Regular Season

Pyth Pythagorean Winning Percentage (Pomeroy ratings)
AdjO Adjusted Offensive Efficiency (Pomeroy ratings)
AdjD Adjusted Defensive Efficiency (Pomeroy ratings)

3.3. Model Selection
Three models are constructed using PSC method with Cauchit link to predict the results in
March Madness. The first model was developed for predicting all 32 Rd64 games. The second
model was developed for predicting all 16 Rd32 games. Round3 through 6 (Sweet16, Elite8, Final4
and Championship) are combined into one model to overcome the convergence problem in the

MLE.
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To select the best model that can explain the data in each round (Rd64, Rd32, Sweet16 -
Championship), the corrected Akaike Information Criterion (AlICc) is applied for model selection
with all possible combinations of predictive variables being considered. The computation form is

AlCc = —2log —likelihood + 2kN (12)
cC = Og LKeLlnoo k—N—l

k is the number of parameters and N is the number of games involved in fitting the model.
Comparing with form of AIC, AICc can be written as

2k(k +1)
AlCe = AIC +——— (13)

Burnham and Anderson (2012) suggested using AICc when the number of covariates is

14

large, especially, when the ratio % < 40. The total number of models is Y32, ( I

):16384 in each

round (Rd64, Rd32, Sweet16 - Championship). We will use the model with the smallest AICc as
our prediction model in each round.
3.4.Prediction Result
To predict the 2015 NCAA March Madness, 384 Rd64 games (from 2002-2003 season

through 2013-2014 season) were used to fit the conditional probability model (8) in order to predict

the pl.(;‘) for 32 Rd64 games. There were 192 Rd32 games (from 2002-2003 season through 2013-

2014 season) used to fit the conditional probability model (8) in order to predict the pl.(]'.‘) for 16

Rd32 games in 2015 March Madness. There were 96 Sweet16 games, 48 Elite8 games, 24 Final4
games and 12 Championship games (from 2002-2003 season through 2013-2014 season)

combined, the total of 180 games, to fit the conditional probability model (8) in order to predict

the pl.(;‘) for the rest of games in 2015 March Madness. Once the predicted pl.(;‘) was computed, we

can put it into model (9) to derive the P(Z; > k) fork > 1 (Note P(Z; = 1) = pi(].l)).
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Table 6. Summary of the three models for PSCM with Cauchit link (2015 March Madness)

Rd64 | coefficients | Std. Error | p-value
FGM 0.2565 0.0960 0.0076
DRPG -0.1617 0.0928 0.0813
APG -0.2073 0.1027 0.0435
Seed 0.0827 0.0508 0.1035
AdjO 0.3579 0.0693 <0.0001
AdjD -0.4175 0.0802 <0.0001
SAGSOS | -0.1268 0.0631 0.0446
Rd32 | coefficients | Std. Error | p-value
FTA -0.1031 0.0613 0.0929
Seed 0.2634 0.0964 0.0063
AdjO 0.4165 0.1080 | <0.0001
AdjD -0.5301 0.1337 | <0.0001
Swee_t16 .| coefficients | Std. Error | p-value
Championship
seed 0.1498 0.0794 0.0591
AdjO 0.3489 0.0889 <0.0001
AdjD -0.3594 0.0983 0.0003
ATRATIO -2.4113 1.0658 0.0237

Table 6 has the estimated coefficients for the selected model in each round (Rd64, Rd32,
Sweetl6 - Championship). It is not hard to imagine that some of the in-game statistics are
correlated. For instance, usually, with more assists, the team will make more field goals, so these
two variables are positively correlated. Hence, the slight collinearity issue cannot be avoided in
this study. Even though the slight collinearity does not reduce the predictive power or reliability
of the model, it affects the interpretation of the coefficients. It is no surprise that the variable seed,
AdjO and AdjD have been selected in all three models. Seed number is decided by the NCAA
Basketball Selection Committee and AdjO and AdjD are from Pomeroy’s College Basketball
Ratings. Both of them can be treated as the experts’ opinions. The in-game statistics in each model

can be thought of as the adjustment of the experts’ judgments.
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Table 10 shows the probability matrix using PSC model with Cauchit link. One can fill out
the bracket based upon this matrix. The team predicted to advance to the k+1 round is the team
with the highest P(Z; = k) in set Ul.(k). For instance, in Rd32, Ul.(k) ={1,2,3,4},P(Z, =2 2) =
0.9253, P(Z, = 2) = 0.0014, P(Z; = 2) = 0.0604, P(Z, > 2) = 0.0129. The team predicted
to advance to the Sweetl6 from these 4 teams is team 1 (Kentucky) since it has the highest
P(Z; = k) = 0.9253.

Figure 3 gives the predicted bracket based on the probability matrix. Matching up with the
true bracket, the wrong teams predicted are highlighted. The accuracy for each round with single
and doubling scoring systems are given in Table 7. To compare the Cauchit link PSC model with
Logit link PSC model and restricted OLRE model, the other two models were developed using the
same covariates. Three different models were constructed for the Logit link PSC model as well.
To make the comparison of three methods on equal terms, we used all fourteen variables as
possible covariates and the same model selection criteria in the Logit link PSC model (restricted
OLRE model used all fourteen covariates directly since the model selection is not required in this
method). Table 8 and 9 gives the estimated coefficients for the Logit link PSC model and restricted

OLRE model.

Table 7. Prediction accuracy for PSCM with Cauchit link (2015 March Madness)

Rd64 | Rd32 | Sweetl6 | Elite8 | Final4 | Championship | total | PCT

Correct .
pick 26 11 5 1 0 0 43 | 68.25%
Simple 26 11 5 1 0 0 43 | 68.25%
Doubling | 26 22 20 8 0 0 76 | 39.58%
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Table 8. Summary of the three models for PSC model with Logit link (2015 March Madness)

Table 9 Summary of the restricted OLRE model for 2015 March Madness

Rd64 | coefficients | Std. Error | p-value
ORPG 0.0954 0.0601 0.1128
DRPG -0.0952 0.0637 0.1347
Seed 0.0626 0.0426 0.1420
AdjO 0.2662 0.0385 | <0.0001
AdjD -0.3135 0.0448 | <0.0001
SAGSOS | -0.1126 0.0490 0.0214
Rd32 | coefficients | Std. Error | p-value
FTA -0.0943 0.0519 0.0691
Seed 0.2279 0.0710 0.0013
AdjO 0.3693 0.0647 | <0.0001
AdjD -0.4623 0.0795 | <0.0001
SWeetld - | otficients | Std. Error p-value
Championship
seed 0.1428 0.0675 0.0345
AdjO 0.3526 0.0620 <0.0001
AdjD -0.3354 0.0653 <0.0001
ATRATIO -2.3455 0.8918 0.0085

Intercepts | Value | Standard error

a, -15.2813 1.176

a, -13.3504 1.1796

as -11.8942 1.1932

a, -10.6899 1.2105

as -9.6174 1.2319

Qg -8.5883 1.2681
Covariate FGM 3PM FTA AdjO AdjD ORPG | DRPG
Coefficient 0.2024 | 0.0962 | 0.0473 | 0.5386 -0.6605 | 0.0455 | -0.0510
Standard error | 0.0659 | 0.0690 | 0.0367 | 0.0383 0.0443 0.0555 | 0.0533
Covariate PFPG Seed ASM | SAGSOS | ATRATIO | APG Pyth
Coefficient | -0.0104 | -0.0128 | -0.2026 | -0.0616 0.7375 | -0.1337 | -11.8962
Standard error | 0.0532 | 0.0360 | 0.0429 | 0.0282 0.6478 0.0709 | 1.4901
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The selected models for both PSC methods returned similar covariates and coefficients

(k)

except the model for Rd64 in this year. However, when predicting the Dij it will have greater

predicted value when using Cauchit link function than Logit link function if the covariates between
team i and team j have large absolute values. The restricted OLRE model developed 6 different
models (one for each actual round). The six models shared the same coefficients of the covariates,
but each model has its own intercept. All fourteen covariates were used in the restricted OLRE
model. However, the convergence problem occurs in this year’s prediction with this method. The
coefficient of the variable Pyth has a large negative value, which means with higher value of Pyth,
the higher the probability that a team will lose. It contradicts with the definition of Pyth in the
Pomeroy’s ratings . Therefore, the prediction based upon the restricted ORLE model is not reliable
in this year.

From the probability matrix (Table 10, 11), it is clear that the probability self-consistency
holds for the PSC model with both link functions. For instance, in Rd64, for all 32 games, when
two teams are playing each other, the sum of the probabilities of each of the two teams winning
the game is one. Furthermore, let us take Midwest Region as an example, all sixteen teams in this
region have a chance to get the regional championship. The summation of P(Z; > 4) for all sixteen
teams (highlighted in red color in Table 10) is equal to one. The restricted OLRE model does not
have this property. From the matrix in Table 12, it is apparent that, the restricted OLRE model
does not necessarily satisfy the probability self-consistency. For example, every paired team in the
Rd64 has (Z; = 1) +P(Z]- > 1) # 1. In the first game of the Midwest region, the winning
probabilities for Kentucky and Hampton are 0.9988 and 0.0346 respectively. The summation of
these two probabilities is not equal to one. The comparison of accuracy for these three methods is

found in Section 5.
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Table 10. PSC model (Cauchit link) probability matrix in 2015 March Madness using MLE

Seed | TEAM k=1 k=2 k=3 k=4 k=5 k=6
1 Kentuckyv 0.9677 0.9253 0.8722 0.8055 0.6451 0.5658
16 Hampton 0.0323 0.0014 0.0001 0.0000 0.0000 0.0000
8 Cincinnati 0.8074 0.0604 0.0373 0.0099 0.0010 0.0001
9 Purdue 0.1926 0.0129 0.0042 0.0006 0.0000 0.0000
5 West Virainia 0.7603 0.4419 0.0426 0.0108 0.0011 0.0001
— 12 Buffalo 0.2397 0.1156 0.0089 0.0015 0.0001 0.0000
m 4 Marvland 0.4940 0.1568 0.0136 0.0028 0.0003 0.0000
2 13 Valparaiso 0.5060 0.2858 0.0211 0.0034 0.0003 0.0000
=) 6 Butler 0.5684 0.1425 0.0497 0.0072 0.0008 0.0001
s 11 Texas 0.4316 0.2938 0.1899 0.0343 0.0061  0.0016
3 Notre Dame 0.9385 0.5596 0.2467 0.0389 0.0053  0.0009
14 Northeastern 0.0615 0.0041 0.0003 0.0000 0.0000  0.0000
7 Wichita St 0.8652 0.7056 0.3529 0.0574 0.0082  0.0015
10 Indiana 0.1348 0.0271 0.0043 0.0004 0.0000  0.0000
2 Kansas 0.8567 0.2528 0.1542 0.0271 0.0045 0.0010
15 New Mexico St 0.1433 0.0145 0.0020 0.0002 0.0000  0.0000
1 Wisconsin 0.9562 0.9038 0.8004 0.2998 0.0853  0.0533
16 Coastal Carolina 0.0438 0.0036 0.0004 0.0000 0.0000 0.0000
8 Oregon 0.4915 0.0439 0.0115 0.0010 0.0001 0.0000
9 Oklahoma St 0.5085 0.0487 0.0209 0.0028 0.0003 0.0000
5 Arkansas 0.8645 0.1660 0.0178 0.0016 0.0001 0.0000
12 Wofford 0.1355 0.0126 0.0008 0.0000 0.0000 0.0000
- 4 North Carolina 0.8809 0.7724 0.1442 0.0249 0.0036 0.0006
& 13 Harvard 0.1191 0.0490 0.0041 0.0003 0.0000 0.0000
= 6 Xavier 0.5430 0.1821 0.0177 0.0023 0.0002 0.0000
11 Ole Miss 0.4570 0.1272 0.0134 0.0019 0.0002 0.0000
3 Baylor 0.7828 0.6283 0.1088 0.0277 0.0048 0.0010
14 Georgia St 0.2172 0.0624 0.0044 0.0004 0.0000 0.0000
7 Virginia Commonwealth 0.3451 0.0317 0.0102 0.0014 0.0001 0.0000
10 Ohio State 0.6549 0.0794 0.0386 0.0077 0.0010 0.0002
2 Arizona 0.9620 0.8874 0.8067 0.6280 0.2313  0.1848
15 Texas Southern 0.0380 0.0015 0.0001 0.0000 0.0000 _ 0.0000
1 Villanova 0.9590 0.8973 0.7361 0.4609 0.3444  0.0760
16 Lafavette 0.0410 0.0022 0.0001 0.0000 0.0000 0.0000
8 NC State 0.6233 0.0619 0.0112 0.0014 0.0002  0.0000
9 LSU 0.3767 0.0386 0.0065 0.0008 0.0001  0.0000
5 Northern lowa 0.9369 0.8020 0.2125 0.0678 0.0266  0.0034
12 Wvomina 0.0631 0.0076 0.0004 0.0000 0.0000  0.0000
— 4 Louisville 0.8858 0.1780 0.0324 0.0058 0.0012  0.0001
%) 13 UC Irvine 0.1142 0.0124 0.0008 0.0001 0.0000  0.0000
5 6 Providence 0.6556 0.1156 0.0156 0.0019 0.0003  0.0000
11 Davton 0.3444 0.0633 0.0076 0.0009 0.0001  0.0000
3 Oklahoma 0.9283 0.8150 0.2294 0.0651 0.0246  0.0031
14 | Albanv 0.0717 0.0061 0.0004 0.0000 0.0000  0.0000
7 Michioan St 0.7437 0.0964 0.0273 0.0040 0.0007  0.0001
10 Georaia 0.2563 0.0265 0.0073 0.0010 0.0002  0.0000
2 Virainia 0.9489 0.8741 0.7122 0.3904 0.2821 0.0583
15 Belmont 0.0511 0.0030 0.0002 0.0000 0.0000 0.0000
1 Duke 0.9472 0.8122 0.5260 0.3433 0.1254  0.0200
16 Robert Morris 0.0528 0.0031 0.0002 0.0000 0.0000 0.0000
8 San Diedo St 0.7236 0.1466 0.0397 0.0105 0.0014 0.0001
9 St. John's 0.2764 0.0382 0.0058 0.0009 0.0001 0.0000
5 Utah 0.8272 0.7531 0.3770 0.2231 0.0706 0.0103
12 Stephen F. Austin 0.1728 0.1104 0.0213 0.0046 0.0005 0.0000
I 4 Georaetown 0.8942 0.1320 0.0297 0.0076 0.0010 0.0001
'5 13 Eastern Washinaton 0.1058 0.0045 0.0003 0.0000 0.0000 0.0000
e 6 SMU 0.6520 0.2498 0.0658 0.0137 0.0019 0.0002
w 11 UCLA 0.3480 0.0917 0.0180 0.0026 0.0003 0.0000
3 lowa State 0.9192 0.6519 0.1890 0.0443 0.0070  0.0007
14 UAB 0.0808 0.0066 0.0005 0.0000 0.0000  0.0000
7 lowa 0.4533 0.0679 0.0249 0.0043 0.0005  0.0000
10 Davidson 0.5467 0.0817 0.0147 0.0016 0.0001  0.0000
2 Gonzaaa 0.9430 0.8465 0.6868 0.3435 0.1106  0.0163
15 North Dakota St 0.0570 0.0040 0.0003 0.0000 0.0000  0.0000
summation 32 16 8 4 2 1
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Figure 3. PSC model (Cauchit link) bracket in 2015 March Madness using MLE
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Table 11. PSC model (Logit link) probability matrix in 2015 March Madness using MLE

