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ABSTRACT 

Pyrenophora teres f. maculata causes spot form net blotch (SFNB) on barley and was 

recently documented in North Dakota. The impact of SFNB on barley, the genetic diversity of 

the pathogen, and virulence structure are unknown for the state. Yield and quality loss in North 

Dakota due to SFNB was investigated over eleven year-sites, and simple linear regression of 

percent yield loss on adjusted percent disease using year-site means of treatments predicted a 

0.77% increase in yield loss for every 1% increase in disease. When virulence of isolates of P. 

teres f. maculata collected from geographically diverse regions in the northern United States was 

evaluated on differential barley genotypes, few isolates were identical in terms of virulence 

patterns, and the virulence profile of a population from Idaho differed from other populations. To 

understand population structure and genetic diversity, SNPs of 140 isolates were generated using 

genotyping-by-sequencing for analysis of population genetics and structure. Evidence for sexual 

recombination in each population includes the ratio of mating-type idiomorphs that do not 

significantly differ from a 1:1 ratio; low index of association values for most populations; and 

high variation within and low variation among populations. Association mapping detected forty-

five significant marker-trait associations of SNPs associated with virulence or avirulence across 

19 P. teres f. maculata scaffolds using 82 isolates of P. teres f. maculata from diverse areas in 

the northern United States. The most significant marker, 01700_198, was found on P. teres f. 

maculata-scaffold 8 when the population was challenged with four different barley lines. This 

research demonstrates that SFNB causes significant yield loss; that high diversity exists in the 

pathogen, with respect to virulence and population genetics; and that association mapping can be 

used to identify virulence/avirulence marker-trait associations to fill gaps in our understanding of 

host-parasite genetic interactions in this pathosystem.  
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CHAPTER 1. LITERATURE REVIEW 

Introduction 

Barley (Hordeum vulgare L. emend. Bowden) is an important crop worldwide that is 

used for feed, food, and malting. Among the cereals, it ranks fourth in terms of production after 

wheat (Triticum aestivum), rice (Oryza sativa), and corn (Zea mays), and global annual barley 

production for 2014 was over 145 million metric tons (USDA-FAS, retrieved 2015). In the 

United States (US), North Dakota (ND) consistently ranks as a top producer of barley, with 60.6 

million bushels produced in 2014 (USDA-FAS, retrieved 2015). Both two-rowed and six-rowed 

barley cultivars are grown in the US. The different row types refer to the number of fertile 

spikelets per rachis node: in two-row barley, and also in wild barley (Hordeum vulgare L. subsp. 

spontaneum (C. Koch) Thell), only the center spikelet is fertile, while in six-row barley, all three 

spikelets are fertile. Barley production in the early American settlements relied primarily on two-

rowed, late-maturing cultivars that were commonly grown in England at the time (USDA-ARS, 

1978). Later, Dutch and Spanish immigrants brought European mainland and North African 

barley cultivars. Eventually, barley was introduced into all the colonies, where it was in demand 

as a grain for brewing. By the 1850s, six-rowed cultivars were reported as more common than 

two-rowed in New York. Barley production continued to expand throughout the US during the 

nineteenth and twentieth centuries. Today, ND, Idaho, and Montana are the top producers of 

barley in the US (USDA-NASS, retrieved 2015).  

In terms of the number of barley acres sown and harvested, ND consistently leads the 

nation (alternating from time to time with Montana and Idaho), with production ranging from 

0.78 to 1.32 million metric tonnes from 2012 to 2014 (USDA-NASS, retrieved 2015). Common 

cultivars grown in ND include the six-rowed cultivars such as Tradition, Lacey, and Celebration, 
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and to a lesser extent Stellar-ND, Innovation, and Quest; and two-rowed cultivars such as Conlon 

and Pinnacle, with fewer acres planted to AC Metcalfe, Conrad, Haxby, and Rawson.  

Evolution of Barley  

When considering a plant pathogen, examining the history of its host can offer valuable 

insight. Cultivated barley was putatively derived from its weedy relative Hordeum vulgare 

subsp. spontaneum C. Koch. The primary habitat of H. vulgare subsp. spontaneum is the Fertile 

Crescent, which spans present-day Israel, northern Syria, southern Turkey, eastern Iraq, and 

western Iran. Thus, due to the presence of the wild relative and possible progenitor, the Fertile 

Crescent is widely accepted as a primary region of barley domestication (Harlan, 1979). The 

timing of domestication for barley is generally agreed to be about 10,000 years ago, as supported 

by archaeological evidence where barley remains from that period were discovered. The timing 

and location of domestication of barley is about the same as that of wheat.  

The cultivated form of barley has broader leaves, shorter stems and awns, tough spike 

rachis, shorter and thicker spikes, and larger grains, compared to the wild type (Zohary, 1969). 

Natural mutations in wild barley produced plants with less fragile spikes and larger, more 

abundant seeds. The number of rows on the spikelets is considered a key feature in inferring the 

origin of modern cultivated barley. The archaeological record and the dominant nature of two-

rowed over 6-rowed indicate that two-rowed barley genotypes preceded six-rowed barley 

genotypes, and several mutations conferring the six-rowed spike have been identified 

(Komatsuda et al., 2007).  

Two hypotheses have been reviewed by Brown et al. (2009) and by Abbo et al. (2010) 

for the origins of barley domestication. One model, popular in the 1990s, proposes that 

domestication occurred quickly, within just a few human generations, and in a small geographic 
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area. In a second scenario, Brown et al. (2009) and Abbo et al. (2010) posit that more recent 

genetic analyses, along with the archeological record, support a more complicated and diffuse 

scenario where multiple domestication events probably occurred in more than one center.  

Badr et al. (2000) describe domestication of barley as a monophyletic event, based on an 

analysis of AFLP data. They further provide evidence that barley domestication occurred -

specifically in the Israel-Jordan area using both AFLP data and available archeological evidence. 

Subsequent DNA-based analyses continue to raise the question and offer seemingly 

contradictory evidence (Morrell and Clegg, 2007, Orabi et al., 2007, Brown et al., 2009), where 

it is speculated that additional domestication sites may have occurred in what is now Morocco 

(Molina-Cano et al., 1987, Molina-Cano et al., 1999, Molina-Cano et al., 2005), Ethiopia (Orabi 

et al., 2007, Bekele, 1983), and the Himalayas (Morrell and Clegg, 2007).  

The evidence for Morocco as a site of domestication is offered by Molina-Cano et al. 

(Molina-Cano et al., 1999, Molina-Cano et al., 1987, Molina-Cano et al., 2005) based on 

morphology, RFLP, and chloroplast DNA. However, random amplified polymorphic DNA 

(RAPD) data generated by Blattner and Badani Méndez (2001) dispute these findings, and they 

noted that the RFLP study failed to include an outgroup. Data from Blattner and Badani Méndez 

(2001) further indicate that the wild barley accessions identified in Morocco (Molina-Cano et al., 

1987), a primary reason Morocco was thought to be a domestication site, may be due to a 

hybridization event or a spontaneous wild-type back mutation. In Ethiopia, the initial evidence 

that it may be a center of domestication was the tremendous phenotypic variation observed there 

(Negassa, 1985). This idea was further supported by the presence of a unique flavonoid pattern 

(Fröst et al., 1975). Bekele (1983) corroborated these findings. However, although Fröst et al. 

(1975) initially proposed Ethiopia as an additional center of origin for barley due to this fairly 
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unique flavonoid pattern, the team later presented evidence that supported a monophyletic origin 

(Holm and Fröst, 1983). More recent microsatellite data appear to either support a single center 

of origin, such as the Fertile Crescent, or suggest multiple domestication events, as reviewed by 

Molina-Cano et al. (2002). The Himalayan region, including Tibet, were proposed to be a 

possible domestication site based on a unique six-rowed barley and presence of a six-rowed wild 

barley with a brittle rachis, as reported by Badr et al. (2000). However, the AFLP data supported 

a monophyletic barley domestication event (Badr et al., 2000). The abundance of seemingly 

contradictory evidence is likely due to the traits or markers used in the different analyses and to 

the method of analysis, particularly when generating phylogenetic trees. Despite more recent re-

sequencing of genes in barley, the question remains non-definitively answered (Badr and El-

Shazly, 2012; Morrell and Clegg, 2007; Morrell et al., 2014). 

Net Blotch of Barley  

Net blotch diseases of barley caused by Pyrenophora teres Drechsler (anamorph 

Drechslera teres [Sacc.] Shoemaker) occur throughout most barley growing regions of the world 

(Steffenson, 1997). Two different forms of the disease have been described, based on symptoms 

produced on barley: net form net blotch (NFNB) and spot form net blotch (SFNB), caused by 

separate but closely related fungal plant pathogens P. teres f. teres and P. teres f. maculata 

Smedeg, respectively. Both P. teres f. teres and P. teres f. maculata can infect most above-

ground plant parts, including leaves and seed. Infection of kernels by P. teres f. teres has been 

well-documented (Tervet, 1944, Hampton, 1980, Martin, 1985) and infection causes them to 

appear diffusely dark, a symptom that can be caused by various seed-borne fungi (Shipton, 

1973). Symptoms on the leaves are considered most important. Leaf symptoms of NFNB appear 

initially as small, dark brown circular lesions that expand along veins and across veins, forming 
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larger lesions comprised of a network of narrow, dark brown striations that extend both 

longitudinally and transversely to form a net like pattern. Chlorosis may surround the lesions, 

and in highly susceptible reactions, leaves eventually become tan and dry, with the dark brown 

net-like pattern still visible in the dead tissue. The term ‘net blotch’, as reported by Shipton 

(1973), was apparently first coined by Atanasoff and Johnson (1920) to describe the distinct 

symptom pattern.  

SFNB leaf symptoms, in contrast, include dark brown lesions that may expand to a 

circular or elliptical shape, as large as 6 mm in length (McLean et al., 2009). No striations occur 

in SFNB symptoms. Similar to NFNB, SFNB lesions may be surrounded by chlorosis to varying 

degrees, depending on the isolate, host genotype, and growing conditions (Liu et al., 2011). 

Since SFNB lesions closely resemble those of spot blotch, caused by Cochliobolus sativus, 

morphological examination of conidia is required to determine which pathogen is responsible for 

the lesion.  

NFNB was first reported in the United States in 1907 (Weniger, 1932), although it was 

documented elsewhere in the world as early as 1881 (Eriksson and Goodwin, 1930), and it has 

been reported to occur in ND for at least 93 years (Stakman, 1922). SFNB was first documented 

in Denmark over forty years ago (Smedegård-Petersen, 1971), and isolates from Canada and 

Israel were reported shortly after (McDonald, 1967). Subsequently, the pathogen and the disease 

it causes have been found throughout barley-growing regions around the world (Campbell et al., 

1999, McLean et al., 2010a, Pereyra and Germán, 2004, Tekauz, 1990, Ficsor et al., 2010, Khan 

and Tekauz, 1982). In areas of Southern Australia, the disease has recently become more 

important, and in a survey spanning 2007 and 2008, SFNB was found to be the most prevalent 
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foliar disease on barley (McLean et al., 2010a). In 2009, SFNB was formally documented in ND 

(Liu and Friesen, 2010), and since then, it has been observed every year across the state.  

Effect of Spot Form Net Blotch on Yield and Quality 

Yield losses due to SFNB have been reported as nominal (Khan, 1989) to over 44% yield 

loss (Jayasena et al., 2007), depending on the year and region (Shipton, 1973, Khan, 1989). 

Recently, yield losses of 23%, 34%, and 44% were recorded in Western Australia, in response to 

disease severities on the top three leaves of 63% leaf area infected at the early dough stage, 55% 

at the dough development stage, and 54% at medium milk stage, respectively (Jayasena et al., 

2007). Yield losses up to 22% corresponding to 68.5% diseased leaf area of the top three leaves 

at the medium milk stage were observed by Khan in short-season environments in Western 

Australia (Khan, 1989).  

Quality losses due to SFNB have also been reported. One study reported both quality 

losses and yield losses in terms of 1000-kernel weight (Skou and Haahr, 1987). In another report, 

19% losses in quality due to SFNB were documented in parts of Australia (Jayasena et al., 

2007). Such losses in quality due to SFNB are similar to those reported due to NFNB, where 

18.5% and 31.6% reductions in 1000-kernel weight and up to a 91% increase in thin kernels due 

to NFNB in non-protected plots compared to treated plots were reported in two consecutive 

growing seasons in California (Steffenson et al., 1991). Loss of quality in terms of reduced 

carbohydrates, which may lower amount of malt extract, has also been reported (Shipton, 1973).  

