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ABSTRACT

We will focus on Beck’s conjecture that the chromatic number of a zero-divisor graph of a

ring R is equal to the clique number of the ring R. We begin by calculating the chromatic number

of the zero-divisor graphs for some finite rings and characterizing rings whose zero-divisor graphs

have finite chromatic number, known as colorings. We will discuss some properties of colorings and

elements called separating elements, which will allow us to determine that Beck’s conjecture holds

for rings that are principal ideal rings and rings that are reduced. Then we will characterize the

finite rings whose zero-divisor graphs have chromatic number less than or equal to four. In the

general case, we will discuss a local ring that serves as a counterexample to Beck’s conjecture.
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1. INTRODUCTION

We will investigate the connections between commutative ring theory and graph theory,

focusing on the results of Istvan Beck in [1], and the counterexample given by Anderson and Naseer

in [6]. Beck’s results are centered around the following conjecture, and the counterexample in [6]

shows this conjecture to be false.

Conjecture 1.1. The chromatic number of a zero-divisor graph of a ring R is equal to the clique

number of the ring R. That is, χ(Γ0(R)) = cl(R).

We will begin by discussing the chromatic number of some finite rings in Chapter 2. In

Chapter 3, we will present several important results about the chromatic number of a zero-divisor

graph of a ring R and the clique number of a ring R, and their relationship. Chapter 4 will consist

of a discussion about the properties colorings, which are rings whose zero-divisor graphs have finite

chromatic number. In Chapter 5, we will discuss the idea of separating elements which will help us

address Beck’s conjecture for reduced rings and principal ideal rings. Then we can finally describe

the finite rings whose zero-divisor graphs have finite chromatic number in Chapter 6. We will use

Chapter 7 to present and discuss a counterexample to Beck’s conjecture that χ(Γ0(R)) = cl(R)

provided by Anderson and Naseer in [6].

Before we begin our investigation, it is necessary to state some ring theoretic and graph

theoretic properties that will be important and useful.

1.1. Ring Theoretic Properties

Some good sources for our results in commutative algebra are [4], [5], and [2].

Definition 1.2. A ring is a set together with two binary operations, + and ·, satisfying the follow-

ing:

(a) (R, +) is an abelian group,

(b) (a · b) · c = a · (b · c) for all a, b, c ∈ R,

(c) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

The ring R is commutative if ab = ba for all a, b ∈ R. If there is an element 1 = 1R such that

1(a) = a(1) = a for all a ∈ R then R is said to have a multiplicative identity. All rings discussed

will be commutative with identity.
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Definition 1.3. An element x ∈ R is said to be a zero-divisor if there exists some element 0 6= y ∈ R

such that xy = 0. The set of all zero-divisors is denoted Z(R).

Definition 1.4. A subset C = {x1, . . . , xn} of R is called a clique if xixj = 0 for all i 6= j. The

clique number of R is denoted cl(R). If R contains a clique with n elements and every clique

contained in R has at most n elements, we say that the clique number of R is n and denote this

as cl(R) = n. If the sizes of the cliques of R are without bound, the clique number is defined to be

cl(R) = ∞.

Notice that an integral domain is a ring with identity that contains no non-trivial zero-

divisors.

Definition 1.5. An element x ∈ R is nilpotent if xn = 0 for some n ≥ 1.

The set of all nilpotent elements, also known as the nilradical, will be denoted N. R is said

to be reduced if N = (0).

Definition 1.6. An element x ∈ R is a unit if there is an element y ∈ R such that xy = 1.

A commutative ring in which every nonzero element is a unit is called a field.

Fact 1.7. Any field is an integral domain. In addition, any finite integral domain is a field.

Definition 1.8. The characteristic of a ring R is the smallest integer n > 0 such that nx = 0 for

all x ∈ R. If no such n exists then char(R) = 0

Definition 1.9. A nonempty subset I of a ring R is called an ideal of R if it is closed under the

operations of addition, and multiplication, i.e., for all r ∈ R and x ∈ I, rx ∈ I.

There are different types of ideals.

Definition 1.10. An ideal P is a prime ideal if ab ∈ P implies a ∈ P or b ∈ P.

Definition 1.11. An ideal M ⊂ R is a maximal ideal if for any other ideal I in R such that

M ⊆ I ⊆ R then either M = I or I = R.

Definition 1.12. An ideal I is principal if it is generated by one element, say I = (a).

Theorem 1.13. The nilradical is the intersection of all prime ideals. Furthermore, the nilradical

is the intersection of all minimal prime ideals.

Proof. Suppose that R is a commutative ring with identity. Let N be the ideal containing all

nilpotent elements of R. Let α ∈ N. Then αn = 0 for some n ∈ N. Therefore αn = 0 ∈ P for

every prime ideal P. Since P is a prime ideal, αn ∈ P implies that either α ∈ P or αn−1 ∈ P. If

α ∈ P, then we are done. If αn−1 ∈ P, then either α ∈ P or αn−2 ∈ P. Inductively, we continue
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this process until we have that if α2 ∈ P, then either α ∈ P or α ∈ P. Therefore α ∈ P, for every

prime ideal. Hence α ∈
⋂

P:primeP.

For the reverse containment, suppose that α /∈ N. We will show that α /∈
⋂

P:primeP.

Since α /∈ N, we have that αn 6= 0 for any n ∈ N. Let
∑

= {I ⊂ R | αn /∈ I for any n ∈ N}.

Since αn 6= 0 for any n ∈ N, we have that (0) ∈
∑

and hence
∑

is nonempty. Now take a chain

C = {Iα}α∈Λ ⊂
∑

. Let A =
⋃

α∈Λ Iα. Notice that A is an ideal that does not contain αn for any

n ∈ N and A is an upper bound of C since A ∈
∑

. Since every chain in
∑

has an upper bound

in
∑

, then by Zorn’s Lemma,
∑

has a maximal element, call it B. We now need to show that

B is a prime ideal that does not contain a power of α. Suppose that xy ∈ B but x, y /∈ B. Then

since B is a maximal element of
∑

, neither of the ideals (x) +B and (y) + B are elements of
∑

.

Therefore there exist m,n ∈ N such that αn ∈ (x) +B and αm ∈ (y) +B. Now let αn = r1x+ t1

and αm = r2y + t2, where r1, r2,∈ R and t1, t2 ∈ B. Then

αn+m = αnαm

= (r1x+ t1)(r2y + t2)

= r1xr2y + r1xt2 + t1r2y + t1t2

= r1r2xy + r1xt2 + t1r2y + t1t2.

Since r1r2xy ∈ (xy) ⊂ B and r1xt2 + t1r2y + t1t2 ∈ B, we have that αn+m ∈ (xy) + B = B. As

a result, B /∈
∑

, which is a contradiction. Therefore either x ∈ B or y ∈ B and hence B is a

prime ideal that does not contain αn for all n ∈ N. In particular, B does not contain α and hence

α /∈
⋂

P:primeP. Hence
⋂

P:primeP ⊆ N.

Thus N =
⋂

P:primeP.

There is a relationship between ideals and the quotient group R/I, which can be seen in

the next two theorems.

Theorem 1.14. Let R be a commutative ring with identity and I ⊆ R an ideal. Then the quotient

group R/I is a ring with multiplication given by (a+I)(b+I) = ab+I for all a, b ∈ R, and addition

given by (a+ I)+ (b+ I) = (a+ b)+ I for all a, b ∈ R. Moreover R/I is commutative with identity.

Theorem 1.15. Let R be a commutative ring with identity and let I ( R be an ideal.

(a) I is maximal if and only if R/I is a field.

(b) I is prime if and only if R/I is an integral domain.
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Proof. First we prove (a). Suppose R/I is a field. Then every nonzero element is a unit. Suppose

J is an ideal that properly contains I. Consider the element x ∈ J \ I. Since x /∈ I, the element

x+ I is a nonzero element in R/I and every nonzero element in R/I is a unit, there is an element

y + I ∈ R/I such that xy + I = (x+ I)(y + I) = 1 + I. Hence there is an element α ∈ I such that

xy + α = 1. Hence (x, I) = R. Since (x, I) ⊆ J , we must have that J = R, and as a result I is

maximal.

For the converse, suppose that I is a maximal ideal. Consider the nonzero element x+ I ∈

R/I. Since x + I is a nonzero element, x /∈ I. Therefore (I, x) = R. Hence there is an element

r ∈ R and α ∈ I such that rx + α = 1. Therefore (r + I)(x + I) = rx + I = 1 − α + I = 1 + I,

which implies that x+ I is a unit. As a result, R/I is a field.

Now we prove (b). Suppose that R/I is an integral domain. Then R/I has no nonzero

zero-divisors. Suppose xy ∈ I. Then (x + I)(y + I) = xy + I = 0 + I. Since R/I is an integral

domain, either x+ I = 0 + I or y + I = 0 + I. Therefore either x ∈ I or y ∈ I. Hence I is prime.

For the converse, suppose that I is prime. That is, if xy ∈ I, then x ∈ I or y ∈ I. Suppose

that x + I ∈ R/I is a nonzero zero-divisor. This means that x /∈ I. Then there is an element

y + I ∈ R/I such that (x+ I)(y + I) = xy + I = 0 + I. Since I is prime and x /∈ I, we must have

that y ∈ I. Therefore y + I = 0 + I and R/I is an integral domain.

Definition 1.16. Let R and S be rings. A function f : R → S is said to be a ring homomorphism

if

(a) f(a+ b) = f(a) + f(b) for all a, b ∈ R.

(b) f(ab) = f(a)f(b) for all a, b ∈ R.

Theorem 1.17. Two Isomorphism Theorems

(a) If f : R → S is a homomorphism, then f induces an isomorphism f : R/ker(f) → im(f).

(b) If I ⊆ J then J/I is an ideal of R/I and there is an isomorphism of rings (R/I)/(J/I) ∼= R/J .

Definition 1.18. (Localization) Let R is an integral domain. A nonempty subset S ⊆ R \ {0} is

said to be multiplicatively closed if s, t ∈ S implies that st ∈ S. If S ( R is a multiplicatively closed

subset of R \ {0}, the localization of R at S is given by RS = { r
s
| r ∈ R, s ∈ S} with the usual

addition and multiplication of fractions r1
s1

+ r2
s2

= r1s2+r2s1
s1s2

and
(

r1
s1

)(

r2
s2

)

=
(

r1r2
s1s2

)

. In addition,

two elements a
b
and c

d
in RP are equivalent if and only if there exists an element t ∈ S such that

t(ad− bc) = 0.
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The localization that we will encounter is when S = R \P, where P is a prime ideal. We

write RP = {r
s
| r ∈ R, s ∈ R \P}. An important result of localizations is that RP is a local ring

with maximal ideal PRP.

Definition 1.19. The Krull dimension of R is the supremum of the lengths of all chains of prime

ideals in R. If dim(R) = 0, every prime ideal is maximal and minimal.

Theorem 1.20. If R is a finite ring then dim(R) = 0.

Proof. Suppose that R is a finite ring and let P ⊂ R a prime ideal. Since P is prime, R/P is an

integral domain. Also, since R is finite, R/P is finite. Therefore R/P is a finite integral domain,

which is a field. Hence P is a maximal ideal, giving us that dim(R) = 0.

Definition 1.21. For subsets I and K of R, (I : K) = {r ∈ R | rK ⊂ I}.

Definition 1.22. The annihilator, denoted Ann(I) = (0 : I), of I ⊆ R is the set of all elements

r ∈ R such that for each s ∈ I, rs = 0. If I = {x} then Ann(x) = (0 : x), which is the set of

elements r ∈ R such that rx = 0.

Definition 1.23. A prime ideal P of R is called an associated prime ideal if P = Ann(x) for some

element x ∈ R. The set of all associated prime ideals is denoted Ass(R).

Definition 1.24. The proper ideals A and B of the ring R are said to be comaximal if A+B = R.

Theorem 1.25. (Chinese Remainder Theorem) Let A1, . . . , Ak be ideals in R. The map

R → R/A1 × · · · ×R/Ak defined by r 7→ (r +A1, . . . , r +Ak)

is a ring homomorphism with kernel A1 ∩ · · · ∩ Ak. If for each i, j ∈ {1, 2, . . . , k} with i 6= j the

ideals Ai and Aj are comaximal, then this map is surjective and A1 ∩ · · · ∩Ak = A1 · · ·Ak, so

R/(A1 · · ·Ak) ∼= R/(A1 ∩ · · · ∩Ak) ∼= R/A1 × · · · ×R/Ak.

The class of von Neumann regular rings will be of interest later. Here are a couple of basic

results on von Neumann regular rings.

Definition 1.26. R is von Neumann regular if for every x ∈ R, there exists y ∈ R such that

x = xyx.

Theorem 1.27. Any direct product or direct sum of fields is von Neumann regular.

Theorem 1.28. Suppose R is a commutative ring with identity. If R is von Neumann regular and

P ⊂ R be a prime ideal, then RP
∼= R/P.

Now that we have stated useful ring theoretic properties, we can define some graph theoretic

properties to understand the connection between commutative algebra and graph theory.
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1.2. Graph Theoretic Properties

We define some graph theoretic properties that will be vital in our investigation of Beck’s

conjecture. Some useful sources for graph theory are [8] and [3].

Definition 1.29. A graph is a pair G = (V,E) of sets such that E ⊆ V × V . It is always assumed

that V ∩ E = ∅. The elements of V are the vertices of the graph G, and the elements of E are the

edges of the graph G. The picture of a graph is drawn by denoting each vertex as a dot, and joining

two dots by drawing a line between them if two vertices form an edge.

Definition 1.30. A simple graph is an undirected graph that has no loops, which are edges connected

at both ends to the same vertex, and has no more than one edge between any two vertices. The

edges of the graph form a set, and each edge is a pair of distinct vertices. If a simple graph has n

vertices, then each vertex can be connected to, or adjacent to, at most n− 1 other vertices.

Definition 1.31. A complete graph is a simple graph in which every vertex is adjacent to every

other vertex. A complete graph on n vertices is denoted Kn.

Definition 1.32. A zero-divisor graph of R, denoted Γ0(R), is a simple graph whose vertex set

consists of elements of R including 0, and whose edge set is the set of elements (x, y) where xy = 0

for elements x, y ∈ R. If xy = 0, we say that x and y are adjacent.

Definition 1.33. The chromatic number of a zero-divisor graph of a ring R, denoted by χ(Γ0(R)),

is the minimal number of colors required to assign each vertex in a zero-divisor graph a color so

that no two adjacent vertices are assigned the same color.

Definition 1.34. In relation to the zero-divisor graph Γ0(R), a clique is a complete subgraph of

the zero-divisor graph. We will denote the clique number of Γ0(R) as cl(R), which is defined to

be the greatest integer r ≥ 1 such that Kr ⊂ Γ0(R). Also, if Kr ⊂ Γ0(R) for all r ≥ 1, we write

cl(R) = ∞.

For simplicity, we will refer to cl(Γ0(R)) as cl(R).

Definition 1.35. A graph Γ0(R) is said to be k−colorable if Γ0(R) can be colored with less than

or equal to k colors.

Theorem 1.36. A graph is 2−colorable if and only if the graph does not contain any odd cycle.

The following result comes from [7].
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Theorem 1.37. Let k be a positive integer, and let the graph G have the property that any finite

subgraph is k−colorable. Then G is k−colorable itself.
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2. THE CHROMATIC NUMBER OF SOME ZERO-DIVISOR

GRAPHS

Now that we have established some basic properties of zero divisor graphs, we will present

some of the rings from [1] and demonstrate how to calculate the chromatic number of their zero-

divisor graphs.

Our first proposition is about zero-divisor graphs with chromatic number one.

Proposition 2.1. χ(Γ0(R)) = 1 if and only if R = {0}.

Proof. Suppose that χ(Γ0(R)) = 1. Then the zero-divisor graph must not contain any adjacencies

and hence can only consist of the zero ring.

If R = {0}, then the zero-divisor graph can only consist of a vertex 0, which must have

chromatic number one.

The next proposition is about zero-divisor graphs with chromatic number two. We provide

a diagram in Figure 2.1 of each of the zero-divisor graphs for each of the rings mentioned in this

proposition.

Proposition 2.2. χ(Γ0(R)) = 2 if and only if R is an integral domain, R ∼= Z4, or R ∼=

Z2[X]/(X2).

Proof. For the forward direction, suppose that χ(Γ0(R)) = 2. In the case that R is an integral

domain, χ(Γ0(R)) = 2 because there are no nontrivial zero-divisors. Now, suppose that R is not an

integral domain. We will verify that R ∼= Z4 or R ∼= Z2[X]/(X2). Let xy = 0 for nonzero elements

x and y in R. Then the set {0, x, y} must form a clique. We know that χ(Γ0(R)) ≥ cl(R) is always

true, and we have that χ(Γ0(R)) = 2. Therefore cl(R) ≤ 2. As a result, we must have x = y.

Hence for a nonzero element x we have that x2 = 0. We know that Rx is a clique and we can

conclude that |Rx| = 2. Now let a ∈ Ann(x). Then ax = 0 and the set {0, x, a} is a clique in R.

Since cl(R) ≤ 2, either a = 0 or a = x. Therefore a is an element belonging Rx = {0, x}, giving us

that Ann(x) = Rx. Hence |Ann(x)| = |Rx| = 2.

Now consider the exact sequence 0 // Ann(x)
f

// R
g

// Rx // 0 , where g(r)=rx.