Seed | TEAM k=1 k=2 k=3 k=4 k=5 k=6

1 Kentuckyv 0.9989 0.9971 0.9923 0.9728 0.7667 0.6976

16 Hampton 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000

8 Cincinnati 0.7143 0.0024 0.0014 0.0004 0.0000 0.0000

9 Purdue 0.2857 0.0005 0.0002 0.0000 0.0000 0.0000

5 West Virainia 0.7562 0.4172 0.0035 0.0009 0.0000 0.0000

— 12 Buffalo 0.2438 0.1147 0.0005 0.0001 0.0000 0.0000
m 4 Marvland 0.4330 0.1577 0.0010 0.0002 0.0000 0.0000
2 13 Valparaiso 0.5670 0.3105 0.0011 0.0001 0.0000 0.0000
=) 6 Butler 0.4191 0.1150 0.0408 0.0006 0.0000 0.0000
s 11 Texas 0.5809 0.3689 0.2268 0.0076 0.0008  0.0002
3 Notre Dame 0.9476 0.5152 0.2636 0.0062 0.0005  0.0001

14 Northeastern 0.0524 0.0008 0.0000 0.0000 0.0000  0.0000

7 Wichita St 0.8894 0.7171 0.3289 0.0072 0.0005  0.0001

10 Indiana 0.1106 0.0226 0.0033 0.0000 0.0000  0.0000

2 Kansas 0.8098 0.2500 0.1357 0.0039 0.0004  0.0001

15 New Mexico St 0.1902 0.0104 0.0009 0.0000 0.0000  0.0000

1 Wisconsin 0.9901 0.9833 0.9216 0.3429 0.0560  0.0357

16 Coastal Carolina 0.0099 0.0003 0.0000 0.0000 0.0000 0.0000

8 Oregon 0.4269 0.0061 0.0017 0.0000 0.0000 0.0000

9 Oklahoma St 0.5731 0.0103 0.0046 0.0002 0.0000 0.0000

5 Arkansas 0.8274 0.1694 0.0039 0.0001 0.0000 0.0000

12 Wofford 0.1726 0.0116 0.0000 0.0000 0.0000 0.0000

- 4 North Carolina 0.8226 0.7388 0.0672 0.0049 0.0001 0.0000
& 13 Harvard 0.1774 0.0802 0.0008 0.0000 0.0000 0.0000
= 6 Xavier 0.5232 0.1686 0.0038 0.0002 0.0000 0.0000
11 Ole Miss 0.4768 0.1187 0.0033 0.0002 0.0000 0.0000

3 Baylor 0.8561 0.6653 0.0525 0.0081 0.0003 0.0001

14 Georgia St 0.1439 0.0475 0.0004 0.0000 0.0000 0.0000

7 Virginia Commonwealth 0.4621 0.0055 0.0016 0.0001 0.0000 0.0000

10 Ohio State 0.5379 0.0256 0.0121 0.0012 0.0000 0.0000

2 Arizona 0.9967 0.9688 0.9263 0.6422 0.1747  0.1358

15 Texas Southern 0.0033 0.0000 0.0000 0.0000 0.0000 _ 0.0000

1 Villanova 0.9972 0.9831 0.8204 0.5294 0.3811 0.0670

16 Lafavette 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000

8 NC State 0.5080 0.0079 0.0013 0.0001 0.0000  0.0000

LSU 0.4920 0.0090 0.0012 0.0001 0.0000  0.0000

5 Northern lowa 0.9565 0.8250 0.1655 0.0530 0.0205  0.0010

12 Wvomina 0.0435 0.0042 0.0000 0.0000 0.0000  0.0000

— 4 Louisville 0.8627 0.1644 0.0115 0.0015 0.0002  0.0000
%) 13 UC Irvine 0.1373 0.0064 0.0000 0.0000 0.0000  0.0000
5 6 Providence 0.6177 0.0886 0.0057 0.0003 0.0000  0.0000
11 Davton 0.3823 0.0594 0.0028 0.0001 0.0000  0.0000

3 Oklahoma 0.9456 0.8497 0.2045 0.0452 0.0157  0.0007

14 | Albanv 0.0544 0.0022 0.0000 0.0000 0.0000  0.0000

7 Michioan St 0.6622 0.0341 0.0100 0.0009 0.0001  0.0000

10 Georaia 0.3378 0.0069 0.0018 0.0001 0.0000  0.0000

2 Virainia 0.9882 0.9588 0.7752 0.3693 0.2386 0.0318

15 Belmont 0.0118 0.0001 0.0000 0.0000 0.0000 0.0000

1 Duke 0.9809 0.8437 0.5977 0.3853 0.1563 0.0159

16 Robert Morris 0.0191 0.0002 0.0000 0.0000 0.0000 0.0000

8 San Diedo St 0.7400 0.1377 0.0359 0.0070 0.0005 0.0000

9 St. John's 0.2600 0.0184 0.0025 0.0002 0.0000 0.0000

5 Utah 0.7026 0.6653 0.3083 0.1678 0.0516 0.0036

12 Stephen F. Austin 0.2974 0.1764 0.0271 0.0050 0.0003 0.0000

I 4 Georaetown 0.9445 0.1581 0.0285 0.0061 0.0005 0.0000
'5 13 Eastern Washinaton 0.0555 0.0002 0.0000 0.0000 0.0000 0.0000
e 6 SMU 0.6645 0.2986 0.0619 0.0116 0.0011 0.0000
w 11 UCLA 0.3355 0.1092 0.0132 0.0014 0.0001 0.0000
3 lowa State 0.8763 0.5879 0.1566 0.0381 0.0052  0.0001

14 UAB 0.1237 0.0044 0.0001 0.0000 0.0000  0.0000

7 lowa 0.6276 0.0546 0.0204 0.0028 0.0002  0.0000

10 Davidson 0.3724 0.0326 0.0063 0.0004 0.0000  0.0000

2 Gonzaaa 0.9783 0.9124 0.7415 0.3742 0.1277  0.0101

15 North Dakota St 0.0217 0.0004 0.0000 0.0000 0.0000  0.0000

summation 32 16 8 4 2 1
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Table 12. Restricted OLRE model probability matrix in 2015 March Madness using MLE

Seed | TEAM k=1 k=2 k=3 k=4 k=5 k=6
1 Kentuckyv 0.9988 0.9890 0.9458 0.8235 0.6112 0.3788
16 Hampton 0.0346 0.0090 0.0029 0.0008 0.0002 0.0001
8 Cincinnati 0.3773 0.0987 0.0283 0.0080 0.0026 0.0011
9 Purdue 0.2734 0.0689 0.0201 0.0056 0.0018 0.0008
5 West Virainia 0.7354 0.2813 0.0856 0.0255 0.0085 0.0035
— 12 Buffalo 0.3473 0.0896 0.0258 0.0073 0.0024 0.0010
m 4 Marvland 0.4669 0.1290 0.0369 0.0106 0.0035 0.0015
2 13 Valparaiso 0.1833 0.0458 0.0136 0.0038 0.0012 0.0006
=) 6 Butler 0.6543 0.2196 0.0645 0.0189 0.0063 0.0026
s 11 Texas 0.6363 0.2084 0.0609 0.0178 0.0059  0.0024
3 Notre Dame 0.8999 0.5279 0.1995 0.0647 0.0223  0.0089
14 Northeastern 0.0497 0.0128 0.0041 0.0011 0.0003  0.0002
7 Wichita St 0.8098 0.3626 0.1171 0.0357 0.0120  0.0049
10 Indiana 0.3366 0.0865 0.0249 0.0070 0.0023  0.0010
2 Kansas 0.9296 0.6148 0.2581 0.0877 0.0307 0.0123
15 New Mexico St 0.0809 0.0206 0.0064 0.0017 0.0006  0.0003
1 Wisconsin 0.9960 0.9647 0.8431 0.5898 0.3238 0.1571
16 Coastal Carolina 0.0460 0.0118 0.0038 0.0010 0.0003 0.0002
8 Oregon 0.5096 0.1456 0.0417 0.0120 0.0039 0.0017
9 Oklahoma St 0.4893 0.1375 0.0394 0.0113 0.0037 0.0016
5 Arkansas 0.6385 0.2097 0.0614 0.0180 0.0059 0.0025
12 Wofford 0.0959 0.0243 0.0075 0.0020 0.0006 0.0003
- 4 North Carolina 0.8797 0.4806 0.1727 0.0549 0.0187 0.0075
& 13 Harvard 0.1498 0.0375 0.0113 0.0031 0.0010 0.0005
= 6 Xavier 0.6512 0.2176 0.0639 0.0187 0.0062 0.0026
11 Ole Miss 0.4179 0.1118 0.0320 0.0091 0.0030 0.0013
3 Baylor 0.8679 0.4565 0.1601 0.0504 0.0172 0.0069
14 Georgia St 0.1608 0.0402 0.0121 0.0033 0.0011 0.0005
7 Virginia Commonwealth 0.6870 0.2420 0.0720 0.0212 0.0071 0.0029
10 Ohio State 0.5287 0.1537 0.0441 0.0127 0.0042 0.0018
2 Arizona 0.9956 0.9614 0.8303 0.5670 0.3034 0.1450
15 Texas Southern 0.0365 0.0094 0.0030 0.0008 0.0003 _ 0.0001
1 Villanova 0.9917 0.9301 0.7260 0.4157 0.1905 0.0839
16 Lafavette 0.0076 0.0020 0.0007 0.0002 0.0001 0.0000
8 NC State 0.5123 0.1467 0.0421 0.0121 0.0040  0.0017
9 LSU 0.4038 0.1071 0.0307 0.0087 0.0028  0.0012
5 Northern lowa 0.8106 0.3636 0.1175 0.0359 0.0121  0.0049
12 Wvomina 0.0549 0.0141 0.0045 0.0012 0.0004  0.0002
— 4 Louisville 0.6824 0.2387 0.0708 0.0209 0.0069  0.0029
%) 13 UC Irvine 0.1285 0.0323 0.0098 0.0027 0.0009  0.0004
5 6 Providence 0.6607 0.2238 0.0659 0.0194 0.0064  0.0027
11 Davton 0.3004 0.0763 0.0221 0.0062 0.0020  0.0009
3 Oklahoma 0.9212 0.5877 0.2383 0.0797 0.0277  0.0111
14 | Albanv 0.0374 0.0097 0.0031 0.0008 0.0003  0.0001
7 Michioan St 0.7056 0.2561 0.0768 0.0227 0.0076  0.0031
10 Georaia 0.4844 0.1356 0.0388 0.0111 0.0037  0.0016
2 Virainia 0.9829 0.8667 0.5695 0.2637 0.1056 0.0440
15 Belmont 0.0432 0.0112 0.0036 0.0009 0.0003 0.0002
1 Duke 0.9753 0.8189 0.4829 0.2026 0.0772 0.0316
16 Robert Morris 0.0535 0.0137 0.0043 0.0012 0.0004 0.0002
8 San Diedo St 0.5197 0.1498 0.0430 0.0124 0.0041 0.0017
9 St. John's 0.5729 0.1740 0.0502 0.0146 0.0048 0.0020
5 Utah 0.8762 0.4733 0.1688 0.0535 0.0182 0.0073
12 Stephen F. Austin 0.2225 0.0556 0.0164 0.0045 0.0015 0.0007
I 4 Georaetown 0.7485 0.2934 0.0900 0.0269 0.0090 0.0037
'5 13 Eastern Washinaton 0.0710 0.0181 0.0057 0.0015 0.0005 0.0002
e 6 SMU 0.5849 0.1800 0.0520 0.0151 0.0050 0.0021
w 11 UCLA 0.5360 0.1569 0.0451 0.0130 0.0043 0.0018
3 lowa State 0.9152 0.5696 0.2259 0.0748 0.0259  0.0104
14 UAB 0.1194 0.0300 0.0092 0.0025 0.0008  0.0004
7 lowa 0.5995 0.1876 0.0544 0.0158 0.0052  0.0022
10 Davidson 0.4809 0.1342 0.0384 0.0110 0.0036  0.0015
2 Gonzaaa 0.9641 0.7571 0.3957 0.1520 0.0557  0.0226
15 North Dakota St 0.0684 0.0175 0.0055 0.0015 0.0005  0.0002
summation 32 16 8 4 2 1