Nearly all barley cultivars commonly grown in ND are reportedly susceptible or 

moderately susceptible to SFNB, with very few cultivars such as Quest and Conlon being 

reported as moderately resistant at the adult plant stage in variety trials (Ransom et al., 2014). 

ND farmers increasingly implement no-till practices, thus potentially increasing disease pressure 
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of residue-borne diseases such as net blotch. The rise in importance of SFNB in parts of 

Australia has been attributed to increased adoption of no-till farming practices, selection pressure 

due to use of cultivars that are resistant to other foliar diseases, and conducive weather (McLean 

et al., 2009). Given that similar factors occur in ND, growers in the state are concerned about the 

potential of net blotch diseases to cause significant yield loss.  

No reports on the effect of SFNB on barley yield and quality exist for ND. To determine 

yield losses due to disease, a first step is to conduct field experiments in various locations where 

the crop of interest is grown, typically as randomized complete block designs with split plot or 

factorial arrangements, so experimental units with disease can be directly compared with those 

that are kept as free as possible from disease; natural infestation is preferred to inoculated 

experiments; and plot sizes should be large enough to increase precision that would allow finding 

statistical differences between the subplots (James, 1974). Attempts to exclude disease from 

plots can be achieved by using different cultivars that have varying susceptibility to the disease, 

by isogenic lines (ideal but not typically available), or by fungicide treatment. When assessing 

plant disease to determine associated yield loss, understanding the ideal stage at which to 

evaluate disease and what plant organs to assess is critical (James, 1974). In cereals, assessing 

disease on the top two leaves, which include the flag leaf and the flag-minus-one leaf, is 

considered adequate since they reportedly contribute to the bulk of the dry matter in the grain 

(James, 1974), and previous work has shown good correlations between disease assessment on 

these leaves and yield loss in small grains (James et al., 1968). Yield assessment at the Feekes 

11.1 (medium milk) growth stage appears to be sufficient for predicting yield loss in barley due 

to foliar diseases (James et al., 1968, Jayasena et al., 2007).  
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Taxonomy and Phylogeny of Pyrenophora teres 

Pyrenophora teres Drechs. (anamorph Drechslera teres (Sacc. ) Shoem. ) is classified in 

the Kingdom Fungi, Phylum Ascomycota, Subphylum Pezizomycotina, Class Dothideomycete, 

Order Pleosporales, Family Pleosporaceae, Genus Pyrenophora, Species teres.  

The anamorph of P. teres (Drechsler) was initially placed in the genus Helminthosporium 

but this placement has since been revised to Drechslera teres [Sacc. ] Shoem. due to the lack of 

curvature in the conidia (Shoemaker, 1962), as reviewed by Alcorn (1988). However, the 

separation of Helminthosporium into different genera was not without controversy at the time, 

due to variability of certain characteristics proposed by Shoemaker (1962), such as those of P. 

teres and P. avenae as noted by Shipton (1973) who recommended relying on other published 

descriptions. 

P. teres f. maculata was initially thought to be P. japonica Ito, a species initially 

proposed as separate from P. teres (Ito and Kuribayashi, 1931, Shoemaker, 1962). Ensuing 

hybridization experiments indicated that P. japonica may instead be a mutant of P. teres 

(McDonald, 1967), and further work proposed that it was a biological form of P. teres 

(Smedegård-Petersen, 1971). P. japonica subsequently was shown to be nearly identical to P. 

teres f. maculata based on DNA banding pattern, morphological characteristics, and lesion types 

produced on differential barley (Crous et al., 1995), which led to the proposed treatment of P. 

japonica and P. teres f. maculata as synonyms. A species reported as a new pathogen to barley 

in Australia was described as P. hordei (Wallwork et al., 1992), based on smaller ascospore size 

compared to P. teres f. maculata. However, it was later concluded to be P. teres f. maculata 

(Williams et al., 2001) and found to have internal transcribed spacers (ITS) sequences identical 

to isolates of P. teres f. maculata (Stevens et al., 1998).  
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P. teres f. teres and P. teres f. maculata have been shown to hybridize in the laboratory, 

though reportedly not readily, with the resulting offspring causing SFNB lesions, NFNB lesions, 

and lesions that are intermediate between the two (Campbell et al., 1999). Such hybrids have 

been shown to be stable from one generation to the next in terms of virulence and RAPD patterns 

(Campbell and Crous, 2003). Hybridization between the two forms seems to be either non-

existent or rare in nature (Rau et al., 2003), but it has reportedly occurred in some fields at what 

appears to be very low levels (McLean et al., 2014, Campbell et al., 2002, Leisova et al., 2005a). 

In these reports, one isolate out of sixty-five collected from fields in South Africa showed RAPD 

patterns (Campbell et al., 2002) and one isolate out of sixty collected from geographically 

dispersed fields in Australia showed amplified fragment length polymorphism (AFLP) bands 

(McLean et al., 2014) within the same isolate that were otherwise unique to P. teres f. teres and 

P. teres f. maculata. In the third study alluding to rare hybridization, 2 isolates fell into an 

intermediate cluster between P. teres f. teres and P. teres f. maculata, based on principal 

components analysis of AFLP markers (Leisova et al., 2005a) 

When sequences of the ITS regions of the rRNA genes were compared among five 

closely related species of Pyrenophora, including P. graminea, P. teres f. teres, and P. teres f. 

maculata, the low diversity found in the sequences of the ITS1 and ITS2 regions suggested that 

the three fungi might be variants of the same species (Stevens et al., 1998). However, more 

recent phylogenetic analyses by Ellwood et al. (2012) based on the concatenated sequences of 

five orthologous genes that code for actin, beta-tubulin, cytochrome P450 14-alpha-demethylase, 

translation elongation factor-1-alpha and glyceraldehydes-3-phosphate dehydrogenase provide 

evidence that the three species are genetically isolated, and that the two forms of P. teres may 

actually be two different species. Estimates based on non-coding regions indicated that the forms 
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diverged between about 400,000 and 600,000 years ago (Ellwood et al., 2012), long before the 

estimated domestication of their barley hosts. Furthermore, based on this and other phylogenetic 

and population genetic analyses, the two forms appear to be genetically isolated (Rau et al., 

2007, Bakonyi and Justesen, 2007, Lehmensiek et al., 2010, Leisova et al., 2005b, Leisova et al., 

2005a, Rau et al., 2003, Serenius et al., 2005), and that co-existence of the two forms seems to 

be a recent phenomenon as suggested by Rau et al. (Rau et al., 2007).  

Not only do the two forms differ genetically, but they also differ in virulence pathotypes 

(reviewed below). When screening barley lines and accessions for resistance to net blotch, it has 

been demonstrated that those that are resistant to the net form are not necessarily resistant to the 

spot form, and vice versa (Wu et al., 2003). Thus, breeding for resistance should be treated 

separately for each form.  

Biology of Pyrenophora teres 

The two forms of P. teres are morphologically indistinguishable; thus, symptoms and 

molecular tests are required to confirm identity, as reviewed by Liu et al. (2011). On solid 

growth media, P. teres can vary widely, “from black, conidial types to white, perithecial types” 

with some isolates of P. teres f. maculata often appearing as “woolly growth of grey mycelium 

with a few white tufts on dark brown stroma” as reported by McDonald (1967), while others 

grow flat and dark on solid media. Sectoring and instability when grown on solid media is not 

uncommon, and such sectoring has been attributed to spontaneous mutations that produce a 

heterokaryon, which subsequently separates into patches of homokaryotic mycelial growth 

(McDonald, 1967).  

The pathogen is heterothallic (McDonald, 1963), meaning that successful mating can 

only occur between two compatible individuals of different mating types. Mating type systems in 
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the Ascomycota can range from those that are controlled by a single locus with two different 

mating types to those that are controlled by multiple loci with many alleles (Kronstad and 

Staben, 1997). Kronstad and Staben (1997) described mating type as “a genetically determined 

sexual compatibility phenotype.” The mating type locus, MAT, in P. teres is a single regulatory 

locus with one of two idiomorphs that occur at the site (Rau et al., 2005). Idiomorphs, rather than 

alleles, have been proposed as the term to describe alternate forms of a gene that occur at the 

same physical location in a chromosome but contain unrelated sequences that code for different 

transcription factors (Metzenberg and Glass, 1990). Despite the unrelated sequences of the 

idiomorphs of the mating type locus, the flanking regions are conserved (Metzenberg and Glass, 

1990), which allows the ability to amplify and sequence the region. The heterothallic nature of P. 

teres provides an opportunity to study the potential for sexual recombination in P. teres f. 

maculata, and understanding the extent of sexual recombination in a pathogen can influence the 

approach to breeding for durable resistance, which requires consideration of the evolutionary 

potential (such as the ability to overcome genetic host resistance) of the pathogen (McDonald 

and Linde, 2002).  

The two idiomorphs, MAT1-1 and MAT1-2, have been characterized by Rau et al. (2005) 

and shown to harbor an alpha box and a high mobility group (HMG) box, respectively. Specific 

primers have been developed for MAT1-1 and MAT1-2 of P. teres (Rau et al., 2005): MAT-1 

forward (5′-AACAGACTCCTCTTGACAACCCG-3′) and MAT-1 reverse (5′-

TGACGATGCATAGTTTGTAAGGGTC-3′) yield an amplicon of ~1300 bp; MAT-2 forward 

(5′-CAACTTTTCTCTACCACACGTATCCC-3′) and MAT-2 reverse (5′-TGTGGCGAT 

GCATAGTTCGTAC-3’) generate an amplicon of about 1150 bp. Using these primers, the ratios 

of mating types were compared in populations of P. teres collected from Sardinia (Italy), and 
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used to determine that the ratio did not deviate significantly from 1:1, indicating that the 

populations were likely sexually recombining (Rau et al., 2005). However, some population 

studies have indicated a high level of clonality, supporting the hypothesis that the contribution of 

the sexual life cycle may vary or does not occur in regions where the sexual cycle is not known 

to be completed (Shipton, 1973). Since production of sexual structures (pseudothecia) can take 

many months and only seem to form under cooler conditions, it is possible that some regions 

may lack the proper environment that would facilitate maturation of pseudothecia, the ascocarp 

formed by P. teres.  

Ascospores, spores resulting from sexual recombination, form in club-shaped bitunicate 

asci inside ascocarps known as pseudothecia that develop on barley residue and straw (Liu et al., 

2011, McLean et al., 2009, Steffenson, 1997). Setae cover the 1-2 mm-diameter pseudothecia, 

which house the light brown, 18-28 µm × 43-61µm ascospores having longitudinal and 

transverse septa (Steffenson, 1997, McLean et al., 2009). Usually eight ascospores form within 

an ascus.  

Conidia, the asexual spores, are blunt-ended, cylindrical and straight with an average 4-6 

pseudosepta that can vary between one and fourteen; occur on mid- to dark-olive-brown 

conidiophores that occur singly or in groups of two to three forming a ‘Y’ or geniculate shape; 

vary in length from 25-300 µm and from 7-11 µm in width; and vary in color from nearly 

colorless to dark brown (Smedegård-Petersen, 1971, Steffenson, 1997). Cells within conidia 

contain many nuclei, often from 15 to 25 (Gray, 1966). Conidia typically form in necrotic lesions 

on leaves. Conidia and conidiophores have also been reported to develop from immature 

ascocarps, which reportedly can survive on debris for over 17 months. In this regard, immature 

ascocarps may be important in disease epidemiology as a survival structure and as a source of 
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conidia (Shipton, 1973). In culture, production of conidiophores and conidia can vary from 

sparse to abundant.  

Spermatia have been documented to be formed by P. teres, forming within pycnidia-like 

spermagonia (Jordan, 1981, McDonald, 1963). The black, ostiolate, beaked spermagonia produce 

copious amounts of single-celled, usually binucleate (sometimes with three nuclei), hyaline 

spermatia, which are exuded from the spermagonia in a gelatinous matrix (Gray, 1966). The 

function of the small, 2µm × 4µm spermatia is unknown; although they have been observed to 

form germ tubes, one from either end, they do not appear to infect barley (Jordan, 1981, Gray, 

1966) nor to be required for initiation of the sexual cycle (Gray, 1966). P. teres also form 

synnema, and conidia can form on their surfaces (Gray, 1966).  