Certainly f is one-to-one as it is an inclusion map, and g is onto. Since g is onto, we have that

8



im(g) = Rx. It can be shown that im(f) = ker(g) and that Ann(x) = ker(g). Then by the

first isomorphism theorem, R/ker(g) ∼= im(g). Therefore Rx ∼= im(g) ∼= R/ker(g) ∼= R/im(f) ∼=

R/Ann(x). By Lagrange’s Theorem |Rx| = |R|/|Ann(x)|, which implies that |R| = |Rx||Ann(x)| =

2 · 2 = 4. We know that the characteristic of R must divide the order of R, so the characteristic of

R is either 2 or 4.

If char(R) = 4, we have R ∼= Z4.

If char(R) = 2, we can derive that R ∼= Z2[X]/(X2). Recall that cl(R) = 2, so R ≇ Z2
⊕

Z2

since it has a clique of size 3. Since χ(Γ0(R)) = 2, then for all nonzero elements a, b ∈ R where

a 6= b, we have that ab 6= 0. Since R must additively behave like Z2
⊕

Z2, we can write R as

{0, 1, x, x+1}. Since we are under the assumption that R is not an integral domain and ab 6= 0 for

a 6= b, we have that x2 = 0. Therefore, R ∼= Z2[X]/(X2).

For the reverse direction, suppose R is an integral domain. In an integral domain there

are no nontrivial zero-divisors. Therefore in the zero-divisor graph, 0 is adjacent to every nonzero

element while no two nonzero elements x and y can be adjacent. Therefore we can assign one color

to the 0 vertex and we can color the rest of the vertices with a second color. Hence χ(Γ0(R)) = 2.

In R ∼= Z4, there are four elements {0, 1, 2, 3}. The element 0 is adjacent to 1, 2, and 3, but

no two nonzero elements are adjacent. Therefore we can color 0 with one color and 1, 2, and 3 with

a second color. Hence χ(Γ0(Z4)) = 2.

Consider the ring R ∼= Z2[X]/(X2). This ring has elements of the form a + bx, where

a ∈ {0, 1} and b ∈ {0, 1}. Therefore R consists of the elements 0, 1, x, and 1 + x. Since no two

nonzero elements multiply to zero, they cannot be adjacent in the zero-divisor graph. Therefore we

can assign one color to 0 and a second color to the rest of the vertices. Hence χ(Γ0(Z2[X]/(X2))) =

2.

The next proposition gives us a clique number and chromatic number for rings of the form

R ∼= Zn.

Proposition 2.3. Let p1, p2, . . . , pk, q1, q2, . . . , qr be distinct prime numbers and

N = p2n1

1 . . . p2nk

k q2m1+1
1 . . . q2mr+1

r . Then χ(Γ0(ZN )) = cl(ZN ) = pn1

1 . . . pnk

k qm1

1 . . . qmr
r +r.

Proof. Let y0 = pn1

1 pn2

2 · · · pnk

k qm1+1
1 qm2+1

2 · · · qmr+1
r . Then we have that

y20 = p2n1

1 p2n2

2 · · · p2nk

k q2m1+2
1 q2m2+2

2 · · · q2mr+2
r = Nq1q2 · · · qr = 0 in ZN . Notice that ZN =

{0, 1, 2, . . . , pn1

1 . . . pnk

k qm1

1 . . . qmr
r − 1, . . . , p2n1

1 . . . p2nk

k q2m1+1
1 . . . q2mr+1

r − 1}. Consider y0ZN , which
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2

3

R ∼= Z4
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1

x

x+ 1

R ∼= Z2[X]/(X2)

Figure 2.1: Zero-divisor graphs of rings with chromatic number 2.

equals the set:

{0, y0, 2y0, . . . , y0(p
n1

1 . . . pnk

k qm1

1 . . . qmr
r − 1), . . . , y0(p

2n1

1 . . . p2nk

k q2m1+1
1 . . . q2mr+1

r − 1)}. Every ele-

ment beyond y0(p
n1

1 . . . pnk

k qm1

1 . . . qmr
r −1) = N −y0 is a repeat of some element before it. Consider

y0(p
n1

1 . . . pnk

k qm1

1 . . . qmr
r ) = N , which is 0 in ZN , and y0(p

n1

1 . . . pnk

k qm1

1 . . . qmr
r +1) = N + y0, which

is y0 in ZN . Therefore it must be that y0ZN = {0, y0, 2y0, . . . , y0(p
n1

1 . . . pnk

k qm1

1 . . . qmr
r − 1)}. In

fact, y0ZN forms a clique since every element is a multiple of y0 and y20 = 0 in ZN . This clique has

N
y0

= pn1

1 pn2

2 · · · pnk

k qm1

1 qm2

2 · · · qmr
r elements.

Let yi = y0
qi

for 1 ≤ i ≤ r. We claim that the set C = y0ZN ∪ {y1, y2, . . . , yr} is

a clique containing t = pn1

1 pn2

2 · · · pnk

k qm1

1 qm2

2 · · · qmr
r + r elements and that cl(R) ≥ t. Notice

that yi /∈ y0ZN for 1 ≤ i ≤ r since yi < y0 for 1 ≤ i ≤ r, which is because yi = y0
qi

=

pn1

1 pn2

2 . . . pnk

k qm1+1
1 . . . q

mi−1+1
i−1 qmi

i q
mi+1+1
i+1 . . . qmr+1

r , and for every 0 6= x ∈ y0ZN , we have that

x ≥ y0. Furthermore, if we take y0x ∈ y0ZN and yi ∈ {y1, y2, . . . , yr} we have that y0xyi =

y0x · y0
qi

=
y20x

qi
=

p
2n1
1 ···p

2nk
k

q
2m1+2

1 ···q
2mr+2
r x

qi
= Nq1 · · · qi−1qi+1 · · · qr, which is equal to 0 in ZN . If we

take distinct elements yi and yj in {y1, y2, . . . , yr}, we get that yiyj = y0
qi

· y0
qj

=
y20
qiqj

= Nq1···qr
qiqj

=

Nq1 · · · qi−1qi+1 · · · qj−1qj+1 · · · qr, which also equals 0 in ZN . Therefore C is a clique consisting of

t elements, giving us that cl(R) ≥ t. Hence χ(Γ0(ZN )) ≥ t.

To show that cl(R) ≤ t, we begin by assigning a distinct color to each element in C. Let

xi = N/pni

i for 1 ≤ i ≤ k. Notice that x1, . . . xk belong to C and have therefore been assigned a

color. We will let f(y) denote the color of element y and assign colors to the remaining elements in

ZN . Take x /∈ y0ZN . If pn1

1 · · · pnk

k divides x, we will define f(x) = f(yj), where j = min{i | qm1+1
i

10



does not divide x}. On the other hand, if pn1

1 · · · pnk

k does not divide x, we will define f(x) = f(xj),

where j = min{i | pni

i does not divide x}.

We will ensure that adjacent vertices are assigned distinct colors and that vertices assigned

the same color are not adjacent. If pn1

1 · · · pnk

k divides x, then x is assigned the same color as

yj. Since q
mj+1
j does not divide x, the exponent on qj in x must be strictly less that mj + 1.

Furthermore, xyj must contain a power of qj that is strictly less than (mj +1)(mj) = 2mj +1 since

yj = y0
qj

= pn1

1 pn2

2 . . . pnk

k qm1+1
1 . . . q

mj−1+1
j−1 q

mj

j q
mj+1+1
j+1 . . . qmr+1

r . Therefore xyj cannot be 0 in ZN ,

and x and yj cannot be adjacent. Hence x and yj can be assigned the same color.

Now suppose that pn1

1 · · · pnk

k does not divide x. In this case, x is assigned the same color

as xj. We will verify that x and xj are not adjacent. Since p
nj

j does not divide x, the exponent on

pj in x must be strictly less than nj. We also know that

xj = N/p
nj

j = p2n1

1 · · · p
2nj−1

j−1 p
nj

j p
2nj+1

j+1 · · · p2nk

k q2m1+1
1 · · · q2mr+1

r . Therefore xxj must contain a

power of pj that is strictly less than (nj)(nj) = 2nj Hence xxj cannot be 0 in ZN , which implies that

x and xj cannot be adjacent. Therefore we can conclude that χ(Γ0(ZN )) ≤ t. Since χ(Γ0(ZN )) ≥

cl(ZN ), we also have that cl(ZN ) ≤ t.
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3. RINGS WITH χ(Γ0(R)) < ∞

We will begin to characterize the rings whose zero-divisor graphs have finite chromatic

number as in [1]. These results will help us prove Beck’s first conjecture in the case of reduced

rings. We will start off by stating a definition and an important lemma which will be useful in

proving several other results.

Definition 3.1. An element x ∈ R is said to be finite if the ideal Rx is a finite set.

Lemma 3.2. If R has an infinite number of finite elements, then R contains an infinite clique.

Proof. Let x1, x2, . . . , xn, . . . be a list of distinct finite elements contained in R. By definition, the

ideals (x1)R, (x2)R, . . . (xn)R, . . . are finite sets. Consider the elements x1x2, x1x3, . . . , x1xn, . . . ,

which belong to the finite set (x1)R. Since (x1)R is a finite set, there must be an infinite list of

elements in the set {x1x2, x1x3, . . . , x1xn, . . . } that are equal. That is, for an infinite subsequence

{a1, a2, . . . , ak, . . . } of {2, 3, . . . n, . . . }, we have that x1xa1 = x1xa2 = · · · = x1xak = . . . . So we

will now consider the sequence {xa2 , xa3 , . . . , xak , . . . }. Since this sequence of elements is a subset

of the list of distinct finite elements of R, the ideals (xa1)R, (xa2)R, . . . (xak)R, . . . are finite sets.

Consider the elements xa1xa2 , xa1xa3 , . . . , xa1xak , . . . , which belong to the finite set (xa1)R.

Since (xa1)R is a finite set, there must be an infinite list of elements belonging to the set of elements

{xa1xa2 , xa1xa3 , . . . , xa1xak , . . . } that are equal to each other. Therefore for an infinite subsequence

{a1,1, a1,2, . . . , a1,k, . . . } of {a2, . . . ak, . . . }, we have that xa1xa1,1 = xa1xa1,2 = · · · = xa1xa1,k = . . . .

If we continue this process, we can create a subsequence y1, y2, . . . yk, . . . of the sequence

x1, x2, . . . , xn, . . . such that yiyj = yiym when j,m > i, where y1 = x1, y2 = xa1 , y3 = xa1,1 , and so

on.

Now, we let zij = yi − yj. Suppose that zijzkr = 0. We will show that this equality holds

for i < j < k < r. Notice that zijzkr = (yi−yj)(yk−yr) = yiyk−yiyr−yjyk+yjyr = 0 when either

yiyk = yiyr and yjyk = yjyr, or yiyk = yjyk and yiyr = yjyr. Without loss of generality, we will

assume that yiyk = yiyr and yjyk = yjyr. By definition, yiyk = yiyr when k, r > i and yjyk = yjyr

when k, r > i. Since it does not matter which of i and j is larger and which of k and r are larger,

we can assume i < j and k < r. Hence zijzkr = 0 if i < j < k < r.

12



We will construct an infinite clique. Consider z1,2z3,4 = 0 = z1,2z3,5. Certainly z3,4 6= z3,5,

which implies that at least one of z3,4 and z3,5 will be different from z1,2. If it happens to be

the case that z3,4 is not equal to z1,2, then {z1,2, z3,4} is a clique containing two elements. Notice

that z6,7, z6,8, z6,9 are distinct elements and if one of them, say z6,9, is not contained in the clique

{z1,2, z3,4}, then we can conclude that {z1,2, z3,4, z6,9} is a clique consisting of three elements. We

can continue in this way to construct an infinite clique.

Now we will state and prove a lemma from [1] that relates the size of a clique in R to that

of a clique in R/I when I is a finite ideal.

Lemma 3.3. Suppose that I is a finite ideal of R. R contains an infinite clique if and only if R/I

has an infinite clique.

Proof. Suppose that R has an infinite clique C and consider the homomorphism φ : R → R/I.

Notice that the homomorphic image of C in R/I is C, where C = {c + I | c ∈ C}. Also, the

homomorphic image C of C is a clique in R = R/I since for any two elements x1 + I and x2 + I in

C, we have that (x1+I)(x2+I) = x1x2+I = 0+I. We will verify that since I is a finite ideal in R, C

is an infinite clique. Suppose that C is finite and consider φ(C) = C, where C = {x1, x2, . . . , xn, . . . }

and C = {x1, x2, . . . , xn, . . . }. Since C is finite, there are infinitely many xi1 , xi2 , · · · ∈ C such that

xij = xik . Therefore for all j 6= k, xij − xik ∈ I. Hence I must be infinite, which is a contradiction.

Hence C must be an infinite clique.

For the converse, suppose that R = R/I has an infinite clique {xi}
∞
i=1, where xi = xi + I.

Therefore xi xj = (xi + I)(xj + I) = xixj + I = 0 + I = I, which implies that xixj ∈ I for i 6= j.

Since I is a finite ideal, the set {xixj}i 6=j is a finite set. We can apply the technique from the proof

of the previous lemma to construct an infinite clique in R.

The next two lemmas relate nilpotent elements in R and the size of the clique of R.

Lemma 3.4. If the ring R contains a nilpotent element which is not finite, then R contains an

infinite clique.

Proof. Suppose R contains a nilpotent element that is not finite; that is, Rx is an infinite set and

xn = 0 for some n. We will proceed by induction on n to show that R must contain an infinite

clique. If x2 = 0 and Rx is infinite, then R contains an infinite clique Rx. Suppose that this lemma

holds for nilpotent elements of degree n − 1. Consider xn = 0 for n ≥ 3 and suppose that Rx is

infinite. Let y = x2. Then yn−1 = (x2)n−1 = x2n−2 = 0. We have two cases, either Ry is infinite
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or Ry is finite. If Ry is infinite, then by the induction hypothesis, R contains an infinite clique.

Suppose now that Ry is finite. Then we have that Rx = Rx/Ry is an infinite clique in R/Ry using

the same arguments as in the proof of the previous lemma. By Lemma 3.3 since Ry is a finite ideal

and R/Ry has an infinite clique, we can conclude that R has an infinite clique.

Lemma 3.5. If the nilradical of R is infinite, then R has an infinite clique.

Proof. Suppose that the nilradical N of R is infinite. If every element in N is finite, then by Lemma

3.2, R contains an infinite clique. Now, we suppose that N contains an element that is not finite.

Then by Lemma 3.4, R contains an infinite clique.

The following two lemmas establish some properties of annihilators in a ring.

Lemma 3.6. If R be a reduced ring which does not contain an infinite clique, then R has the

ascending chain condition on ideals of the form Ann(x).

Proof. Suppose R is a reduced ring that does not contain an infinite clique and suppose that we

have an infinite chain Ann(a1) ⊂ Ann(a2) ⊂ Ann(a3) ⊂ · · · . Let xi ∈ Ann(ai) \ Ann(ai−1) for

i = 2, 3, · · · . Consider yn = xnan−1 for n = 2, 3, · · · , which are nonzero elements of R. We will

verify that these elements form a clique. Without loss of generality, suppose that k < j and consider

yiyj. Since xi ∈ Ann(ai) and i < j, we have that xi ∈ Ann(ai) ⊂ Ann(aj−1) ⊂ Ann(aj). Therefore

we have that yiyj = (xiai−1)(xjaj−1) = (ai−1xj)(xiaj−1) = (ai−1xj)(0) = 0. Hence the nonzero

elements yn = xnan−1 for n = 2, 3, · · · form a clique.

We will verify that yi 6= yj when i 6= j. Since yiyj = 0, if we were to have yi = yj then

we would have y2i = y2j = 0. This is a contradiction of the fact that R is a reduced ring. Hence

yi 6= yj when i 6= j. Since R does not contain an infinite clique, the nonzero elements yn = xnan−1

for n = 2, 3, · · · form a finite clique {y1, y2, . . . , yn}. Therefore the chain Ann(a1) ⊂ Ann(a2) ⊂

Ann(a3) ⊂ · · · must stabilize.

Lemma 3.7. If x and y are elements in R such that Ann(x) and Ann(y) are different prime ideals,

then xy = 0.

Proof. Suppose that x and y are elements in R such that Ann(x) and Ann(y) are different prime

ideals and assume that xy 6= 0. Then x /∈ Ann(y) and y /∈ Ann(x). Since Ann(x) and Ann(y) are

prime ideals, we can show that (Ann(x) : y) = Ann(x) and (Ann(y) : x) = Ann(y). By definition,

Ann(x) ⊆ (Ann(x) : y) and Ann(y) ⊆ (Ann(y) : x). To show that (Ann(x) : y) ⊆ Ann(x), we

begin by letting z ∈ (Ann(x) : y). Then zy ∈ Ann(x), and since Ann(x) is prime and y /∈ Ann(x),
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we have that z ∈ Ann(x). The containment that (Ann(y) : x) ⊆ Ann(y) can be proven similarly.

Hence (Ann(x) : y) = Ann(x) and (Ann(y) : x) = Ann(y).