24



4. BAYESIAN INFERENCE

In the previous section, there is only one model being used to estimate the results of the
entire last four rounds using the PSC method and either the Cauchit or Logit link. However, we
can imagine how different between the Sweet16 and Championship on the atmosphere around the
arena, the pressures in each player and coach. These can reflect in the spread statistics. So using
only one model to explain all games in these four rounds is inappropriate. Therefore if we can
develop a model for each round separately, especially on the last few rounds, the estimation would
be more accurate.

In the PSC model, insufficiently small sample size is still a large obstacle for developing a
model for each round separately. When using maximum likelihood estimation, Griffiths et al.
(1987) found that there is significant bias for small samples due to the convergence issue. Even
though twelve season’s data were collected as training data, there is only one Championship game,
two Final4 games, four Elite8 games and eight Sweet16 games in each season, respectively. Hence,
the sample sizes for each of the last 4 rounds are not large enough. Developing a separate model
for last four rounds could not be accomplished by using maximum likelihood estimation. In this

case, another estimation method, Bayesian Inference has been considered to estimate the

conditional probability pl.(]'.‘).

The one advantage of Bayesian inference is that it does not have the convergence issue
when using small size samples. By using Bayesian estimation, we can construct a model for each
round separately. In addition, the other advantage of using the Bayesian inference is that it can
augment the precision of the prediction for the current year’s March Madness by the incorporation

of prior information such as experts’ opinions and historical results. When there is good prior

information, the Bayesian approach will enable one to form the prior distribution with the
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consideration of this information. To illustrate these two advantages, the PSC model with Logit
link under Bayesian inference will be introduced in this section (In SAS 9.3, Cauchit link is not a
build-in link function in the “PROC MCMC” statement, so we only use Logit link function in our
study).

Based on the Bayes theorem, we can write (Rashwan and El dereny, 2012)

P(parameters|data) « P(parameters)P(data|parameters)
The first term on the right-hand side is called prior density, often described as “what is known”
about the parameters before estimation. The second term is the joint distribution of the observed
random variable y given estimated parameters, known as likelihood function. The left-hand side
is the posterior density of the parameters given the current data. The posterior density can be seen
as a mixture of the prior information and current information (Green, 2003). The Bayesian
inference for logistic regression analysis usually follows three steps: The likelihood function of
the data is written down; appropriate prior distribution is found over estimated parameters to form
the posterior distribution over all parameters; and samples are drawn from posterior distribution
and used to estimate the mean value as the coefficients.
4.1. The Likelihood Function

Suppose y is a random variable that follows Bernoulli distribution with probability p. If n
independent random variables (y;, y,, ..., ¥,) are observed, the generalized linear model is given
by

g =xpufrt+ -+ xpfr=m (=1..n (14)

where x;4, ..., X, are the k covariates, S, 81, ---, B are the estimated intercept and coefficients

corresponding to each covariates and n is the total number of games. Here g(.) is a link function,
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which connect the linear predictor n; and the response variable. Using the Logit link, the model

can be expressed as
9(p;) = log (—pi ) =1 (15)
L 1 _ pl L

Solving the equation w.r.t p;, the result can be written as:

exp(n;)
e ———————————— 16
PLT T ¥ exp(m) (o)
and the distribution of f(y;|n;) is given by
| ) exp(7);) )y"< 1 )1‘”
An.) = Vi — )1y = 17
Fodn) = @07 =p) ™ = (o) (Tremes )

Therefore the likelihood function for given covariates and corresponding coefficients is

n

L(YIX,B) = ﬁf (yilm) = exp (EN: yﬂh) 1_[ (H%p(mﬂ (18)
i=1 i=1 i

i=1
4.2. The Prior Distribution of Logistic Coefficients

A prior distribution for a parameter is often assessed by experts’ judgments and historical
results. In the basketball games, even though there exists plenty of prior information, there are
only few related with the model coefficients 8. Usually, it is very difficult to introduce a prior
distribution on the estimated coefficients B immediately. However, we can form a prior
distribution on the winning probability, and then relate this prior distribution to the coefficients
to get the prior density of B indirectly.

Breiter and Carlin (1997) computed the winning probabilities based on seed number. The

j

probability of seed i team beats seed j team is defined as h;; = vt For instance, probability of

team with seed number 1 beats the team with seed number 16 is% = 0.941. The seed number

is decided by the NCAA selection committee according to the performance in the regular season.
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Therefore, this information can be used to form the prior density in Bayesian inference. Table 13
gives the probability matrix based upon the seed number. Notice this probability matrix is identical

for each region and tournament year.

In general, let us introduce a variable hfjl.) to represent the probability of team i beats team
j for game [ in the samples. One possible prior density on winning probability hf]l.) can be formed

by assuming each hf]l.) has mean Eg.) and variance ﬁf]l.)(l — Efjl.)), where ﬁf]l.) is computed by

Q)
seedj

NOI
h 0
l

ij

(19)

+—seed§”

seed
j

In (19) seedl.(l)and seedj(l) denote the seed number of team i and team j in game [ respectively,

moreover, l = 1, ...,n, where n is the total sample size, for example, twelve seasons data were

collected in our study, then n=384 for Rd64, n=192 for Rd32, n=96 for Sweet16, n=48 for Elite8,
n=24 for Final4, and n=12 for Championship. Es) is observed from last twelve seasons in our

study. Table 14 gives the matchup information for Championship in recent twelve years. For

example, in the last year’s March Madness, Connecticut (i) with seed number 7 faced number 8

seeded team Kentucky (j) in the Championship, the winning probability hgz) can be assumed

follow some distribution with mean A{;” = — = 0.4 and variance E§}2>(1 — ESZ)) = 0.24.
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Table 13. Probability matrix based upon the seed number

ijl2345678910111213141516
1 1.500(.667|.750|.800|.833|.857|.875|.889|.900|.909|.917|.923|.929|.933|.938 | .941
2 |.333(.500(.600 |.667|.714|.750|.778|.800 |.818|.833|.846|.857 |.867 | .875|.882 | .889
3 |.250.400|.500|.571|.625|.667 (.700 |.727|.750|.769 |.786 | .800 | .813|.824 | .833|.842
4 |.200|.333|.429|.500|.556 |.600 |.636 |.667 | .692|.714 |.733|.750 |.765|.778 | .789 | .800
5 1.167|.286|.375|.444|.500 | .545 | .583|.615 | .643|.667 |.688|.706 |.722|.737 |.750 | .762
6 |.143|.250|.333|.400 |.455|.500 (.538 |.571|.600 |.625|.647 |.667 |.684 |.700 |.714|.727
7 1.125(.222{.300 |.364 | .417 | .462 | .500 | .533|.563|.588 |.611|.632 |.650 | .667 |.682 | .696
8 |.111].200|.273|.333|.385(.429 |.467 |.500 |.529 |.556 | .579|.600 | .619|.636 | .652 | .667
9 1.100(.182.250 |.308 | .357 |.400 | .438|.471|.500|.526 |.550|.571|.591|.609 |.625 | .640
10].091|.167|.231|.286|.333|.375|.412 | .444 | .474 | .500 | .524 | .545 | .565 |.583 |.600 |.615
111.083|.154|.214|.267 | .313|.353|.389 |.421 | .450|.476 | .500 |.522 | .542 |.560 |.577 | .593
12|.077|.143|.200|.250 | .294 | .333 | .368 | .400 | .429 | .455 | .478 | .500 | .520 |.538 |.556 | .571
13].071|.133|.188|.235|.278|.316 | .350 | .381 | .409 | .435 | .458 | .480 | .500 |.519 |.536 | .552
14|.067|.125|.176 | .222|.263 |.300 | .333 |.364 | .391 | .417 | .440| .462 | .481 | .500 | .517 | .533
15].063|.118|.167|.211|.250|.286 | .318 | .348 | .375|.400 | .423 | .444 | .464 | .483 |.500 |.516
16|.059|.111.158|.200.238 |.273|.304 |.333|.360 |.385 |.407 | .429 |.448 | .467 | .484 | .500
Table 14. Matchup information in NCAA March Madness Championship games from season
2002-2003 through 2013-2014 (n=12).
Season | [ Team i (seed number) | Team j (seed number) | Mean of hg.) Variance of hfjl.)
02-03 | 1 Syracuse (3) Kansas (2) 0.400 0.24
03-04 | 2 Georgia Tech (3) Connecticut (2) 0.400 0.24
04-05| 3 linois (1) North Carolina (1) 0.500 0.25
05-06 | 4 UCLA (2) Florida (3) 0.600 0.24
06-07 | 5 Florida (1) Ohio State (1) 0.500 0.25
07-08 | 6 Kansas (1) Memphis (1) 0.500 0.25
08-09 | 7 Michigan State (2) North Carolina (1) 0.333 0.222
09-10 | 8 Butler (5) Duke (1) 0.167 0.139
10-11 | 9 Connecticut (3) Butler (8) 0.727 0.198
11-12 | 10 Kentucky (1) Kansas (2) 0.667 0.222
12-13 | 11 Louisville (1) Michigan (4) 0.800 0.16
13-14 | 12 Connecticut (7) Kentucky (8) 0.533 0.249
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0}
h;
log( (l)> was assumed to be normal distribution, the mean and variance derived as
t]

(l) £ 1
log( )”V (w,0%) = N | log—2—, (20)
() INOMEN0)] 7~
1=hy L=k R (1-R3)

by Delta method (Oehlert, 1992).
ij 2ty o TG

Now define a column vector hy; = (h{,h?, .., A77)’, then log( ) follows a
hi;

multivariate normal distribution with dimension n.

) ml[e? 0 o 0]

ij Mz |0 o2 ~ ]
~MVN. 1, 2 21

Knllo .. 0 of

(21) is the prior density for log( ) Now we need to connect the probability h;; with the

l]

coefficient B to find the prior density on .

Let (B) denotes the prior distribution of B. To introduce a t(B) with respect to h;;, a
logistic function is used to connect h;; and g,
log (9 = X'g (22)
S\1-hy) "~
where X is the covariate matrix. The least square approximation for g can be written as:
rvy—1 v/ hii 23
B=(X'X)"1X'log| —1— (23)

The density of log ( ) has already been derived in (21). According to the basic theory of linear

algebra on expected value and covariance matrices, the prior distribution of B is developed as
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SN

B~MVN, | (x'x)71x'[*?], x'x)-1x| "5 (X'X)1X"Y
Hn 0 0 O'nJ
= MVN,(up, Zp) (24)
Then the probability density function for B can be written as
n(B) = ————exp [~ 5 (B~ 1s) 257 (B~ ) 29

(2m)2 |22

Notice that this is not the only way that we can form the () based on hf] ), for instance, we can

~ ~ ~ 2
assume hl(]l.)follows some distribution with mean hfjl.) and variance [hg.)(l - hl(]l))] . In this case,
the prior distribution of B has distribution:

M1
g~MvN, | xx)tx B2 [, (et (26)
™

The covariance matrix of prior distribution t(B) is only related with the covariate matrix X.
4.3.The Posterior Distribution of Logistic Coefficient
The posterior distribution is derived by multiplying the density function of prior

distribution (25) by the full likelihood function (18). Then the posterior distribution is defined by

n(BlY,X) o m(BIL(Y|X, B)

1 (B; — 1p,)? N .
Gjmexp (_ 20]2 >l exp (Z ymi) 1_[ <1 + exp(n;) ) D

i=1

Equation (27) represents the posterior probability distribution of B, and under these

distribution statistical inference can be carried out by using Bayesian method.
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4.4. Estimation

The Bayesian point estimate is the parameter vector that minimizes the expected loss
function. If the loss function is quadratic form (B — B)?, then the mean of the posterior probability
distribution in (27) is the “minimum expected loss” (MELO) estimator (Green, 2003).