Distinguishing P. teres from other closely related pathogens such as P. avenae can be 

very difficult, if not impossible based on asexual structures. Gray reports that two isolates of P. 

avenae, one from California and one from Canada, were indistinguishable from other isolates of 

P. teres collected from ND, California, and Canada, based on conidia morphology, culture 

growth, and symptoms induced in barley. However, the ascospores were consistent with those 

described for H. avenae. These two isolates both caused net-like symptoms on both barley and 

oat. In contrast, two isolates of P. avenae from the American Type Culture Collection produced 

only longitudinal lesions with no striations on barley and oat, suggesting that the isolates 

described by Gray may be morphological forms of P. avenae. Interestingly, one of the isolates of 

Pyrenophora collected for the present dissertation was suspected to be P. avenae (data not 

shown), based on homology of the ITS region to H. avenae sequences deposited in the NCBI 

database using published universal primers ITS5 and ITS4 (White et al., 1990). Unfortunately, 



 14  

the isolate was not retained for further study. This finding indicates that P. avenae is present in 

ND and may warrant attention, particularly if it can exchange genetic material with P. teres.  

Life Cycle of Pyrenophora teres 

P. teres f. maculata and P. teres f. teres are residue-borne pathogens that over-winter on 

barley stubble. Unlike some species of Helminthosporium or Bipolaris, the pathogens are not 

known to have a saprophytic stage where they can grow in soil, outside of host tissue (Shipton, 

1973). In no-till operations, residue is an important source of primary inoculum because residue 

cannot be properly managed, and increased residue on the soil surface has been linked to 

increased disease severity (McLean et al., 2009). P. teres f. teres has been shown to be naturally 

seed-borne (Tervet, 1944), and this mode of transmission has been reportedly important in some 

NFNB epidemics (Shipton, 1973, Hampton, 1980, Martin, 1985). In contrast, only artificial 

contamination of seed by P. teres f. maculata has been demonstrated (Youcef-Benkada et al., 

1994). No documentation of natural infestation of seed with P. teres f. maculata has been shown, 

according to a review by Mclean et al. (2009), although seed-transmission may explain its recent 

appearance throughout major barley growing areas around the globe.  

Pseudothecia form on residue and may require up to six months to mature under 

appropriate moisture and temperature conditions. Fertile pseudothecia form under cooler 

temperatures in the range of 10-15°C, and not above 20°C (Shipton, 1973). Asci, each usually 

containing eight ascospores, form within fertile pseudothecia. Ascospores are forcibly ejected 

and can be windborne, but they have also been observed to be released singly in a film of water 

and subsequently dispersed via rain splash (Jordan, 1981). In areas where pseudothecia have 

sufficient time and environmental conditions to mature, they may provide an important source of 

early-season, primary inoculum in the form of ascospores from the over-wintered infected 
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residue (Jordan, 1981, McLean et al., 2009). Non-fertile pseudothecia can produce conidiophores 

and conidia. Pseudothecia reportedly may remain viable for two growing seasons, producing 

either ascospores or conidiophores and conidia up to 17.5 months after formation (Shipton, 

1973). Infected seed can also serve as early-season inoculum in the case of P. teres f. teres 

(McLean et al., 2009, Shipton, 1973). Infections from ascospores lead to production of conidia, 

which are produced throughout the growing season as secondary inoculum, making the disease 

polycyclic. Conidia are wind- and splash-dispersed.  

Shipton (1973) reviewed early studies of histology of P. teres, and Liu et al. (2011) 

reviewed more recent work on the infection process of P. teres f. teres and P. teres f. maculata. 

In general, infection requires from 5 to 30 or more hours of leaf wetness (Shipton, 1973). A germ 

tube can potentially arise from each cell of conidia and ascopores, although germination more 

commonly occurs from middle cells and only occasionally from the end cells (Shipton, 1973). 

Within a few hours, the hyaline germ tubes form appressoria, which then form penetration 

hyphae that directly penetrate through the cuticle layer into the epidermal cells via enzymatic 

hydrolysis and physical pressure (Liu et al., 2011).  

P. teres has been characterized as a nectrophic pathogen, in that it causes plant cells to 

die, and it relies on the nutrients released from the resulting dead tissue. However, Liu et al. 

(2011) reviewed differences in the initial infection process of P. teres f. maculata compared to P. 

teres f. teres, such as slower germination and growth of P. teres f. maculata compared to P. teres 

f. teres. Another potential difference between the two forms is that after infection, P. teres f. 

teres tends to grow intercellularly, while P. teres f. maculata may form intracellular vesicles, 

which are haustoria-like structures. Such vesicles in P. teres f. maculata may indicate a 

biotrophic life style, albeit a brief one (Liu et al. 2011). Subsequent growth of P. teres f. 
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maculata appears to be intercellular and seems to follow a necrotrophic life style shortly after 

infection. The switch from possible biotroph to necrotroph appears to occur quickly in P. teres f. 

maculata (Liu et al., 2011), after epidermal cells are infected but before hyphae grow 

intercellularly in the mesophyll layer. As a result, as suggested by Liu et al. (2011), P. teres f. 

maculata would be classified as a hemibiotroph, rather than a necrotroph like P. teres f. teres. 

Understanding the pathogen life style can potentially play a role in approaches to breeding for 

resistance, since single dominant resistance genes involved in programmed cell death might be 

harnessed in some cases to limit pathogen success in early stages of infection that reflect a 

biotrophic infection approach, while other types of host resistance may be utilized for 

necrotrophic stages of infection and colonization.  

Host Resistance to Spot Form Net Blotch 

At least eight studies have identified QTL in barley linked with resistance to SFNB, 

based on bi-parental crosses of susceptible and resistant barley lines (Williams et al., 1999, 

Williams et al., 2003, Molnar et al., 2000, Friesen et al., 2006, Manninen et al., 2006, Grewal et 

al., 2008, Grewal et al., 2012, Cakir et al., 2011). Among these, 18 QTL were characterized as 

conferring resistance at the seedling stage and 13 QTL conferring adult-plant resistance to P. 

teres f. maculata were described and found across all seven barley chromosomes. Major QTL for 

resistance to SFNB reported by these studies, the chromosomes on which they reside, and the 

parents of the double-haploid population are as follows: an un-named major QTL (4H), 

SM89010/Q21861 (Friesen et al., 2006); Ha4 (5H), Galleon/Haruna Nijo (Williams et al., 2003); 

Rpt4 (7H), Galleon/Haruna Nijo (Williams et al., 1999), CI9214/Stirling, Keel/Gairdner, 

Tilga/Tantangara, Chebec/Harrington (Williams et al., 2003); Rpt6 (5H), Rolfi/CI9819 
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(Manninen et al., 2006);  QRpts4 (4H), QRpt6 (6H), QRpt7 (7H), CDC Dolly/TR251 (Grewal et 

al., 2008); and an un-named major QTL (6H), Baudin/AC Metcalfe (Cakir et al., 2011).  

Two recent association mapping (AM) studies suggest that SFNB resistance is under 

complex control. Wang et al. (2015) used a panel of 898 unique barley lines from four two-

rowed breeding populations of the Northern Region Barley Breeding Program in Australia. 

Markers were generated for the four populations separately, yielding 1,159 and 1,411 DArT 

markers for the first and second populations, respectively, and 10,608 SNP markers for the third 

and fourth populations combined. Populations 1 and 2 were analyzed separately and populations 

3 and 4 were combined; both seedling and adult resistance were evaluated in each of the 

populations. They found 29 significant QTL across all seven barley chromosomes: one QTL on 

chromosome 1H; two on 4H; four on 2H, 3H, and 6H; six on 5H; and eight on 7H. Five of the 

QTL were highly significant and contributed resistance to SFNB in three of the four populations, 

for both seedling and adult plants. Four of these were found on chromosome 7H.  

Tamang et al. (2015) evaluated a total of 1,947 barley accessions from the global barley 

core collection for resistance to SFNB, using 4,402 markers. The accessions were challenged 

with four different isolates of P. teres f. maculata that were collected from different regions 

around the world, and AM was conducted using three general-linear models and three mixed-

linear models, which took into account kinship, population structure, or both. They identified at 

least 30 loci associated with resistance across all seven chromosomes when challenged with the 

four different isolates. Six detected associations corresponded to QTL previously detected using 

double-haploid populations: QRpts4, QRpt6, QRpt7, Rpt4, Rpt6, and the un-named QTL on 

chromosome 4H.  
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Phenotypic Diversity 

Different barley lines do not necessarily show the same reaction type to P. teres f. teres 

as they do to P. teres f. maculata. For example, one to four isolates of P. teres f. maculata from 

Western Australia were shown to produce a susceptible or moderately susceptible reaction type 

on four of twelve barley lines that produced resistant or moderately resistant reaction types when 

challenged with isolates of P. teres f. teres (Khan and Tekauz, 1982). In the same study, only one 

of the twelve barley lines, CI 6225, showed a resistant or moderately resistant reaction type to 

both forms of the pathogen. When two P. teres f. maculata isolates from Western Australia were 

compared with two P. teres f. maculata isolates from Canada, fourteen of sixteen barley 

genotypes responded similarly, one cultivar showed susceptible reactions to the Western 

Australian isolates and intermediate reactions to the Canadian isolates, and only one cultivar, 

Summit (CI 2248), showed a differential reaction to the two groups of isolates, with reaction 

types of moderately resistant to intermediate for the Western Australian isolates and susceptible 

reaction types when challenged with the Canadian isolates (Khan and Tekauz, 1982). Thus, 

regional differences in virulence of P. teres f. maculata populations exists.  

Variation in pathotypes has been reported for P. teres f. maculata. For example, in 

Canada, twenty pathotypes were identified among thirty-nine P. teres f. maculata isolates that 

were challenged on a differential set of twelve barley lines (Tekauz, 1990). Gupta et al. (2012) 

defined seven isolate groups for 49 isolates of P. teres f. maculata. Gupta et al. (2012) also 

grouped the twenty-six barley lines they evaluated into four line groups based on reaction type. 

Five of the barley lines used in the Gupta et al. study were also among the thirty evaluated in the 

analyses presented in subsequent chapters, and they fell into three different line groups defined 
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by Gupta et al. (2012): CI9214 was in one group; CI9819 and Kombar were together in a second 

group; and Skiff and CI7584 were in yet another group.  

In an earlier report, Gupta and Loughman (2001) evaluated five isolates of P. teres f. 

maculata and essentially found only two different pathotypes. Seven isolates from Mediterranean 

countries and one composite isolate from Montana collected by Bockelman et al. (1983) showed 

primarily intermediate reactions on the twelve barley lines evaluated, which included Arimont, 

CI5791, CI7584, CI9776, and CI9819. The composite Montana isolate produced pin-point to 

slightly elongated lesions on seven of the twelve barley lines; six of the Mediterranean isolates 

produced pin-point to slightly elongated lesions on the same four barley lines; and one 

Mediterranean isolate was virulent on nine lines. This suggests that possibly three different 

pathotypes could describe these isolates.  

Karki and Sharp (1986) evaluated fourteen isolates of P. teres f. maculata from Montana 

(9 isolates) and Mediterranean regions (5 isolates) on 20 barley cultivars, including Arimont, 

CI5791, CI7584, CI9214, CI9773, and CI9819. Differential reactions on barley seedlings were 

observed for Montana isolates when challenged on Arimont, CI5791 and two others; while 

Mediterranean isolates showed differential responses on Arimont and six others. The Montana 

isolates tended to produce more necrosis and chlorosis compared to the Mediterranean isolates. 

Arabi et al. (1992) evaluated twelve barley cultivars, including CI5791, for their seedling 

reaction to fourteen isolates of P. teres f. maculata collected from three regions in France. They 

noted significant differences among pathogenicity of the isolates on individual barley cultivars. 

For example, on CI5791, the mean disease score ranged from 2.37 to 4.78, based on a rating 

scale of 1 (highly resistant) to 9 (highly susceptible) measuring percentage of leaf area exhibiting 

disease symptoms (necrosis/chlorosis/water soaking); of these, four isolates were significantly 
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less virulent than the most virulent isolate, and nine were intermediate between the most virulent 

and least virulent isolates. When reaction types of the fourteen isolates were averaged across all 

barley lines, mean disease scores ranged from 2.86 to 4.79; two isolates were significantly more 

virulent than all others; and virulence of the fourteen isolates resulted in five groups that were 

significantly different from each other. McLean et al. (2010b) reported low phenotypic variation 

in that all forty-four isolates evaluated were avirulent on barley containing known resistance 

genes Rpt4, conferring seedling resistance (Williams et al., 1999) and Ha4, associated with adult 

plant resistance (Williams et al., 2003). 

Recently, Neupane et al. (2015) found isolate-specific susceptibility when over 2,000 

barley genotypes from a global barley core collection were challenged with four diverse isolates 

of P. teres f. maculata that originated from around the world. Only fifteen of the barley 

accessions that were tested harbored resistance to all four isolates of P. teres f. maculata, while 

all other accessions varied in susceptibility to the isolates. Neupane et al. (2015) also noted that 

the isolate from the United States appeared to be more virulent than the isolates from Australia, 

New Zealand, and Denmark; and they observed different lesion types in terms of chlorosis and 

necrosis among different barley accession-isolate combinations, similar to differences reported 

by Karki and Sharp (1986).  

