ELECTRICITY DEMAND PREDICTION USING ARTIFICIAL NEURAL NETWORK FRAMEWORK

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By
Sowjanya Param

In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

June 2015

Fargo, North Dakota
ELECTRICITY DEMAND PREDICTION USING ARTIFICIAL NEURAL NETWORK FRAMEWORK

By

SOWJANYA PARAM

The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Kendall Nygard
Chair

Dr. Simone Ludwig

Dr. Jacob Glower

Approved:

06/09/2015

Dr. Brian Slator
Department Chair
ABSTRACT

As the economy is growing, electricity usage has been growing and to meet the needs of energy market in providing the electricity without power outages, utility companies, distributors and investors need a powerful tool that can effectively predict electricity demand day ahead that can help them in making better decisions in inventory planning, power generation, and resource management. Historical data is a great source that can be used with artificial neural networks to predict electricity demand effectively with a decent error rate of 0.06.
ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor Dr. Kendall Nygard for his continued support throughout this paper. I am grateful to the ideas and suggestions given by Dr. Nygard, and the amount of guidance given by him is enormous. Also special thanks go to my advisory committee members for their inputs and valuable suggestions that helped me complete this paper.

I thank all my graduate faculty members for sharing their knowledge and experience with me. I would like to thank Ms. Carole, Ms. Stephanie and Ms. Betty personally and the entire computer science department staff members for their enormous support.

Many Thanks to Zoran Severac and developers of Neuroph for building a great neural network framework, which is used in this project.

Finally, words alone cannot express the thanks I owe to my husband, dad, mom and sister for their support and thanks to Levi Strauss & Co, San Francisco colleagues for all their support.

Once again I am very thankful to my advisor Dr.Nygard for his valuable suggestions and support that helped me to complete this paper successfully.
TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. LITERATURE REVIEW ... 4
 2.1. Electricity demand prediction using artificial neural networks .. 4
 2.2. Why use neural network frameworks? .. 5
 2.3. Why use Neuroph? .. 6

CHAPTER 3. INTRODUCTION TO NEUROPH .. 8
 3.1. Neuroph framework .. 8
 3.1.1. Neuroph Library ... 9
 3.1.2. Neuroph Studio .. 9
 3.2. Overview of neural networks with Neuroph Studio ... 9
 3.3. Neuroph Studio with an example AND gate .. 12
 3.3.1. Installation .. 12
 3.3.2 Executing AND gate .. 12

CHAPTER 4. ELECTRICITY MARKET ... 20
 4.1. Electricity market in USA .. 20
4.2. Electricity demand data .. 22

CHAPTER 5. DEMAND PREDICTION ... 24

5.1. Multilayer perceptron .. 24

5.2. Hidden layers and neurons .. 26

5.3. Training method ... 27

5.4. Preprocessing input data ... 29

5.4.1. Flattening data ... 30

5.4.2. Average calculator .. 31

5.4.3. Normalization ... 32

CHAPTER 6. ELECTRICITY DEMAND PREDICTION WITH NEUROPH 33

6.1. Software simulation ... 33

6.2. Analysis on the training attempts .. 37

6.3. Cross-validation .. 41

6.4. Analysis with Linear Regression ... 44

CHAPTER 7. ELECTRICITY DEMAND PREDICTION ON WEB .. 47

7.1. Create MLP neural network ... 47

7.2. Upload datasets ... 48

7.3. Train neural network .. 49

7.4. Test neural network ... 51

7.5. Cross-validate neural network ... 53
7.6. Predict demand .. 55

CHAPTER 8. CONCLUSION AND FUTURE WORK .. 58

REFERENCES .. 59
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analysis of neural network architecture with varying learning rate, momentum, hidden neurons for Dataset 2009-2014</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>Cross-validation with twelve sets of test data</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Forecast with Neuroph vs real time demand</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>Comparision of forecast with artificial neural network output vs real time demand</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>Analysis of forecast with artificial neural network output vs real time demand vs Linear Regression</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Neuroph framework</td>
<td>8</td>
</tr>
<tr>
<td>2: New project for basic neuron sample</td>
<td>11</td>
</tr>
<tr>
<td>3: Basic neuron sample</td>
<td>11</td>
</tr>
<tr>
<td>4: Installing Neuroph Studio</td>
<td>12</td>
</tr>
<tr>
<td>5: Creating a new project</td>
<td>13</td>
</tr>
<tr>
<td>6: Creating a new project in Neuroph Studio</td>
<td>13</td>
</tr>
<tr>
<td>7: AND gate implementation using Neuroph</td>
<td>14</td>
</tr>
<tr>
<td>8: Last step of creating a new project</td>
<td>14</td>
</tr>
<tr>
<td>9: Selecting type of neural network in Neuroph</td>
<td>15</td>
</tr>
<tr>
<td>10: Selecting input and output neurons</td>
<td>15</td>
</tr>
<tr>
<td>11: AND gate project with inputs and output neurons</td>
<td>16</td>
</tr>
<tr>
<td>12: Training the AND gate</td>
<td>16</td>
</tr>
<tr>
<td>13: Inputting the values to the AND gate as part of training</td>
<td>17</td>
</tr>
<tr>
<td>14: Training the neural network</td>
<td>17</td>
</tr>
<tr>
<td>15: Setting up learning parameters</td>
<td>18</td>
</tr>
<tr>
<td>16: Network error graph</td>
<td>18</td>
</tr>
<tr>
<td>17: Testing the AND gate neural network project with inputs</td>
<td>19</td>
</tr>
<tr>
<td>18: Electricity sales and power sector generating capacity, Source:EIA</td>
<td>21</td>
</tr>
</tbody>
</table>
19: Feed forward neural network example diagram ... 24
20: Java class for multilayer perceptron in Neuroph ... 25
21: Back propagation training method .. 27
22: Java code for creating a neural network in Neuroph ... 28
23: Java code for testing a neural network in Neuroph .. 29
24: Shell script for flattening data ... 30
25: Shell script for average calculator ... 31
26: Normalization step with min max formula ... 32
27: Setting up Neuroph for the Electricity Demand forecasting project 33
28: Unzipping the Neuroph Studio .. 33
29: Successfully installed Neuroph studio ... 34
30: Navigate to EDP project .. 34
31: Setting up the learning parameters for electricity demand forecasting 35
32: Network error graph ... 36
33: Testing the trained neural network .. 36
34: Output after training and testing ... 37
35: Test results from the best neural network architecture with 56 neurons 40
36: Total network error graph after successfully training and testing the neural network 41
37: Neural network architecture with 56 hidden neurons .. 41
38: Linear Regression for average demand with real time demand.................................45
39: Creating a multilayer perceptron neural network ..47
40: Java code for creating a neural network ...48
41: Uploading training set...48
42: Java code for uploading training set ...49
43: Training a neural network...49
44: Java code for training a neural network...50
45: Training logs generated from a neural network during the training phase..............51
46: Testing a neural network...52
47: Java code for testing a neural network...53
48: Cross-validating a neural network...54
49: Java code for cross-validation ...54
50: Predicting electricity demand ..55
51: Output of electricity demand after it’s predicted ...56
52: Java code for electricity demand prediction ..57
CHAPTER 1. INTRODUCTION

Predicting electricity demand plays an important role in energy market and it affects all the participants in the market such as Consumers, producers, investors, distributors and regulators. Inaccurate forecasts can lead to severe losses for investors due to their bad decisions (Küçükdeniz, 2010) and Consumers might have to end up paying more to suffer the power outages. Producers might have to face challenges in storing the electricity in case of over production and to build new power plants to supply the needed electricity without any outages that might take huge amounts of resources and time in case of under production. Inability to store large amounts of electricity in a cost effective way is one of the most important factors that encourages the concept of forecasting.

As the electricity market is growing rapidly, there is need for tools that can learn and predict the electricity demand accurately that can be useful to both consumers to maximize their utilities and help power producers to maximize their profits and to minimize the financial risk by not misjudging the price movements (J.P.S. Catalao, 2006).

Neuroph is one such framework that can solve Artificial Intelligence problems in a single environment like pre-processing the given data by applying sigmoid functions along with the actual/original problem solving architecture and algorithms. It is an open source framework that gives the freedom to users to customize the library as per the problem requirements and widely supported as the development versions are constantly releasing with new features/added functionalities and support to various algorithms.

