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ABSTRACT 

The diverse computing services offered by the cloud computing paradigm have escalated 

the interest in cloud deployment to a great extent. Cloud systems need to be resilient to 

uncertainties and perturbations. However, the perturbations in a cloud environment may cause the 

performance to degrade and violate the Service Level Agreements (SLAs). Therefore, it is 

imperative to adhere to the performance assurance by guaranteeing reliability in diverse and 

unexpected conditions. In our research, we focused on measuring and analyzing the robustness of 

a cloud based scheduling system. To mitigate the negative effects of the perturbations and 

uncertainties existing in the system working environment we present a robust resource allocation 

system. In our study, we focused on a two-step line of action: (a) measurement of robustness and 

(b) achieving an optimized Pareto front of the scheduler system is Cloud. 

To address the aforesaid challenge and fulfill the required Quality of Service (QoS), this 

research work employs a robustness analysis of resource allocation schemes in cloud on the basis 

of multiple performance parameters. Due to the high number of parameters’ comparison criterion, 

decision of the most robust allocation scheme is quite challenging. Therefore, a dimension 

reduction mechanism is employed to reduce the problem complexity. Thereafter, the resource 

allocation schemes are evaluated for guaranteeing the systemwide performance to ensure 

reliability and ascertain promising performance. The experimental results depict that the order of 

parameter selection in the reduction process has a significant impact on the selection of the most 

robust allocation scheme. 

The performance demands of modern computing applications have led to an exponential 

increase in power density of on-chip devices. Not only the operational budget of the system has 

increased substantially, but also the temperature has experienced an alarming increase rate. The 
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aforementioned challenges necessitate the requirement of realizing efficient mapping 

methodologies to overcome the resource exploitation issue in Cloud computing. This study 

attempts the optimization of performance, power, and temperature of multi core systems by 

varying the frequency of operation of the core. Our proposed resource scheduler efficiently adheres 

to the optimized Pareto front to address the aforementioned challenges. 
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1. INTRODUCTION 

1.1. Introduction  

In this chapter, we aim to discuss the introduction of the research we have performed 

during Ph.D. We carried out our research on the improvement of robustness of a cloud based 

scheduling system for subdue the perturbations present in the system environment. In our 

research studies, we focused on the enhancement of resource allocation of tasks to a set of 

machines. In the first case a robustness measurement and analysis methodology is devised. 

Nevertheless, in the following case, we obtained a Pareto optimized set of solutions for the 

enhancement of a resource allocation system. Based on our study, we devise a formulation 

that unveils bounds on the desired objectives for the achievement of optimization in the 

system working environment. We analyzed that the frequency of operation when constrained 

to certain limit of operating domain can benefit the scheduler in optimizing the power and 

temperature. Therefore, by adhering to mapping configuration the resource utilization is 

adjusted dynamically. 

1.2. Robustness Measurement of a Scheduling System  

With the tremendous growth in demand of cloud deployment, the computing services 

offered by cloud providers are expected to guarantee effective performance along with resource 

provisioning. The cloud service providers, such as Google, Amazon, Yahoo, and Cisco aggregate 

the pool of computing resources to adjust the exponentially increasing demand of computing 

resources by enterprise businesses and scientific research areas [1.1]. To comply with the client 

defined Service Level Agreements (SLAs), the cloud infrastructure consolidates the computing 

and storage resources in an “on-demand” manner to preclude the high operational costs [1.2]. 
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Perhaps the sharing of resources makes the cloud susceptible to perturbations and erroneous 

functionality [1.3]. Therefore, to address this impediment, the cloud service providers need to 

consider the uncertainty in the working environment and ascertain robustness to ensure the desired 

level of performance. Moreover, the cloud framework must orchestrate the resource consolidation 

such that the SLA is satisfied and the agreed level of Quality of service (QoS) is rendered. 

The Information and Communication Technology (ICT) has witnessed an exponential 

increase in the adoption of cloud services in the recent years. According to the Gartner report 

published in January 2015, the cloud market is expected to reach $143 billion in 2015 reflecting 

1.80 percent increase from 2014 [1.4]. The pervasive and convenient access to the cloud raises 

anomalies ranging from hardware bottlenecks to component failures that are challenging to predict 

and diagnose [1.1]. The aforementioned obstacles pose a serious threat to the performance and 

functionality of cloud [5]. Moreover, the shared pool of resources makes the cloud framework 

vulnerable to perturbations and failures [1.3]. Therefore, to achieve effective functionality, all of 

the above mentioned issues necessitate the assurance of robustness in the cloud framework. 

Provision of a robustness guarantee is required to ensure proper functionality of cloud in 

the presence of uncertainties [1.5]. Most of the existing approaches define robustness as a measure 

of acceptable and expected operation in the presence of perturbations and uncertainties [1.3], [1.6]. 

The IEEE standard glossary of software engineering lexicon [1.7] defines robustness as “The 

degree to which the system or component can function correctly or as expected in the presence of 

invalid inputs or stressful environmental conditions.” Various studies in literature recognize the 

adverse effect of uncertainties in the cloud’s working environment that degrades the performance. 

Bilal et al. [1.3] performed an extensive analysis of the robustness metrics of data center network 

in the cloud infrastructure to improve service reliability and overall performance. Zhang et al. [1.8] 
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proposed a Vectorized Ordinal Optimization (VOO) approach to handle the uncertainties in the 

cloud resource allocation schemes. Nevertheless, the work presented here focuses on robustness 

measurement considering a multiparamter environment. The selection of a robust resource 

allocation in cloud emerges as a challenging problem when the range of parameters’ evaluation 

increases to a high number [1.9]. Typically, researchers have been working on the problems 

considering a limited number of comparison parameters [1.6], [1.10]. However, when the 

parameter comparison criterion increases to a large number, say n >> 0, the selection of one unique 

solution becomes unachievable for the scheduler in cloud [1.11]. 

Due to the significance of robustness in a cloud framework, the presented research work 

hinges on prescribing a mechanism to measure robustness. The resource allocation schemes in the 

cloud are evaluated for the magnitude of robustness exhibited to procure metrics that render a 

promising performance. The evaluation is performed based on numerous parameters. The solution 

is approached by first reducing the problem complexity. The goal is to first efficiently employ the 

dimension reduction procedure to transform the data belonging to higher dimensions into a lower 

dimensional space. The dimension reduction process is to be performed such that the information 

pertaining to data properties is preserved. Intactness of data properties appear as a significant 

obstacle when the data lying in higher dimensions is reduced to its lower counterpart [1.12]. The 

data set after convergence is analyzed for the robustness measure. 

In this paper, we explore the procedure of dimension reduction using a geometrical 

approach. The mathematical formulation for the robustness analysis of allocation schemes in a 

scheduling system. Data lying in a higher or n-dimensional (dim) hyperspace is projected on to a 

low- dimensional linear or non-linear space. The projection unveils low-dimensional structures 

that can be used for the data analysis as well as for data visualization [1.13]. Therefore, a feasible 
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solution to the above stated problem is to reduce the data at first place and then perform the 

comparison of the robustness. The key to convergence is a dimension reduction procedure [1.14]. 

The data is mapped onto a lower dimension space as a result of employing the reduction process. 

The dimension reduction approach employed in this work is a geometrically flavored procedure. 

A step wise dimension reduction is performed by taking projection and retaining the impact of the 

reduced coordinate. The geometrical reduced surface (distribution of data) attained as a result, 

retains a non-linear relation to the hypersurface it represents [1.12]. The reduced dimension version 

is subsequently evaluated for the robustness measure and the allocation schemes are then 

categorized on the basis of the robustness quantified. Based on the robustness measure a 

comparison among the allocation schemes is performed to find the most effective and suitable 

scheduling scheme. The immense advantage of the reduction incorporated robustness analysis 

besides low complexity is that we can guarantee robustness despite of the high number of 

performance features considered for the comparison. 

1.3. Realization of Pareto Front for Cloud Scheduler 

The dynamic and promising services delivered by Cloud computing paradigm have 

strikingly elevated the demand of Cloud deployment (models). The paradigm orchestrates the 

computing resources, such as the processing cores, I/O resource, and storage to meet “on demand” 

client requirements. The aforementioned characteristic of Cloud has extensively scaled the service 

offering to leverage and productize functionality. However, to ensure that the agreed Service Level 

Agreement (SLA) is met the Clouds needs to offer metering services to avoid resource 

exploitation. 

To provide a single pane view of the resources status and achieve high levels of granular 

visibility, intelligent monitoring should by realized to track resource utilization. Due to the increase 
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in chip power density, the offered computing resources are prone to predicaments, such as 

hardware failure, low reliability, and insecure multi-tendency. Indeed, task completion is the 

foremost priority of schedulers in Cloud. Nevertheless, thermal management and power 

consumption hold pivotal importance in achieving high-end functionality. Moreover, cost 

minimization can be accelerated by avoiding over-provisioning of the aforementioned resources. 

Recently, a wide range of hardware and software based technique [1.15]-[1.17] have been 

proposed to control the power consumption of Chip Multi-Processors (CMPs). Although the 

management schemes could effectively reduce power depletion, they incur performance overhead 

in the form of thermal runaway. Motivated by this fact, the work presented in this paper address 

the abovementioned issue by considering the run-time information. Therefore, frequent monitoring 

of core temperature and operating frequency is required to lower the risk of chip overheating. We 

provide a methodology to mitigate the violation of peak power and temperature constraints, 

respectively.  The objective of this work is to optimize the cumulative performance of the resource 

allocation system. Intuitively, a convex optimization approach is devised to minimize the 

makespan, temperature, and power utilization of the scheduler. Our contribution circumvent the 

efficient management of power/temperature exploitation without comprising the task completion 

deadline. The solutions that adhere to all of the constraints of power, makespan, and temperature 

constitute to the set of efficient or Pareto optimized solutions. Despite of the contradicting nature 

of the objectives, we perform efficient mapping of resources to fulfill the end user demands without 

the violation of any timing constraints. The relevant Pareto front of high quality is obtained for the 

optimization of the three objectives.  
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2. RELATED WORK 

In this chapter we discuss some of the work that is related to the research we have 

performed during Ph.D. 

2.1. Correlation between Robustness and Reliable Performance 

In this section, we present some of the research works that pertains to the Robustness 

measurement addressed in literature. The framework proposed in the paper [ 2 .1]  is generic 

and focuses on handling data lying in higher manifolds. By using dimension reduction, we 

perform data convergence in a stage wise manner and then test the acquired result for robustness 

to attain high end effective performance. Maxwell et al. [2.2] and Ali et al. [2.3] proposed 

robustness metrics for the quantification of robustness for a given resource allocation environment. 

Ghoshal et al. [2.4] applied a data management strategy in distributed transient environments 

like cloud for handling both virtual machine failure and variations in network performance. The 

aforementioned technique is unable to handle and overcome failures that occur during run-time. 

Nevertheless, our methodology is more focused on achieving high level performance in the 

cloud environment to overcome the threats and challenges in an effective manner. Guaranteeing 

performance is of utmost importance in the implementation of a cloud paradigm. 

Larsen et al. [2.5] used a syntactic transformation approach that employs classical 

analysis techniques and tools to achieve robustness. Moreover, to achieve the required QoS level 

authors in [2.6] applied a fuzzy control logic for the resource management. Nevertheless, the 

application of fuzzy control is effective only in systems with a simple architecture. To handle 

the resource allocation problem effectively for a variety of scenarios a great deal of knowledge 

about the rules and parameters involved is required and extensive simulation needs to be carried 
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out before designing fuzzy system. Macias et al. [2.7] proposed an SLA improvement strategy 

by utilizing a two way communication path between the market brokers and resource managers. 

The aforementioned technique improves the SLA violation only when prior knowledge about the 

reputation of the system is available. Otherwise no significant difference can be brought using 

this methodology. On the other hand, our methodology can be adapted for any possible scenario. 

Scheduling and managing of resource with QoS maintained according to the SLA specifications 

is a major challenge in a cloud computing environment. The perturbations present in the system 

environment make the aforementioned tasks even more challenging and opens new paradigms in 

resource scheduling of cloud. To accomplish the above mentioned goal, the researchers in [2.8] 

presented a scheduling heuristic that caters multiple SLA parameters. The parameters considered 

are limited to CPU time, network bandwidth, and storage capacity. However, performance 

parameters such as response time, temperature, and processing time are not considered in 

improving the system’s performance. 

Li et al. [2.9] proposed a customizable cloud model for resource scheduling. An additional 

aspect of trust is incorporated in the system architecture along with the QoS targets for 

performance up-gradation. Although the QoS parameters considered in this approach includes 

response time, bandwidth, storage, reliability, and cost. However, the QoS delivery is restricted to 

the average values of the above mentioned performance aspects. Moreover, guarantee of the 

service delivery is not provided despite of the predetermined confidence level. The 

aforementioned approaches may cater users’ preferences, but are unable to guarantee a QoS 

satisfaction level according to the SLA requirements. The problem we deal here is different from 

the existing work since it takes into account multiple parameters to optimize the system’s 

performance, despite of the uncertainty present in the system environment. 
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We employ the dimensionality reduction technique as our solution to handle the impact 

of a parameter number as high as 𝑛, where 𝑛 ≫ 0, while meeting the QoS requirements. Relative 

to the ambient dimension 𝑛, the dimensionality reduction techniques aim to extract concise 

information about the data lying in a high-dimensional space [2.10]. The data lying in higher 

manifolds can be converged using manifold-reduction techniques. Current state- of-the-art 

techniques for dimensionality reduction can be broadly bifurcated into linear and non-linear 

dimensionality reduction. The prior includes classical methods like Principal component Analysis 

(PCA) and Multi-Dimensional Scaling (MDS). Nevertheless, the linear techniques outperformed 

the non-linear techniques due to the incapability to handle non-linear data structures [2.11]. On 

contrary non-linear manifold learning techniques, such as the Locally Linear Embedding (LLE), 

Laplacian Eigenmaps, and Isomap are efficient in handling non-linear data structures. However, 

the aforementioned methodologies are computationally expensive to handle and are not scalable 

due to their time and memory complexity [2.12]. Nevertheless, we emphasize on preserving the 

critical relationship among the data-set elements and to discover critical information about the 

data preserved, under the mapping Φ keeping the computational cost minimum. 

