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ABSTRACT 

Since the inception of various proteomic projects, protein structures with unknown 

functions have been discovered at a fast speed. The proteins regulate many important biological 

processes by interacting with nucleic acids that include DNA and RNA. Traditional wet-lab 

methods for protein function discovery are too slow to handle this rapid increase of data. 

Therefore, there is a need for computational methods that can predict the interaction between 

proteins and nucleic acids. There are two related problems when predicting protein-nucleic 

interactions. One problem is to identify nucleic acid-binding sites on the protein structures, and 

the other problem is to predict the 3-D structure of the complex that protein and nucleic acids 

form during interaction. The second problem can be further divided into two steps. The first step 

is to generate potential structures for the protein-nucleic acids complex. The second step is to 

assign scores to the poses generated in the first step. 

This dissertation presents two computational methods that we developed to predict the 

protein-nucleic acids interaction. The first method is a scoring function that can discriminate 

native structures of protein-DNA complexes from non-native poses, which are also known as 

docking decoys. We analyze the distribution of protein atoms around each structural component 

of the DNA and develop spatial-specific scoring matrices (SSSMs) based on the observed 

distribution. We show that the SSSMs could be used as a knowledge-based energy function to 

discriminate native protein-DNA structures and various decoys.  

Our second method discovers the graphs that are enriched on the protein-nucleic acids 

interfaces and then uses the sub-graphs to predict RNA-binding sites on protein structures and to 

assign scores to protein-RNA poses. First, the interface area of each RNA-binding protein is 

represented as a graph, where each node represents an interface residue. Then, common sub-
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graphs being abundant in these graphs are identified. The method is able to identify RNA-

binding sites on the protein surface with high accuracy. We also demonstrate that the common 

sub-graphs can be used as a scoring function to rank the protein-RNA poses. Our method is 

simple in computation, while its results are easier to interpret in biological contexts.  
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1. INTRODUCTION 

Nucleic acids and protein are two essential biological molecules for every organism, 

where nucleic acids carry and transmit the gene information, and the protein is responsible for 

most cellular activities, such as catalyzing metabolic reactions, replicating DNA, and moving 

molecules. Protein is a sequence of units that are called amino acids. There are 20 types of amino 

acids, which are also referred to as residues when they exist within the polymeric chain of a 

protein. The protein sequence usually folds in a unique 3-D structure to stay stable. There are 

four aspects of a protein structure: primary structure, secondary structure, tertiary structure, and 

quaternary structure. The primary structure is linear sequence of amino acids. The secondary 

structure is the local spatial arrangement of amino acids and has periodic structural patterns: α-

helix, β-sheet, and loop. The tertiary structure is a 3-D fold of one or multiple secondary 

structure elements from a single protein chain. The quaternary structure is the 3-D structure of 

several protein chains and describes how those chains join together to form a complex.  

Since the end of 1980, thanks to various genome projects, the amount of genetic sequence 

data increased dramatically. There were more than 67 million sequences stored in Genbank by 

February 2008, and the sequences continued to accumulate exponentially. The genetic sequences 

resulted in a tremendous number of protein sequences as well because protein can be directly 

translated from DNA. A great deal of valuable structural and functional information about the 

protein was hidden behind the enormous quantity of data.  

Being able to determine the proteins’ structures can help to discover these proteins’ 

cellular and evolutionary roles and also to develop drugs to bind to these proteins. The protein 

structures are mainly solved by X-ray crystallography and Nuclear Magnetic Resonance (NMR). 

However, these techniques are extremely time-consuming and labor-expensive, which made the 
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increasing number of protein structures fall far behind the exponential growth of protein 

sequential data. For instance, only 45,000 protein structures were solved by February 2008, and 

the number slowly increased to around 100,000 in the protein data bank by 2015. Therefore, it 

has been imperative to develop computational methods to predict protein structures 

automatically, efficiently, and accurately as an alternative. 

In every species, protein is responsible for almost all the tasks in a cell, for instance, 

catalyzing glycolysis, fostering Kreb’s cycle, defensing against germs, synthesizing ATP, 

transporting small molecules within cells, etc. Protein interacts with molecules, such as other 

protein, DNA, RibonucleicAcid (RNA), viruses, small molecules, and ligands, to fulfil its 

functions. Knowing about the interaction of protein and those molecules can significantly help to 

understand molecular mechanisms and to recognize potential drug targets. Besides the 

experimental methods used to solve protein structures, mutagenesis is also applied to determine 

the interactions. A person who wants to understand a protein’s function not only needs its 

sequential information, but also its structural information. The combined factors make it even 

more urgent and challenging to develop powerful computational methods to predict the protein 

functions.   

Among the interactions between protein and molecules, protein-nucleic acid interaction is 

critical to a variety of biological processes, such as regulating transcription, translation, DNA 

replication, repair and recombination, RNA processing and translocation, enzymatic events, and 

operating nucleic acids as substrates. Protein-nucleic acid complexes have a significant impact 

on the structure and function of the associated nucleic acid. There are two types of nucleic acids, 

DNA and RNA. Thus, there are two types of protein-nucleic acids interactions: protein-DNA and 

protein-RNA. Accurate information about the interactions between protein and DNA can give 
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insight about the regulation of gene expression. Protein-RNA interactions are involved with 

biological processes, ranging from messenger RNA (mRNA) processing and protein synthesis, to 

RNA transport and RNA splicing, to viral replication and cellular defense against pathogens. It is 

further observed that the RNA-protein interaction significantly impacts cellular defense and 

developmental regulation (Hall, 2002; Tian et al., 2004). Therefore, knowing how protein and 

nucleic acids recognize and interact with each other is crucial for understanding those biological 

processes. With respect to DNA-binding proteins, we can roughly classify them into two groups: 

specific binding and non-specific binding. With specific binding, a protein seeks to bind a 

specific sequence of DNA while, for non-specific binding, a protein can bind to a set of DNA 

sequences. This dissertation focuses on non-specific binding. 

In addition, compared with protein-RNA interaction, protein-DNA interaction has 

received longer and more effort and investigation by researchers, mainly due to the diversity of 

RNA structures as well as the lack of structural information about RNA sequences. Different 

from DNA, which is known for its double-helix structure, RNA can be hairpins/stem-loops, 

bulges, and loops, making RNA’s interactions with protein more complicated and unpredictable. 

1.1. Motivation and Problem Statement 

Given the structures of proteins and nucleic acids, the problem of predicting how protein 

and nucleic acids interact includes two tasks, binding-site identification and complex structure 

prediction. The latter task has two steps: generating potential poses of protein and nucleic acid, 

and then scoring each of the poses. A huge volume of DNA and proteins was discovered with 

their structural and coordinate information thanks to a series of genomic and proteomic projects. 

This valuable resource is important for studying the interactions between protein and nucleic 

acids. However, the traditional experimental methods to implement this task are far behind the 
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needs for methods to process the increasing amount of biological data. Thus, it is vital to develop 

computational algorithms in order to automatically and efficiently analyze the known protein-

nucleic acid complexes and to predict the interactions between proteins, which have known 

sequential and structural information along with unknown functions and functional sites, and 

nucleic acids. 

There are two problems involved with predicting protein-nucleic acid interaction. One 

problem is to predict the protein interface or binding site, and the other problem is to predict the 

protein’s interaction with nucleic acids or the 3-D structure of the protein-nucleic acids complex. 

A protein-nucleic acids complex assembly is the aggregation, arrangement, and bonding together 

of protein and nucleic acids. With respect to the first problem, the input data are a protein 

sequence with known sequential and structural information but unknown binding-site 

information. The output is supposed to be an annotation of the protein residues that interact with 

the nucleic acids. Regarding the second problem, the input is a protein sequence and nucleic 

acids pair with sequential and structural information available for both protein and nucleic acids. 

We know that they will bind together but do not know how they will interact with each other, 

i.e., their relative geometric position to each other. Thus, the problem is to specify the 3-D 

structure of a protein-nucleic acids complex on an atom-atom level. 

The existing computational algorithms usually address only one of the aforementioned 

problems, and most methods that address the second problem are complex and computationally 

expensive. The rest of the chapter describes the existing computational methods for coping with 

the two problems, followed by a description of this work’s contribution. Section 1.6 

demonstrates the structure for dissertation. 
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1.2. Binding-Site Prediction 

We can roughly classify the methods used to identify the protein’s binding sites into two 

categories based on the ways that they handle the prediction: feature- and template-based. 

Template-based methods are centered on the hypothesis that similar protein structures lead to 

comparable functions. In this approach, the protein structure for which one wants to predict 

binding sites is referred to as the query or target protein. In order to predict binding sites on the 

query, this approach needs another protein structure called a template. The requirements for the 

template are that it is very similar to the query and that the template’s binding sites are known. 

The query is structurally aligned with the template. Then, the region on the query that aligns with 

the template’s binding sites is predicted to be the binding site on the query protein. Some 

representative methods include DNA-binding Domain Hunter (DBD-Hunter) (Gao and Skolnick, 

2008), a structure-based method that incorporates the statistical energy function (Zhao et al., 

2011), and RBRDetector (Yang et al., 2014), which combines the feature-and template-based 

strategies. The benefit of using the template-based methods is that they can accurately identify 

the binding sites if the algorithm can find a template in the database that is structurally similar to 

the target protein. However, if the correct template is absent, the approach can hardly identify 

reliable binding sites on the query protein.  

