ELECTRICITY DEMAND PREDICTION USING ARTIFICIAL NEURAL NETWORK

FRAMEWORK

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By

Sowjanya Param

In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

June 2015

Fargo, North Dakota

North Dakota State University
Graduate School

Title

ELECTRICITY DEMAND PREDICTION USING ARTIFICIAL NEURAL

NETWORK FRAMEWORK

By

SOWJANYA PARAM

The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Kendall Nygard

Chair

Dr. Simone Ludwig

Dr. Jacob Glower

Approved:

06/09/2015 Dr.Brian Slator

Date Department Chair

ABSTRACT

As the economy is growing, electricity usage has been growing and to meet the needs of
energy market in providing the electricity without power outages, utility companies, distributors
and investors need a powerful tool that can effectively predict electricity demand day ahead that
can help them in making better decisions in inventory planning, power generation, and resource
management. Historical data is a great source that can be used with artificial neural networks to

predict electricity demand effectively with a decent error rate of 0.06.

111

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor Dr. Kendall Nygard for his
continued support throughout this paper. I am grateful to the ideas and suggestions given by Dr.
Nygard, and the amount of guidance given by him is enormous. Also special thanks go to my
advisory committee members for their inputs and valuable suggestions that helped me complete
this paper.

I thank all my graduate faculty members for sharing their knowledge and experience with
me. [would like to thank Ms. Carole, Ms. Stephanie and Ms. Betty personally and the entire
computer science department staff members for their enormous support.

Many Thanks to Zoran Severac and developers of Neuroph for building a great neural
network framework, which is used in this project.

Finally, words alone cannot express the thanks I owe to my husband, dad, mom and sister
for their support and thanks to Levi Strauss & Co, San Francisco colleagues for all their support.

Once again I am very thankful to my advisor Dr.Nygard for his valuable suggestions and

support that helped me to complete this paper successfully.

v

TABLE OF CONTENTS

ABSTRACT ...ttt ettt et h et e at e bt ettt s bt et et e ehe e e eatenaeebeenees il
ACKNOWLEDGEMENTS ..ottt sttt ettt et nbe e v
LIST OF TABLES ...ttt sttt ettt ettt et s bt e b ennenaeens viii
LIST OF FIGURES ...ttt sttt st a et eene e seenaesseenseeneas ix
CHAPTER 1. INTRODUCTION ..ottt ettt sttt eee s naeenae s eseenee e 1
CHAPTER 2. LITERATURE REVIEWoiiiiiiiiiieeeeeee ettt 4
2.1. Electricity demand prediction using artificial neural networksccceverienieneniencnnen. 4
2.2. Why use neural network frameworks?..........ccccocviiiiiiiiiriiiiicieceeee e 5
2.3. Why US€ NEUIOPRT?eiiiiiiiieiieieetec ettt sttt st s 6
CHAPTER 3. INTRODUCTION TO NEUROPH.......cccociiiiieiieieeieeee e 8
3. 1. Neuroph frameWOrKcoiiiiiiiiiiii et 8

T B R[S0 0] o) a5 o) 1) USSR 9
3.1.2. NEUTOPH StUAIOeviiiiiiiciee ettt e e e e e e e esaeeenaeeeneeas 9

3.2. Overview of neural networks with Neuroph Studio..........cccocvevviiiiniiiiniiiee e, 9
3.3. Neuroph Studio with an example AND gate...........cccceeiiiiiiiiiiiiiienieeee e 12
3.3 1. INSLALIAtION ..ottt ettt ettt et e b e neeeteen 12
3.3.2 EXeCUtINg AND Gat@.....uiiiuiiiiiiiiieeiieiie ettt ettt ettt et et e b nee s ns 12
CHAPTER 4. ELECTRICITY MARKET ..ottt 20
4.1. Electricity market 1n USAc.ooiiiieeee ettt e e e e e 20

4.2. Electricity demand data.............cocuieiiiiiiienieeiieieeieee et 22

CHAPTER 5. DEMAND PREDICTIONooiiiiiiiiiienieieeieeitesteete ettt 24
I LY L L1 E NS o 1S (1S) o1 (o) o F USSR 24
5.2. Hidden 1ayers and NEUIONSc.eeeiiieeiiieeieeeiieeeiee et eeeiee s e eseveeesreeeseseesnseeeeseeennneas 26
5.3. Training MEthOdooiiiiieiie et e e e e e e saae e e ereeennseeenaeas 27
5.4. Preprocessing iNPUL datacc.eeevieriieeiieiiieeie et eete ettt sre et eseaesbeesaaeesseessaeenseensaeenne 29

5.4.1. FIattening dataccceeeeiiiiiiiiiieiie ettt ettt ete e e b e e taesbeesaeeebeesnbeensaens 30
5.4.2. Average CalCUIAtorc.iiiuiiiiiiiie ettt et erae s 31
5.4.3. NOTMAIIZATIONeiiiiieiit ettt ettt e bt e st e et e s ateenbeesseeeseesaeeenne 32

CHAPTER 6. ELECTRICITY DEMAND PREDICTION WITH NEUROPH...............c.......... 33
6.1. SOTtWAre SIMUIALION.eouiiiiiiiiiieiieeee ettt ettt et ees 33
6.2. Analysis on the training attemMPLSeeevvieeriieeeiieeriie e e e e 37
6.3, CroSS-VaAlIAAtIONeeiiiiiiiiieiiee ettt et 41
6.4. Analysis with Linear RegreSSIOn.cocueviiriiriiiriiiiiiiiiceetesieeeee et 44

CHAPTER 7. ELECTRICITY DEMAND PREDICTION ON WEB........cccccevievierieeeieenee 47
7.1. Create MLP neural NEtWOTKcociiiiiiiiiiiiiciieeeee et et 47
B B o) [16 B o 72) TP 48
7.3. Train neural NEIWOTKcccoiiiiiiiiii e et 49
7.4. Test neural NEtWOTKcoiiiiiiii e 51
7.5. Cross-validate neural NEtWOTK..........cccoovuiriiriiiiirieieieeee e 53

vi

7.6. Predict demand.............ooooviiiiiiiiiii

CHAPTER 8. CONCLUSION AND FUTURE WORK

REFERENCES ...t

vil

LIST OF TABLES

Table Page
1: Analysis of neural network architecture with varying learning rate, momentum, hidden
neurons for Dataset 2009-2014cooiiiiiiiiieeee e e 38
2: Cross-validation with twelve sets of test datacoceevieiiniiniiiiiieeeeee, 42
3: Forecast with Neuroph vs real time demand.cccooviieiiieniiiiieniecee e 43
4: Comparision of forecast with artificial neural network output vs real time demand.......... 44
5: Analysis of forecast with artificial neural network output vs real time demand vs Linear

REGIESSION. ..ttt ettt ettt et e et e e st e e et e s sbeeseeesbeesseessseenseesssesnseenssesnsaens 46

viil

LIST OF FIGURES

Figure Page
12 NeUroph frameWOrKcccueeeiiiiiiiiieiie ettt et estae et e e saaeesseessneennaens 8
2: New project for basic neuron SAMPIEccceeecveerieeiiieniieiiieiecie e 11
3: BaSiC NEUTON SAMPIEeeeuiieiiieiieiieeieecite ettt ettt ettt e beestaesbe e aaeesbeessaesnseessaeenseensnas 11
4: Installing Neuroph StUAIO........ccciieiiiieeiiiece et e e e e 12
5: Creating @ NEW PIOJECT ...veuieuiiriiiiietieit ettt sttt ettt et eet ettt eat e sbe et st sbe et easesbeeteeane e 13
6: Creating a new project in Neuroph Studio.........cccceceviiriiiiiniiniiiiiicecececcecsee 13
7: AND gate implementation using NEUrOPhcceeviiiiiieriieiiierieeieee e 14
8: Last step of creating @ NEW PrOJECEeevvieeiieriieiieeitieeieeieeete et e eteeteesereebeeseaeeseessaeenseens 14
9: Selecting type of neural network in Neurophcoccceeeviriininiiiniinieicncceeecseee 15
10: Selecting input and OULPUL NEUTONS........evveeviruierieeieriienieeite ettt sttt et saeesaeeeen 15
11: AND gate project with inputs and OUtPUL NEUTONScevuereiriierierieniiiieeienieeie e 16
12: Training the AND GAtecooviuiiiiiiieiiie ettt e s e e e e sereesssseesaneeens 16
13: Inputting the values to the AND gate as part of trainingcccceeevevveerieeencieeenciee e 17
14: Trainig the neural NEtWOTK..........ccciiiiiiiiiii e e 17
15: Setting up 1earning Parameterscocceeererierienierieneere ettt sttt ettt st sae e 18
16: NetWork error Graph.........cocciiiiiiiiieiece ettt et 18
17: Testing the AND gate neural network project with inputsc.cceeeeeeveeriiieiieniieeneeen. 19
18: Electricity sales and power sector generating capacity, Source:EIA.............ccceevvveenenn. 21

X

19:

20:

21:

22:

23:

24

25:

26:

27:

28:

29:

30:

31:

32:

33:

34

35:

36:

37:

Feed forward neural network example diagramccceeviieiiienieniienieeieecee e 24
Java class for multilayer perceptron in Neurophccccceevieviiieiiiniiienienieeieeeee e 25
Back propagation training method..........c.ccoooiieiiiieiiiieeceecee e 27
Java code for creating a neural network in Neurophccccoeevieviiiiniii e 28
Java code for testing a neural network in Neurophcccccvvveiiiiiiiiciiiece e 29
Shell script for flattening data............cceeviieiiieriiiiieieeeee et 30
Shell script for average calculatorc.oeovieiieiiiierieeieecee e 31
Normalization step with min max formula...........cccoccoeeiiiiiiiiiiinieee e 32
Setting up Neuroph for the Electricity Demand forecasting projectccccceeevvenennnens 33
Unzipping the Neuroph Studioccceoeiiiiiiiiiiiee e 33
Successfully installed Neuroph studio.........c.ccecvveeviieriieiiieniiieiieeie e 34
Navigate to EDP PrOJECt ...cuviiiiiiiiiiieeiieeeiie ettt ettt e e eeeeees 34
Setting up the learning parameters for electricity demand forecastingc.ccccveennee. 35
NEetWOrk erTOr Sraph.......cocviiuiiiiiiiiiii et 36
Testing the trained neural NETWOTKcccooiiiiiiiiiiiice e 36
Output after training and tEStINGcevveriiririiirieeeieeee e 37
Test results from the best neural network architecture with 56 neurons 40
Total network error graph after successfully training and testing the neural network 41
Neural network architecture with 56 hidden neurons...........c.cccooceeeieenieniieniiiieenicnees 41

38: Linear Regression for average demand with real time demand.............c.ccccoeeevienirenenen. 45
39: Creating a multilayer perceptron neural networkccoocveriiiiiieniieiienieceeeeeeee, 47
40: Java code for creating a neural NETWOTKccoeeviiiieriiiieciie e 48
41: Uploading training SET.......cccueeeiiieeiireeiiieeeiiieeeiteeesiteeesveeesseeessseeessseeessseeessseesssseessssessssses 48
42: Java code for uploading training SEt..........cceeevuieeririeeririeeeeeeeieeeereeesreeesereeeeereeesereeeeaeas 49
43: Training a NEUTal NEEWOTKcceeiiiiiiiieiiieiie ettt et ebe e e e 49
44: Java code for training a neural NetWOTK..........ccoovieiiiiiiiiiiiiiicece e 50
45: Training logs generated from a neural network during the training phase....................... 51
46: Testing @ NEUTAl NEEWOTK........ooiuiiiiiiiiiiii et 52
47: Java code for testing a neural NEIWOTK..........cocveviiiiiriiiiiiiiice e 53
48: Cross-validating a neural NEtWOTKcccveviiiiiiiiiiieiie e 54
49: Java code for cross-validation.............cooueiiiiiiiiiiiiiiieeee e 54
50: Predicting electricity demandcceeeiiiieiieieiiieeieeee e e 55
51: Output of electricity demand after it’s predicted..........ccceveiviriiiniininiiniecececee 56
52: Java code for electricity demand predictioncoeeverieriineniinieneneeeeeeee 57

X1

CHAPTER 1. INTRODUCTION

Predicting electricity demand plays an important role in energy market and it affects all
the participants in the market such as Consumers, producers, investors, distributors and
regulators. Inaccurate forecasts can lead to severe losses for investors due to their bad decisions
(Kiigtikdeniz, 2010)and Consumers might have to end up paying more to suffer the power
outages. Producers might have to face challenges in storing the electricity in case of over
production and to build new power plants to supply the needed electricity without any outages
that might take huge amounts of resources and time in case of under production. Inability to store
large amounts of electricity in a cost effective way is one of the most important factors that
encourages the concept of forecasting.

As the electricity market is growing rapidly, there is need for tools that can learn and
predict the electricity demand accurately that can be useful to both consumers to maximize their
utilities and help power producers to maximize their profits and to minimize the financial risk by
not misjudging the price movements (J.P.S. Catalao, 2006).