4.5.Sampling Algorithms

Random sampling from posterior distribution is a key step in Bayesian analysis.
Nonetheless, only a few well-known probability distributions are ready for use. So some sampling
methods have to be used in Bayesian estimation.

The MCMC procedure is a general purpose Markov chain Monte Carlo (MCMC)
simulation procedure that is designed to fit Bayesian models. In SAS 9.3 (SAS Institute, Cary NC),
the statement “PROC MCMC” uses Metropolis algorithm with a normal proposal distribution to
obtain the posterior samples as default (How PROC MCMC Works, 2015). The Metropolis
algorithm is named after the American physicist and computer scientist Nicholas C. Metropolis. It
is used to obtain random samples from any arbitrary distribution of any dimension (Chib and
Greenberg, 1995). Suppose we want to draw samples from a multivariate distribution with full
joint posterior probability density function m (84, B2, ---, Bx)- The first step of Metropolis algorithm

is to initialize the sample value for each random variable. The next step is to generate a candidate
sample B9, B{, ..., B from the proposal distribution q(. [8" ™, 8%V, ..., B4). And then

calculate an acceptance probability

e (B, B9, .., BOY, X)
o =min| 1, D -D D (28)
(B, B0V, L BTV Y, X)

Now the acceptance probability for this candidate sample is a (Introduction to Bayesian
Analysis Procedures, 2015). The algorithm is self-repeating, so theoretically, it can be carried out

as long as required. The algorithm is given in Figure 4. Suppose the m data vectors are accepted
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( 1(0, O ﬁ,&” l=1,2,. )from posterior distribution. By MCMC method, then we can

find accurate Bayesian estimate for vector f is:

2L, pY

m

B~ (29)

In|t|aI|zeﬂ(°) © ., ,EO)
for iteration i = 1 2 ..do

Proposeﬁ(c) (C) " IEC) ( |'81(l 1) ﬁ(l 1) .“8,8'_1))
Acceptance Probability:

4 =min| 1, T[('B(C) ) o ,,B,EC)|Y,X)
(ﬁl(l 1) ﬁ(l 1) .'ﬁlgl_l)IY'X)

u ~ Uniform (u; 0,1)

if u < athen
Accept the candidate sample: B, B7, ..., BV « L9, gL, .., gL
else
Reject the proposal: B2, B3, ..., B « pU~D U1 g~
end if
end for

Figure 4. Metropolis algorithm

4.6. Application

The Bayesian estimation first applies on the conditional probability model (8) in order to
predict the pi(]'.‘) in 2015 NCAA March Madness. We will use all covariates mentioned on Section
3. However, in Pomeroy’s Ratings, Pyth is derived from both AdjO and AdjD (Pomeroy ratings,
2015). To avoid the severe collinearity problem caused by high correlation between Pyth and
AdjO, and Pyth and AdjD, the variable Pyth was excluded. Meanwhile, the variable seed number
was used to generate the prior density of coefficients g (19). Therefore, it was removed also. Now,

the total of twelve covariates were considered in the Bayesian inference. Six models were
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developed using PSC method with Logit link. The first model was developed for predicting all 32
Rd64 games. The second model was developed for predicting all 16 Rd32 games. The third, fourth,
fifth and sixth round models ware developed for predicting 8 Sweet16 games, 4 Elite8 games, 2
Final4 games and 1 championship game, respectively. All of the data used in this work were
collected from 2002-2003 season through 2013-2014 season (12 seasons).

The number of samples from the Metropolis algorithm was assigned 10,000,000 in this
work. However, we will not use all these samples because the procedure of Metropolis algorithm
cannot guarantee all 10,000,000 samples are independent and identically distributed. Although the
Markov chain eventually converges to the target distribution, the initial samples may not converge
to the desired distribution (Metropolis—Hastings algorithm, 2015). For this reason, the first half of
the iterations were used as a burn-in period, resulting in an initial 5,000,000 iterations thrown
away. By doing this, one can guarantee the remaining 5,000,000 samples are from an identical
distributions. Since the samples are drawn iteratively, the correlation between two samples from
successive iterations is very high. To acquire independent samples, a common strategy is to thin
the MCMC in order to reduce sample autocorrelations (Link and Eaton, 2011). In our study, the

thinning rate was assigned as 2,000, which means for the remaining 5,000,000 samples, we only

(10,000,000-5,000,000)

keep one sample in every 2,000 samples simulation. Consequently, =000

= 2,500

samples were collected for each model and now these samples can be considered as from an
independent samples from identical distributions. Table 15 gives the summaries of the posterior
distribution for the Rd64 model. It reports the posterior mean, standard deviation, 2.5% and 97.5%
percentile for the distribution. The mean value is used as estimated coefficients in Bayesian
estimation. These 2.5% and 97.5% percentile are known as credible interval in Bayesian statistics

(Jaynes, 1976), which is analogous to confidence interval in Non-Bayesian statistics used for
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interval estimation. As an example, Figure 5, shows the trace, autocorrelation and the univariate
density plot for the first two covariates (FGM, 3PM). The trace plot appears stationary, the
autocorrelations are close to zero, and the density plots are relatively smooth. Therefore the 2,500

samples can be assumed from an independent identical distribution. Table 16 gives the estimated
coefficient (samples means) for all six models. Once the predicted pi(]'.‘) are computed, using the
procedures in Section 3, we need to put the conditional probability pi(]’.‘) into model (9) to derive
the P(Z; = k) fork > 1 (Note P(Z; = 1) = pi(].l)), and then putall P(Z; = k) (k= 1,2, ...,6) into
the probability matrix (Table 18). The accuracy using simple and doubling scoring systems for

year 2015’s bracket (Figure 6) using Bayesian estimation is given in Table 17.

Table 15. Summary table for posterior distribution in 2015 March Madness Rd64 model

Posterior Summaries
0) [0)
Parameter N Mean gg;ggg?] pefé?arﬁile pe?r7c'esnﬁle

FGM 2500 0.0527 0.0603 -0.0563 0.1774

3PM 2500 0.00648 0.0637 -0.1102 0.138
FTA 2500 0.00512 0.0346 -0.0611 0.0756
ORPG 2500 0.025 0.0482 -0.0666 0.1196
DRPG 2500 -0.0071 0.0512 -0.103 0.0989
APG 2500 -0.0294 0.0667 -0.1587 0.1091

PFPG 2500 0.0404 0.0509 -0.0553 0.144
ATRATIO 2500 0.4239 0.6404 -0.795 1.6478
AdjO 2500 0.2066 0.0338 0.1379 0.2714
AdjD 2500 -0.2361 0.0387 -0.3159 -0.1652
ASM 2500 -0.1216 0.045 -0.2107 -0.0351
SAGSOS 2500 -0.1096 0.0396 -0.1885 -0.0356
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Table 16. Estimated coefficients (mean of posterior distribution) for 2015 March Madness using
Bayesian inference (standard deviation of posterior distribution given in parenthesis)

Parameter Rd64 Rd32 Sweetl6 Elite8 Final4 Champs

FGM 0.0527 0.1134 0.1109 -0.0225 0.2021 0.1956

(0.0603) | (0.0845) | (0.1405) | (0.1946) (0.3965) (1.949)

3PM 0.00648 0.0793 0.1223 -0.1671 0.6263 0.7705
(0.0637) | (0.0861) | (0.1272) | (0.2332) (0.5706) (1.0141)

FTA 0.00512 -0.0265 0.0257 0.0535 -0.1492 -0.3023

(0.0346) | (0.0531) | (0.0739) | (0.1223) (0.2029) (0.356)

ORPG 0.025 0.0198 0.0468 -0.00949 0.245 0.279

(0.0482) | (0.0688) | (0.1027) | (0.1212) (0.4387) (0.4724)

DRPG -0.00712 | -0.0444 0.0613 -0.1072 0.2132 0.1641
(0.0512) | (0.0667) | (0.0973) | (0.1947) (0.2277) (3.9657)

APG -0.0294 -0.0498 0.00773 -0.049 -0.00232 0.4318
(0.0667) | (0.0905) | (0.1272) (0.217) (0.4206) (4.9482)

PEPG 0.0404 -0.0388 0.0649 0.019 -0.0623 -0.067
(0.0509) | (0.0704) | (0.1011) | (0.1443) (0.2886) (1.3861)

ATRATIO 0.4239 -0.2554 -0.5118 | -0.00566 -3.4968 -9.0191
(0.6404) | (0.9118) | (1.1752) | (2.2451) (3.3122) | (29.9698)

AdiO 0.2066 0.2231 0.3192 0.2856 0.4547 0.3545

J (0.0338) | (0.0464) | (0.0719) | (0.0999) (0.1833) (0.5545)
AdiD -0.2361 -0.2736 -0.365 -0.2905 -0.5438 -0.2109

J (0.0387) | 0.0568) | (0.0896) (0.123) (0.1926) (1.286)
ASM -0.1216 -0.0985 -0.2262 -0.1008 -0.4241 -0.3006
(0.045) (0.0604) | (0.0988) | (0.1342) (0.264) (0.6069)

SAGSOS -0.1096 -0.0899 -0.0614 -0.0948 -0.2334 -0.1654
(0.0396) | (0.0567) | (0.0881) | (0.1101) (0.2256) (0.4296)
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Figure 5. Diagnostics plots for posterior distribution on covariate FGM (betal) and 3PM (beta2)

Table 17. Prediction accuracy for PSC model (Logit link) using Bayesian estimation in 2015

March Madness

Rd64 | Rd32 | Sweetl6 | Elite8 | Final4 | Championship | total PCT
Correct | 2 | o 5 2 0 0 42 | 66.67%
pick
Simple 26 9 5 2 0 0 42 | 66.67%
Doubling | 26 18 20 16 0 0 80 | 41.67%
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Table 18. PSCM (Logit link) probability matrix in 2015 March Madness using Bayesian Est.