Population Structure and Genetic Diversity of Pyrenophora teres f. maculata 

Alleles that control a trait of interest, such as virulence and fungicide insensitivity, can 

vary in frequency among populations of plant pathogens, and this frequency can change over 

time. Elucidating the frequency and changes of these alleles can help plant pathologists 

understand the underlying evolutionary factors involved, such as selection, genetic drift, 

mutation, and gene flow. This type of information is useful to describe the evolutionary potential 
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of a plant pathogen, which in turn directs the approaches that plant breeders use to implement 

host resistance (McDonald and Linde, 2002).  

To this end, several studies have been published that report on the population structure 

and genetic diversity of P. teres. In a study by Peever and Milgroom (1994), populations with 

between 22 and 35 isolates of P. teres were collected from five locations in total, originating 

from Alberta (two different locations), ND, New York, and Germany. Using RAPD genetic 

markers, Peever and Milgroom (1994) found twenty-three multilocus genotypes (MLG) out of 

137 isolates, with 5-9 MLG in each population: 9 MLG exclusive to Germany, and four 

exclusive to NY. 46% of genetic variation was due to differentiation among populations of P. 

teres vs. 54% within pops; and when only the North American populations were analyzed, 33% 

of genetic variation was due to differentiation among populations, which still indicates extensive 

differentiation between populations. The authors speculated that the differences were not likely 

due to selection pressure imposed by commercial barley cultivars grown, since all barley lines 

used are susceptible. Their speculation, however, ignores the idea that susceptibility factors 

within cultivars may vary, and these differences may contribute to selection pressure, especially 

if different cultivars are used in different regions. In addition, as Peeer and Milgroom (1994) 

note, selection pressure from wild hosts may also be contributing to the differentiation. For the 

two Alberta populations that were only 20 km apart, a low level of differentiation was observed 

(5%); thus, as populations are closer together, their relatedness appears to increase. Peever and 

Milgroom (1994) also found that the NY population appeared to reproduce primarily asexually, 

based on analyses of multilocus structure that significantly differed from 0, indicating non-

random mating; such values for the four other populations from Alberta, ND, and Germany were 

not significantly different from 0, thus supporting random mating.  
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Rau et al. (2003) collected isolates of P. teres from six barley fields sown to the 

Sardinian landrace “S’orgiu sardu”; the six fields were from geographically diverse locations on 

the island, and isolates were collected at one time between when plants were at the four-leaf 

stage to heading. Five of the six fields yielded isolates of both P. teres f. teres and P. teres f. 

maculata, while a sixth field harbored only P. teres f. teres. Of 150 isolates collected and 

phenotyped, 85 were P. teres f. teres and 65 were P. teres f. maculata, population genetic 

structure was analyzed based on AFLP markers. The AFLP analyses successfully separated P. 

teres f. teres and P. teres f. maculata isolates into two distinct clusters, and no intermediates 

were detected, indicating that hybridization was not occurring. The group found that the 

populations of P. teres f. teres were more different from each other than the P. teres f. maculata 

populations, and they provided evidence for significant levels of sexual and asexual reproduction 

within the two forms. Clonality occurred at a higher level in the P. teres f. teres populations 

compared to the P. teres f. maculata populations; however, it is possible that the identified 

clones may be an artifact of the AFLP markers used, where although 51 of the 121 bands were 

polymorphic among all isolates, bands of the same size do not necessarily have the same genetic 

sequence. Additional data from the study suggested that gene flow between P. teres f. maculata 

populations was greater than between P. teres f. teres populations, and the authors speculate that 

one reason for this difference is that perhaps P. teres f. maculata is more efficient at long-

distance dispersal than P. teres f. teres. Overall, Rau et al. (2003) found that AFLP distinguished 

the two forms, that they were genetically isolates under field conditions, that P. teres f. teres 

populations were more differentiated from each other than the P. teres f. maculata populations, 

and that the extent of sexual vs. asexual reproduction can vary from one environment to another.  
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Like Rau et al. (2003), Leisova et al. (2005a) explored genetic diversity of P. teres using 

AFLP markers; 66 isolates of P. teres (30 of P. teres f. teres and 36 of P. teres f. maculata) were 

collected from about 22 different barley-growing regions within the Czech and Slovak Republics 

at different time periods and evaluated along with four isolates collected from other countries. 

They showed that cluster analyses distinctly separated the two forms; however, in contrast to 

Rau et al. (2003), they found two isolates that were originally identified as P. teres f. maculata 

that were intermediate between P. teres f. teres and P. teres f. maculata when subjected to 

principal components analysis, suggesting possible, rare, hybridization events. Genetic diversity 

analyses indicated that differentiation among the P. teres f. teres and P. teres f. maculata 

populations was partially based on time of sampling rather than on geographic origin or host 

cultivar. For both P. teres f. teres and P. teres f. maculata, genetic variability dropped from 2002 

to 2003 compared to 1996-2001 and 2002 time periods, and this drop was coincident with 

widespread flooding in central Europe in fall 2002. 

Serenius et al. (2007), using AFLP markers, evaluated P. teres populations of both forms 

from Australia, Northern Europe, North America, and Russia and found high levels of genetic 

differentiation among P. teres f. teres isolates. In Australia, where both forms were analyzed, a 

clear differentiation between the two forms was found, in agreement with previous studies (Rau 

et al., 2003, Leisova et al., 2005a). Similar to Rau et al. (2003), Serenius et al. (2007) found that 

P. teres f. teres populations in Australia were more differentiated from each other than the P. 

teres f. maculata populations. Similar to Leisova et al. (2005b), they also determined that 

differentiation of the P. teres populations within Australia did not differ based on geographic 

origin, unlike the global P. teres f. teres populations they examined, which varied considerably 

among geographic origins. The two mating types occurred in a 1:1 ratio in several locations in 
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Finland and Australia suggests that sexual recombination is occurring in the P. teres f. teres 

populations in these regions.  

Lehmensiek et al. (2010) also used AFLP markers to understand population structure of 

P. teres from South African and Australian populations. As in other studies that used AFLP 

markers, P. teres f. teres and P. teres f. maculata isolates grouped in distinct clusters based on 

cluster analyses. In agreement with Rau et al. (2003), they found no evidence of hybridization. 

The group provided evidence that the South African and Australian populations of P. teres f. 

maculata as well as of P. teres f. teres were probably from different genetic lineages, since 

genetic variability was high.  

Toxins in Pyrenophora teres f. maculata 

Chlorosis and necrosis are often associated with lesions of net blotch. When chlorotic 

tissue surrounding lesions is examined microscopically, no hyphae are found. Since disruption 

and death of plant cells occurs in advance of hyphal growth (Smedegård-Petersen, 1977, Shipton, 

1973), diffusible toxins (Shipton, 1973, Liu et al., 2011) or proteinaceous effectors (Liu et al., 

2011) originating from the pathogen are likely playing a role in disease development. Both P. 

teres f. teres and P. teres f. maculata produce phytotoxins described initially as toxin A and 

toxin B (Smedegård-Petersen, 1977). Later work identified a third toxin, toxin C, which was 

shown to be aspergillomarasmine A, and the same work demonstrated that toxin A was a 

compound that was previously not described in nature (N-(2-amino-2-carboxyethyl)aspartic 

acid), while toxin B was anydroaspergillomarasmine A, possibly a precursor or artifact of toxin 

C (Bach et al., 1979). These toxins have been shown to be non-proteinaceous, low molecular 

weight metabolites, and they have been associated with varying degrees of chlorosis and necrosis 

on susceptible plants in the absence of the pathogen (Friis et al., 1991). Weiergang et al. (2002) 
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demonstrated that the three phytotoxins produce different responses in susceptible barley within 

120 hours: toxin A is associated with dark yellow chlorotic symptoms with little necrosis, toxin 

C causes distinct necrosis with light yellow chlorotic zones, and toxin B yields little to no 

discernible host response. Highly resistant barley lines developed little to no chlorosis or necrosis 

within 120 hours when exposed to toxin A or C. As a result, it was proposed that toxin A and C 

could be used to screen early barley germplasm for resistance to P. teres. However, although 

these toxins produced general symptoms associated with infection, they were not associated with 

the distinct necrotic lesions induced by the pathogen, and for this reason, their utility in screening 

germplasm is likely limited.  

In addition to non-proteinaceous low molecular weight compounds, Sarpeleh et al. 

(2007) also found proteinaceous metabolites from both P. teres f. teres and P. teres f. maculata 

ranging in size between 10 and 100 kDa. The low molecular weight compounds were similar in 

their characteristics to the previously described toxin B (anhydroaspergillomarasmine A) and 

toxin C (aspergillomarasmine A), in terms of inducing chlorosis on a broad host range, 

electrophoretic properties, staining, heat stability, and host range. The partially purified 

proteinaceous metabolites, on the other hand, induced necrosis symptoms, and these occurred 

within three days when injected into attached leaves, but not when injected into intact leaves; and 

they only induced symptoms on barley, more severely on cv. Sloop compared to minor reaction 

on a resistant line, CI9214. Presence of such host-specific toxins may indicate gene-for-gene or 

inverse gene-for-gene interactions, such as occurs between host-specific toxins in the pathogen 

and susceptibility factors in the host in the Stagonospora nodorum-barley pathosystem (Friesen 

et al., 2008b).  
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Necrotrophic effectors, also known as host-specific toxins, have been identified in other 

Dothideomycete necrotrophic fungi and interact with single genes (usually dominant) in the host, 

to induce programmed cell death in the host that spreads (Friesen et al., 2008a). This model is 

described by dominant susceptibility. Programmed cell death in plants is usually a host defense 

response to restrict growth of biotrophic plant pathogenic fungi, such as the rust pathogens and 

those that cause powdery mildew diseases (Glazebrook, 2005). However, when the process is 

hijacked by a plant pathogen that employs a necrotrophic life style, it provides the necrotroph 

with desired nutrients. This necrotrophic effector-triggered susceptibility (NETS) model (Liu et 

al., 2015) has been implicated in the P. teres f. teres-barley pathosystem and is predicted to play 

a role with interactions of P. teres f. maculata with barley as well. 

Virulence/Avirulence 

Molecular markers have been linked with avirulence in P. teres f. teres (Beattie et al., 

2007, Lai et al., 2007, Weiland et al., 1999). Using a bulk segregant analysis approach, a 

population of 15 virulent and 15 avirulent progeny derived from a bi-parental cross between 

isolates WRS 1607 and WRS 1906 showing a differential reaction on the barley cultivar 

‘Heartland’ was screened for AFLP markers linked to avirulence (Beattie et al., 2007). Six AFLP 

markers showing linkage with the avirulence phenotype were detected and ordered along with 

the avirulence phenotype using JoinMap 3.0 (Van Ooijen and Voorrips, 2001), a standard 

mapping program. The 1:1 segregation ratio of the phenotype in the haploid organism provided 

evidence that a single gene confers avirulence in Heartland, designated AvrHeartland.  

AvrHeartland differs from that detected by Weiland et al. (1999), which was found when 

progeny from a cross between two isolates of P. teres f. teres (0-1 and 15A) with differential 

response on the barley cultivar Harbin were challenged on Harbin. The resulting 1:1 segregating 
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ratio between low virulence and high virulence also indicates that a single major gene controls 

virulence on Harbin. Weiland et al. then subjected the DNA to RAPD analyses and found five 

markers associated with avirulence. Thus, they tentatively designated the locus that confers 

avirulence to Harbin as AvrHar. They speculate that AvrHar interacts with the single major gene 

that confers resistance in Harbin, thus following a gene-for-gene interaction.  

Additional avirulence loci were found by Lai et al. (2007), when progeny of the same 

cross between 0-1 and 15A were challenged on ‘Canadian Lake Shore’ (CLS; CIho2750), 

‘Tifang’ (CIho4407), and ‘Prato’ (CIho15815) and based on AFLP analysis. Ratios of avirulent 

reaction types to virulent reaction types were 1:1 for both CLS and Tifang and 1:3 for Prato, 

indicating involvement of one and two major genes, respectively. The avirulence of 57 progeny 

isolates that were in common to the Lai et al. study (Lai et al., 2007) and the Weiland et al. study 

(Weiland et al., 1999) was found to co-segregate on CLS, Tifang, and Harbin, indicating that 

either the same avirulence gene or several closely linked genes controlled the phenotype (Lai et 

al., 2007). Two major genes speculated for avirulence/virulence on Prato were designated 

AvrPra1 and AvrPra2I. One of these, AvrPra2, is located on the same linkage group as AvrHar, 

but the two confer opposite phenotypes and thus the two could potentially be alleles at the same 

locus.  