Compared to template-based methods, feature-based methods, which commonly take 

advantage of machine-learning techniques to do the classification, have received longer and 

more attention. One important question for understanding the protein-nucleic acid interaction is 

“why the binding event occurs here but not there on the protein?” Many studies have found that 

nucleic acids bound the protein by recognizing specific sequential or structural patterns of the 

binding sites on the protein. For instance, it was observed that positively charged amino acids, 
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e.g. arginine, prefer to appear at nucleic-acid binding sites (Gallet et al., 2000). It was also 

observed that protein residues that are in contact with the DNA are better conserved than the 

remaining residues on the protein surface (Luscombe and Thornton, 2002). Jones et al (2003) 

found that DNA-binding sites on the protein surface are much more prone to having positive 

electrostatic potentials compared to non-binding sites. Therefore, it was natural to utilize those 

binding-site properties as features to predict the protein interface.  

Feature-based approaches extract a variety of features from the annotated protein’s 

nucleic-acids binding sites to describe and characterize those patterns. The features are fed to 

machine-learning classifiers, such as neural networks, Naïve Bayes, Support Vector Machine 

(SVM), and random forest, allowing the classifiers to learn the difference between binding sites 

and non-binding sites. Usually a cross-validation procedure is followed to test the classifiers’ 

performance. During the prediction process, when given a protein with an unknown binding site, 

the features are encoded first, and then, the features are used to predict the binding site. 

The most-used machine-learning classifiers are SVM, including BindN (Wang and 

Brown, 2006), BindN+ (Wang et al., 2010), PPRInt (Kumar et al., 2008), PiRaNhA (Murakami 

et al., 2010), PRINTR (Wang et al., 2008), RBRDetector (Yang et al., 2014), and some others 

(Spriggs et al., 2009; Cai and Lin, 2003; Han et al., 2004; Shao et al., 2009; Cheng et al., 2008). 

In addition, other kinds of machine-learning approaches are also applied, e.g., Naïve Bayes 

(Trribilini et al., 2006, 2007), decision tree (Carson, 2010), random forest (Liu et al., 2010; Ma et 

al., 2011), and neural networks (Jeong et al., 2004).  

The attributes used by the feature-based methods can be roughly divided into sequential 

and structural ones. Sequential features mainly contain the identities for 20 types of amino acids 

and the residues’ physicochemical information. In terms of amino-acid identity, it was reported 
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that arginine frequently occurs at DNA-binding sites and that both arginine and lysine are 

enriched at RNA-binding sites (Terribilini et al., 2007). Because the protein residues need to 

interact with the nucleic acids’ negatively charged phosphate backbone, positively charged 

amino acids are inclined to show in nucleic-acids binding sites. As a matter of fact, the 

combination of residue identity and residue charge is also used to predict the proteins’ binding 

sites (Carson, 2010). Physicochemical features include properties such as mixture of side-chain 

pKa value, the hydrophobicity index, and the molecular mass of an amino acid in BindN+ (Wang 

and Brown, 2006); and a mixture of residue interface propensity, predicted residue accessibility, 

and residue hydrophobicity in PiRaNhA (Murakami et al., 2010). After the researchers explored 

the sequential-features space, the methods’ performances to predict interface residues achieved a 

bottleneck. It was found that method using combination of only hydrophobicity and evolutionary 

information (Chen and Li, 2010) could achieve similar results as method integrating a large 

number of features (Chen and Jeong, 2009). Then it was the time to look for more effective 

features or information to improve the capacity of approaches to predict binding-site residues.  

As an increasing number of 3-D protein structures and protein-nucleic acid complex 

structures becomes available, structure-based methods are gaining more thorough investigation.  

Structural features are often extracted from the solvent-accessibility surface areas and the 3-D 

coordinates of the protein structure. Generally speaking, structural features are more difficult to 

obtain than sequential ones, so methods based on sequential features have been studied earlier 

than structure-based ones. However, structural features usually achieve better performance for 

predicting binding-site residues for three main reasons. One reason is that the 3-D protein 

structure contains more information that does not exist in the primary sequence, such as the 

spatial contacting status between each pair of amino acids as well as the interaction between the 
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amino acid and nucleotide pair. The second reason is that the protein structure is more conserved 

than the protein sequence (Whisstock and Lesk, 2003). The third reason is that the features are 

extracted from the protein surface which removes the noises caused by non-surface residues. In 

addition, studies show a high correlation between a protein’s secondary structure and protein-

nucleic acids interactions (Allers and Shamoo, 2001), and the preferences between protein 

secondary structures and bases (Zhang et al., 2010).  

Examples of structural features include protein surface patches that are built on 

electrostatics and geometric information (Shazman and Mandel-Gutfreund, 2008; Chen and Lim, 

2008), accessible surfaces, a betweenness and retention coefficient (Maetschke and Yuan, 2009), 

structural neighboring information (Li et al., 2010), the fusion of a secondary structure, solvent 

accessibility, a side-chain environment and interaction propensity (Liu et al., 2010), hybrid 

features based on amino-acid identity, surface roughness, interface propensity, and protrusion 

score (Towfic et al., 2010). In addition, some structure-based methods use scoring functions to 

predict the interface areas. Among them, one method (Kim, 2006) exploits 3-D neighbored 

residue pairs to score each surface residue for its potential to interact with RNA nucleotides. As 

another example, the Optimal Protein-RNA Area (OPRA) (Perez-Cano and Fernandez-Recio, 

2010) calculates the energy score for each residue using interface propensity weighted by 

accessible surface area. Besides template- and feature-based methods, geometry-based 

approaches, which mainly focus on the attributes of protein surfaces, such as size, shape, depth 

of clefts, and height of protruded areas (Iwakiri et al., 2012), are also used for predicting binding-

site residues. 

Evolutionary information is also used to improve binding site prediction methods. The 

information can provide the mutation history for a certain kind of protein family and can indicate 
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the conserved regions on the protein sequence. A popular form of evolutionary information is the 

position-specific scoring matrix (PSSM) which is created for each protein of interest. Given a 

protein, evolutionary information is commonly built by aligning the protein against the National 

Center for Biotechnology Information’s non-redundant (NCBI-NR90) database (Ahmad and 

Sarai, 2005) using Position-Specific Iterative Basic-Local-Alignment Search Tool (PSI-BLAST) 

(Altschul et al., 1997). In the resultant matrix, a residue at the protein sequence’s ith position is 

presented by a vector consisting of the loglikelihood for 20 types of amino acids. 

1.3. Docking Methods 

Docking methods are usually used to predict protein-nucleic acid interactions by 

generating decoys and scoring them, where decoys are potential ways to bind the protein and 

nucleic acids with different positions and conformations. This approach not only identifies the 

protein’s binding sites, but also predicts the structure of the resulting protein-nucleic acids 

complex. This approach can be divided into two steps: the first step is to generate decoys using 

the docking approaches; the second step is to evaluate each decoy complex by using a scoring 

function. During the docking process, the generated complex structures not only reveals the 

nucleic-acid-binding sites on the protein structures, but also show the detailed atomic interaction 

between the protein and the nucleic acids. A docking method discretizes, or continuously 

searches, the conformation space of the complex with various rotations, translations, or both. 

During a docking procedure, one of the molecules usually the heavier one-stays static, and the 

other molecule approaches until they bind. The factors considered during the docking the 

procedure include electrostatic and geometric complementarity, shape complementarity, 

desolvation, and biochemical or biophysical information. There are several docking methods 

developed in the past two decades. The well-known docking methods include FTDock is 
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designed for two molecules based on geometric and electrostatic complementarities using 

Fourier transforms to speed up the searching procedure (Gabb et al., 1997). The Global Range 

Molecular Matching (GRAMM) methodology is an empirical approach that enhances the 

protein-protein docking quality by taking hydrophobic groups at contact sites into account 

(Vakser and Aflalo, 1994). High Ambiguity Driven Docking (HADDOCK) is for protein-protein 

docking that makes use of biochemical and/or biophysical interaction data (Dominguez et al., 

2002).  RPDock  is based on FTDock and incorporates features specific to RNA-protein 

interfaces (including looser atom packing at the interface, the preference of positively charged 

residues at RNA-protein interfaces, and stacking interactions between the bases of nucleotides 

and the aromatic rings of the charged amino acids) (Huang et al., 2013). Because the methods 

need to exhaustively try the entire space of complex poses, bottlenecks for the docking methods 

exist in the tradeoff between tremendous computation and docking quality. 

1.4. Scoring Functions 

Docking methods do not evaluate the each protein-nucleic acid pose’s fitness, so we need 

to build scoring functions to measure how similar a pose is to the native complex. Many scoring 

functions have been developed to predict protein-nucleic acid interactions (Liu et al., 2005; 

Zhang et al., 2005; Zhou and Zhou, 2002; Xu et al., 2009; Zhao et al., 2010; Samudrala and 

Moult, 1998; Robertson and Varani, 2007; Huang and Zou, 2014; Li et al., 2012; Zhao et al., 

2011; Perez-Cano and Fernandez-Recio, 2010; Perez-Cano et al., 2010; Chen et al., 2004; Zheng 

et al., 2007; Tuszynska and Bujnicki, 2011; Huang et al., 2013). These methods can be divided 

into two groups. The first group simulates various physical and chemical forces between atoms 

(Liu et al., 2005; Zhang et al., 2005; Xu et al.; 2009, Zhao et al., 2010). The second group uses 

knowledge-based statistical energy functions that are derived from the observed contacting pairs 
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across the interface (Samudrala and Moult, 1998; Zhou and Zhou, 2002; Robertson and Varani, 

2007).  