Seed | TEAM k=1 k=2 k=3 k=4 k=5 k=6
1 Kentuckv 0.9345 0.8381 0.7667 0.6674 0.2136 0.0324
16 Hampton 0.0655 0.0049 0.0001 0.0000 0.0000 0.0000
8 Cincinnati 0.5607 0.1065 0.0355 0.0130 0.0065 0.0016
9 Purdue 0.4393  0.0505 0.0182 0.0040 0.0009 0.0002
5 West Virainia 0.6414 0.3985 0.1023 0.0498 0.0251 0.0109
12 Buffalo 0.3586 0.1622 0.0202 0.0048 0.0016 0.0002
4 Marvland 0.6070 0.2951 0.0473 0.0131 0.0083 0.0030
13 Valparaiso 0.3930 0.1442 0.0097 0.0010 0.0004 0.0001
6 Butler 0.4574 0.1887 0.0591 0.0106 0.0053 0.0010
11 Texas 0.5426  0.2404 0.0977 0.0160 0.0136 0.0092
~ |3 Notre Dame 0.8445 0.5518 0.2168 0.0459 0.0157 0.0043
@14 Northeastern 0.1555 0.0191 0.0007 0.0000 0.0000 0.0000
2 7 Wichita St 0.6633 0.3136 0.1347 0.0294 0.0093 0.0007
o |10 Indiana 0.3367 0.0999 0.0296 0.0019 0.0015 0.0013
S |2 Kansas 0.8806 0.5666 0.4605 0.1430 0.1253 0.0700
15 New Mexico St 0.1194 0.0198 0.0009 0.0001 0.0000 0.0000
1 Wisconsin 0.9373 0.8180 0.5685 0.3489 0.1976 0.0246
16 Coastal Carolina 0.0627 0.0062 0.0003 0.0000 0.0000 0.0000
8 Oregon 0.5385 0.0995 0.0415 0.0051 0.0044 0.0037
9 Oklahoma St 0.4615 0.0764 0.0294 0.0063 0.0047 0.0024
5 Arkansas 0.7718 0.3411 0.0804 0.0153 0.0067 0.0017
12 Wofford 0.2282 0.0416 0.0010 0.0001 0.0000 0.0000
4 North Carolina 0.7951 0.5466 0.2762 0.0759 0.0515 0.0280
13 Harvard 0.2049  0.0707 0.0028 0.0003 0.0001 0.0000
6 Xavier 0.5500 0.2490 0.0628 0.0164 0.0098 0.0031
11 Ole Miss 0.4500 0.1629 0.0299 0.0065 0.0045 0.0019
3 Baylor 0.7593 0.5224 0.1937 0.0737 0.0635 0.0504
14 Georgia St 0.2407 0.0656 0.0027 0.0004 0.0000 0.0000
= |7 Virginia Commonwealth 0.6704 0.1606 0.0656 0.0156 0.0114 0.0029
@ 10 Ohio State 0.3296  0.0654 0.0146 0.0023 0.0005 0.0001
= 2 Arizona 0.9445 0.7707 0.6306 0.4333 0.2180 0.0207
15 Texas Southern 0.0555  0.0033 0.0001 0.0000 0.0000 0.0000
1 Villanova 0.9663 0.8206 0.7300 0.5028 0.3355 0.2444
16 Lafavette 0.0337  0.0017 0.0000 0.0000 0.0000 0.0000
8 NC State 0.5452 0.0971 0.0483 0.0122 0.0083 0.0069
9 LSU 0.4548 0.0805 0.0365 0.0059 0.0043 0.0040
5 Northern lowa 0.8511 0.6502 0.1357 0.0733 0.0409 0.0292
12 Wvomina 0.1489 0.0320 0.0004 0.0000 0.0000 0.0000
4 Louisville 0.6417 0.2480 0.0464 0.0148 0.0064 0.0040
13 UC Irvine 0.3583 0.0699 0.0027 0.0002 0.0001 0.0000
6 Providence 0.6870 0.2098 0.0756 0.0255 0.0101 0.0066
11 Davton 0.3130 0.0662 0.0076 0.0014 0.0001 0.0001
3 Oklahoma 0.9032 0.7106 0.4309 0.1352 0.1262 0.1134
14 Albanv 0.0968 0.0135 0.0002 0.0000 0.0000 0.0000
- 7 Michigan St 0.5560 0.1698 0.0709 0.0130 0.0086 0.0075
v |10 Georaia 0.4440 0.0948 0.0304 0.0072 0.0041 0.0029
j 2 Virainia 0.8944 0.7192 0.3838 0.2085 0.0916 0.0344
15 Belmont 0.1056  0.0162 0.0005 0.0000 0.0000 0.0000
1 Duke 0.8671 0.6464 0.4670 0.2991 0.1177 0.0928
16 Robert Morris 0.1329 0.0145 0.0004 0.0000 0.0000 0.0000
8 San Dieao St 0.4048 0.1490 0.0341 0.0150 0.0049 0.0030
9 St. John's 0.5952 0.1901 0.0757 0.0275 0.0122 0.0087
5 Utah 0.6834 0.4418 0.1937 0.1053 0.0307 0.0200
12 Stephen F. Austin 0.3166  0.0974 0.0152 0.0036 0.0001 0.0001
4 Georaetown 0.8737 0.4422 0.2132 0.1290 0.0529 0.0385
13 Eastern Washinaton 0.1263 0.0186 0.0008 0.0000 0.0000 0.0000
6 SMU 0.4630 0.1963 0.0636 0.0302 0.0035 0.0021
11 UCLA 0.5370 0.2254 0.0901 0.0258 0.0156 0.0135
3 lowa State 0.7604 0.5285 0.3381 0.1450 0.0806 0.0667
14 UAB 0.2396  0.0498 0.0046 0.0004 0.0001 0.0001
E 7 lowa 0.5376  0.1935 0.0682 0.0263 0.0071 0.0047
o |10 Davidson 0.4624 0.1532 0.0466 0.0049 0.0017 0.0015
8 2 Gonzaoa 0.8630 0.6314 0.3882 0.1879 0.0367 0.0215
15 North Dakota St 0.1370 0.0219 0.0006 0.0000 0.0000 0.0000
Column summation 32 16 8 4 2 1
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Figure 6. PSC model (Logit link) bracket in 2015 March Madness using Bayesian estimation
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5. COMPARISON OF PREDICTION ACCURACY IN THE PAST THREE YEARS

The precision in using the restricted OLRE model (2006, 2008), the PSC model with
Cauchit link (MLE), the PSC model with Logit link (MLE, Bayesian estimation) are computed for
the last three years. Moreover, other popular prediction methods or rating system such as Pomeroy
and RPI ratings are also incorporated into the comparison. In each year, under MLE, the Logit link
and Cauchit link PSC methods used all fourteen variables as candidate covariates with same model
selection criteria. Both of these methods developed three models: one for predicting all 32 Rd64
games; one for predicting all 16 Rd32 games; and one for predicting all 15 remaining games.

Under Bayesian estimation, twelve covariates were used to construct six models under the
PSC method with Logit link. The first model was developed for predicting all 32 Rd64 games. The
second model was developed for predicting all 16 Rd32 games. The third, fourth, fifth and sixth
models were developed for predicting 8 Sweetl6 games, 4 Elite8 games, 2 Final4 games and 1

championship game, respectively. Two prior densities have been used considered in Bayesian

inference. Prior 1 was introduced in Section 4, It assumes hg.) has mean ES) and variance

~ ~ ~ ~ ~ 2
hg.)(l — hl(]l)) The other prior assumes A(? has mean hf]l.) and variance [hg.)(l — hl(]l))] . The

Y
variance of this prior distribution is not related with observed value fzs.). It is only related to the

covariate matrix X. The restricted OLRE model developed one model for each actual round as
well. For Pomeroy and RPI ratings, we just complete the bracket with the value of Pyth and RPI
(In a single game, the team with higher Pyth or RPI value will win the game).

Table 19 shows the prediction accuracy in the past three years. In our work, to predict 2015
March Madness and compute the accuracy, March Madness data from 2002-2003 season through
2013-2014 season (12 seasons) are used as the training data to fit the PSC model and restricted

OLRE model (Since Pomeroy and RPI rating systems do not need historical data, Pyth and RPI
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value from the current year were used to make the predictions). Fourteen covariates were
considered in the MLE (Logit, Cauchit link and restricted OLRE model), and twelve covariates
were used in the Bayesian estimation model (Logit link). Similarly, 11 seasons’ data (from 2002-
2003 season through 2012-2013) were used as training data to make predictions and compute the
accuracy for 2014 March Madness. And 10 seasons’ data (from 2002-2003 season through 2011-
2012) were used as training data to make predictions and compute the accuracy for 2013 March
Madness. Notice when using Bayesian estimation to predict 2013 and 2014 March Madness, the
sample sizes for the last round are only 10 and 11 for these two years. These sample sizes are less
than the number of covariates used in the model, and therefore X’'X is a singular matrix in (24)
when forming the prior density. Hence, the last two rounds have to be combined to acquire a non-
singular matrix under Bayesian inference.

Overall, the PSC models has better performances than other popular prediction methods.
For some years, the restricted OLRE model has similar accuracy when comparing with the PSC
models. However, the restricted OLRE model uses all covariates to fit the model, and this may
lead to a risk when using maximum likelihood estimation. The high dimension of covariates results
in a greater chance to have the convergence problem. For this reason, the restricted OLRE model
has a bad performance for 2015 March Madness. Different from maximum likelihood estimation,
Bayesian estimation can avoid the convergence problem even with a high dimension of covariates.

When using the Logit link function, Bayesian estimation with prior 1 and prior 2 correctly
predicted almost three and one more games, respectively, than MLE on average because it
incorporates the experts’ opinions as a prior information. Also in Bayesian estimation, high
dimensional parameter was used to explain the data while not having the large risk of convergence

issues.
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Comparing the PSC model with two different link functions, Cauchit link had better

performance in 2014 March Madness because that year’s tournament had more lower-seeded

teams winning against their higher-seeded opponents. Indeed the two teams with seed number 7

(Connecticut) and 8 (Kentucky) went to the final. Each of these teams beat four higher seeded

opponents after Rd64 and then met in the final. This was the first time that the championship game

did not have a team with seed number 1,2 or 3. As we mentioned in Section 3, when using Cauchit

link, there is always a chance that a weak team can beat a strong team. Therefore when such a case

happens several times in a year of the tournament, Cauchit link would have done better.

Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness

PSCM PSCM PSCM .
'\igigh L(F)’Slf“'\’r'] « | Logitlink | Logitlink | Cauchit reét['géd comeroy | RPI
Madness (I\g/ILE) (Bayesian- | (Bayesian- | Link model Y
priorl?) prior2®) | (MLE)
Correctly
Predicted 47 4 e i * 4 >
g;l/rsntre)lrﬁ 74.60% 74.60% 66.67% | 74.60% | 76.19% 65.08% | 53.97%
[?s(;/uskt):rﬂg 75.00% | 77.60% | 61.98% |75.00% | 78.13% | 61.46% | 28.13%
PSCM PSCM PSCM .
I\igiz‘h Lsslf“'\’r'] « | Logitlink | Logitlink | Cauchit reét['étéd pomerov | RPI
Madness (I?/ILE) (Bayesian- | (Bayesian- | Link model Y
priorl) prior2) (MLE)
Correctly
Predicted 34 43 0 > % % %
;‘g}g:ﬁ 53.97% | 68.25% | 6350% |61.90% | 60.32% | 60.32% |57.14%
[?S(;/ustt)(lelrﬂg 53.65% | 40.10% | 35.93% |58.33% | 32.20% | 31.25% |31.77%

42




Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness
(continued)

PSCM

PSCM

PSCM

2015 PSCM . L .. | restricted
- Logit link | Logit link | Cauchit
Ml\g?jilcer;s L(()s; It_:E';'k (Bayesian- | (Bayesian- | Link al(;?j Pomeroy RPI
priorl) prior2) (MLE)
Correctly
Sradicted 43 42 45 43 24 43 43
g}'g‘tg'rﬁ 68.25% | 66.67% | 71.43% | 68.25% | 38.10% | 68.25% |68.25%
%‘;“S?é'r?lg 43.23% | 41.67% | 48.96% | 39.58% | 19.80% | 40.63% | 45.83%
PSCM PSCM | PSCM .
Average Lssifli'vrllk Logit link | Logit link |- Cauchi reétI[Ithéd Pomero RPI
g (IE]/ILE) (Bayesian- | (Bayesian | tLink model y
priorl) - prior2) | (MLE)
Correctly | 4, 5 44 423 43 36.7 40.7 37.7
Predicted
;‘g}g:ﬁ 6561% | 69.84% | 67.15% | °°° | 58.20% | 6455% | Vol
Doubling | o7 o900 | 531206 | 48.96% | 2754 | 4341% | 44450 | 3224
System % %

a: prior 1 assumes hl(]l.)follows some distribution with mean ﬁf]l.) and variance El(]l.)(l - Eg.))

o 0] istribution wi no iance [9(1 — RO\]°
b: prior 2 assumes h;;”follows some distribution with mean h;;” and variance [hij (1 — h;; )]
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6. DISCUSSION

Based upon the bracket accuracy of past three seasons’ tournament, PSC model has better
performance than other methods (restricted OLRE model, Pomeroy, RPI). Comparing two link
functions in PSC model, Logit link successfully predicts 124 games out of 189 games and the
Cauchit link has 129 games. They have very similar performance when there is no surprises during
the whole tournament. However, like 2014 March Madness, with several weaker teams beating
stronger teams, the performance of Cauchit link exceeded the performance of the Logit link in
both simple and doubling scoring systems.

Bayesian estimation using two different priors for the PSC model with Logit link
successfully predicts 132 and 127 games out of 189 games, respectively. Compared with 124
games of maximum likelihood estimation in Logit link. The models using Bayesian estimation
have better accuracy in the simple scoring system. However, for the doubling points system, they
are no better than the MLE. The reason for this may be that only the seed number is accounted for
in the prior density. Seed number may not be significantly important for teams that have already
won several tournament games. Additionally, when the prior information is based on empirical
data, such as winning probability from the last decade rather than information based only on
experts’ opinions, then the Bayesian methods are usually less controversial (Bland and Altman,
1998). In future research, one could use a rating system based on both historical results and experts’
opinions. The performance of Bayesian inference might be improved in this model. In addition, in
SAS 9.3, Cauchit link is not a build-in link function in the “PROC MCMC?” statement. The Cauchit
link function could not be used in the PSC model using Bayesian estimation. Future research could

include building this link function and thereby possibly increasing prediction accuracy.
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When using Bayesian estimation, the models with two different prior densities yielded
different accuracies. The model with prior 2 has better performance in the 2015 March Madness,
while the model with prior 1 has better performance in the two previous years. Hence, future

research could also be conducted using different priors.
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APPENDIX A. R CODE FOR PROBABILITY SELF-CONSISTENCY MODEL WITH
CAUCHIT LINK
options(max.print=100000000)
g<- function(x) 'all(x==0)
setwd("E:/NDSU/Su's research/regular season™)
BB<-read.csv("NCAA _U5D.csv",header=T)
m<- 12*64
X<- BB[1:m,2:15]
Zeros <- rep(0,14)
Ones <-rep(1,14)
Cs<-expand.grid(Map(c, Zeros, Ones))
Cs<-cbind(Cs,NA, NA)
colnames(Cs) <-
c("v1i","v2","v3","v4" "v5","ve","V7","Vv8","Vv9","Vv10","V11","V12","V13" "V14" "AlCc","
converge")

tn<- nrow(Cs)

#1st round#

a<- seq(from=1, to=m-1, by=2)

b<- seq(from=2, to=m, by=2)

Z1<- as.matrix(X[a,]-X[b,]);