In all, four different major genes, designated AvrHeartland, AvrHar, AvrPra1, and 

AvrPra2, have been speculated based on segregation analyses and association of markers with 

virulence/avirulence in P. teres f. teres, and two of these, AvrHar and AvrPra2, may be alleles at 

the same locus. Further work by Afanasenko et al. (2007), where segregation patterns of host 

resistance and pathogen virulence/avirulence across multiple hosts and two pathogen populations 

were investigated in parallel, also indicated that gene-for-gene interactions were likely present in 
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the P. teres f. teres-barley pathosystem. No such studies have yet been published for P. teres f. 

maculata. Since host responses when challenged with P. teres f. maculata often differ from those 

with P. teres f. teres, it is expected that virulence/avirulence factors in P. teres f. maculata will 

differ from those in P. teres f. teres; and it is not unreasonable to expect that gene-for-gene or 

inverse gene-for-gene interactions occur.  

Association Mapping in Fungi 

Association mapping (AM) is a genetic mapping approach that detects correlations, also 

known as marker-trait associations (MTAs), between genetic markers and a phenotype of interest 

in a population where relatedness is not controlled (Myles et al., 2009). Use of single nucleotide 

polymorphisms (SNPs) allows the implementation of powerful genome-wide association 

mapping studies (GWAS) (Rafalski, 2002), and they can be directly identified using modern next 

generation sequencing approaches such as genotyping-by-sequencing (GBS).  

AM contrasts with genetic mapping studies that seek quantitative trait loci (QTL) from 

either a bi-parental population where the parents differ in the trait of interest, or from a 

population in which the pedigree is known. AM takes advantage of linkage disequilibrium (LD) 

in a population, which can enhance mapping resolution, and the approach has been successfully 

applied in humans and crops (Mandel et al., 2013, Gurung et al., 2014, Tamang et al., 2015, 

Lander and Schork, 1994, Mamidi et al., 2011, Poland et al., 2011, Roy et al., 2010). LD is the 

nonrandom association of loci that can either be physically linked on the same chromosome or 

on entirely different chromosomes; thus, LD differs from linkage, where two loci are physically 

close on the same chromosome. Since AM is known to produce false associations if underlying 

population structure or kinship is not taken into account in analyses, it is important to control for 

these factors, for example using approaches that implement principal components analyses or by 
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mixed model analyses (Pritchard et al., 2000, Yu et al., 2006, Price et al., 2006). Relying strictly 

on p-value adjustments for multiple comparisons, such as a Bonferroni correction or the 

Benjamini-Hochberg approach, can lead to over-correction and false negatives (Tamang et al., 

2015, Müller et al., 2011).  

Seeking virulence or avirulence factors in plant pathogenic fungi using approaches such 

as AM is important to support efforts to improve plant cultivars. However, AM has not been 

frequently applied to fungi and the approach has been even more rarely applied to association 

studies in plant-pathogenic haploid fungi (Dalman et al., 2013, LeBoldus et al., 2015). With 

haploid organisms, smaller populations can be used (Dalman et al., 2013); Dalman et al. 

successfully identified three putatively novel MTAs related to fungal growth in pine (Pinus 

sylvestris) or spruce (Picea abies) using only twenty-three isolates of Heterobasidion annosum 

collected from geographically diverse fields, and they detected four MTAs that corresponded 

with previously characterized virulence loci identified in a conventional quantitative trait loci 

(QTL) analysis based on a bi-parental population of the pathogen. LeBoldus et al. (2015) further 

validated the approach with 34 geographically diverse ND isolates of P. teres f. maculata by 

using SNPs generated by a two-enzyme GBS approach to find MTAs for the mating-type 

idiomorph.  

Summary 

The barley pathogen that causes SFNB, P. teres f. maculata, has occurred on wild 

relatives of barley long before the crop was domesticated, and today it is found on cultivated 

barley throughout the world. The pathogen undergoes a mixed lifestyle, where it lives primarily 

as a haploid organism that reproduces asexually, and it has a brief diploid stage where sexual 

recombination occurs; sexual recombination requires the union of two individuals with different 
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yet compatible mating-type idiomorphs; and sexual structures can take months to develop. The 

pathogen was first confirmed in ND in 2009, and it has been found throughout the state every 

year since that time. All commercial cultivars of barley planted in ND are susceptible to infection 

by the residue-borne pathogen, and as the use of no-till cultural practices and conducive weather 

continue, the risk of significant yield losses due to the pathogen increases.  

Yield losses due to SFNB have not been studied in ND. The variability of the pathogen 

with respect to population genetics, phenotypic interactions with different barley cultivars, or the 

virulence/avirulence factors present in the population have not been characterized in ND. These 

are important factors to consider when developing strategies to identify and deploy effective and 

durable resistance in this complex pathosystem. Identifying markers associated with potential 

virulence/avirulence factors will facilitate the identification of pathogen effectors or avirulence 

genes, which will enable the thorough characterization of the underlying mechanisms of the host-

pathogen genetic interactions. Thus, the objectives of this research presented in the following 

chapters were to determine the yield impact of SFNB on ND barley cultivars commonly grown 

in the region; to understand the phenotypic and genetic variability and population genetics of P. 

teres f. maculata; and to identify marker-trait associations that would facilitate the future 

identification of virulence/avirulence factors using the approach of association mapping.  
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CHAPTER 2. EFFECT OF NET BLOTCH ON YIELD AND QUALITY COMPONENTS 

OF BARLEY IN NORTH DAKOTA 

Abstract 

The impact of net blotch on yield and quality components of barley cultivars commonly 

grown in North Dakota were investigated over eleven year-sites in the state (2011-2014; 

Dickinson, Fargo, Nesson Valley township, and Osnabrock). Thirty-six barley genotypes were 

included at one year-site, and twelve were used at ten year-sites, and at all sites, genotypes were 

subjected to treatments with and without fungicide to generate different levels of disease. For the 

non-protected treatment, genotypes differed in susceptibility to disease at most year-sites, with 

cultivars such as Conrad and Pinnacle consistently experiencing the highest levels of disease 

(2.0-31.7% and 6.3-36.7%, respectively). Mean percent disease of non-protected treatments 

across year-sites ranged from 3.7% to 19.3%, with associated yield losses up to 9.7%. Test 

weight, kernel brightness, and percent plump grain were reduced up to 1.7%, 1.5%, and 4.9%, 

respectively, while thin kernels increased by up to 49.2% in non-protected treatments compared 

to treatments receiving fungicide. Simple linear regression of percent yield loss on adjusted 

percent disease using year-site means of treatments predicts a 0.77% increase in yield loss for 

every 1% increase in disease. Even at low levels of disease, significant yield losses due to net 

blotch can be realized under the growing conditions of North Dakota, and efforts to breed for 

resistance to net blotch should be considered a priority.  

Introduction  

Net blotch diseases of barley caused by Pyrenophora teres Drechsler (anamorph 

Drechslera teres [Sacc.] Shoemaker) occur throughout most barley growing regions of the world 

(Steffenson, 1997). Two different forms of the disease have been described, based on symptoms 
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produced on barley: net form net blotch (NFNB) and spot form net blotch (SFNB), caused by 

separate but closely related fungal plant pathogens P. teres f. teres and P. teres f. maculata 

Smedeg, respectively. Leaf symptoms of NFNB appear initially as small, dark brown circular 

lesions that expand along veins and across veins, forming larger lesions comprised of a network 

of narrow, dark brown striations that extend both longitudinally and transversely. Chlorosis may 

surround the lesions, and in highly susceptible reactions, entire leaves can become tan and dry, 

with the dark brown and netted patterns still visible in the dead tissue. SFNB leaf symptoms, in 

contrast, consist of dark brown lesions that may expand to a circular or elliptical shape, as large 

as 6 mm in length (McLean et al., 2009). No striations occur in SFNB symptoms. Similar to 

NFNB, SFNB lesions may be surrounded by chlorosis to varying degrees, depending on the 

isolate, host genotype, and growing conditions (Liu et al., 2011).  

P. teres f. maculata is morphologically indistinguishable from P. teres f. teres, and at 

times, symptoms of SFNB and NFNB can be very similar, for example if lesions are young or if 

the barley genotype is resistant. As a result, symptoms alone may not be sufficient to distinguish 

P. teres f. maculata from P. teres f. teres in the field. SFNB lesions also closely resemble those 

of spot blotch, caused by Cochliobolus sativus; in this case, examination of conidia morphology 

can distinguish the pathogens. Since the recent documentation of SFNB in North Dakota (ND) 

(Liu and Friesen, 2010), all three diseases are now known to occur in the region.  

Yield losses due to SFNB and NFNB have been reported as nominal to over 44% 

depending on the year and region (Jayasena et al., 2007, Khan, 1989, Shipton, 1973, Steffenson 

et al., 1991). In some cases, quality, such as 100-seed weight, may be reduced (Skou and Haahr, 

1987). Quality reduction of 19% due to SFNB has been documented in parts of Australia 

(Jayasena et al., 2007). Such losses in quality due to SFNB are similar to those reported for 
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NFNB, where up to 31.6% reduction in thousand kernel weight and up to a 91% increase in thin 

kernels (screenings) were reported due to NFNB in non-protected plots compared to fungicide-

treated plots in two consecutive growing seasons in California (Steffenson et al., 1991). Loss of 

quality in terms of reduced carbohydrates, which may lower the amount of malt extract, has also 

been reported (Shipton, 1973), as have marginal increases in protein due to SFNB (Jayasena et 

al., 2007). Since the bulk of barley grown in ND is for malting purposes, protein content beyond 

13.5% for six-rowed and 13.0% for two-rowed is undesirable (Dr. Richard Horsley, personal 

communication), and even a small increase in protein may cause rejection of a barley lot.  

Although fungicides have been shown to be effective to manage SFNB (Jayasena et al., 

2002), factors such as cost of application, efficacy, application timing, and risk of a pathogen 

population shifting from fungicide-sensitive to fungicide-insensitive need to be considered. In 

addition, in ND, more than one application of fungicide to manage foliar diseases of barley is 

seldom used. Thus, utilizing host resistance is the most direct and economically viable option for 

barley growers and our efforts to breed for resistance to diverse foliar pathogens continues. 

However, breeding priorities are typically influenced by the economic impact that a particular 

disease has had in terms of yield or quality with potential losses being ignored until a devastating 

epidemic occurs.  

The impact that net blotch diseases have on yield and yield components in ND, where 

environment, and pathogen and host genetics differ from areas where this impact has previously 

been reported, is not well described. Nearly all barley cultivars commonly grown in ND appear 

to be susceptible or moderately susceptible to SFNB at the seedling stage, with very few 

cultivars such as Quest and Conlon being described as moderately resistant in ND variety trials 

at the adult plant stage (Ransom et al., 2014). ND is among the top states in terms of numbers of 
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acres subjected to no till (7.8 million acres) and conservation till (6.2 million acres) out of about 

23 million acres sown (USDA NASS, 2012), thus potentially increasing disease pressure of 

residue-borne diseases such as net blotch. SFNB is now reportedly more prevalent than any other 

foliar disease in parts of Australia (McLean et al., 2010), where the rise in importance of SFNB 

has been attributed to increased adoption of no-till farming practices, selection pressure due to 

use of cultivars that are resistant to other foliar diseases, and conducive weather (McLean et al., 

2009). Given that similar factors occur in ND, breeders and geneticists in the state are concerned 

about the potential of net blotch diseases to cause significant yield loss. No reports on the effect 

of net blotch diseases on barley yield and quality exist for ND. The objective of this study was to 

determine the impact that net blotch has on yield and quality components of commonly grown 

barley cultivars in ND and on advanced barley lines from the North Dakota State University 

barley breeding program.  