We will now prove that (Ann(x) : y) = Ann(xy) and (Ann(y) : x) = Ann(xy) so that we

can conclude that Ann(x) = Ann(y), which will give us that xy = 0. For (Ann(x) : y) ⊆ Ann(xy),

let z ∈ (Ann(x) : y). Then zy ∈ Ann(x) and therefore zyx = 0. Therefore z ∈ Ann(xy). For

the reverse containment, let z ∈ Ann(xy). Then zxy = 0 and therefore zy ∈ Ann(x). Therefore

z ∈ (Ann(x) : y). Hence (Ann(x) : y) = Ann(xy). Notice that (Ann(y) : x) = Ann(xy) can be

proven similarly. Hence we have Ann(x) = (Ann(x) : y) = (Ann(y) : x) = Ann(y), which is a

contradiction since Ann(x) and Ann(y) were assumed to be distinct prime ideals. Hence it must

be that xy = 0.

Now that we have proved these lemmas, we can prove the following theorem which relates

the chromatic number of a zero-divisor graph, the clique number of a ring, and the nilradical of a

ring.

Theorem 3.8. If R is a reduced ring, the following statements are equivalent.

(a) χ(Γ0(R)) is finite.

(b) cl(R) is finite.

(c) The zero ideal in R is a finite intersection of prime ideals.

(d) The zero-divisor graph of R does not contain an infinite clique.

Proof. For (a) ⇒ (b), if the clique number of the zero-divisor graph of R is infinite, then the zero-

divisor graph of R has an infinite complete subgraph, which cannot possibly be colored with a finite

number of colors.

For (a) ⇒ (d), if the zero-divisor graph of R contained an infinite clique, it would be

necessary to have infinitely many colors to color infinitely many vertices.

For (b) ⇒ (d), if the clique of the zero-divisor graph of R is finite, the zero-divisor graph of

R cannot have an infinite clique.

Now we will consider the implication (c) ⇒ (a). Suppose that the zero ideal in R is a finite

intersection of prime ideals. That is, assume (0) =
⋂n

i=1 Pi, where each Pi is a prime ideal for

i = 1, . . . , n. We define f to be a coloring on the zero-divisor graph of R by assigning color 0 to the

element 0 by f(0) = 0 and assigning to each nonzero x ∈ R contained in the zero-divisor graph the

color pertaining to the minimum number i such that x is not inPi. That is, f(x) = min{i | x /∈ Pi}.
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We will verify that no two adjacent vertices can be assigned the same color. Notice that 0

is assigned its own color since it is adjacent to every element in a zero-divisor graph. Suppose that

two nonzero elements x and y are adjacent. Then xy = 0 and therefore xy ∈ Pi for all 1 ≤ i ≤ n.

Since Pi is prime for all 1 ≤ i ≤ n, we have that for each i, either x ∈ Pi or y ∈ Pi. Suppose

that x and y are assigned the same color. Let j = min{i | x /∈ Pi} and j = min{i | y /∈ Pi}.

Then f(x) = j = f(y) and therefore x /∈ Pj and y /∈ Pj . Hence xy /∈ Pj , which is a contradiction.

Therefore we require the use of at most n + 1 colors and Hence χ(Γ0(R)) ≤ n + 1. Therefore the

chromatic number of the zero-divisor graph of R must be finite.

Now, we must prove that (d) ⇒ (c). Suppose that R is a reduced ring whose zero-divisor

graph does not contain an infinite clique. Therefore by Theorem 3.6, R satisfies an ascending chain

condition on ideals of the form Ann(a). Let Ann(xi) with i ∈ I be the distinct maximal members

of the family {Ann(a) | a 6= 0}. We will verify that each Ann(xi) is a prime ideal. Suppose that

ab ∈ Ann(xi) and b /∈ Ann(xi). Then bxi 6= 0 and a ∈ Ann(bxi). Now, Ann(xi) ( Ann(bxi) and

by maximality of Ann(xi), we have that Ann(xi) = Ann(bxi). Therefore a ∈ Ann(xi). Hence each

Ann(xi) is a prime ideal.

We claim that index set I is finite by Lemma 3.7. Suppose that the index set I is infinite.

By Lemma 3.6, we know that if xi and xj in R are elements such that Ann(xi) and Ann(xj)

are distinct prime ideals, then x and y must be adjacent. Since we have an infinite index set I,

this means that we have an infinite clique but we know that there are no infinite cliques in the

zero-divisor graph of R. Hence I must be a finite index set, say of order n.

We now claim that
⋂n

i=1Ann(xi) = 0. Let 0 6= x ∈
⋂n

i=1 Ann(xi). Then x ∈ Ann(xi) and

xxi = 0 for all i ∈ I. Therefore xi ∈ Ann(x). We will verify that Ann(x) ⊆ Ann(xi) for some i ∈ I.

Suppose that Ann(x) * Ann(xi) for all i ∈ I. Then Ann(x) is maximal and Hence Ann(x) =

Ann(xi) for some i ∈ I. This is a contradiction. Therefore xi ∈ Ann(x) ⊆ Ann(xi). Hence x2i = 0,

which implies that xi is nilpotent but since R is reduced xi = 0. This is a contradiction to the

fact that xi 6= 0. Therefore
⋂n

i=1 Ann(xi) = 0 and the zero ideal is a finite intersection of prime

ideals.

Now, we can prove Beck’s conjecture for reduced rings as in [1].

Theorem 3.9. Suppose that R is a nonzero reduced ring. If χ(Γ0(R)) < ∞, then R has finitely

many minimal prime ideals. If R has n < ∞ minimal prime ideals, then χ(Γ0(R)) = cl(R) = n+1.
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Proof. Suppose that χ(Γ0(R)) < ∞. Since R is reduced, the nilradical N of R is equal to the

zero ideal. Then by Theorem 3.8, the zero ideal in R is a finite intersection of prime ideals, i.e.

N = (0) = P1∩· · ·∩Pn. Since every prime ideal Pi contains a minimal prime ideal Qi, we have that

the zero ideal is equal to the intersection of minimal prime ideals. That is, N = (0) = Q1∩· · ·∩Qn.

We will assume that each of these minimal ideals are distinct.

We need to show that R has finitely many minimal prime ideals. Suppose that R has

infinitely many minimal prime ideals. Since the nilradical is equal to the intersection of all minimal

prime ideals, we write (0) = N =
⋂

i∈I Qi. Therefore Q1 ∩ · · · ∩Qn = (0) =
⋂

i∈I Qi. As a result,

Q1∩· · ·∩Qn ⊆
⋂

i∈I Qn+i ⊆ Qn+i for each i ∈ I. Since Q1 · · ·Qn ⊆ Q1∩· · ·∩Qn, we also have that

Q1 · · ·Qn ⊆ Qn+i for each i ∈ I. Since each Qn+i is prime, we must have Q1 ⊆ Qn+i or Q2 ⊆ Qn+i

or · · · or Qn ⊆ Qn+i for each i ∈ I. Also, since each Qn+i is minimal, we must have Q1 = Qn+i

or Q2 = Qn+i or · · · or Qn = Qn+i for each i ∈ I. Therefore the list of all minimal primes in R,

{Q1, . . . , Qn}, is exhaustive. Therefore R must have n many minimal prime ideals.

We can now show that χ(Γ0(R)) = cl(R) = n + 1. By the proof of Theorem 3.7, we have

that χ(Γ0(R)) ≤ n + 1. We know that χ(Γ0(R)) ≥ cl(R) is always true. The only thing left

to prove is that cl(R) ≥ n + 1. We will prove this inequality by constructing a clique. Suppose

that Q1 ∩ · · · ∩ Qk−1 ∩ Qk+1 ∩ · · · ∩ Qn 6= (0) for each k ∈ {1, . . . , n}. We will select a nonzero

xk ∈ Q1 ∩ · · · ∩ Qk−1 ∩ Qk+1 ∩ · · · ∩ Qn where xk /∈ Qk for each k ∈ {1, . . . , n}. Then xk ∈ Qi

for every i 6= k and xk /∈ Qk. Notice that xkxi ∈ Qi for all i 6= k since xk ∈ Qi for all i 6= k,

and xkxi ∈ Qk for k 6= i since xi ∈ Qk. As a result, we have that xkxi ∈ Qi for i ∈ {1, . . . , n}.

Therefore xkxi = 0 for all i 6= k. Hence {0, x1, . . . , xn} forms a clique consisting of n + 1 elements

and cl(R) ≥ n+ 1. Finally, we have established that cl(R) = χ(Γ0(R)) = n+ 1.

Now we can state and prove Theorem 3.9 for a ring R that is not necessarily reduced, using

some of the lemmas we stated previously.

Theorem 3.10. The following conditions are equivalent for a ring R.

(a) χ(Γ0(R)) is finite.

(b) cl(R) is finite.

(c) The nilradical in R is finite and equals a finite intersection of prime ideals.

(d) The zero-divisor graph of R does not contain an infinite clique.
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Proof. For (a) ⇒ (b), if the clique number of the zero-divisor graph of R is infinite, then the zero-

divisor graph of R has an infinite complete subgraph, which cannot possibly be colored with a finite

number of colors.

For (a) ⇒ (d), if the zero-divisor graph of R contained an infinite clique, it would be

necessary to have infinitely many colors to color infinitely many vertices.

For (b) ⇒ (d), if the clique of the zero-divisor graph of R is finite, the zero-divisor graph of

R cannot have an infinite clique.

Now we will consider the implication (c) ⇒ (a). Suppose that the nilradical in R is finite

and equals a finite intersection of prime ideals. That is, assume N =
⋂n

i=1Pi, where each Pi

is a prime ideal for i = 1, . . . , n. We will define a coloring f on the elements pertaining to the

zero-divisor graph of R which are outside of N by f(x) = min{i | x /∈ Pi}.

We will verify that no two adjacent vertices can be assigned the same color. Notice that 0

is assigned its own color since it is adjacent to every element in a zero-divisor graph. Suppose that

two nonzero elements x and y are adjacent. Then xy = 0 and therefore xy ∈ Pi for all 1 ≤ i ≤ n.

Since Pi is prime for all 1 ≤ i ≤ n, we have that for each i, either x ∈ Pi or y ∈ Pi. Suppose

that x and y are assigned the same color. Let j = min{i | x /∈ Pi} and j = min{i | y /∈ Pi}.

Then f(x) = j = f(y) and therefore x /∈ Pj and y /∈ Pj . Hence xy /∈ Pj , which is a contradiction.

Therefore we require the use of at most n+ 1 colors.

Since N is finite, we need a finite number of additional colors to color the elements in N. We

can use one of the colors used on the nonzero zero-divisors to color the elements that are not zero-

divisors since the elements that are not zero-divisors cannot be adjacent to nonzero zero-divisors.

Therefore the chromatic number of the zero-divisor graph of R must be finite.

Now, we must prove that (d) ⇒ (c). Suppose that the zero-divisor graph of R does not have

an infinite clique. Then by Lemma 3.5, the nilradical N of R is finite, and by Lemma 3.3, R/N

does not have an infinite clique. Consider R/N. We can prove that R/N is reduced by showing

that R/N has no nilpotent elements, which would give us that the nilradical of R/N is 0. Suppose

that x ∈ R/N and that x is nilpotent with xn = 0 for some n in R/N. Then xn = 0 implies that

xn ∈ N, which implies that (xn)k = 0 for some k. Therefore x ∈ N and Hence x = 0. Therefore the

nilradical in R/N must be (0), which means that R/N is a reduced ring. By Theorem 3.8, since

R/N is reduced, (0) is a finite intersection of prime ideals, so we write (0) = P1∩P2∩· · ·∩Pn. Since
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there is a one-to-one correspondence between the prime ideals of R containing N and prime ideals

in R/N, we can write N as a finite intersection of prime ideals. That is, N = P1∩P2∩· · ·∩Pn.
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4. COLORINGS AND THEIR PROPERTIES

Since we have characterized the rings whose zero-divisor graphs have finite chromatic num-

ber, it is necessary to discuss some of the properties of these rings as in [1]. We will start by defining

a coloring.

Definition 4.1. A ring R is called a coloring if χ(Γ0(R)) is finite.

This next lemma from [1] will help us prove a theorem that generalizes Lemma 3.7.

Lemma 4.2. If I is a finite ideal in a ring R, then (I : x)/Ann(x) is a finite R−module.

Proof. Consider the exact sequence 0 // Ann(x)
f

// (I : x)
g

// (I : x)x // 0 where g(t) =

tx. Notice that (I : x)x ⊂ I and since I is finite so is (I : x)x. We will verify that (I : x)x ∼=

(I : x)/Ann(x) because then we can conclude that (I : x)/Ann(x) is finite. Consider the homo-

morphism g : (I : x) → (I : x)x. By the First Isomorphism Theorem, we have that im(g) ∼=

(I : x)/ker(g). Since g is onto, (I : x)x = im(g). We will verify that ker(g) = Ann(x). Let

t ∈ ker(g). Then 0 = g(t). By definition, we know that g(t) = tx. Therefore tx = 0 and Hence

t ∈ Ann(x). Now let t ∈ Ann(x). Then tx = 0. Since g is onto, tx = g(t) and, Hence g(t) = 0

which implies that t ∈ ker(g). Therefore ker(g) = Ann(x). Hence (I : x)x ∼= (I : x)/Ann(x) and

(I : x)/Ann(x) is finite as an R−module.

We will now generalize Lemma 3.7 as in [1].

Theorem 4.3. A coloring has the ascending chain condition on ideals of the form Ann(a).

Proof. Let R be a coloring and assume that Ann(x1) ⊂ Ann(x2) ⊂ · · · . Since R is a coloring,

we know that the chromatic number of the zero-divisor graph is finite and Hence by Theorem

3.10, the nilradical N of R is finite and N = P1 ∩ P2 ∩ · · · ∩ Pn, where Pi is a prime ideal for

q ≤ i ≤ n. We will assume that xi /∈ N for i = 1, 2, . . . . Let x ∈ R. Then we claim that

(N : x) = (P1 : x) ∩ (P2 : x) ∩ · · · ∩ (Pn : x). We know that (N : x) = ((P1 ∩P2 ∩ · · · ∩Pn) : x).

We will verify that ((P1 ∩P2 ∩ · · · ∩ Pn) : x) = (P1 : x) ∩ (P2 : x) ∩ · · · ∩ (Pn : x). Let

t ∈ ((P1 ∩ P2 ∩ · · · ∩ Pn) : x). Then tx ∈ P1 ∩ P2 ∩ · · · ∩ Pn, which implies that tx ∈ Pi for

1 ≤ i ≤ n. Therefore t ∈ (Pi : x) for 1 ≤ i ≤ n and as a result t ∈ (P1 : x)∩(P2 : x)∩· · ·∩(Pn : x).

Hence the containment ((P1 ∩P2 ∩ · · · ∩Pn) : x) ⊆ (P1 : x) ∩ (P2 : x) ∩ · · · ∩ (Pn : x) holds.
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For the reverse containment, let t ∈ (P1 : x) ∩ (P2 : x) ∩ · · · ∩ (Pn : x). Then t ∈ (Pi : x)

for 1 ≤ i ≤ n, which gives us that tx ∈ Pi for 1 ≤ i ≤ n. Therefore tx ∈ (P1 ∩ P2 ∩ · · · ∩ Pn),

which implies that t ∈ ((P1 ∩ P2 ∩ · · · ∩ Pn) : x). Hence (P1 : x) ∩ (P2 : x) ∩ · · · ∩ (Pn : x) ⊆

((P1 ∩P2 ∩ · · · ∩Pn) : x).

Therefore we have established that ((P1 ∩P2 ∩ · · · ∩Pn) : x) = (P1 : x) ∩ (P2 : x) ∩ · · · ∩

(Pn : x). Therefore we write (N : x) = (P1 : x)∩ (P2 : x)∩· · ·∩ (Pn : x). We claim that the family

{(N : x) | x ∈ R} is finite. We will prove that for each (Pi : x), either (Pi : x) = R or (Pi : x) = Pi.

Suppose that x ∈ Pi. Then (Pi : x) = R because the product between and a ∈ R and x will be

in Pi since Pi is an ideal. On the other hand, suppose that x ∈ R \Pi. Let a ∈ Pi. Then since

Pi is an ideal, we have that ax ∈ Pi. Therefore a ∈ (Pi : x). For the reverse containment, take

a ∈ (Pi : x). Then ax ∈ Pi. Since x /∈ Pi and Pi is a prime ideal, we have that a ∈ Pi. As a

result, the family {(N : x) | x ∈ R} is finite. Therefore there must exist a subsequence yj of xi for

which (N : y1) = (N : y2) = · · · .

Consider Ann(y1) ⊂ Ann(y2) ⊂ · · · . Then Ann(y1) ⊂ Ann(y2) ⊂ · · · ⊂ (N : y1). Now,

we take a1 ∈ Ann(y1), a2 ∈ Ann(y2) \ Ann(y1), a3 ∈ Ann(y3) \ Ann(y2), · · · . We will show that

ai+Ann(y1) 6= aj +Ann(y1) for i < j. Suppose that ai+Ann(y1) = aj +Ann(y1). Then ai−aj ∈

Ann(y1). Let ai − aj = b′1 where b′1 ∈ Ann(y1). Since Ann(y1) ⊂ Ann(yi), then b′1 ∈ Ann(yi)

which implies that 0 = b′1yi = (ai − aj)yi = aiyi − ajyi = 0 − ajyi. Hence ajyi = 0, implying that

aj ∈ Ann(yi). This contradicts the choice of aj . Therefore ai +Ann(y1) 6= aj +Ann(y1) for i < j.

Therefore (N : y1)/Ann(y1) is infinite. This contradicts Lemma 4.2. Hence the ascending chain

condition holds.