The objective of this paper is to predict electricity demand using one of the neural network frameworks – Neuroph with the historical data. Using Neuroph, we create neural network architecture and feed the Historical data in the form of training and testing sets. The
training phase helps the neural network to learn from the input data and the testing phase helps in determining the best neural network architecture by calculating the total mean square error of the neural network and we can achieve this by varying the parameters such as momentum, hidden neurons, learning rate and error. Then we do cross validation by using leave one out technique to find out the standard deviation and variance of that best network and then predict the electricity demand for future.

Different prediction methods have been applied to predict electricity by making use of historical data such as historical averaging models such as NYISO in which the next day prediction is calculated by taking the hourly average of the five most recent days with the highest average load. In this paper, we build a neural network architecture and train the network by calculating the hourly average demand for the previous years’ same day along with the demand of the seven most recent days.

Neural network architecture is built using Neuroph and so it is important to understand this framework, as it is helpful for many such research projects, experiments. Also, due to its applications, central Washington university has included this as part of their coursework so that students can take advantage to .

- Understand and solve the problems in a more practical way.
- Try and approach to solve a problem using different algorithms in multiple ways.
- Customize the neural network library based on the problem space.

Ex: forecasting number of applicants for ndsu during this summer/fall to accommodate the needs of the prospective students, finding the number of passengers travelling in a train during a particular time to accommodate all passengers in a train without any problems, etc.
The structure of this paper is as follows. Chapter 2 describes the related literature in prediction and neural network frameworks. In chapter 3, the electricity market, the current trends of consumption, source of data for this project are explained. In chapter 4, applying multilayer perceptron with back propagation training method, normalization steps are described. This paper will cover more details on Electricity demand and its importance on how it’s affecting economic growth, Neuroph and its applications, Demand forecasting using Neuroph that includes software simulation and Analysis of the results.
CHAPTER 2. LITERATURE REVIEW

2.1. Electricity demand prediction using artificial neural networks

Predicting Electricity demand plays an important role in Inventory planning and management, it can be achieved by an accurate prediction model. Also it helps in better management of resources for the utility companies or distributors or investors and so it has to be aimed first (Mitrea, Lee, & Wu, 2009).

Previous research shows that neural networks have been successfully used for many types of forecasting problems (Smith & Gupta, 2002) and in different fields such as in financial applications (hoseinzade & Akhavan Niaki, 2013); (Angelini, di Tollo, & Roli, 2008); (Kumar & Walia, 2006), psychology (Levine, 2006); (Quek & Moskowitz, 2007), medicine (Lisboa & Taktak, 2006), mathematics (Hernandez & Salinas, 2004), engineering (Pierre, Said, & Probst, 2001), tourism (Palmer, Montano, & Sese, 2006) and energy sector (Rodrigues, Cardeira, & Calado, 2014); (Kargar & charsoghi, 2014); (Pankilb, Prakasvudhisarn, & Khummongkol, 2015); (Limanond, Jomnokwao, & Srikaew, 2011), (AbuAl-Foul, 2012).

(Kandananond, 2011) Did a comparative study on performance of the three approaches such as ARIMA, ANN and MLR and found that artificial neural networks using Multilayer perceptrons method for predicting electricity demand was superior to other approaches in terms of error measurement. In the same lines, (Mitrea, Lee, & Wu, 2009) did a case study by comparing Neural Networks with Traditional forecasting methods and results showed that forecasting with Neural networks offers better performance. According to (Bacha & Meyer, 1992), it is mentioned that NN approach is able to provide a more accurate prediction than expert systems or statistical counterpart.
As per the above examples, when compared to the other traditional methods like statistical models or time series methods, we knew that ANN is a clear winner and (Patuwo, Zhang, & Hu, 1997) in one of his research papers mentioned the below reasons on why/how ANN is a better method for forecasting:

- ANN’s are data driven self-adaptive methods, which means that they learn from examples and capture subtle functional relationships among the data even if the underlying relationships are unknown or hard to describe. Thus ANNs are well suited for problems whose solutions require knowledge that is difficult to specify but for which there are enough data or observations (Patuwo, Zhang, & Hu, 1997).

- ANN’s can generalize, even after learning the data presented to them, ANNs can often correctly infer the unseen part of a population even if the sample data contain noisy information (Patuwo, Zhang, & Hu, 1997).

- ANN’s are universal functional approximators as they have more general and flexible functional forms than the traditional statistical methods can effectively deal with due to the limitations in estimating the underlying function due to the complexity of the real system (Patuwo, Zhang, & Hu, 1997).

- Finally, ANNs are nonlinear which are best suitable for real world problems as they are often non linear (Granger & Terasvirta, 1993). ANN’s are generally non-linear data driven approaches as opposed to model-based non-linear model, which makes it much better for forecasting (Patuwo, Zhang, & Hu, 1997).

2.2. Why use neural network frameworks?

Since ANN’s are so popular and accurate, very recently researchers have started building a collaborative workspace to bring the most common and widely used algorithms into a
framework so that it can help other developers in easily building the desired neural network architecture and there by encouraging them to extend a framework which is ready to use, by providing out of the box functionality, flexible and fun to practice a problem in multiple ways.

These frameworks not only carry the same functionality which the individual ANN algorithms might offer but also support and save time & effort of the developers in building an efficient software which can be used for any type of problem.

Neural network frameworks such as NEUROPH, ENCOG, FANN, JOONE came into existence and helped in solving real world problems such as stock market predictions (Heaton, Basic market forecasting with encog neural networks, 2010), recognition of braille alphabet (Risteski), face recognition (Stojilkovic), predicting poker hands (Ivanić), predicting the class of breast cancer (Trisic), lenses classification (Urosevic), blood transfusion service center (Jovanovic A.), predicting the result of football match (Radovanović & Radojičić), glass identification (Čutović), wine classification (Stojković), predicting survival of patients (Jovanovic M.), Music classification by genre (Jeremic) are some examples.

2.3. Why use Neuroph?

Research projects using neural network frameworks have been extensively done in the fields such as medicine, sports, social causes but there is no such experiment that has been done in energy sector, which inspired to take up this experiment.

According to a latest article on codeproject by (Taheri, 2010) on benchmarking and comparing the Encog, Neuroph and JOONE frameworks, it is mentioned that the way Neuroph is built is easier to understand when compared to encog and the lack of support of JOONE and the complexity of their interface leaves us with the only option of Neuroph.
Neuroph is a framework that simplifies the evolution of applications. It has been already in use in the research field such as test effort estimation (JayaKumar & Alain, 2013), Autonomous Neural Development and pruning (A.C.Andersen, 2010), FIVE-Framework for Integrated Voice Environment (Alexandre & Edson, 2010), Efficient name disambiguation in digital libraries (Haixun, Shijun, Satoshi , Xiaohua, & Tieyun, 2011) and also for developing games such as backgammon etc.

In addition to the above applications, Neuroph Framework has the below advantages

- Free open source neural network framework, which has built-in multilayer perceptron network along with the training method of back propagation with momentum that gives us the ability to use the existing framework rather than creating a new network from the scratch.
- Gives us the flexibility to add/manipulate the existing code that can be easily extended for specific purpose with high level of reusability.
- Easy to use as it has an intuitive GUI built with Netbeans.
- Well documented and well supported.
- Constantly rolling out with Latest versions/updates.

Hence the aim of this paper is to use Neuroph to predict electricity demand.

Some of the Previous Research indicates that the inputs of neural network not only contain historical data but also economic conditions such as GDP, population and weather conditions but our paper mainly focuses on predicting electricity demand based on historical data and so Historical data along with the preprocessing is an important step which is explained in chapter 4.
CHAPTER 3. INTRODUCTION TO NEUROPH

3.1. Neuroph framework

Neuroph is a lightweight Java Neural Network Framework for developing common neural network architectures. It contains well-designed, open source Java library with Small number of basic classes that correspond to basic NN concepts, and GUI editor makes it easy to learn and use. Neuroph has been fully developed and coded in Java. It is an open source project hosted at SourceForge, and the latest version 2.9 has been released under the Apache 2.0 License. Previous versions were licensed under LGPL.

Neuroph is written in Java language and it is made up of two blocks mainly as indicated in the diagram below

- Neuroph Library
- Neuroph Studio

Figure 1: Neuroph framework
3.1.1. Neuroph Library

Neuroph Library is a Java Neural network library that consists of several Java packages, giving developers both ready-made pieces of functionality and create custom additional components which are not related to neural network architectures or learning algorithms by using plugins.