2.2. Pareto Front Optimization 

A large number of hardware and software techniques, for example [2.13], [2.14] and [2.15] 

have proposed by researchers to improve the energy profile of multi-core systems. The traditional 

power saving strategies focus on scaling the voltage and frequency of the core to meet the 

allowable power level. However, temperature received less attention. Consequently, reliability and 

decrease in the life-time of the chip resulted as a trade-off. Therefore, researchers over the last 

decade, emphasize the need of Dynamic Thermal Management (DTM) [2.16] and [2.17] for safe 

chip operation and to reduced cooling cost. 



12 
 

The work presented by authors in [2.13]-[2.18] perform optimization of power 

consumption while guaranteeing the required performance. Nevertheless, the aforementioned 

methodologies optimizes the power and performance, but during the optimization. Authors in 

[2.19] speculates the chip thermal management requirement and devised methodologies to attain 

the chip temperature optimization. In Ukhov et. Al [2.20] the authors propose a Steady State 

Dynamic Temperature Profile (SSTDP) to realize temperature-aware reliability model. The 

technique considers mitigating the thermal cycling failure. However, transient faults and their 

management is not catered. Moreover, power optimization is not entertained while achieving 

reliability. Significantly, different from the above listed work, this research work explore the 

scheduling decision space to optimize the performance of multi-core system. The temperature and 

power utilization is capped and dynamically adjusted while meeting the performance requirement 

of the system to generate a set of Pareto optimized solutions.  

2.3. References 
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3. ON MEASURING THE ROBUSTNESS OF CLOUD COMPUTING 

SYSTEMS1 

This paper is submitted to IEEE Transactions on Parallel and Distributed Systems . 

The authors of the paper are Saeeda Usman, Kashif Bilal, Samee U. Khan, Keqin Li, and 

Albert Y. Zomaya. 

3.1. Introduction 

 With the tremendous growth in demand of cloud deployment, the computing services 

offered by cloud providers are expected to guarantee effective performance along with 

resource provisioning. The cloud service providers, such as Google, Amazon, Yahoo, and 

Cisco aggregate the pool of computing resources to adjust the exponentially increasing 

demand of computing resources by enterprise businesses and scientific research areas [3.1]. 

To comply with the client defined Service Level Agreements (SLAs), the cloud infrastructure 

consolidates the computing and storage resources in an “on-demand” manner to preclude the 

high operational costs [3.2]. Perhaps the sharing of resources makes the cloud susceptible to 

perturbations and erroneous functionality [3.3]. Therefore, to address this impediment, the 

cloud service providers need to consider the uncertainty in the working environment and 

ascertain robustness to ensure the desired level of performance. Moreover, the cloud 

framework must orchestrate the resource consolidation such that the SLA is satisfied and the 

agreed level of Quality of service (QoS) is rendered.  

                                                 
1 The material in this chapter was co-authored by Saeeda Usman Kashif Bilal, Samee U. Khan, 

Keqin Li, and Albert Y. Zomaya. Saeeda Usman had primary responsibility for conducting 

experiments and collecting results. Saeeda Usman was the primary developer of the conclusions 

that are advanced here. Saeeda Usman also drafted and revised all versions of this chapter. 
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The Information and Communication Technology (ICT) has witnessed an exponential 

increase in the adoption of cloud services in the recent years. According to the Gartner report 

published in January 2015, the cloud market is expected to reach $143 billion in 2015 

reflecting 1.80 percent increase from 2014 [3.4]. The pervasive and convenient access to the 

cloud raises anomalies ranging from hardware bottlenecks to component failures that are 

challenging to predict and diagnose [3.1]. The aforementioned obstacles pose a serious threat 

to the performance and functionality of cloud [3.5]. Moreover, the shared pool of resources 

makes the cloud framework vulnerable to perturbations and failures [3.3]. Therefore, to 

achieve effective functionality, all of the above mentioned issues necessitates the assurance 

of robustness in the cloud framework. 

Provision of a robustness guarantee is required to ensure proper functionality of cloud 

in the presence of uncertainties [3.5]. Most of the existing approaches define robustness as a 

measure of acceptable and expected operation in the presence of perturbations and 

uncertainties [3.3], [3.6]. The IEEE standard glossary of software engineering lexicon [3.7] 

defines robustness as “The degree to which the system or component can function correctly 

or as expected in the presence of invalid inputs or stressful environmental conditions.” Various 

studies in literature recognize the adverse effect of uncertainties in the cloud’s working 

environment that degrades the performance. Bilal et al. [3.3] performed an extensive analysis 

of the robustness metrics of data center network in the cloud infrastructure to improve service 

reliability and overall performance. Zhang et al. [3.8] proposed a Vectorized Ordinal 

Optimization (VOO) approach to handle the uncertainties in the cloud resource allocation 

schemes. Nevertheless, the work presented here focuses on robustness measurement 

considering a multiparamter environment. The selection of a robust resource allocation in 
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cloud emerges as a challenging problem when the range of parameters’ evaluation increases 

to a high number [3.9]. Typically, researchers have been working on the problems considering 

a limited number of comparison parameters [3.6], [3.10]. However, when the parameter 

comparison criterion increases to a large number, say n >> 0, the selection of one unique 

solution becomes unachievable for the scheduler in cloud [3.11].  

Due to the significance of robustness in a cloud framework, the presented research 

work hinges on prescribing a mechanism to measure robustness. The resource allocation 

schemes in the cloud are evaluated for the magnitude of robustness exhibited to procure 

metrics that render a promising performance. The evaluation is performed based on numerous 

parameters. The solution is approached by first reducing the problem complexity. The goal is 

to first efficiently employ the dimension reduction procedure to transform the data belonging 

to higher dimensions into a lower dimensional space. The dimension reduction process is to 

be performed such that the information pertaining to data properties is preserved. Intactness 

of data properties appear as a significant obstacle when the data lying in higher dimensions is 

reduced to its lower counterpart [3.12]. The data set after convergence is analyzed for the 

robustness measure. 

In this paper, we explore the procedure of dimension reduction using a geometrical 

approach. Data lying in a higher or n-dimensional (dim) hyperspace is projected on to a low-

dimensional linear or non-linear space. The projection unveils low-dimensional structures that 

can be used for the data analysis as well as for data visualization [3.13]. Therefore, a feasible 

solution to the above stated problem is to reduce the data at first place and then perform the 

comparison of the robustness. The key to convergence is a dimension reduction procedure 

[3.14]. The data is mapped onto a lower dimension space as a result of employing the 
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reduction process. The dimension reduction approach employed in this work is a 

geometrically flavored procedure. A step wise dimension reduction is performed by taking 

projection and retaining the impact of the reduced coordinate. The geometrical reduced 

surface (distribution of data) attained as a result, retains a non-linear relation to the 

hypersurface it represents [3.12]. The reduced dimension version is subsequently evaluated 

for the robustness measure and the allocation schemes are then categorized on the basis of the 

robustness quantified. 

The salient contributions of the paper are:  

 We provide the mathematical formulation for the robustness analysis of allocation 

schemes in a scheduling system. Based on the robustness measure a comparison among 

the allocation schemes is performed to find the most effective and suitable scheduling 

scheme. The most compelling attribute of the comparison is the multi-dimensional 

nature of the resource allocation schemes (the detail can be found in Section 3.4). To 

reduce the complexity of the comparison, we employ a projectivity based dimension 

reduction process. 

 Using the dimension reduction procedure, particularly, the geometrical reduction 

methodology, we transform the multi-parameter high dimensional data into a low-

dimension workspace. The advantage of the geometric reduction process besides the 

low complexity is that the decision of the most appropriate and robust allocation 

schemes for a scheduler becomes fault resilient in a multi-dimensional environment. 

We will provide the details of above stated contribution in Section 3.5. 

 Because of the uncertainties in the cloud working environment, we expect that the 

estimated parameter values may deviate from the actual. Therefore, the formulation 
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takes into consideration the perturbations that might exist in the systems’ operational 

environment. A variation in the expected feature value is introduced to make the 

scheduler aware of imprecision. Moreover, besides merely reducing the 

dimensionality, we ensure that the mapping process should include the effect of 

uncertainty in the input parameters (see Theorem 1). Furthermore, the recovery of 

original data is also guaranteed by the use of tranversality property of projective maps.  

 We employ rigorous mathematical machinery to devise a robustness boundary (see 

Theorem 2 and Section 3.3). We show that the reduced parameter affects the 

orientation of the data (hypersphere) undergoing the reduction process thereby 

affecting the robustness measure (see Section 3.4). Followed by the dimension 

reduction procedure, a robustness measurement methodology is employed that narrows 

down the choice of the best allocation scheme. The immense advantage of the 

reduction incorporated robustness analysis besides low complexity is that we can 

guarantee robustness despite of the high number of performance features considered 

for the comparison. 

 We elaborate the dimension reduction based robustness measurement methodology 

with the help of an example scenario to demonstrate the system functionality. The 

details of the methodology are provided in Section 3.5. 

 To benchmark the performance of robustness based cloud scheduling system, both 

synthetic and real-world workloads are used. The details are presented in Section 3.7. 

A comprehensive experimental evaluation is performed to observe the impact of 

reduction order selection. The results depict that the selection of reduction order holds 

a pivotal role in the choice of most robust allocation scheme. Based on the reduction 
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order, the choice of suitable scheduling scheme is preferentiated. The aforementioned 

findings can be used to gear the user specified SLA in a cloud based resource scheduler.  

The remainder of the paper is organized as follows. Section 3.2 presents preliminary, 

mathematical concepts, and terminologies employed in the paper. The problem formulation 

and proposed methodology is provided in Section 3.3. Section 3.4 provides details of the 

dimension reduction procedure along with the verification of the proposed model, followed 

by an example in Section 3.5. Section 3.6 presents discussion on the customized version of 

dimension reduction procedure to fulfill the SLA. Performance evaluation and simulation 

results are presented in Section 3.7. Section 3.8 discusses the related work, and Section 3.9 

concludes the paper. 

3.2. Preliminaries 

Before a detailed discussion of the dimension reduction employed analysis of resource 

allocation robustness, we present a brief description of certain preliminary concepts. The 

significant steps of the methodology presented in this study are depicted in Fig. 3.1. Moreover, the 

mathematical model and prototypes used in our work are discussed below to help the readers get 

a better understanding of the paper. 

 

 

Fig. 3.1.  Flow of procedural steps for robustness analysis 
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3.2.1. n-Dimensional Sphere 

    The purpose of this sub-section is to provide an overview of the amount of information 

exhibited by elements belonging to higher dimension space. To quantize the multivariate dataset 

a dimension reduction procedure is employed for convergence purpose. Data in the hyper sphere 

is collapsed down to low-dimensional manifolds using projective mapping and transformations. 

Consider Fig. 3.2 representing a 5-dimensional sphere in R6. The variables α, β, γ, Φ, η 

corresponds to the coordinates of the sphere in which the sphere is lying. Each co-ordinate 

signifies information regarding the data points of the sphere. 

 

 

Fig. 3.2.  A 5-Dimensional sphere with coordinates labeled 

 

Definition 1 [3.7]. The n-dimensional sphere of radius r with center at the point (a1, a2,…., an) 

is a collection of all points and, the co-ordinates x = (x1, x2,…., xn), such that: 

 (𝑥1 + 𝑎1)2 +  (𝑥2 + 𝑎2)2 + ⋯ + (𝑥𝑛 + 𝑎𝑛)2 = 𝑟2, (3.1) 

or 

 ∑(𝑥1 + 𝑎1)2 = 𝑟2

𝑛

𝑖=1

                      ∀𝑖= 1, 2, … . , 𝑛. (3.2) 
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A projective transformation of the hypersphere is an immersion of RN into RM, such that 𝑀 < 𝑁. 

Each projection is a reduced map of the original sphere and is called a submanifold. The values M 

and N correspond to the dimensions of the sphere in the higher dimensional space. The projection 

in M is a submanifold of N. 

3.2.2. N-Dimensional Reduction 

Dimension reduction is a popular and efficient information transformation (convergence) 

technique used for the mapping of data to a lower dimensional space [3.15]. Moreover, besides 

providing a method for data visualization, the dimension reduction mechanism is also used for 

extracting key low dimensional features and attain better models for inference [3.14]. Based on 

reduction in data, a projective approach of dimension reduction is employed to reduce complexity 

of high dimensional data set. Numerous projections (linear and non-linear) of data points are 

mapped from a higher-dimensional space to a lower counterpart to analyze and process the data. 