Materials and Methods 

Experimental Design and Plot Maintenance 

In all, eleven year-sites were established at geographically diverse sites in ND over four 

years, from 2011 to 2014, using a randomized complete block design in a split-plot arrangement 

with three replicates of each treatment combination (Table 2.1). In 2011, one site was established 

at Langdon (northeast ND; at the North Dakota State University [NDSU] Langdon Research and 

Extension Center). In 2012, experiments were established at Dickinson (southwest ND; at the 

NDSU Dickinson Research Extension Center in Dickinson, ND); Fargo (southeast ND; at the 

NDSU main station); Nesson Valley township (northwest ND; at the Nesson Valley Irrigation 

Project site of the NDSU Williston Research Extension Center); and Osnabrock (northeast ND; 

about 14 miles east southeast of the NDSU Langdon Research Extension Center). In 2013, 
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experiments were established at Dickinson, Fargo, and Nesson Valley. In 2014, experiments 

were established at Dickinson, Nesson Valley, and Osnabrock. Whole plot for the 2011 

experiment was treatment (two levels: sprayed with fungicide three times, and non-sprayed), and 

subplot was genotype (36 different barley cultivars or advanced breeding lines). For experiments 

at all sites in 2012 through 2014, whole plot was barley genotype (twelve commonly grown 

cultivars and an advanced line), and subplot was treatment (two levels: sprayed with fungicide 

once or twice, and non-sprayed). In all years and sites, subplot area ranged from 3.7 m2 to 6.5m2, 

and 1.5-2.1 m borders surrounded subplots. Standard practices for barley growth in ND with 

respect to fertilizer and weed control for each site were implemented (Wiersma and Ransom, 

c2005). All sites except Nesson Valley relied on natural rainfall. The Nesson Valley site was 

irrigated six to nine times, 1.27-2.54 cm per event, as needed through the second or third week in 

July in 2012, 2013, and 2014. 

For the 2011 Langdon experiment, subplot area was 6.5 m2, seven rows wide by 6.1 m 

long, with 15.2-cm row spacing. An Almaco plot planter, equipped with double disk openers and 

press wheels, was used for planting, with a seeding rate of 3.09 million seeds/ha. Entire subplots 

were harvested with an Almaco plot combine. For Dickinson, subplots were seven rows with a 

row spacing of 20.3 cm in 2012-2014, with lengths of 3.7 m (5.3 m2) in 2013 and of 4.3 m (6.1 

m2) in 2012 and 2014. The Dickinson experiments were seeded at 2.97 million pure live seed per 

hectare using a Hege 100 series planter with Acra Plant openers. Plots were harvested using a 

Massey 8xp plot combine. Length of plots harvested in Dickinson varied from plot to plot, due to 

factors such animal damage or weed pressure, and ranged from 1.54 m to 3.5 m. Fargo, 

Osnabrock, and Nesson Valley subplot area was 3.7 m2 in all years when experiments were 

established at these sites, with seven rows spaced 19 cm apart with 2.43-meter lengths. An 
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Almaco Heavy-Duty Grain Drill with SkyTrip (ALMACO, Nevada, IA) was used to establish 

plots, using a seeding rate of 2.47 million seeds/hectare. Entire plots were harvested using a Zurn 

150 Plot Combine (Zurn Harvesting GmbH & Co. KG, Hohebuch, Germany).  

Table 2.1. Yield response trials. Treatments, experimental design and plot details.  

Year and 

Location 

Previous 

crop 

Sowing 

Date 

Harvest 

Date 

Fungicide, rate, and timing of 

application for treated whole plots 

(2011) or subplots (2012-2014) 

Disease 

Rating 

Date 

(Feekes 

11.1-11.2) 

2011 Langdon Maize 5 May 24 August 1st application: 6 June, Prosaro, at 

~5.5 leaf stage  

2nd application: 5 July, Proline, at 

~Feekes 10 (boot swollen)  

3rd application: 14 July, Caramba  

21 July 

2012 Dickinson Barley 11 April 24 July 1st application: 14 June, Prosaro, 

~Feekes 10  

2nd application: 21 June, Caramba 

21 June 

2012 Fargo Soybean 26 April 3 August 18 June, Prosaro, ~Feekes 10 11 July 

2012 NV Sugarbeet 1 May 9 August 22 June, Prosaro, ~Feekes 10 22 June 

2012 Osnabrock Canola 9 May 20 August 26 June, Prosaro, ~Feekes 10 3 July 

2013 Dickinson Barley 3 May 19 August 2 July, Prosaro, ~Feekes 10 12 July 

2013 Fargo Soybean  26 August 28 June, Prosaro, ~Feekes 9.2-10.2 16 July 

2013 NV Sugarbeet  9 August 1 July, Prosaro, ~Feekes 10 3 July 

2014 Dickinson Barley 13 May 13 August 1st application: 19 June, Prosaro, at 

~5.5 leaf stage  

2nd application: 8 July, Prosaro, at 

heading/Feekes 10-10.1 

18 July 

2014 NV Barley 28 May 12 August 20 June, Prosaro, first appearance 

of spikelets to ¾ head emerged, 

~Feekes 10.1 to 10.4  

8 July 

2014 Osnabrock Canola 15 May 19 August 2 July, Prosaro, boot swollen, 

~Feekes 10 

19 July 

 

Genotype and Fungicide Treatments 

For the 2011 Langdon experiment, whole plots were treatment (either protected with 

fungicides or left untreated) and arranged in a manner that allowed application by tractor and 

spray boom. For sprayed plots, fungicide was applied three times. A first application of 474.5 

mL/ha Prosaro® (19% Prothioconazole and 19% Tebuconazole), a second application with 427.5 

mL/ha Proline® (41% Prothioconazole), and a third application using 985.5 mL/ha Caramba® 
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(8.6% metconazole) were made on treated plots. For all sites in 2012 through 2014, where 

fungicide treatment was the subplot, only Prosaro® was applied, at a rate of 474.5 mL/ha once or 

twice using a CO2-pressurized backpack sprayer equipped with 8001VS flat fan nozzles set to 

spray forward and backward to achieve good fungicide coverage and calibrated to deliver 225 

L/ha at 185 kPa. Growth stages where the flag leaf collar was just visible to boot stage (Feekes 

9.2 to 10) were targeted to protect the first (flag) leaf and second (flag-minus-one) leaf from 

infection; except the 2014 Nesson Valley application was made when genotypes ranged from 

Feekes 10.1 to 10.4, a slightly later growth stage than other year-sites. In 2012 and 2014 at the 

Dickinson site, early-season disease pressure prompted a first fungicide application at the five to 

five-and-a half leaf stage, followed by a second application to protect the flag leaf.  

Twelve genotypes used at all sites in 2011-2014 were the two-rowed cultivars AC 

Metcalfe, Conlon, Conrad, Haxby, Pinnacle, and Rawson; and the six-rowed genotypes 

Celebration, Innovation, Quest, Stellar-ND, Tradition, and an advanced experimental line 

ND22421. At 2011 Langdon, twenty-four additional genotypes were used, for a total of 36, 

including two-rowed barley genotypes (CDC Copeland, Lilly, and 10 experimental lines) and 

six-rowed barley genotypes (Lacey, Moravian 133, Rasmusson, Robust, and eight experimental 

lines).  

Disease Assessment 

Disease development at each site relied on natural inoculum, and no inoculated studies 

involving SFNB were previously conducted at any of the sites. For all experiments, disease was 

assessed only once, at growth stages that ranged from medium milk to soft dough (growth stage 

Feekes 11.1 to 11.2). This growth stage was chosen since most dry matter has accumulated by 

this time (Nelson et al., 1988). Percent disease was visually estimated on arbitrarily selected 
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flag-minus-one leaves of six plants in the center rows of plots, using a modified disease severity 

assessment scale as described by Markell et al. (Markell et al., 2009), where 0 = 0%; 2 = trace to 

4%; 7 = 5 to 10%; 15 = 11 to 20%; 30 = 21 to 40%; 50 = 41-60%; 70 = 61-80%; 85 = 81 to 90%; 

93 = 91 to >96%. Flag-minus-one leaves were chosen for evaluation to minimize potential 

interference by flag leaves that may have begun natural senescence and since size of flag leaves 

varied among genotypes.  

In each year except 2014, leaves from within selected plots or adjacent small trap fields 

of cultivars Tradition or Pinnacle were arbitrarily selected and incubated on water agar to 

determine which pathogens were present, since foliar symptoms can resemble each other. P. 

teres f. teres and P. teres f. maculata were subcultured into monoconidial isolates and 

distinguished from C. sativus based on spore morphology. To differentiate P. teres f. maculata 

from P. teres f. teres, the isolates were either evaluated for lesion type on barley cultivars Hector 

(susceptible to P. teres f. teres) and Pinnacle (susceptible to P. teres f. maculata), or extracted 

DNA was subjected to molecular analysis using primers designed to detect mating type and form 

of P. teres (Lu et al., 2010).  

Yield and Quality Assessments 

All plots were machine-harvested between 24 July and 24 August, and then cleaned using 

a model SLN grain sample cleaner (A/S Rational Kornservice, Esbjerg, Denmark). Cleaned grain 

from each plot was then weighed and converted to calculated yield in metric tons per hectare 

(MT/ha); and test weight (density) was calculated as grams from ¼ pint or ½ liter samples and 

converted to kilograms per hectoliter (kg/hL).  

Quality measurements were obtained for the 2011, 2013, and 2014 experiments, but not 

for the 2012 experiments. Approximately 200 gram-subsamples were collected from cleaned and 
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weighed grain. Grain protein and color was assessed using an Infratec 1241 near-infrared 

reflectance analyzer (Foss North America; Eden Prairie, MN). Protein was measured as a 

percentage of dry matter. Grain color was recorded in degrees Lovibond (°L, the L-value). The 

L-value is a measure of brightness, where a higher score indicates a brighter color, which is 

associated with better quality, and a lower score identifies poor grain color. Grain plumpness was 

measured using a Sortimat (Pfeuffer, Kitzingen, Germany), where a 100 g subsample of grain 

was shaken vigorously for two minutes over a series of screens with elongated perforations 19.10 

mm long by 3.18, 2.77, 2.38, or 1.98 mm wide. Percent plumps (grain with widths greater than 

2.77 mm) and percent thin kernels (screenings; grain with widths less than 1.98 mm) were 

obtained by weighing.  

Statistical Analysis 

SAS® software, version 9.3 (SAS Institute, Cary, NC) was used to perform all analyses of 

the data. Split-plot analysis of variance, using PROC GLM, was performed on variables for each 

experiment (year-site) separately; all factors were treated as fixed, with treatment and genotype 

as main effects. To generate proper error terms, treatment was designated as whole plot in 2011 

and genotype was designated as whole in the 2012-2014 experiments. When significant 

interactions of the main effects were observed, a Bonferroni approach to adjust p-values for 

multiple comparisons was used to determine differences in percent disease, yield, and yield 

quality components; thus, only comparisons with P<0.0014 and P<0.0028 for 2011 Langdon (at 

α=0.05 and α=0.10, respectively, adjusted for 36 comparisons) and P <0.0042 and P <0.0083 (at 

α=0.05 and α=0.10, respectively, adjusted for 12 comparisons) for all other year-sites were 

considered significant. This approach was used because among the interactions (up to 2,592), 

only certain comparisons were of interest (36 for 2011 Langdon, and 12 for all other site-years); 
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specifically, comparisons of interest were those between response variables of a treated plot 

versus an untreated plot of the same genotype. For analyses of variance where genotype as a 

main effect on a response variable was significant, means were separated using Tukey’s 

adjustment (for balanced experiments) or the Tukey-Kramer adjustment (for experiments with 

missing data) for multiple comparisons to control the Family-wise Type I error rate (α=0.05). 

Tukey and Tukey-Kramer adjustments were selected here since fewer comparisons were being 

made when genotype was the main effect, to strike a balance between being overly stringent (e.g. 

with Bonferroni adjustment) and not sufficiently stringent (using non-adjusted P-values). Mean 

separation when the main effect of treatment on response variables was significant relied on 

Fisher’s protected least significant difference test (at α =0.05 or α = 0.10), with no adjustment 

since only two comparisons were being made (treated vs. untreated). Homogeneity of variances 

for main effects were tested using the Levene method, and normality of residuals was tested with 

PROC UNIVARIATE and by visually assessing quantile-quantile (QQ) plots and plots of the 

residuals. Percent disease, percent plumps and percent thins were arcsine-square-root 

transformed before analyses as similarly implemented by D’Angelo et al. (2014); means are 

reported as non-transformed data. Relationships among disease, yield, and quality components 

were examined using Pearson’s correlation. Simple linear regression using PROC GLM was 

used to determine relationships between disease (independent variable) and yield loss.  