Three of the important packages in Neuroph Library are org.neuroph.core, org.neuroph.nnet and org.neuroph.util. The org.neuroph.core provides base classes such as data manipulation methods, learning event systems and basic building components for neural networks such as neural network learning algorithms, learning rules, transfer functions. The Org.neuroph.nnet provides out-of-the-box neural networks such as network models, layer types, neuron types, and learning algorithms. The Org.neuroph.util provides utility classes for creating neural networks, type codes, parsing vectors, randomization and normalization techniques etc.

3.1.2. Neuroph Studio

Neuroph studio is a GUI tool, built on top of the Netbeans platform and Neuroph library which provides an easy-to-use neural network wizards and tools so that developers can create, test and deploy various java components based on the neural networks on the same environment which was not the case earlier as it had separate application for Java development and another application for building/creating Neural Networks.

3.2. Overview of neural networks with Neuroph Studio

Neural networks are computational models inspired by the way the human brain works. Although they are very simplified models based on known principles about how the brain works, they exhibit some very interesting features, such as learning, generalization, and association capabilities. In addition, they are good at dealing with noisy or incomplete data (Severac, 2011).
Neural networks are graph-like structures that consist of a set of interconnected nodes called neurons. Each neuron has inputs through which it receives input from other neurons (connected to its inputs) and outputs through which it sends output to other neurons (connected to its outputs). The way in which the neurons are interconnected determines the type of neural network architecture (Severac, 2011).

In addition to the connection pattern among neurons, network behavior is determined by the processing inside the neurons and so-called connection weights. Connection weights are numerical values associated with connections among neurons, and by tweaking these values using an appropriate algorithm (called a learning rule), we can adjust the network behavior. Typical neuron processing includes calculating the weighted sum of neuron inputs and connection weights and then feeding that value into some function (step, sigmoid, or tanh functions are commonly used). The output of that function represents the output of the neuron (Severac, 2011).

The Neuroph framework provides all of these neural network components out of the box, regardless of whether you want to create a common type of neural network or a custom neural network. Neuroph Studio also provides samples that demonstrate the basic principles behind neural networks (Severac, 2011). Below is the illustration of Basic Neuron Sample

To open the basic neuron sample, in Neuroph Studio, select File >New Project > Samples > Neuroph > Basic Neuron Sample.
This basic neuron model consists of the following components:

- Two inputs, x_1 and x_2, with corresponding weights, w_1 and w_2.
- An input function, which calculates the weighted sum using the following formula: $s = (x_1*w_1) + (x_2*w_2)$.
- A transfer function, which takes the weighted sum as input and calculates the output of the neuron using a simple step function. If the weighted sum is greater than zero, the function outputs 1; otherwise, it outputs 0.

Figure 3: Basic neuron sample
Try to run this sample and play with the neuron by changing the input and weight values, and then click the Calculate output button.

During a learning procedure, a neuron's weights are automatically adjusted in order to get the desired behavior. These are the basic principles of how artificial neurons work, but there are many variations depending on the type of neural network and we can know more about the multi layer perceptron in the chapter 4.

3.3. Neuroph Studio with an example AND gate

3.3.1. Installation

Unzip the neurophstudio package into a folder. Inside the bin directory you find 3 files as below. For windows click on neurophstudio.exe or neurophstudio64.exe (if your OS is 64 bit) and follow the wizard to complete installation. Launch the application from the installed location. For MAC/Linux you can launch the application directly executing neurophstudio.sh.

![neurophstudio](image1)
![neurophstudio.exe](image2)
![neurophstudio64.exe](image3)

Figure 4: Installing Neuroph Studio

3.3.2 Executing AND gate

Lets build a sample neural network application using Neuroph studio. For simplicity we will take AND gate as an example and build our neural network. Click on File -> New Project
Figure 5: Creating a new project
Select Neuroph -> Neuroph Project

Figure 6: Creating a new project in Neuroph Studio
Name your project as ANDGate and Click Finish
Figure 7: AND gate implementation using Neuroph

You can see your project created as below

Figure 8: Last step of creating a new project

Now right click on Neural Networks folder and select New -> Neural Network. Name your neural network as AND and select Perceptron as the type and click Next.
Figure 9: Selecting type of neural network in Neuroph

In the input num field, enter 2 and in the output num field enter 1, Select Perceptron Learning as the Learning rule and click Finish.

Figure 10: Selecting input and output neurons
Your neural network created will look like below.

Figure 11: AND gate project with inputs and output neurons

Now right click on Training Sets and select new Training Set. Enter Training set name as ANDTrainSet, Type as Supervised, Number of inputs as 2 and Number of outputs as 1. Click next.

Figure 12: Training the AND gate

enter the training set as below and click finish
Figure 13: Inputting the values to the AND gate as part of training

Now click on the neural network AND and select ANDTrainSet and click Train.

Figure 14: Training the neural network

Set the learning parameters as below and click train.
Figure 15: Setting up learning parameters

Figure 16: Network error graph

Now Click on Test and you will see the result as below
Figure 17: Testing the AND gate neural network project with inputs
CHAPTER 4. ELECTRICITY MARKET

According to National grid, Electricity Demand is the rate of using Electricity (National Grid) measured in Kilowatts and the amount of energy used is called consumption. Simply put, Demand is the rate of consumption. Both Consumption and Demand put together the electricity consumer’s service bill. Residential consumers pay for both consumption and Demand as one as there is relatively little variation in electricity when compared to Industrial and commercial users.

4.1. Electricity market in USA

As per one of the documents prepared for US Department of Energy by an agency, it is stated that Since 1982, growth in peak demand for electricity is driven by population growth, bigger houses, bigger TV’s, more air conditioners and more computers has exceeded transmission growth by 25% every year which is not proportional to the amount that is being spent on R&D in this field causing delay in the advancements of this industry.

The economic consequences of an electricity shortage may be severe. (Castro & Cramton, 2009). As we track our history, it has been noted that in the year 2000, one hour outage in Chicago Board of Trade resulted in 20 Trillion in trades delayed, black out in northeast of 2003 caused $6 billion of economic loss to the region, one minute of blackout costs $1 million to Sun Microsystems. These are some of the very few examples on how electricity is impacting our economic conditions. (U.S. Department of Energy, 2007).

As the Economy is relentlessly growing towards digital, Electricity plays an important role. Back in 1980, electrical load from the electronic equipment such as chips and automated manufacturing was limited. By 1990, chips share grew by 10%, which is expected to rise to 60% by 2015 (U.S. Department of Energy, 2007).
According to a very recent report from (EIA), growth in electricity generating capacity parallels the growth in end-use demand for electricity which is a good sign to prevent black outs from happening and helps in keeping our economy stronger. So, there is a need to maintain that corresponding relationship (the balance) between the generating capacity and the electricity demand, which can be achieved by forecasting or predicting (the electricity demand). Hence, Forecasting electricity is an essential step of resource planning in electricity markets to assure that there will be sufficient resources to meet future demand as building capacity is costly and takes time (Castro & Cramton, 2009).

![Figure 18: Electricity sales and power sector generating capacity, Source:EIA](image)

Benefits of predicting Electricity Demand include

- Better resource planning in power distribution companies (Prasad, 2008) and optimize power systems.
- Reduce risks such as blackouts or power outages to the consumers,
- Reduce losses/costs incurred due to the over/under production of electricity to the utility companies.
4.2. Electricity demand data

New England ISO (http://www.iso-ne.com/) is an independent, non-profit Regional transmission organization (RTO) serving Connecticut, Maine, New Hampshire, Vermont, Rhode Island and Massachusetts. Three critical roles of ISO-NE include

1. Operating the power system – monitor, dispatch and direct the flow of electricity across the power grid 24 hours a day 365 days.

2. Designing, administering, and overseeing the region’s competitive wholesale electricity markets for buying and selling day-to-day.

3. Managing the regional power system planning process - identify appropriate transmission infrastructure solutions that are essential for maintaining power system reliability.

ISO –NE express (http://www.iso-ne.com/markets-operations/iso-express) is a great source for both Real time and historic data in Energy, Load and Demand with parameters such as Day Ahead Demand, Real time Demand, Load Forecast, threshold prices, bids, day-ahead and real-time locational marginal prices (LMPs).

As the project is focused on forecasting real time demand, we have taken Real Time Hourly Data

Real Time Hourly Data: It is the real time demand data collected per 1 hour for all the 24 hours across a region selected or whole of the New England and is represented in MWH.