Knowledge-based methods utilize statistics for the interactions between proteins and 

nucleic acids that are collected from a database, e.g. Protein Data Bank (Berman et al., 2003), 

with known protein and nucleic-acids structures. Berman et al. assume that protein-nucleic acids 

interactions can be described by energy functions with multiple parameters when they developed 

the knowledge-based methods. According to the granularity of contacting pairs, knowledge-

based scoring functions can be further divided into three categories: amino acid and nucleotide 

pairs, fragment pairs, and atom pairs. An amino acid and nucleotide pair contains one residue 

from the protein’s binding site and one nucleotide from the nucleic acids. For example, Iwakiri et 

al. (2012) dissect the paring preferences of amino acids and nucleotides at the interface area. Due 

to the increased number of high-resolution protein-nucleic acids complex structures, more 

knowledge-based scoring functions derive binding affinity based on interactions between protein 

atoms and nucleic-acid atoms involved with binding (Xu et al., 2009; Robertson and Varani, 

2007). However, the weakness of atom-level methods is their complexity which demands greater 

computation compared to other methods. In addition, the methods do not consider the binding 

motifs that are known to occur among unrelated proteins (Denessiouk and Johnson, 2000; 

Denessiouk et al., 2001; Kinoshita et al., 1999; Kobayashi and Go, 1997). Motivated by the 

methods for predicting ligand-binding “hot spots” (Brenke et al., 2009; Kasahara et al., 2010), 

the fragment-pairs based methods gain more attention for solving the protein-nucleic acid 

problem (Guo and Wang, 2011) due to its tradeoff between accuracy and computation amount. 

In addition, the fragment-based interaction methods can disclose the 3-D distributions of protein 

atoms around nucleotide fragments and vice versa. The key point for using fragment-based 
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methods lies in how to segment the amino acid and nucleotide. For instance, a nucleotide can be 

divided into three fragments: sugar ring, base, and phosphate group. 

Finally, the aforementioned methods are assessed by their capacities to discriminate 

between near-native decoys and coarse decoys, or between native complex structures and near-

native decoys. A native complex is the structure of protein and nucleic acids that are naturally 

bound to each other. The decoy complex is a non-native complex structure that is generated from 

a native complex through a docking procedure. Based on the Cα root mean square deviation 

(RMSD) of the decoy to the native complex (after superimposing the native and decoy nucleic-

acid structures), the decoy complex can be classified as a near-native decoy or a coarse decoy. 

The near-native decoy structure is more similar to the native complex and has a lower RMSD 

compared to a coarse decoy. In the testing stage, for each native complex, we generate a set of 

decoys using the docking procedure. Then, we utilize the potential function to calculate the score 

for each decoy and rank the decoys according to the scores. Ideally, the native complex should 

be ranked in the first position by its score. Thus, the better the scoring function is, the higher the 

native complex should be ranked. There are various ways to measure the scoring function’s 

discriminatory ability, among which z-score is a popularly used one. Given a list of scores, an 

individual’s z-score is the result of dividing the difference between the individual’s score and the 

average score by the standard deviation. The z-score indicates how far away that individual is 

from the mean in terms of the standard deviation in the normal distribution. If an individual’s z-

score is higher, there are more standard deviations between the mean and this individual. In the 

context of our study, a higher z-score for a native complex means that the scoring function can 

recognize the native complex as a native complex more effectively. 



13 

1.5. Contributions 

For the protein-DNA interaction, we developed a knowledge-based and fragment-atom 

pair energy function to study the protein-DNA interaction. We divided the nucleotide into three 

fragments: phosphate group, base, and sugar ring. We analyzed the distribution of protein atoms 

around each structural component of the DNA and developed spatial-specific scoring matrices 

(SSSMs) based on the observed distribution. We showed that the SSSMs could be used as a 

knowledge-based energy function to discriminate between the native protein-DNA structures and 

various decoys. 

For the protein-RNA interaction, we developed a graph-mining method that could 

identify the RNA-binding site on proteins and predict the protein-RNA complexes’ structures. 

Our method extracted common sub-graphs from the interface areas of proteins with known 

binding sites, assuming that the binding sites share similar graphlets which can be used to 

characterize and reveal the repetitive patterns that exist at the binding sites. Another advantage of 

our method is its simplicity and efficiency. Once the common sub-graphs are collected during 

the training process, they can be used as features either to help the classifier recognize binding 

sites, or to discriminate between near-native decoys and docking decoys of proteins with 

unknown functions by simply calculating the number of occurrences for the selected common 

sub-graphs in the decoys’ interface areas. 

1.6. Dissertation Overview 

This dissertation introduces two computational methods: one is a fragment-based method 

that serves as a scoring function to evaluate the fitness of each protein-DNA complex pose; the 

other one is a graph-mining method that utilizes common sub-graphs to recognize the RNA-
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binding site on the protein surface and to score the generated poses. The remaining chapters of 

this dissertation illustrate my Ph.D. research work. They are organized as follows. 

In Chapter 2, we will present a knowledge-based computational method for 

discriminating native protein-DNA complexes from decoys. A paper derived from this chapter 

was published in the proceedings of the 7th International Conference on System Biology (ISB). 

Chapter 3 presents a graph-mining method that uses common sub-graphs to identify 

RNA-binding sites on proteins and to predict 3-D protein-RNA complexes. Publications derived 

from this chapter are under preparation. 

In Chapter 4, several plans are discussed. These plans will be used to improve the 

performance of the common sub-graph method for predicting RNA-binding sites and 

discriminating near-native protein-RNA complexes from the docking decoys. 
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2. A METHOD FOR DISCRIMINATING NATIVE PROTEIN-DNA COMPLEXES 

FROM DECOYS USING SPATIAL-SPECIFIC SCORING MATRICES 

Decoding protein-DNA interactions is important for understanding gene regulation and 

has been investigated by worldwide scientists for a long time. However, many aspects of the 

interactions still need to be uncovered. The crystal structures of protein-DNA complexes reveal 

detailed atomic interactions between the proteins and DNA and are an excellent resource for 

investigating the interactions. This study profiles the spatial distribution of protein atoms around 

six structural components of the DNA; the four bases, the deoxyribose sugar, and the phosphate 

group. The resultant profiles not only revealed the preferred atomic interactions across the 

protein-DNA interface, but also captured the interaction’s spatial orientation. The profiles are a 

useful tool for investigating protein-DNA interactions. We tested the profiles’ strength with two 

experiments: discrimination of native protein-DNA complexes from decoys with mutant DNA 

and discrimination of native protein-DNA complexes from near-native docking decoys. The 

profiles achieved an average Z-score of 7.41 and 3.22, respectively, on benchmark datasets for 

the tests; both experimental results are better than other knowledge-based energy functions that 

model protein-DNA interactions based on atom pairs. 

2.1. Related Work 

Many computational methods have been developed for predicting DNA-binding sites on 

protein structures. Some methods focus on the geometrical and physiochemical properties of the 

DNA-binding sites and use a data-mining or statistical approach to predict potential DNA-

binding sites for new protein structures (Chikhi et al., 2010; Guo and Wang, 2012; Ito et al., 

2012; Sael and Kihara 2012; Blanchi et al., 2012; Konc and Janezic 2010; Zhou and Yan, 2010). 

These methods usually represent patches on the protein surface using vectors or graphs, and then 
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compare the patcheswith known DNA-binding sites. These methods usually suffer relatively low 

accuracy, and some of them are very computationally demanding. Other methods rely on 

structural alignment (Wass et al., 2010; Kinoshita and Nakamura 2009). These methods maintain 

a database of protein structures for which DNA-binding sites are known. To predict DNA-

binding sites for a new protein (also known as query protein), the new protein is used to query 

the database to find structures (also known as templates) that share a high similarity with it. The 

query protein structure is then aligned with the templates. The region on the query protein that 

superimposes with the known DNA-binding sites on the templates is predicted to be a DNA-

binding site. These methods’ success strongly depends on the availability of templates and the 

level of similarity between the query and templates. 

Other researchers use docking approaches to predict the structure of the protein-DNA 

complex. The resultant complex structure not only reveals the DNA-binding sites on the protein 

structure, but also shows the detailed atomic interaction between the protein and the DNA. A 

docking method searches the conformation space of the complex and uses an energy function to 

score the conformations. Different docking methods vary in the energy function used. Some 

docking methods use functions that model various physical and chemical forces between atoms 

(Liu et al., 2005; Zhang et al., 2005; Zhou and Zhou, 2002; Xu et al., 2009; Zhao et al., 2010). 

Others use knowledge-based statistical energy functions derived from the observed interacting 

atom pairs across the interface (Samudrala and Moult, 1998; Robertson and Varani, 2007). 

2.2. Methods and Materials 

2.2.1. Datasets 

The testing dataset for the first test, the DNA mutation decoy test, was composed of 51 

non-redundant complexes from Kono and Sarai (1999). For the second test, the near-native 
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docking decoys were generated using FTDock (Katchalski-Katzir et al., 1992) from 45 protein-

DNA complexes that were collected by Robertson and Varani (2007). The training datasets for 

both tests were derived from the 212 protein-DNA complexes used in Xu et al. (2009); these 

complexes were extracted from the Protein Data Bank (PDB) database and culled by the PISCES 

server (Wang and Dunbrack, Jr., 2003), which is a protein sequence culling server, such that 

pairwise similarity was less than 35%. For both tests, we removed complexes that had more than 

35% similarity with any protein in the test sets. As a result, the training set for the DNA mutation 

decoy test contained 166 protein-DNA complexes, and the training set for the near-native 

docking decoy discrimination test contained 167 protein-DNA complexes. 