This theorem leads us to the next theorem, as in [1], which allows us to prove that given a

Coloring, every minimal prime ideal is an associated prime ideal.

Theorem 4.4. Suppose that R is a coloring. Then Ass(R) is finite and Z(R) =
⋃

P∈Ass(R)P.

Furthermore, any minimal prime ideal P is an associated prime ideal and RP is a field or a finite

ring.

Proof. Suppose that R is a coloring. Then by definition, χ(Γ0(R)) < ∞. By Lemma 3.10, if the

chromatic number of a zero-divisor graph is finite, then so is the clique number. Hence cl(R) < ∞.

Our first claim is that Ass(R) is finite. Suppose that Ass(R) is infinite. Let P ∈ Ass(R). Then

P = Ann(x) for some x ∈ R. Since Ass(R) is infinite, there are infinitely many prime ideals
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P1,P2, . . . ,Pn . . . such that Pi = Ann(xi) for some xi ∈ R. By Lemma 3.7, xixj = 0 for all

distinct prime ideals Ann(xi) and Ann(xj). Therefore the zero-divisor graph of R contains an

infinite clique. This is a contradiction to the fact that the clique number is finite. Hence Ass(R) is

finite.

Now, we will prove that Z(R) =
⋃

P∈Ass(R)P. Let x ∈ Z(R). Then x ∈ Ann(r) for some

nonzero r ∈ R and by the previous theorem we have that Ann(r) ⊂ Ann(y) for some maximal

Ann(y), which implies that x ∈ Ann(y). In the proof of Theorem 3.8, we proved that maximal

members of the family {Ann(z) | z 6= 0} are prime and therefore Ann(y) = P. This allows us

to conclude that Ann(y) is an associated prime ideal. For the reverse containment, suppose that

x ∈
⋃

P∈Ass(R)P. Then x ∈ P for some prime ideal P ∈ Ass(R). Since P is an associated prime

ideal, we have that P = Ann(s) for some s ∈ R. Therefore x ∈ Ann(s), which in turn implies that

x ∈ Z(R). Hence Z(R) =
⋃

P∈Ass(R)P.

Our next claim is that every minimal prime ideal P is an associated prime ideal. We will

begin by letting P be a minimal prime ideal and supposing that x /∈ P. Now, we will prove that

Ann(x) ⊂ P. Let z ∈ Ann(x). Then zx = 0 ∈ P and since P is prime and x /∈ P, we have that

z ∈ P and we have established that Ann(x) ⊂ P. We will now choose Ann(t) to be maximal in

the family {Ann(y) | Ann(y) ⊂ P}. This family is nonempty since Ann(x) ⊂ P. We claim that

Ann(t) is a prime ideal and that Ann(t) = P. Let ab ∈ Ann(t), a /∈ Ann(t), and b /∈ Ann(t). Let

a /∈ P and consider Ann(ta). We will show that Ann(t) ⊂ Ann(ta) ⊂ P. Let β ∈ Ann(ta). Then

β(ta) = (βa)t = 0 and therefore βa ∈ Ann(t) ⊂ P. Since P is prime and a /∈ P, we must have

β ∈ P. Therefore Ann(ta) ⊂ P. We will show that Ann(t) ⊂ Ann(ta). We know that b ∈ Ann(ta)

because b(ta) = (ab)t = 0 holds since ab ∈ Ann(t) and b /∈ Ann(t). Therefore Ann(t) ⊂ Ann(ta),

which is a contradiction to the maximality of Ann(t). Next, we will suppose that a ∈ P and

consider Ann(ta). If Ann(ta) ⊂ P, we will arrive at the same contradiction as before. However, if

we suppose that a ∈ P and Ann(ta) * P, then we have c ∈ Ann(ta) and c /∈ P. Therefore we will

consider Ann(tc). Similarly to the case when a /∈ P, it can be shown that Ann(t) ⊂ Ann(tc) ⊂ P

to arrive at the same contradiction. Hence Ann(t) must be prime. Since P is a minimal prime, we

have that Ann(t) = P, which allows us to conclude that every minimal prime ideal is an associated

prime ideal.
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We must show that for a minimal prime P, either RP is a field or a finite ring. Let P be a

minimal prime ideal. Then we know that P = Ann(x) for some x ∈ R. Suppose that x /∈ P and

notice that PRP is defined as PRP = {p · r
s
| p ∈ P, r ∈ R, s ∈ R \P}. Let p · r

s
= pr

s
∈ PRP.

Notice that prx = 0 since p ∈ P = Ann(x). Therefore pr
s

= 0
1 since for x /∈ P, we have that

x(pr · 1− 0 · s) = prx = 0. Since 0
1 is the zero element in PRP, we can conclude that PRP = (0).

Since PRP = (0) is the unique maximal ideal of RP, the only ideals of RP are (0) and RP. Suppose

that 0 6= x ∈ RP. Since xRP is a nonzero ideal in RP, it must be that xRP = RP. Therefore

1 ∈ xRP, which implies that there exists an element y ∈ RP such that xy = 1. Since every nonzero

element has an inverse, we must have that RP is a field.

Now, suppose that x ∈ P. We will show that RP must be finite. Since the nilradical, N, is

the intersection of all minimal prime ideals, let N = P ∩P1 ∩ · · · ∩Pk where P1, . . . ,Pk are the

rest of the minimal prime ideals. Take y ∈ P1 ∩ · · · ∩Pk \P. Then yP ⊆ N since P,P1, . . . ,Pk

are ideals. We claim that PRP = NRP. Let a
b
∈ PRP. Then a

b
= ca

cb
since 1 ∈ R \ P is such

that 1(acb − bca) = 0. Notice that ca ∈ N and cb ∈ R \P. Therefore PRP ⊆ NRP. The reverse

containment comes from the fact that N ⊆ P. Hence PRP = NRP. Since N is finite, we have that

PRP is finite.

Certainly, R/P ∼= Rx. Since x ∈ P = Ann(x), we have x2 = 0. Therefore Rx forms

a clique. Notice that cl(R) is finite since R is a coloring. Therefore Rx is finite. Now RPx ∼=

Rx ⊗R RP
∼= (R/P) ⊗R RP

∼= (R/P)P ∼= RP/PRP. Notice that RPx ⊂ PRP. Since PRP is

finite, so is RPx. Therefore RP/PRP is finite. Since |RP| = |PRP||RP/PRP| and each of PRP

and RP/PRP are finite, we have that RP is finite.

The next theorem gives us a characterization of associated primes within colorings.

Theorem 4.5. Let P be an associated prime ideal in a coloring. Then either RP is a field or P

is a maximal ideal.

Proof. Since P is an associated prime ideal, we let P = Ann(x) for some x ∈ R. Suppose that

x ∈ P. Then x ∈ Ann(x) and Hence x2 = 0 which implies that Rx forms a clique. We will prove

that Rx must be finite. Suppose that Rx is not finite. Then by Lemma 3.4, R contains an infinite

clique. This a contradiction to R being a coloring. Therefore Rx must be finite. Since P is prime,

R/P is an integral domain. Also, R/P ∼= Rx. To see this congruence, consider φ : R → Rx.

By the First Isomorphism Theorem, R/ker(φ) ∼= im(φ). It can be shown that im(φ) = Rx and
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ker(φ) = P, where P = Ann(x). Therefore using these equalities and isomorphism, R/P ∼=

R/ker(φ) ∼= im(φ) ∼= Rx. Since R/P ∼= Rx and Rx is finite, R/P is also finite. Since R/P is a

finite integral domain, it is a field. Hence P is a maximal ideal.

Now suppose that x /∈ P. Using the same argument as in the proof of the previous theorem,

since x /∈ P and P = Ann(x), we can conclude that PRP = (0) and that RP is a field.

As a corollary to this theorem, we have the following.

Corollary 4.6. An associated prime ideal in a coloring is either a maximal ideal or a minimal

prime ideal.

Proof. From the previous theorem, we have that an associated prime ideal in a coloring is a maximal

ideal or RP is a field, so we are partially finished.

Now assume that RP is a field. Suppose that P is not a minimal prime ideal. Then there

is a prime ideal Q contained in P; that is, Q ⊂ P. Since there is a one-to-one correspondence

between the prime ideals in RP and the prime ideals in R contained in P, S−1Q is a prime ideal

in RP. Certainly, S−1Q ⊂ S−1P = PRP, where PRP = (0) since RP is a field and PRP is the

unique maximal ideal in RP. This is a contradiction. Hence P must be a minimal prime ideal.

Now we will discuss some of the properties of a family of colorings discussed in [1]. This

first theorem is a fairly obvious property.

Theorem 4.7. A subring of a coloring is itself a coloring.

Proof. Suppose that the ring R is a coloring. Then χ(Γ0(R)) < ∞. Let S ⊆ R be a subring and

consider the zero-divisor graph on R. Since S is a subset of R, the zero-divisor graph of S is a

subgraph of the zero-divisor graph of R. Therefore χ(Γ0(S)) ≤ χ(Γ0(R)). Hence S must be a

coloring.

The next few results prove that a quotient ring of a coloring is also a coloring.

Theorem 4.8. Let I be a finite ideal in a coloring R. Then R/I is a coloring.

Proof. Suppose that I is a finite ideal in a coloring R. Since R is a coloring, we know that

χ(Γ0(R)) < ∞. By Theorem 3.10, χ(Γ0(R)) < ∞ is equivalent to cl(R) < ∞. Since R cannot

contain an infinite clique, neither can R/I by Lemma 3.3. Therefore cl(R/I) < ∞ and equivalently

by Theorem 3.10, χ(Γ0(R)) < ∞. Therefore R/I is a coloring.

Lemma 4.9. Let x be an element in a coloring R. Then R/Ann(x) is a coloring.
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Proof. Since R is a coloring, χ(Γ0(R)) < ∞ and by Theorem 3.10, cl(R) < ∞. Suppose that

{r1, r2, . . . , rn} is a clique in R = R/Ann(x). Then ri 6= rj for i 6= j and rirj = 0 for i 6= j.

Therefore (ri+Ann(x))(rj+Ann(x)) = rirj+Ann(x) = Ann(x), which implies that rirj ∈ Ann(x).

Hence rirjx = 0. We will verify that r1x, r2x, . . . , rnx are distinct elements in R. Suppose that

rix = rjx for i 6= j. Then rix − rjx = (ri − rj)x = 0, which implies that ri − rj ∈ Ann(x). Let

z = ri − rj , where z ∈ Ann(x). Then ri +Ann(x) = (rj + z+Ann(x)) = (rj +Ann(x)). Therefore

ri = rj. This is a contradiction our assumption. Hence r1x, r2x, . . . , rnx forms a clique in R. This

demonstrates that, given a clique in R, we can find a corresponding clique in R of the same size.

In addition, since cl(R) < ∞, every clique in R is finite in size and is bounded by some value, say

n. The size of any clique in R will also be bounded by n. As a result, cl(R) < ∞ and by Theorem

3.10, χ(Γ0(R)) < ∞, which implies that R is a coloring.

Theorem 4.10. Let I be a finite ideal in a coloring R and assume x ∈ R. Then R/(I : x) is a

coloring.

Proof. By Lemma 4.9, we know that R/Ann(x) is a coloring. Also, by Lemma 4.2, we have that

(I : x)/Ann(x) is a finite ideal in R/Ann(x). Therefore by Theorem 4.8, we conclude that

(R/Ann(x))/((I : x)/Ann(x)) is a coloring. Then (R/Ann(x))/((I : x)/Ann(x)) ∼= R/(I : x)

and therefore R/(I : x) is a coloring.

The next theorem is about the finite product of colorings.

Theorem 4.11. A finite product of colorings is a coloring.

Proof. Consider the product of two colorings R1 and R2 given by R ∼= R1 ×R2. Since R1 and R2

are colorings, χ(Γ0(R1)) < ∞ and χ(Γ0(R2)) < ∞. By Lemma 3.10, this implies that cl(R1) < ∞

and cl(R2) < ∞. Suppose that cl(R1) = n and cl(R2) = m. Let C be a maximal clique in

R = R1 × R2. If we restrict the first coordinate, there are at most n elements that form a clique,

and if we restrict the second coordinate, there are at most m elements that form a clique. Hence

|C| ≤ nm. By Theorem 3.10, since C is a maximal clique, the clique number of R is finite and

therefore χ(Γ0(R1 ×R2)) < ∞. Hence R ∼= R1 ×R2 is a coloring.

We can now generalize Lemma 4.9.

Theorem 4.12. Let I be a finitely generated ideal in a coloring. Then R/Ann(I) is a coloring.

Proof. Let I = (x1, x2, . . . , xn). We claim that Ann(I) = Ann(x1)∩Ann(x2)∩ · · · ∩Ann(xn). Let

z ∈ Ann(I). Then zI = 0. Therefore zxi = 0 for 1 ≤ i ≤ n. Hence z ∈ Ann(xi) for 1 ≤ i ≤ n, which
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gives us that z ∈ Ann(x1)∩ · · · ∩Ann(xn). Therefore Ann(I) ⊆ Ann(x1)∩ · · · ∩Ann(xn). For the

reverse containment, let z ∈ Ann(x1) ∩ · · · ∩Ann(xn). Then z ∈ Ann(xi) for 1 ≤ i ≤ n. Therefore

txi = 0 for 1 ≤ i ≤ n and we have that t ∈ Ann(I). Hence Ann(x1) ∩ · · · ∩ Ann(xn) ⊆ Ann(I),

giving us that Ann(I) = Ann(x1) ∩Ann(x2) ∩ · · · ∩Ann(xn).

We claim that the map φ : R/Ann(I) → R/Ann(x1)× · · · ×R/Ann(xn) defined by

φ(r +Ann(I)) = (r +Ann(x1), . . . , r +Ann(xn)) is an injection. Suppose that (r +Ann(x1), . . . ,

r + Ann(xn)) = (s + Ann(x1), . . . , s + Ann(xn)). Then r + Ann(xi) = s + Ann(xi) for all i ∈

{1, . . . , n}. Therefore r − s ∈ Ann(xi) for all i ∈ {1, . . . , n}. As a result, r − s ∈ Ann(x1) ∩

Ann(x2) ∩ · · · ∩ Ann(xn) = Ann(I). Hence r + Ann(I) = s + Ann(I), and we have that φ is an

injection.

By Lemma 4.9, R/Ann(xi) is a coloring for each i ∈ {1, . . . , n}. Therefore R/Ann(x1) ×

· · · ×R/Ann(xn) is a coloring by Theorem 4.11. Since φ is an injection, R/Ann(I) is a subring of

R/Ann(x1)× · · · ×R/Ann(xn). Hence by Theorem 4.7, R/Ann(I) is a coloring.

The next theorem will allow us to consider the localization RS of a Coloring R give us an

idea of the chromatic number of the zero-divisor graph of RS and clique number of RS in relation

to the chromatic number of the zero-divisor graph of R and clique number of R.

Theorem 4.13. Let S be a multiplicatively closed set in a coloring R. Then RS is a coloring. In

addition, χ(Γ0(RS)) ≤ χ(Γ0(R)) and cl(RS) ≤ cl(R).

Proof. Since R is a coloring, we know that χ(Γ0(R)) < ∞. Suppose that χ(Γ0(R)) = n. As a

result of [7], to show that the zero-divisor graph of RS is n−colorable, it suffices to show that

every finite subset of RS is n−colorable. Let x1, x2, . . . , xm be a finite subset of RS , where x1 =

r1
s
, x2 = r2

s
, · · · xm = rm

s
. We will show that this finite subset of RS is n−colorable. To do this,

we will associate each xi with an element r′i and show that xixj = 0 if and only if r′ir
′
j = 0,

so that we can assign the same colors to the x′is that are assigned to the r′i’s. To show this

equivalence, we will establish some notations. By the properties of localizations, if xixj = 0 for

i 6= j then xixj = ri
s
·
rj
s
=

rirj
s2

= 0
s2
, which implies that there exists for each pair i and j, where

i, j ∈ {1, 2, . . . m}, an element uij ∈ S such that uij(rirjs
2 − 0 · s2) = 0. Therefore uijrirjs

2 = 0,

where we define sij = uijs
2. Let t = Πslk, where 1 ≤ l, k ≤ m and define r′i = tri. We now have

the tools necessary to show that xixj = 0 if and only if r′ir
′
j = 0.
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For the forward containment, suppose that xixj = 0 for i 6= j. Then using the properties

of localization we discussed, for each pair i and j there exists an element sij ∈ S such that

sijrirj = 0. From the discussion above, and since s2ijrirj occurs in the product (Πslk)
2rirj , we have

that r′ir
′
j = (tri)(trj) = (Πslk)ri(Πslk)rj = (Πslk)

2rirj = 0. Therefore r′ir
′
j = 0.

To show the reverse direction, suppose that r′ir
′
j = 0. Using the equalities defined in our

discussion above, 0 = r′ir
′
j = (tri)(trj) = (Πslk)ri(Πslk)rj = (Πslk)

2rirj. We let u = (Πslk)
2 and

therefore urirj = 0. Hence u(rirjs
2 − 0 · s2) = 0 and we have that

rirj
s2

= 0
s2
. Therefore xixj = 0.

We will now verify that the r′i’s are distinct. Suppose that r
′
i = r′j. Then (Πslk)ri = (Πslk)rj ,

which implies that Πslk(ri − rj) = 0 and therefore by letting u = Πslk we have a u ∈ S such that

u(ri− rj) = 0. Therefore u(ris− rjs) = 0 which implies ri
s
=

rj
s
. This is a contradiction to the fact

that the xi’s are distinct.