Neuroph is one such framework that can solve Artificial Intelligence problems in a single
environment like pre-processing the given data by applying sigmoid functions along with the
actual/original problem solving architecture and algorithms. It is an open source framework that
gives the freedom to users to customize the library as per the problem requirements and widely
supported as the development versions are constantly releasing with new features/added
functionalities and support to various algorithms.

The objective of this paper is to predict electricity demand using one of the neural
network frameworks — Neuroph with the historical data. Using Neuroph, we create neural

network architecture and feed the Historical data in the form of training and testing sets. The

training phase helps the neural network to learn from the input data and the testing phase helps in
determining the best neural network architecture by calculating the total mean square error of the
neural network and we can achieve this by varying the parameters such as momentum, hidden
neurons, learning rate and error. Then we do cross validation by using leave one out technique to
find out the standard deviation and variance of that best network and then predict the electricity
demand for future.

Different prediction methods have been applied to predict electricity by making use of
historical data such as historical averaging models such as NYISO in which the next day
prediction is calculated by taking the hourly average of the five most recent days with the highest
average load. In this paper, we build a neural network architecture and train the network by
calculating the hourly average demand for the previous years’ same day along with the demand
of the seven most recent days.

Neural network architecture is built using Neuroph and so it is important to understand
this framework, as it is helpful for many such research projects, experiments. Also, due to its
applications, central Washington university has included this as part of their coursework so that

students can take advantage to .

. Understand and solve the problems in a more practical way.
o Try and approach to solve a problem using different algorithms in multiple ways.
. Customize the neural network library based on the problem space.

Ex: forecasting number of applicants for ndsu during this summer/fall to accommodate
the needs of the prospective students, finding the number of passengers travelling in a train

during a particular time to accommodate all passengers in a train without any problems, etc.

The structure of this paper is as follows. Chapter 2 describes the related literature in
prediction and neural network frameworks. In chapter 3, the electricity market, the current trends
of consumption, source of data for this project are explained. In chapter 4, applying multilayer
perceptron with back propagation training method, normalization steps are described. This paper
will cover more details on Electricity demand and it’s importance on how it’s affecting economic
growth, Neuroph and its applications, Demand forecasting using Neuroph that includes software

simulation and Analysis of the results.

CHAPTER 2. LITERATURE REVIEW

2.1. Electricity demand prediction using artificial neural networks

Predicting Electricity demand plays an important role in Inventory planning and
management, it can be achieved by an accurate prediction model. Also it helps in better
management of resources for the utility companies or distributors or investors and so it has to be
aimed first (Mitrea, Lee, & Wu, 2009).

Previous research shows that neural networks have been successfully used for many types
of forecasting problems (Smith & Gupta, 2002) and in different fields such as in financial
applications (hoseinzade & Akhavan Niaki, 2013); (Angelini, di Tollo, & Roli, 2008); (Kumar &
Walia, 2006), psychology (Levine, 2006); (Quek & Moskowitz, 2007), medicine (Lisboa &
Taktak, 2006), mathematics (Hernandez & Salinas, 2004), engineering (Pierre, Said, & Probst,
2001), tourism (Palmer, Montano, & Sese, 2006)and energy sector ((Rodrigues, Cardeira, &
Calado, 2014); (Kargar & charsoghi, 2014); (Pankilb, Prakasvudhisarn, & Khummongkol,
2015); (Limanond, Jomnokwao, & Srikaew, 2011), (AbuAl-Foul, 2012).

(Kandananond, 2011) Did a comparative study on performance of the three approaches
such as ARIMA, ANN and MLR and found that artificial neural networks using Multilayer
perceptrons method for predicting electricity demand was superior to other approaches in terms
of error measurement. In the same lines, (Mitrea, Lee, & Wu, 2009) did a case study by
comparing Neural Networks with Traditional forecasting methods and results showed that
forecasting with Neural networks offers better performance. According to (Bacha & Meyer,
1992), it is mentioned that NN approach is able to provide a more accurate prediction than expert

systems or statistical counterpart.

As per the above examples, when compared to the other traditional methods like

statistical models or time series methods, we knew that ANN is a clear winner and (Patuwo,

Zhang, & Hu, 1997) in one of his research papers mentioned the below reasons on why/how

ANN is a better method for forecasting:

ANN’s are data driven self-adaptive methods, which means that they learn from
examples and capture subtle functional relationships among the data even if the
underlying relationships are unknown or hard to describe. Thus ANNSs are well suited for
problems whose solutions require knowledge that is difficult to specify but for which
there are enough data or observations (Patuwo, Zhang, & Hu, 1997).

ANN’s can generalize, even after learning the data presented to them, ANNSs can often
correctly infer the unseen part of a population even if the sample data contain noisy
information (Patuwo, Zhang, & Hu, 1997).

ANN’s are universal functional approximators as they have more general and flexible
functional forms than the traditional statistical methods can effectively deal with due to
the limitations in estimating the underlying function due to the complexity of the real
system (Patuwo, Zhang, & Hu, 1997).

Finally, ANNs are nonlinear which are best suitable for real world problems as they are
often non linear (Granger & Terasvirta, 1993). ANN’s are generally non-linear data
driven approaches as opposed to model-based non-linear model, which makes it much

better for forecasting (Patuwo, Zhang, & Hu, 1997).

2.2. Why use neural network frameworks?

Since ANN’s are so popular and accurate, very recently researchers have started building

a collaborative workspace to bring the most common and widely used algorithms into a

framework so that it can help other developers in easily building the desired neural network
architecture and there by encouraging them to extend a framework which is ready to use, by
providing out of the box functionality, flexible and fun to practice a problem in multiple ways.

These frameworks not only carry the same functionality which the individual ANN
algorithms might offer but also support and save time & effort of the developers in building an
efficient software which can be used for any type of problem.

Neural network frameworks such as NEUROPH, ENCOG, FANN, JOONE came into
existence and helped in solving real world problems such as stock market predictions (Heaton,
Basic market forecasting with encog neural networks, 2010), recognition of braille alphabet
(Risteski) , face recognition (Stojilkovic), predicting poker hands (Ivani¢), predicting the class
of breast cancer (Trisic), lenses classification (Urosevic), blood transfusion service center
identification (Cutovi¢), wine classification (Stojkovi¢), predicting survival of patients

(Jovanovic M.) , Music classification by genre (Jeremic) are some examples.

2.3. Why use Neuroph?

Research projects using neural network frameworks have been extensively done in the
fields such as medicine, sports, social causes but there is no such experiment that has been done
in energy sector, which inspired to take up this experiment.

According to a latest article on codeproject by (Taheri, 2010) on benchmarking and
comparing the Encog, Neuroph and JOONE frameworks, it is mentioned that the way Neuroph is
built is easier to understand when compared to encog and the lack of support of JOONE and the

complexity of their interface leaves us with the only option of Neuroph.

Neuroph is a framework that simplifies the evolution of applications. It has been already
in use in the research field such as test effort estimation (JayaKumar & Alain, 2013),
Autonomous Neural Development and pruning (A.C.Andersen, 2010), FIVE-Framework for
Integrated Voice Environment (Alexandre & Edson, 2010), Efficient name disambiguation in
digital libraries (Haixun, Shijun, Satoshi , Xiaohua, & Tieyun, 2011) and also for developing
games such as backgammon etc.

In addition to the above applications, Neuroph Framework has the below advantages

e Free open source neural network framework, which has built-in multilayer perceptron
network along with the training method of back propagation with momentum that gives
us the ability to use the existing framework rather than creating a new network from the
scratch.

e Gives us the flexibility to add/manipulate the existing code that can be easily extended
for specific purpose with high level of reusability.

o FEasy to use as it has an intuitive GUI built with Netbeans.

e Well documented and well supported.

o Constantly rolling out with Latest versions/updates.

Hence the aim of this paper is to use Neuroph to predict electricity demand.

Some of the Previous Research indicates that the inputs of neural network not only
contain historical data but also economic conditions such as GDP, population and weather
conditions but our paper mainly focuses on predicting electricity demand based on historical data
and so Historical data along with the preprocessing is an important step which is explained in

chapter 4.

CHAPTER 3. INTRODUCTION TO NEUROPH

3.1. Neuroph framework

Neuroph is a lightweight Java Neural Network Framework for developing common
neural network architectures. It contains well-designed, open source Java library with Small
number of basic classes that correspond to basic NN concepts, and GUI editor makes it easy to
learn and use. Neuroph has been fully developed and coded in Java. It is an open source project
hosted at SourceForge, and the latest version 2.9 has been released under the Apache 2.0
License. Previous versions were licensed under LGPL.

Neuroph is written in Java language and it is made up of two blocks mainly as indicated
in the diagram below

e Neuroph Library

e Neuroph Studio

Java Neural Network Framework

org.neuroph.netbeans

GUI Tool _
Neuroph Studio - a Java Neural Network IDE
Neuroph Library
org.neuroph.nnet
Java Implementation of specific Neural Networks
Neural Network
Library org.neuroph.core org.neuroph.util

Base Classes Utility Classes

Figure 1: Neuroph framework

3.1.1. Neuroph Library

Neuroph Library is a Java Neural network library that consists of several Java packages,
giving developers both ready-made pieces of functionality and create custom additional
components which are not related to neural network architectures or learning algorithms by using
plugins.

Three of the important packages in Neuroph Library are org.neuroph.core,
org.neuroph.nnet and org.neuroph.util. The org.neuroph.core provides base classes such as data
manipulation methods, learning event systems and basic building components for neural
networks such as neural network learning algorithms, learning rules, transfer functions. The
Org.neuroph.nnet provides out-of-the-box neural networks such as network models, layer types,
neuron types, and learning algorithms. The Org.neuroph.util provides utility classes for creating

neural networks, type codes, parsing vectors, randomization and normalization techniques etc

3.1.2. Neuroph Studio

Neuroph studio is a GUI tool, built on top of the Netbeans platform and Neuroph library
which provides an easy-to-use neural network wizards and tools so that developers can create,
test and deploy various java components based on the neural networks on the same environment
which was not the case earlier as it had separate application for Java development and another

application for building/creating Neural Networks.

3.2. Overview of neural networks with Neuroph Studio

Neural networks are computational models inspired by the way the human brain works.
Although they are very simplified models based on known principles about how the brain works,
they exhibit some very interesting features, such as learning, generalization, and association

capabilities. In addition, they are good at dealing with noisy or incomplete data (Severac, 2011).

9

Neural networks are graph-like structures that consist of a set of interconnected nodes
called neurons. Each neuron has inputs through which it receives input from other neurons
(connected to its inputs) and outputs through which it sends output to other neurons (connected
to its outputs). The way in which the neurons are interconnected determines the type of neural
network architecture (Severac, 2011).

In addition to the connection pattern among neurons, network behavior is determined by
the processing inside the neurons and so-called connection weights. Connection weights are
numerical values associated with connections among neurons, and by tweaking these values
using an appropriate algorithm (called a learning rule), we can adjust the network behavior.
Typical neuron processing includes calculating the weighted sum of neuron inputs and
connection weights and then feeding that value into some function (step, sigmoid, or tanh
functions are commonly used). The output of that function represents the output of the neuron
(Severac, 2011).

The Neuroph framework provides all of these neural network components out of the box,
regardless of whether you want to create a common type of neural network or a custom neural
network. Neuroph Studio also provides samples that demonstrate the basic principles behind
neural networks (Severac, 2011). Below is the illustration of Basic Neuron Sample

To open the basic neuron sample, in Neuroph Studio, select File >New Project > Samples

> Neuroph > Basic Neuron Sample.

10

[|
@) New Praject @
Steps Choose Project
1. Choose Project Categories: Projects:
2 L) Neuroph
L) Java ‘ * Kohonen Network Sample
sl Maven ‘ ® Multi Layer Perceptron Classification Sample
=-[) samples ‘ * Meuro Fuzzy Perceptron Sample
L) Neuroph ‘ * Perceptron Learning Sample
e[J) Java i * Neural Recomender Sample

Figure 2: New project for basic neuron sample

This basic neuron model consists of the following components:

e Two inputs, x1 and x2, with corresponding weights, w1l and w2.

e An input function, which calculates the weighted sum using the following formula: s =

xI*wl) + (x2*wW2).

e A transfer function, which takes the weighted sum as input and calculates the output of

the neuron using a simple step function. If the weighted sum is greater than zero, the

function outputs 1; otherwise, it outputs 0.

BasicMeuronSample Window 22 |

Oukput | 1.00

Transfer function: y = step(x)

Input function: s = wixl + wZx2

1.20

Weight wil |1 Weight w2

Fi \

Input x1 (0.5 0.7

/ \

Inpuk x2

Figure 3: Basic neuron sample

11

Try to run this sample and play with the neuron by changing the input and weight values,
and then click the Calculate output button.

During a learning procedure, a neuron's weights are automatically adjusted in order to get
the desired behavior. These are the basic principles of how artificial neurons work, but there are
many variations depending on the type of neural network and we can know more about the multi

layer perceptron in the chapter 4.