2.2.2. Spatial-Specific Scoring Matrices (SSSMs) 

We first divided the DNA into six repeating structural components: the four bases, the 

deoxyribose sugar, and the phosphate group. We collected the protein atoms that were in contact 

with these components and investigated how they were distributed around the components in the 

space. For each component, we defined a new coordinate system that centered on it. Using the 

new coordinate system as a grid, we divided the space into X*X*X cubes with X bins on each 

axis. The grid size was customized so that all the protein atoms that were in contact with the 

component fell into the cubes. We tried several values for X, such as 6, 8, 10, 16, and 20. When 

dividing the space into too few cubes, e.g., 6*6*6, the cube was too large and could not 

effectively represent the 3-D distributions of the protein atoms around the nucleotide component. 

One the other hand, if X was too large, only a few atoms existed in a cube, and most cubes were 

vacant. The large X caused low estimations too, and, furthermore, an increased computation 

amount. Finally, we decided to use 16*16*16 cubes, and the experimental results demonstrated 

that this choice yielded the best performance.  
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Inspired by previous research work (Murphy et al., 2000; Weathers et al., 2004; Peterson 

et al., 2009; Bacardit et al., 2009), we classified the protein atoms into 14 types based on the 

environment around them, as described in Petsalaki et al. (2009), and then counted the number of 

different types of atoms that fell into each cube. Previous research work (Murphy et al., 2000; 

Weathers et al., 2004; Peterson et al., 2009; Bacardit et al., 2009) showed that, by using a 

reduced alphabet for amino acids, the capacity of recognizing protein structures from protein 

sequences could be improved while the computation amount computation was reduced. The 

reason was because the simplified amino-acid alphabet kept sufficient information representing 

protein structures, and most importantly, it reduced noise. Inspired by Petsalaki et al. (2009), we 

classified the protein-atom into 14 types as described in their work based on the environment 

around the atoms. Then, we counted the number of different types of atoms that were in each 

cube. By using the compact atom types, we hoped to purge the unnecessary information and, 

meanwhile, simplify our 3-D model. The 14 atom types were: C3 (aliphatic carbons; sp3), C= 

(carbonyl carbon; sp2), O= (carbonyl oxygen; sp2), N2H (nitrogen of amides; sp2; also sp2 

neutral nitrogen of side chains), Car (aromatic carbon; sp2; general), O2- (negatively charged 

oxygens (-1/2) in carboxylates; sp2), SH (sulphur in thiols; sp3), OH (hydroxyl group; sp3), 

NarH (aromatic nitrogen with a hydrogen; sp2), NarH+ (aromatic nitrogen with a hydrogen and a 

postive charge; sp2), Set (sulphur in thioethers; sp3), C+ (carbon of carbocations; sp2), N3H+ 

(sp3 nitrogen with a hydrogen and a positive charge), and N2H+.  

Therefore, the distribution of protein atoms around a component was described using a 

16*16*16*14 matrix. The matrix counts were normalized by the total count. Therefore, each cell 

in the matrix corresponded to one atom type and one cube in the space, and the cell’s value 

showed how likely the atom would be to contact the DNA component from a location 
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corresponding to the cube. These matrices were populated using protein-DNA complexes in the 

training set. The resultant six matrices (which are referred as SSSMs) were used as scoring 

matrices to discriminate native protein-DNA complexes from various decoys. For a given 

structure (native or decoy) of protein-DNA complex, a score was assigned using the following 

method: 

𝑆 =∑ ∑ ∑𝑂𝑖𝑗𝑘𝑃𝑖𝑗𝑘

14

𝑘=1

16∗16∗16

𝑗=1

6

𝑖=1

 

, where Oijk is the number of atoms of type k that contact component i from the location 

corresponding to cube j, and Pijk is the value in the cell of the scoring matrix for component i that 

corresponds to atom type k and cube j. Higher scores mean that the complex was more likely to 

be the native structure. 

2.3. Experiments and Results 

2.3.1. Test 1: To Discriminate Native Structures from DNA Mutation Decoys 

For this test, 166 protein-DNA complexes were used as a training set to derive the 6 

scoring matrices, and a disjoint test set consisting of 51 protein-DNA complexes was used to 

generate decoys. For each of native complex, we generated 50,000 decoys by replacing a 

nucleotide base with a different type of base that had equal opportunity. The new base was 

placed in the same plane as the native one. Then, we calculated the scores for the native complex 

and the decoys. Because the native complex only differed from the decoys in the bases, only the 

four SSSMs corresponding to bases were utilized in this test to calculate the scores. We used Z-

score to evaluate the performance of discriminating the native complex and decoys. Here, Z-

score = (Savg- Snative) / SD, where Savg and SD were the average and standard deviation for the 

scores of 50,000 decoys, and Snative was the score for the native structure. Because the native 
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structure was expected to have a higher score than the decoys, a lower negative Z-score meant 

that the scoring system was able to distinguish the native structure from decoys with a better 

performance. Our method achieved an average Z-score -7.41 with the test set. The Z-scores for 

each complex are shown in Table 1.  

Many researchers have tried to develop knowledge-based energy functions for protein-

DNA interactions based on the observed atomic contacts across the interface. Zhou and Zhou 

(2002) first applied a distance-scaled, finite ideal-gas (DFIRE) energy function for protein-DNA 

interaction. Gromiha et al. (2004) also developed energy functions based on intermolecular and 

intramolecular contacts. Xu et al. (2009) developed five variants for the DFIRE energy functions, 

among which the variant (named vcFIRE) with the low-count correction and volume correction 

achieved the best result. Xu et al. (2009) evaluated and compared these methods using the same 

training and test datasets that were utilized for the present study. We used the results from their 

study and compared our method with others. Table 1 shows that our method achieved better Z-

scores than all other methods in all but two complexes. The only exceptions were 1cjg and 1xbr 

(shaded in gray in Table 1). For 1xbr, our Z-score was very close to the best. The paired t-test 

showed that our method outperformed all others with p<0.0001. The average Z-score for our 

method with the dataset was -7.41, which was much better than that of any other methods. 

Table 1. Z-scores for different methods in the test of discriminating native structures from 

mutation decoys 

PDB ID Gromiha et al. (2004) Zhou and Zhou (2002) Xu et al. (2009) Our Method  

1a02 -1.8 -2.27 -3.29 -18.27 

1a74 0.7 1.50 -4.17 -5.50 

1b3t -2.1 -1.15 -2.38 -2.44 

1bhm -1.3 -0.05 -3.26 -6.20 

1bl0 -2.5 -2.23 -3.25 -8.56 

1cdw -0.6 1.64 -0.02 -5.45 

1cjg -1.4 -2.58 -0.81 -0.10 
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Table 1. Z-scores for different methods in the test of discriminating native structures from 

mutation decoys (continued) 

PDB ID Gromiha et al. (2004) Zhou and Zhou (2002) Xu et al. (2009) Our Method  

1cma -1.6 1.02 -1.59 -2.69 

1e66 -1.7 -3.22 -3.12 -4.01 

1dp7 -0.7 0.76 -3 -3.02 

1ecr -1.1 0.53 -1.58 -5.01 

1fjl -1 2.59 -2.63 -11.53 

1gat -1.7 1.73 -1.27 -2.12 

1gdt -1.7 -0.04 -3.75 -10.70 

1glu -1.1 1.72 -1.95 -12.03 

1hcq -2.5 -0.85 -4.09 -10.11 

1hcr 0.4 -0.25 -2.43 -3.70 

1hdd -1.8 0.95 -1.57 -6.48 

1hlo -1.6 0.29 -3.95 -5.83 

1hry -0.9 0.23 -1.33 -3.76 

1if1 -1.7 -1.62 -1.96 -8.64 

1ign -2.2 -0.23 -5.32 -8.32 

1ihf -2.3 1.79 -1.81 -2.35 

1j59 -0.8 -2.33 -3.79 -12.29 

1lmb -4.3 -1.48 -4.25 -7.04 

1mdy -2.5 2.81 -2.83 -14.06 

1mey -2.2 -1.52 -4.92 -9.84 

1mhd -1.9 0.56 -2.74 -7.12 

1mnm -3 0.20 -4.04 -8.24 

1mse -2 -0.69 -2.13 -4.46 

1oct -2.1 -0.37 -2.85 -8.96 

1par -1.7 -0.96 -2.42 -5.34 

1pdn -2.5 -1.06 -1.92 -8.41 

1per -1.1 0.20 -1.92 -8.53 

1pue -2.7 -1.27 -2.21 -11.13 

1rep -3.2 -2.2 -3.01 -12.57 

1rv5 -0.3 0.11 -1.67 -3.99 

1srs -2.4 0.67 -3.62 -8.44 

1svc -2.2 -1.68 -4.27 -9.04 

1tc3 -2.5 -0.24 -2.29 -6.46 

1tf3 -2.3 -1.19 -3.56 -5.45 

1tro -3.1 -0.19 -4.05 -7.41 

1tsr -1.2 -2.38 -2.68 -8.74 

1ubd -2.1 -0.12 -4 -7.26 

1xbr -2.4 -2.76 -2.4 -2.21 

1yrn -2.9 -0.05 -3.78 -9.10 
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Table 1. Z-scores for different methods in the test of discriminating native structures from 

mutation decoys (continued) 

PDB ID Gromiha et al. (2004) Zhou and Zhou (2002) Xu et al. (2009) Our Method  

1ysa -2.1 0.14 -4.01 -8.88 

2bop -1.7 -2.16 -3.12 -4.04 

2drp -2.3 1.40 -4.75 -21.02 

3cro 0.3 -1.52 -0.57 -9.61 

6cro -2.3 -3.86 -3.79 -5.38 

Mean -1.8 -0.43 -2.86 -7.41 

 

2.3.2. Test 2: To Discriminate Native Structures from Near-Native Docking Decoys 

This experiment was designed to test the SSSMs’ ability to discriminate native 

complexes from near-native docking decoys. We created 10,000 docking decoys for each of the 

45 native complexes using FTDock. The 2,000 lowest-RMSD decoys (i.e., the 2,000 decoys that 

were most similar to the native complex) were selected; we refer to them as near-native decoys. 