Now we have a correspondence between xi and r′i, so xi can be colored with the same

color as r′i. Therefore we have a valid coloring of x1, . . . , xm. Since χ(Γ0(R)) = n, {x1, . . . , xm}

is n−colorable. Therefore χ(Γ0(RS)) ≤ n which gives us that RS is a coloring and χ(Γ0(RS)) ≤

χ(Γ0(R)). This also tells us that cl(RS) ≤ cl(R).
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5. SEPARATING ELEMENTS AND BECK’S CONJECTURE

Now that we have established some properties about colorings, we will discuss separating

elements which will help us determine when χ(Γ0(R)) = cl(R), as in [1]. We begin by defining

separating elements.

Definition 5.1. An element x in R is separating if x 6= 0 and ab = 0 imply that xa = 0 or xb = 0.

To give a more local property, let I be an ideal. An element x ∈ I is I−separating if xI 6= (0) and

whenever ab = 0 for some elements a, b ∈ I then xa = 0 or xb = 0.

As stated in [1], there are some remarks regarding this definition. Note that in this defini-

tion, it is not necessary for a 6= b. Also, an element x is separating if and only if x is R−separating.

An R−separating element x contained in I is not I−separating if xI = (0), but if it is the case

that xI 6= (0) then x is I−separating.

We are now ready to establish some theorems about separating elements.

Proposition 5.2. If Ann(x) is a prime ideal then x is separating.

Proof. Suppose that Ann(x) is a prime ideal. Assume x 6= 0 and let y, z ∈ R be elements such that

yz = 0. Then yzx = 0, which implies yz ∈ Ann(x). Since Ann(x) is prime, either y ∈ Ann(x) or

z ∈ Ann(x). Therefore either yx = 0 or zx = 0. Thus x is separating.

Proposition 5.3. A nonzero ideal I in a coloring contains a separating element.

Proof. Let R be a coloring and I be a nonzero ideal. Consider the family of annihilators {Ann(xi) |

0 6= xi ∈ I}. Since I 6= 0, this family is nonempty. By Theorem 4.3, a coloring has an ascending

chain condition on ideals of the form Ann(a), so the family of annihilators {Ann(xi) | 0 6= xi ∈ I}

must have a maximal element, say Ann(x).

We claim that Ann(x) is prime. Let ab ∈ Ann(x) and b /∈ Ann(x). Then abx = 0 and

bx 6= 0. Therefore a ∈ Ann(bx). Notice that Ann(x) ( Ann(bx). Since Ann(x) is a maximal

element of {Ann(xi) | 0 6= xi ∈ I}, we must have that Ann(x) = Ann(bx). As a result, a ∈ Ann(x)

and therefore Ann(x) is prime.

By Proposition 5.3, since Ann(x) is prime, x is a separating element.

Theorem 5.4. Let I be an ideal in a coloring not contained in the nilradical. Then I contains an

I−separating element.
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Proof. Let I be an ideal in a coloring R not contained in the nilradical. Consider the family of

annihilators {Ann(xi) | 0 6= xi ∈ I}. Notice that I 6= (0) since I is not contained in the nilradical

N of R. Therefore this family of annihilators is nonempty.

We claim that I 6⊆ Ann(xi) for all 0 6= xi ∈ I. Suppose that I ⊆ Ann(xi) for all nonzero

xi ∈ I. Then xiI = (0) for all nonzero xi ∈ I. Therefore x2i = 0 for all xi ∈ I and every element

in I is nilpotent implying that I ⊆ N. This a contradiction to I not contained in the nilradical.

Therefore I 6⊆ Ann(xi) for all 0 6= xi ∈ I.

Since R is a coloring, by Theorem 4.3, R has the ascending chain condition on ideals of the

form Ann(a). Therefore the family of annihilators {Ann(xi) | 0 6= xi ∈ I} must have a maximal

element, say Ann(x) where I * Ann(x). Using the same argument as in the previous Proposition,

Ann(x) is prime. By Theorem 5.2, since Ann(x) is a prime ideal, x is R−separating. We know

that xI 6= (0) because I * Ann(x). Hence by definition, x is I−separating.

Theorem 5.5. Let I be a principal ideal in a coloring. If I2 6= (0) then I contains an I−separating

element.

Proof. Let I = Rx be a principal ideal in a coloring R and suppose that x2 6= 0. Consider the

family of annihilators {Ann(x2y) | y ∈ R and x2y 6= 0}. Notice that this set is nonempty since

Ann(x2) is in this family. Since R has an ascending chain condition on annihilators, the family of

annihilators {Ann(x2y) | y ∈ R and x2y 6= 0} has a maximal element, call it Ann(x2t) = (0 : x2t).

This element is prime by the same argument provided in Proposition 5.3.

We claim that xt is an I−separating element. Let a, b ∈ I and assume ab = 0. Since I is

principal, a = rx and b = sx. Then ab = (rx)(sx) = rsx2 = 0, which implies that rs ∈ (0 : x2t).

Since (0 : x2t) is prime, either r ∈ (0 : x2t) or s ∈ (0 : x2t). If r ∈ (0 : x2t), then we have that

rx2t = a(xt) = 0. If s ∈ (0 : x2t), then sx2t = b(xt) = 0. In addition, (tx)x = tx2 6= 0 implies that

(tx)I 6= (0).

Hence tx is an I−separating element.

We will now begin to see the importance of separating elements in determining the rela-

tionship between the clique number of a ring and the chromatic number of the zero-divisor graph

of a ring.

Lemma 5.6. Let I be an ideal in a coloring and assume x ∈ I is I−separating. Let I ′ = Ann(x)∩I.

(1) If x2 = 0 then cl(I ′) = cl(I) and χ(Γ0(I
′)) = χ(Γ0(I)).
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(2) If x2 6= 0 then cl(I ′) = cl(I)− 1 and χ(Γ0(I
′)) = χ(Γ0(I)) − 1.

Proof. For (1), we assume that x2 = 0. Then x ∈ Ann(x). Therefore since x ∈ I and x ∈ Ann(x),

we conclude that x ∈ I ′.

We will first show that cl(I ′) = cl(I). Since I ′ ⊆ I, certainly cl(I ′) ≤ cl(I). For the other

inequality, let cl(I) = n and choose a maximal clique C = {y1, . . . , yn} in I. We will consider two

cases: x ∈ C and x /∈ C.

Case 1: Suppose x ∈ C. Then x = yi for some i ∈ {1, . . . , n}, which implies that xyj = 0

for all j ∈ {1, . . . , i− 1, i + 1, . . . , n}. Therefore yj ∈ Ann(x) for all j ∈ {1, . . . , i− 1, i + 1, . . . , n}.

As a result, yj ∈ I ′ for all i ∈ {1, . . . , i − 1, i + 1, . . . , n}. Hence C ′ = {y1, . . . , yi−1, x, yi+1, . . . , yn}

is a clique in I ′ and therefore cl(I ′) ≥ n = cl(I). Therefore in this case, cl(I ′) = cl(I).

Case 2: Now suppose that x /∈ C. Then there exists an element in yi ∈ C such that xyi 6= 0.

Since C is a clique, yiyj = 0 for all i ∈ {1, 2, . . . , i− 1, i + 1, . . . n}. Since x is I−separating, either

yix = 0 or yjx = 0. But yix 6= 0, and so yjx = 0 for all j ∈ {1, 2, . . . , i − 1, i + 1, . . . n}. Therefore

y1, . . . , yi−1, yi+1, . . . , yn ∈ Ann(x) implying that y1, . . . , yi−1, yi+1, . . . , yn ⊆ I ′. Therefore C ′ =

{y1, y2, . . . , yi−1, x, yi+1, . . . , yn} is a clique of size n in I ′. Hence cl(I ′) ≥ n = cl(I). In this case,

again cl(I ′) = cl(I).

Now, we will show that χ(Γ0(I
′)) = χ(Γ0(I)). Since I ′ ⊆ I, certainly we have χ(Γ0(I

′)) ≤

χ(Γ0(I)). For the reverse inequality, we begin by coloring the zero-divisor graph of I ′ first. Since

x ∈ Γ0(I
′), it has been assigned a color. We claim that if y ∈ Γ0(I \ I

′) then y can be assigned the

same color as x. Since y ∈ I \ I ′, then y /∈ Ann(x) and therefore xy 6= 0. As a result, x and y are

not adjacent and can be assigned the same color.

Our next claim is that any two elements in a, b ∈ Γ0(I \ I ′) are not adjacent and can be

assigned the same color. If ab = 0, then since x is I−separating, we have that either xa = 0 or

xb = 0. However, since a, b /∈ Ann(x), we must have ab 6= 0. Therefore a and b are not adjacent

and can be assigned the same color.

We now claim that no other element z ∈ Γ0(I
′) that was assigned the same color as x ∈

Γ0(I
′) is adjacent to an element y ∈ Γ0(I \ I

′) which was also assigned the same color as x. Notice

that xz 6= 0 since they were assigned the same color in I ′. If yz = 0, then xy = 0 or xz = 0 since x

is I−separating. However, neither of these is not possible since y /∈ Ann(x) and xz 6= 0. Therefore

yz 6= 0 which tells us that y and z cannot be adjacent and can be assigned the same color.
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Since we are able to color Γ0(I) using the same colors used to color Γ0(I
′), we have that

χ(Γ0(I)) ≤ χ(Γ0(I
′)). Therefore χ(Γ0(I

′)) = χ(Γ0(I)).

For (2), assume that x2 6= 0. Then x /∈ Ann(x), which results in x /∈ I ′. We begin by proving

that cl(I ′) = cl(I)− 1. Consider a maximal clique C in I ′ where cl(I ′) = n. All elements belonging

to C are annihilators of x, so C ∪{x} forms a clique in I of size n+1. Therefore cl(I ′)+ 1 ≤ cl(I),

which implies cl(I ′) ≤ cl(I) − 1. For the reverse inequality, let C = {y1, y2, . . . , yn} be a maximal

clique in I. We have two cases: x /∈ C and x ∈ C.

Case 1: If x /∈ C, there is a yi ∈ C such that xyi 6= 0. Without loss of generality, assume

yi = y1. Since C is a clique, we know that y1y2 = y1y3 = · · · = y1yn = 0. Since x is I−separating,

for all k ∈ {2, . . . , n} we have either xy1 = 0 or xyk = 0,but xy1 6= 0. This implies that yk ∈ Ann(x).

Therefore C ′ = {x, y2, . . . , yn} is a clique in I ′ of size cl(I), resulting in cl(I ′) ≥ cl(I).

Case 2: Suppose that x ∈ C. Without loss of generality, assume that x = y1. Then since

C is a clique, xy2 = xy3 = · · · = xyn = 0. Therefore yk ∈ Ann(x) ⊆ I ′ for all k ∈ {2, . . . , n}.

Therefore C ′ = {y2, . . . , yn} forms a clique in I ′ and has size n− 1. Hence cl(I) − 1 ≤ cl(I ′). As a

result, we have proved that cl(I ′) = cl(I)− 1.

We will show that χ(Γ0(I
′)) = χ(Γ0(I)) − 1. We begin by coloring the zero-divisor graph

of I ′. We know that x /∈ I ′. Consider y ∈ I ′ = Ann(x) ∩ I. Since y ∈ Ann(x), we have that

yx = 0. Therefore x must be assigned a color not already used in Γ0(I
′). Now consider a, b ∈ I \ I ′.

Certainly a, b /∈ Ann(x), so xa 6= 0 and xb 6= 0. If ab = 0, then xa = 0 or xb = 0 since x is

I−separating. However, we know that xa 6= 0 and xb 6= 0. Therefore ab 6= 0. This tells us that the

elements in Γ0(I \ I
′) are not adjacent and therefore can be assigned the same color. For this, we

only need to include one additional color not used in Γ0(I
′). Therefore χ(Γ0(I)) ≤ χ(Γ0(I

′)) + 1.

For the reverse inequality, color I first. Since I ⊆ I ′, we can remove the vertices that

belong to Γ0(I \ I ′) leaving us only with Γ0(I
′) which is already colored. For y ∈ I ′, we know

that y ∈ Ann(x) and therefore xy = 0. This means that x must have been assigned a color that

is different from those used on elements in Γ0(I
′). Since we removed the vertices belonging to

Γ0(I \ I ′), the color used for x was removed and so we need one less color than was used to color

Γ0(I). Therefore χ(Γ0(I
′)) ≤ χ(Γ0(I)) − 1. Finally, we have that χ(Γ0(I

′)) ≤ χ(Γ0(I))− 1.

We are now ready to prove the following theorem, which is a generalization of the previous

theorem.
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Theorem 5.7. Let I be an ideal in a coloring. Let {x1, . . . , xn} be a clique of I−separating

elements. Define k = |{i | x2i 6= 0}| and I ′ = I ∩ Ann(x1, . . . , xn). Then cl(I ′) = cl(I) − k and

χ(Γ0(I
′)) = χ(Γ0(I))− k.

Proof. We begin by showing that cl(I ′) = cl(I)−k. Let x1, . . . , xk ∈ {xi | x
2
i 6= 0} and xk, . . . , xn ∈

{xj | x
2
j = 0}. Then xi /∈ Ann(xi) for i ∈ {1, . . . , k} and xj ∈ Ann(xj) for j ∈ {k+1, . . . , n}. Since

{x1, . . . , xn} is a clique, we have that xi ∈ Ann(x1, . . . , xi−1, xi+1, . . . , xn) for i ∈ {1, . . . , k} and

xj ∈ Ann(x1, . . . , xn) for j ∈ {k + 1, . . . n}. As a result x1, . . . , xk /∈ I ′ and xk+1, . . . xn ∈ I ′.

Suppose that C ′ is a clique in I ′ of size cl(I ′). Notice that I ′ ⊆ I and all elements in C ′ are

annihilators of x1, . . . , xk. Therefore since x1, . . . , xk /∈ I ′, we have that C ′ ∪ {x1, . . . , xk} forms a

clique of size cl(I ′) + k in I. Hence cl(I) ≥ cl(I ′) + k, giving us that cl(I ′) ≤ cl(I)− k.

Suppose that C = {y1, . . . , ym} is a clique in I. We will show that cl(I ′) ≥ cl(I) − k. We

will construct a clique in I ′ using C. For each xi ∈ {x1, . . . , xn} either xi ∈ C or xi /∈ C. If xj /∈ C

for some j ∈ {1, . . . , n} then there exists an element, without loss of generality, yj ∈ C such that

xjyj 6= 0. Since C is a clique, yjyr = 0 for all r ∈ {1, . . . , j − 1, j + 1, . . . ,m}. In addition, since xj

is I−separating, we have that either xjyj = 0 or xjyr = 0 for all r ∈ {1, . . . , j − 1, j + 1, . . . ,m}.

However, we know that xjyj 6= 0 and therefore we must have xjyr = 0 for all r ∈ {1, . . . , j−1, j+1,

. . . ,m}. Hence we have a new clique C1 = {y1, . . . , yj−1, xj , yj+1, . . . , ym}. We can do this process

for every xi ∈ {x1, . . . , xn} that is not contained in C to get a new maximal clique of the same size.

Therefore without loss of generality, we will assume that {x1, . . . , xn} ⊆ C.

Since xi ∈ C for all i ∈ {1, . . . , k}, we assume without loss of generality that xi = yi for

all i ∈ {1, . . . , k}. Since {y1, . . . , ym} is a clique, xiyi = 0 for all i, j ∈ {1, . . . , k} where i 6= j, and

for all i ∈ {k + 1, . . . n} and j ∈ {k + 1, . . . ,m}. Therefore yn+1, . . . , ym ∈ Ann(x1, . . . , xn). Recall

that x1, . . . , xk /∈ I ′ and xk+1, . . . , xn ∈ I ′. Therefore if we restrict the clique C to I ′, we have that

C ′ = {xk+1, . . . , xn, yn+1, . . . , ym} is a clique in I ′. Hence cl(I ′) ≥ cl(I) − k.

Therefore we conclude that cl(I ′) = cl(I)− k.

We will now show that χ(Γ0(I
′)) = χ(Γ0(I)) − k. We begin by coloring the zero-divisor

graph of I. Then I ′ ⊆ I is colored. We will remove the vertices belonging to I \ I ′. Recall that

x1, . . . , xk /∈ I ′. Notice that all elements in I ′ are in Ann(x1, . . . , xn) and therefore annihilate the

elements x1, . . . , xk. As a result, the elements x1, . . . , xk will require k colors and these colors do not

appear in I ′. Hence I ′ can be colored using χ(Γ0(I))−k colors. Therefore χ(Γ0(I
′)) ≥ χ(Γ0(I))−k.
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Now we color the zero-divisor graph of I ′. We know that x1, . . . , xk /∈ I ′. Consider x ∈

I ′ = I ∩ Ann(x1, . . . , xn). Since x ∈ Ann(x1, . . . , xn), we have that xxi = 0 for all i ∈ {1, . . . , n}.