3.3. Neuroph Studio with an example AND gate

3.3.1. Installation

Unzip the neurophstudio package into a folder. Inside the bin directory you find 3 files
as below. For windows click on neurophstudio.exe or neurophstudio64.exe (if your OS is 64 bit)
and follow the wizard to complete installation. Launch the application from the installed

location. For MAC/Linux you can launch the application directly executing neurophstudio.sh.

neurcphstudio neurophstudio.exe neurcphstudiob4.exe

Figure 4: Installing Neuroph Studio

3.3.2 Executing AND gate
Lets build a sample neural network application using Neuroph studio. For simplicity we

will take AND gate as an example and build our neural network.Click on File ->New Project

12

‘@00] New Project... T8N | NeurophStudio 201210100934

" a=E8 9 New File... ®N b BB~

5 0pen Project... T
Open Recent Project »>
Close Project
Open File...
Open Recent File >
Project Group »>
Project Properties
Export Project »>
Save £33
Save As..
Save All ¢ %8S

Figure S: Creating a new project
Select Neuroph -> Neuroph Project

NeurophStudio 201210100934

‘B =S8 T WO B

800 New Project
Steps Choose Project
1. Choose Project Categories: Projects:
2o (] Neuroph
£ Java
» [samples
Description:
Creates new empty Neuroph neural network project. In empty Neuroph project you
can create neural networks using wizards, import data to create training sets, and
then train neural network.
| Help | < Back Finish | Cancel |

Figure 6: Creating a new project in Neuroph Studio

Name your project as ANDGate and Click Finish

13

2EQ9

Neurophstudio Z01210 100944
v PR

;00 Hew Project
Mame and Location

Meps

1. Choose Project
Z. Wame and Location Praject Name:

ANDCare

Project Location: | /WIPY Dewipace) Stepl Browse...
Project Folder: /VAP/ DevSpaceStepl/ ANDGate

Help < Back

[Fnish | | cancel

Figure 7: AND gate implementation using Neuroph

You can see your project created as below

e NesrophSiudio 201210100014

o

T I
v %o ANDCHS
L~
ol Tramisg et
® ol Tail Sk

Figure 8: Last step of creating a new project

Now right click on Neural Networks folder and select New -> Neural Network. Name

your neural network as AND and select Perceptron as the type and click Next.

14

Muisraphiiudio 201210100034

O Sear 1 i

T I m—
v T+ ANDCae
o Mewral Meteorks
* (] Trainieg S
* o Test Ses

ikl -1l

Sleps Set neural network mame and lype

1. Set neural network
name and type Neiral Network Name: | AND

2. Mumbei of input
mewoss, mumber of

Neural Nerwerk .,
SUEUL AEUTOS and

lesrming rule Ermpay Newral M owork
Al b
prercepven]
s Layer Padcepiron
tiapteid

(S
Eohanen
Supensaed Heblan

primeedir s B oo ©
LT

Compriowe Metwork
EEF

nstar

Ohalian

< Back | [Meme | Foish

Figure 9: Selecting type of neural network in Neuroph
In the input num field, enter 2 and in the output num field enter 1, Select Perceptron
Learning as the Learning rule and click Finish.

i Meusrophstudio 2012 10100934
T v B-

Steps Number of input meuoes, number of sutput neuros and learning ke
. Set neural network
name and type Imputs Num |2
2. Sewing Multl Layer
Parcapwon’s Outputs Mum | |
paramaters

Learning rule

Figure 10: Selecting input and output neurons

15

Your neural network created will look like below.

ann NeurophSiudio 201210100034
f<I0 - BN I % ¢ B Q
Tratning e | TES0 e prom—y oo ey Mock Vw3 ghis v T ANDGate

* L Beral Netwarks

® (@ Trainisg Sets
> Gl Test e

Laver | —
00 o0

& &

Layer 2 —
00

r—

.

Figure 11: AND gate project with inputs and output neurons
Now right click on Training Sets and select new Training Set. Enter Training set name as

ANDTrainSet, Type as Supervised, Number of inputs as 2 and Number of outputs as 1.Clicknext

" B

.
Tiam Tait S Input ool [

- v % ANDGue
. Block View 3 ghts ¥ [eural Networks
=
& (L Training Sets
* (Gl Test Sers

Bs00 ewTraieingSe

Sieps

Sei tralming set name, type and number of inpuis and ouiputs
1. Choose File Type

Training set name ANDTrainset

Type Supsrvised

Mumber of inputs |2

Mumber of cutputs |1

AND - !!Hurﬂ=
= AND

* S Layer 1

* W Layer 2

< Back | Next> | Finish

Cancel

Figure 12: Training the AND gate

enter the training set as below and click finish

16

MawrophSiudio 201310100034

..
F— Tast satlagt o [SEER = Bock Maw § @hts ' v ;Tbuc::um“m

e AND
= [Training Sets
® L TestSens

ann

Bew Training Sei |
Seps it Training Sei table
L. Chooie File Type
2. Settraining i1 name, Trainimg Seq Mame: ANDTrainder
type and number of
inputs and outputs L Ingut 1 Dergat |
3. Edit Training Set 0.0 LX) o0
table o] o
1 o 0
1 —]
Mhd R Load From File Help

Figure 13: Inputting the values to the AND gate as part of training

Now click on the neural network AND and select ANDTrainSet and click Train

8006 NeurophStudio 201210100934
58 @8 D B X Q- Search (3 +1;
AND Projects ©) | Files Ju
= ———— ..
Training .. ANDTrainSet Tran Test || seinpur Catcutate Rest | Rangomm | | Block View : Ghts I = gﬁiﬁ, et
= anD
¥ [Training Sets
il DT rainset
» [TestSers

Laver 1 o —
0.0 0.0
yarz ANDTrainset
0.0
.

Figure 14: Trainig the neural network

Set the learning parameters as below and click train.

17

NeurophStudio 201210100934

P E @ T W Or B Q- search
..
- . Test Tohts ¥ " ANDGar:
Training .. ANDTrainSet Tran seitogut | [Couiste Roset | fandorie | | Block View +dl & B Nearal Nevorks
= aAND
¥ (3 Training Sets
" ANDTrainSet
» [TestSers

© 0 O Set Learning Parameters

Stopping Criteria

Max error 0.01 |
Limit max iterations

Learning Parameters

Learning rate 0.2 AND - Explarer © 2
— = AND
Momentu 07 >
mentum » EE8Layer 1
> &
Optians o

™ Display Error Graph

(Turn off for faster learning)

| Train Close

INS

Figure 15: Setting up learning parameters

eoe NeurophsStudic 201210100934
L] =]

AND_ ([Total Network Error Graph €3 Projects 3 | _Files SupenvisedTrainingMonitor Frame Window £

v 9° ANDGate

Network Error Graph ¥ 63 Neural Neworks Total Net Error 0.5 |

Iteration: 8 Total Network Error: 0.0 = anp

v [Training Sets Current iteration [8454 |
" ANDTrainset

36 » [Testsets

Total Network Error

7:4131220PM 7:4131.240 PM 7:4131.260 PM
Iteration

™ @ Total MsE

INS

Figure 16: Network error graph

Now Click on Test and you will see the result as below

18

6006
HHEE e

TestResults © | AND | Total Network Error Graph

NeurophStudio 201210100934

Q- Search (;

Input: 0; 0; Output: 0; Desired output
Input: 0; 1; Output:
Input: 1; 0; Output

esired output

AND - Explorer ()

Total Mean Square Error: 0.

Figure 17: Testing the AND gate neural network project with inputs

Desired output:

Input: 1; 1; Output: L; Desired output:

Errol
Errol
Erro

19

mopuy aures 1oy uopBulules L pasisadng.

ol O

e

CHAPTER 4. ELECTRICITY MARKET

According to National grid, Electricity Demand is the rate of using Electricity (National
Grid) measured in KiloWatts and the amount of energy used is called consumption. Simply put,
Demand is the rate of consumption. Both Consumption and Demand put together the electricity
consumer’s service bill. Residential consumers pay for both consumption and Demand as one as
there is relatively little variation in electricity when compared to Industrial and commercial

users.

4.1. Electricity market in USA

As per one of the documents prepared for US Department of Energy by an agency, it is
stated that Since 1982, growth in peak demand for electricity is driven by population growth,
bigger houses, bigger TV’s , more air conditioners and more computers has exceeded
transmission growth by 25% every year which is not proportional to the amount that is being
spent on R&D in this field causing delay in the advancements of this industry.

The economic consequences of an electricity shortage may be severe. (Castro &
Cramton, 2009) . As we track our history, it has been noted that in the year 2000, one hour
outage in Chicago Board of Trade resulted in 20 Trillion in trades delayed, black out in northeast
of 2003 caused $6 billion of economic loss to the region, one minute of blackout costs $1 million
to sun microsystems. These are some of the very few examples on how electricity is impacting
our economic conditions. (U.S. Department of Energy, 2007).

As the Economy is relentlessly growing towards digital, Electricity plays an important
role. Back in 1980, electrical load from the electronic equipment such as chips and automated
manufacturing was limited. By 1990, chips share grew by 10%, which is expected to rise to 60%

by 2015 (U.S. Department of Energy, 2007).

20

According to a very recent report from (EIA), growth in electricity generating capacity
parallels the growth in end-use demand for electricity which is a good sign to prevent black outs
from happening and helps in keeping our economy stronger. So, there is a need to maintain that
corresponding relationship (the balance) between the generating capacity and the electricity
demand, which can be achieved by forecasting or predicting (the electricity demand). Hence,
Forecasting electricity is an essential step of resource planning in electricity markets to assure
that there will be sufficient resources to meet future demand as building capacity is costly and

takes time (Castro & Cramton, 2009).

History 201 Projections
20

Power sector generating capacity

0
1949 1965 1985 2000 2020 2040

eia'

Figure 18: Electricity sales and power sector generating capacity, Source:EIA
Benefits of predicting Electricity Demand include
e Better resource planning in power distribution companies (Prasad, 2008) and optimize
power systems.
e Reduce risks such as blackouts or power outages to the consumers,
e Reduce losses/costs incurred due to the over/under production of electricity to the utility

companies.

21

4.2. Electricity demand data

New England ISO (http://www.iso-ne.com/) is an independent, non-profit Regional
transmission organization (RTO) serving Connecticut, Maine, New Hampshire, Vermont, Rhode
Island and Massachusetts. Three critical roles of ISO-NE include

1. Operating the power system — monitor, dispatch and direct the flow of electricity across
the power grid 24 hours a day 365 days.

2. Designing, administering, and overseeing the region’s competitive wholesale electricity
markets for buying and selling day-to-day.

3. Managing the regional power system planning process - identify appropriate transmission
infrastructure solutions that are essential for maintaining power system reliability.

ISO —NE express (http://www.iso-ne.com/markets-operations/iso-express) is a great
source for both Real time and historic data in Energy, Load and Demand with parameters such as
Day Ahead Demand, Real time Demand, Load Forecast, threshold prices, bids, day-ahead and
real-time locational marginal prices (LMPs).

As the project is focused on forecasting real time demand, we have taken Real Time
Hourly Data

Real Time Hourly Data: It is the real time demand data collected per 1 hour for all the 24 hours

across a region selected or whole of the New England and is represented in MWH.

In this project, we are using the data sets ranging from January 2008 till current (2015).
Data can be downloaded for various data ranges by specifying the start and end date in the URL
(http://www.1so-ne.com/transform/csv/hourlysystemdemand?start=20140101&end=20140131)

as start=20140101&end=20140131 for the month of January for Real Time Demand Market

22

http://www.iso-ne.com/markets-operations/iso-express

Hourly Demand. The data set extracted from ISO-NE express site is generally a .csv file, which

consists of 3 parameters Date, Hour Ending (HE) and Real Time Demand (MWh).

23

CHAPTER 5. DEMAND PREDICTION

Predicting Electricity Demand is an essential step to the distribution utility companies,
Power Producers and financial traders and the demand is generally predicted based on the
historical data. This project applies the concept of Multilayer perceptron with back propagation
algorithm for forecasting the demand of electricity in Neuroph framework. For the analysis

purpose, Demand data published on the ISO-NE express website is used.

5.1. Multilayer perceptron

Multi-layer perceptron is a feed forward neural network, with one or more layers between
input and output layer. Feedforward means that data flows in one direction from input to output
layer (forward). This type of network is trained with the backpropagation-learning algorithm.
MLPs are widely used for pattern classification, recognition, prediction and approximation. Each

layer in a multi-layer perceptron is fully connected to the next layer in the network.

Input Layer Hidden Layer Output Layer

.r'/_—_-\\

Imput 1 If’
1

P
Input2 /
—r

7 Output

o -JJJ

Figure 19: Feed forward neural network example diagram

24

Using the concept of Multilayer Perceptron, The neural network that we built in Neuroph
has 27 inputs in which 24 hours of data would be the average of a particular hour across the
previous week and previous years and 24 hours of Real Time data as expected output.