Six SSSMs constructed from the 16*16*16 3-D model were derived using the 167 protein-DNA 

complexes from the training set. Then, these SSSMs were used to compute scores for the native 

complex and the near-native decoys. 

For this test, we compared our method with the DFIRE-based methods developed by 

Zhou and Zhou (2002), Xu et al. (2009), and an all-atom distance-based method developed by 

Robertson and Varani (2007). These methods were all evaluated using the same training and test 

datasets that were utilized for this study. Our method achieved an average Z-score of -3.22, 

which was the best among all methods (Table 2). Our method achieved the best Z-score for 29 of 

the 45 protein-DNA complexes. The paired t-test confirmed that our method outperformed the 

others with p<0.0001. 
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Table 2. Comparisons of methods in terms of Z-scores for the test of discriminating native 

structures from near-native docking decoys 

PDB ID 

Zhou and Zhou 

(2002) 

Xu et al. 

(2009) 

Robertson and Varani, 

(2007) 

Our 

method 

1qna -1.21 -1.79 -1.57 -2.36 

1d02 -1.47 -2.63 -1.95 -4.91 

1eon -1.66 -3.09 -1.98 -3.52 

1ckq -1.02 -1.94 -1.14 -2.77 

1dmu -1.55 -4.16 -2.06 -3.06 

1qpz -2.2 -3.48 -2.55 -3.04 

1au7 -1.52 -2.55 -1.96 -3.86 

1je8 -1.85 -2.91 -2.04 -2.43 

2cgp -0.97 -1.99 -1.42 -2.07 

1b3t -1.38 -2.99 -1.94 -2.27 

1tc3 -1.56 -2.67 -1.56 -3.02 

1g9z -2.63 -5.45 -3.29 -3.89 

1zme -2.13 -2.38 -2.26 -4.01 

1a73 -1.85 -3.41 -2.3 -5.90 

1jko -1.77 -3.12 -2.16 -3.21 

1bdt -1.77 -3.19 -1.88 -3.13 

2bop -1.68 -2.97 -2.13 -2.55 

1a1i -1.44 -2.49 -1.98 -5.09 

1bc8 -1.5 -2.67 -2.1 -3.22 

1pdn -1.45 -2.47 -2.17 -3.13 

1skn -1.23 -2.6 -2.06 -4.98 

1mjo -2.09 -2.55 -2.16 -3.12 

1bl0 -0.96 -1.92 -1.4 -1.70 

2dgc -1.46 -2.36 -2.06 -1.30 

3pvi -1.65 -2.34 -1.86 -2.19 

2hdd -2.37 -3.13 -2.7 -4.82 

1ign -1.74 -3.44 -2.3 -3.06 

1qpi -2.12 -3.67 -3.07 -3.26 

1a3q -1.46 -2.49 -1.91 -3.02 

1dfm -1.23 -2.6 -1.51 -1.97 

1lq1 -1.94 -3.26 -2.38 -2.73 

1tro -1.43 -2.78 -2.05 -2.86 

1fjl -1.36 -2.12 -1.58 -3.45 

1h8a_a -1.29 -2.35 -2 -1.52 

1h8a_b -1.02 -2.18 -1.59 -4.71 

1f4k -1.16 -2.58 -2.1 -2.74 

6pax -1.21 -2.74 -1.96 -1.28 

1hlv -1.77 -3.17 -2.23 -2.48 
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Table 2. Comparisons of methods in terms of Z-scores for the test of discriminating native 

structures from near-native docking decoys (continued) 

PDB 

ID 

Zhou and Zhou 

(2002) 

Xu et al. 

(2009) 

Robertson and Varani, 

(2007) 

Our 

method 

1mnn -1.59 -3.4 -2.49 -5.68 

1dsz -1.12 -2.38 -1.82 -2.79 

1hwt -1.77 -1.96 -2.4 -2.65 

1per -1.44 -2.7 -2.08 -3.62 

1l3l -1.76 -3.1 -2.42 -4.54 

3hts -0.95 -3.03 -2.05 -3.32 

3bam -1.66 -2.86 -1.99 -3.70 

Mean -1.56 -2.8 -2.06 -3.22 

 

While the above results were obtained with the SSSM based on a 16*16*16 grid, we also 

tested the SSSM’s performance using the 6*6*6, 8*8*8, 10*10*10, and 20*20*20 models. We 

measured their performances in terms of the total number of decoys with potential scores that 

were higher than the native complexes, average Z-score, standard deviation of Z-score, and t-

test. We can see from the comparisons (shown in Table 3) that the 6*6*6 and 8*8*8 models led 

to too many decoys with higher scores than the native complexes while their average Z-scores 

were much lower than the other models. Therefore, we did not consider these two models. The 

20*20*20 model had the smallest number of decoys with higher scores, but was only a little 

better than the 16*16*16 model. The 10*10*10 model yielded the highest average Z-score, 3.45, 

slightly better than the ones for 16*16*16 and 20*20*20. However, its standard deviation of Z-

score is much higher than the other models. Thus, we excluded the 10*10*10 model, too. To 

choose from the 16*16*16 and 20*20*20 models, the former one outperformed with a higher 

average Z-score, smaller standard deviation for the Z-score, and smaller t-test score. Thus, we 

finally decided to use the 16*16*16 model to build the SSSM as a scoring function. The 5 

models’ performances also agrees with our speculation of choosing appropriate 3-D model. 
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Table 3. Comparisons of SSSM method using various grid dimensions for the test of 

discriminating native structures from near-native docking decoys 

SSSM 

models 

# of decoys with higher 

scores than native complex 

Average 

z-score 

Standard Deviation 

of z-score 

t-test 

6*6*6 4284 1.76 0.69 4.78E-12 

8*8*8 2909 2.05 0.74 1.07E-09 

10*10*10 642 3.45 3.45 0.080738 

16*16*16 278 3.22 1.45 0.013865 

20*20*20 256 3.13 1.59 0.062958 

 

2.4. Summary 

We developed a knowledge-based scoring function to assess protein-DNA interactions. 

We divided the DNA into six repeating structural components and used spatial-specific scoring 

matrices (SSSMs) to capture the distribution of protein atoms around these components in the 3-

D space. The proposed method was able to discriminate native protein-DNA complexes from 

various decoys with better performance than other knowledge-based energy functions. Compared 

with other energy functions derived from the observed atom contacts, the proposed SSSMs not 

only reflected the preferences for atomic interactions across the protein-DNA interface, but also 

captured the interactions’ spatial orientations. The SSSMs will be a useful tool to investigate 

protein-DNA interactions. 
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3. A NOVEL GRAPH-MINIG METHOD FOR THE PREDICTION OF RNA BINDING 

SITES ON PROTEINS AND FOR THE PREDICTION OF THE PROTEIN-RNA 

COMPLEXES’ THREE-DIMENSIONAL STRUCTURE 

It is well known that protein-RNA interactions play important roles in various biological 

process, e.g., mRNA processing, gene expression, protein synthesis, DNA replication and repair, 

and cellular defense against pathogens. Therefore, understanding the underlying mechanism of 

that interaction is an imperative task. Due to the increasing number of discovered protein-RNA 

complexes, it is possible for researchers to analyze and characterize the interacting areas in order 

to acquire insight about this biological issue. Furthermore, thanks to proteomic projects, tons of 

proteins with 3-D structure information become available while their functions and functional 

sites remain unknown. All those factors make it natural and compulsory to develop 

computational algorithms to identify the RNA-binding sites on proteins and to recognize 3-D 

protein-RNA complexes automatically and efficiently. Compared with RNA, the interactions 

between protein and DNA are investigated with more mature techniques, mainly due to the wider 

diversity for RNA structures. While DNA usually exists in the formation of a double helix, RNA 

structures can be hairpins/stem-loops, bulges, and loops, making RNA’s interactions with protein 

more complicated and unpredictable. 

We introduce a graph-mining method that could identify the RNA-binding site on protein 

and predict the protein-RNA complexes’ structure. Our method extracts common sub-graphs 

from the interface areas of proteins with known binding sites, assuming that the binding sites 

share similar graphlets which can be used to characterize and reveal the repetitive patterns that 

exist at the binding sites. Another advantage of our method is its simplicity and efficiency. Once 

the common sub-graphs (CSs) are collected during the training process, they can be used as 
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features either to be fed to classifier to recognize the binding sites, or to discriminate between 

near-native decoys and docking decoys for a protein with unknown functions by simply 

calculating the occurrences of the selected CSs in the decoys’ interface areas. 

3.1. Related Work 

Regarding the computational methods developed for tackling the protein-RNA interaction 

issues, we can generally divide the methods into two categories in terms of the tasks they 

attempted to address: one category predicts the RNA-binding sites on proteins; the other 

category focuses on predicting the protein-RNA complex’s structure, i.e., how a protein binds 

with RNA. It is worth noting that most approaches were designed for either task, but not both. 