Results 

Disease Assessment  

SFNB typically developed at low to moderately low levels in all year-sites except 2012, 

where excessive rainfall early in the growing season gave way to extremely dry conditions 

during critical periods of the growing season, and disease severity was essentially 0% when 
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plants had reached growth stage Feekes 11.1-11.2. SFNB symptoms were present at low levels in 

the lower canopy at most sites by Feekes 10, and rarely by the 5-leaf stage, when it appeared in 

the earlier part of the season only at 2011 Langdon, 2012 Dickinson, and 2014 Dickinson. Mean 

percent disease severities among untreated plots in 2011, 2013, and 2014 ranged from 3.7 to 

19.3%. SFNB appeared to be the predominant disease in most years and locations except 2013 

Fargo, as determined by symptoms and proportion of isolates identified as P. teres f. maculata 

either by molecular or phenotypic assays. Other diseases observed included spot blotch, which 

was confirmed in Langdon 2011; bacterial streak (caused by Xanthomonas translucens), which 

was severe in Fargo 2013 plots; and ergot, which was observed in one experimental genotype in 

the Langdon 2011 plots, but did not appear to affect yield (data not shown). In 2011 (Langdon), 

of 84 isolates collected from necrotic leaf spots, 58 were P. teres f. maculata, 9 were P. teres f. 

teres, and 17 were Bs. For Dickinson, P. teres f. maculata was identified for all 44 and 68 

isolates collected in 2012 and 2013, respectively. Eight of ten isolates collected from Fargo in 

2012 were P. teres f. maculata and two were P. teres f. teres. In Osnabrock 2012, 14 of 22 

isolates collected were P. teres f. maculata and eight were P. teres f. teres. In Nesson Valley in 

2012, 26 of 41 isolates were P. teres f. maculata, while the remaining 17 were P. teres f. teres. In 

Nesson Valley 2013, only 10 of 61 isolates were P. teres f. maculata, while the remaining 51 

isolates were P. teres f. teres, suggesting that at this particular year-site, NFNB may have been 

more prominent than SFNB. Thus, yield losses that could be attributed to disease were likely due 

to a combination of SFNB and NFNB at most sites, except at Dickinson and Langdon, where 

SFNB was prominent, and at 2013 Fargo, where severe bacterial streak was present in both 

treated and non-treated subplots.  
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Since no disease developed at any 2012 site on upper leaves by Feekes 11.1-11.2, split-

plot analyses of variance for disease were not performed for 2012 sites. Significant interactions 

between treatment and genotype were observed for 2011 Langdon, 2013 Fargo, 2014 Dickinson, 

and 2014 Osnabrock (Table 2.2). In the 2011 Langdon experiment, sixteen statistically 

significant comparisons out of thirty-six (P ≤0.0005) were found among the comparisons of 

interest (that is, comparing the non-treated subplot with the fungicide-treated subplot of a given 

genotype); four out of twelve (P ≤0.0004) were found in 2013 Fargo; nine out of twelve (P 

≤0.0025) in 2014 Dickinson; and eight out of twelve (P ≤0.0006) in 2014 Osnabrock. In each 

instance, disease levels were higher in the untreated genotype than in its corresponding treated 

genotype. Even among the non-significant comparisons of interest, numerically, the genotypes 

that were left unsprayed tended to experience either the same or more percent disease than their 

corresponding sprayed genotypes (range: untreated subplots having 0% to 21.7% more than 

corresponding fungicide-treated subplots; these differences were not always significant due to 

large variances in the data). This pattern, where an untreated genotype showed the same or 

higher level of disease than its fungicide-treated counterpart, suggests that the significant 

comparison are due to differences in magnitude of genotype susceptibility to SFNB. As a result, 

main effects are discussed.  

Main effect of genotype (Figure 2.1) on percent disease was significant for every year-

site except 2013 Dickinson (Table 2.2). Although genotype had a significant effect on percent 

disease at 2011 Langdon, percent disease of the selected genotypes shown in Figure 2.1 did not 

significantly differ from each other (P= 0.8156 to 1.0), and in general, percent disease of many 

of the thirty-six lines and cultivars for 2011 Langdon showed no significant differences from 

each other. One exception included the two-rowed experimental genotype, 04/566/70/8, which 
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experienced the highest level of disease for 2011 Langdon; among the selected genotypes shown 

in Figure 2.1, percent disease for this experimental line was significantly higher than most 

genotypes tested (P=0.0189 to 0.0200; based on Tukey’s adjusted p-value for multiple 

comparisons, at α=0.05) except Conrad (P=0.6893), ND22421 (P=0.1116), and Quest 

(P=0.1116). Genotypes that experienced the lowest disease in 2011 were a two-rowed genotype 

(2ND26333) and several six-rowed genotypes (such as Lacey, and experimental lines ND26898 

and ND26249), but levels of disease for these genotypes did not differ significantly from the 

2011 genotypes shown in Figure 2.1 (data not shown). At all other year-sites, two-rowed 

genotypes such as Conrad and Pinnacle tended to have among the highest levels of disease, while 

six-rowed genotypes such as Celebration and Innovation tended to have among the lowest.  
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Table 2.2. Split-plot analysis of variance p-values and coefficients of variation (CV) for percent 

disease, yield, and quality components for sites in 2011, 2013, 2014. 

Effect 
2011 

Langdon 

2013 

Dickinson 

2013 

Fargo 

2013 

Nesson 

Valley 

2014 

Dickinson 

2014 

Nesson 

Valley 

2014 

Osnabrock 

Percent Disease 

Genotypea 

Treatmentb 

Genotype*Treatment 

%CV 

<0.0001 

0.0145 

<0.0001 

51.35 

0.0590 

0.0003 

0.1472 

20.53 

<0.0001 

<0.0001 

<0.0001 

27.19 

<0.0001 

<0.0001 

0.0567 

22.01 

0.0008 

<0.0001 

0.0418 

24.84 

<0.0001 

<0.0001 

0.0657 

22.08 

<0.0001 

<0.0001 

0.0030 

41.90 

Yield 

Genotype 

Treatment 

Genotype*Treatment 

%CV 

<0.0001 

0.1802 

0.0377 

9.06 

0.0979 

0.0911 

0.1725 

12.62 

0.7361 

0.2435 

0.9766 

5.06 

0.1076 

0.0739 

0.6663 

12.63 

0.0138 

0.0039 

0.9610 

13.46 

0.4702 

0.4885 

0.4437 

4.98 

0.2084 

0.0191 

0.0275 

6.18 

Test weight 

Genotype 

Treatment 

Genotype*Treatment 

%CV 

<0.0001 

0.0838 

0.0837 

2.01 

<0.0001 

0.0016 

0.9625 

1.27 

0.0001 

0.9302 

0.6058 

1.86 

<0.0001 

0.0120 

0.2785 

1.28 

<0.0001 

0.1568 

0.0485 

1.49 

<0.0001 

0.1145 

0.4928 

0.75 

<0.0001 

0.0708 

0.2193 

0.81 

Protein 

Genotype 

Treatment 

Genotype*Treatment 

%CV 

<0.0001 

0.7566 

0.5579 

4.86 

<0.0001 

0.7251 

0.8112 

3.82 

<0.0001 

0.0509 

0.1625 

1.37 

0.0017 

0.7992 

0.3791 

4.07 

0.2518 

0.8502 

0.9381 

6.43 

<0.0001 

0.5499 

0.8792 

4.53 

0.0169 

0.9742 

0.0242 

3.17 

Color 

Genotype 

Treatment 

Genotype*Treatment 

%CV 

<0.0001 

0.0412 

0.1179 

0.66 

<0.0001 

0.3459 

0.7662 

0.57 

<0.0001 

<0.0001 

0.3140 

0.68 

<0.0001 

<0.0001 

0.2078 

0.46 

0.0007 

0.1618 

0.1042 

0.98 

<0.0001 

0.5052 

0.0319 

0.30 

<0.0001 

0.0749 

0.9839 

0.50 

Percent plump kernels 

Genotype 

Treatment 

Genotype*Treatment 

%CV 

<0.0001 

0.2434 

0.0139 

4.51 

<0.0001 

<0.0001 

0.3199 

1.99 

<0.0001 

0.2305 

0.8968 

3.62 

0.0043 

0.0368 

0.5259 

3.25 

<0.0001 

<0.0001 

0.0021 

2.15 

<0.0001 

0.2293 

0.4133 

2.28 

<0.0001 

0.7450 

0.5449 

1.28 

Screenings 

Genotype 

Treatment 

Genotype*Treatment 

%CV 

<0.0001 

0.1299 

0.0560 

21.08 

<0.0001 

<0.0001 

0.3006 

9.85 

<0.0001 

0.1279 

0.7628 

14.72 

0.0020 

0.0146 

0.0861 

20.31 

<0.0001 

<0.0001 

0.0750 

18.64 

<0.0001 

0.2419 

0.6140 

16.19 

0.2778 

0.5261 

0.0764 

23.01 
aGenotype was whole plot at 2013 and 2014 sites; bTreatment was whole plot at the 2011 site. 

 

Main effect of treatment for percent disease was significant for all sites in 2011, 2013, 

and 2014. For each year-site, the non-fungicide treatment had significantly higher percent 

disease compared to the treatment that received fungicide (Figure 2.2). Mean percent disease 

among non-fungicide treatments ranged from 3.7% (2014 Osnabrock) to 19.3% (2013 
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Dickinson), while percent disease among treatments that received fungicide ranged from 0.57% 

(2011 Langdon) to 12.75% (2013 Dickinson). 

 

 

 

Figure 2.1. Effect of genotype on percent disease. Bars within year-sites with the same letter do 

not differ significantly from each other, based on Tukey’s adjusted p-values for multiple 

comparisons at α=0.05, or α=0.10 for 2013 Dickinson. Means of percent disease are shown, but 

analyses were performed on arcsine-square-root transformed data. Bars to left of dotted line are 

two-rowed genotypes; bars to right are six-rowed genotypes. Only twelve of thirty-six genotypes 

used at 2011 Langdon are shown.  

a a

a

a a a a a a a a a

0

5

10

15

20

25

30

P
er

ce
n

t 
D

is
ea

se

2011 Langdon

ab

ab
ab

b

a

ab
ab ab

b

ab ab
ab

0

5

10

15

20

25

30

P
er

ce
n

t 
D

is
ea

se

2013 Dickinson
P<0.10

bc ab

a

b ab
bc bc bc bc bc bc c

0

5

10

15

20

25

30

P
er

ce
n

t 
D

is
ea

se

2013 Fargo

bc
c

ab

c

a

bc
c

c c c
c c

0

5

10

15

20

25

30

P
er

ce
n

t 
D

is
ea

se

2013 Nesson Valley

ab
b

a

ab

a

ab
b b ab

b

ab

b

0

5

10

15

20

25

30

P
er

ce
n

t 
D

is
ea

se

2014 Dickinson

bc bc

a

bc

a

bc
c c

abc
bc

ab

bc

0

5

10

15

20

25

30

P
er

ce
n

t 
D

is
ea

se

2014 Nesson Valley

b b b b

a

b b b b b b b
0

5

10

15

20

25

30

P
er

ce
n

t 
D

is
ea

se

2014 Osnabrock



 56  

 

Figure 2.2. Effect of fungicide treatment on percent disease. Bars represent means of percent 

disease (analyses were performed on arcsin-square-root transformed data); bars within year-site 

with the same letter do not differ significantly from each other, based on Fisher’s protected least 

significant difference test (α=0.05).  

Yield Assessment 

Interactions between genotype and treatment were observed for yield at 2011 Langdon 

and 2014 Osnabrock, while such interactions were not detected at any other year-site for yield 

(Table 2.2; 2012 data not shown due to lack of disease development on upper leaves at Feekes 

11.1-11.2). In 2011 Langdon, yield of non-protected genotypes ranged from 3.51 MT/ha to 5.51 

MT/ha; and yield of protected genotypes ranged from 3.68 MT/ha to 5.72 MT/ha. A genotype 

that was not sprayed with a fungicide had lower yield than the same genotype that was sprayed 

with fungicide in 25 of 36 instances at 2011 Langdon (data not shown). Among these 

comparisons of interest (fungicide-treated versus those that were not treated for a given 

genotype), significant differences in yield of non-protected versus protected treatments were 

found for the experimental two-rowed line 04/566/70/8 (3.61 MT/ha versus 4.77 MT/ha; p-value 

=0.0011) and Celebration (3.95 MT/ha versus 5.02 MT/ha; P =0.0025); without Bonferroni 

correction, significant differences were found for Conrad (4.44 MT/ha versus 5.12 MT/ha; P 

=0.0545), Haxby (4.62 MT/ha versus 5.52 MT/ha; P =0.0106), Lilly (4.51 MT/ha versus 5.10 

MT/ha; P =0.0931), and five experimental lines (3.51-4.52 MT/ha to 4.42-5.72 MT/ha; p-

value=0.0011-0.0646). Differences in yield of the protected genotype versus the non-protected 
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genotype for these significant comparisons at 2011 Langdon, expressed as percent yield loss, 

ranged from 11.6% (e. g., for Lilly) to 24.3% (e. g., for 05/566/70/8). In 2014 Osnabrock, the 

non-protected Rawson was the only instance that showed significantly reduced yield compared 

to its fungicide-treated counterpart, with yields of 4.32 MT/ha and 5.39 MT/ha, respectively. No 

other comparisons were significant (P =0.0218 to 0.9509, at P ≤0.0083 based on Bonferroni 

correction at α=0.10 and twelve comparisons); non-protected Conrad and Haxby both yielded 

less than their treated counterparts (without Bonferroni correction; P = 0.0218 and 0.0472). Yield 

losses for these comparisons in 2014 Osnabrock ranged from 10.2% (4.76 MT/ha and 5.42 

MT/ha for untreated and treated Haxby, respectively) to 19.9% (4.32 MT/ha and 5.39 MT/ha for 

untreated and treated Rawson, respectively). Overall, in the instances among year-sites when 

comparisons of interest were significant, yield of the untreated genotype was significantly lower 

than that of the treated genotype; and among non-significant comparisons, this trend occurred for 

74 out of a total of 108 comparisons across year-sites. Since the interaction can be attributed to 

magnitude differences among the comparisons of interest, main effects on yield are discussed.  