Consider the following set of equations that represents mapping of n-dimensional surface y to a 

three-dimensional projection, such that: 

 𝑦 = (𝑥1, 𝑥2, … . , 𝑥𝑛), (3.3) 

 𝜋𝑖𝑗𝑘, (3.4) 

 𝛷 = (𝑥𝑖, 𝑥𝑗 , … . , 𝑥𝑘), (3.5) 

where Φ is the projection of y in (i, j, k) coordinates and 𝜋𝑖𝑗𝑘  is the projection plane. Figure 3.3 

represents a mapping of a sphere in R4 to a sphere in R3. In reduction process the projections are 

taken across various planes, removing one co-ordinate axis in each of the projections. For 

example, in Fig. 3.3 three projections are taken for mapping a sphere from R4 to R3. In each 

of the projections one axis is set to zero. We take one projection across the xyz-plane setting 

w=0, the second one across wyz-plane, setting x=0, and the last one across the wxy-plane, 
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setting z=0. Each projection contains the information about the co-ordinates retained. 

Distribution of data points across the projected planes reveals information about the properties 

of the hyper sphere. Each submanifold retains information of three planes and removes 

information about one of the planes. The dimension information loss can be retrieved by taking 

a combination (possible non-unique) of two planes. That is, using the following; 

 𝑑𝑖𝑚(𝐷1 + 𝐷2) = 𝑑𝑖𝑚 𝐷1 + 𝑑𝑖𝑚 𝐷2 − (𝐷1 ∩ 𝐷2) (3.6) 

 

 

Fig. 3.3.  A 4-D sphere projected on R3 planes 

 

Definition 2 (Transversality Property). Suppose C, D are regular submanifolds of B, such 

that 𝐶, 𝐷, ⊂ 𝐵 and satisfies the property: 

 𝑇𝑆𝑃𝐶 + 𝑇𝑆𝑃𝐷 = 𝑇𝑆𝑃𝐵, (3.7) 
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where T S represents the transversality parameter and P represents all of the points that belong to 

𝐶 ∩ 𝐷, normally, a linear combination of C and D. Transversality property is use to relate sub-

spaces of the same vector space. The submanifolds C and D are then called as transverse 

submanifold and we denote the relationship as 𝐶 ⫛ 𝐷. The glossary of notations used in the 

paper are listed in Table 3.1. 

Table 3.1. Glossary of notations 

Variable Meaning Variable Meaning 

ℓ Set of co-ordinates 𝜏𝑖 𝑖-th resource allocation scheme 

𝜋 Projection mapping 

parameter 
𝜑 Set of perturbations 

𝛷 Projection 𝜖𝑖 Allowable variation in 𝛺𝑖 

𝑎 Center point of co-ordinates 𝜖𝑖
𝑚𝑖𝑛 Minimum variation allowed in 

𝛺𝑖 

𝑟 Radius of 𝑛-

sphere 
𝜖𝑖

𝑚𝑎𝑥 Maximum variation allowed in 

𝛺𝑖 

𝑇𝑝 Transversality 

Parameter 
𝑚𝑖𝑗 Mapping function for 𝛺𝑖 to 𝜑𝑗 

⫛ Transversality Relationship 𝜌𝜇 Robustness radius 

𝛺 Set of performance 

parameters 
𝐿𝑝 𝐿𝑝-norm distance function 

 

3.2.3. Transversality 

The sub-spaces 𝑃, 𝑄 ⊂ 𝑉, where V, represents a vector space, are said to be transversal, 

when there exists a vector V in which every vector can be expressed as: 

 𝑑𝑖𝑚 𝑉 = 𝑑𝑖𝑚 𝑃 + 𝑑𝑖𝑚 𝑄 − 𝑑𝑖𝑚 𝑃 ∩ 𝑄. (3.8) 

Given that a linear combination of vectors in P and Q results in vectors that belong to the vector 

space V.  
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Proposition 1 [3.16]: 

If K, L ⊂ M are transverse regular submanifolds then 𝐾 ∩ 𝐿 also a regular submanifold of 

dimension  𝑑𝑖𝑚 𝐾 + 𝑑𝑖𝑚 𝐿 − 𝑑𝑖𝑚 𝑀. 

Let X and Y be the smooth submanifolds of a finite dimensional vector space O, then 

according to the following theorem a surjective map of the two manifolds is stable. 

Theorem 1 (Stability of bounded projections). If X(n, p) is in the acceptable range and X is 

bounded, then all linear maps from X to Y are stable. 

 

 

Fig. 3.4.  A surjective map of X to Y with perturbed inputs 

 

Proof. Let n  and p  be two points in the submanifold X ⊂ O, where O is a vector space. If a 

projection, Φ, of X is taken, such that the projection is continuous. Then for a perturbation of 

amount, 𝜖 > 𝑂 selected for X there exists a slight deviation, 𝛿 > 0, in the projected value, such 

that: 

 ||(𝑛, 𝑝) − (𝑛~, 𝑝~)|| < 𝛿 ⇒ ||𝛷(𝑛, 𝑝) − 𝛷(𝑛^, 𝑝^)|| < 𝜖. (3.9) 

The variables 𝜖 and 𝛿 in Eq. 3.9 represents negligible values, slightly greater than zero. Figure 3.4 

represents a mapping of X to Y. To deal with the uncertainty in the system environment, 
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perturbation in input parameters is considered. The perturbed inputs are represented by ~ in Fig. 

3.4. Figure 3.4 depicts that the worst case scenario does not cause any trouble as far as the 

perturbation is within the acceptable range. 

Theorem 1 indicates a certain “stability” of the two projected points (specifically, 

when the preservation of ambient distances is desired) during the projectivity process. The 

stability guaranteed is useful in recovering the original sphere using the random projections. 

Moreover, a stable system ensures that a slight difference in expected conditions does not produce 

a remarkable disturbance in the system. Suppose, a and b be two data points lying in the original 

sphere ℓ, and let ℓ* be the projected lower dimension image of ℓ, 

 ℓ = 𝑎𝑟𝑔 𝑚𝑖𝑛||𝑎 − 𝑏||𝑝, (3.10) 

 𝑎, 𝑏 ∈ ℓ. (3.11) 

Supposing that a, b are uniquely defined, then the projected space, ℓ* is, 

 ℓ∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛||𝛷𝑎 − 𝛷𝑏||𝑝, (3.12) 

 𝑎, 𝑏 ∈ ℓ. (3.13) 

The distance between the data points projected as a result of the projectivity operation is 

almost similar to the corresponding difference in the original vector space. Therefore a 

satisfactory recovery of the original problem (planes/data) is assured. 

3.2.4. Robustness Metric 

Robustness can be defined as the degree to which a system can function correctly 

despite of uncertainties in the system parameters [3.17]. The salient steps for attaining the 

robustness metric includes: (a) identification of the performance attributes that need to be 

preserved, (b) perturbation variables, (c) effect of the perturbations on the system performance, 

and (d) an analysis process to ascertain the robustness. The above mentioned procedure is 
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illustrated in detail with the help of an example from the cloud paradigm in Section 3.4. The 

goal is to analyze and compare the allocation schemes and the scheme that despite changes in 

various parameters delivers reliable functionality is marked as the more robust scheme. 

3.3. Problem Formulation and Proposed Methodology 

The system model under consideration is a resource allocation computing system that 

adheres to a set of performance parameters required to make the system performance robust. 

Based on the parameters identified for efficient performance the desired level of SLA needs to be 

met by the cloud platform. The QoS performance features comprise of parameters, such as the 

energy consumed, makespan, temperature, and network delay for an allotted set of tasks. To 

ensure that the SLA is maintained, the acceptable divergence from the expected values must 

be within a tolerable range. The perturbations are caused due to various factors, such as 

estimation error, hardware failure, and network delay. Consequently, the system parameters 

encounter inaccuracies in the estimated values and the actual ones that makes the overall system 

failure prone. 

Let 𝛺 represents the set of performance parameters that the system must take into account. 

Each element of the set 𝛺(𝛺𝑖 ∈ 𝛺), must be bounded in variation to comply with the system 

requirements. We consider a resource allocation,  𝜏, that needs to be evaluated on certain 

performance parameters. For the proposed resource allocation, 𝛺 contains the following 

elements:  

𝛺 = {makespan, queue waiting time, turnaround time, response time, temperature}. 

Figure 3.5 depicts a resource allocating cloud based system architecture. Level 1 

represents the consumers utilizing the services of the cloud. The requirements and expectations 

are considered at Level 2 that is perturbation prone. The elements of set 𝛺 are depicted in the 
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Level 3 of Fig. 3.5. Performance is categorized on the basis of adherence to the elements of set 𝛺. 

The cloud at Level 4 ensures that clients are provided with high-performance functionality. Due 

to the multiple performance features, the decision of finding the most robust resource allocation 

is a complex endeavor. Consider the case when a categorization of more robust scheme is to be 

made by the scheduling system in the cloud. Figure 3.6, for instance, represents the response of 

two resource allocation schemes to each of the performance features depicted in set 𝛺. The 

resource allocation schemes are represented by the symbols ∗ and •. To find the more robust and 

suitable resource allocation scheme out of the two aforementioned allocation schemes is a 

difficult task. Therefore, to reduce the complexity of the problem in hand, we perform a 

dimension reduction procedure. The resource allocation that is more successful in preserving 

most of the performance attributes to the desired domain that promises effective functionality is 

regarded as the more robust. 

As discussed earlier in Section 3.2, that the dimension reduction mechanism will employ 

a series of projections. The reduction procedure maps a set of data points 𝑆 ⊂  𝑅𝑛 to 𝑓(𝑠), 

represents the dimensionally reduced subspace of S. The projection to a four co-ordinate plane 

is given as: Rn →R4 

 𝜋𝑖𝑗(𝑎1, 𝑎2 … . . , 𝑎𝑛 = (𝑎𝑖, 𝑎𝑗 , 𝑎𝑘, 𝑎𝑙). (3.14) 

Mathematically, a diagnostics use of projections is performed to reduce the problem 

complexity and then the robustness of each of the resource allocation scheme depicted in Fig. 

3.6. 

Theorem 2 (Robustness boundary).  Let 𝑆 ⊂  𝑅𝑛 be a set of data points and Ŝ =

𝑓(𝑠).Then 𝑥 ∈ 𝑆 is robust if and only if under some projection 𝜋𝑖𝑗 each entry satisfies |𝑎𝑖| < 1. 
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Fig. 3.5.  Robustness architecture in a cloud paradigm 

 

Proof. 𝑥 ∈ 𝑆 is not robust, if and only if there exists an entry in 𝑓(𝑥) with absolute value greater 

than 1. Such a point will lie outside of the unit cube 𝐼1
𝑛. Therefore, there must exist at least one 

projection such that the projection 𝜋𝑖𝑗(𝑎)  lies outside the cube 𝐼1
2. On the other hand, any point 

with 𝜋𝑖𝑗(𝑎) outside the cube 𝐼1
2 must stem from a data point that lies outside 𝐼1

𝑛, as some entry 

will have absolute value larger than 1. 

If for some point 𝑎 𝜖 Ŝ the projection 𝜋𝑖𝑗(𝑎)   lies outside the cube 𝐼1
2, then the point a is 

not robust. In particular, any point that has a projection outside of the robustness sphere 

boundary is said to be non-robust and vice versa. Moreover, the procedure can be reversed 
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to regain the original data set [3.16]. Furthermore, adding the labels to the data would be 

beneficial in retaining the original data by tracking the data labels throughout the procedure. 

  

 

Fig. 3.6.  Comparison of two resource allocations for five different performance features 

3.4. Perturbations and Robustness Analysis 

The environmental factors in which a cloud computing paradigm works are susceptible 

to fluctuate from its expected values [3.3]. Therefore, a change in the expected conditions is 

possible in a cloud working environment. In this study, we are considering multiple perturbations 

that affect the performance of the cloud. The perturbation when crosses a bound of the maximum 

value of the tolerable limit, the system might produce results that are undesirable. The system is 

consequently assumed to be operating in a non-robust infrastructure. 

The robustness analysis is performed by identifying all of the system parameters that 

affect the desired QoS. These parameters are called as the uncertainty parameters and are 

represented by the vector set phi 𝛷 in the paper. The set of uncertainties is represented by vector 
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phi, 𝜑. The elements of 𝜑 may be heterogeneous (that is, 𝜑1 is energy value and 𝜑2 is the value 

of temperature). The variation in the system performance features 𝛺𝑖 is bounded by < 𝜖𝑖
𝑚𝑖𝑛,

𝜖𝑖
𝑚𝑎𝑥 >. The boundary of the set 𝛺𝑖 is considered as < 0, 1.3 × (estimated feature s value) >. For 

simplification purpose, we consider the perturbations to be independent of each other. In a cloud 

computing paradigm perturbation vector, 𝜑 can assume the following expected attributes: 

𝜑 = {Machine f a i l u r e , VM failure, estimation error (expected deviation from original 

values of parameters)}. 