Methods that predict binding sites on proteins (Chen et al., 2013; Spriggs et al., 2009; Murakami 

et al., 2010; Yang et al., 2014) can be labeled as either feature-based (also machine learning) or 

template-based methods. The feature-based methods employ information about the protein’s 

sequence, structure, or both for prediction. In most cases, the approaches which use structure 

information can achieve better performances because the protein structure contains more 

information than the sequence. Some methods also incorporate sequential or structural profiles to 

improve the prediction accuracy. The classifiers used by feature-based methods include Support 

Vector Machine (SVM) (Kumar et al., 2007; Wang and Brown, 2006; Cai and Lin, 2003), Naïve 

Bayes (Terribilini et al., 2006, 2007), random forest (Liu et al., 2010), and neural networks 

(Jeong et al., 2004). Template-based approaches (Zhao et al., 2011) align the query protein’s 

sequences or structures with a non-redundant protein dataset that has known binding sites for 

prediction. There are also a few other algorithms to predict RNA-binding sites on proteins by 

analyzing the relationship between protein shapes and preferred RNA bases (Iwakiri et al., 2012) 

or by using pairs of amino acids to characterize binding sites on the protein (Kim et al., 2007).  
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When predicting the structure of protein-RNA complexes, most published methods use 

knowledge-based scoring functions (Huang and Zou, 2014; Li et al., 2012; Zhao et al., 2011; 

Perez-Cano and Fernandez-Recio, 2010; Perez-Cano et al., 2010) to evaluate the fitness of a 

binding mode between protein and RNA. The methods are usually assessed by their ability to 

discriminate between near-native complex decoys and docking decoys, which are various 

binding modes generated by docking procedure. The advantage with these methods is their high 

accuracy. However, they are too computationally complicated and time-consuming due to their 

nature. 

3.2. Methods and Materials 

3.2.1. Datasets 

Our study used three datasets. The first one was referred to as the training set. It included 

3-D structures for the protein-RNA complexes which were experimentally determined using wet-

lab methods such as x-ray crystallography and NMR. Each complex structure showed a native 

binding mode between the protein and RNA. In this study, the training set was used to discover 

common sub-graphs that wereabundant on the RNA-binding sites. The training dataset was 

obtained from the RCSB Protein Data Bank (PDB) database. We used an advanced search to 

retrieve all protein-RNA complexes from PDB, and the research returned 1,570 results. Then, the 

dataset was culled using PISCES (Wang and Dunbrack, Jr., 2003) with the mutual sequence 

similarity no more than 25%. After this filtering step, 144 protein-RNA complexes remained and 

included 153 chains. The second and third datasets included not only structures of the protein-

RNA complexes, but also unbound structures of the involved proteins and RNA. They were used 

to test our method. Therefore, they were referred to as Testing Sets I and II. The sets consisted of 

64 and 72 protein-RNA complexes, respectively. Testing Set I was from part of the extended 
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protein-RNA docking benchmark collected by Perez-Cano et al (2012). All 64 complexes were 

X-ray or NMR experimental structures with an available, unbound protein structure, where five 

had an unbound RNA structure, four had a pseudo-unbound (i.e., bound to a protein that had less 

than 35% sequence similarity with respect to that in the reference complex structure) RNA 

structure due to the lack of fully free structures, and the other 55 cases had bound RNA 

information. Testing Set II was a non-redundant set taken from another benchmark for protein-

RNA docking in Huang and Zou’s (2013) study. First, 87 bound protein-RNA complexes were 

obtained from the Protein Data Bank, and they were X-ray crystal structures with a resolution 

better than 4.0 Å, with less than 30% pairwise similarity for protein structures, and with less than 

70% similarity for RNA. Then, BLAST was applied to the bound structures to acquire the 

corresponding unbound protein and RNA structures. Finally, 72 complexes were kept because 

the other 15 did not have available unbound protein or RNA structures. Both testing sets were 

also used in Huang et al.’s (2013) study to show the performance of their protein-RNA complex 

prediction method. 

3.2.2. Extracting Interface Residues 

The protein’s RNA-binding sites are created with interface residues that are defined in 

Jones et al.’s (2003) study. We used the NACCESS software, an atomic solvent accessible area 

calculation program, to calculate the accessible surface area (ASA) of each amino acid for both 

the bounded and unbounded situations. If an amino acid’s ASA in unbounded form was at least 

1Å2 more than that in the bounded format, we considered this amino acid an interface residue. To 

obtain a general idea about how large a binding site is within a protein, we calculated the size of 

RNA-binding site based on the training dataset. The statistics showed that the binding-site size 

ranged from 4 to 82 residues. The average size of the binding sites was 33 residues, and the 
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average length of the protein sequences is 314, almost 10 times larger than binding site, while the 

standard deviation of the binding-site size was 19.3. 

3.2.3. Building a Binding-Site Graph 

Each RNA-binding site was represented using a graph, where each node illustrated an 

interface residue and where an edge was added between two nodes if their residues were in 

contact. Each node was labeled with its residue type. There were 20 residue types: alanine, 

arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, 

isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, 

tyrosine, and valine (A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, and V). Two residues 

were considered as being in contact if the nearest distance between their heavy atoms was less 

than 0.5Å. Each edge was also associated with a label. If the two nodes at the end of an edge 

were sequence neighbors on the protein chain, then the edge was labeled as type one; otherwise, 

the edge was labeled as type two. 

3.2.4. Finding Common Sub-Graphs that Are Abundant at the RNA-Binding Sites 

There are 144 RNA-binding sites in the training set, and each one is represented as a 

graph. We refer to these graphs as binding-site graphs. We aim to find common sub-graphs that 

occur frequently at the RNA-binding sites. We implement the VF2 algorithm (Cordella et al., 

2001, 2004) to fulfill this task. Generally, the algorithm is designed to find whether one graph is 

isomorphic to the sub-graph of the other by trying to match each pair of nodes from both graphs 

and ends when an isomorphism is found or when all pairs are searched without finding an 

isomorphism. Details of the VF2 algorithm are given in the following paragraphs.  

Assume that there are two graphs, G and G’, with m vertices and n vertices, respectively. 

The entire procedure is like a Depth-First Search of a tree (Figure 1), where the root represents 
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the start and where each tree node means matching between a pair of G and G’ vertices. The 

maximum length of a tree’s branch is MIN{m, n}, and the maximum number of branches is 

MAX{m, n}. The entire search stops either when it reaches a tree node at the deepest level of the 

tree (See the red node in Figure 1.) and finds a solution, which exists in the path from the tree 

root to that node; or after it searches all the pairs of G and G’ vertices without finding a solution. 

During the search, the algorithm goes back one level up from the current node whenever it finds 

that the path from the tree root to the current node does not contain a match between the two 

graphs. Figure 2 gives an example of finding whether graph G’ is an isomorphism of G using 

VF2.  

 

Figure 1. Illustration of a depth-first search of a tree 
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Figure 2. Example of the VF2 algorithm to find whether graphs V and V’ are isomorphic 

In Figure 2, graph V has three nodes {1, 2, 3} and V’ has three nodes {1’, 2’, 3’}. The 

following steps illustrate how VF2 works: 

Step 1: Match empty V with empty V’, and it always works. 

Step 2: Try to match node 1 with node 1’, and it works. 

Step 3: Try to match node 2 with node 2’, and it works because {1, 2} and {1’, 2’} are 

isomorphic. 

Step 4: Try to match node 3 with node 3’, and it does not work because there is an edge 

between nodes 2 and 3 with no edge between nodes 2’ and 3’. In addition, there is no 

edge between 1 and 3, but nodes 1’ and 3’ are connected. Because all of the nodes in V’ 

are used to match node 3 in V, we go back to step 2. 

Step 5: Try to match nodes 2 with 3’, and it works.  

Step 6: Try to match nodes 3 with 2’. It does not work because there is an edge between 

nodes 2 and 3, but no edge exists between nodes 3’ and 2’. Furthermore, nodes 1 and 3 

are not connected, but nodes 1’ and 2’ are connected. We want to go back to step 2, but all 
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the nodes in V’ (except 1’ because it is now being matched with 1) have already been 

tried, so we can only to go back to step 1.  

Step 7: Try to match node 1 with 2’, and it works. 

Step 8: Try to match node 2 with 1’, and it works. 

Step 9: Try to match node 3 with 3’, and it works too.  

Finally, we use VF2 to find that V and V’ are isomorphic, and the match between them is 

(1, 2’), (2, 1’), and (3, 3'). 

For each pair of binding-site graphs, we found their CSs of sizes 3 and 4. Then, we 

obtained a set of CSs, among which some may be isomorphic to each other. After removing the 

duplicated CSs, we obtained 3,363 unique 3-node CSs and 7,482 unique 4-node CSs. For each 

CS, we used a vector with 144 values to indicate the CS’s presence or absence in the RNA-

binding sites of the 144 proteins, with 1 being presence and 0 absence. This vector was referred 

as a positive vector. To find the CSs that occurred with higher frequency at the RNA-binding 

sites than on the rest of the protein surface, we also collected non-binding sites on the protein 

surface. A protein’s non-binding site was a surface patch that had the same number of residues as 

the binding site with the requirement that the non-binding site did not overlap the binding site. 

First, one non-binding site was randomly collected from each RNA-binding protein. Then, for 

each CS, a vector, named the negative vector, with 144 values was built to represent its presence 

or absence at the non-binding sites of the 144 proteins. We repeated these two steps 5 times in 

order to generate 5 negative vectors. Then, an average vector was computed such that each of its 

values was the average of the 5 corresponding values from the negative vectors. 

We discarded the CSs that had fewer times of presence in the positive vector than in the 

average negative vector. Then, for the remaining CSs, we performed a t-test to compare the 
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positive vector and the average negative vector. A lower t-test score indicated that the CS was 

more favored by RNA-binding sites. We ranked the CSs in order of increasing t-test scores. 

Thus, the CSs at the top of the list were more likely to occur at the RNA-binding sites. 