In this project, we are using the data sets ranging from January 2008 till current (2015). Data can be downloaded for various data ranges by specifying the start and end date in the URL (http://www.iso-ne.com/transform/csv/hourlysystemandemand?start=20140101&end=20140131) as start=20140101&end=20140131 for the month of January for Real Time Demand Market

22
Hourly Demand. The data set extracted from ISO-NE express site is generally a .csv file, which consists of 3 parameters Date, Hour Ending (HE) and Real Time Demand (MWh).
CHAPTER 5. DEMAND PREDICTION

Predicting Electricity Demand is an essential step to the distribution utility companies, Power Producers and financial traders and the demand is generally predicted based on the historical data. This project applies the concept of Multilayer perceptron with back propagation algorithm for forecasting the demand of electricity in Neuroph framework. For the analysis purpose, Demand data published on the ISO-NE express website is used.

5.1. Multilayer perceptron

Multi-layer perceptron is a feed forward neural network, with one or more layers between input and output layer. Feedforward means that data flows in one direction from input to output layer (forward). This type of network is trained with the backpropagation-learning algorithm. MLPs are widely used for pattern classification, recognition, prediction and approximation. Each layer in a multi-layer perceptron is fully connected to the next layer in the network.

Figure 19: Feed forward neural network example diagram
Using the concept of Multilayer Perceptron, The neural network that we built in Neuroph has 27 inputs in which 24 hours of data would be the average of a particular hour across the previous week and previous years and 24 hours of Real Time data as expected output.

Below is the screenshot of the Multilayer Perceptron class in Neuroph

```java
/**
 * Creates MultilayerPerceptron Network architecture - fully connected
 * feed forward with specified number of neurons in each layer
 *
 * @param neuronsInLayers  
 * collection of neuron numbers in getLayersIterator
 * @param neuronProperties
 * neuron properties
 */
private void createNetwork(List<Integer> neuronsInLayers, NeuronProperties neuronProperties) {

    // set network type
    this.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON);

    // create input layer
    NeuronProperties inputNeuronProperties = new NeuronProperties(InputNeuron.class, Linear.class);
    Layer layer = LayerFactory.createLayer(neuronsInLayers.get(0), inputNeuronProperties);

    boolean useBias = true; // use bias neurons by default
    if (neuronProperties.getProperty("useBias") == true) {
        useBias = (Boolean)neuronProperties.getProperty("useBias");
    }

    if (useBias) {
        layer.addNeuron(new BiasNeuron());
    }

    this.addLayer(layer);

    // create layers
    Layer prevLayer = layer;

    // for(Integer neuronsNum : neuronsInLayers)
    for(int layerIdx = 1; layerIdx < neuronsInLayers.size(); layerIdx++) {
        Integer neuronsNum = neuronsInLayers.get(layerIdx);

        // create layer
        layer = LayerFactory.createLayer(neuronsNum, neuronProperties);

        if (useBias && (layerIdx < (neuronsInLayers.size() - 1))) {
            layer.addNeuron(new BiasNeuron());
        }

        // add created layer to network
        this.addLayer(layer);

        // create full connectivity between previous and this layer
        if (prevLayer != null)
            ConnectionFactory.fullConnect(prevLayer, layer);

        prevLayer = layer;
    }
}
```

Figure 20: Java class for multilayer perceptron in Neuroph
5.2. Hidden layers and neurons

Numbers of input and output neurons are the same as in the training set. We decide the number of hidden layers as well as the number of neurons in each layer.

Problems that require more than one hidden layer are rarely encountered. For many practical problems, there is no reason to use more than one hidden layer. Based on the same fact, this project started with one layer that can approximate any function that contains a continuous mapping from one finite space to another. Deciding about the number of hidden neuron layers is only a small part of the problem. We must also determine how many neurons in each of the hidden layers will be. Both the number of hidden layers and the number of neurons in each of these hidden layers must be carefully considered.

Using too few neurons in the hidden layers will result in something called underfitting. Underfitting occurs when there are too few neurons in the hidden layers to adequately detect the signals in a complicated data set.

Using too many neurons in the hidden layers can result in several problems. Firstly, too many neurons in the hidden layers may result in overfitting. Overfitting occurs when the neural network has so much information processing capacity that the limited amount of information contained in the training set is not enough to train all of the neurons in the hidden layers. A second problem can occur even when the training data is sufficient. An inordinately large number of neurons in the hidden layers can increase the time it takes to train the network. The amount of training time can increase to the point that it is impossible to adequately train the neural network. There are many rule-of-thumb methods for determining the correct number of neurons to use in the hidden layers, here are just a few of them (Heaton, Introduction to neural networks for java, Second Edition, 2008):
The number of hidden neurons should be between the size of the input layer and the size of the output layer.

The number of hidden neurons should be \(\frac{2}{3} \) the size of the input layer plus the size of the output layer.

The number of hidden neurons should be less than twice the size of the input layer.

Based on the above-mentioned rules, we have chosen hidden neurons and analyzed the neural network with test data to provide us with the optimum number of hidden neurons along with the other learning parameters covered in our next chapter.

5.3. Training method

Back propagation with momentum is the training method used to train our neural network. It is a type of supervised learning and is one of the most commonly used methods for training. It trains the system by feeding the error (difference between the accrual and desired output) back to the system. The momentum is added to speed up the process of learning and to improve the efficiency of the algorithm.

![Figure 21: Back propagation training method](image)
Bias neuron is very important, and the back propagation neural network without Bias neuron for hidden layer does not learn. Neural networks are "unpredictable" to a certain extent so if you add a bias neuron you're more likely to find solutions faster than if you don't use a bias. The Bias weights control shapes, orientation and steepness of all types of sigmoidal functions through data mapping space. A bias input always has the value of 1. Without a bias, if all inputs are 0, the only output ever possible will be a zero.

Each Neural Network that we have designed consists of 27 inputs that are generally Year, Month, Day, Hourly Average Demand data and Real time hourly data (expected output). The idea behind including Year, Month, and Day in the inputs layer is to make the network learn to give the predictions based on them for the future.

Training set contains 51 columns of which 27 are inputs and 24 are expected outputs and the main purpose of the training set is to build the neural network based on the inputs provided.

Below is the screenshot of the Training code

```java
// create neural network
/**
 * @uml.property name="neuralNet"
 * @uml.property associationEnd multiplicity="(1 1)"
 */
MultilayerPerceptron neuralNet;

static{

}

public void trainAndSaveNN(String realpath, String file) throws NumberFormatException, FileNotFoundException, IOException{
    learningRule = neuralNet.getLearningRule();
    learningRule.addListener(this);

    neuralNet.setLearningRule(learningRule);
    neuralNet.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON);

    DataSet trainSet = TrainingSetImport.importFromFile(file, 24, 24, "");
    dataSet.normalize(normalizer);

    neuralNet.learn(trainSet);
    neuralNet.save(realpath + "epfc");
}

public static void main(String[] args) throws FileNotFoundException, IOException {
    new EPFCNN().run();
}
```

Figure 22: Java code for creating a neural network in Neuroph
The test/validation set also contains the same number of inputs as training set while the purpose of the test set is to validate the network that is built during the training phase that returns the total mean square error between the actual output and the expected output. Below is the screenshot of the test code

```java
/**
 * Prints network output for each element from the specified training set.
 * @param neuralNet neural network
 * @param trainingSet training set
 * @throws IOException
 * @throws NumberFormatException
 */
public double[][] testNeuralNetwork(String testSetFile) throws NumberFormatException, IOException,FileNotFoundException {
    Dataset testSet = TrainingSetImport.importFromFile(testSetFile, 26, 0, "\", ");
    testSet.normalize(normalizer);
    return testNeuralNetwork(testSet);
}

public double[][] testNeuralNetwork(Dataset testSet) {
    double[][] result = new double[testSet.size()][0];
    int i = 0;
    for(DatasetRow testSetRow : testSet.getRows()) {
        neuralNet.setInput(testSetRow.getInput());
        neuralNet.calculate();
        double[] networkOutput = neuralNet.getOutput();
        System.out.print("Input: "+Arrays.toString(normalizer.deNormalize(networkOutput)));
        double[] op = normalizer.deNormalizeOp(networkOutput);
        result[i] = op;
        i++;
        System.out.println("\n");
        System.out.println("Des normalized Output: "+Arrays.toString(op));
        System.out.println("\n");
    }
    return result;
}
```

Figure 23: Java code for testing a neural network in Neuroph

In Neuroph, The Neural network is trained with hourly data for years 2009 till 2014 and tested with 2015 set. Both Training Sets and Test sets are represented by .tset file extension.