Y 1<- as.matrix(cbind(BB$R1[a],BB$R1[b]))

rowSums(Y1)
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n<- m/2

Cl<-Cs

mod.0<- gim(Y1~ 0,family=binomial(link=cauchit))
C1[1,15]<- -2*sum(Y1*log(0.5)); C1[1,16]<- mod.0$converged
for (j in 2:tn) {

WX1<- Z1*matrix(as.numeric(C1[j,1:14]),nrow=n,ncol=14,byrow=T)
WX1<- WX1[,apply(WX1,2,0)]
mod<-gIm(Y1~0+WX1,family=binomial(link=cauchit))

fit <- mod$fitted.values

p.hat<- c(fit, 1-fit)

p<- sum(as.numeric(C1[j,1:14]))

C1][j,15]<- -2*sum(Y1*log(p.hat))+2*p*n/(n-p-1)

C1[j,16]<- mod$converged

¥

Cl.new <- Cl[order(C1$AICc),]

Cl.new[1]

WX.1<- Z1*matrix(as.numeric(C1l.new[1,1:14]),nrow=n,ncol=14,byrow=T)
WX.1<- WX.1[,apply(WX.1,2,9)]

ccl.ind<- colnames(WX.1)

mod1<- gIm(Y1~0+WX.1,family=binomial(link=cauchit))

o1



#2nd round#

id2<- which(BB$R1==1)

a<- seq(from=1, to=m/2-1, by=2)

b<- seq(from=2, to=m/2, by=2)

Z2<- as.matrix(X[id2[a],]-X[id2[b],]);

Y 2<- as.matrix(cbind(BB$R2[id2[a]],BB$R2[id2[b]]))
rowSums(Y?2)

C2<-Cs

n<- m/4

mod.0<- gim('Y2~ 0,family=binomial(link=cauchit))
C2[1,15]<- -2*sum(Y2*log(0.5)); C2[1,16]<- mod.0$converged
for (j in 2:tn) {

WX2<- Z2*matrix(as.numeric(C2[j,1:14]),nrow=n,ncol=14,byrow=T)
WX2<- WX2[,apply(WX2,2,0)]

mod<-gim(Y 2~ 0+WX2,family=binomial(link=cauchit))
p<- sum(as.numeric(C2[j,1:14]))

fit <- mod$fitted.values

p.hat<- c(fit, 1-fit)

C2[j,15]<- -2*sum(Y2*log(p.hat))+2*p*n/(n-p-1)
C2[j,16]<- mod$converged

}

C2.new <-C2[order(C2$AICc),]

C2.new[1]
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WX.2<- Z2*matrix(as.numeric(C2.new[1,1:14]),nrow=n,ncol=14,byrow=T)
WX.2<- WX.2[,apply(WX.2,2,9)]
cc2.ind<- colnames(WX.2)

mod2<- gIm(Y2~ 0+WX.2,family=binomial(link=cauchit))

#3rd, 4th, 5th, 6th round#

id2<- which(BB$R2==1)

a<- seq(from=1, to=m/4-1, by=2)

b<- seq(from=2, to=m/4, by=2)

Z3<- as.matrix(X[id2[a],]-X[id2[b].]);

Y 3<- as.matrix(cbind(BB$R3[id2[a]],BB$R3[id2[b]]))

id2<- which(BB$R3==1)

a<- seq(from=1, to=m/8-1, by=2)

b<- seq(from=2, to=m/8, by=2)

Z4<- as.matrix(X[id2[a],]-X[id2[b].]);

Y 4<- as.matrix(cbind(BB$R4[id2[a]],BB$R4[id2[b]]))

#5th round#
id2<- which(BB$R4==1)
a<- seq(from=1, to=m/16-1, by=2)

b<- seq(from=2, to=m/16, by=2)
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Z5<- X[id2[a],]-X[id2[b].];

Y5<- chind(BB$R5[id2[a]], BB$R5[id2[b]])

#6th round#

id2<- which(BB$R5==1)

a<- seq(from=1, to=m/32-1, by=2)
b<- seq(from=2, to=m/32, by=2)
Z6<- X[id2[a],]-X[id2[b].];

Y6<- chind(BB$R6[id2[a]], BB$R6[id2[b]])

Z=as.matrix(rbind(Z3,24,25,Z6))

Y=as.matrix(rbind(Y3,Y4,Y5,Y6))

rowSums(Y)

C6<- Cs

n<- m/8+m/16+m/32+m/64

mod.0<- gIm(Y~ 0,family=binomial(link=cauchit))

C6[1,15]<- -2*sum(Y*log(0.5)); C6[1,16]<- mod.0$converged

for (j in 2:tn) {

WX<- Z*matrix(as.numeric(C6[j,1:14]),nrow=n,ncol=14,byrow=T)
WX<- WX[,apply(WX,2,0)]

mod<-gim(Y~ 0+WX,family=binomial(link=cauchit))

p<- sum(as.numeric(C6[j,1:14]))
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fit <- mod$fitted.values

p.hat<- c(fit, 1-fit)

C6[j,15]<- -2*sum(Y*log(p.hat))+2*p*n/(n-p-1)
C6[j,16]<- mod$converged

}

C6.new <- C6[order(C6$AICc),]

C6.new[1,]

WX<- Z*matrix(as.numeric(C6.new[1,1:14]),nrow=n,ncol=14,byrow=T)

WX<- WX[,apply(WX,2,0)]

cc.ind<- colnames(WX)

mod3<- mod4<- mod5<- mod6 <- gim(Y~ 0+WX, family=binomial(link=cauchit))
ccl<- ncol(WX.1); cc2<- ncol(WX.2);

cc3<- cc4<- cc5<- cc6<- ncol(WX)

I Bracketing #HHHHH#HHHHH#H
p<- matrix(NA,nrow=64,ncol=6) #Probability matrix#

w<- BB[(m+1):(m+64),2:15]

#1st round prediction#
al<- seq(from=1, to=63, by=2)

bl<- seq(from=2, to=64, by=2)
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z<- w[al,colnames(w) %in% ccl.ind]-w[b1,colnames(w) %in% ccl.ind]; n<- nrow(z)
p[al,1] <- temp<-
atan(rowSums(z*matrix(as.numeric(mod1$coef),nrow=n,ncol=ccl,byrow=T),na.rm=T))/pi+0.5

p[bl,1] <- 1-temp

#2nd round prediction#
nu<- 2°(6-2)
for (tin 1L:nu) {

ri<-2°(2-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;

for (s in (ini+1):mi) {
psum<- 0
for (i in 1:ri) {
z<- w[s,colnames(w) %in% cc2.ind]-w[mi+i,colnames(w) %in% cc2.ind]; n<- nrow(z)
pc<-
atan(rowSums(z*matrix(as.numeric(mod2$coef),nrow=n,ncol=cc2,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,1]*p[mi+i,1]*pc
}
p[s,2]<- psum

¥

for (s in (mi+1): ui) {

psum<- 0
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for (i in 1:ri) {
z<- w[s,colnames(w) %in% cc2.ind]-w[ini+i,colnames(w) %in% cc2.ind]; n<- nrow(z)
pc<-
atan(rowSums(z*matrix(as.numeric(mod2$coef),nrow=n,ncol=cc2,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,1]*p[ini+i,1]*pc

}
p[s,2]<- psum

¥

for (tin 1:nu) {
ri<-2°(2-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;
cat(sum(p[(ini+1):ui,2]), "\n")

¥

#3rd round prediction#
nu<- 2°\(6-3)
for (tin 1:nu) {

ri<-2°(3-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;

for (sin (ini+1):mi) {
psum<- 0

for (i in 1:ri) {
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z<- w[s,colnames(w) %in% cc.ind]-w[mi+i,colnames(w) %in% cc.ind]; n<- nrow(z)
pc<-
atan(rowSums(z*matrix(as.numeric(mod3$coef),nrow=n,ncol=cc3,byrow=T),na.rm=T))/pi+0.5
psums<- psum-+p[s,2]*p[mi+i,2]*pc

}
p[s,3]<- psum

¥

for (s in (mi+1): ui) {
psum<- 0
for (i in 1:ri) {
z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z)
pc<-
atan(rowSums(z*matrix(as.numeric(mod3$coef),nrow=n,ncol=cc3,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,2]*p[ini+i,2]*pc
}

p[s,3]<- psum

}

for (tin 1:nu) {
ri<-2°(3-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;

cat(sum(p[(ini+1):ui,3]), "\n")
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#4th round prediction#
nu<- 2\(6-4)
for (tin L:nu) {

ri<-2°(4-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;

for (s in (ini+1):mi) {
psum<- 0
for (i in 1:ri) {
z<- w[s,colnames(w) %in% cc.ind]-w[mi+i,colnames(w) %in% cc.ind]; n<- nrow(z)
pc<-
atan(rowSums(z*matrix(as.numeric(mod4$coef),nrow=n,ncol=cc4,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,3]*p[mi+i,3]*pc
}
p[s,4]<- psum

¥

for (s in (mi+1): ui) {
psum<- 0
for (i in 1:ri) {

z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z)
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pc<-
atan(rowSums(z*matrix(as.numeric(mod4$coef),nrow=n,ncol=cc4,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,3]*p[ini+i,3]*pc

}
p[s,4]<- psum

¥

for (tin 1:nu) {
ri<-27(4-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;
cat(sum(p[(ini+1):ui,4]), "\n")

¥

#5th round prediction#
nu<- 2(6-5)
for (tin 1:nu) {

ri<-2°(5-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;

for (sin (ini+1):mi) {
psum<- 0
for (i in 1:ri) {

z<- w[s,colnames(w) %in% cc.ind]-w[mi+i,colnames(w) %in% cc.ind]; n<- nrow(z)
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pc<-
atan(rowSums(z*matrix(as.numeric(mod5$coef),nrow=n,ncol=cc5,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,4]*p[mi+i,4]*pc

}
p[s,5]<- psum

¥

for (s in (mi+1): ui) {
psum<- 0
for (i in 1:ri) {
z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z)
pc<-
atan(rowSums(z*matrix(as.numeric(mod5$coef),nrow=n,ncol=cc5,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,4]*p[ini+i,4]*pc
}
p[s,5]<- psum

¥

for (tin 1:nu) {
ri<-2°(5-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;
cat(sum(p[(ini+1):ui,5]), "\n")

¥
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#6th round prediction#
nu<- 2"\(6-6)
for (tin 1L:nu) {

ri<-2°(6-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;

for (s in (ini+1):mi) {
psum<- 0
for (i in 1:ri) {
z<- w[s,1:14]-w[mi+i,1:14]; n<- nrow(z)
pc<-
atan(rowSums(z*matrix(as.numeric(mod6$coef),nrow=n,ncol=cc6,byrow=T),na.rm=T))/pi+0.5
psum<- psum-+p[s,5]*p[mi+i,5]*pc
}
p[s,6]<- psum
¥

for (s in (mi+1): ui) {

psum<- 0

for (i in 1:ri) {

z<- w[s,colnames(w) %in% cc.ind]-w[ini+i,colnames(w) %in% cc.ind]; n<- nrow(z)
pc<-

atan(rowSums(z*matrix(as.numeric(mod6$coef),nrow=n,ncol=cc6,byrow=T),na.rm=T))/pi+0.5

62



psum<- psum-+p[s,5]*p[ini+i,5]*pc
}
p[s,6]<- psum
}

for (tin 1L:nu) {
ri<-2°(6-1); ini<-(t-1)*2*ri; mi<-ini+ri; ui<-ini+2*ri;
cat(sum(p[(ini+1):ui,6]), "\n")

¥

Ex<- rowSums(p)

AC<- rowSums(BB[(m+1):(m+64),16:21])

Q<- matrix(NA,nrow=64,ncol=6) #bracteting matrix#

for (rin 1:6) {

nu<- 2"\(6-r)

for (tin 1L:nu) {

ri<-2°r; ini<-(t-1)*ri; mi<-ini+1; ui<-ini+ri;
idmax<- which.max(p[mi:ui,r])+ini

for (s in mi:ui) {

Q[s,r]<- (s==idmax)*1
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colSums(Q)

da<- data.frame(BB[(m+1):(m+64),1],round(p,4),round(Ex,4),Q,AC)

write.csv(da,file="NCAA2014_pred_Cauchy_nn.csv")

###Bracketing and Computing Accuracy###

R<- as.matrix(BB[(m+1):(m+64),16:21])

1-(sum(abs(Q-R))/2)/63 #accuracy of bracketing using single scoring system#

ds<- matrix(c(1,2,4,8,16,32),6,1)

1- sum((abs(Q-R)%*%ds)/2)/192 #accuracy of bracketing using double scoring system#
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APPENDIX B. R AND SAS CODE FOR BAYESIAN INFERENCE WITH LOGIT LINK
B.1. R Code Part

options(scipen=999)

setwd("F:/NDSU/Su's research/Bayesian/seed_wtpyth/2015/round5")
BB<-read.csv("round1_matrix.csv",header=T)

attach(BB)

n<-12*64/2

pp<- 1/( p*(1- p))
v<- diag(pp[1:n])