3.3. Experiments and Results 

3.3.1. Test 1: Binding Site Evaluation 

When protein and RNA interact, the interface adopts a certain conformation to achieve 

the required binding affinity. We hypothesize that conserved conformations utilized by the 

protein-RNA interactions could be characterized using small graphs enriched at the protein-RNA 

binding sites. Thus, discovering such small graphs helps to identify RNA-binding sites on the 

protein surface and to elucidate the interaction’s mechanism. 

In the previous section, we identified common sub-graphs (CSs) that were enriched at the 

RNA-binding sites. To verify that these CSs were crucial for binding the protein to RNA, we 

tested their ability to discriminate RNA-binding sites from non-RNA-binding sites. For this test, 

a set of surface patches from the protein was used. The surface patches included 144 RNA-

binding sites and 144 non-RNA binding sites. We picked n high-ranking CSs from the top of the 

list. Then, each surface patch was encoded using a vector of n elements, such that each element 

indicated the presence or absence of a CS on the surface patch. Then, libSVM (Chang and Lin, 

2011) was utilized to classify these surface patches as RNA-binding sites and non-binding sites 

using five-fold cross-validation and an RBF kernel. 

The CSs used for this evaluation include the top-ranked 100, 200, 300, 400, and 500 CSs 

of 3-node size as well as the top-ranked 100, 200, 300, and 400 CSs of 4-node size. Table 4 

shows the performance of libSVM using five-fold cross-validation and an RBF kernel, where  

precision = true positive / (true positive + false positive) 
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Table 4. Performance of classifying protein-RNA binding sites and non-binding sites using 

libSVM with 5-fold cross-validation and RBF kernel 

Size of 

CS 

# of CSs TP FP FN TN Precision Cross 

Valid Acc. 

Acc. 

3-nodes Top 100 108 48 36 96 69.2308% 73.958% 70.833% 

Top 200 94 28 50 116 77.0492% 77.431% 72.917% 

Top 300 101 30 43 114 77.0992% 76.736% 74.653% 

Top 400 93 13 51 131 87.7358% 77.778% 77.778% 

Top 500 95 16 49 128 85.5856% 76.389% 77.431% 

4-nodes Top 100 88 15 56 129 85.4369% 76.042% 75.347% 

Top 200 112 14 32 130 88.8889% 84.028% 84.028% 

Top 300 118 29 26 115 80.2721% 80.903% 80.903% 

Top 400 109 21 35 123 83.8462% 80.903% 80.556% 

 

From Table 4, we can see that, among all the selected CSs shown, the top 200 CSs of 4-node size 

yield the best precision, 88.89%; cross-validation accuracy, 84.03%; and accuracy, 84.03%.  

3.3.2. Test 2: Validation Using the Results from Biological Experiments 

Various experimental methods were used to study the protein-RNA interactions. These 

experiments confirmed that some interfaces’ amino acids were crucial to the interactions. These 

experimentally confirmed binding-site residues were collected in the UniProt knowledgebase 

(UniProtKB) (UniProt Consortium, 2010). To further verify the importance of the CSs that we 

discovered, we compared the CSs with the UniProt binding-residue information.  

For each of the 144 RNA-binding sites, we first find which of the top 200 CSs of size 4 

occurred in each binding site and which residues are the nodes of those CSs. Then, we compare 

these residues with UniProt to see which ones are annotated as RNA-binding residues. In 

UniProt, the RNA-binding residues are labeled as one of the three categories: MUTAGEN 

(mutagenesis), REGION, or SITE. Residues with MUTAGEN labels are residues with functions 

have been tested using the mutagenesis experiment. With such an experiment, the residue is 

mutated to another type of residue. If the mutation affects the protein’s ability to bind to RNA, 

then the residue is crucial for the RNA-binding function; therefore, it is on the RNA-binding site. 
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Otherwise, the residue is not crucial for RNA binding. REGION stands for the extent of an RNA-

binding region in the protein sequence while SITE refers to single RNA-binding amino acid site 

on the sequence. 

Table 5. Fractions of interface residues appearing in sites annotated as MUTAGEN in 

UniProtKB 

PDBID UniProt 

ID 

# of CS residues 

in interface area 

# of residues in 

MUTAGEN area 

# of overlapped 

residues 

ratio 

2F8K Q08831 5 2 1 0.2 

1FEU P56930 9 8 4 0.444 

2XS2 Q64368 8 4 3 0.375 

1H2C Q05128 0 2 0 0 

2A1R O95453 4 4 1 0.25 

4HOR Q13325 0 21 0 0 

3ZD6 O95786 4 1 0 0 

1J1U Q57834 0 1 0 0 

3RC8 Q8IYB8 0 8 0 0 

3O7V Q96J94 0 2 0 0 

3MOJ P42305 5 2 0 0 

3L25 Q05127 7 2 0 0 

2A8V P0AG30 4 2 2 0.5 

2XLK Q02MM2 7 9 0 0 

2DU3 O30126 7 3 0 0 

2VNU Q08162 5 1 0 0 

3RW6 Q9UBU9 13 24 0 0 

2Y8Y Q53WG9 9 1 0 0 

4KXT Q9UL18 20 4 0 0 

2BGG O28951 10 5 3 0.3 

1WPU P10943 13 13 0 0 

2NUG O67082 12 3 0 0 

2PO1 Q9V119 0 3 0 0 

3OIN Q06287 0 4 0 0 

3EQT Q96C10 0 2 0 0 

3PEY P20449 4 8 2 0.5 

1N78 P27000 16 1 0 0 

3MDI O43809 14 5 2 0.143 

2XZO Q92900 10 5 0 0 
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The ratio of residues that not only exist at a binding site and the top 200 CSs, but are also 

annotated as a certain category of RNA-binding residues in UniProt, to the residues existing in 

that binding site and the top 200 CSs is calculated for each of the 144 RNA-binding sites. Tables 

5, 6, and 7 list the aforementioned ratios corresponding to MUTAGEN, REGION, and SITE 

respectively. It is worth noting that, because the annotation and information for the above three 

site types are incomplete in the UniProt knowledgebase, the tables do not show accurate results 

for our approach.  

Table 6. Fractions of interface residues appearing in sites annotated as REGION in UniProtKB 

PDBID UniProt 

ID 

# of CS residues 

in interface area 

# of residues in 

REGION are 

# of overlapped 

residues 

ratio 

2AZ0 P68831 0 73 0 0 

1YVP P42700 14 165 12 0.857 

4G0A Q03243 0 37 0 0 

4HOR Q13325 0 7 0 0 

1J1U Q57834 0 10 0 0 

1K8W P60340 17 29 4 0.235 

1KNZ P03536 4 146 4 1 

3O7V Q96J94 0 141 0 0 

3MOJ P42305 5 76 5 1 

4IG8 P00973 13 59 8 0.615 

2ZKO P03496 10 73 10 1 

1H4S Q5SM28 4 30 0 0 

3DH3 P32684 22 8 4 0.182 

2A8V P0AG30 4 17 1 0.25 

3FOZ P16384 19 28 13 0.684 

3RW6 Q9UBU9 13 117 0 0 

4KXT Q9UL18 20 95 14 0.7 

1JID P09132 4 9 0 0 

2BH2 P55135 16 24 6 0.375 

3EQT Q96C10 0 84 0 0 

1N78 P27000 16 16 0 0 

3MDI O43809 14 146 10 0.714 
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Table 7. Fractions of interface residues appearing in sites annotated as SITE in UniProtKB 

PDBID UniProt 

ID 

# of CS residues 

in interface area 

# of residues in 

SITE area 

# of overlapped 

residues 

ratio 

4HOR Q13325 0 7 0 0 

1J1U Q57834 0 1 0 0 

2JLV Q2YHF0 0 1 0 0 

3O7V Q96J94 0 1 0 0 

3BT7 P23003 4 3 0 0 

2Q66 P29468 8 8 1 0.125 

4IG8 P00973 13 1 0 0 

2A8V P0AG30 4 1 0 0 

3FOZ P16384 19 3 1 0.053 

2BH2 P55135 16 2 1 0.063 

3OIN Q06287 0 4 0 0 

3FTF O67680 4 4 2 0.5 

1N78 P27000 16 2 0 0 

3MDI O43809 14 3 1 0.071 
 

3.3.3. Test 3: To Discriminate Between Near-Native Decoys and Docking Decoys 

The purposes of our experiments were to test the abilities of CSs extracted from protein-

RNA binding sites in our training set in order to distinguish between native protein-RNA 

complexes and decoy complexes. The experiments were conducted on two testing sets, Testing 

Set I and Testing Set II, and we compared our results to Huang et al. (2013) who developed a 

novel computational protocol, 3dRPC, to predict RNA-protein complexes. Based on our 

knowledge, their method outperformed the other algorithms in terms of accuracy for the 3-D 

structure prediction of protein-RNA complexes with the two testing datasets used in this study. 

Program 3dRPC consists of two parts: a docking algorithm, RPDock, which was designed for 

protein-RNA docking and DECK-RP which is a distance- and environment-dependent and 

knowledge-based potential function for discriminating native protein-RNA structures from decoy 
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complexes. We applied Huang’s RP-Dock approach to our two test sets in order to generate the 

1,000 best protein-RNA decoys for each native structure.  

To measure the performance of the proposed approach, we ranked each set of 1,000 

decoys using CSs; then, we compared our success rates and hit counts with the ones for DECK-

RP over a series of prediction numbers, Np. The success rate was defined as the fraction of 

complexes where at least one of their top Np decoys, ranked by CSs, was a near-native structure. 