Different perturbation parameters make different impact on the efficient working of the 

system. For illustration purpose, the system behavior in response to a single perturbation parameter 

is observed at a time. Each individual perturbation causes the system performance to violate from 

normal operation. The combined effect of all of the perturbations (such that 𝜑𝑖 𝜖 𝜑, ∀𝑖) affecting a 

performance parameter is shown in Fig. 3.7. The dotted lines illustrate the outlier uncertainty 

expected across each individual parameter. The outer n-sphere depicts a net effect of three parameter 

perturbations across the system. The n-sphere is bounded by a n-Dim convex surface such that the 

surface bounds the variation of the n-sphere. Every point on the n-sphere has a minimum distance 

from the n-Dim surface. The acceptable values of parameters are identified by adherence to the 

bounds of variations. 

The perturbations are mapped onto the co-ordinate axis. Each of the perturbation is 

allowed to vary in a limited range such that the performance remains in tolerable range. As 

discussed earlier, a n-Dim surface will take the form of an n-sphere that will bound the maximum 

value of the underlying spheres to an acceptable or desired range. 
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Fig. 3.7.  Effect of all of the perturbations on the performance features 

3.4.1. Robustness Objectives 

In the presented work, robustness is a reflection and quantification of the allowable 

inaccuracies before the system exceeds the bounds of expected value of operation. 

Mathematically, for every performance feature 𝛺𝑖  𝜖 𝛺, the boundary values of perturbation must 

lie within the bounds of 𝜖𝑖
𝑚𝑖𝑛 and 𝜖𝑖

𝑚𝑎𝑥. 

To investigate a relationship between the performance features 𝛺 and perturbation 

parameters 𝜑, a mapping function 𝑚𝑖𝑗 is introduced. The 𝑚𝑖𝑗 maps  𝛺𝑖 𝜖 𝛺 to 𝜑𝑗  𝜖 𝜑, such that 

𝛺𝑖 = 𝑚𝑖𝑗(𝜑𝑗).Thereafter, we observe the uncertainty parameters in such a way that if the system 

performance violates the desired range of operation, then the variation in values of the 𝜑𝑖 is 

recorded. If 𝜑𝑗 is assumed to be a discrete variable, then the boundary values, 𝑚𝑖𝑗(𝜑𝑗) = 𝜖𝑖
𝑚𝑖𝑛 

and𝑚𝑖𝑗(𝜑𝑗) = 𝜖𝑖
𝑚𝑎𝑥, correspondence to the nearest values that is enclosed by the boundary limits. 

The aforementioned relationships bifurcates the region of robust operation from the non-robust 

one. The goal is to find the slight uncertainty in 𝜑𝑗 that causes any of the performance feature 

 𝛺𝑖  𝜖 𝛺 to surpass the limits< 𝜖𝑖
𝑚𝑖𝑛, 𝜖𝑚𝑎𝑥 >, desired for a robust functionality of the system. 
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More specifically, let 𝜑𝑗
𝑜𝑟𝑖𝑔

of 𝜑𝑗is assumed as the estimated value of orientation. Because 

of some inaccuracies in the predicted environmental changes, the resultant value of 𝜑𝑗 may vary 

from the anticipated value. Due to the fact that we are dealing with multiple parameters, the trade 

off in 𝜑𝑗 can be “multi-dimensional” and thus the resulting shift from assumed values can occur 

in different directions. Assuming a system where no prior information about distribution layout, 

the variable 𝜑𝑗 can demonstrate any value. Figure 3.8 depicts a simplified version of the problem 

under discussion. The robustness concept is illustrated for a single feature 𝛺𝑖, and a three element 

uncertainty vector 𝜑𝑗 𝜖 𝑅3. The sphere presented in Fig. 3.8 plots the boundary points for the given 

application, such that: 

 
𝜑𝑗

𝑚𝑖𝑗(𝜑𝑗)
= 𝜖𝑖

𝑚𝑎𝑥 𝑎𝑛𝑑
𝜑𝑗

𝑚𝑖𝑗(𝜑𝑗)
= 𝜖𝑖

𝑚𝑖𝑛. (3.15) 

 

 

Fig. 3.8.  Possible directions of variation in uncertainty parameter φj for performance feature 

 

The region inside the sphere is characterized as robust region. All of the values of 𝜑𝑖 lying 

inside the sphere yield the system in acceptable mode of operation for a particular 𝛺𝑖 and vice 

versa. The point on the boundary of the sphere marked as 𝜑𝑗
∗(𝛺𝑖) is uniquely defined as the 
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smallest distance from 𝜑𝑗
𝑜𝑟𝑖𝑔

 to any boundary point. A significant information is revealed by the 

Lp-norm value of the two variables ||𝜑𝑗
∗(𝛺𝑖) − 𝜑𝑗

𝑜𝑟𝑖𝑔
||𝑝, that is the maximum allowable variation 

in the space around 𝜑𝑗
𝑜𝑟𝑖𝑔

 [3.18]. The Lp-norm keeps the 𝜑𝑗 in the acceptable performance range 

for 𝛺𝑖. 

The above mentioned value also depicts the tolerable variation in 𝜑𝑗. Let the distance 

function ||𝜑𝑗
∗(𝛺𝑖) − 𝜑𝑗

𝑜𝑟𝑖𝑔
||𝑝 be called as robustness radius, 𝑝𝑢(𝛺𝑖, 𝜑𝑗) of 𝛺𝑖 in the presence of 

𝜑𝑗 , given as: 

 𝜌𝜇(𝛺𝑖 , 𝜑𝑗) =  𝐿𝜌(𝜑𝑗 , 𝜑𝑗
𝑜𝑟𝑖𝑔

) =𝑚𝑖𝑛
𝜌 √∑ |𝜑𝑗[𝑖]

𝑛

𝑖=1

− 𝜑𝑗
𝑜𝑟𝑖𝑔

[𝑖]|𝑃 , (3.16) 

where 𝜌𝜇 is the robustness of the application under process and 1 ≤ 𝜌 ≤ ∞. Moreover when 𝜌 =

∞, the 𝐿∞-norm distance function  𝐿∞(𝜑𝑗, 𝜑𝑗
𝑜𝑟𝑖𝑔

) is given as:  

 𝐿∞(𝜑𝑗 , 𝜑𝑗
𝑜𝑟𝑖𝑔

) = 𝑚𝑎𝑥𝑖=1
𝑛 |𝜑𝑗[𝑖] − 𝜑𝑗

𝑜𝑟𝑖𝑔
[𝑖]|, (3.17) 

where 𝜑𝑗 and 𝜑𝑗
𝑜𝑟𝑖𝑔

 are two n-dimensional data objects. The robustness of the system against 

uncertainties can be extended and generalized for all 𝛺𝑖 𝜖 𝛺. Without loss of generality, the 

robustness metric is defined as: 

 𝛼𝜇(𝛺, 𝜑𝑗) =(𝛺𝑖𝜖𝛺)
𝑚𝑖𝑛 (𝜌𝜇(𝛺𝑖 , 𝜑𝑗)), (3.18) 

where the 𝛼𝜇(𝛺, 𝜑𝑗) is the robustness measure for the evaluation of a cloud in accordance with the 

performance feature set 𝛺 against the uncertainty parameter 𝜑𝑗. The choice of Norm can be altered 

depending upon the particular scenario of operation. The distance calculation can be modified so 

that the significance of an element can be varied. Thereby, by varying the probability of the weight 

of an element, the distance calculation changes indirectly. 
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3.5. Evaluation of Robustness with an Example 

We consider a resource scheduling system for the derivation of a robustness measure using 

the dimension reduction methodology. The resource scheduling system allocates a set of 

independent applications A to set of machines, M. The mapping of applications to machines is 

characterized by the perseverance of the identified performance parameters impact. The 

perturbation parameters in the system may cause a variation in the expected values resulting in 

system operation beyond the estimated range. As discussed earlier, the resource allocation 

considers multiple parameters as performance attributes to evaluate the system’s functionality. 

The vector 𝛺, consider the same set of parameters as considered in Section 3.4, that is, 

𝛺 = {makespan, queue waiting time, turnaround time, response time, temperature}. 

A useful representation of the Multi-dimensional Scaling (MDS) methodology can be 

realized with the help of resource scheduling example. The n performance features considered 

are dependent on k perturbations. The predominant perturbation parameters can be written in the 

form of a vector Φ, 

𝜑 = {VM failure, estimation error, network congestion}. 

Figure 3.9 depicts the impact of the dimension reduction procedure on the layout of the 

allocation schemes. The elements of set 𝛺 are represented as co-ordinate axis in Fig. 3.9(a). Each 

co-ordinate in-turn represents a dimension of the scheduling system. To explore the effect of the 

dimension reduction procedure four resource allocation schemes are considered for comparison 

purpose. The resource allocations labeled as 𝜏1, 𝜏2, 𝜏3 and 𝜏4 are represented by the symbols ⊚, 

□, ▲, and ∇, respectively. The convergence process employs the reduction of one dimension 

(performance feature) at a time. 
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Fig. 3.9.  Impact of dimension reduction on the orientation of allocation schemes in scheduling 

system of cloud 
 

Each time when a parameter is reduced, the orientation of the allocation schemes is 

affected, accordingly. Intuitively, the reduced dimension co-ordinates have an impact on the 

distribution behavior in terms of robustness on the allocation schemes. The system layout after 

the reduction of the performance feature “queue waiting time” is shown in Fig. 3.9(b). Similarly, 

a further reduction of one more parameter, that is “turnaround time” further reduces the 

complexity. Figure 3.9(c) depicts the layout of response of the allocation schemes to the reduction 

of the turnaround time parameter. 
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A distinction (robustness based) among the allocation techniques can be made by 

calculating distance of the points from origin. The robustness estimate in this case prefers a wider 

radii for efficient performance. The resource allocation scheme that still lies inside the vicinity of 

the robustness sphere is regarded as robust and vice versa. The robustness boundary is represented 

by a dotted sphere in Fig. 3.10. Note that the behavior of a resource scheduling technique to 

reduction procedure is independent of the behavior of any other scheduling techniques evaluated 

by the scheduler for robustness. 

The cloud paradigm may possibly work in uncertain environmental conditions, that may 

cause the system to violate the robustness boundary. If the scheduler performance lies within the 

bounds of the robustness sphere, the resource allocation response is in the acceptable region of 

operation, otherwise not. For distance calculation of the data point from the robustness boundary, 

𝑙2 − 𝑛𝑜𝑟𝑚(Euclidean norm) can be used in the above discussed example, such that: 

 |𝑟| = √∑|𝑟𝑘|2

𝑛

𝑘=1

, (3.19) 

where 

 𝑟 = [𝑟1, 𝑟2, 𝑟3 … … . 𝑟𝑛]𝑡. (3.20) 

Note that the Euclidean distance obtained is a measure of difference between the estimated 

value of operation and the actual value of operation. The 𝑙2 − 𝑛𝑜𝑟𝑚 gives the better approximation 

by rendering a unique and smooth representation of the approximated data. Moreover, influence 

of error is minimized using 𝑙2 − 𝑛𝑜𝑟𝑚 [3.18]. To ascertain robustness, the robustness radius must 

adhere to |𝑟| ≤ 𝜌𝜇(𝛺𝑖𝜑𝑗) for the resource allocation schemes. 
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Fig. 3.10.  Robustness boundary in the presence of perturbations 

3.6. Honoring the SLA using User-Defined Priority Measures 

Due to the promising performance that the cloud rendered over the last decade, vendors 

are facing urgent need to provide customized, reliable, and QoS rendering computing services 

[3.11]. A problem of substantial recent interest faced by the cloud service providers is the 

achievement of customers’ satisfaction according to the specified SLA. The customers 

satisfaction is assured by the delivery of the required QoS as specified in the SLA. To meet the 

user defined level of performance the cloud service providers must deliver the agreed level of 

SLA. 

The customer specifies the required features (benchmarks, targets, and metrics) along with 

the significance level of each of the aforementioned features. To implement a client specified QoS 

based cloud architecture and avoid the SLA breaches the service provider should consider 

following the five step procedure, given in Fig. 3.11. The features that are required should be 

identified along with the uncertainty parameters that can cause a negative effect on the system 

performance. Priority of the performance feature is defined by the user and the reduction procedure 
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takes into account user’s performance. The problem complexity is reduced by employing 

dimension reduction methodology to attain the desired SLA level. 

The SLA based dimension reduction follows the same pattern of reduction (geometric) as 

detailed earlier in the paper, except for the parameters priorities defined aswell. The client’s desired 

set of performance aspects are recorded in the set 𝛺, similar to the one is given in Section 3.5. Let 

𝛾 represents the set of values signifying the importance of each of the parameter enlisted in 𝛺. To 

illustrate the idea, consider that the most significant parameter takes the highest numeric value in 

ranking out of ten, such that: 

 𝛾 = {7, 4, 8, 6, 9} (3.21) 

mapped to, 𝛺 such that: 𝛺 = {makespan, queue waiting time, turnaround time, response time, 

temperature}, in the following manner: 

Makespan= 7, Queue Waiting Time= 4, Turnaround Time= 8, Response Time= 6 and 

Temperature=9. 

 

 

Fig. 3.11.  SLA procedure 
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Let us consider two resource allocations, 𝜏1and 𝜏2. For the purpose of demarcation between 

the more robust and less robust allocation schemes we employ the dimension reduction procedure. 

The reduction decision is made, based on the priorities defined by the client. In the quest to achieve 

the clients desired SLA the order of dimension reduction is carried in a manner that the most 

significant parameter is reduced first. For example, we reduce the energy parameter first as it 

attains the highest priority according to the client’s requirements. Likewise, the next parameter to 

be reduced is the throughput. Figure 3.12 depicts the behavior of two scheduling schemes after the 

dimension reduction of the three most important performance features. The resource scheduling 

schemes, 𝜏1and 𝜏2 are represented by • and ⋆ respectively in the Fig. 3.12. 