Below is the example of training set

5.4. Preprocessing input data

Data used to train and test the neural network should be normalized before feeding to the network. After collecting the data from ISO-NE express website, we generally do the following steps

1. Flattening data
2. Average calculator

3. Normalization

5.4.1. Flattening data

This step preprocesses raw data downloaded from ISO-NE and flattens them from one-hour records into one-day records. The downloaded data generally contains one hour records in each separate row. So, in this step, we rearrange that 1 hour record in a column for each day in separate rows to accommodate the data as per the requirement for Neuroph data set. This operation is performed for both Real time demand and Average Demand separately. For this, we have written a script flatten.sh script.

```
#!/bin/bash

reademandfile=1
opfile=2
r=$((row+1))
desrenow D=$r
row1=1

while [[ $(r!row -lt 8000) ]];
   do
      oneday=""      
      for ((k=1; k<=10; k++));
         do
            if [[ ${k} -lt 10 ]]; then
                j="0$k"
            else
                j="$k"
            fi
            rtdate=nawk -v j=${j} '{FNR = i (print $j) " $rtdemandfile"; IFN=; read -a array <<< "$rtdate"; temp=${array[2]}" $rtdate="array[3]"
            rtvalue=${array[5]}" $rtdate="array[6]"
            dat="array[11]"" # remove leading whitespace characters
            date="${date}[space][space]" # remove trailing whitespace characters
            fi
      if [ $thry == "001" ]
         then
             echo "Missing 00X row from data";
      rtdate=nawk -v j=${j} '{FNR = i (print $j) " $rtdemandfile"; IFN=; read -a array <<< "$rtdate"; temp=${array[2]}" $rtdate="array[3]"
            rtvalue=${array[5]}" $rtdate="array[6]"
            dat="array[11]"" # remove leading whitespace characters
            date="${date}[space][space]" # remove trailing whitespace characters
            fi
      if [ $thry == "011" ]
         then
             oneday=oneway,6day;
      if [ $thry == "011" ];
         then
             oneday=oneway,15000-9,6day;
             echo "Month total $thry for array[11]" $row $thry $1
             k=$((i+1));
            fi
      fi
      row=$(r!row)
      oneday=${oneyday:13}
      echo oneway = $oneway;
      done
   done
```

Figure 24: Shell script for flattening data
5.4.2. Average calculator

In this step, we take the output from previous step of flattening data and calculate the average demand for 24 hours in separate columns by summing up the demand for the previous 7 days per each single hour separately for that year alone plus previous year’s occurrence of the very same day. For example, to calculate the input of 1st hour of January 1st 2015, we take an average demand for the Dec 31st first hour, Dec 30th first hour, Dec 29th first hour, Dec 28th first hour, Dec 27th first hour, Dec 26th first hour, Dec 25th first hour plus January 1st 2014 first hour, January 1st 2013 first hour, January 1st 2012 first hour, January 1st 2011 first hour, January 1st 2010 first hour, January 1st 2009 first hour, January 1st 2008 first hour.

Figure 25: Shell script for average calculator
5.4.3. Normalization

Normalization is a process of converting real data into data that neural networks can understand and work. Simply put, it is a mapping of real data to data between 0 and 1.

By running epfc-normalizer.jar, we can obtain all the demand values in between 0 and 1 that we can further pass it to the training and test stages. The algorithm that we used to normalize the data is MiniMax. Below is the Formula:

\[
\text{Normalized}(e_i) = \frac{e_i - E_{\text{min}}}{E_{\text{max}} - E_{\text{min}}}
\]

where

- \(E_{\text{min}} \) = the minimum value for variable \(E \)
- \(E_{\text{max}} \) = the maximum value for variable \(E \)

If \(E_{\text{max}} \) is equal to \(E_{\text{min}} \) then \(\text{Normalized}(e_i) \) is set to 0.5.

Figure 26: Normalization step with min max formula

After successfully passing through the training and test phases, we actually can enter the input data that just contains the average demand to execute and provide us with the output of the expected demand for the next one-hour or day based on the inputs provided.
CHAPTER 6. ELECTRICITY DEMAND PREDICTION WITH NEUROPH

6.1. Software simulation

1) Download the Neuroph Studio from the location NeurophStudio

![Figure 27: Setting up Neuroph for the Electricity Demand forecasting project](image)

2) Unzip the file

![Figure 28: Unzipping the Neuroph Studio](image)

3) Go to neurophstudio->bin and launch the application neurophstudio.exe or neurophstudio64.exe. For MAC execute neourophstudio.sh script to launch application. You should be able to see the EDP-055715 project loaded in your workspace as below.
Figure 29: Successfully installed Neuroph studio

If the project is not loaded default, click on File-> Open Project and select the project location as neourophstudio -> EDP-055715 as below

Figure 30: Navigate to EDP project
You can see the EDP-055715 neural network, Training Sets and the Test Set in your workspace now. On clicking the EDP-055715, opens the neural network design view for you. Now click on any Training set file to train network and click on train button as below. You can set the Max error, Learning rate and momentum to train in the dialog box and click on the train button.

![Image](image-url)

Figure 31: Setting up the learning parameters for electricity demand forecasting

You can see the network getting trained and also the number of iterations it took to get trained with total network error.
Repeat the training steps for other training sets and complete training. After training select the test set and clicks the test button.

Figure 33: Testing the trained neural network
You can view the results right away with input given, actual output, desired output and Total Mean square error.

Figure 34: Output after training and testing

This process of training and testing will be repeated for several attempts with varying learning parameters such as learning rate, momentum and number of hidden neurons to find out the best network architecture to use it for the final forecast. Per each individual training set, we can find the best architecture and then we can cross validate the network accuracy.

6.2. Analysis on the training attempts

In this step, our goal is to get the best neural network architecture that has the least total square error, which would also provide us with the optimum number of hidden neurons that should be used for the network. Also, while performing this step, we would modify parameters such as momentum and learning rate to train the network. Data for the years 2009 till 2014 is fed to the neural network during the train phase and the error that we generate during the training
phase is noted down as Total network error and the during the testing phase is noted down as Total square error and data for the year of 2015 (till May 28th) is fed to the neural network. Only when the network is successfully trained, we would calculate the total mean square error.

Table 1: Analysis of neural network architecture with varying learning rate, momentum, hidden neurons for Dataset 2009-2014

<table>
<thead>
<tr>
<th>Hidden neurons</th>
<th>Learning rate</th>
<th>Momentum</th>
<th>Max error</th>
<th>Network error</th>
<th>Iterations</th>
<th>Total mean square error</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.2</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13999446</td>
<td>17000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.14014021</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.3</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13754688</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.5</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13751560</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.14708316</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td>0.5</td>
<td>0.07</td>
<td>0.17178651</td>
<td>25000</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.13878937</td>
<td>26000</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13551796</td>
<td>17000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.12867541</td>
<td>1787</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.2</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13269652</td>
<td>3705</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.09120345</td>
<td>8134</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.07948120</td>
<td>33008</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.09353887</td>
<td>14942</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.07944682</td>
<td>11291</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.09437603</td>
<td>17387</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.09569940</td>
<td>28958</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.09962351</td>
<td>8146</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.09437603</td>
<td>17387</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.09569940</td>
<td>28958</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.0998351</td>
<td>8146</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.09999850</td>
<td>7038</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.08666064</td>
<td>7960</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.06999962</td>
<td>7690</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.08145516</td>
<td>11045</td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Analysis of neural network architecture with varying learning rate, momentum, hidden neurons for Dataset 2009-2014 (continued)