Herein, the near-native structure had a root mean square deviation (RMSD) of RNA less than 10 

Å after the protein’s superposition. The hit count was the average number of near natives within 

the top Np decoys per complex. To rank the decoys, we extracted interface residues and built the 

binding-site graph from each decoy, like we did with the training set, and then simply counted 

the occurrence number for selected CSs at the binding site on each decoy. 

Performances for the proposed method on Testing Set I are shown in Figure 3, where the 

top two graphs illustrate the testing results from all 64 cases of Testing Set I and the bottom two 

graphs are results from 38 cases of this testing set. The reason we examined 38 testing cases was 

because 26 cases in our training set also existed in Testing Set I. Thus, to make the CS method 

more persuasive, we also tested the non-overlapped part of the testing sets. The figure also shows 

a performance comparison for the proposed approach with top 1,400-ranked 3-node CSs, and 

DECK-RP to demonstrate the effectiveness of our method for detecting the best decoys from a 

massive number of candidates. For all 64 cases in Testing Set I, the success rates at Np = 1, 10, 

and 100 are 17.07%, 34.15%, and 70.73% for the CS method, respectively; and 19.51%, 48.78%, 

and 75.61% for DECK-RP, respectively. The hit counts at Np = 1, 10, and 100 were 0.17, 1.22, 

and 5.61 for the CS method; and 0.20, 1.71, and 6.07 for DECK-RP, respectively. For the 38 

cases from Testing Set I, the success rates at Np = 1, 10, and 100 were 8.70%, 26.09%, and 
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60.87% for the CS method; and 21.74%, 52.17%, and 82.61% for DECK-RP, respectively. The 

hit count for these 3 prediction numbers were 0.09, 0.87, and 4.57 for the CS approach; and 0.22, 

1.61, and 6.43 for DECK-RP. Our method’s performance achieved a level comparable to DECK-

RP, an advanced, novel algorithm for recognizing 3-D protein-RNA structures. Our algorithm 

showed better performance, particularly when the testing set had 64 cases rather than 38. 

Furthermore, our method yielded a higher performance when being measured by the hit count. 

 

Figure 3. Success rate and hit count comparisons over the entire 64 cases of Testing Set I (top 

two graphs) and 38 cases of Testing Set I (bottom two graphs). Comparison is between the 

proposed algorithm, using top 1400 CSs of 3-node size, and DECK-RP 

Performances for the proposed method with Testing Set II are shown in Figure 4. As with 

Testing Set I, we conducted an experiment not only with all 72 cases, but also on 37 cases which 

remained after removing 35 complexes that already existed in our training set. For the 72 cases 
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of Testing Set II, the success rates at Np = 1, 10, and 100 were 32.00%, 56.00%, and 82.00% for 

the CS method, respectively; and 34.00%, 50.00%, and 86.00% for DECK-RP, respectively. The 

hit counts at Np = 1, 10, and 100 were 0.32, 2.32, and 7.42 for the CS method, respectively; and 

0.34, 2.38, and 7.78 for DECK-RP, respectively. For the 37 remaining cases, the success rates for 

the 3 prediction numbers were 30.77%, 50.00%, and 76.92% for the CS method, respectively; 

and 30.77%, 42.31%, and 84.62% for DECK-RP, respectively. The hit counts were 0.31, 2.31, 

and 6.69 for the CS approach, respectively; and 0.31, 2.04, and 7.31 for DECK-RP, respectively. 

We saw that our algorithm shows excellent results for Testing Set II, giving the same success rate 

as DECK-RP when the prediction number was 1 and even outperforming DECK-RP at Np = 10. 

As we know, a high success rate and hit count for low prediction numbers are preferred in many 

situations. Due to the small size of the testing set, our algorithm may not exhibit its full 

discrimination ability. 



42 

 

Figure 4. Success rate and hit count comparisons over the entire 72 cases of Testing Set II (top 

two graphs) and 37 cases of Testing Set II (bottom two graphs). Comparison is between the 

proposed algorithm, using top 1400 CSs of 3-node size, and DECK-RP 

In order to analyze the mechanism of the CS algorithm, we also compared the 

performances of various CSs. Figures 5 and 6 show how some 3-node CSs, ranging from the top 

500 to the top 1,400, perform at Np = 100 with Testing Sets I and II, respectively. Theoretically, 

the more CSs that are involved with distinguishing near-native decoys from docking ones, the 

more accurate the discrimination will be. This observation is also proven by the two figures 

because both success rates and hit counts, overall, increase when more CSs are used. However, it 

is also worth noting that the performance is not perfectly proportional to the number of CSs used. 

For example, the top 700 CSs form local maxima in most graphs of Figures 5 and 6. The reason 
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can either be because the testing data are not sufficient enough or because using more CSs may 

bring more noise. 

 

Figure 5. Performance comparison of the proposed method using difference CSs over 64 cases 

(top two graphs) and 38 cases (bottom two graphs) of Testing Set I 
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Figure 6. Performance comparison of the proposed method using difference CSs over 72 cases 

(top two graphs) and 37 cases (bottom two graphs) of Testing Set II 

3.4. Summary 

By taking advantage of the binding-site, repetitive sub-graph patterns, we proposed a 

graph-mining approach that can not only reveal the graph patterns that occur frequently at the 

protein-RNA binding sites, but can also predict 3-D protein-RNA complexes. We extracted 

interface areas from the protein surface and then built a graph for it, where the graph node 

represented an interface residue and an edge formed between residues that are close enough to 

each other. For all pairs of binding-site graphs in the training set, we searched for certain-size 

CSs and removed redundant ones. Then, the t-test method was applied to rank the distinct CSs. 

The proposed method was evaluated in terms of two discrimination abilities: recognizing RNA-

binding sites and distinguishing near-native decoys from docking decoys. The experimental 

results were highly competitive when tested on recently used benchmarks. Compared with other 

state-of-the-art methods, the proposed CS algorithm was easily understood and was simple while 
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being effective at the same time. Our method was also suitable for problems relevant to protein-

DNA interactions. 
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4. IMPROVEMENT FOR THE CS APPROACH 

There are three main tasks that we will consider as our potential future work: the first task 

is to improve the accuracy of our CS method for discriminating native-complex decoys and 

docking decoys by using the graph kernel technique; the second task is to use the CS method to 

locate the binding-site position on the protein surface; and the last task is to incorporate the 

binding-site properties to make the CSs more effective. These tasks are described, in detail, in 

the following sections. 

4.1. Improving the Common Sub-Graph Method with a Graph Kernel 

Conformation of the protein-nucleic acids complex can change in water or other solvents, 

causing structure changes for the binding sites on proteins. Thus, instead of enumerating the 

exact matching of CSs on the protein surface, we need to design a more mismatch-tolerant way 

to accommodate the structural changes. Inspired by the work of Alvarez and Yan (2012) who 

invented a graph-kernel method to predict protein functions, we plan to borrow their idea and 

apply it to our CS method in order to improve performance. Given a query protein with unknown 

function, their work encrypts the protein into a graph where each node represents a cluster of 

amino acids and is labeled with a vector containing information about the amino acid 

composition. Then, the graph is fed to the SVM as a kernel to compare its similarity with other 

encoded graphs that have known functions in the database. The function of the graph most 

similar to the query graph is predicted to be the one same as the query graph. Because the graph-

kernel method calculates the similarity between two graphs while our algorithm checks for the 

exact existence of a CS, we need to make some adjustments. Given a protein-nucleic acid decoy, 

instead of checking whether a CS occurs in the interface area of the decoy, we can calculate the 

similarity between this CS and each sub-graph of the same size on the decoy’s interface area. We 



47 

may also need to set a threshold for similarity. In this way, the CS method may become more 

mistake tolerant and robust.  

4.2. Locating the Binding-Site Using Common Sub-Graphs 

One strength of the proposed CS method is that it reveals the graph patterns that occur 

frequently at protein-RNA binding sites. However, this method does not directly tell where the 

binding site is on the protein surface. To solve this problem, we can extend our work by 

searching where the selected CSs occur. Motivated by Kasahara et al.’s (2010) work that is based 

on a knowledge-based approach using fragment-fragment contacting pairs to predict ligand-

binding sites on proteins, we plan to cluster the repetitively occurring CSs and rank the “hot 

spots” on protein surface. The “hot spot” with the highest score can be predicted to be the 

binding site.  

4.3. Extracting Common Sub-Graphs with More Effectiveness 

Many studies investigated the properties of RNA-binding site regions on proteins and 

found that RNA-binding sites have unique characteristics. For example, Iwakiri et al. (2012) 

classified the protein’s interface areas into three shapes, dented, intermediate, or protruded, and 

calculated the amino-acid compositions for each shape type. Iwakiri et al. (2012) also discovered 

the relationships between protein surface shapes and the contacting nucleotides. Huang et al. 

(2013) observed that positively charged amino acids prefer to appear at RNA-protein interfaces, 

and some other studies revealed that protein-RNA interfaces have an abundant occurrence of 

arginine-rich patterns (Jones et al., 2001; Kim et al., 2003, 2006; Li et al., 2008). In addition, 

several papers (Bahadur et al., 2008; Perez-Cano et al., 2010; Terribilini et al., 2006) also 

analyzed the residue preference at the interface. Sparked by these studies, we intend to exploit 

the proclivities of the residues and/or shapes at the protein interface to help build CSs with 
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stronger discriminatory ability. In addition to the aforementioned improvements, there are a 

couple other tasks we may do: the first thing is to conduct experiments to test the CS method’s 

ability to discriminate between native protein-RNA complexes and near-native decoys; the 

second task is to design our own protein-RNA docking procedure and to integrate it with our CS 

method.  
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