 

 

Fig. 3.12.  Response of two scheduling schemes after SLA dependent dimension reduction 

 

The robustness ranking quantification favors the allocation scheme that is farthest from 

the origin. Therefore, the resource scheduling scheme represented by an asterisk (⋆) has a clear 

distinction of providing a better SLA level than the one represented by a dot (•) in Fig. 3.12. 
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This follows that the resource allocation 𝜏2 is more promising and better than the resource 

allocation 𝜏2 according to the client defined requirement of QoS to ensure the SLA.  

3.7. Performance Evaluation 

In this section, we perform a simulation study of the dimension reduction procedure 

defined in Section 3.5. Using the dimension reduction procedure, we will evaluate the 

performance of a collection of resource allocation schemes. Each of the resource allocation 

methodologies is evaluated based on various performance parameters. The set of performance 

parameters take into account the real-world performance evaluation features, such as the 

makespan, throughput, turnaround time, and response time. The reduction procedure is verified 

for the effect of sequence of the parameters selected for reduction in the decision of most robust 

allocation scheme. The order of selection of parameters in the dimension reduction process has 

an impact on the robustness measure that each of the allocation scheme exhibits. The robustness 

measure is subsequently used to determine the most appropriate resource allocation scheme 

depending on the order of the parameters chosen in the reduction procedure. Therefore, the most 

suitable resource allocation scheme, in response to one particular performance parameter may be 

altogether different when another performance parameter is selected for reduction. 

As explained earlier in the paper, the dimension reduction procedure reduces the 

dimension by one level, each time the procedure is applied. The impact on the allocation 

schemes due to the dimension chosen for reduction is recorded and the dimension selected is 

then removed from the set of parameters/dimensions to be reduced for convergence purpose. 

In this manner, the dimension reduction process is carried until the required level of dimensions 

(coordinates) is achieved. Once the reduction process is complete, the robustness radius is 

calculated. A comparison of the robustness radii is performed among the allocation schemes in 
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the evaluation process to find out the most suitable scheme. The order of the performance 

parameters selected for reduction in the reduction procedure is customized when a certain level of 

SLA is to be fulfilled. The purpose of using a customized parameter reduction is to achieve the 

user specified QoS level to guarantee the SLA and procure users’ satisfaction. 

To perform the evaluation of dimension reduction method on a diverse environment, the 

procedure is evaluated on three different sets of workload: (a) randomly generated workload, (b) 

real-time workload, and (c) the SLA based reduction. Each of the plots depicts the results of an 

average of 1000 iterations per simulation. In the following subsections, we discuss the evaluation 

results for the above mentioned scenarios. 

3.7.1. Random Workload Response to Dimension Reduction 

This subsection presents a detailed analysis and experimental evaluation of the dimension 

reduction procedure for the randomly generated dataset. Initially, a set of six resource allocations 

along with a data set of performance parameters are generated randomly. The resource allocations 

are then compared and evaluated on the basis of response to nine performance parameters selected 

for the reduction process. The analysis of dimension reduction procedure based on the random 

data starts with the random generation of the performance parameters taken in consideration. 

Each time the dimension reduction procedure is simulated, a parameter is chosen for reduction 

and is removed after recording its impact on the allocation schemes. This recorded response is 

then used to segregate the results into most appropriate allocations depending on the robustness 

radius provided by each allocation scheme. 

Once the anticipated level of dimensionality is attained, a mathematical comparison of the 

robustness radius that each of the allocation schemes depicts is performed, as presented in Section 

3.4 of the paper. Figure 3.13 presents the distribution pattern of the number of times a resource 
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allocation is selected as the best, based on the robustness radius exhibited. It can be seen in 

Fig. 3.13 that Alloc. 3 outperformed all other allocation schemes in producing better results in 

adherence to robustness. 

 

 

Fig. 3.13.  Best allocation scheme distribution pattern for a randomly generated workload 

 

Table 3.2 illustrates a comparison of the selection of the most suitable allocation scheme 

based on the variation in the reduction order of performance parameters. In Table 3.2, P represents 

the performance parameter and RA depicts the resource allocation scheme. The 1st, 2nd, and 3rd 

columns of the table present the performance parameters that are kept invariant in successive 

rows. However, the right part of the Table 3.2 describes the performance parameters that are 

varied during the reduction process. The results illustrate that the order in which a parameter is 

chosen in the reduction process has a significant impact on the robustness measure of resource 

allocation schemes. Subsection (A) of the Table 3.2, depicts the results for the case when the 

first three performance parameters are kept identical and variation is incorporated in the last 
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three parameters only. At each level, a different sequence of the order of performance features 

results in a different best allocation strategy. Whereas, the subsection (B) of the Table 3.2 depicts 

results for the case when the similarity extent is increased to a level four. Despite, an increase in 

the extent of the level of similarity, for every new combination of the last two parameters in the 

reduction order, a different allocation scheme is selected as most promising. Therefore, from the 

above discussion we deduce that the reduction order has an impact on the results in terms of 

selection of the best allocation scheme. 

Table 3.2. Response of performance parameters to variation in last two levels in the reduction 

Order of Reduction Comparison in Random Data Distribution 

(A) 

Parameter Selection Order 
Best Allocation Scheme 

1st 2nd 3rd 4th 5th 6th 

P2 P7 P4 P5 P3 P1 RA5 

P2 P7 P4 P1 P6 P9 RA3 

P2 P7 P4 P8 P5 P3 RA4 

P2 P7 P4 P5 P1 P6 RA6 

(B) 

Parameter Selection Order 
Best Allocation Scheme 

1st 2nd 3rd 4th 5th 6th 

P5 P8 P1 P6 P3 P4 RA6 

P5 P8 P1 P6 P9 P2 RA1 

P5 P8 P1 P6 P4 P3 RA5 

P5 P8 P1 P6 P7 P9 RA2 
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To explore the impact of a parameter’s order placement in the dimension reduction 

process, consider Fig. 3.14. In Fig. 3.14 RA depicts the resource allocation scheme and P 

represents the performance parameter. It can be observed that the RA1 exhibits highest frequency 

of yielding best results when P1 is selected in the reduction process. Likewise, when P9 is chosen 

first in the reduction process, the RA3 outperforms rest in compliance to best results. Similarly, 

RA6 depicts the highest robustness when the P7 is selected in dimension reduction procedure. 

Nonetheless, the same allocation scheme produces a nominal ratio of best results when any other 

performance parameter is chosen at the first place in the dimension reduction process. Therefore, 

from the above observations, we conclude that the frequency of times a resource allocation is 

selected as the most appropriate varies with a change in the parameter reduction order. The above 

attained outcomes can help the cloud in finding the most appropriate allocation scheme based on 

the most prioritized performance parameters. 

 

 

Fig. 3.14.  Comparison of best allocation scheme under various performance parameters for 

random workload 
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3.7.2. Results and Discussion based on Real-time Workload 

In this section, we evaluate the dimension reduction procedure on a real-time workload. 

To test the impact of the variation in reduction order of parameters, we employed five resource 

allocation schemes that are evaluated on the basis of nine performance parameters. The 

simulations devised for the reduction methodology are iterated on the real-time data-set to 

evaluate the scheduling schemes for robustness observance. The resource allocations considered 

for the robustness adherence comparison are: (a) Longest Job First (LJF), (b) Shortest Job First 

(SJF), (c) Shortest Remaining Time First (SRTF), (d) First Come First Serve (FCFS), and (e) 

Greedy Thermal Aware (GTA) [3.19]. The performance parameters considered for the evaluation 

and comparison are: (a) makespan, (b) average queue waiting, (c) total queue wait, (d) average 

turnaround, (e) total turnaround, (f) average response time, (g) total response time, (h) average 

temperature, and (i) average temperature difference among pods. 

 

 

Fig. 3.15.  Most robust allocation selection based on ten iterations 

 

To study the selection behavior of best allocation scheme under the dimension reduction 

methodology, we simulate the procedure one thousand times. The procedure is run on the above 
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mentioned five scheduling techniques under the same configuration of parameters. To grasp the 

impact of the dimension reduction methodology the simulations are performed for a total of one 

thousand times during each run. Figure 3.15 presents the results in terms of most robust 

allocation strategy achieved in each run for all of the nine performance parameters. It can be 

observed that in almost all of the iterations, LJF and SRTF outperform the other scheduling 

approaches considered for the evaluation. 

 

 

Fig. 3.16.  Comparison of allocation scheme response to the performance parameters for real-

time workload 

 

The impact of a parameter’s selection order in the dimension reduction process on the five 

scheduling techniques enlisted above is presented in Fig. 3.16. The graph signifies a 3-dimensional 

behavior of the response of the allocation techniques to the performance feature selected at the 

first place in the dimension reduction procedure. For each iteration, a performance feature is 

randomly chosen to begin the reduction process and the response of the allocation schemes is 

recorded. The frequency of a particular resource allocation scheme selected as the most suitable 

and robust scheme with the reduction of certain performance feature is depicted in Fig. 3.16. 
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Although among the available resource scheduling strategies, the LJF and SRTF are the two most 

frequently selected best resource scheduling schemes. Moreover, Fig. 3.16 reflects a picture of 

the overall selection criteria based on the individual performance feature. As the parameter 

reduction order is changed, the resulting best resource allocation distribution changes accordingly. 

Therefore, we conclude that the order of reduction gears the selection of the most promising 

allocation schemes. 

For a clearer understanding of the effect of order in the dimension reduction technique 

consider Table 3.3. The table clearly indicates that as a particular feature is altered in the 

reduction process, the resulting best scheduling changes accordingly. In upper half of Table 3.3, 

first four performance features in the reduction order are identical in all of the three successive 

rows; the average turnaround is followed by average temperature parameter, then total turnaround, 

and finally average response time in Table 3.3. However, a change in the selection of last two 

parameters alters the decision of the scheduler. At each level, a different sequence of the order 

of performance feature results in a different best scheduling strategy. Similarly, the second part 

of Table 3.3 portrays an identical behavior of the response of the system to a variation in the 

order of reduction. Therefore, the overall distribution of the results is dependent on the order 

in which a performance feature is selected and has a significant influence on the final results 

attained. 

3.7.3. SLA based Dimension Reduction 

To deliver the desired level of QoS, the cloud service providers must satisfy the required 

SLA level. Moreover, to avoid uncertainties that may cause an abnormal system response, the 

QoS needs to be observed to guarantee the SLA under all circumstances. For the system model 

given in Section 3.5, the experiments were performed with the same parameters as for Section 
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7.2 simulation scenario (real-time workload). To ensure that the SLA is met, we customized the 

scheduler performance in the cloud by altering the priorities of the performance parameters. 

Therefore, weights based on precedence of the performance metrics have been assigned. The 

performance parameter with the highest priority is reduced first, so as to put a significant impact 

on the values of the remaining dimensions reduced. Consider the case when the reduction order 

is predefined by the client to steer the reduction procedure according to the priorities. For the 

set of performance parameters presented in sub-section 3.7.2, we consider the ranking order, 𝛾1, 

such that: 

 𝛾1 = {9, 1, 4, 8, 5, 7, 2, 6, 3} (3.22) 

Table 3.3. Response of performance parameters to variation in last two levels 

Order of Reduction Comparison 

(A) 

 First 

parameter 

Second 

parameter 

Third 

parameter 

Fourth 

parameter 

Fifth 

parameter 

Sixth 

parameter 

Best 

Allocation 

Scheme 

(i) Average 

Turnaround 

Average 

Temperature 

Total 

Turnaround 

Average 

Response 

Time 

Total Queue 

Waiting 

Makespan LJF 

(ii) Average 

Turnaround 

Average 

Temperature 

Total 

Turnaround 

Average 

Response 

Time 

Makespan Average 

Queue 

Waiting 

FCFS 

(iii) Average 

Turnaround 

Average 

Temperature 

Total 

Turnaround 

Average 

Response 

Time 

Average 

Queue 

Waiting 

Total 

Response 

Time 

SRTF 

(B) 

 First 

parameter 

Second 

parameter 

Third 

parameter 

Fourth 

parameter 

Fifth 

parameter 

Sixth 
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Best 

Allocation 

Scheme 

(i) Average 

Temperature 

Total 

Response 

Time 

Average 

Response 

Time 

Total 

Queue 

Waiting 

Average 

Turnaround 

Average 

Temperature 

Difference 

among pods 

GTA 

(ii) Average 

Temperature 

Total 

Response 

Time 

Average 

Response 

Time 

Total 

Queue 

Waiting 

Average 

Temperature 

Difference 

among pods 

Average 

Turnaround 

SRTF 
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The value of 𝛾1 depicts that the performance parameter makespan is given the highest 

priority, followed by the average turnaround, average response time, average temperature, total 

turnaround, and total queue waiting. The above defined precedence orders marks LJF as the 

best allocation scheme as shown in Table 3.4. On the contrary, when the user specification 

changes the precedence order to, 𝛾2, such that: 

 𝛾2 = {7, 2, 3, 10, 8, 6, 1, 5, 4, } (3.23) 

The reduction order is preceded by the average turn around, followed by total turnaround 

makespan, average response time, average temperature, and average temperature difference 

among pods. The results obtained depicts that the GTA schemes received the maximum number 

of hits as the best allocation scheme. Table 3.4 presents results for the SLA based dimension 

reduction. 