Below is the screenshot of the Multilayer Perceptron class in Neuroph

S
* (reates MultilayerPerceptron Network architecture - fully connected
* feed forward with specified number of neurons in each layer

*
* 1 neuronsInLayers

* collection of neuron numbers in getLaversIterator
* 1 neuronProperties

* neuron properties

*/

private void createNetwork{List<Integer> neuronsInlLayers, NeuronProperties neuronProperties) {

// set network type
this.setNetworkType{NeuralNetworkType MULTI_LAYER_PERCEPTRON);

ff create input layer
NeuronProperties inputNeuronProperties = new NeuronProperties{InputNeuron.class, Linear.class);
Layer layer = LaverFactory.createlayer(neuronsInLayers.get(@), inputNeuronProperties);

boolean useBias = true; // use bias neurons by default
if (neuronProperties.hasProperty("useBias")) {
useBias = (Boolean)neuronProperties.getProperty("usefias");

}

if CuseBias) {
layer.addNeuron(new BiasNeuron()};

}
this.addLayer{layer);

/f create layers
Layer prevlLayer = laver;

fffor(Integer neuronsNum : neuronsInLayers)
for{int layverIdx = 1; layerldx < neuronsInLayers.size(); layerIdx++){
Integer neuronsNum = neuronsInLayers.get(layerldx);
/4 createLayer layer
layer = LayerFactory.creagtelayer(neuronsNum, neuronProperties);

if { useBias &% (layerldx< (neuronsInlLayers.size()-13) 3 {
layer.addNeuron({new BiasNeuron(});

}
//f add created layer to network
this.addLayer(layer);
/¢ createLayer full connectivity between previous and this layer
if (previayer != null)
ConnectionFactory. fullConnect{prevLayer, layer);

previayer = layer;

Figure 20: Java class for multilayer perceptron in Neuroph

25

5.2. Hidden layers and neurons

Numbers of input and output neurons are the same as in the training set. We decide the
number of hidden layers as well as the number of neurons in each layer.

Problems that require more than one hidden layer are rarely encountered. For many
practical problems, there is no reason to use more than one hidden layer. Based on the same fact,
this project started with one layer that can approximate any function that contains a continuous
mapping from one finite space to another. Deciding about the number of hidden neuron layers is
only a small part of the problem. We must also determine how many neurons in each of the
hidden layers will be. Both the number of hidden layers and the number of neurons in each of
these hidden layers must be carefully considered.

Using too few neurons in the hidden layers will result in something called underfitting.
Underfitting occurs when there are too few neurons in the hidden layers to adequately detect the
signals in a complicated data set.

Using too many neurons in the hidden layers can result in several problems. Firstly, too
many neurons in the hidden layers may result in overfitting. Overfitting occurs when the neural
network has so much information processing capacity that the limited amount of information
contained in the training set is not enough to train all of the neurons in the hidden layers. A
second problem can occur even when the training data is sufficient. An inordinately large
number of neurons in the hidden layers can increase the time it takes to train the network. The
amount of training time can increase to the point that it is impossible to adequately train the
neural network. There are many rule-of-thumb methods for determining the correct number of
neurons to use in the hidden layers, here are just a few of them (Heaton, Introduction to neural

networks for java, Second Edition, 2008):

26

e The number of hidden neurons should be between the size of the input layer and the size
of the output layer.
e The number of hidden neurons should be 2/3 the size of the input layer plus the size of
the output layer.
e The number of hidden neurons should be less than twice the size of the input layer.
Based on the above-mentioned rules, we have chosen hidden neurons and analyzed the
neural network with test data to provide us with the optimum number of hidden neurons along

with the other learning parameters covered in our next chapter.

5.3. Training method

Back propagation with momentum is the training method used to train our neural
network. It is a type of supervised learning and is one of the most commonly used methods for
training. It trains the system by feeding the error (difference between the accrual and desired
output) back to the system. The momentum is added to speed up the process of learning and to

improve the efficiency of the algorithm.

Desired output
Emnvironment ————— s Teacher
+
Actual
Leaming output ~ Add
I er
system

f 3

Error

Figure 21: Back propagation training method

27

Bias neuron is very important, and the back propagation neural network without Bias

neuron for hidden layer does not learn. Neural networks are "unpredictable" to a certain extent so
if you add a bias neuron you're more likely to find solutions faster than if you don't use a bias.
The Bias weights control shapes, orientation and steepness of all types of sigmoidal functions
through data mapping space. A bias input always has the value of 1. Without a bias, if all inputs
are 0, the only output ever possible will be a zero.

Each Neural Network that we have designed consists of 27 inputs that are generally Year,
Month, Day, Hourly Average Demand data and Real time hourly data (expected output). The
idea behind including Year, Month, and Day in the inputs layer is to make the network learn to
give the predictions based on them for the future.

Training set contains 51 columns of which 27 are inputs and 24 are expected outputs and
the main purpose of the training set is to build the neural network based on the inputs provided.

Below is the screenshot of the Training code

// create neural network

f’**

* name="neuralNet"

* multiplicity="(1 1}"
*/

MultiLayerPerceptron neuralNet;
static{

}

public wvoid trainAndSaveNN(String realpath, String file) throws NumberFormatException, FileNotFoundException, I0Exception{

LearningRule learningRule = neuralNet.getLearningRule();
learningRule.addListener{this);

neuralMet.setlearningRule{learningRule);
neuralMet. setNetworkType{NeuralNetworkType . MULTI_LAYER_PERCEPTRON);

DataSet trainSet = TrainingSetImport.importfromFile(file, 24, 24, ",");//DataSet. createfromFile(trainSetFile, 24, 24, " "3;
trainSet.normalize(normalizer);

neuralMet.learn(trainSet);
neuralMet.save(realpath+"/epfc");
}
public static void main(String[] args) throws FileNotFoundException, I0Exception {

new EPFCNNC). run();
}

Figure 22: Java code for creating a neural network in Neuroph

28

The test/validation set also contains the same number of inputs as training set while the

purpose of the test set is to validate the network that is built during the training phase that returns

the total mean square error between the actual output and the expected output. Below is the

screenshot of the test code

S
*
*
*
*
*
*
*

/

Prints network output for the each element from the specified training set

neuralNet neural network
trainingSet training set
I0Exception
FileNotFoundException
NumberFormatException

public double[][] testNeuralNetwork(String testSetfile) throws NumberFormatException, FileMotFoundException, IOException {

b

DataSet testSet = TrainingSetImport. importFromfFile(testSetfile, 24, 8, ",");//DataSet.createfFromFile(testSetFile, 24, @, ","):
testSet.normalize(normalizer);
return testNeuralNetwork{testSet);

public double[J[] testNeuralNetwork({DataSet testSet) {

double[J[] result = new double [testSet.size()][];

int i =8;

for(DataSetRow testSetRow : testSet.getRows()) {

3

neuralMet.setInput{testSetRow.getInput(});

neuralNet.calculate();

double[] networkOutput = neuralMet.getOutput(l;

System.out.print("Input: " + Arrays.teString{normalizer.deNormalizeIp(testSetRow.getInput())) J;
double[] op = normalizer.deNormalizeOp(networkOutput);

result[i] = op;

T4+;

System.out.println{"\n"};
System.out.println{"DeNormalized Output: " + Arrays.toString(op) J;

System.out.println{"\n");

return result;

}

Figure 23: Java code for testing a neural network in Neuroph

In Neuroph, The Neural network is trained with hourly data for years 2009 till 2014 and

tested with 2015 set. Both Training Sets and Test sets are represented by. tset file extension.

Below is the example of training set

5.4. Preprocessing input data

Data used to train and test the neural network should be normalized before feeding to the

network. After collecting the data from ISO-NE express website, we generally do the following

steps

1. Flattening data
29

2. Average calculator

3. Normalization

5.4.1. Flattening data

This step preprocesses raw data downloaded from ISO-NE and flattens them from one-
hour records into one-day records. The downloaded data generally contains one hour records in
each separate row. So, in this step, we rearrange that 1 hour record in a column for each day in
separate rows to accommodate the data as per the requirement for Neuroph data set. This
operation is performed for both Real time demand and Average Demand separately. For this, we

have written a script flatten.sh script.

|
rtdemandfile=$1
opfile=52
rtrow=7
darow=7
row=1
[[$rtrow 8gea 11
oneday=""
((k=1;k<= 24;k++)
i=$k
[$k -1t 18 1
i="8"$k

rtdat="awk -v i=$rtrow —v j=1 'FNR == i {print $j}' $rtdemandfile’
, ' read -a array “Srtdat®

[$rthr = "@2x"]

ech Removing 92X row from data"
rtrow=s${(rtrow:1))

s{dats"${dat*x[![:space:]1]1+}*}* # remove leading whitespace characters
dat="§{dat*"${dat [I[:space:]11}"}"

[$rthr == $i]

oneday=$oneday, $dat

[$rthr != $i]

oneday=$oneday, 15008. 8, $dat
echo "Not Equal RT for ${array[1]1}" $row $rthr $i
k=${(k+1})

rtrow=4§{(rtrow+1))

row=5{(row+1))
oneday=5${oneday: 1}
echo $oneday $opfile

Figure 24: Shell script for flattening data

30

5.4.2. Average calculator

In this step, we take the output from previous step of flattening data and calculate the
average demand for 24 hours in separate columns by summing up the demand for the previous 7
days per each single hour separately for that year alone plus previous year’s occurrence of the
very same day. For example, to calculate the input of 1% hour of January 1% 2015, we take an
average demand for the Dec 31° first hour, Dec 30" first hour, Dec 29" first hour, Dec 28" first
hour, Dec 27™ first hour , Dec 26" first hour, Dec 25 first hour plus January 1t 2014 first hour,
January 1% 2013 first hour, January 1% 2012 first hour, January 1% 2011 first hour, January 1%

2010 first hour, January 1% 2009 first hour, January 1% 2008 first hour.

rtdemandfolder=$1
startday=%2
nextday=%$2
endday=%$3
lookbackyear=$4
opfile=$5

cyear="date —jf "&Ysmsd" $startday '+%Y'"
cmonth="date —jf “SYwm%d" $startday '+%m'"
cday="date -jf "%Ywm%d" $startday '+%d'’
cdaynum="date -jf “SYwm%d" $startday '+%j'"

lastday="date -v +1d —jf "&Ysm%d" $endday '-+%Y%med'™
eyear="date —jf "SYwm%d" $lastday '+%Y'"

emonth= e —jf "sYwmid" Slastday '+%m'’
eday="date —jf "SYwm%d" $lastday '+%d'"

rm —rf tmp.csv
—-a arr

num_columns=24
[[${cyear} $eyear s{cmonth#@} s{emonth#@} ${cday#@} s{eday#@} 1]

rownum==8
prevday="date -v -1d —jT "&Ysmsd" $nextday '+%Yamésd'®
i=2

[[i 711

pyear="date —jf "SY%m%d" $prevday '+%Y'"

daynum="date —jf "%Y%m%d" $prevday '+%j'"
fname="rt_demand_"$pyear.csv

rtdemandfile=$rtdemandfolder$fname

rtdat="awk -v i=fdaynum -v j=1 'FNR == i {print $j}' $rtdemandfile’
echo $rtdat tmp.csv

str="echo $rtdat o Ot 0 0=

prevd ‘date —-v -1d —jT "%Yemed" $prevday '-+%Ysembed'®
i=${($i+1))
rownum=%((§rownum+1))

lbday="date —v -1y —jf “SY%mid" $nextday '+%YSmsd'®
lbyear="date —jf "&Yimid" $lbday '+%Y'"
lbmonth="date —jf "%Y&mid" $lbday '+%m'
lbda="date —jf "&Ysm%d" $lbday '+%d'"

[[$locokbackyear $lbyear $lookbackyear $lbyear 11

—a arr§rownum
daynum="date —jf "&Y&m%d" $lbday '+%j'"
demand_"$1lbyear.csv
rtdemandfile=$rtdemandfolder$fname
rtdat="awk -v i=$daynum -v j=1 'FNR == i {print $j}' $rtdemandfile’
echo $rtdat tmp.csv
str="echo §$rtdat op U0 0r

lbday="date -v -1y —jf "SY%m%d" $lbday '-+%Yssmssd'™

Figure 25: Shell script for average calculator

31

5.4.3. Normalization

Normalization is a process of converting real data into data that neural networks can
understand and work. Simply put, it is a mapping of real data to data between 0 and 1.

By running epfc-normalizer.jar, we can obtain all the demand values in between 0 and 1
that we can further pass it to the training and test stages. The algorithm that we used to normalize

the data is MiniMax. Below is the Formula:

€ — Emz’n

Normalized (e.) =
E Emﬁ::r _ Emz’n
where

Ein = the minimum value for variable E
E ax = the maximum value for variable E

If Emax is equal 1o Emin then NMormalized () is setto 0.5.

Figure 26: Normalization step with min max formula

After successfully passing through the training and test phases, we actually can enter the
input data that just contains the average demand to execute and provide us with the output of the

expected demand for the next one-hour or day based on the inputs provided.