<table>
<thead>
<tr>
<th>Hidden neurons</th>
<th>Learning rate</th>
<th>Momentum</th>
<th>Max error</th>
<th>Network error</th>
<th>Iterations</th>
<th>Total mean square error</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.2</td>
<td>0.7</td>
<td>0.07</td>
<td>0.12160549</td>
<td>2338</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.07968846</td>
<td>7667</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.2</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13499605</td>
<td>3692</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.3</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13774964</td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.07124001</td>
<td>11063</td>
<td>0.21370384</td>
</tr>
<tr>
<td>51</td>
<td>0.25</td>
<td>0.5</td>
<td>0.07</td>
<td>0.09058342</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.2</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13438318</td>
<td>7514</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.07823742</td>
<td>9772</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.3</td>
<td>0.7</td>
<td>0.07</td>
<td>0.15625076</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.4</td>
<td>0.7</td>
<td>0.07</td>
<td>0.12936268</td>
<td>2544</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.6</td>
<td>0.7</td>
<td>0.07</td>
<td>0.14383148</td>
<td>2826</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.06999705</td>
<td>4590</td>
<td>0.16491053</td>
</tr>
<tr>
<td>52</td>
<td>0.25</td>
<td>0.5</td>
<td>0.07</td>
<td>0.11971895</td>
<td>5163</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.5</td>
<td>0.5</td>
<td>0.07</td>
<td>0.09453785</td>
<td>6652</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.2</td>
<td>0.7</td>
<td>0.07</td>
<td>0.12416383</td>
<td>653</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.1</td>
<td>0.7</td>
<td>0.07</td>
<td>0.07673492</td>
<td>16062</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.3</td>
<td>0.7</td>
<td>0.07</td>
<td>0.15625076</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.4</td>
<td>0.7</td>
<td>0.07</td>
<td>0.14314422</td>
<td>2140</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.5</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13962757</td>
<td>3136</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.6</td>
<td>0.7</td>
<td>0.07</td>
<td>0.13748118</td>
<td>1570</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.25</td>
<td>0.5</td>
<td>0.07</td>
<td>0.15497031</td>
<td>2375</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.1</td>
<td>0.5</td>
<td>0.07</td>
<td>0.07130412</td>
<td>9279</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.5</td>
<td>0.5</td>
<td>0.07</td>
<td>0.13745632</td>
<td>2908</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0.1</td>
<td>0.5</td>
<td>0.063</td>
<td>0.06297424</td>
<td>17616</td>
<td>0.24016003</td>
</tr>
<tr>
<td>56</td>
<td>0.1</td>
<td>0.5</td>
<td>0.06</td>
<td>0.059999989</td>
<td>12789</td>
<td>0.0567028</td>
</tr>
<tr>
<td>72</td>
<td>0.1</td>
<td>0.5</td>
<td>0.04</td>
<td>0.05077751</td>
<td>35571</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0.1</td>
<td>0.5</td>
<td>0.055</td>
<td>0.05793136</td>
<td>23104</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.1</td>
<td>0.5</td>
<td>0.04</td>
<td>0.05021683</td>
<td>35199</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.1</td>
<td>0.5</td>
<td>0.01</td>
<td>0.03761687</td>
<td>19538</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
<td>0.5</td>
<td>0.01</td>
<td>0.03400890</td>
<td>19874</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>0.1</td>
<td>0.5</td>
<td>0.01</td>
<td>0.02407696</td>
<td>27450</td>
<td></td>
</tr>
</tbody>
</table>
From the above table, choose a row that has the least total mean square error and it is the best network architecture with the data that we trained and tested and is cross validated in our next step. So, we chose 56 hidden neurons with 0.1 of learning rate and 0.5 of momentum as the best network architecture. Below are the screenshots, the first one displays the number of iterations vs error rate graph and the second one displays the total mean square error for that network.

Figure 35: Test results from the best neural network architecture with 56 neurons
Figure 36: Total network error graph after successfully training and testing the neural network

Below is the neural network architecture with 56 hidden neurons.

Figure 37: Neural network architecture with 56 hidden neurons

6.3. Cross-validation

The cross-validation method that we choose for this Neuroph project is leave one out method where we pick twelve random inputs one from each month for a period of a year (2009)
and then build test sets leaving one input for each time and repeating it for 12 times until we cover all the inputs and then calculate the standard deviation and variance for that network. Cross-validation is an important step that will help us in reporting the variance and standard deviation of the data. Below is the cross validated data for the 12 experiments performed.

Once the network is cross validated, we will take that network to predict the demand for the past/future and then verify it with the real time demand and forecasted demand in ISO-NE website. Below is the table showing the hourly-predicted demand for May 29th using Neuroph.

Table 2: Cross-validation with twelve sets of test data

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Total mean square error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Data Set – 1</td>
<td>0.0031850865139329016</td>
</tr>
<tr>
<td>Test Data Set – 2</td>
<td>0.0036249392444056183</td>
</tr>
<tr>
<td>Test Data Set – 3</td>
<td>0.003828890021327136</td>
</tr>
<tr>
<td>Test Data Set – 4</td>
<td>0.003710398093381868</td>
</tr>
<tr>
<td>Test Data Set – 5</td>
<td>0.0035713844627581477</td>
</tr>
<tr>
<td>Test Data Set – 6</td>
<td>0.0038351210994040045</td>
</tr>
<tr>
<td>Test Data Set – 7</td>
<td>0.0030103306281517458</td>
</tr>
<tr>
<td>Test Data Set – 8</td>
<td>0.0038090656323832503</td>
</tr>
<tr>
<td>Test Data Set – 9</td>
<td>0.0035746664332910465</td>
</tr>
<tr>
<td>Test Data Set – 10</td>
<td>0.0037918154808452564</td>
</tr>
<tr>
<td>Test Data Set – 11</td>
<td>0.0038575024346391147</td>
</tr>
<tr>
<td>Test Data Set – 12</td>
<td>0.0034210038689849102</td>
</tr>
<tr>
<td>Average</td>
<td>0.0036016836594587</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.00026150538639467</td>
</tr>
<tr>
<td>Variance</td>
<td>6.8385067113428E-8</td>
</tr>
</tbody>
</table>
Table 3: Forecast with Neuroph vs real time demand.

<table>
<thead>
<tr>
<th>Hour ending</th>
<th>Forecast with Neuroph</th>
<th>Real time demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11385.74</td>
<td>12766.6</td>
</tr>
<tr>
<td>2</td>
<td>11134.21</td>
<td>12466.33</td>
</tr>
<tr>
<td>3</td>
<td>10968.93</td>
<td>12348.47</td>
</tr>
<tr>
<td>4</td>
<td>11063.69</td>
<td>12203.43</td>
</tr>
<tr>
<td>5</td>
<td>11085.12</td>
<td>12331.7</td>
</tr>
<tr>
<td>6</td>
<td>11365.32</td>
<td>12817.61</td>
</tr>
<tr>
<td>7</td>
<td>11958.44</td>
<td>13147.62</td>
</tr>
<tr>
<td>8</td>
<td>12842.7</td>
<td>14405.13</td>
</tr>
<tr>
<td>9</td>
<td>13702.04</td>
<td>15198.16</td>
</tr>
<tr>
<td>10</td>
<td>14439.24</td>
<td>15761.09</td>
</tr>
<tr>
<td>11</td>
<td>14995.66</td>
<td>16240.08</td>
</tr>
<tr>
<td>12</td>
<td>15381.65</td>
<td>16591.85</td>
</tr>
<tr>
<td>13</td>
<td>15656.06</td>
<td>16775.99</td>
</tr>
<tr>
<td>14</td>
<td>15897.8</td>
<td>17060.35</td>
</tr>
<tr>
<td>15</td>
<td>16057.7</td>
<td>17249.15</td>
</tr>
<tr>
<td>16</td>
<td>16286.2</td>
<td>17490.01</td>
</tr>
<tr>
<td>17</td>
<td>16719.76</td>
<td>17671.23</td>
</tr>
<tr>
<td>18</td>
<td>16937.34</td>
<td>17492.3</td>
</tr>
<tr>
<td>19</td>
<td>16432.65</td>
<td>16893.26</td>
</tr>
<tr>
<td>20</td>
<td>15999.28</td>
<td>16270.22</td>
</tr>
<tr>
<td>21</td>
<td>15841.13</td>
<td>16156.64</td>
</tr>
<tr>
<td>22</td>
<td>15047.4</td>
<td>15538.65</td>
</tr>
<tr>
<td>23</td>
<td>13705.82</td>
<td>14242.28</td>
</tr>
<tr>
<td>24</td>
<td>12462.75</td>
<td>13051.38</td>
</tr>
<tr>
<td>SUM</td>
<td>325980.89</td>
<td>349402.93</td>
</tr>
</tbody>
</table>
In order to make sure that the predictions are not always over shooting or undershooting, we have predicted for some random days and then measured the accuracy of the forecast by calculating the mean forecast error for 24 hours as shown in the table below.