Therefore x1, . . . , xk must each be assigned colors not already used in Γ0(I
′). Now consider y ∈

I \ I ′ where y /∈ {x1, . . . , xk}. Then y /∈ Ann(x1, . . . , xn), and therefore there exists an element

xi ∈ {x1, . . . , xn} such that yxi 6= 0. Hence y can be assigned the same color as xi. Finally,

take two elements a, b ∈ I \ I ′ where a, b /∈ {x1, . . . , xk}. Certainly, axi 6= 0 and bxi 6= 0 for all

i ∈ {1, . . . , n}. If ab = 0 then either axi = 0 or bxi = 0 for all i ∈ {1, . . . , n} since xi is I−separating

for all i ∈ {1, . . . , n}. However, we know that axi 6= 0 and bxi 6= 0 for all i ∈ {1, . . . , n}. Therefore

ab 6= 0. This tells us that the elements in Γ0(I\I
′) that are not in {x1, . . . , xk} are not adjacent, and

therefore can be assigned the same color. Hence we only need k additional colors not used in coloring

Γ0(I
′) to color Γ0(I). Thus χ(Γ0(I)) ≥ χ(Γ0(I

′)) + k, giving us that χ(Γ0(I
′)) ≤ χ(Γ0(I)) − k.

Therefore we can conclude that χ(Γ0(I
′)) = χ(Γ0(I))− k

The next result is a corollary to the previous theorem.

Corollary 5.8. Let P1, . . . ,Pn be the minimal prime ideals in a coloring R. Let ε(R) = |{i | RPi

is a field }|. Then cl(R) = cl(N) + ε(R) and χ(Γ0(R)) = χ(Γ0(N)) + ε(R).

Proof. We know that the nilradical is the intersection of all minimal prime ideals, so N = P1∩· · ·∩

Pn. Certainly, N = P1 ∩ · · · ∩Pn ∩R. Since P1, . . . ,Pn are minimal primes, by Theorem 4.4 they

are also associated primes. Therefore Pi = (0 : xi) = Ann(xi) for some xi ∈ R for all i ∈ {1, . . . , n}.

Then by Lemma 3.7, xixj = 0 for all i 6= j. Therefore {x1, . . . , xn} forms a clique. To show that

{x1, . . . , xn} is R−separating, assume that for x, y ∈ R we have xy = 0. Then xy ∈ Ann(xi) for all

i ∈ {1, . . . , n}. Since Ann(xi) is prime, either x ∈ Ann(xi) or y ∈ Ann(xi) for all i ∈ {1, . . . , n}.

Therefore xxi = 0 or yxi = 0 for all i ∈ {1, . . . , n}. As a result, we can conclude that {x1, . . . , xn}

is a clique of R−separating elements.

Now we will verify that RPi
is a field if and only if x2i = 0. Suppose that RPi

is a field.

Then every nonzero element in RPi
is a unit. Consider the nonzero element xi

1 with xi 6= 0. Since

xi

1 is a unit, there exists an element yi
1 such that xi

1 · yi1 = xiyi
1 = 1

1 . Now xi /∈ Pi = Ann(xi) since Pi

cannot contain units. Therefore x2i 6= 0. For the reverse containment, suppose that x2i 6= 0. Then

xi /∈ Ann(xi) = Pi. Recall that the maximal ideal of RPi
is PiRPi

= {p
s
| p ∈ Pi, s ∈ R \ Pi}.

Let p
s
∈ PiRPi

. Notice that xip = 0 because p ∈ Pi = Ann(xi). Then we have that p
s
= 0

s
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since xi(ps − 0 · s) = 0. Therefore PiRPi
= (0), implying that RPi

is a field. This tells us that

k = |{i | x2i 6= 0}| = |{i | RPi
is a field }| = ε(R).

Applying Theorem 5.7, cl(N) = cl(R)− ε(R) and χ(Γ0(N)) = χ(Γ0(R)− ε(R).

Theorem 5.8 allows us to see that the key to proving or disproving Beck’s first conjecture

may lie in the nilradical. The next result is stronger than Theorem 3.9.

Theorem 5.9. Let R be a reduced coloring. Then cl(I) = χ(Γ0(I) for any ideal I ⊂ R.

Proof. Since R is a reduced coloring, the nilradical N is the (0) ideal. Let I be an ideal in R. If

I = (0), then cl(I) = χ(Γ0(I)). Suppose that I is a nonzero ideal in R. Then I is not contained

in the nilradical and by Theorem 5.4, I has an I−separating element, call it x. Notice that x2 6= 0

for otherwise x would be nilpotent and we would have x = 0. This would be a contradiction to the

fact that x is I−separating. Now by Lemma 5.6, cl(I ′) = cl(I) − 1 and χ(Γ0(I
′)) = χ(Γ0(I)) − 1,

where I ′ = I ∩Ann(x).

We will prove that cl(I) = χ(Γ0(I)) by induction on cl(I). If cl(I) = 1, the zero-divisor

graph must consist of only one vertex and therefore χ(Γ0(I)) = 1. We will assume that if cl(I) =

n − 1 then cl(I) = χ(Γ0(I)). Suppose that cl(I) = n. We will prove that cl(I) = χ(Γ0(I)). Since

cl(I) = n and cl(I ′) = cl(I) − 1, we have that cl(I ′) = n − 1. By induction hypothesis, we have

n − 1 = cl(I ′) = χ(Γ0(I
′)). Since n − 1 = χ(Γ0(I

′)) and χ(Γ0(I
′)) = χ(Γ0(I)) − 1, we have

χ(Γ0(I)) − 1 = n− 1. Therefore χ(Γ0(I)) = n and finally, χ(Γ0(I)) = n = cl(I).

We will also prove Beck’s conjecture in the case that R is a principal ideal ring.

Theorem 5.10. Let R be a coloring which is a principal ideal ring. Then χ(Γ0(I)) = cl(I) for any

ideal I in R.

Proof. We will show that we can make a reduction to the case when I ⊂ N. Suppose that I 6⊂ N.

Let P1, . . . ,Pn be the minimal prime ideals in R. Then N = P1 ∩ · · · ∩Pn. Suppose that I 6⊂ P1.

Then there exists an element a ∈ I such that a /∈ P1. We claim that Ann(a) ⊆ P1. Suppose that

Ann(a) * P1. Then there is an x ∈ Ann(a) such that x /∈ P1. Therefore xa = 0 which implies

that xa ∈ P1 since 0 is in every prime ideal. Therefore either x ∈ P1 or a ∈ P1. However, we

know that neither x nor a is in P1. Therefore Ann(a) ⊆ P1.

Consider the family of annihilators {Ann(y) | Ann(y) ⊆ P1, z ∈ I, z /∈ P1}. By Theorem

4.3, R has an ascending chain condition on annihilators. Therefore the family of annihilators

{Ann(y) | Ann(y) ⊆ P1, z ∈ I, z /∈ P1} has a maximal element, say Ann(y1). Notice that Ann(y1)
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is prime by the same argument used in Proposition 5.3. Since Ann(y1) ⊆ P1 and P1 is a minimal

prime, we must have that Ann(y1) = P1. By Proposition 5.2, since Ann(y1) is prime, y1 is an

x−separating element.

We claim that y1 is I−separating. We know that y1 ∈ I and that y1 is R−separating, so all

that we must show is that y1I 6= (0). If y1I = (0), then I ⊆ Ann(y1) = P1 which is a contradiction.

Therefore y1I 6= (0), and y1 is I−separating.

Define I1 = I∩Ann(y1) = I∩P1. By Lemma 5.6, χ(Γ0(I)) = cl(I) if and only if χ(Γ0(I1)) =

cl(I1). Therefore proving that χ(Γ0(I)) = cl(I) is reduced to proving that χ(Γ0(I1)) = cl(I1) for

I1 ⊆ P1. As a result, we reduce to the case when I ⊂ N.

Suppose that I = Rx ⊂ N. We will consider I2. If I2 = (0), then I is a clique and

cl(I) = |I| = χ(Γ0(I)). If I2 6= (0), by Theorem 5.5, I contains an I−separating element y1. Let

I1 = I ∩ Ann(y1). Then I1 ⊆ I. If I1 = I, we have that I = I ∩ Ann(y1) and I ⊆ Ann(y1).

Therefore y1I = (0) which is not possible since y1 is an I separating element. Hence I1 ⊂ I. By

Lemma 5.6, χ(Γ0(I)) = cl(I) if and only if χ(Γ0(I1)) = cl(I1).

Now we consider I21 . If I
2
1 = (0), we know that I1 is a clique and cl(I1) = |I1| = χ(Γ0(I1)).

By Lemma 5.6, χ(Γ0(I)) = cl(I) if and only if χ(Γ0(I1)) = cl(I1). In the case that I21 6= (0), by

Theorem 5.5, I1 contains an I1−separating element y2. Let I2 = I1 ∩Ann(y2). Then I2 ⊆ I1 ⊆ I.

If I2 = I1, we have that I1 = I1 ∩ Ann(y1) and I1 ⊆ Ann(y2). Therefore y2I1 = (0) which cannot

be since y2 is an I1−separating element. Hence I2 ⊂ I1 and by Lemma 5.6, χ(Γ0(I1)) = cl(I1) if

and only if χ(Γ0(I2)) = cl(I2). We repeat this process.

Since N is finite, this process must terminate for otherwise we would have an infinite chain

I ⊃ I1 ⊃ I2 ⊃ · · · , which is a contradiction to N being finite. Therefore we will have an In =

In−1 ∩Ann(yn) = I ∩Ann(y1)∩ · · · ∩Ann(yn) = I ∩P1 ∩ · · · ∩Pn where I2n = (0) and χ(Γ0(In)) =

|In| = cl(In). By Lemma 5.6, χ(Γ0(In−1)) = cl(In−1) if and only if χ(Γ0(In)) = cl(In). Hence

cl(I) = χ(Γ0(I)).

The previous two theorems lead us to consider that the chromatic number equals the clique

number for any ideal in a coloring, which we can see in the statement of the next theorem. The

proof of the next theorem follows from the previous theorem’s proof.

Theorem 5.11. Let R be a coloring with the property that any ideal I for which I2 6= (0) contains

an I−separating element. Then χ(Γ0(I)) = cl(I) for any ideal I in R.

35



Now that we have proved that Beck’s conjecture for principal ideal rings and reduced rings

and their ideals, it seems natural to wonder about the clique number or chromatic number of the

zero-divisor graph of an ideal I of a ring R, where R is a finite product of reduced rings or principal

ideal rings.

Proposition 5.12. Suppose that R = R1 × · · · × Rn. Let I = I1 × · · · × In be an ideal of R. If

xi ∈ Ii is Ii−separating, then (0, . . . , 0, xi, 0, . . . , 0) ∈ I is I−separating.

Proof. Let ab = 0 for a = (a1, . . . , an) ∈ I and b = (b1, . . . , bn) ∈ I. Then ajbj = 0 for all

j ∈ {1, . . . , n}. Since xi ∈ Ii is Ii separating, we have that either aixi = 0 or bixi = 0, and

xiIi 6= (0). Then, either (a1, . . . , ai−1, ai, ai+1, . . . an)(0, . . . , 0, xi, 0, . . . , 0) = (0, . . . , 0, 0, 0, . . . , 0),

or (b1, . . . , bi−1, bi, bi+1, . . . bn)(0, . . . , 0, xi, 0, . . . , 0) = (0, . . . , 0, 0, 0, . . . , 0) for a = (a1, . . . , an) ∈ I

or b = (b1, . . . , bn) ∈ I. Also, xiI 6= (0, . . . , 0) since xiIi 6= 0. Therefore (0, . . . , 0, xi, 0, . . . , 0) is

I−separating.

Theorem 5.13. Let R be a coloring that is a finite product of reduced rings and principal ideal

rings. Then χ(Γ0(I)) = cl(I) for any ideal I ⊂ R.

Proof. Let R be a coloring that is a finite product of reduced rings and principal ideal rings. Then

R = R1 × · · · ×Rn, where each Ri is either a reduced ring or a principal ideal ring. Let I ( R be

an ideal where I = I1 × · · · × In, where Ii is an ideal of Ri for each i ∈ {1, . . . , n}. If I2 = (0),

then I is a clique and cl(I) = |I| = χ(Γ0(I)). If I2 6= (0), then I2i 6= (0) for some i ∈ {1, . . . , n}.

Notice that Ri = (0, . . . , 0, Ri, 0, . . . , 0) is a subring of R, which is a coloring. If Ri is a reduced

ring, we know that N = 0 and by Theorem 5.4, any ideal Ii not contained in the nilradical contains

an Ii−separating element. If Ri is a principal ideal ring, then by Theorem 5.5, an ideal Ii in

Ri contains an Ii−separating element. By the previous proposition, if we have an Ii−separating

element xi, then (0, . . . , 0, xi, 0, . . . , 0) ∈ I is an I−separating element. Now by Theorem 5.11,

χ(Γ0(I)) = cl(I) for any ideal I in R.
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6. CHARACTERIZATION OF FINITE RINGS R WITH

χ(Γ0(R)) ≤ 4

In this section, we will discuss the characterization of finite rings R with χ(Γ0(R)) ≤ 4 as

presented in [1] and [6]. We will start by discussing the work that Beck presented in [1] that verifies

his conjecture that χ(Γ0(R)) = cl(R) in the case that χ(Γ0(R)) ≤ 5 or cl(R) ≤ 4. Afterwards, we

will proceed by discussing the work that Anderson and Naseer presented in [6].

We will begin by stating a proposition from [1] that proves Beck’s conjecture for zero-divisor

graphs whose chromatic number or clique number is less than or equal to two.

Proposition 6.1. Given a coloring R, χ(Γ0(R)) = cl(R) if cl(R) ≤ 2 or χ(Γ0(R)) ≤ 2.

Proof. We will consider four cases: χ(Γ0(R)) = 1, χ(Γ0(R)) = 2, cl(R) = 1, and cl(R) = 2.

Assume that χ(Γ0(R)) = 1. By Proposition 2.1, R is the zero ring and therefore cl(R) = 1.

Suppose that cl(R) = 1. Then the zero-divisor graph of R cannot have any adjacencies.

This is because 0 is always adjacent to all nonzero elements and if we have a nonzero element

adjacent to 0, we would increase the clique number. Therefore R = (0) and as a result, χ(R) = 1.

Suppose χ(Γ0(R)) = 2. By Proposition 2.2, R is an integral domain, R ∼= Z4, or R ∼=

Z2[X]/(X2). In the case that R is an integral domain, since there are no nontrivial zero-divisors,

the largest clique can consist of exactly two elements which include 0 and a nonzero element x ∈ R.

If R ∼= Z4, there are four elements which are {0, 1, 2, 3}. Since no two nonzero elements in

this set multiply to zero, the largest clique in R is of size two and must consist of 0 and any one of

the nonzero elements 1, 2, or 3.

Finally, we consider the ring R ∼= Z2[X]/(X2). The elements in this ring are 0, 1, x, and

1+x. Again, no two nonzero elements multiply to zero, so the largest clique in this ring can consist

of two elements including only 0 and any one of the nonzero elements. In any case, we have that

cl(R) = 2.

Now assume that cl(R) = 2. We know that χ(Γ0(R)) ≥ cl(R) is always true. Therefore

χ(Γ0(R)) ≥ 2. Assume that χ(Γ0(R)) > 2. Since 0 is always adjacent to every nonzero element in

R, we must assign 0 its own color. Since the zero-divisor graph of R has chromatic number three,
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there must be nonzero elements x and y such that xy = 0. Therefore {0, x, y} must form a clique

giving us that cl(R) ≥ 3, which is a contradiction. Therefore we must have χ(Γ0(R)) = 2.

The following proposition from [1] deals with Beck’s conjecture in the case that the clique

number and chromatic number are both three.

Proposition 6.2. Let R be a coloring. Then cl(R) = 3 if and only if χ(Γ0(R)) = 3.

Proof. We know that χ(Γ0(R)) ≥ cl(R) is always true and in Proposition 6.1 we proved that

cl(R) ≤ 2 if and only if χ(Γ0(R)) ≤ 2; therefore it is enough to show that χ(Γ0(R)) > 3 implies

that cl(R) > 3. We will begin by letting R∗ = R \ {0} and assuming that χ(Γ0(R)) > 3. Then we

must have that χ(Γ0(R
∗)) ≥ 3 because 0 requires its own color and we are eliminating 0. Therefore

the zero-divisor graph of R∗ is not 2−colorable and hence must contain an odd cycle. Let n be the

minimal length of a cycle in R∗ and assume that n ≥ 5 since it is not 2−colorable. We denote our

cycle Cn = xnx1x2 · · · xnx1. Therefore we have that x1x2 = x2x3 = x3x4 = · · · = xn−1xn = xnx1 =

0. Now, suppose that x1xk = 0 for some k 6= 1, 2, n. Therefore we have two cycles x1x2 · · · xkx1

and xkxk+1 · · · xnx1xk with length less than n, one of which must be odd. Since Cn is a cycle of

minimal length, no smaller cycles can exist and therefore xixj = 0 if and only if xi and xj are

neighbors on Cn.

Let y = x1x3. Then yx2 = yx4 = yxn = 0. Therefore y cannot belong to the cycle

x1x2 · · · xnx1 since it is adjacent to three elements contained in this cycle. Now, we have a cycle of

length n − 2 denoted by yx4 · · · xny. Hence R∗ contains an odd cycle of length n − 2 ≥ 3, which

implies that the clique number of R∗ is greater or equal to 3 and hence R has a clique number

greater than or equal to four.

Now, we will state a proposition from [1] that verifies Beck’s conjecture in the case that

the chromatic number and clique number are both four and an implication for when the chromatic

number is five.

Proposition 6.3. Let R be a coloring and let k ≤ 4 be an integer. Then χ(Γ0(R)) = k if and only

if cl(R) = k. Moreover χ(Γ0(R)) = 5 implies cl(R) = 5.