32

CHAPTER 6. ELECTRICITY DEMAND PREDICTION WITH NEUROPH

6.1. Software simulation

1) Download the Neuroph Studio from the location NeurophStudio

Name | Date Modified ¥ | Size Kind Date
5 neurophstudio.zip Today 8:49 PM 124 MB ZIP archive Tod:
» @ neurophstudio Today 8:46 PM -- Folder Tod]

Figure 27: Setting up Neuroph for the Electricity Demand forecasting project
2) Unzip the file

¥ @ neurophstudio

» [edp-055715
[] neurophstudio
Bl java

(] ide

(] platform

Bl bin

(] etc

Figure 28: Unzipping the Neuroph Studio

>
>
>
>
>
>

3) Go to neurophstudio->bin and launch the application neurophstudio.exe or
neurophstudio64.exe. For MAC execute neourophstudio.sh script to launch application. You

should be able to see the EDP-055715 project loaded in your workspace as below.

https://www.dropbox.com/s/4z888dz49ga9e4a/neurophstudio.zip?dl=0

¥ NeurophStudio 20121010094

(=N ==
File Edit Veew Run Debug Took Window Help Q-
PESEE
Projects & |Files 7] SupervisedTrainingMonitorFrame Windaw & a
- Ercrra
). sl etworks Total et Errer
Z Current iteration
fase | [swp |

= soun

T 50130

s

Test Sets

T Ts_01204
Exploror = =]

ms

Figure 29: Successfully installed Neuroph studio

If the project is not loaded default, click on File-> Open Project and select the project

location as neourophstudio -> EDP-055715 as below

$* NeurophStudio 201210100934

File Edit View Run Debug Tosks Window Help

Q- e
FEEE
Projects | Fies a SupervisedTraingMonitorframe Windaw «
& ercrnal

Total et Eror
Jm—

x N [Pame | [5on |
Ts_a0i21s L

T_01212
T5_011

= OpenProject =
Lookn: |88 vpolhapu on DS-00535547 - B
= ..
Recent Items. erophatudo
newrophstudo
@ i bn
|| = . B
_MACCSX
= 4@ rrcrnal
a
de
My Documents: arcohetdo
Explorer = = &). platiorn
A e
petiopu ws ioge
Prenity o
SieCatalst
a
L] Open Prosect
Nt Fleroftipe: rojec older = Carcel

Figure 30: Navigate to EDP project

34

You can see the EDP-055715 neural network, Training Sets and the Test Set in your
workspace now. On clicking the EDP-055715, opens the neural network design view for you.
Now click on any Training set file to train network and click on train button as below. You can
set the Max error, Learning rate and momentum to train in the dialog box and click on the train

button.

% NeurophStudio 201210100934 S @ =

a[mc w [S12)=1 (=] | supervisedTrainingManitorframe Window & a

Training set: TS_201210 Tran Test Seinput || Cacuiss Rest | [Randormee | [Bockvew v | [Weghs Total Kt Errer

|2/ Set Leaming Parameters ==
Stoppng Crizria

Learring Par

ayerz eters
— = -2 o) Lesmngiate p2
= eorc L] L [r— 07] L

= ooons
@BLayer 3 e 7| Dy Errer Gragh
(Turn ot for faster learring)

Figure 31: Setting up the learning parameters for electricity demand forecasting

You can see the network getting trained and also the number of iterations it took to get

trained with total network error.

35

¥ NeurophStudio 20121010094 [== ==
File Edit View Run Debug Tools Window Help Q|

PESE

&1 [EpFc u[Total Network Eor Graph &, (51251 (5] [supervisedT rainingManitorf rame Windaw &

a
Network Error Graph Total et Errer

Tteration: 125 Total Network Error: 0,12523505240960747 Curent iesalion

J (o))

EDFC - Explorer % =
= eore |
G- ERBLayer 1
o EBLayer 2
& EBLave 3

Total Nebwerk Error

Iteration

7] B Total MSE

Figure 32: Network error graph

Repeat the training steps for other training sets and complete training. After training

select the test set and clicks the test button.

T NeurophStudio 01210100834 (== =
File Edit View Run Debug Tools Window Help Qr sesrch cn
FEEE
Projects ® | Files. l[mrec w)) B [saperviseatraningMonitort rame Window =
& e — g p—
Traning set: TS_201204 T T Set bnpd Caainte. [Randomae | BlockView v vights. Total Net Error
Current tsaton

[] [

Lot
Loper2

e — S oo o0 m oo m oo oo

=i = (= = = = =
Lo

Figure 33: Testing the trained neural network

36

You can view the results right away with input given, actual output, desired output and

Total Mean square error.

%= NeurophStudio 201210100934 | =
File Edit View Run Debug Toolk Window Help Q- search ci

FEde

e [Ere u] Teikeus ®| 1[5 supervisedTrainingMonitorf rame Window & a
Total et Errer

0| Carentiteraton

EDFC - Explorer a
& erc

5 EEBLayer 1

& EEBLayer 2

o EBLave 3 I

Figure 34: Output after training and testing

This process of training and testing will be repeated for several attempts with varying
learning parameters such as learning rate, momentum and number of hidden neurons to find out
the best network architecture to use it for the final forecast. Per each individual training set, we

can find the best architecture and then we can cross validate the network accuracy.

6.2. Analysis on the training attempts

In this step, our goal is to get the best neural network architecture that has the least total
square error, which would also provide us with the optimum number of hidden neurons that
should be used for the network. Also, while performing this step, we would modify parameters
such as momentum and learning rate to train the network. Data for the years 2009 till 2014 is fed

to the neural network during the train phase and the error that we generate during the training

37

phase is noted down as Total network error and the during the testing phase is noted down as
Total square error and data for the year of 2015(till May 28™) is fed to the neural network. Only
when the network is successfully trained, we would calculate the total mean square error.

Table 1: Analysis of neural network architecture with varying learning rate, momentum,
hidden neurons for Dataset 2009-2014

Hidden | Learning | Momentum | Max Network Iterations Total
neurons rate error error mean

square
error

25 0.2 0.7 0.07 | 0.13999446 17000

25 0.1 0.7 0.07 |0.14014021 15000

25 0.3 0.7 0.07 | 0.13754688 15000

25 0.5 0.7 0.07 | 0.13751560 15000

25 0.1 0.7 0.07 | 0.14708316 15000

25 0.1 0.5 0.07 |0.17178651 25000

30 0.2 0.7 0.07 |0.14203197 15000

30 0.1 0.7 0.07 | 0.13878937 26000

30 0.1 0.5 0.07 |0.13551796 17000

40 0.2 0.7 0.07 | 0.12867541 1787

42 0.2 0.7 0.07 |0.13269652 3705

42 0.1 0.7 0.07 |0.09120345 8134

43 0.1 0.5 0.07 | 0.06999999 7151 0.13885315

43 0.1 0.7 0.07 | 0.07948120 33008

44 0.1 0.5 0.07 | 0.06999952 7974 0.26197853

44 0.1 0.7 0.07 | 0.09353887 14942

45 0.1 0.7 0.07 | 0.07944682 11291

45 0.1 0.5 0.07 |0.07317299 14262

46 0.1 0.7 0.07 | 0.08441005 4132

47 0.1 0.7 0.07 |0.09347603 17387

47 0.1 0.5 0.07 | 0.09569940 28958

48 0.1 0.5 0.07 | 0.69998351 8146 0.13906499

48 0.1 0.7 0.07 | 0.07847074 15235

49 0.1 0.5 0.07 | 0.69999850 7038 0.22117734

49 0.1 0.7 0.07 | 0.08666064 7960

50 0.1 0.5 0.07 | 0.06999962 7690 0.16892777

50 0.1 0.7 0.07 | 0.08145516 11045

38

Table 1: Analysis of neural network architecture with varying learning rate, momentum,

hidden neurons for Dataset 2009-2014(continued)

Hidden | Learning | Momentum | Max Network Iterations Total
neurons rate error error mean

square
error

50 0.2 0.7 0.07 |0.12160549 2338

51 0.1 0.7 0.07 | 0.07968846 7667

51 0.2 0.7 0.07 | 0.13499605 3692

51 0.3 0.7 0.07 | 0.13774964 3109

51 0.1 0.5 0.07 |0.07124001 11063 0.21370384

51 0.25 0.5 0.07 | 0.09058342 1170

52 0.2 0.7 0.07 |0.13438318 7514

52 0.1 0.7 0.07 | 0.07823742 9772

52 0.3 0.7 0.07 | 0.15625076 535

52 0.4 0.7 0.07 |0.12936268 2544

52 0.6 0.7 0.07 |0.14383148 2826

52 0.1 0.5 0.07 | 0.06999705 4590 0.16491053

52 0.25 0.5 0.07 |0.11971895 5163

52 0.5 0.5 0.07 | 0.09453785 6652

53 0.2 0.7 0.07 |0.12416383 653

53 0.1 0.7 0.07 |0.07673492 16062

53 0.3 0.7 0.07 |0.15625076 263

53 0.4 0.7 0.07 |0.14314422 2140

53 0.5 0.7 0.07 |0.13962757 3136

53 0.6 0.7 0.07 |0.13748118 1570

53 0.25 0.5 0.07 |0.15497031 2375

53 0.1 0.5 0.07 [0.07130412 9279

53 0.5 0.5 0.07 |0.13745632 2908

55 0.1 0.5 0.063 | 0.06297424 17616 0.24016003

56 0.1 0.5 0.06 | 0.05999989 12789 0.0567028

72 0.1 0.5 0.04 | 0.05077751 35571

65 0.1 0.5 0.055 | 0.05793136 23104

90 0.1 0.5 0.04 | 0.05021683 35199

150 0.1 0.5 0.01 |0.03761687 19538

200 0.1 0.5 0.01 | 0.03400890 19874

240 0.1 0.5 0.01 | 0.02407696 27450

39

From the above table, choose a row that has the least total mean square error and it is the
best network architecture with the data that we trained and tested and is cross validated in our
next step. So, we chose 56 hidden neurons with 0.1 of learning rate and 0.5 of momentum as the
best network architecture. Below are the screenshots, the first one displays the number of
iterations vs error rate graph and the second one displays the total mean square error for that

network.

it
Input: 1; 0.
Input:

L UUUUY, U109, U.ATLE, UAOT L, U.Tou
1 0.7; 0.5089; 0. 4?86 0. 4922 0. 4893 0. 48 1 0. 5246 O
1 0.7333; 0.5059; 0.5127; 0.5246; 0.5342; 0.5211: 0.5199; 0. 5539; 0. 5574; 0. 5523; 0. 5382; 0. 5246; 0. 5066; 0. 4794; 0. 4606; 0. 4455; 0.4106; 0. 351; 0. 3144; 0. 3764; '0.5331; .537; 0. 5445; 0. 5479; 0.56
1 0.7667; 0.5547; 0.5494; 0.5676; 0.5642; 0.554; 0.5794; 0.66; 0.6659; 0.6431; 0.6111; 0.5833; 0.5536; 0.5198; 0.4937: 0.4631; 0.4255; 0.3663; 0.3248; 0.3883: 0.5583; 0.5768; 0.5818; 0.5654; 0.564
; 0.8, 0.5819; 0.5791; 0.5824; 0.6024; 0.5982; 0.6262; 0.715; 0.7279; 0.6739; 0.6122; 0.5728; 0.5422; 0.5149; 0.4984; 0.4766; 0.4451; 0.389; 0.3438; 0.4075; 0.5676; 0.5793; 0.5755; 0.5613; 0.5536;
; 0.8333; 0.5452; 0.5617; 0.5613; 0.5715; 0.5767; 0.5982; 0.6951; 0.7126: 0.6822; 0.6287; 0.5936; 0.5567; 0.5307; 0.5098; 0.4804; 0.445; 0.3855; 0.3373; 0.3961; 0.5533; 0.5734; 0.5825; 0.5748; 0.5
, 0.8667; 0.5791; 0.5694; 0.5687; 0.5791; 0.5696; 0.5768; 0.6586; 0.6598; 0.6216; 0.5684; 0.5242; 0.4839; 0.4536: 0.4347; 0.411; 0.379; 0.3307; 0.294; 0.3483; 0.4886; 0.4888; 0.4927; 0.4914; 0.510
; 0.9, 0.4956; 0.4851; 0.485; 0.5002; 0.5067; 0.5245; 0.583; 0.5745; 0.548; 0.5132; 0.4872; 0.4622; 0.4404; 0.4264; 0.4065; 0.3824; 0.3383; 0.2962; 0.3411; 0.4495; 0.4225; 0.4232; 0.4249; 0.4408; ¢
1 0.9333; 0.424; 0.4085; 0.4115; 0.4214; 0.4282; 0.4217; 0.4551; 0.4617; 0.4558; 0.4402; 0.4293; 0.4163; 0.4067; 0.3999; 0.3856; 0.37; 0.3312; 0.293; 0.3378; 0.4449; 0.423; 0.4269; 0.4296; 0.4417;
; 0.9667; 0.4329; 0.4225; 0.4213; 0.4197; 0.4286; 0.4131; 0.4679; 0.4868; 0.4692; 0.4448; 0.4228; 0.4002; 0.3885; 0.3847; 0.3687; 0.3486; 0.3024; 0.2625; 0.3066; 0.4212; 0.4029; 0.408; 0.4092; 0.4
; 1:0.4219; 0.4082; 0.4127; 0.415; 0.4127; 0.4214; 0.4919; 0.5219; 0.5188; 0.495; 0.4773; 0.4544; 0.4401; 0.4342; 0.418; 0.3936; 0.3417; 0.2925; 0.3331; 0.4393; 0.4142; 0.4123; 0.4046; 0.4293; O
1 0; 0.4752; 0.4297; 0.4212; 0.4143; 0.4296; 0.432; 0.4954; 0.5087; 0.4858; 0.4495; 0.4245; 0.3989; 0.3871; 0.3953; 0.39; 0.3762; 0.335; 0.2918; 0.3259; 0.4188; 0.3863; 0.3834; 0.3668; 0.3919; Out
7 0.0333; 0.4554; 0.3891; 0.3972; 0.3862; 0.394; 0.4034; 0.4654; 0.4869; 0.467; 0.4325; 0.4116; 0.3889; 0.37; 0.3685; 0.3548; 0.3255; 0.2765; 0.2331; 0.2605; 0.3684; 0.371; 0.3837; 0.3772; 0.3953;
1 0.0667; 0.4229; 0.3839; 0.391; 0.3828; 0.3695; 0.3866; 0.4446; 0.4483; 0.4255; 0.3902; 0.3648; 0.3354; 0.3115; 0.2994; 0.2825; 0.263; 0.2321; 0.1982; 0.2252; 0.3293; 0.3285; 0.3479; 0.3364; 0.34
1 0.1; 0.3784; 0.314; 0.3255; 0.3203; 0.3289; 0.322; 0.3914; 0.4094; 0.393; 0.368; 0.3502; 0.3307; 0.3076; 0.2962; 0.2845; 0.2649; 0.2345; 0.2022; 0.2294; 0.3092; 0.2847; 0.2981; 0.3012; 0.3159; O
1 0. 1333 0. 3495 0. 266? 0. 2843 0. 2534 0.2795; 0.2742; 0.3092; 0.3205; 0.3239; 0.307; 0 2884; 0.2634; 0.2393; 0 2272;0.205; 0.1887; 0.1629; 0.1388; 0.1595; 0.243; 0.2392; 0.2607; 0.2688; 0.280
1191 0.1793; 0.1629; 0.1878; 0.266; 0.2543; 0.259; 0.254; 0.2653
i 203 0.1851; 0.1663; 0.1976; 0.2872; 0.2892; 0.287; 0.2802; 0.2706; Outy
:02333 0. 2472 0. 2032 02092 0. 2219 02369: x 2SOE 02307 0.2123; 0.1773; 0.1434; 0.1598; 0.2435; 0.2501; 0.25; 0.2311; 0.225
1 0.2667; 0.1757; 0.1668; 0.189: 0.1918; 0.2108; 0.2245; O 3269; 0 3673 0. 3471 0.3022; 0. 3 3 ;0.248; 0.2331:0.2219; 0.1918; 0.1567: 0.1711; 0.2385; 0.2321; 0.233; 0.2236; 0.203
10.3;0.1731; 0.1623; 0.1852; 0.2082; 0.2099; 0.1997; 0.2445; 0.2717; 0.2645; 0.2362; 0.2168; 0. 2092 0 2064 0.2131; 0.2061; 0.1997; 0.1716: 0.1441; 0.1659; 0.2327; 0.2174; 0.2167; 0.2052; 0.217
10.3333; 0.1917; 0.1742; 0.1811; 0.2024; 0.2086; 0.2107; 0.2568; 0.2779; 0.2843; 0.2678; 0.2613; 0.2605; 0.2634; 0.2737; 0.2676; 0.2596; 0.2261; 0.1861; 0.2024; 0.2589; 0.2397; 0.2403; 0.228; 0.2
1 0.3667; 0.1841; 0.1519; 0.1729; 0.1927; 0.1968; 0.1852; 0.2258; 0.25; 0.2546; 0.243; 0.2346; 0.2306; 0.2298; 0.2266: 0.2165; 0.2043; 0.1742; 0.1441; 0.1603; 0.2135; 0.2082; 0.2168; 0.2065; 0.218
7 0.4;0.1843; 0.1918; 0.2075; 0.218; 0.2227; 0.1933; 0.2474; 0.2552; 0.2503; 0.2334; 0.229; 0.2253; 0.2205; 0.2188; 0.2141; 0.196; 0.1709; 0.1484; 0.1624; 0.2111; 0.2088; 0.2082; 0.1923; 0.1933; ¢
; 0.4333; 0.2016; 0.18; 0.2022; 0.214; 0.2186; 0.2215; 0.2631; 0.2763; 0.2489; 0.2192; 0.2073; 0.2026; 0.2; 0.2115; 0.2159; 0.2007; 0.1674; 0.1385; 0.1459; 0.1912; 0.2026; 0.1973; 0.1724; 0.1677;
; 0.4667; 0.1752; 0.1769; 0.1956; 0.2027; 0.2173; 0.2169; 0.2475; 0.2812; 0.2556; 0.2207; 0.2059; 0.1988; 0.1983; 0.2102; 0.2124; 0.194; 0.1634; 0.135, 1404; 0.185; 0.1925; 0.1889; 0.168; 0.172
7 0.5;0.1599; 0.1565; 0.1809; 0.1941; 0.1979; 0.1959; 0.2427; 0.2762; 0.268; 0.2415; 0.2301; 0.2209; 0.2221; 0.2369; 0.2415; 0.2234; 0.1902; 0.1558; 0.1613; 0.1954; 0.2115; 0.2367; 0.2354; 0.1991
;0.5333; 0.1569; 0.1483; 0.1679; 0.1679; 0.165; 0.1563; 0.1764; 0.1824; 0.1717; 0.1442; 0.1317; 0.1251; 0.119; 0.1261; 0.1287; 0.1156; 0.0918; 0.0696; 0.0703; 0.093; 0.1057; 0.1054; 0.0944; 0.094
1 0.5667; 0.0749; 0.0647; 0.0784; 0.0916; 0.0817; 0.0831; 0.0797; 0.0889; 0.091; 0.0786; 0.0698; 0.0644; 0.0561: 0.0605; 0.0625; 0.0517; 0.0428; 0.0335; 0.0388; 0.0566; 0.0476; 0.0482; 0.0443; 0.0
1 0.6; 0.0267; 0.029; 0.0472; 0.0569; 0.0536; 0. 0284 0. 0113 0.0254; 0.029; 0.0221; 0.0149: 0.0113; 0.0085: 0.0114; 0.0173; 0.0133; 0.0095; 0.0073; 0.0061; 0.0097; 0.0072; 0.0097; 0.0084; 0.0101;
1 0.6333; 0.0011; 0; 0; 0; 0017; 0; 0: 0; Output: 0.9841; 0.9888; 0.9873: 0.9904; 0.9938; 0.9982; 0.9989; 0.999; 0.997; 0.9928; 0.9894; 0.9887; 0.987; 0.9876
5 :0.0329; OutpL

0.7 0.0419; 0.0458; 00405 0.0419; 0.0256; 0.0243; 0.047; 0.0832; 0.0828; 0.0725; 0.068; 0.0793; 0.0921; 0.1096; 0.1163; 0.107; 0.0871; 0.0689; 0.0678; 0.065; 0.0576; 0.0495; 0.0414; 0.0305; O
1 0.7333; 0.0522; 0.0554; 0.0586; 0.0587; 0.0462; 0.0354; 0.0522; 0.1077; 0.1293; 0.137; 0.1512; 0.1704; 0.1804; 0.1952; 0.1946: 0.1766; 0.1452; 0.1122; 0.104; 0.0953; 0.0923; 0.0876; 0.0831; 0.09
1 0.7667; 0.107; 0.1192; 0.1065; 0.1035; 0.0963; 0.08; 0.029; 0.0539; 0.0649; 0.0588; 0.0562; 0.0585; 0.0622; 0.0701; 0.0658; 0.0552; 0.0403; 0.0243; 0.0157; 0.0049; 0.018; 0.0264; 0.0222; 0.0177;
1 0.8; 0.0437; 0.0454; 0.0459; 0.0422; 0.0424; 0.0363; 0.0045; 0.0244; 0.0258; 0.0203; 0.0232; 0.0361; 0.0515; 0.07; 0.0774; 0.0743; 0.0602; 0.0453; 0.042; 0.0295; 0.0343; 0.0439; 0.0435; 0.0389; ¢
1 0.8333; 0.0522; 0.0204; 0.0339; 0.0472; 0.0484; 0.0412; 0.0179; 0.0269; 0.0343; 0.0293; 0.0376; 0.0523; 0.0699; 0.0881; 0.092: 0.0874; 0.0762; 0.0667; 0.0687; 0.0585; 0.0537; 0.0626; 0.0632; 0.0
; 0.8667; 0.0635; 0.0483; 0.0571; 0.0687; 0.0607; 0.0322; 0; 0.0099; 0.0367; 0.0359; 0.0459; 0.0665; 0.0883; 0.1083; 0.114; 0.1099; 0.0962; 0.0815; 0.0809; 0.0713; 0.0824; 0.088; 0.0768; 0.0623; C
7 0.9; 0.0933; 0.0881; 0.1101; 0.1228; 0.1355; 0.1205; 0.0836; 0.1159; 0.1273; 0.1083; 0.1081; 0.1275; 0.1473; 0.1698; 0.1798; 0.1786; 0.1574; 0.1329; 0.1312; 0.1264; 0.1369; 0.1287; 0.0966; 0.075
; 0.9333; 0.0889; 0.0711; 0.0895; 0.088; 0.1105; 0.1099; 0.1022; 0.1318; 0.1275; 0.091; 0.0788; 0.0859; 0.1009; 0.1238; 0.1267; 0.1184; 0.1011; 0.0837; 0.0798; 0.0676; 0.0986; 0.1008; 0.0697; 0.04
;0.2727; 0.9667; 0.067; 0.0491; 0.0835; 0.1055; 0.1029; 0.0942; 0.105; 0.1407; 0.1317; 0.0873; 0.0712; 0.0785; 0.0897; 0.1128; 0.1183; 0.1142; 0.0913; 0.071; 0.0669; 0.0528; 0.0869; 0.0963; 0.0696; 0.043

Lt e ol ol

Input
Total Mean Square Error: 0.056702795024461655

Figure 35: Test results from the best neural network architecture with 56 neurons

40

TestResults | ed-0-56 (| Total Netwark Error Graph %
Total Network Error Graph

0.140
0.135
0.130
0.125
0.120
0.115
0.110
0.105
0.100
0.095
0.090
0.085
0.080
0.075
0.070
0.065
0.060
0.055
0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.000

Total network error

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000
Iteration

Figure 36: Total network error graph after successfully training and testing the neural
network

Below is the neural network architecture with 56 hidden neurons.

DataSet: none (drag n drop to set)
Inl In2 In3 Ind4 |In5 In6 In7 In8 In9 In10 |In1l1| In12 In13 In1l4 In15 Inl6 IN17 In18 In19 IN20 In21 In22 In23 In24 In25 In26 In27

/ /fi\\

OO OOOOOOOOO@@@@@@@@

1596 Enﬁ‘lnenmns

0000000000000 000000

1
1368 mflne(lmns

>®@®@@@@ @@@@@@@@@@@ﬂ

\\\\\\\ J //////////

Oulputs: Qutl | Outz Out3 Out4 OwsS Ouwé Ou? OuIB OuIB Qut 10 Ourll Outrlz Ou(li Qutl4 Outl5 Outlé| Owl? Outl8 Outl9 Out20 OQuizl OQuizz Out23 0u(24

Figure 37: Neural network architecture with 56 hidden neurons

6.3. Cross-validation
The cross-validation method that we choose for this Neuroph project is leave one out

method where we pick twelve random inputs one from each month for a period of a year (2009)

41

and then build test sets leaving one input for each time and repeating it for 12 times until we
cover all the inputs and then calculate the standard deviation and variance for that network.
Cross-validation is an important step that will help us in reporting the variance and standard
deviation of the data. Below is the cross validated data for the 12 experiments performed

Once the network is cross validated, we will take that network to predict the demand for
the past/future and then verify it with the real time demand and forecasted demand in ISO-NE
website. Below is the table showing the hourly-predicted demand for May 29th using Neuroph.

Table 2: Cross-validation with twelve sets of test data

Data sets Total mean square error
Test Data Set — 1 0.0031850865139329016
Test Data Set — 2 0.0036249392444056183
Test Data Set — 3 0.003828890021327136
Test Data Set — 4 0.003710398093381868
Test Data Set — 5 0.0035713844627581477
Test Data Set — 6 0.0038351210994040045
Test Data Set — 7 0.0030103306281517458
Test Data Set — 8 0.0038090656323832503
Test Data Set — 9 0.0035746664332910465
Test Data Set — 10 0.0037918154808452564
Test Data Set — 11 0.0038575024346391147
Test Data Set — 12 0.0034210038689849102
Average 0.0036016836594587
Standard deviation 0.00026150538639467
Variance 6.8385067113428E-8

42

Table 3: Forecast with Neuroph vs real time demand.