Table 3.4. SLA based dimension reduction 

 

Ranking 

Order 

Order of Reduction Comparison 

First 

parameter 

Second 

parameter 

Third 

parameter 

Fourth 

parameter 

Fifth 

parameter 

Sixth 

parameter 

Best 

Allocation 

Scheme 

𝛾1 Makespan Average 

Turnaround 

Average 

Response 

Time 

Average 

Temperature 

Total 

Turnaround 

Total Queue 

Waiting 

LJF 

𝛾2 Average 

Turnaround 

Total 

Turnaround 

Makespan Average 

Response 

Time 

Average 

Temperature 

Average 

Temperature 

Difference 

among pods 

GTA 

 

In summary, for every user, the desired SLA is different. Based on the user priority of a 

particular performance parameter, the best resource allocation is determined. For instance, if the 

user prefers the response time parameter the reduction process yields the SRTF as the more robust 

allocation scheme. Nonetheless, when the user preference changes to average temperature, the 

SJF turns out to be the best allocation scheme. Therefore, we conclude that for a cloud to satisfy 
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the SLA, the user preference has a significant impact on the selection of the most robust 

allocation strategy. 

3.8. Related Work 

Robustness measurement has been widely studied and addressed in literature, for example 

[3.3] for the benefit of a particular framework. The framework proposed in the paper is generic 

and focuses on handling data lying in higher manifolds. By using dimension reduction, we 

perform data convergence in a stage wise manner and then test the acquired result for robustness 

to attain high end effective performance. Maxwell et al. [3.20] and Ali et al. [3.6] proposed 

robustness metrics for the quantification of robustness for a given resource allocation environment. 

Ghoshal et al. [3.21] applied a data management strategy in distributed transient environments 

like cloud for handling both virtual machine failure and variations in network performance. The 

aforementioned technique is unable to handle and overcome failures that occur during run-time. 

Nevertheless, our methodology is more focused on achieving high level performance in the 

cloud environment to overcome the threats and challenges in an effective manner. Guaranteeing 

performance is of utmost importance in the implementation of a cloud paradigm. 

Larsen et al. [3.22] used a syntactic transformation approach that employs classical 

analysis techniques and tools to achieve robustness. Moreover, to achieve the required QoS level 

authors in [3.23] applied a fuzzy control logic for the resource management. Nevertheless, the 

application of fuzzy control is effective only in systems with a simple architecture. To handle 

the resource allocation problem effectively for a variety of scenarios a great deal of knowledge 

about the rules and parameters involved is required and extensive simulation needs to be carried 

out before designing fuzzy system. Macias et al. [3.24] proposed an SLA improvement strategy 

by utilizing a two way communication path between the market brokers and resource managers. 
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The aforementioned technique improves the SLA violation only when prior knowledge about the 

reputation of the system is available. Otherwise no significant difference can be brought using 

this methodology. On the other hand, our methodology can be adapted for any possible scenario. 

Scheduling and managing of resource with QoS maintained according to the SLA specifications 

is a major challenge in a cloud computing environment. The perturbations present in the system 

environment make the aforementioned tasks even more challenging and opens new paradigms in 

resource scheduling of cloud. To accomplish the above mentioned goal, the researchers in [3.25] 

presented a scheduling heuristic that caters multiple SLA parameters. The parameters considered 

are limited to CPU time, network bandwidth, and storage capacity. However, performance 

parameters such as response time, temperature, and processing time are not considered in 

improving the system’s performance. 

Li et al. [3.26] proposed a customizable cloud model for resource scheduling. An 

additional aspect of trust is incorporated in the system architecture along with the QoS targets for 

performance up-gradation. Although the QoS parameters considered in this approach includes 

response time, bandwidth, storage, reliability, and cost. However, the QoS delivery is restricted to 

the average values of the above mentioned performance aspects. Moreover, guarantee of the 

service delivery is not provided despite of the predetermined confidence level. The 

aforementioned approaches may cater users’ preferences, but are unable to guarantee a QoS 

satisfaction level according to the SLA requirements. The problem we deal here is different from 

the existing work since it takes into account multiple parameters to optimize the system’s 

performance, despite of the uncertainty present in the system environment. 

We employ the dimensionality reduction technique as our solution to handle the impact 

of a parameter number as high as 𝑛, where 𝑛 ≫ 0, while meeting the QoS requirements. Relative 
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to the ambient dimension 𝑛, the dimensionality reduction techniques aim to extract concise 

information about the data lying in a high-dimensional space [3.12]. The data lying in higher 

manifolds can be converged using manifold-reduction techniques. Current state- of-the-art 

techniques for dimensionality reduction can be broadly bifurcated into linear and non-linear 

dimensionality reduction. The prior includes classical methods like Principal component Analysis 

(PCA) and Multi-Dimensional Scaling (MDS). Nevertheless, the linear techniques outperformed 

the non-linear techniques due to the incapability to handle non-linear data structures [3.27]. On 

contrary non-linear manifold learning techniques, such as the Locally Linear Embedding (LLE), 

Laplacian Eigenmaps, and Isomap are efficient in handling non-linear data structures. However, 

the aforementioned methodologies are computationally expensive to handle and are not scalable 

due to their time and memory complexity [3.28]. Nevertheless, we emphasize on preserving the 

critical relationship among the data-set elements and to discover critical information about the 

data preserved, under the mapping Φ keeping the computational cost minimum. 

3.9. Conclusion and Future Work 

In this paper, we analyzed and implemented a geometrical dimension reduction 

mathematical model for the evaluation of robustness of resource allocation schemes in the cloud. 

The presence of uncertainty in the system parameters is considered and n-number of performance 

parameters are entertained that depicts the wideness of the approach. Our results reveal that the 

process of dimension reduction is dependent on the order of the parameter selected during the 

convergence procedure. The novelty of this work is the freedom of incorporation of the 

performance parameters required for robustness evaluation. The results achieved after reduction 

retain a reflection of all of the parameters utilized in the convergence process. The proposed 

method can be used to gauge robustness and observe the most effective allocation scheme among 



54 
 

a group of allocation schemes that are apparently hard to distinguish. Moreover, the proposed 

methodology can be extended to a customized scenario to meet the QoS according to the required 

SLA, in a cloud environment. We have presented two theorems that strengthen our reduction 

approach linked to the robustness measurement procedure. 

As our future work, we will focus on the optimization of the results by generating a pareto 

optimal set of results. The pareto optimal set will be realized into a pareto front that would enable 

the cloud to generate the most optimized findings for a multi-parameter system environment. 
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4. THERMAL-AWARE, POWER EFFICIENT, AND MAKESPAN 

REALIZED PARETO FRONT FOR CLOUD SCHEDULER2 

This paper is submitted to IEEE CloudNA 2015. The authors of the paper are Saeeda 

Usman, Kashif Bilal, Nasir Ghani, Samee U. Khan, and Laurence T. Yang. 

4.1. Introduction 

The dynamic and promising services delivered by Cloud computing paradigm have 

strikingly elevated the demand of Cloud deployment (models). The paradigm orchestrates the 

computing resources, such as the processing cores, I/O resource, and storage to meet “on demand” 

client requirements. The aforementioned characteristic of Cloud has extensively scaled the service 

offering to leverage and productize functionality. However, to ensure that the agreed Service Level 

Agreement (SLA) is met, the Clouds needs to offer metering services to avoid resource 

exploitation. 

To provide a single pane view of the resources status and achieve high levels of granular 

visibility, intelligent monitoring should by realized to track resource utilization. Due to the increase 

in chip power density, the offered computing resources are prone to predicaments, such as 

hardware failure, low reliability, and insecure multi-tendency. Indeed, task completion is the 

foremost priority of schedulers in Cloud. Nevertheless, thermal management and power 

consumption hold pivotal importance in achieving high-end functionality. Moreover, cost 

minimization can be accelerated by avoiding over-provisioning of the aforementioned resources. 

                                                 
2 The material in this chapter was co-authored by Saeeda Usman, Kashif Bilal, Nasir Ghani, 

Samee U. Khan, and Laurence T. Yang. Saeeda Usman had primary responsibility for 

conducting experiments and collecting results. Saeeda Usman was the primary developer of the 

conclusions that are advanced here. Saeeda Usman also drafted and revised all versions of this 

chapter. 
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Recently, a wide range of hardware and software based technique [4.1]-[4.3] have been 

proposed to control the power consumption of Chip Multi-Processors (CMPs). Although the 

management schemes could effectively reduce power depletion, they incur performance overhead 

in the form of thermal runaway. Motivated by this fact, the work presented in this paper address 

the abovementioned issue by considering the run-time information. Therefore, frequent monitoring 

of core temperature and operating frequency is required to lower the risk of chip overheating. We 

provide a methodology to mitigate the violation of peak power and temperature constraints, 

respectively.  

To improve the performance of a scheduler in Cloud, we propose a temperature-aware 

power efficient methodology that judicially maximize performance and system reliability. The 

objective of this work is to optimize the cumulative performance of the resource allocation system. 

Intuitively, a convex optimization approach is devised to minimize the makespan, temperature, 

and power utilization of the scheduler. Our contribution circumvent the efficient management of 

power/temperature exploitation without comprising the task completion deadline.  

Our major contributions are listed as follows: 

 We develop a resource mapping heuristic that optimizes the performance using rigorous 

mathematical modeling. The scheduling decision space is constrained with a set of 

system specifications to attain the desired results.  

 We model the problem to demonstrate the relationship between the frequency and the 

power consumption of the scheduling system in Cloud. The formulation unveils bounds 

on power and temperature utilization to dynamically adjust the resource utilization. 

 The solutions that adheres to all of the constraints of power, makespan, and temperature 

constitute to the set of efficient or Pareto optimized solutions. Despite of the contradicting 
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nature of the objectives, we perform efficient mapping of resources to fulfill the end user 

demands without the violation of any timing constraints.  

 The chip temperature is kept into consideration while scaling the operating frequency to 

avoid cooling challenges and ensure safe operating temperature. 

 The relevant Pareto front of high quality is obtained for the optimization of the three 

objectives. The power and temperature management is judicially performed using the 

proposed heuristic. Moreover, the deadlines of the tasks are preserved to ensure efficient 

performance.   

The paper is organized as follows. Section 4.2 presents the system architecture. Section 4.3 

provides the details of the system model followed by the preliminaries of the proposed model in 

Section 4.4. The problem formulation is presented in Section 4.5. Section 4.6 presents a discussion 

on the methodology adopted for the Pareto front approximation. Performance evaluation and 

simulation results are presented in Section 4.7. Section 4.8 discusses the related work, and Section 

4.9 concludes the paper. 

4.2. Service Architecture 

The Cloud service provider must ensure that the clients perpetually receive the Cloud 

services (resources) according to the agreed Quality of Services (QoS) level.  Concurrently, the 

resources must be distributed efficiently and intelligently minimizing the resource wastage. Our 

goal is to optimally schedule the Cloud resources to fulfill the requirements. Allocation is mapped 

in a manner that the over provisioning of resources is prohibited. The scheduling mechanism 

detailed here promises to minimize the power consumption, temperature, and makespan of a 

scheduling within a Cloud environment. The objective is to optimize the task completion time such 

that the power conservation is not sacrificed while adhering to the temperature bound to overcome 
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hot-spots. The scheduling mechanism is routed to generate a set of Pareto solutions, the Pareto 

front, to achieve the most efficient optimization for the Multi-Objective Problem (MOP) under 

consideration. 

Definition (Pareto front). A point 𝑥∗ ∈  𝑋 is called Pareto optimal if there is no 𝑥 ∈  𝑋 such 

that 𝐹(𝑥) < 𝐹(𝑥∗). Then, 𝐹(𝑥∗) is said to be globally efficient. The set of all such optimal points 

contours the image (curve) called as the Pareto front. 

The goal of MOP performed in the work presented here is to identify the set of efficient 

points, 𝐹(𝑥𝑖) for ∀𝑥𝑖  ∈  𝑥∗, that is able to represent the Pareto front, as shown in Fig. 4.1. The key 

concept is to find the desired optimal operating point that guarantees all the objectives without 

violating the set of constraints. Consequently, a set of Pareto efficient solutions, are acquired that 

characterize the improvement all of the objectives without worsening any. 

 

 

Fig. 4.1. Desired Pareto front for the set of efficient solutions 

4.3. System Model 

Consider a scheduling system in Cloud. The scheduler performs the task allocation. The 

tasks are mapped on the set of machines that satisfy the task requirements. 
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4.3.1. Machines 

The resource scheduler allocates the incoming tasks to a set of machines, 𝑀 =

{𝑀1, 𝑀2, … . . , 𝑀𝑘}. The machines are assumed to be equipped with a Dynamic Voltage/ Frequency 

Scaling (DVFS) module. A constant and negligible transition time between successive levels of 

the DVFS is assumed for the problem considered in this paper. Each machine of the set 𝑀(𝑀𝑗  𝜖 𝑀) 

is characterized by the following attributes: 

 The operations frequency of the machine, 𝑓𝑗, measured in hertz or cycles per unit time. 