Proof. To prove that χ(Γ0(R)) = k if and only if cl(R) = k, it suffices to show that χ(Γ0(R)) ≤ 4

if and only if cl(R) ≤ 4. The previous two propositions give us that χ(Γ0(R)) ≤ 3 if and only

if cl(R) ≤ 3, and we know that χ(Γ0(R)) ≥ cl(R) is always true, so we only need to prove that

cl(R) ≤ 4 implies that χ(Γ0(R)) ≤ 4. Suppose that cl(R) ≤ 4. If R is reduced, by Theorem 5.9
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cl(R) = χ(Γ0(R)). Therefore we assume that R is not reduced, i.e. the nilradical N of R is nonzero.

By Theorem 5.8, cl(R) = cl(N) + ε(R) and χ(Γ0(R)) = χ(Γ0(N)) + ε(R).

We need to show that cl(N) = χ(Γ0(N)). Certainly, χ(Γ0(R)) ≥ cl(R). Therefore we only

need to show that χ(Γ0(R)) ≤ cl(R) That is, we need to verify that χ(Γ0(N)) > 4 implies cl(N) > 4.

Let I = N ∩Ann(N). We claim that N is nilpotent and I 6= (0).

We will show that N is nilpotent. Recall that N is the set of nilpotent elements. Since R

is a coloring, χ(Γ0(R)) < ∞ and by Theorem 3.10, N is finite. Therefore let N = {j1, . . . , jn}.

We know that every element in N is nilpotent and therefore ja11 = ja22 = · · · = jann = 0 for

some a1, . . . , an ∈ N. Let a = max{a1, . . . , an} so that jai = 0 for all i ∈ {1, . . . , n}. Consider

Nan = {
∑

riji1ji2 · · · jian | ri ∈ R, jik ∈ N}. Since jik ∈ N, we can write each product ji1ji2 · · · jian

as jb11 jb22 · · · jbnn where b1 + · · ·+ bn = an and at least one of the bi’s must be greater than or equal

to a, say br ≥ a. Therefore jbrr = 0, which results in
∑

rij
b1
1 · · · jbnn = 0. Hence Nan = 0 and N is

nilpotent.

Next, we will show that I 6= (0). Suppose that I = (0). Then for every nonzero element

x ∈ N, we have that xN 6= (0). Since N is nilpotent, there is some n ∈ N such that Nn = (0)

but Nn−1 6= (0). Let 0 6= t ∈ Nn−1. Since Nn−1 ⊆ N, we have t ∈ N. Notice that tN 6= 0 but

tN ⊆ Nn = 0. This is a contradiction. Therefore I = N ∩ Ann(N) 6= (0) and as a result, |I| ≥ 2.

Notice that I is a clique in N because any element x ∈ I is contained in both N and Ann(N).

We have some cases to consider. If I = N, then certainly χ(Γ(N)) = cl(N). If |I| > 4,

there is nothing to prove since cl(N) > 4. Therefore we assume that |I| ≤ 4. Suppose |I| = 4. Let

x ∈ N \ I. Then I ∪ {x} forms a clique in N with five elements and therefore cl(N) > 4. If |I| = 3

and χ(Γ0(N)) > 4 then there are at least two elements x, y ∈ N \ I that are adjacent to each other

and every element in I, for otherwise we would need less than five colors for Γ0(N)). Therefore

I ∪ {x, y} forms a clique in N with five elements and so, cl(N) > 4. The last case is when |I| = 2

and χ(Γ0(N)) > 4, which will require some work.

Let I = (0, γ). Since I is an ideal γ + γ = 0. Also, since χ(Γ0(N)) ≥ 5, the set of elements

belong toN\I in Γ0(N)) will require three distinct colors. Since these elements are not 2−colorable,

the subgraph Γ0(N \ I) of Γ0(N) must have an odd cycle. Suppose Cn = x1x2 · · · xnx1 is an odd

cycle in Γ0(N\ I) of minimal length n where n ≥ 5. Notice that a smaller odd cycle would result in

cl(N) > 4. If v1vk = 0 for some k 6= 1, 2, n the cycle Cn would decompose into two smaller cycles,
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one of which would be an odd cycle. However, since Cn is a minimal odd cycle, there can be no

smaller cycles. Therefore xixj = 0 if and only if vi and vj are neighbors in Cn. Now let y = xixj

where xi and xj are not neighbors in Cn. Then yxi−1 = yxi+1 = yxj−1 = yxj+1 = 0. Since y is

adjacent to four elements in Cn, y cannot belong the the cycle Cn. Let i 6= 1, 2, n. Let z = x1xi. If

i is even, zx2 · · · xi−1z is an odd cycle of length i− 1 < n. If i is odd, zxi+1 · · · xnz is an odd cycle

of length n− (i− 1) < n. Since Cn is minimal in Γ0(N \ I), we can conclude that xixj = 0 if and

only if xi and xj are neighbors and xixj = γ if and only if i 6= j, and xi and xj are not neighbors.

We now claim that x2i 6= 0. Suppose that x2i = 0 and xi+1 6= xi + γ. We can show that

xi, xi+1, and xi+ γ form a cycle in Γ0(N \ I). Certainly xi and xi+1 are in Γ0(N \ I). Suppose that

xi+γ ∈ I. Then either xi+γ = 0 or xi+γ = γ. If xi+γ = 0, we have that xi ∈ γ. If xi+γ = γ then

xi = γ ∈ I. Both of these are contradictions since xi /∈ I. Hence xi + γ ∈ N \ I. Now we consider

the products between xi, xi+1, and xi + γ. First, xixi+1 = 0 since xi and xi+1 are neighbors in Cn.

Also, xi+1(xi+γ) = xi+1xi+xi+1γ = 0 since xi and xj are neighbors in Cn and γ ∈ I = N∩Ann(N)

annihilates all elements in N. Finally, xi(xi + γ) = x2i + xiγ = 0 since x2i = 0 and γ ∈ Ann(N).

Therefore we have have a cycle of length three in Γ0(N \ I). This is a contradiction since Cn is

an odd cycle of minimal length at least five. Therefore we either have x2i 6= 0 or xi+1 = xi + γ.

Suppose that xi+1 = xi + γ. Then xi+1xi+2 = (xi + γ)xi+2 = xixi+2 + γxi+1 = xixi+2 since

γ ∈ Ann(N). Also, since xi+1 and xi+2 are neighbors in Cn, we have that 0 = xi+1xi+2 = xixi+2.

This is a contradiction since xi and xi+2 are not neighbors in Cn. Therefore we must have x2i 6= 0

for 1 ≤ i ≤ n. Now consider t = x1 + · · · + xn−2. Then:

txn−1 = (x1 + · · · + xn−3 + xn−2)xn−1

= x1xn−1 + · · ·+ xn−3xn−1 + xn−2xn−1

= (n − 3)γ

= 0

since xixj 6= 0 for j 6= i+ 1, γ + γ = 0 and n− 3 an even number. Also, we have that

txn = (x1 + · · ·+ xn−3 + xn−2)xn

= x1xn + x2xn · · ·+ xn−3xn + xn−2xn

= (n− 3)γ

= 0

40



since xixj 6= 0 for j 6= i+ 1, γ + γ = 0 and n − 3 an even number. We know that xn = i2 6= 0 for

1 ≤ i ≤ n, and so t 6= xn and t 6= xn−1. Since n is odd, we write n = 2k + 1 for some k ∈ N. Then

we have that

txk = (x1 + · · · + xk−2 + xk−1 + xk + xk+1 + · · · x2k−1)xk

= x1xk + · · ·+ xk−2xk + xk−1xk + x2k + xk+1xk + · · · x2k−1xk

= (k − 3)γ + x2k + ((2k − 1)− (k + 1))γ

= (2k − 4)γ + x2k

= x2k

6= 0.

Therefore since xk ∈ N, we have that t /∈ Ann(N) and as a result t /∈ I. Hence t 6= 0 and t 6= γ.

This tells us that {0, xn−1, xn, t, γ} forms a clique of size five in N. Therefore cl(N) > 4, implying

that cl(N) = χ(Γ0(N)) for χ(Γ0(N)) ≤ 4 and cl(N) ≤ 4. Thus cl(R) = χ(Γ0(R)) for χ(Γ0(R)) ≤ 4

and cl(R) ≤ 4.

To show that χ(Γ0(R)) = 5 implies cl(R), assume χ(Γ0(R)) = 5. Certainly χ(Γ0(N)) ≤ 5

since N ⊆ R. If χ(Γ0(N)) ≤ 4, we have proved that χ(Γ0(N)) = cl(N). Therefore we need only

to consider the case when χ(Γ0(N)) = 5. We know that χ(Γ0(N)) ≥ cl(N) is always true and so,

cl(N) ≥ 4. From the proof above, if χ(Γ0(N)) ≤ 5, then cl(N) ≥ 5. Therefore cl(N) = 5 which

implies that χ(Γ0(N)) = cl(N). Hence χ(Γ0(R)) = 5 implies cl(R) = 5.

Now we will find finite rings R for which χ(R) ≤ 3 as in [1].

By Proposition 2.1, we know that χ(Γ0(R)) = 1 if and only if R = (0).

Proposition 2.2 tells us that χ(Γ0(R)) = 2 if and only if R is an integral domain, R ∼= Z4,

or R ∼= Z2[X]/(X2). Notice that since R is a finite ring, we can replace integral domain with field.

We will now consider the case when χ(Γ0(R)) = 3. By Theorem 6.2, we know that cl(R) = 3

if and only if χ(Γ0(R)) = 3. Also, by Theorem 5.8 we know that cl(R) = cl(N) + ε(R) and

χ(Γ0(R)) = χ(Γ0(N)) + ε(R) where ε(R) is the number of prime ideals such that RP is a field.

Since cl(R) ≥ 1, we have three cases: ε(R) = 0, ε(R) = 1, or ε(R) = 2.

Case 1: Consider ε(R) = 2. Then cl(N) = 1, which implies that N = (0). Since χ(Γ0(R)) =

3 < ∞, by Theorem 3.9 R has two minimal prime ideals, say P1 and P2. Note that since R is finite,

dim(R) = 0. Therefore every prime ideal in R is maximal and (0) = N = P1∩P2 where P1 and P2

are maximal ideals. Then P1+P2 = R since P1 and P2 are maximal ideals and P1 ( P1+P2 and
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P2 ( P1 +P2. By the Chinese Remainder Theorem, R ∼= R/(0) ∼= R/(P1 ∩P2) ∼= R/P1 ×R/P2.

Therefore R is a product of two finite ideals.

Case 2: Suppose ε(R) = 1. Then cl(N) = 2 and R is not reduced. Let P be a prime

ideal for which RP is a field. Since R is a finite ring, dim(R) = 0 and every prime ideal is both

maximal and minimal. Since P is a minimal prime, by Theorem 4.4 P is an associated prime

ideal. Therefore P = Ann(x) for some x ∈ R. Then xP = (0), which implies x ∈ Ann(P).

Since Rp is a field, every element x
1 ∈ RP has an inverse. Notice that x /∈ P. We will show

that P ∩ (x) = (0). Take z ∈ P ∩ (x). Then z ∈ P and z = rx. Since P is a prime ideal and

rx ∈ P, either r ∈ P or x ∈ P. Since x /∈ P, we must have r ∈ P. Therefore rx = 0 and

we have established that P ∩ (x) = (0). Notice that P ( P + (x). Therefore P + (x) = R.

Since x ∈ Ann(P), we also know that (x) ⊆ Ann(P). Certainly we have that P ( P + Ann(P).

Therefore P+ Ann(P) = R. Next, we will verify that P ∩ Ann(P) = (0). Take y ∈ P ∩Ann(P).

Then y ∈ P and yp = 0 for all p ∈ P. Therefore P ∩ Ann(P) = (0). By the Chinese Remainder

Theorem, R ∼= R/(0) ∼= R/(P ∩Ann(P)) ∼= R/P×R/Ann(P).

Since P is a maximal ideal, R/P is a finite field. Let R/P = k and R/Ann(P) = S,

where k is a finite field. By assumption, we know cl(R) = cl(k × S) = 3 and we always have that

cl(k × S) ≤ cl(k)cl(S). Since k is a finite field, cl(k) = 2 and therefore cl(S) ≥ 2. If cl(S) > 2,

there are at least three elements s1, s2, s3 in S that are adjacent to one another. Notice that

(1, 0), (0, s1), (0, s2) and (0, s3) are all in k × S and form a clique of size 4. This is a contradiction.

Therefore cl(S) = 2 which results in χ(Γ0(S)) = 2. By Proposition 2.2, S ∼= Z4 or S ∼= Z2[X]/(X2).

Therefore R ∼= k × Z4 or R ∼= k × Z2[X]/(X2).

Case 3: Suppose that ε(R) = 0. Then there are no prime ideals P such that RP is a field.

In this case, cl(N) = 3. Since R is finite, we know that dim(R) = 0. Therefore every prime ideal

is a minimal prime ideal and, hence an associated prime ideal. Suppose P and Q are two distinct

prime ideals in R. Then P = Ann(x) and Q = Ann(y) for some elements x and y in R. By Lemma

3.7, xy = 0. Also, by Theorem 5.2, x and y are R−separating elements. Since ε(R) = 0, we have

x2 = 0 = y2. Then {0, x, y, x + y} forms a clique in N. However, since cl(N) = 3, it must be that

x+ y = 0 which leads to P = Q. Therefore R has a unique prime ideal P = Ann(x) and x2 = 0.

As a result, N = P. This allows us to conclude that Rx is a clique and 2 ≤ |Rx| ≤ 3. In addition,

Rx ⊂ Ann(P) = (0 : P) and (0 : P) forms a clique. If Rx ( (0 : P) then (0 : P) must have at
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least 4 elements, which yields a contradiction. Hence Rx = Ann(P). Now we have some sub-cases

to consider.

Sub-case 1: Suppose |Rx| = 3. Then Rx = (0, x, y = −x). Notice that P · Rx = (0)

because P = Ann(x). We claim that P = Rx. Let p ∈ R \ Rx. Since P = Ann(x), we would

have a clique {0, x, y, p} of 4 elements. This is a contradiction to cl(N) = 3. Therefore P = Rx.

Consider the exact sequence 0 // Ann(x)
f

// R
g

// Rx // 0 . Since R/Ann(x) ∼= Rx and

|P| = |Rx| = 3, by Lagrange’s Theorem |R| = |Rx||Ann(x)| = 9. If char(R) = 9, R ∼= Z9.

If char(R) = 3, we can derive that R ∼= Z3[X]/(X2). We will start off by showing that

R ≇ Z3
⊕

Z3. Notice that R ∼= Z3
⊕

Z3 is a direct sum of fields and is therefore von Neumann.

Also, the primes P in R ∼= Z3
⊕

Z3 are of the form {(a, 0) | a ∈ Z3} and {(0, b) | b ∈ Z3}. Since R

is von Neumann, R/P ∼= RP. Therefore RP
∼= Z3, and hence RP is a field. Since we are assuming

that there are no primes such that RP is a field, R ≇ Z3
⊕

Z3. We know that additively, R should

behave like Z3
⊕

Z3. We know that R must consist of Z3 and another generator x. Therefore we

can write R as {0, 1, 2, x, 2x, x+1, x+2, 2x+1, 2x+2}. Hence we know that R ∼= Z3[X]/(p(x)) where

p(x) is a polynomial of degree 2. It is easy to verify that x2 cannot equal 1, 2, x+ 1, x+ 2,−x+ 1,

and −x + 2, since then x would have to be a unit. Notice that x cannot be a unit since Rx is a

proper ideal. If we assume that x2 = x or x2 = −x, we end up with a clique of size 3. We also end

up with no nonzero nilpotent elements, which contradicts the fact that cl(N) = 3. This is because if

x2 = x, then Z3[X]/(X2−X) ∼= Z3[X]/(X(X−1)) ∼= Z3
⊕

Z3 by the Chinese Remainder Theorem,

since (X) and (X − 1) are comaximal, and Z3
⊕

Z3 is reduced. The same holds in the case that

x2 = −x. Since R ≇ Z3
⊕

Z3, the only other possibility is for x2 = 0. Hence, we conclude that

R ∼= Z3[X]/(X2).

Sub-case 2: Suppose now that |Rx| = 2. Then Rx = (0, x). We claim that P 6= Rx =

Ann(P). Take y ∈ P \Rx. If y2 = 0, then {0, x, y, x + y} forms a clique of 4 elements in P which

is a contradiction to cl(N) = 3. Therefore y2 6= 0 and P 6= Rx.

In addition, since t ∈ P \Rx, we can verify that Ann(y) = {0, x} = Rx. Since y ∈ P \Rx,

we know that y ∈ P = Ann(x) and y /∈ Rx. Therefore yx = 0 and x ∈ Ann(y). For the

reverse containment, let t ∈ Rx \ Ann(y). Then t = rx /∈ Ann(y), which is a contradiction since

x ∈ Ann(P) and y ∈ P. As a result, Ann(y) = {0, x} = Rx.
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We also consider y ∈ P\Rx together with (0, x) = Ann(P) to show that there is an element

r ∈ R such that ry = x. Since y ∈ P \ Rx, we know that y ∈ N and therefore yn = 0 for some

minimal n ∈ N. Then yn−1y = yn = 0, giving us that yn−1 ∈ Ann(y) = Rx. Since n was minimal

yn−1 6= 0 and yn−1 ∈ Rx, we have that yn−1 = x. Let r = yn−2. Therefore ry = yn−2y = x for

some r ∈ R.