Hour ending Forecast with Neuroph Real time demand
: 11385.74 12766.6
2 11134.21 12466.33
3 10968.93 12348.47
4 11063.69 12203.43
: 11085.12 12331.7
6 11365.32 12817.61
/ 11958.44 13147.62
8 12842.7 14405.13
) 13702.04 15198.16
10 14439.24 15761.09
1 14995.66 16240.08
12 15381.65 16591.85
13 15656.06 16775.99
14 15897.8 17060.35
15 16057.7 17249.15
16 16286.2 17490.01
17 16719.76 17671.23
18 16937.34 17492.3
19 16432.65 16893.26
20 15999.28 16270.22
21 15841.13 16156.64
22 15047.4 15538.65
23 13705.82 14242.28
24 12462.75 13051.38

SUM 325980.89 349402.93

43

In order to make sure that the predictions are not always over shooting or undershooting,
we have predicted for some random days and then measured the accuracy of the forecast by
calculating the mean forecast error for 24 hours as shown in the table below.

Table 4: Comparision of forecast with artificial neural network output vs real time demand

Day Forecast (sum of Real time (sum of Error
24hrs in mw) 24hrs in mw)

Oct 9™ 2014 325663.18 318128.58 -7534.6
Nov 4% 2014 322671.83 327464.16 4792.33
Dec 171, 2014 366270.26 361017.15 -5253.11

Jan 5™ 2015 374508.02 371265.3 -3242.72
Jan 28™ 2015 394050.84 382366.22 -11684.62

Feb 512015 377972.69 398607.65 20634.96

March 15%, 2015 322708.83 329221.66 6512.83

March 30" 2015 340483.64 356672.79 16189.15
April 2™, 2015 341456.41 335478.922 -134.7515
April 21%, 2015 309575.21 313005.73 3430.52

May 6™, 2015 296832.1 307860.47 11028.37
May 30, 2015 351544.35 345259.35 -6285
June 5%, 2015 328742.14 313587.88 -15154.26

Summation of error 13568.6015

Mean forecast error for 24 hours is 1023.00758

6.4. Analysis with Linear Regression
This experiment is designed to determine how well our neural network model works
when compared to linear regression, below are the results for the 15 hour computed with linear

regression to build a function in the forms of y=aX+b using the data from 2009-2014, where X is

44

averages calculated for the past seven days along with the occurrence of the same day in
previous calendar year and y is the real time data. The values of the slope, intercept, correlation
and 1 values are 0.625677, 4618.58931, 0.78193757, 0.61142636 and the equation obtained

from the final output y=0.9772x+282.02, where a=0.9772,b=282.02

25000
20000
y =0.9772x + 282.02
R2=0.6114
15000
*
——Linear (Series1)
10000
5000
O T T T 1
0 5000 10000 15000 20000

Figure 38: Linear Regression for average demand with real time demand

X is the average value evaluated for the first hour, rt is real time demand, Ir is linear
regression, ann-artificial neural network, rt-ann indicates difference of output from real time
demand with artificial neural network output, rt-Ir indicates difference of output from real time

demand with linear regression output.

45

Table 5: Analysis of forecast with artificial neural network output vs real time demand vs

Linear Regression.

DAY, X RT LR ANN RT-ANN RT-LR
2015
Jan 51 13346.7143 | 12122.86 | 13255.0263 | 13491.91 | -1369.05 | -1132.1663
Jan 28" | 13509.2286 | 14125.04 | 13412.9902 | 14113.5 11.54 712.049800
8
Feb 5% 13897.6914 | 13878.08 | 13790.5760 | 13647.1 230.98 | 87.5039592
4
March 15% 12375.13 | 12030.33 | 12310.6463 | 11673.95 | 356.38 -280.31636
6
March 301" | 12122.545 | 12461.51 | 12065.1337 | 12228.21 2333 396.37626
4
April 2™ | 12199.2057 | 12448.26 | 12139.6479 | 12199.20 | 249.0543 | 308.612059
4 57 6
April 21% | 10647.5957 | 11442 | 10631.4830 | 10997.76 | 444.24 | 810.516979
2 6
May 6" | 10447.1121 | 10571.64 | 10436.6129 | 10543.27 28.37 135.027038
6 8
May 30" | 11655.7507 | 11963.4 | 11611.4096 | 11962.16 1.24 351.990319
8 6
June 5™ | 11410.1807 | 10827.86 | 11372.7156 | 11308.14 | -480.28 | -544.855640
4
-294.2257 | 844.738117
6

So, from the above table it is clear that neural network results are much closer to the

output that we get from linear progression.

46

CHAPTER 7. ELECTRICITY DEMAND PREDICTION ON WEB

Using the development version of Neuroph framework, a web application is built very
specific to our problem and hosted on Amazon web services. Here is the link for the Source files
of the development version uploaded in GIT repository: https://github.com/sowparl8/edp

Here is the link to the application: http://edp-1034583199.us-west-
2.elb.amazonaws.com/edp/. Below are the steps we can follow to build neural network

architecture on web.

7.1. Create MLP neural network
Enter the number of hidden neurons that you would like to train/test the neural network
as shown in the screenshot below. As you can notice, we have definite input and output neurons

as 27 and 24 respectively.

Create MLP Neural Network
Name:
EDP-43

Input Neurons:

27

Hidden Neurons:

43

Output Neurons:

24

Figure 39: Creating a multilayer perceptron neural network

Below is the screenshot of the java class that’s corresponding to creating a neural

network.

47

public static woid createNN(String name, int i , int o, imt h){
String neuroshum = 1 + * " + h+ " " + o;

MultilayerPerceptron nnet2 = NeuralNetworkFactory.createMLPerceptron{neurosNum, TransferFunctionType.SIGMOID,
MomentumBackpropagation.class, true, false);

nnet2.setlabel (name);

nnet2. save(rootPath+NN_PATH+name+NNET_SUFFIX);

Figure 40: Java code for creating a neural network

7.2. Upload datasets

Enter the name of the training set and upload the data set by clicking on upload

Upload Trainset
Name:
DS-2009-2014

Inputs:
27

Outputs:

24

Select Train set:

DS_2009_2014-new.tset

Figure 41: Uploading training set

Below is the screenshot of the java class responsible for the upload datasets.

48

public static boolean uploadDataSet({5tring name, byte[] bytes, int i , int o){

try {
BufferedOutputStream stream = new BufferedOutputStream(new FileOutputStream(new File(rootPath+TRAIN_SET_PATH+name)));
stream.write(bytes);
stream.close();

/i create training set

DataSet trainingSet = null;

try {
trainingSet = TrainingSetImport.importFromFile(rootPath+TRAIN_SET_PATH+name, i, o, ",");
trainingSet.setFilePath(rootPath+TRAIN_SET_PATH+name+TSET_SUFFIX);
trainingSet.save();

} catch (FileNotFoundException ex) {
System.out.println{"File not found!");

} catch (IOException | MumberFormatException ex) {
System.out.println{"Error reading file or bad number format!");

1

return true;

} catch (Exception e) {

return false;

}

}

Figure 42: Java code for uploading training set

7.3. Train neural network
Train the neural network by selecting the network that was created in 7.2.1 step 1.e.
Create Neural Network and select the data set that was uploaded in 7.2.2 step i.e. upload data set.

Enter the max number of iterations and then enter max error, learning rate and momentum.

Train MLP Neural Network
Stop Pause Resume | Feset | Log

NeuralNetwork:

EDP-43.nnet

DataSet:

DS-2008-2014 tset

LeamingRate:

02

Maxiterations:

Figure 43: Training a neural network

Below is the screenshot of the source code for Training Neural network.

49

public statie woid train(String name, Double 1 , Double me, int mi, Double mom,String tsName){
MultiLayerPerceptron neuralNetwork = (MultilLayerPerceptron)NeuralNetwork.createFrosFile(rootPatheNN_PATH+RaME) ;
if(mom l= null E& mom » @) ({MomentumBackpropagation)neuralNetwork.getLearningRule()).setMomentum{mom);

if(l != null 8% 1 » @) neuralMetwork.getLearningRule().setLearningRate(l);
if(mi » @) neuralNetwork.getLearningRule().setMaxIterations(mi);
if(me != null && me > @) neuralNetwork.getlLearningRule().setMaxError{me);
neuralNetwork.getLearningRule().addListener(new LearningEventListener() {

goverride
publie woid handleLearningEvent(LearningEvent ewvent) {

SupervisedLearning rule = (SupervisedlLearning)event.getSource();
trainLog.add{"Training, Iteratien * + rule.getCurrentIteration() + “, Errer:" + rule.getTotalNetwo
System.eut.println(“Training, Iteratiom " + rule.getCurrentIteration{) + ", Error:" + rule.getTot

1
/f ereate training set
DataSet trainingSet = DataSet.lead(rootPath+TRAIN_SET_PATHs#tsName) ;
nn = neuralNetwork;
nn.learn{trainingSet);
nn.save(rootPath+NN_PATH+nn.getLabel{)+NNET_SUFFIX);

public statiec wvold stepLearning(){
if(nn l= null){
nn. stopLearning();
nn. save(rootPath+NN_PATH+nR. getlabel(J+NNET_SUFFIX);

public static vold pauseLearning(){
if{nn l= null){
nn.pauseLearning();
nn. save{rootPath+NN_PATH+nn. getlabel { J+NNET_SUFFIX);

public statie vold resumeLearning(){
if{an = Aull){
nn. resumeLearning();

f/nn.save{nn.getLabel{));

Figure 44: Java code for training a neural network

Click on logs to see the training iterations that are going through the network as shown in

the below screenshot

50

Training logs

Training, Iteration 21747, Error:0.09166706484054826
Training, Iteration 21746, Error:0.09166773278547315
Training, Iteration 21745, Error:0.09166619727515944
Training, Iteration 21744, Error:0.09167173631400967
Training, Iteration 21743, Error:0.091 66349069428881
Training, Iteration 21742, Error:0.091 666945858717

Training, Iteration 21741, Error:0.09167 256668504935
Training, Iteration 21740, Error:0.0916641376727271

Training, Iteration 21739, Error:0.09166904654418274
Training, Iteration 21738, Error:0.091 6697 2638430401
Training, Iteration 21737, Error:0.09166812110821078

Training, Iteration 21738, Error:0.0816736764443388

Training, Iteration 21735, Error:0.081665319621797

Training, Iteration 21734, Error:0.09166874544979703

Training, Iteration 21733, Error:0.09167438054884391

Figure 45: Training logs generated from a neural network during the training phase

7.4. Test neural network
Once training is done successfully, we need to test the neural network to find out the best

neural network as shown in the below screenshot.

51

Test your MLP network
MeuralMetwork:
EDP-43.nnet

DataSet:

DS-2015.tset

Figure 46: Testing a neural network

Click on test button to test the neural network and you can see the total mean square error

for that network. Below is the screenshot of the test source code.

52

public statie TestResult test(String name, String tsName){

MultilayerPerceptron neuralletwork = (MultilayerPerceptron)NeuralNetwork.createFromFile(rootPath+NN_PATH+name);
TestResult result = mew TestResult();

{/ create training set

ff create training set

DataSet trainingSet = DataSet.lcad({rootPath+TRAIN_SET_PATH+tsName);

Iterator<DataSetRow:> it = trainingSet.iterator();

double rwOutput[][] = new double[trainingSet.getRows().size()]1[24];
double dOutput[][] = new double[trainingSet.getRows().size()][24]

int ¢ = 8;

ErrorEvaluator errorEval = new ErrorEvaluator({new MeanSquaredError());
while{it.hasNext{)){

DataSetRow r = it.next();
neuralMetwork. setInput{r.getInput());
neuralMetwork.calculate();
double op[] =neuralNetwork.getOutput();
int k = @;
for {double d : op) {

rwdutput[e][k] = d;

Kbt

}
£/ mwDutput[c] op;
doutput[c] =r.getDesiredOutput();
errorEval. processietworkResult{neuralNetwork. getOutput (), r.getDesiredOutput());
[£3H

}

deuble tmse = errorEval.getResult();
result.setTmse{tmse);

result. sethwOp{ nwiutput);

result. setDesiredop(dOutput);

System.out.println(“Mean Square Error:“+tmse);
System.out.println(“Network Output:“+nwOutput);

return result;

Figure 47: Java code for testing a neural network

7.5. Cross-validate neural network
Once the successfully trained networks are tested, we will get a list of networks with total
mean square errors and we pick the network that has the least total mean square error to cross

validate the accuracy of the network by leave one out method. Below is the screenshot.