By employing the DVFS, the frequency𝑓𝑗 can varied from 𝑓𝑗
𝑚𝑖𝑛 to 𝑓𝑗

𝑚𝑎𝑥. The hierarchy 

of the frequency bounds is defined by the relation, 0 <  𝑓𝑗
𝑚𝑖𝑛 < 𝑓𝑗

𝑚𝑎𝑥 . The frequency 

holds a linear relationship with the speed of the machine [4.4]. 

 The machine architecture, 𝐴(𝑀𝑗), that comprises of the storage specifications, speed 

rendered, and the kind of CPU utilized.  

4.3.2. Tasks 

Consider a metaset of tasks, 𝑇 = {𝜏1, 𝜏2, … . . , 𝜏𝑛}. Each task, 𝜏𝑖  𝜖 𝑇, is characterized by the 

following requirements: 

 The time, 𝑡𝑖, required to complete the execution of the task. The Expected Time to 

Complete (ETC) is presumed to be known a priori. 

 The machine architectural requirements, 𝐴(𝜏𝑖), that entails the task execution. 

 The deadline, 𝑑𝑖, specifies the time at which the task execution must be performed. A 

successful mapping of tasks happen when all the constituting tasks of the set T are 

executed before the assigned deadlines. 
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4.4. Preliminaries 

In this section, we present the modeling basics of power and temperature management. As 

explained in the previous section, real-time tasks in a task set are supposed to execute on a set of 

machines. The machines used in the scheduling system are assumed to be equipped with the DVFS 

methodology. Therefore, each machine is enabled to switch between discrete levels of normalized 

frequencies, that is, {𝑓1, 𝑓2, … 𝑓𝐿}. Where 0 < 𝑓𝑗
𝑚𝑖𝑛 = 𝑓1 < 𝑓2 < ⋯ < 𝑓𝐿 = 𝑓𝑗

𝑚𝑎𝑥 . 

4.4.1. Power Model 

The power requirement is a cumulative sum of the idle and active mode expected power 

consumption. Such that: 

 𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = (𝛼. 𝐶𝐸𝐹𝐹 . 𝑓. 𝑉2) + (𝐼0. 𝑉) + 𝑃𝑐 , (4.1) 

where 𝑉, 𝑓𝑟𝑒𝑞, 𝐶𝐸𝐹𝐹 , 𝐼0, and 𝛼 are the supply voltage, clock frequency, effective switch 

capacitance, leakage current and activity rate of the computing device, respectively. The dynamic 

power consumption refers to the power consumed in the active/dynamic mode. The static power 

consumption corresponds to the power dissipated regardless of switching activity. The term Pc 

relates to the power expended by various system component activities, such as memory/disk 

accesses. 

The dynamic mode power reflects a quadratic relationship between the supply voltage and 

the power consumption of the system. Assuming a linear relationship between voltage and 

frequency, given as: 

 𝑣𝑙𝑜𝑡𝑎𝑔𝑒 ∝  𝑓, (4.2) 

The dynamic power dissipation becomes,  

 𝑃𝑜𝑤𝑒𝑟 ∝  𝑉𝑜𝑙𝑡𝑎𝑔𝑒3, (4.3) 

or 
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 𝑃𝑜𝑤𝑒𝑟 ∝  𝑓3. (4.4) 

                   The key design idea of DVFS is governed by the power-frequency proportionality 

relationship, such that a reduction in the clock frequency or supplied voltage, results in a cubic 

decrease in the power consumed. It is to be understood that the time to finish an operation is 

inversely proportional to the clock frequency. Such that: 

 𝑡𝑖𝑚𝑒 = 1
𝑓.⁄  (4.5) 

Therefore, lowering the supply voltage also decreases the maximum achievable clock 

speed. Running the machine at a slower frequency can significantly reduce a computing devices' 

dynamic power consumption. On the contrary, reducing the frequency/voltage would substantially 

slow down the time to complete an operation. It is apparent from the equations listed above that 

one can reduce cubically the instantaneous power consumption, at the expense of linearly 

increased delay (reduced speed). Owing to this analysis, we adopt the DVFS-based frequency 

selection scheme to maximize the processor power savings. 

4.4.2. Temperature Model 

To model the temperature realization of a machine in a scheduling system, we follow the 

dynamic thermal model proposed by Skadron et al. [4.5] to characterize the thermal behavior of 

the processor. The model unifies the Resistance-Capacitance (RC) model and the temperature 

𝑇𝑒𝑚𝑝 at a time instance 𝑡, such that: 

 𝑇𝑒𝑚𝑝(𝑡) = 𝑇𝑒𝑚𝑝𝑠𝑡𝑠𝑑 × (𝑇𝑒𝑚𝑝𝑠𝑡𝑠𝑑 − 𝑇𝑒𝑚𝑝𝑠𝑡𝑎𝑟𝑡) × 𝑒−𝑡 𝑅𝐶⁄ , (4.6) 

where 𝑇𝑒𝑚𝑝𝑠𝑡𝑠𝑑 is the steady state temperature, 𝑇𝑒𝑚𝑝𝑠𝑡𝑎𝑟𝑡 is the initial temperature, 𝑅 is the 

thermal resistance, and 𝐶 is the thermal capacitance. The thermal resistance 𝑅 and capacitance 𝐶 

are constants depending on the machine architecture. The steady state temperature of a task is the 
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temperature that will be touched if vast number of occurrences of the task execute continually on 

the machine. It bears an almost linear relationship with the power consumed, and is given by: 

 𝑇𝑒𝑚𝑝𝑠𝑡𝑠𝑑 = (𝑃𝑜𝑤𝑒𝑟 × 𝑅) + 𝑇𝑒𝑚𝑝𝑎𝑚𝑏, (4.7) 

 where 𝑅 is the thermal resistance, as explained earlier and 𝑇𝑒𝑚𝑝𝑎𝑚𝑏is the ambient temperature 

of the machine/core. The power consumption of tasks differ significantly depending on the nature 

of the task. Therefore, we can say that the steady state temperatures of tasks in a task set are 

different. In the quest to improve performance, continuous scaling of supplied voltage has been 

the focal point. Consequently, high operational frequency is exercised to meet high power needs. 

The dynamic power remains unaffected with the change in temperature. Nevertheless, the static 

power loss increases exponentially with temperature. The leakage current, 𝐼0, is given as: 

 𝐼0 = 𝐼𝑠(𝐴𝑇𝑒𝑚𝑝2𝑒(𝜇1𝑉+𝜇2) 𝑇𝑒𝑚𝑝⁄ + 𝐵𝑒(𝜇3𝑉+𝜇4)), (4.8) 

where 𝐼𝑠, 𝑉, and 𝑇𝑒𝑚𝑝 is the initial leakage current, voltage supplied, and the operating 

temperature, respectively. Whereas, 𝐴, 𝐵, 𝜇1, 𝜇2, 𝜇3 𝑎𝑛𝑑 𝜇4 are constants with values determined 

empirically. The leakage current thereby increases exponentially with temperature, as shown in 

Fig. 4.2. 

 

 

Fig. 4.2. Impact of technology scaling 
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Therefore, to avoid hotspots and thermal runaway temperature effects cannot be neglected. 

The total power consumption of a task running on a machine is given by; 

 𝑃𝑇𝑜𝑡𝑎𝑙 = 𝐶𝐸𝐹𝐹𝑓3 + 𝐶1𝑓𝑟𝑒𝑞 + 𝐶2𝑇𝑒𝑚𝑝𝑓 , (4.9) 

where 𝐶1 and 𝐶2 are the curve fitting constants [4.6]. Based on the above mentioned mathematical 

model to optimize the power consumption of a machine we adopt the DVFS-based power scaling. 

The temperature control is gauged by an optimum temperature bound check given in the next 

section. 

4.5. Problem Formulation 

Consider a given a resource allocation system that comprises a set of machines, 𝑀, and a 

set of tasks, 𝑇. The scheduler is required to map tasks on the machine set, such that all the 

characteristics of the tasks and the deadline constraint of 𝑇 are fulfilled. We term this assignment 

as a feasible task to machine mapping. A feasible task to machine mapping happens when each 

task 𝜏𝑖 𝜖 𝑇 can be mapped to at least one 𝑀𝑗  subject to all of the constraints associated with each 

task, such that the computational time, architecture, and deadline. The aforementioned 

requirements of the tasks are recorded as a Boolean operator (𝑥𝑖𝑗). 

The task to machine mapping is performed such that, a minimization of the cumulative 

instantaneous power (𝑃𝑖𝑗) consumed by the machines in the scheduling system, the temperature 

and the makespan of the set of tasks, 𝑀𝑆𝑖𝑗 is ensured. Power management is achieved by regulating 

the voltage and frequency supplied using the DVFS. The DVFS methodology exploits the convex 

relation between the power expended by a machine to the voltage and frequency exploited. The 

motivation of using the DVFS technique is to expand the task execution time using frequency and 

voltage reduction to minimize the overall power consumption. Table 4.1 presents the legend 

explanation. 
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Table 4.1. Linear program terminology 

Variable Description 

𝑖 Task indication variable/subscript 

𝑗 Indicates node/machine 

𝑥𝑖𝑗 Binary variable 

𝑀𝑆𝑖𝑗 Makespan (completion time of task set "𝑖" on 

machine "𝑗") 

𝑡𝑖 Time to complete task "𝑖" 

𝑃𝑖𝑗 Power consumption of machine "𝑗" when task "𝑖"is 

performed 

ψ𝑖𝑗 Time to execution of task "𝑖" on machine "𝑗" 

𝑓 Frequency of the core/node 

𝑆 Storage memory required 

𝐹 Finishing time 

𝐶 Job consolidation resources 

𝜏𝑖 Task  𝑖 ∈ 𝑇 

𝑀 Set of machines 

𝑇𝑒𝑚𝑝 Temperature of machine 

𝑑𝑖 Deadline of task "𝑖" 

𝑇 Set of tasks to be performed 

 

Objective function 

 

𝑂 = 𝑥𝑖𝑗[𝑀𝑖𝑛(𝑀𝑆𝑖𝑗 + 𝑃𝑖𝑗 + 𝑇𝑒𝑚𝑝𝑖𝑗)]

= (∑ ∑ 𝑀𝑆𝑖𝑗𝑥𝑖𝑗

𝑗𝑖

) 𝛼𝑀𝑆 + (∑ ∑ 𝑃𝑖𝑗𝑥𝑖𝑗

𝑗𝑖

) 𝛼𝑝

+ (∑ ∑ 𝑇𝑒𝑚𝑝𝑖𝑗𝑥𝑖𝑗

𝑗𝑖

) 𝛼𝑇𝑒𝑚𝑝. 

(4.10) 

s.t. ∀𝑖, 𝑗, 𝑤ℎ𝑒𝑟𝑒 (𝑖 > 0 𝑎𝑛𝑑 𝑗 > 0). 
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Bounding weight parameter 

 ∑ ∑ 𝛼𝑖𝑗

𝑗

≤ 1,

𝑖

 
(4.11) 

where α = proportional weight parameter 

 ∑ ∑ 𝑥𝑖𝑗

𝑗𝑖

= 1,      ∀𝑗 ∈  𝑀      𝑎𝑛𝑑      ∀𝑖 ∈  𝑇 
(4.12) 

𝑥𝑖𝑗 = 1  𝑖𝑓 𝑡𝑎𝑠𝑘 “𝑖” 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 “𝑗” 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0.  

Bounding Power Consumption (A Constraint) 

 ∑ ∑ 𝑝𝑖𝑗

𝑗𝑖

≤ 𝑃𝑗
𝑚𝑎𝑥          {𝑃𝑗 > 0}. (4.13) 

Set of Constraints  

(a) Execution time of task ‘𝑖’ on node ‘𝑗’, ψ𝑖𝑗 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖           ∀𝒊= 𝑡𝑎𝑠𝑘𝑠  

(b) Frequency of node, 𝑓𝑗
𝑚𝑖𝑛  ≤ 𝑓𝑖𝑗 < 𝑓𝑗

𝑚𝑎𝑥       (0< 𝑓𝑗
𝑚𝑖𝑛)  

(c) Resource Consolidation, 𝐶𝑖𝑗 ≤  𝐶𝑗 

(d) 𝑆𝑡𝑜𝑎𝑟𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑆𝑖𝑗 ≤ 𝑆𝑗 

(e) Finish time of machine, 𝐹𝑗 ≤ 𝑀𝑆𝑚𝑎𝑥 

(f) 𝑡𝑒𝑚𝑝𝑚𝑖𝑛 ≤ 𝑡𝑒𝑚𝑝𝑗 ≤ 𝑡𝑒𝑚𝑝𝑚𝑎𝑥 

Assumptions in the formulation: 

 The task characteristics are not expected to change during the execution course. That is, 

the deadline of task completion and resource requirement remains the same. 

 The expected execution time of a task is considered as a decision criteria for scheduling 

a task on a node. 

 𝑃𝑖𝑗, represents the power consumption of all of the components of a node. 
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 A task in execution process is not stopped until completion. However, the assigned 

resources may change, e.g. power consumption of the node. 

 The cooling power of the scheduler is not included in calculations.  

4.6. Pareto Front Approximation 

We focus on the optimization problem with three objective functions, 𝑓1(𝑥), 𝑓2(𝑥), 

and 𝑓3(𝑥),. Although, there are variety of computational methods for procuring the aforementioned 

objective. The methodology incorporated for the approximation of the Pareto front used in our 

work is the dual simplex procedure. Each objective function is assigned a certain weight and the 

point of optimization is adaptively determined. At each iteration the non-dominated points are 

identified to construct the set of Pareto optimal points.  