Table 4: Comparison of forecast with artificial neural network output vs real time demand

<table>
<thead>
<tr>
<th>Day</th>
<th>Forecast (sum of 24hrs in mw)</th>
<th>Real time (sum of 24hrs in mw)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 9(^{th}), 2014</td>
<td>325663.18</td>
<td>318128.58</td>
<td>-7534.6</td>
</tr>
<tr>
<td>Nov 4(^{th}), 2014</td>
<td>322671.83</td>
<td>327464.16</td>
<td>4792.33</td>
</tr>
<tr>
<td>Dec 17(^{th}), 2014</td>
<td>366270.26</td>
<td>361017.15</td>
<td>-5253.11</td>
</tr>
<tr>
<td>Jan 5(^{th}), 2015</td>
<td>374508.02</td>
<td>371265.3</td>
<td>-3242.72</td>
</tr>
<tr>
<td>Jan 28(^{th}), 2015</td>
<td>394050.84</td>
<td>382366.22</td>
<td>-11684.62</td>
</tr>
<tr>
<td>Feb 5(^{th}), 2015</td>
<td>377972.69</td>
<td>398607.65</td>
<td>20634.96</td>
</tr>
<tr>
<td>March 15(^{th}), 2015</td>
<td>322708.83</td>
<td>329221.66</td>
<td>6512.83</td>
</tr>
<tr>
<td>March 30(^{th}), 2015</td>
<td>340483.64</td>
<td>356672.79</td>
<td>16189.15</td>
</tr>
<tr>
<td>April 2(^{nd}), 2015</td>
<td>341456.41</td>
<td>335478.922</td>
<td>-134.7515</td>
</tr>
<tr>
<td>April 21(^{st}), 2015</td>
<td>309575.21</td>
<td>313005.73</td>
<td>3430.52</td>
</tr>
<tr>
<td>May 6(^{th}), 2015</td>
<td>296832.1</td>
<td>307860.47</td>
<td>11028.37</td>
</tr>
<tr>
<td>May 30(^{th}), 2015</td>
<td>351544.35</td>
<td>345259.35</td>
<td>-6285</td>
</tr>
<tr>
<td>June 5(^{th}), 2015</td>
<td>328742.14</td>
<td>313587.88</td>
<td>-15154.26</td>
</tr>
<tr>
<td>Summation of error</td>
<td></td>
<td></td>
<td>13568.6015</td>
</tr>
<tr>
<td>Mean forecast error for 24 hours is</td>
<td></td>
<td></td>
<td>1023.00758</td>
</tr>
</tbody>
</table>

6.4. Analysis with Linear Regression

This experiment is designed to determine how well our neural network model works when compared to linear regression, below are the results for the 1\(^{st}\) hour computed with linear regression to build a function in the forms of \(y=aX+b\) using the data from 2009-2014, where \(X\) is
averages calculated for the past seven days along with the occurrence of the same day in previous calendar year and y is the real time data. The values of the slope, intercept, correlation and \(r^2 \) values are 0.625677, 4618.58931, 0.78193757, 0.61142636 and the equation obtained from the final output \(y=0.9772x+282.02 \), where \(a=0.9772, b=282.02 \)

![Graph showing linear regression](image)

Figure 38: Linear Regression for average demand with real time demand

X is the average value evaluated for the first hour, rt is real time demand, lr is linear regression, ann-artificial neural network, rt-ann indicates difference of output from real time demand with artificial neural network output, rt-lr indicates difference of output from real time demand with linear regression output.
Table 5: Analysis of forecast with artificial neural network output vs real time demand vs Linear Regression.

<table>
<thead>
<tr>
<th>DAY, 2015</th>
<th>x</th>
<th>RT</th>
<th>LR</th>
<th>ANN</th>
<th>RT-ANN</th>
<th>RT-LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 5th</td>
<td>13346.7143</td>
<td>12122.86</td>
<td>13255.0263</td>
<td>13491.91</td>
<td>-1369.05</td>
<td>-1132.1663</td>
</tr>
<tr>
<td>Jan 28th</td>
<td>13509.2286</td>
<td>14125.04</td>
<td>13412.9902</td>
<td>14113.5</td>
<td>11.54</td>
<td>712.049800 8</td>
</tr>
<tr>
<td>Feb 5th</td>
<td>13897.6914</td>
<td>13878.08</td>
<td>13790.5760 4</td>
<td>13647.1</td>
<td>230.98</td>
<td>87.5039592</td>
</tr>
<tr>
<td>March 15th</td>
<td>12375.13</td>
<td>12030.33</td>
<td>12310.6463 6</td>
<td>11673.95</td>
<td>356.38</td>
<td>-280.31636</td>
</tr>
<tr>
<td>March 30th</td>
<td>12122.545</td>
<td>12461.51</td>
<td>12065.1337 4</td>
<td>12228.21</td>
<td>233.3</td>
<td>396.37626</td>
</tr>
<tr>
<td>April 2nd</td>
<td>12199.2057</td>
<td>12448.26</td>
<td>12139.6479 4</td>
<td>12199.20 57</td>
<td>249.0543</td>
<td>308.612059 6</td>
</tr>
<tr>
<td>April 21st</td>
<td>10647.5957</td>
<td>11442</td>
<td>10631.4830 2</td>
<td>10997.76</td>
<td>444.24</td>
<td>810.516979 6</td>
</tr>
<tr>
<td>May 6th</td>
<td>10447.1121</td>
<td>10571.64</td>
<td>10436.6129 6</td>
<td>10543.27</td>
<td>28.37</td>
<td>135.027038 8</td>
</tr>
<tr>
<td>May 30th</td>
<td>11655.7507</td>
<td>11963.4</td>
<td>11611.4096 8</td>
<td>11962.16</td>
<td>1.24</td>
<td>351.990319 6</td>
</tr>
<tr>
<td>June 5th</td>
<td>11410.1807</td>
<td>10827.86</td>
<td>11372.7156 4</td>
<td>11308.14</td>
<td>-480.28</td>
<td>-544.855640</td>
</tr>
</tbody>
</table>

So, from the above table it is clear that neural network results are much closer to the output that we get from linear progression.
CHAPTER 7. ELECTRICITY DEMAND PREDICTION ON WEB

Using the development version of Neuroph framework, a web application is built very specific to our problem and hosted on Amazon web services. Here is the link for the Source files of the development version uploaded in GIT repository: https://github.com/sowpar18/edp

Here is the link to the application: http://edp-1034583199.us-west-2.elb.amazonaws.com/edp/. Below are the steps we can follow to build neural network architecture on web.

7.1. Create MLP neural network

Enter the number of hidden neurons that you would like to train/test the neural network as shown in the screenshot below. As you can notice, we have definite input and output neurons as 27 and 24 respectively.

Figure 39: Creating a multilayer perceptron neural network

Below is the screenshot of the java class that’s corresponding to creating a neural network.
public static void createNN(String name, int i, int o, int h) {
 String neuroNum = i + " " + h + " " + o;
 MultilayerPerceptron nnet2 = NeuralNetworkFactory.createMLPerceptron(neuroNum, TransferFunctionType.SIGMOID, MomentumBackpropagation.class, true, false);
 nnet2.setLabel(name);
 nnet2.save(rootPath+NN_PATH+name+NNET_SUFFIX);
}

Figure 40: Java code for creating a neural network

7.2. Upload datasets

Enter the name of the training set and upload the data set by clicking on upload

Figure 41: Uploading training set

Below is the screenshot of the java class responsible for the upload datasets.
public static boolean uploadDataSet(String name, byte[] bytes, int i, int o) {
 try {
 BufferedOutputStream stream = new BufferedOutputStream()
 }
 // create training set
 Dataset trainingSet = null;
 try {
 trainingSet = TrainingSetImport.
 }
 catch (FileNotFoundException ex) {
 System.out.println("File not found!");
 } catch (IOException | NumberFormatException ex) {
 System.out.println("Error reading file or bad number format!");
 }
 return true;
} catch (Exception e) {
 return false;
}

Figure 42: Java code for uploading training set

7.3. Train neural network

Train the neural network by selecting the network that was created in 7.2.1 step i.e. Create Neural Network and select the data set that was uploaded in 7.2.2 step i.e. upload data set.

Enter the max number of iterations and then enter max error, learning rate and momentum.