53

CrossValidate your MLP network

NeuralNetwork:

EDP-43.nnet

DataSet:

DS-3.tset

Close Validate

Figure 48: Cross-validating a neural network
Below is the source code for cross-validate class

public static CrossvalidationResult crossvalidate(String name, String tsdame){

MultilayerPerceptron neuralNetwork = (MultilayerPerceptron)NeuralNetwork.createfronfile(rootPath+NN_PATH+name);
CrossvalidationResult cviesult = new CrossValidationfesult();

TestResult results[] = new TestResult [12];
/{ create training set

DataSet trainingSet = DataSet.load(rootPath+TAAIN_SET_PATH+tsName);

fiandom rn = new Random();
int daysInMonth;

int min = &;

int max = &;

List<DatasetRows selDays = new Arraylist<DatasetRow:();

int [] daysPicked = new int[12];

for{int i=1; i¢=13; i++){

min = max +1;

if(l==a||i==6]]li==9]]1i==11)
daysInMonth = 3@;

else if (i == 2}
daysInMonth = 28;

else
daysInMonth = 31;

max = {min -1) + daysInMonth;
int randomDay = rn.nextInt{max - min} + min;
daysPicked[i-1] = randomDay;

selDays.add(trainingSet. getRowdt (randombay)) ;

double rwOutput[][] = new double[selDays.size{)]1[24];
double dOutput[][] = new double[selDays.size()][24];
double err[] = new double[12];

ErrorEvaluater errorgval = new ErrorEvaluator{new quaredError(}]);

Figure 49: Java code for cross-validation

54

7.6. Predict demand
We can predict the demand for future by uploading a new dataset and feed it to the same

network and click on predict as shown in the below screenshot.

Predict Demand

NeuralNetwork:

EDP-43.nnet

DataSet:

DS-2015.tset

Inputs:

27

Figure 50: Predicting electricity demand

On clicking predict, we would see an output from the network for the 24 hours arranged

in each single row as shown in the below screenshot.

55

Demand Predicted.

Output:

0.0221 0.01485717 piX B5T1 2,04 W ,0.00412707348183;

0.01485717 piX B5T1 2,04 W ,0.00412707348183;

0.01485717 piX B5T1 2,04 W ,0.00412707348183;

0.01485717 piX B5T1 2,04 W ,0.00412707348183;

0.01485717 piX B5T1 2,04 W ,0.00412707348183;

0.0221 0.01485717 piX B5T1 2,04 44,04 ,0.00412707348183;

0.022191 80896380025,0.01 48571 78601 560645,0.01 361 26637726571 2,0.010841 250960607 244,0.00664480306220688,0.0041 2707348183

0.0z 001485717 0.1 T2BST12,0. 44,04 ,0.00412707348183;

0.01485717 piX T2BST1 2,0 W ,0.00412707348183;

0.01485717 piX T2BST1 2,0 44,04 ,0.00412707348183;

00148571 0 T2B5712,0.010041 250060607 244,0.00864400308220888,0.0041 2707348183

0.01485717 piX T2BST1 2,0 44,04 ,0.00412707348183;

0.01485717 piX T2BST1 2,0 W ,0.00412707348183;

Figure 51: Output of electricity demand after it’s predicted

Below is the screenshot of the source code for predicting class of the neural network.

56

public static TestResult predict(String name, String tshame){

MultilLayerPerceptron neuralletwork = (MultilayerPerceptron)MeuralNetwork.createfronfile(rootPath+NN_PATH+n
TestResult result = new TestResult();

J/f create training set

Dataset trainingSet = DataSet.load{rootPath+TRAIN_SET_PATH+tsName);

Iterator<DataSetfow: it = trainingSet.iterator()};
double nwlutput[][] = new double[trainingSet.pgetfows().size)][24];

ffdouble doutput[][] = new double[trainingSet.getRows().size()][24];
int ¢ = 8;

JfErrorEvaluator errorEval = new ErrorEvaluator(new MeanSguaredError());
while{it.hasnext()}{

Datasetfow r = it.next();

neuralietwork. setInput(r.getInput(}};

neuralNetwork.calculate();

nwlutput[c] = neuralNetwork.getOutput();

S fdoutput[c] =r.getbesiredOutput(};

[ferrorgval. processietworkfesult(neuralietwork. getOutput (), r.getDesiredOutput()};

C4+}

f/double tmse = erroreval.getResult();
{fresult.setTmse(tmse);

result, setiwlp(nwiutput);

Jfresult. setDesiredOp(dOutput) ;

ff5ysten. out. println{“Mean Square Error:"+tmse);
System.out.println("Metwork Output:®snwlutput);

return result;

Figure 52: Java code for electricity demand prediction

57

CHAPTER 8. CONCLUSION AND FUTURE WORK

This paper discusses the concept of building best neural network model with a neural
network framework using historical data that can help distributors or utility companies in
preparing better for the future electricity demand requirements.

The overall goal of the project was to build a tool that predicts the electricity demand for
day ahead given large amount of historical data. Historical data ranging from 2007-2015(till
date) is used to train and test the neural network for future predictions.

From the experimental results, high performance neural network model has been
successfully built which produced close predictions to the real time demand with a reasonable
number of iterations and acceptable error rates of 0.06. Accuracy of the prediction was cross-
validated with reasonable standard deviation and variance. Mean forecast errors were calculated
to verify the overall forecast accuracy with a difference of 1023 mw of electricity demand for 24
hours. Also, the neural network model’s accuracy is much better than linear regression method
on a limited number experiments.

Training data that is available on the ISO-NE express website is for only 8 years and
hence future work would be to collect more data for some additional years and run the neural
network training phase and possibly build a network that has an error rate of less than 0.01.

An interesting problem to solve is to expand the problem space to predict the demand
based on individual regions across New England along with the consideration of economic

factors and weather conditions would also be a challenging task to accomplish as enhancements.

58

REFERENCES

Cutovié, I. (n.d.). Glass identification using neural networks. Retrieved from
neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/GlassIdentification/GlassIdentificationUsingNeuralNetw
orks.html

A.C.Andersen. (2010). Autonomous neural development and pruning. Retrieved from
http://blog.andersen.im/wp-
content/uploads/2010/12/AutonomousNeuralDevelopmentAndPruning-AndersenAC.pdf

AbuAl-Foul, B. M. (2012). Forecasting energy demand in Jordan using artificial neural
networks.

Alexandre, M., & Edson, C. (2010). FIVE-framework for an integrated voice environment.
IWSSIP-2010.

Angelini, E., di Tollo, G., & Roli, A. (2008). A nueral network approach for credit risk
evaluation.

AZOFF, M. E. (1994). Neual network time series forecasting of financial markets.

Bacha, H., & Meyer, W. (1992). A Neural network architecture for load forecasting. Proceedings
of international joint conference on neural networks.

Castro, L. I., & Cramton, P. (2009). Prediction markets to forecast electricity. 19.
Chow, M., & TRAM, H. Application of fuzzy logic technology for spatial load forecasting.

EIA. (n.d.). Annual energy outlook. Retrieved from http://www.eia.gov/:
http://www.eia.gov/forecasts/aco/MT _electric.cfim

Ferlito, S. e. (2015). Predictive models for building's energy consumption: an artificial neural
network (ANN) approach. AISEM Annual conference, 2015 XVIII (pp. 1-4). Trento: IEEE.

Francisco J. Nogales, J. C. (2002). Forecasting next-day electricity prices by time series models.
IEEE Transactions on power systems , 6.

Gately, E. (1996). Neural networks for financial forecasting.
Granger, C. W., & Terasvirta, T. (1993). Modelling nonlinear economic relationships.

Haixun, W., Shijun, L., Satoshi , O., Xiaohua, H., & Tieyun, Q. (2011). Efficient name
disambiguation in digital libraries. Proceedings of the 12th international conference on web-age
information management. Berlin: Springer-Verlag.

59

Heaton, J. (2010, feb 9). Basic market forecasting with encog neural networks. Retrieved from
www.devx.com: http://www.devx.com/opensource/Article/44014

Heaton, J. (2008). Introduction to neural networks for java, Second Edition. Jeff Heaton.

Hernandez, G., & Salinas, L. (2004). Large scale simulations of a neural network model for the
graph bisection problem on geometrically connected graphs.

hoseinzade, S., & Akhavan Niaki, S. (2013). Forecasting S&P 500 index using artificial neural
networks and design of experiments.

Hyde, O., & Hodnett, P. F. (1997). An adaptable automated procedure for short-term electricity
load forecasting.

Hyndman, R. J. (2011, October 3). Forecasting electricity demand distributions using a
semiparametric additive model. Retrieved from http://robjhyndman.com/talks/electricity-
forecasting/.

Ivani¢, N. (n.d.). Predicting poker hands with neural networks. Retrieved from
neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/PredictingPokerhands/Predicting%20poker%20hands%2
Owith%20neural%20networks.htm

J.P.S. Catalao, S. .. (2006). Short-term electricity prices forecasting in a competitive market.
ELSEVIER , 7.

JayaKumar, K. R., & Alain, A. (2013). A survey of software test estimation techniques.
Scientific Research .

Jeremic, M. (n.d.). Music classification by genre using neural networks. Retrieved from
neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/MusicClassification/music_classification by genre usin
g neural networks.html

Jovanovic, A. (n.d.). Blood transfusion service center. Retrieved from neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/BloodTransfusionSc/blood_transfusion_sc.html

Jovanovic, M. (n.d.). Predicting the class of haberman's survival with neural networks .
Retrieved from neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/HebermanSurvival/HabermansSurvival.html

Kiigtikdeniz, T. (2010). Long term electricity demand forecasting: an alternative approach with
support vector machines. Academia.edu .

60

Kandananond, K. (2011). Forecasting electricity demand in Thailand with an artificial neural
network approach. MDPI Energies .

Kargar, M. J., & charsoghi, D. (2014). Predicting annual electricity consumption in iran using
artificial neural networks (NARX).

Kumar, P. C., & Walia, E. (2006). Cash forecasting: an application of artificial neural networks
in finance.

Levine, D. (2006). Neural modeling of the dual motive theory of economics. Journal of Socio
€conomics.

Limanond, T., Jomnokwao, S., & Srikaew, A. (2011). Projection of future transport energy
demand of Thailand. Energy Policy .

Lisboa, P. J., & Taktak, A. F. (20006). The use of artificial neural networks in decision support in
cancer: a systematic review.

Mitrea, C. A., Lee, C. K., & Wu, Z. (2009). A comparision between neural networks and
traditional forecasting methods: a case study. International journal of engineer business
management, vol.1, no.2 .

National Grid. Understanding electricity demand.

Palmer, A., Montano, J. J., & Sese, A. (2006). Designing an artificial neural network approach
for forecasting tourism time series. Tourism management.

Pankilb, K., Prakasvudhisarn, C., & Khummongkol, D. (2015). Electricity consumption
forecasting in Thailand using an artificial neural network and multiple linear regression. /0 (4),
427-434.

Patuwo, E. B., Zhang, G., & Hu, M. Y. (1997). Forecasting with artificial neural networks: the
state of the art. Internation Journal of forecasting 14 .

Pierre, S., Said, H., & Probst, W. G. (2001). An artificial neural network approach for routing in
distributed computer networks. Engineering Applications of Artificial Intelligence.

Prasad, B. (2008). Soft computing applications in industry. Springer.

Quek, M., & Moskowitz, D. (2007). Testing neural network models of personality. Journal of
research in personality.

cey e

networks. Retrieved from neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/SportsPrediction/Premier%20League%20Prediction.html

61

Refenes, A.-P. (1995). Neural networks in the capital markets.

Risteski, S. (n.d.). Recognition of Braille using neural networks. Retrieved from
neuroph.sourceforge.net:

http://neuroph.sourceforge.net/tutorials/Braille/RecognitionOfBraille AlphabetUsingNeuralNetw
orks.html

Rodrigues, F., Cardeira, C., & Calado, J. M. (2014). The daily and hourly energy consumption
and load forecasting using artificial neural network method: a case study using a set of 93
households in Portugal.

Severac, Z. (2011). Neural networks on the netbeans platform. Retrieved from Oracle:
http://www.oracle.com/technetwork/articles/java/nbneural-317387.html

Smith, K. A., & Gupta, J. N. (2002). Neural networks in business: techniques and applications.
Idea group publishing.

Stojilkovic, J. (n.d.). Face recognition using neural network. Retrieved from
neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/FaceRecognition/FaceRecognitionUsingNeuralNetwork.
html

Stojkovi¢, M. (n.d.). Wine classification using neural networks. Retrieved from
neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/wines1/WineClassificationUsingNeuralNetworks.html

Taheri, T. (2010, June 3). Benchmarking and comparing Encog, Neuroph and JOONE neural
networks. Retrieved from www.codeproject.com:
http://www.codeproject.com/Articles/85487/Benchmarking-and-Comparing-Encog-Neuroph-
and-JOONE

Trippi, R. R., & Turban, E. (1992). Neural networks in finance and investing.

Trisic, J. (n.d.). Predicting the class of breast cancer with neural networks. Retrieved from
neuroph.sourceforge.net:
http://neuroph.sourceforge.net/tutorials/PredictingBreastCancer/PredictingBreastCancer.html

U.S. Department of Energy. (2007). The smart grid: an introduction. U.S. Department of
Energy.

U.S. Department of Energy, SmartGrid. (2008). What the smart grid means to Americans.

Urosevic, M. (n.d.). Lenses classification using neural networks. Retrieved from
neuroph.sourceforge.net:

62

http://neuroph.sourceforge.net/tutorials/LensesClassification/LensesClassificationUsingNeuralN
etworks.html

Zhu, J. (2015). Optimization of power system operation. Wiley-IEEE Press; 2 edition.

63