 

 

Fig. 4.3. Linear programming model 
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Figure 4.3 depicts the linear programming model considered in our paper. The co-ordinates 

represent the independent variables, depicted by the objective functions. The constraints restricts 

the allowable feasible region to a specified operating area, as shown in the Fig. 4.3. The dual 

simplex methodology will enable the system to operate in the optimal region. The desired region 

is identified by imposing the constraints and bounding the objective function by the feasible 

vectors. The feasible solutions that are dominated are discarded in the quest to find solution that 

after better optimization to make the set of non-dominated solutions. The Pareto front 

approximation seeked in this work, is given as: 

 ∀𝑘         𝑓𝑘(𝑥∗) ≤ 𝑓𝑘(𝑥), (4.14) 

 ∃𝑘         𝑓𝑘(𝑥∗) ≤ 𝑓𝑘(𝑥), (4.15) 

where 𝑓𝑘(. ) represents the 𝑘𝑇ℎ objective function. Nevertheless, 𝑥∗ depicts the non-dominated 

solutions and 𝑥 constitute the dominated solution. The elements of the set 𝑓𝑘(𝑥∗) indicates the 

desired optimized solution set and compose the coveted Pareto front. 

4.6.1. Dual Simplex Method for the Linear Programming 

We assume that the mapping (𝑥𝑖𝑗) is only fulfilled when the resource 

consolidation/architectural constraints of the tasks are satisfied. The resource consolidation refers 

to the desired level of storage, memory, power, and Virtual Machines (VMs) required to perform 

a particular task or set of task on a machine. The constraint optimization problem is resolved with 

the simplex method of linear programming. The feasible intersection points are enumerated using 

the complex (Simplex) method. Nevertheless, the worst point will be replaced by a new and better 

point using the aforementioned methodology. A variation in the parameter 𝑓 is used to achieve an 

optimized solution to the problem. 
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Table 4.2. Generalized simplex tableau 

Iteration 𝑅𝑖 𝑃𝑖𝑗 𝑅𝑚𝑖𝑗𝑠𝑟𝑗 𝑡𝑖𝑗 𝐹𝑗 𝑓𝑟𝑒𝑞𝑗
𝑚𝑖𝑛 𝑓𝑟𝑒𝑞𝑗

𝑚𝑎𝑥 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 B* 

 

 

 

1 

       1        

  

Values shall be attained 

according to the task to 

machine assignment 

  1       

    1      

     1     

      1    

       1   

        1  

Values of the objective function 

* Values corresponding to the maximum limit (Boundary or Extreme) 

 

The systems' modeling is initiated by normalizing the constraints.  The inequalities in the 

constraints list are converted into equations by adding a slack, and surplus respectively, such as: 

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑖 + 𝑠𝑙𝑎𝑐𝑘𝑖 = 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑙𝑖𝑚𝑖𝑡 𝑏𝑜𝑢𝑛𝑑⁄  (4.16) 

The simplex tableau for the objective function is generated comprising of the objectives, 

constraints, and artificial variables. The elements of the objective function play a pivotal role in 

the optimization methodology. The simplex method operations work in the form of a tableau. For 

every iteration a new tableau is generated to indicate the convergence. Moreover, the new tableau 

highlights the objectives function values that needs to optimized to achieve the overall 

optimization goal. The optimization process is characterized by the evaluation of feasible 

intersection points. Table 4.2 represents a generalized simplex tableau. 

In the Table 4.2, the most negative co-efficient in the objective function row determines 

the pivot column. The columns pertaining to the variables 𝑆𝑖 simply record the slack and surplus 

term of each of the constraint. First, the simplex procedure is employed to find the pivotal element. 

The pivot identifies the next intersection point to be evaluated that improves the objective. 

Thereafter, Gaussian elimination step is followed to attain the next simplex tableau.  
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The entries of the objective function row in the Table 4.2 determines the decision of 

generation a new tableau. The iterations stop until every element of the objective function takes a 

non-negative value, while adhering to the bounds of operation. Algorithm 4.1 details the procedure 

to achieve the non-dominated solution for the linear convex problem. A weighted sum approach 

is employed to generate the Pareto front. The admissible feasible solutions are generated. The 

solution that form the desired convex combination of the objectives are retained and vice versa. 

Formally, the vertices that restrict the objective function to the optimal corner point, make the set 

required basic solution. The algorithm initiates with the test of optimality that checks the current 

state of objective parameters. That is, if the elements constituting the last row, are positive, the 

optimality condition is already reached. Otherwise, the procedure evaluates the identification of 

the pivotal element that is triggered by the most negative entry of the simplex tableau. Using the 

elimination methodology the new transformed tableau is generated. The same check and do 

procedure is followed until the optimality is reached. 

4.7. Simulation Results 

To validate our proposed methodology, the scheduling operations performed are 

implemented in Matlab. To evaluate the proposed algorithm, we used a core i-7 desktop PC with 

3.4 GHz of CPU speed and 8 GB of RAM. The dimensions of the tasks executed are as large as 

10,000 tasks by a total of 20 computing nodes. The task mapping is restricted to the constraints 

and operational bounds listed in Section 4.4. The objective of the simulations performed is to 

maximize the performance while minimizing the power and temperature factor. The algorithm 4.1 

depicts the weight parameter, 𝛼, for each of the desired objective. The purpose of utilizing 𝛼 is to 

define the importance of a specific objective in a controllable manner. 
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Fig. 4.4. Pareto front of the optimized solution set 

 

Algorithm 4.1. Round to the nearest integer solution while maintaining the constraints 

INPUT:  The number of tasks, 𝜏 to perform, the number of machine, 𝑀, and objective 

to minimize; 

OUTBUT:   Optimal solution for the problem by executing the benchmark of required 

performance level; 

INITIALIZATION: The control parameters of the objective function are provided; 

1: Step 1 

2: if 𝑓1, 𝑓2, … , 𝑓𝑛 ≥ 0 then 

3:       𝐿𝑃 problem is optimail 

4: else 

5:       choose the most negative 𝑓1 < 0 

6: Step 2 

7:       compute the pivot element {𝑏𝑘 𝑎𝑘𝑙|⁄ > 0}1≤𝑘≤𝑚
𝑚𝑖𝑛  

8:       obtain a basic solution and update the objective function row as: 

9: Step 3 

10:        𝑓𝑁 = 𝑓𝑁 − 𝛽(𝛾𝑝)           

11:        where 𝛽 = 𝑏𝛾 𝑎𝛾𝑙⁄  

12:        and 𝛾𝑝 = pivotal row element 

13:        update and generate the new simplex tableau 

14: end if 

15: Go to Step 1 
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Performance is quantified by the completion of a task by a machine in the targeted deadline. 

Note that, if the task completion is performed in the range of allowable power and temperature 

constraints, it is specified as efficient mapping. The solutions that adhere to the system 

specifications of defined objectives and constraints are used to construct the coveted Pareto front. 

Figure 4.4 depicts the ability of the proposed algorithm to efficiently minimize the desired 

objectives. 

In Fig. 4.5 and Fig. 4.6, we validate the effectiveness of the linear programming model 

presented in the paper. The Fig. 4.5 depicts the temperature distribution of five machines for a 

makespan time ranging to 3000 secs. The peak temperature is constraint by a dotted line at 85 C. 

The temperature of each machine is below the aforementioned bounded limit to ensure the safe 

region operation. The adherence to the thermal constraint avoids the occurrence of hot-spots. 

Similarly, the Fig. 4.6 show the power consumption of the five machines for the similar 

specifications of makespan. The peak power of each machine is under the constraint of 250 Watts. 

From the results obtained we conclude that the proposed methodology is efficient in adhering to 

the system constraints of power and temperature. 

 

 

Fig. 4.5. Optimization of temperature 
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Fig. 4.6. Optimization of power consumption 

 

In Fig. 4.4, the non-dominating solutions assume a computationally calculated Pareto front 

for the optimized solutions. However, the sub-optimal solutions are represented as dominating 

solutions. The non-dominating solution set sweeps out the dominated solutions from the knee 

region of the curve. The solutions that are less optimized form the tails of the Pareto-optimized 

graph. Nevertheless, the solutions that comprise the knee region are comparatively better in 

minimizing all of the three objectives. Consequently, the overall performance of a scheduler is 

improved by adhering to the abovementioned details. The allocated tasks when are performed by 

the available set of machines following the methodology depicted in the paper, a Pareto optimized 

front curve may be obtained. 

4.8. Related Work  

 A large number of hardware and software techniques, for example [4.1], [4.7] and [4.8] 

have proposed by researchers to improve the energy profile of multi-core systems. The traditional 

power saving strategies focus on scaling the voltage and frequency of the core to meet the 

allowable power level. However, temperature received less attention. Consequently, reliability and 

decrease in the life-time of the chip resulted as a trade-off. Therefore, researchers over the last 
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decade, emphasize the need of Dynamic Thermal Management (DTM) [4.5] and [4.9] for safe chip 

operation and to reduced cooling cost. 

The work presented by authors in [4.1]-[4.12] perform optimization of power consumption 

while guaranteeing the required performance. Nevertheless, the aforementioned methodologies 

optimizes the power and performance, but during the optimization. Authors in [4.13] speculates 

the chip thermal management requirement and devised methodologies to attain the chip 

temperature optimization. In Ukhov et. Al [4.14] the authors propose a Steady State Dynamic 

Temperature Profile (SSTDP) to realize temperature-aware reliability model. The technique 

consider mitigating the thermal cycling failure. However, transient faults and their management is 

not catered. Moreover, power optimization is not entertained while achieving reliability.  

Significantly, different from the above listed work, this study explore the scheduling 

decision space to optimize the performance of multi-core system. The temperature and power 

utilization is capped and dynamically adjusted while meeting the performance requirement of the 

system. 

4.9. Conclusions and Future Work 

The exponential increase in the demand of Cloud deployment is constrained by the 

prohibitively high operational cost. To address the abovementioned issue, the work presented in 

our paper combined the benefit of power- and temperature-awareness in multi-core systems. A 

coherent framework of power, temperature, and makespan optimization is proposed to attain 

promising performance. Using the frequency of operation as selection criteria the task allocation 

is mapped to simultaneously minimize the aforementioned objective function entities. We 

proposed a formulation that caters the heterogeneity among resources and proposes bounds of 

operation to adjust to the varying demand of power, frequency, and temperature. Moreover, to 
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define precedence a weighted approach is utilized to significantly impact the desired objective and 

guarantee desired results. 

The results reveal that the algorithm proposed is efficient in obtaining the trade-off front 

and removing the dominated solutions. The trade-off comprises the Pareto front and comprises of 

the non-dominated solutions. For future work, we plan to investigate the methodology on an 

extended scale of performance objectives. The particular domains of interest encompass 

throughput maximization and reduction of network congestion. 
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5. CONCLUSIONS 

In this chapter, we discuss the conclusion of the research we have performed during Ph.D. 

We carried out our research on the measurement and analysis of robustness of resource allocation 

system in Cloud for finding fault resilient solutions. In our research studies, we focused on the 

enhancement of resource allocation of tasks to a set of machines. In the first case a robustness 

measurement and analysis methodology is devised. Nonetheless, in the succeeding case, we 

obtained a Pareto optimized set of solutions for the improvement of a resource allocation system. 

Based on our study, we devise a formulation that unveils bounds on the desired objectives for the 

achievement of optimization. We analyzed that the frequency of operation when constrained to 

certain limit of operating domain can benefit the scheduler in optimizing the power and 

temperature.  

We analyzed and implemented a geometrical dimension reduction mathematical model for 

the evaluation of robustness of resource allocation schemes in the cloud. The presence of 

uncertainty in the system parameters is considered and n-number of performance parameters are 

entertained that depicts the wideness of the approach. Our results reveal that the process of 

dimension reduction is dependent on the order of the parameter selected during the convergence 

procedure. The novelty of this work is the freedom of incorporation of the performance parameters 

required for robustness evaluation. The results achieved after reduction retain a reflection of all of 

the parameters utilized in the convergence process. The proposed method can be used to gauge 

robustness and observe the most effective allocation scheme among a group of allocation schemes 

that are apparently hard to distinguish. Moreover, the presented framework can be extended to a 

customized scenario to meet the QoS according to the required SLA, in a cloud environment. We 
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have presented two theorems that strengthen our reduction approach linked to the robustness 

measurement procedure. 

In this thesis, we also presented the optimization of power- and temperature-awareness in 

multi-core systems. A coherent framework of power, temperature, and makespan optimization is 

proposed to attain promising performance. The relevant Pareto front of high quality is obtained for 

the optimization of the abovementioned objectives. Using the frequency of operation as selection 

criteria the task allocation is mapped to simultaneously minimize the aforementioned objective 

function entities. We proposed a formulation that caters the heterogeneity among resources and 

proposes bounds of operation to adjust to the varying demand of power, frequency, and 

temperature. Moreover, to define precedence a weighted approach is utilized to significantly 

impact the desired objective and guarantee desired results. 

In future, we intend to extend our model by incorporating more number of objective 

parameters to address and optimize for attaining high-end performance. For instance, the 

improvement of throughput can increase the efficiency of the scheduler. Moreover, a reduction in 

network congestion also plays an important role in expediting the task completion. All such real-

life parameters are having significance and must be considered in the design of an efficient 

resource scheduling models.  