Now take s ∈ P = Ann(x). Then r(sy) = sx = 0, so that r ∈ Ann(sy). Therefore

Ann(sy) 6⊂ Rx, which requires that sy ∈ Rx.

Consider the exact sequence 0 // (0, x)
f

// P
g

// (0, x) // 0 where g(t) = ty.

Since |(0, x)| = 2, we have that |P| = 4. Since R/P ∼= Rx, |P| = 4 and |Rx| = 2, by Lagrange’s

Theorem, |R| = |P||Rx| = 8. Then char(R) = 2, 4, or 8.

If char(R) = 2, the exact sequence tells us that P consists of the elements {0, x, r, x + r}

where x2 = xr = 0 and ry = x. If r2 = 0 then cl(P) = 4. Therefore r2 6= 0. If r2 = r + x, we have

r(1− r) = r2 − r = x which requires r ∈ Rx. Then r2 = x. As a result, P = {0, r2, r, r2 + r} where

r3 = xr = 0 and the units are 1, 1 + r, 1 + r2, and 1 + r + r2. Therefore R ∼= Z2[X]/(X3).

Suppose char(R) = 4. We know that P = {0, r, r2, r + r2} where r3 = 0. Since 4 = 0,

we have that 2 ∈ P. If r = 2 then r2 = 0, which is a contradiction. If r2 + r = 2 then

0 = (r2+ r)2 = r4+2r3+ r2 = r2, which is also a contradiction. Therefore r2 = 2 and 2r = r3 = 0.

We define a homomorphism φ : Z4[T ] → R by φ(T ) = r. Then φ is surjective. In addition,

T 2−2 ∈ ker(φ) and 2T ∈ ker(φ). Since |Z4[T ]/(2T, T
2−2)| = 8, we have that ker(φ) = (2T, T 2−2)

and therefore R ∼= Z4[X]/(2X,X2 − 2).

If char(R) = 8, we have that R ∼= Z8.

Therefore the following finite rings have zero-divisor graph with χ(Γ0(R)) ≤ 3.

(1) χ(Γ0(R)) = 1.

(a) R = {0}

(2) χ(Γ0(R)) = 2.

(a) R is a finite field.

(b) R ∼= Z2

(c) R ∼= Z2[X]/(X2)
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(3) χ(Γ0(R)) = 3.

(a) R is a product of two finite fields.

(b) R ∼= k × Z4, k a finite field

(c) R ∼= k × Z2[X]/(X2), k a finite field

(d) R ∼= Z8

(e) R ∼= Z9

(f) R ∼= Z3[X]/(X2)

(g) R ∼= Z2[X]/(X3)

(h) R ∼= Z4[X]/(2X,X2 − 2)
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7. THE COUNTEREXAMPLE

The results provided by Beck in [1], which we have discussed, give us the impression that

the chromatic number of a zero-divisor graph may be equal to the clique number of a ring. This

is precisely the conjecture made by Beck, which was proved to be false by Anderson and Naseer’s

counterexample in [6]. We will discuss this counterexample and provide a picture of the zero-divisor

graph. The counterexample is the zero-divisor graph (including 0) of the ring

R = Z4[X,Y,Z]/(X2 − 2, Y 2 − 2, Z2, 2X, 2Y, 2Z,XY,XZ, Y Z − 2).

In R, X2 = Y 2 = Y Z = 2 and Z2 = 2X = 2Y = 2Z = XY = XZ = 0. Therefore

every element belonging to R must have degree 1 and is of the form a + bx + cy + dz where

a, b, c, d ∈ {0, 1, 2, 3}. Since 2X = 2Y = 2Z = 0, we can assume that b, c, d 6= 2. Since 3X = X,

3Y = Y and 3Z = Z in R, we can also assume that b, c, d 6= 3. Therefore the possible values for

a, b, c, and d are a ∈ {0, 1, 2, 3} and b, c, d ∈ {0, 1}. Notice that the elements of M are of the form

a + bx + cy + dz where a ∈ {0, 2} and b, c, d ∈ {0, 1} and the elements of U(R) are of the form

a+ bx+ cy + dz where a ∈ {1, 3} and b, c, d ∈ {0, 1}. As a result, R has a total of 32 elements and

is a finite local ring with unique maximal ideal M = {0, 2, x, x+2, y, y +2, x+ y, x+ y+2, z, z+2,

x + z, x + z + 2, y + z, y + z + 2, x + y + z, x + y + z + 2} consisting of 16 elements. It can

easily be verified that M is an ideal. We provide a multiplication table for M on the next page

and we exclude 0 and 2, since they annihilate all of M. The remaining 16 elements of R are units

U(R) = R\M = 1+M = {1+m |m ∈ M} = {1, 3, x+1, x+3, y+1, y+3, x+y+1, x+y+3, z+1, z+3,

x+ z+1, x+ z+3, y + z+1, y+ z+3, x+ y+ z +1, x+ y+ z+3}. Through some calculations, it

can be verified that 1, 3, x+ y + 1, x+ y + 3, z + 1, z + 3, x+ y + z + 1, x+ y + z + 3 are their own

inverses and that each pair of elements y + 1 and y + 3, x+ 1 and x+ 3, y + z + 1 and y + z + 3,

and x+ z + 1 and x+ z + 3 are inverses.
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Table 7.1: Multiplication Table for M as in [6].

x x+2 y y+2 x+y x+y+2 z z+2 x+z x+z+2 y+z y+z+2 x+y+z x+y+z+2

x 2 2 0 0 2 2 0 0 2 2 0 0 2 2

x+2 2 2 0 0 2 2 0 0 2 2 0 0 2 2

y 0 0 2 2 2 2 2 2 2 2 0 0 0 0

y+2 0 0 2 2 2 2 2 2 2 2 0 0 0 0

x+y 2 2 2 2 0 0 2 2 0 0 0 0 2 2

x+y+2 2 2 2 2 0 0 2 2 0 0 0 0 2 2

z 0 0 2 2 2 2 0 0 0 0 2 2 2 2

z+2 0 0 2 2 2 2 0 0 0 0 2 2 2 2

x+z 2 2 2 2 0 0 0 0 2 2 2 2 0 0

x+z+2 2 2 2 2 0 0 0 0 2 2 2 2 0 0

y+z 0 0 0 0 0 0 2 2 2 2 2 2 2 2

y+z+2 0 0 0 0 0 0 2 2 2 2 2 2 2 2

x+y+z 2 2 0 0 2 2 2 2 0 0 2 2 0 0

x+y+z+2 2 2 0 0 2 2 2 2 0 0 2 2 0 0
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We also provide a picture of the zero-divisor graph of M excluding 0 and 2.
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6 y+2

3 x+y

4 x+y+2

6

z

5

z+2

6
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5

y+z+2

5

x+y+z
3

x+y+z+2

Figure 7.1: Zero-divisor graph of counterexample to χ(Γ0(R)) = cl(R).

We will prove that cl(R) = 5 and χ(Γ0(R)) = 6 through a series of propositions. To prove

that cl(R) = 5, it is enough to show that cl(M) = 5. We begin with eight facts that are easily

verified using the multiplication table for M.

Remark 7.1. Every maximal clique contains 0 and 2.

The proof of this statement is straightforward because 0 and 2 both annihilate all of the

elements in the maximal ideal M.

Remark 7.2. {0, 2, x, y, y + z} is a maximal clique, so cl(R) ≥ 5.
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Using the multiplication table for M we can observe that no other element can be added

to enlarge this clique.

Proposition 7.3. Any clique that contains x or x+ 2 has at most 5 elements.

Proof. It is important to notice that a clique cannot contain both x and x + 2. First, suppose x

is in a clique. The possible candidate elements for the clique other than 0, 2 and x are either y or

y + 2, either y + z or y + z + 2, z, and z + 2. If y is in the clique, then the elements y + 2, z, and

z + 2 cannot be in the clique. The largest possible cliques in this case are {0, 2, x, y, y + z} and

{0, 2, x, y, y + z + 2}. If y + 2 is in the clique, then the elements y, z, and z + 2 cannot be in the

clique. Here, the largest possible cliques are {0, 2, x, y + 2, y + z} and {0, 2, x, y + 2, y + z + 2}. If

y + z is included in the clique, we must exclude z, z + 2, and y + z + 2. Hence the possible cliques

are {0, 2, x, y + z, y}, {0, 2, x, y + z, y+2}. If y+ z+2 is included in the clique, we must exclude z,

z+2, and y+ z from the clique. Therefore the largest possible cliques are {0, 2, x, y + z+2, y} and

{0, 2, x, y + z+2, y+2}. If z or z+2 is included in the clique, we must exclude y, y+2, y+ z and

y + z + 2. Hence the largest possible clique is {0, 2, x, z, z + 2}. Thus any clique containing either

x has at most 5 elements.

Now suppose that x + 2 is in a clique. In this case, the candidate elements for the clique

other than 0, 2, and x+2 are y or y+2, y+z or y+z+2, z and z+2. If y is in the clique, then y+2,

z, and z+2 cannot be in the clique. Therefore the largest possible cliques are {0, 2, x+2, y, y+ z}

and {0, 2, x+2, y, y+ z+2}. If y+2 is in the clique, the elements y, z, and z+2 cannot be in the

clique. Hence the largest possible cliques are {0, 2, x+2, y+2, y+z} and {0, 2, x+2, y+2, y+z+2}.

If y + z is in the clique, the elements y + z + 2, z, and z + 2 must be excluded from the clique.

Therefore the largest possible cliques are {0, 2, x+2, y +2, y+ z} and {0, 2, x+2, y +2, y+ z+2}.

If y+ z+2 is contained in the clique, the elements z, z+2, and y+ z cannot be in the clique. As a

result, the largest possible cliques are {0, 2, x+ 2, y + z + 2, y} and {0, 2, x+ 2, y + z + 2, y + 2}. If

either z or z + 2 is included in the clique, y, y+ 2, y + z, and y + z + 2 cannot be contained in the

clique. Hence the possible largest clique is {0, 2, x + 2, z, z + 2}. Thus any clique containing x+ 2

has at most 5 elements.

Proposition 7.4. Any clique that contains y or y + 2 has at most 5 elements.

Proof. Suppose that y is in a clique. Then , y + 2 cannot be in the clique. Since 0 and 2 both

annihilate every element in the maximal ideal M, they are contained in every maximal clique. Since
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we know by the previous proposition that any clique containing x or x + 2 must contain at most

5 elements, we will assume that the clique does not contain x or x + 2. Therefore the possible

elements contained in the clique aside from 0, 2, and y are either y+ z or y+ z +2, x+ y + z, and

x+ y+ z +2. If either of y+ z or y+ z +2 are contained in the clique, the elements x+ y+ z and

x+y+z+2 must be excluded. Hence the largest clique we can have is {0, 2, y, x+y+z, x+y+z+2}.

Now, suppose that y + 2 is in the clique. Then the clique cannot contain y. Since 0 and

2 are contained in every maximal clique, they will also be in the clique with y + 2. We will again

assume that x and x+ 2 are not in the clique since any clique containing these two elements must

contain at most 5 elements. The only possible candidates for elements in the clique in addition to

0, 2, and y+2 are one of either y+ z or y+ z+2, x+ y+ z, and x+ y+ z+2. If y+ z or y+ z+2

are contained in the clique, the elements x + y + z and x + y + z + 2 must be excluded. Hence

the largest clique we can have is {0, 2, y + 2, x + y + z, x + y + z + 2}. In either case, any clique

containing either of y or y + 2 can contain at most 5 elements.

Proposition 7.5. Any clique that contains x+ y or x+ y + 2 has at most 5 elements.

Proof. Notice that both x + y and x + y + 2 can both be contained in the same clique since

(x+ y)(x+ y+2) = 0. We will start by assuming that 0, 2, x+ y and x+ y+ 2 are contained in a

clique. Possible candidates for other elements contained in the clique are x+ z or x+ z+2 or y+ z

or y+z+2. Since none of these four candidate elements annihilate the others, we can have at most

one of them in the clique. Hence the possible maximal cliques containing 0, 2, x+ y and x+ y + 2

are {0, 2, x + y, x + y + 2, x + z}, {0, 2, x + y, x + y + 2, x + z + 2}, {0, 2, x + y, x + y + 2, y + z},

and {0, 2, x+ y, x+ y +2, y + z+ 2}. In any case, any clique containing x+ y and x+ y+2 has at

most 5 elements.

Proposition 7.6. Any clique that contains z or z + 2 has at most 5 elements.

Proof. Notice that both z and z + 2 can both be contained in the same clique since z(z + 2) = 0.

Recall that 0 and 2 are contained in any maximal clique. Assume that 0, 2, z, and z + 2 are all

contained in the clique. Also, assume that x and x + 2 are not contained in the clique since any

clique containing these elements has at most 5 elements. The only other possible elements contained

in the clique are either x+z or x+z+2. Hence the possible maximal cliques are {0, 2, z, z+2, x+z}

and {0, 2, z, z + 2, x+ z + 2}. Hence any clique containing z or z + 2 has at most 5 elements.

50



Proposition 7.7. Any clique that contains x + z, x + z + 2, y + z, or y + z + 2 has at most 5

elements.

Proof. Notice that 0 and 2 are contained in every maximal clique. We will assume that none of x,

x + 2, y, y + 2, x + y, x + y + 2, z, and z + 2 are in the clique since any clique containing these

elements must have at most 5 elements. Since only one of x+ z, x+ z + 2, y + z, or y + z + 2 can

be contained in any clique, we have four cases. If either of x + z or x + z + 2 are in the clique,

then x + y + z and x + y + z + 2 are the only other elements that can also be in the clique and

therefore {0, 2, x + z, x + y + z, x + y + z + 2} and {0, 2, x + z + 2, x + y + z, x + y + z + 2} are

maximal clique. If either of y + z or y + z + 2 are in the clique, we have one pair of x and y, x+ 2

and y + 2, or x+ y and x+ y + 2. As a result, the possible maximal cliques are {0, 2, y + z, x, y},

{0, 2, y+z, x+2, y+2}, {0, 2, y+z, x+y, x+y+2}, {0, 2, y+z+2, x, y}, {0, 2, y+z+2, x+2, y+2},

{0, 2, y+z+2, x+y, x+y+2}. In any case, we have at most five elements in each maximal clique.

Proposition 7.8. Any clique that contains x+ y + z or x+ y + z + 2 has at most 5 elements.

Proof. Recall that every maximal clique contains 0 and 2. Notice that x+ y + z and x+ y + z + 2

can both be in the same clique since they annihilate each other. The only other elements that can

be in a clique with 0, 2, x+ y+ z and x+ y+ z+2 are one of y, y+2, x+ z, or x+ z+2. Therefore

the possible maximal cliques are {0, 2, x+y+z, x+y+z+2, y}, {0, 2, x+y+z, x+y+z+2, y+2},

{0, 2, x+ y + z, x+ y + z + 2, x+ z}, and {0, 2, x+ y + z, x+ y + z + 2, x+ z + 2}. In any case, we

have at most five elements in each maximal clique.

Therefore we can conclude that by the previous six propositions, cl(M) = 5.

Next, we can verify that χ(Γ0(R)) = 6. Since {0, 2, x, y, y + z} is a clique, we will require

at least 5 colors for coloring the zero-divisor graph of R, call them 1, 2, 3, 4, and 5. Notice that 0

and 2 are adjacent to all elements in M, so they require their own colors. Therefore we assign color

1 to 0 and color 2 to 2. Consider the subgraph {0, 2, x, y, y + z, z, z + 2, x + y, x+ y + 2, x+ z} of

the zero-divisor graph of R. We will show that this subgraph cannot be colored with 5 colors. The

coloring for the subgraph {x, y, y+ z, z, z +2, x+ y, x+ y+2, x+ z} is demonstrated in Figure 7.2.

Using the multiplication table of elements in the maximal ideal of R, we can see that xz = 0,

x(z + 2) = 0 and z(z + 2) = 0. Therefore x, z, and z + 2 are all adjacent to each other and each

vertex requires its own colors. Hence we assign color 3 to x, color 4 to z and color 5 to z + 2.
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Figure 7.2: Coloring of subgraph {x, y, y + z, z, z + 2, x+ y, x+ y + 2, x+ z} as in [6].

Notice that (x+ y)(x+ y+2) = 0, which means that x+ y and x+ y+2 must be assigned

different colors. Also, we have that (y+ z)(x+ y) = 0 = (y+ z)(x+ y+2). Therefore we can color

x+ y with color 3 and x+ y + 2 with color 4.

Next, we will consider the vertex x+ z and notice that (x+ z)(x+ y) = 0, (x+ z)z = 0 and

(x+ z)(z+2) = 0. Since x+ y, z, and z+2 were assigned colors 3, 4, and 5 respectively, and z+2

is also adjacent to 0 and 2, which were colored with colors 1 and 2, we need a new color for z + 2.

Therefore χ(Γ0(R)) ≥ 6. Since the partition {0}, {2}∪U(R), {x, x+2, x+ y, x+ y+ z}, {y, y+2, z,

x+ y+2}, {y + z, y+ z+2, z+2, x+ y+ z+2}, {x+ z, x+ z+2} of R is a coloring using 6 colors,

we have that χ(Γ0(R)) = 6. Hence Beck’s conjecture is false in general.
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