H1<- as.matrix(BB[1:n,1:12])

Ex<-solve(t(H1)%*%H1)%*%t(H1)%*%log(p/(1-p))
Var<-(solve(t(H1)%*%H1)%*%t(H1))%*%v%*%:t((solve(t(H1)%*%H1)%*%t(H1)))
round(Ex, 5)

round(Var, 5)

B.2. SAS Code Part

data U5SD;

infile "F:\NDSU\Su's research\Bayesian\NCAA_U5D.csv" dsd missover dim=";" firstobs=2;
informat Team $30.;

input TEAM FGM _3PM FTA ORPG DRPG APG PFPG seed AdjO AdjD ASM

SAGSOS ATRATIO Pyth R1 R2 R3 R4 RS R6 season

a=_Nn_;
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run;

data

templ (rename=(Team=Teaml FGM=FGM1 3PM=_3PM1 FTA=FTA1 ORPG=0ORPG1
DRPG=DRPG1 APG=APG1 PFPG=PFPG1 AdjO=AdjO1 AdjD=AdjD1 ASM=ASM1
SAGSOS=SAGSOS1 ATRATIO=ATRATIO1 Pyth=Pyth1 R1=y seed=seed1))

temp2 (rename=(Team=Team2 FGM=FGM2 _3PM=_3PM2 FTA=FTA2 ORPG=0ORPG2
DRPG=DRPG2 APG=APG2 PFPG=PFPG2 AdjO=AdjO2 AdjD=AdjD2 ASM=ASM2
SAGSOS=SAGS0OS2 ATRATIO=ATRATIO2 Pyth=Pyth2 seed=seed?2));

set U5SD;

if mod(a,2)=1 then output temp1;

if mod(a,2)=0 then output temp2;

run;

data R1,

merge templ temp2;

FGM=FGM1-FGM2; _3PM=_3PM1-_3PM2; FTA=FTA1-FTA2; ORPG=0ORPG1-ORPGZ2;
DRPG=DRPG1-DRPG2; APG=APG1-APG2;PFPG=PFPG1-PFPG2;ATRATIO=ATRATIO1-
ATRATIOZ;
AdjO=AdjO1-AdjO2;AdjD=AdjD1-AdjD2;ASM=ASM1-ASM2;SAGSOS=SAGSOS1-
SAGSO0S2;Pyth=Pyth1-pyth2;

p=1-seedl/(seed1l+seed?2);

where season*='14 15"
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keep TEAM1 TEAM2 FGM _3PM FTA ORPG DRPG APG PFPG ASM SAGSOS
ATRATIO season y p AdjO AdjD;

run;

proc mcmc data=R1 nbi=5000000 nmc= 5000000 nthin=2000 diag=(mcse ess)

outpost=R1_out; seed=0;

ARRAY beta[12];

parms beta O;

ODS output PostSummaries=Post;

ARRAY mu0[12]

(0.01473 0.0002 0.00774 0 0.0248 -0.01029 -0.00382 0.11102
0.06422 -0.07324 0.00225 0.05093);

ARRAY sigma0[12,12]

(0.00749 0.00109 0.00086 -0.00228 -0.00219 -0.00351 -
0.00123 0.00643 -0.00062 -0.00099 -0.00102 0.00001
0.00109 0.00861 0.00133 0.00034 -0.00091 -0.00092 -
0.00205 -0.00463 -0.00047 -0.001 -0.00094 0.00001
0.00086 0.00133 0.00251 -0.00115 -0.00128 0.00001 -
0.0013 0.00705 -0.0006 -0.00026 -0.00028 0.00038
-0.00228 0.00034 -0.00115 0.00486 0.00087 -0.00034
0.0003 0.01111 0.00008 0.00038 0.00021 -0.00028
-0.00219 -0.00091 -0.00128 0.00087 0.00554 -0.00104
0.00199 0.01632 0.00067 0.00003 -0.0005 -0.00058
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-0.00351 -0.00092 0.00001 -0.00034 -0.00104 0.00918 -

0.00052 -0.04945 0.00088 -0.00031 -0.00035 -0.00054
-0.00123 -0.00205 -0.0013 0.0003 0.00199 -0.00052
0.00516 0.01562 0.00078 -0.00008 -0.00018 -0.00046
0.00643 -0.00463 0.00705 0.01111 0.01632 -0.04945
0.01562 0.86795 -0.0059 -0.0055 -0.01317 -0.00237
-0.00062 -0.00047 -0.0006 0.00008 0.00067 0.00088
0.00078 -0.0059 0.0025 -0.002 -0.00233 -0.00258
-0.00099 -0.001 -0.00026 0.00038 0.00003 -0.00031 -
0.00008 -0.0055 -0.002 0.00314 0.00316 0.00278
-0.00102 -0.00094 -0.00028 0.00021 -0.0005 -0.00035 -
0.00018 -0.01317 -0.00233 0.00316 0.00449 0.00276
0.00001 0.00001 0.00038 -0.00028 -0.00058 -0.00054 -
0.00046 -0.00237 -0.00258 0.00278 0.00276 0.00367);

prior beta ~ MVN(muO, sigma0);

p=

logistic(beta[1]*FGM+beta[2]* _3PM+beta[3]*FTA+beta[4]*ORPG+beta[5]*DRPG+beta[6]*A
PG+beta[7]*PFPG+beta[8]*ATRATIO+beta[9]*AdjO+beta[10]*AdjD+beta[ 11]*ASM+beta[ 12
]*SAGSOS);

model y ~ binary(p);

run;