Figure 43: Training a neural network

Below is the screenshot of the source code for Training Neural network.
Figure 44: Java code for training a neural network

Click on logs to see the training iterations that are going through the network as shown in the below screenshot

```java
public static void train(String name, Double l1, Double l2, int ml, Double mon, String tshName) {
    MultilayerPerceptron neuralNetwork = (MultilayerPerceptron) NeuralNetwork.createFromFile(rootPath+NN_PATH+name);
    if (mon != null && mon > 0) ((MomentumBackpropagation) neuralNetwork.getLearningRule()).setMomentum(mon);
    if (l1 != null && l1 > 0) neuralNetwork.getLearningRule().setLearningRate(l1);
    if (ml > 0) neuralNetwork.getLearningRule().setMaxIterations(ml);
    if (mon != null && mon > 0) neuralNetwork.getLearningRule().setMaxError(me);
    neuralNetwork.getLearningRule().addListener(new LearningEventListener() {
        @Override
        public void handlelearningEvent(LearningEvent event) {
            SupervisedLearningRule = (SupervisedLearning) event.getSource();
            training.add("Training, Iteration " + rule.getCurrentIteration() + " , Error: " + rule.getTotalNetworkError() + " , Error: " + rule.getTotalOutputError());
        }
    });
    // create training set
    DataSet trainingSet = DataSet.load(rootPath+TRAIN_SET_PATH+tshName);
    mn = neuralNetwork;
    mn.learn(trainingSet);
    mn.save(rootPath+NN_PATH+nn.getLabel()+NNET_SUFFIX);
}

public static void stoplearning(){
    if(nn != null){
        mn.stopLearning();
        mn.save(rootPath+NN_PATH+nn.getLabel()+NNET_SUFFIX);
    }
}

public static void pauselearning(){
    if(nn != null){
        mn.pauseLearning();
        mn.save(rootPath+NN_PATH+nn.getLabel()+NNET_SUFFIX);
    }
}

public static void resumelearning(){
    if(nn != null){
        mn.resumeLearning();
        //nn.save(nn.getLabel());
    }
}
Figure 45: Training logs generated from a neural network during the training phase

7.4. Test neural network

Once training is done successfully, we need to test the neural network to find out the best neural network as shown in the below screenshot.
Figure 46: Testing a neural network

Click on test button to test the neural network and you can see the total mean square error for that network. Below is the screenshot of the test source code.
public static TestResult test(String name, String tsName) {
    MultilayerPerceptron neuralNetwork = (MultilayerPerceptron) NeuralNetwork.createFromfile(rootPath+NL_PATH+name);
    TestResult result = new TestResult();
    // create training set
    // create training set
    Dataset trainingSet = Dataset.load(rootPath+TRAIN_SET_PATH+tsName);

    Iterator<DataSetRow> it = trainingSet.iterator();
    double mOutput[][] = new double[trainingSet.getRows().size()][24];
    double dOutput[][] = new double[trainingSet.getRows().size()][24];
    int c = 0;
    ErrorEvaluator errEvaluator = new ErrorEvaluator(new MeanSquaredError());
    while(it.hasNext()) {
        DataSetRow r = it.next();
        neuralNetwork.setInput(r.getInput());
        neuralNetwork.calculate();
        double op[] = neuralNetwork.getOutput();
        int k = 0;
        for (double d : op) {
            mOutput[r][k] = d;
            k++;
        }
        //mOutput[] = op;
        dOutput[r] = r.getDesiredOutput();
        errEvaluator.processNetworkResult(neuralNetwork.getOutput(), r.getDesiredOutput());
        c++;
    }
    double mse = errEvaluator.getOverall();
    result.setMse(mse);
    result.setMOp(mOutput);
    result.setDOp(dOutput);

    System.out.println("Mean Square Error":"+mse);
    System.out.println("Network Output":"+mOutput);

    return result;
}

Figure 47: Java code for testing a neural network

7.5. Cross-validate neural network

Once the successfully trained networks are tested, we will get a list of networks with total mean square errors and we pick the network that has the least total mean square error to cross validate the accuracy of the network by leave one out method. Below is the screenshot.
Figure 48: Cross-validating a neural network

Below is the source code for cross-validate class

```java
public static CrossValidationResult crossValidate(String name, String testSet)
{
 MultilayerPerceptron neuralNetwork = new MultilayerPerceptron().createFromFile(name);
 CrossValidationResult result = new CrossValidationResult();
 TestResult results[] = new TestResult[12];
 // create training set
 Dataset trainingSet = Dataset.loadFromFile("DATA_SET_PATH+train");
 Random rm = new Random();
 int daysInMonth;
 int min = 0;
 int max = 0;
 List<Interval> validDays = new ArrayList<Interval>();
 int [] daysPicked = new int[12];
 for(int i=1; i<13; i++)
 {
 min = max + 1;
 if (i == 4 || i == 6 || i == 9 || i == 11)
 daysInMonth = 30;
 else if (i == 2)
 daysInMonth = 28;
 else
 daysInMonth = 31;
 max = (int) (-1) + daysInMonth;
 int randomDay = rm.nextInt(min + max) + min;
 daysPicked[i-1] = randomDay;
 validDays.add(trainingSet.indexOf(randomDay));
 }
 double mactest[][] = new double[validDays.size()][24];
 double output[][] = new double[validDays.size()][24];
 double err[] = new double[12];
 ErrorEvaluator errorEvaluator = new ErrorEvaluator(new MeanSquaredError());
```

Figure 49: Java code for cross-validation
7.6. Predict demand

We can predict the demand for future by uploading a new dataset and feed it to the same network and click on predict as shown in the below screenshot.

![Predict Demand](image)

**Figure 50: Predicting electricity demand**

On clicking predict, we would see an output from the network for the 24 hours arranged in each single row as shown in the below screenshot.
Figure 51: Output of electricity demand after it’s predicted

Below is the screenshot of the source code for predicting class of the neural network.
public static TestResult predict(String name, String tsName) {
    MultilayerPerceptron neuralNetwork = (MultilayerPerceptron) NeuralNetwork.createFromFile(rootPath + NN_PATH + name);
    TestResult result = new TestResult();
    // Create training set
    Dataset trainingSet = Dataset.load(rootPath + TRAIN_SET_PATH + tsName);
    Iterator<DataSetRow> it = trainingSet.iterator();
    double mOutput[][] = new double[trainingSet.getRows().size()][24];
    //double dOutput[][] = new double[trainingSet.getRows().size()][24];
    int c = 0;
    //ErrorEvaluator errorEval = new ErrorEvaluator(new MeanSquaredError());
    while (it.hasNext()) {
        DataSetRow r = it.next();
        neuralNetwork.setInput(r.getInput());
        neuralNetwork.calculate();
        mOutput[c] = neuralNetwork.getOutput();
        //dOutput[c] = r.getDesiredOutput();
        //errorEval.processNetworkResult(neuralNetwork.getOutput(), r.getDesiredOutput());
        c++;
    }
    //double tmse = errorEval.getResult();
    //result.setTmse(tmse);
    result.setNwp(mOutput);
    //result.setDesired(dOutput);
    //System.out.println("Mean Square Error:" + tmse);
    System.out.println("Network Output:" + mOutput);
    return result;
}

Figure 52: Java code for electricity demand prediction
CHAPTER 8. CONCLUSION AND FUTURE WORK

This paper discusses the concept of building best neural network model with a neural network framework using historical data that can help distributors or utility companies in preparing better for the future electricity demand requirements.

The overall goal of the project was to build a tool that predicts the electricity demand for day ahead given large amount of historical data. Historical data ranging from 2007-2015(till date) is used to train and test the neural network for future predictions.

From the experimental results, high performance neural network model has been successfully built which produced close predictions to the real time demand with a reasonable number of iterations and acceptable error rates of 0.06. Accuracy of the prediction was cross-validated with reasonable standard deviation and variance. Mean forecast errors were calculated to verify the overall forecast accuracy with a difference of 1023 mw of electricity demand for 24 hours. Also, the neural network model’s accuracy is much better than linear regression method on a limited number experiments.

Training data that is available on the ISO-NE express website is for only 8 years and hence future work would be to collect more data for some additional years and run the neural network training phase and possibly build a network that has an error rate of less than 0.01.

An interesting problem to solve is to expand the problem space to predict the demand based on individual regions across New England along with the consideration of economic factors and weather conditions would also be a challenging task to accomplish as enhancements.
REFERENCES

http://neuroph.sourceforge.net/tutorials/GlassIdentification/GlassIdentificationUsingNeuralNetworks.html


Chow, M., & TRAM, H. Application of fuzzy logic technology for spatial load forecasting.

http://www.eia.gov/forecasts/aeo/MT_electric.cfm


http://neuroph.sourceforge.net/tutorials/PredictingPokerhands/Predicting%20poker%20hands%20with%20neural%20networks.htm


http://neuroph.sourceforge.net/tutorials/BloodTransfusionSc/blood_transfusion_sc.html

Retrieved from neuroph.sourceforge.net:


National Grid. *Understanding electricity demand*.


http://neuroph.sourceforge.net/tutorials/LensesClassification/LensesClassificationUsingNeuralNetworks.html