run;
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	where (,𝒙-𝒊.−,𝒙-𝒋.) is the vector of the predictor variables spread between team i and team j, and ,𝛃-,𝒌..are the associated coefficients in the ,𝑘-𝑡ℎ. round. These logistic conditional probability models imply
	𝑃,,𝑍-𝑖.≥𝑘.=𝑃,,𝑍-𝑖.≥𝑘−1.,,𝑍-𝑖.≥𝑘|,𝑍-𝑖.≥𝑘−1.
	=𝑃,,𝑍-𝑖.≥𝑘−1.,𝑗⋲,𝑂-𝑖-,𝑘..-𝑃,,𝑍-𝑗.≥𝑘−1..,𝑝-𝑖𝑗-,𝑘..
	where ,𝑂-𝑖-(𝑘). is the set of all the rival teams that team i may encounter in the ,𝑘-𝑡ℎ.  round. ,𝑍-𝑖. is self-consistent which means
	,𝑗⋲,𝑈-𝑖-,𝑘..-𝑃,,𝑍-𝑗.≥𝑘.=1.
	where ,𝑈-𝑖-(𝑘).=,⋃-𝑗=0-(𝑘).,𝑂-𝑖-(𝑗). , and ,𝑂-𝑖-(0).=𝑖. Note 𝑃,,𝑍-𝑖.≥1.=,𝑝-𝑖𝑗-(1)., then 𝑃,,𝑍-𝑖.≥𝑘.(𝑘>1) can be computed iteratively based on ,𝑝-𝑖𝑗-(𝑘). in the logistic regression model. Once all the 𝑃,,𝑍-𝑖.≥𝑘., 𝑖=1,…,64...
	3. Probability self-consistenT model with cauchit link
	3.1. Introduction of Cauchit Link
	In the PSC model, ,𝑝-𝑖𝑗-(𝑘). denotes the conditional probability of team i winning against team j in the ,𝑘-𝑡ℎ. round. Instead of using the Logit link function, this study will use another link function, Cauchit link, to connect the linear predi...
	Cauchit link function is another symmetric link function for binary response (Koenker and Yoon, 2009). When using it in the PSC model, the conditional probability model (8) can be structured as follows:
	tan⁡(π,,𝑝-𝑖𝑗-,𝑘..−,1-2..=,,,𝒙-𝒊.−,𝒙-𝒋..-′.,𝛃-,𝒌.. k=1,2,…,6
	Comparing with the Logit distribution, the Cauchit distribution has heavier tails, hence the Cauchit link is useful when the value for linear prediction is extreme in either direction. Figure 2 shows the plots of both Cauchit link function and Logit l...
	To illustrate it, let us consider a simple example with only two covariates: average assists per game in regular season and adjusted offensive efficiency (AdjO) in Pomeroy’s Ratings. Assuming the coefficients for these two covariates are 0.1 and 0.2, ...
	Overall, we believe it is more appropriate to use the Cauchit link function in sports events rather than Logit link function because this does happen in sports, especially in a one game elimination tournament such as March Madness.
	Figure 2. Plots of Cauchit link function and Logit link function
	3.2. Application
	Magel and Unruh (2013) determined that four in-game statistics such as defensive rebounds and free throw attempts in the regular season are significant in predicting the game results, while in Zhang’s research (2012), five candidate covariates, includ...
	Table 5. Covariates used in the model
	3.3. Model Selection
	Three models are constructed using PSC method with Cauchit link to predict the results in March Madness. The first model was developed for predicting all 32 Rd64 games. The second model was developed for predicting all 16 Rd32 games. Round3 through 6 ...
	To select the best model that can explain the data in each round (Rd64, Rd32, Sweet16 - Championship), the corrected Akaike Information Criterion (AICc) is applied for model selection with all possible combinations of predictive variables being consid...
	𝐴𝐼𝐶𝑐=−2,log-−𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑.+,2𝑘𝑁-𝑘−𝑁−1.
	k is the number of parameters and N is the number of games involved in fitting the model. Comparing with form of AIC, AICc can be written as
	𝐴𝐼𝐶𝑐=𝐴𝐼𝐶+,2𝑘(𝑘+1)-𝑁−𝑘−1.
	Burnham and Anderson (2012) suggested using AICc when the number of covariates is large, especially, when the ratio ,N-k.≤40. The total number of models is ,𝑘=1-14-,,14-𝑘...=16384 in each round (Rd64, Rd32, Sweet16 - Championship). We will use the m...
	3.4. Prediction Result
	To predict the 2015 NCAA March Madness, 384 Rd64 games (from 2002-2003 season through 2013-2014 season) were used to fit the conditional probability model (8) in order to predict the ,𝑝-𝑖𝑗-(𝑘). for 32 Rd64 games. There were 192 Rd32 games (from 20...
	Table 6. Summary of the three models for PSCM with Cauchit link (2015 March Madness)
	Table 6 has the estimated coefficients for the selected model in each round (Rd64, Rd32, Sweet16 - Championship). It is not hard to imagine that some of the in-game statistics are correlated. For instance, usually, with more assists, the team will mak...
	Table 10 shows the probability matrix using PSC model with Cauchit link. One can fill out the bracket based upon this matrix. The team predicted to advance to the k+1 round is the team with the highest 𝑃,,𝑍-𝑖.≥𝑘. in set ,𝑈-𝑖-(𝑘).. For instance,...
	Figure 3 gives the predicted bracket based on the probability matrix. Matching up with the true bracket, the wrong teams predicted are highlighted. The accuracy for each round with single and doubling scoring systems are given in Table 7. To compare t...
	Table 7. Prediction accuracy for PSCM with Cauchit link (2015 March Madness)
	Table 8. Summary of the three models for PSC model with Logit link (2015 March Madness)
	Table 9 Summary of the restricted OLRE model for 2015 March Madness
	The selected models for both PSC methods returned similar covariates and coefficients except the model for Rd64 in this year. However, when predicting the ,𝑝-𝑖𝑗-(𝑘)., it will have greater predicted value when using Cauchit link function than Logit...
	From the probability matrix (Table 10, 11), it is clear that the probability self-consistency holds for the PSC model with both link functions. For instance, in Rd64, for all 32 games, when two teams are playing each other, the sum of the probabilitie...
	Table 10. PSC model (Cauchit link) probability matrix in 2015 March Madness using MLE
	Figure 3. PSC model (Cauchit link) bracket in 2015 March Madness using MLE
	Table 11. PSC model (Logit link) probability matrix in 2015 March Madness using MLE
	Table 12. Restricted OLRE model probability matrix in 2015 March Madness using MLE
	4. Bayesian inference
	In the previous section, there is only one model being used to estimate the results of the entire last four rounds using the PSC method and either the Cauchit or Logit link. However, we can imagine how different between the Sweet16 and Championship on...
	In the PSC model, insufficiently small sample size is still a large obstacle for developing a model for each round separately. When using maximum likelihood estimation, Griffiths et al. (1987) found that there is significant bias for small samples due...
	The one advantage of Bayesian inference is that it does not have the convergence issue when using small size samples. By using Bayesian estimation, we can construct a model for each round separately. In addition, the other advantage of using the Bayes...
	Based on the Bayes theorem, we can write (Rashwan and El dereny, 2012)
	P,parameters-data.∝P,parameters)P(data-parameters.
	The first term on the right-hand side is called prior density, often described as “what is known” about the parameters before estimation. The second term is the joint distribution of the observed random variable y given estimated parameters, known as ...
	4.1. The Likelihood Function
	Suppose y is a random variable that follows Bernoulli distribution with probability p. If n independent random variables (,𝑦-1.,,𝑦-2.,…, ,𝑦-𝑛.) are observed, the generalized linear model is given by
	𝑔,,p-𝑖..=,𝑥-𝑖1.,𝛽-1.,+…+𝑥-𝑖𝑘.,𝛽-𝑘.=,𝜂-𝑖.,     𝑖=1,…,𝑛
	where ,𝑥-𝑖1.,…,,𝑥-𝑖𝑘. are the k covariates, ,𝛽-0.,,𝛽-1.,…,,𝛽-𝑘. are the estimated intercept and coefficients corresponding to each covariates and n is the total number of games. Here 𝑔,.. is a link function, which connect the linear predicto...
	𝑔,,𝑝-𝑖..=,log-,,,𝑝-𝑖.-1−,𝑝-𝑖....=,𝜂-𝑖.
	Solving the equation w.r.t ,𝑝-𝑖., the result can be written as:
	,𝑝-𝑖.=,,exp-,,𝜂-𝑖...-1+exp(,𝜂-𝑖.).
	and the distribution of  𝑓,,𝑦-𝑖.-,𝜂-𝑖.. is given by
	,𝑓,,𝑦-𝑖.-,𝜂-𝑖..=,,,𝑝-𝑖..-,𝑦-𝑖..,,1−𝑝-𝑖..-,1−𝑦-𝑖..=, ,,exp⁡(,𝜂-𝑖.)-1+exp(,𝜂-𝑖.)..-,𝑦-𝑖..,,,1-1+exp(,𝜂-𝑖.)..-1−,𝑦-𝑖..
	Therefore the likelihood function for given covariates and corresponding coefficients is
	L,𝐘-𝑿,𝛃.=,𝑖=1-𝑛-𝑓,,𝑦-𝑖.-,𝜂-𝑖...=,exp-,,𝑖=1-𝑁-,𝑦-𝑖.,𝜂-𝑖....,𝑖=1-𝑛-,,1-1+exp⁡(,𝜂-𝑖.)...
	4.2.  The Prior Distribution of Logistic Coefficients
	A prior distribution for a parameter is often assessed by experts’ judgments and historical results. In the basketball games, even though there exists plenty of prior information, there are only few related with the model coefficients 𝛃. Usually, it ...
	Breiter and Carlin (1997) computed the winning probabilities based on seed number. The probability of seed i team beats seed j team is defined as, ℎ-𝑖𝑗.=,𝑗-𝑖+𝑗.. For instance, probability of team with seed number 1 beats the team with seed number...
	In general, let us introduce a variable  ,ℎ-𝑖𝑗-(𝑙). to represent the probability of team i beats team j for game 𝑙 in the samples. One possible prior density on winning probability ,ℎ-𝑖𝑗-(𝑙). can be formed by assuming each ,ℎ-𝑖𝑗-(𝑙). has mea...
	,,ℎ.-𝑖𝑗-(𝑙).=,,𝑠𝑒𝑒𝑑-𝑗-(𝑙).-,𝑠𝑒𝑒𝑑-𝑖-(𝑙).+,𝑠𝑒𝑒𝑑-𝑗-(𝑙)..
	In (19) ,𝑠𝑒𝑒𝑑-𝑖-(𝑙).and ,𝑠𝑒𝑒𝑑-𝑗-(𝑙). denote the seed number of team i and team j in game 𝑙 respectively, moreover, 𝑙=1,…,n, where n is the total sample size, for example, twelve seasons data were collected in our study, then n=384 for Rd...
	Table 13. Probability matrix based upon the seed number
	Table 14. Matchup information in NCAA March Madness Championship games from season 2002-2003 through 2013-2014 (n=12).
	,log-,,,ℎ-𝑖𝑗-(𝑙).-1−,ℎ-𝑖𝑗-(𝑙).... was assumed to be normal distribution, the mean and variance derived as
	,𝑙𝑜𝑔-,,,ℎ-𝑖𝑗-(𝑙).-1−,ℎ-𝑖𝑗-(𝑙)....~𝑁,,µ-𝑙.,,σ-𝑙-2..=𝑁,𝑙𝑜𝑔,,,ℎ.-𝑖𝑗-,𝑙..-1−,,ℎ.-𝑖𝑗-,𝑙...,,1-,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙.....
	by Delta method (Oehlert, 1992).
	Now define a column vector ,𝒉-𝒊𝒋.=(,ℎ-𝑖𝑗-,1..,,ℎ-𝑖𝑗-,2..,…,,ℎ-𝑖𝑗-,𝑛..)′, then  ,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋.... follows a multivariate normal distribution with dimension n.
	,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋....~,𝑀𝑉𝑁-𝑛.,,,,,µ-1.-,µ-2..-,⋮-,µ-𝑛....,,,,,σ-1-2.-0-0-,σ-2-2..-,⋯-0-⋱-⋮.-,⋮-⋱-0-….-,⋱-0-0-,σ-𝑛-2.....
	(21) is the prior density for ,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋..... Now we need to connect the probability ,𝒉-𝒊𝒋.  with the coefficient 𝛃  to find the prior density on 𝛃.
	Let π(𝛃) denotes the prior distribution of 𝛃. To introduce a π(𝛃) with respect to ,𝒉-𝒊𝒋., a logistic function is used to connect ,𝐡-𝒊𝒋. and 𝜷,
	,log-,,,𝐡-𝒊𝒋.-1−,𝐡-𝒊𝒋....=,𝑿-′.𝛃
	where X is the covariate matrix. The least square approximation for 𝛃 can be written as:
	𝛃=,(,𝑿-′.𝑿)-−𝟏.𝑿′,log-,,,𝐡-𝒊𝒋.-1−,𝐡-𝒊𝒋....
	The density of ,𝑙𝑜𝑔-,,,𝒉-𝒊𝒋.-1−,𝒉-𝒊𝒋.... has already been derived in (21). According to the basic theory of linear algebra on expected value and covariance matrices, the prior distribution of β is developed as
	𝜷~,𝑀𝑉𝑁-𝑛.,,(,𝑿-′.𝑿)-−𝟏.𝑿′,,,,µ-1.-,µ-2..-,⋮-,µ-𝑛....,,,,𝑿-′.𝑿.-−𝟏.𝑿′,,,,σ-1-2.-0-0-,σ-2-2..-,⋯-0-⋱-⋮.-,⋮-⋱-0-….-,⋱-0-0-,σ-𝑛-2....(,,,𝑿-′.𝑿.-−𝟏.𝑿′)′.
	,=𝑀𝑉𝑁-𝑛.,,µ-𝜷.,,𝜮-𝜷..
	Then the probability density function for 𝜷 can be written as
	π,𝛃.=,1-,,2π.-,𝑛-2..,,,𝜮-𝜷..-,1-2...,exp-,−,1-2.,,𝛃−,µ-𝜷..-′.,,𝜮-𝜷.-−𝟏.,𝛃−,µ-𝜷....
	Notice that this is not the only way that we can form the π(𝛃) based on ,ℎ-𝑖𝑗-(𝑘)., for instance, we can assume ,ℎ-𝑖𝑗-(𝑙).follows some distribution with mean ,,ℎ.-𝑖𝑗-(𝑙).  and variance ,,,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙....-2.. In this case, ...
	𝜷~,𝑀𝑉𝑁-𝑛.,,(,𝑿-′.𝑿)-−𝟏.𝑿′,,,,µ-1.-,µ-2..-,⋮-,µ-𝑛....,,,,𝑿-′.𝑿.-−𝟏..
	The covariance matrix of prior distribution π(𝛃) is only related with the covariate matrix X.
	4.3. The Posterior Distribution of Logistic Coefficient
	The posterior distribution is derived by multiplying the density function of prior distribution (25) by the full likelihood function (18). Then the posterior distribution is defined by
	𝜋,𝜷-𝒀,𝑿.∝𝜋,𝜷.L,𝐘-𝑿,𝛃.
	=,j=1-k-,,1-,σ-j.,2π..,exp-,−,,(,β-j.−,μ-,β-j..)-2.-,2σ-𝑗-2......,exp-,,𝑖=1-𝑁-,𝑦-𝑖.,𝜂-𝑖....,𝑖=1-𝑁-,,1-1+,exp-,,𝜂-𝑖......
	Equation (27) represents the posterior probability distribution of β, and under these distribution statistical inference can be carried out by using Bayesian method.
	4.4. Estimation
	The Bayesian point estimate is the parameter vector that minimizes the expected loss function. If the loss function is quadratic form ,(,𝜷.−𝜷)-2., then the mean of the posterior probability distribution in (27) is the “minimum expected loss” (MELO) ...
	4.5. Sampling Algorithms
	Random sampling from posterior distribution is a key step in Bayesian analysis. Nonetheless, only a few well-known probability distributions are ready for use. So some sampling methods have to be used in Bayesian estimation.
	The MCMC procedure is a general purpose Markov chain Monte Carlo (MCMC) simulation procedure that is designed to fit Bayesian models. In SAS 9.3 (SAS Institute, Cary NC), the statement “PROC MCMC” uses Metropolis algorithm with a normal proposal distr...
	α=,min-,1,,π (,𝛽-1-,𝑐..,,𝛽-2-,𝑐..,…,,𝛽-𝑘-,𝑐..|𝐘,𝐗)-π (,𝛽-1-,𝑖−1..,,𝛽-2-,𝑖−1..,…,,𝛽-𝑘-,𝑖−1..|𝐘,𝐗)...
	Figure 4. Metropolis algorithm
	4.6. Application
	The Bayesian estimation first applies on the conditional probability model (8) in order to predict the ,𝑝-𝑖𝑗-(𝑘). in 2015 NCAA March Madness. We will use all covariates mentioned on Section 3. However, in Pomeroy’s Ratings, Pyth is derived from bo...
	The number of samples from the Metropolis algorithm was assigned 10,000,000 in this work. However, we will not use all these samples because the procedure of Metropolis algorithm cannot guarantee all 10,000,000 samples are independent and identically ...
	Table 15. Summary table for posterior distribution in 2015 March Madness Rd64 model
	Table 16. Estimated coefficients (mean of posterior distribution) for 2015 March Madness using Bayesian inference (standard deviation of posterior distribution given in parenthesis)
	Figure 5. Diagnostics plots for posterior distribution on covariate FGM (beta1) and 3PM (beta2)
	Table 17. Prediction accuracy for PSC model (Logit link) using Bayesian estimation in 2015 March Madness
	Table 18. PSCM (Logit link) probability matrix in 2015 March Madness using Bayesian Est.
	Figure 6. PSC model (Logit link) bracket in 2015 March Madness using Bayesian estimation
	5. COMPARISON OF PREDICTION ACCURACY IN THE PAST THREE YEARS
	The precision in using the restricted OLRE model (2006, 2008), the PSC model with Cauchit link (MLE), the PSC model with Logit link (MLE, Bayesian estimation) are computed for the last three years. Moreover, other popular prediction methods or rating ...
	Under Bayesian estimation, twelve covariates were used to construct six models under the PSC method with Logit link. The first model was developed for predicting all 32 Rd64 games. The second model was developed for predicting all 16 Rd32 games. The t...
	Table 19 shows the prediction accuracy in the past three years. In our work, to predict 2015 March Madness and compute the accuracy, March Madness data from 2002-2003 season through 2013-2014 season (12 seasons) are used as the training data to fit th...
	Overall, the PSC models has better performances than other popular prediction methods. For some years, the restricted OLRE model has similar accuracy when comparing with the PSC models. However, the restricted OLRE model uses all covariates to fit the...
	When using the Logit link function, Bayesian estimation with prior 1 and prior 2 correctly predicted almost three and one more games, respectively, than MLE on average because it incorporates the experts’ opinions as a prior information. Also in Bayes...
	Comparing the PSC model with two different link functions, Cauchit link had better performance in 2014 March Madness because that year’s tournament had more lower-seeded teams winning against their higher-seeded opponents. Indeed the two teams with se...
	Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness
	Table 19. The summary of the prediction accuracy from the 2013 through 2015 March Madness (continued)
	a: prior 1 assumes ,ℎ-𝑖𝑗-(𝑙).follows some distribution with mean ,,ℎ.-𝑖𝑗-(𝑙).  and variance ,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙...
	b: prior 2 assumes ,ℎ-𝑖𝑗-(𝑙).follows some distribution with mean ,,ℎ.-𝑖𝑗-(𝑙).  and variance ,,,,ℎ.-𝑖𝑗-,𝑙..,1−,,ℎ.-𝑖𝑗-,𝑙....-2.
	6. DISCUSSION
	Based upon the bracket accuracy of past three seasons’ tournament, PSC model has better performance than other methods (restricted OLRE model, Pomeroy, RPI). Comparing two link functions in PSC model, Logit link successfully predicts 124 games out of...
	Bayesian estimation using two different priors for the PSC model with Logit link successfully predicts 132 and 127 games out of 189 games, respectively. Compared with 124 games of maximum likelihood estimation in Logit link. The models using Bayesian ...
	When using Bayesian estimation, the models with two different prior densities yielded different accuracies. The model with prior 2 has better performance in the 2015 March Madness, while the model with prior 1 has better performance in the two previou...
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