When examining the main effect of genotype on yield, yields of some genotypes 

significantly differed from others at 2011 Langdon (Table 2.2); at 2012 Dickinson, Fargo, and 

Nesson Valley (data not shown); and at 2014 Dickinson (Table 2.2). At 2011 Langdon, yields 

among genotypes ranged from 3.72 to 5.38 MT/ha, with experimental line ND26891 yielding 

significantly more than seven cultivars and several experimental lines (P <0.0001 to 0.0332). AC 

Metcalfe yielded the lowest (4.16 MT/ha) among the twelve genotypes that were also used in 

subsequent year-sites, and it yielded significantly lower than Innovation (5.24 MT/ha; P 

=0.0108). At the 2012 sites, the top-ranking genotype varied from site to site; that is, no single 

genotype consistently out-yielded others from one site to another. However, Conlon and AC 
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Metcalfe consistently yielded the lowest or among the lowest (2.57-4.20 MT/ha) and 

significantly lower than generally higher yielding cultivars such as Stellar ND (4.89 MT/ha), 

Innovation (4.52 MT/ha), Quest (4.46 MT/ha), and Celebration (4.39 MT/ha) and the 

experimental line ND22421 (4.73 MT/ha), at 2012 Dickinson (P<0.0001 to 0.00442); Pinnacle 

(3.80 MT/ha), Rawson (4.28 MT/ha), and up to nine others at 2012 Fargo (P<0.0001 to 0.0273); 

and Innovation (5.76 MT/ha) at 2012 Nesson Valley (P=0.0013 to 0.0014). At 2014 Dickinson, 

Innovation (5.55 MT/ha) and Celebration (5.41 MT/ha) significantly out-yielded only Conlon 

(3.83 MT/ha; P=0.0180 to P=0.0371; Tukey-Kramer adjusted P-values at α=0.05).  

The main effect of treatment on yield was significant at 2013 Dickinson, 2013 Nesson 

Valley, 2014 Dickinson, and 2014 Osnabrock (at P≤0.10), and the mean yields for the non-

protected treatments were usually significantly lower than the treatments that received fungicide 

(Figure 2.3). The lower yields corresponded to SFNB that ranged from 3.5% (2014 Osnabrock) 

to 10.0% (2014 Dickinson) (Figure 2.2).  

 

Figure 2.3. Effects of fungicide treatment on yield. Bars with the same letter within year-sites do 

not significantly differ, based on Fisher’s protected least significant difference test (α=0.10).  
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analyses of variance were conducted for test weight (kg/hL), protein (%), color (°L), percent 

plump grain, and thin kernels (Table 2.2). Interactions between genotype and treatment occurred 

for test weight at two year-sites; for protein at one year-site; for color at one year-site; for percent 

plumps at two year-sites; and for percent thins at four year-sites. With respect to all quality 

paramaters, few comparisons of interest (between a non-fungicide treated genotype and its 

corresponding fungicide-treated genotype) were significant (P <0.0001 to 0.0024; comparisons 

significant at P <0.0028 for 2011 Langdon and at P <0.0083 for 2013 and 2014 sites, based on 

Bonferroni correction at α=0.10). One comparison was significant for protein, and in this case, 

the untreated genotype had lower percent protein than its treated counterpart. No comparisons of 

interest for color were significant. One comparison of interest occurred for test weight, where an 

untreated genotype had a lower test weight compared to its treated genotype; seven occurred for 

percent plumps (all untreated genotypes experienced a decrease relative to treated genotypes); 

and six occurred for percent thins (all untreated genotypes experienced an increase relative to 

treated genotypes). Treated versus untreated comparisons among the interactions responded 

similarly to the main effects; thus, main effects are discussed.  

A significant main effect of genotype (P <0.05) occurred for all quality measurements in 

nearly every year-site (Table 2.2). Two-rowed genotypes typically had the highest or among the 

highest test weights, which ranged from 67.46 to 72.45 kg/hL across year-sites. Six-rowed 

genotypes such as the experimental line ND22421 and Stellar-ND usually had among the lowest 

test weights (62.79 to 67.59 kg/hL); occasionally, a two-rowed cultivar such as  Conrad or 

Rawson would experience lower test weights compared to other lines. Protein of genotypes that 

ranked among those with the lowest percent protein ranged from 9.22% to 11. 95% across year-

sites; the two-rowed cultivar Pinnacle ranked the lowest at all year-sites (9.22% to 10.32% 
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protein), and it was significantly lower than all other genotypes at 2013 Fargo (P <0.0001 for all) 

and 2014 Nesson Valley (P <0.0001 to 0.0270). Highest levels of protein ranged from 10.22% to 

13.70% across year-sites, and although six-rowed genotypes tended to be more prevalent in this 

category, two-rowed cultivars occasionally had higher protein levels; no particular genotype 

consistently produced the highest percent protein (data not shown). In terms of the effect of 

genotype on color, AC Metcalfe, Rawson, and Tradition consistently ranked among the 

brightest; while Haxby was typically significantly less bright than the top genotypes. The main 

effect of genotype on percent plump and thin grain varied among year-sites, but cultivars such as 

Conlon and Rawson and the experimental line ND22421 tended to have more plumps and fewer 

thins compared to other genotypes. Cultivars such as Conrad and AC Metcalfe tended to have the 

most thins relative to other genotypes.  

A main effect of treatment (P <0.10) occurred in one to four quality measurements at all 

year-sites except at 2014 Nesson Valley, where no treatment effect was detected for any quality 

parameter (Table 2.2). Protein was reduced marginally for the non-fungicide treatment compared 

to the fungicide treatment at only 2013 Fargo (P =0.0509), from 11.86% to 11.78%; no 

significant differences in protein between the two treatments were observed at any other site, 

where protein ranged from 12.33-12.43%, 10.5-11.29%, 11.25-12.04%, and 11.39% at 2011 

Langdon, 2013-2104 Dickinson, 2013-2014 Nesson Valley, and 2014 Osnabrock, respectively. 

Test weights for the non-fungicide treatment was significantly reduced by 1.75%, 1.01%, 0.81%, 

and 0.35% compared to the treatment that received fungicide at 2011 Langdon (64.68 and 65.83 

kg/hL), 2013 Dickinson (66.83 and 67.55 kg/hL), 2013 Nesson Valley (64.98 to 65.51 kg/hL), 

and 2014 Osnabrock (68.45 and 68.69 kg/hL), respectively. At year-sites where the treatment 

effect on test weight was not significant, the trend was the same: the non-fungicide treatment test 
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weight was lower than that of the fungicide treatment (data not shown). The non-protected 

treatment experienced significant but marginal reductions in color (brightness) at four year-sites: 

1.5% reduction in brightness at 2011 Langdon; 0.99% reduction at 2013 Fargo; 0.81% reduction 

at 2013 Nesson Valley; and 0.22% reduction at 2014 Osnabrock. Treatment effects on percent 

plump and thin grain were significant at three year-sites, with 4.9%, 0.94%, and 4.8% reductions 

in percent plump grain of the non-fungicide treatment compared to the fungicide treatment at 

2013 Dickinson, 2013 Nesson Valley, and 2014 Dickinson, respectively; and increases in 

screenings of 35.9%, 20.6%, and 49.2% at these same year-sites were experienced by the non-

protected treatments.  

Relationship of Yield and Quality Components to Disease 

Correlations among disease, yield, and quality components varied among year-sites 

(Table 2.3). 2012 sites were excluded from analyses since essentially no disease developed. 

Yield, test weight, protein, color and percent plump grain were moderately negatively correlated 

with disease at one to four year-sites; and percent thin kernels were moderately positively 

correlated with disease at six year sites.  

Table 2.3. Pearson’s correlation coefficients for comparisons between disease and yield 

components.  

Comparison 
2011 

Langdon 
2013 
Dickinson 

2013 

Fargo 

2013 

Nesson 

Valley 

2014 
Dickinson 

2014 

Nesson 

Valley 

2014 

Osnabrock 
All Years 

Diseasea vs.  n=216 n=72 n=70 n=72 n=72 n=72 n=72 n=646 

Yield -0.37*** -0.30* -0.03 -0.37** -0.30** 0.03 0.13 0.22b*** 

Test weight -0.34*** -0.13 0.12 0.07 -0.14 -0.07 0.11 -0.02 

Protein 0.04 -0.30** -0.07 -0.54*** -0.13 -0.37** -0.25* -0.26*** 

Color -0.43*** 0.20 0.11 -0.17 0.21 -0.14 -0.23* 0.03 

Plumps -0.31*** -0.26* -0.09 -0.14 -0.23 -0.04 0.02 -0.14** 

Thins 0.31*** 0.28* 
0.33*

* 
0.24* 0.43** 0.19 0.35** 0.21*** 

Correlation coefficients are significant at P<0.05 (*), P<0.01 (**), and P<0.0001 (***) 
aDisease is percent disease on the flag-minus-one leaf at growth stage Feekes 11.1-11.2 
bPYL and APD were used in the correlation for combined years 
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Yield potentials differed among year-sites (P<0.0001; data not shown). Thus, to explore 

relationships between disease and yield when year-sites were combined, yield was normalized to 

percent yield loss (PYL), where mean yield of the non-protected treatment was subtracted from 

mean yield of its corresponding protected treatment for each year-site, divided by the yield of the 

protected treatment for the year-site, and multiplied by 100. Since disease could not be 

completely controlled in the protected plots, percent disease was converted to adjusted percent 

disease (APD), where mean percent disease from a protected treatment from a given year-site 

was subtracted from percent disease of the non-protected treatment. PYL was then regressed on 

APD, using simple linear regression. The four 2012 sites were included in the analysis; PYL for 

these sites were forced to 0% due to absence of disease, and the intercept was forced to zero 

since in theory, when disease is absent, no associated yield loss that can be attributed to disease 

occurs. The model was significant (P <0.0001) (Figure 2.4), and explained 89.9% of the 

variability. The model indicates that with every 1% increase in disease, a 0.77% increase in yield 

loss is predicted to occur.  

 

Figure 2.4. Regression of percent yield loss (PYL) on adjusted percent disease (ADP). PYL and 

ADP were calculated based on differences of the means shown in Figures 2 and 3. 
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Discussion 

To evaluate yield losses due to disease, field experiments must be conducted in multiple 

locations over several years where the crop of interest is grown. Typically, these experiments 

that are conducted as randomized complete block designs with split plot or factorial 

arrangements are designed such that experimental units with disease can be directly compared 

with experimental units that are as free from disease as possible. Natural infection is preferred 

over inoculated experiments, as this allows disease pressure from natural pathogen populations 

and mimics the conditions experienced under normal growing conditions. Plot sizes should also 

be large enough to precisely detect statistical differences between plots with disease and plots 

without disease (James, 1974). Excluding disease from plots can be achieved by using different 

cultivars with varying levels of resistance or susceptibility to the disease, by utilizing isogenic 

lines (ideal but not always available), or by fungicide treatment. Here, I relied on natural 

infection and attempted to impart differential levels of disease by using different genotypes and 

by implementing fungicide treated and non-treated comparisons. For the experiments conducted 

in 2011, I attempted to exclude foliar disease development by using three fungicide applications 

(beginning at about the 5-leaf stage through head emergence). One potential risk to this approach 

is the possibility of phytotoxicity. Some cultivars appeared to show injury after the fungicide 

applications in 2011 (data not shown), and for ten out of thirty-six comparisons (Table 2.2), the 

treated plots showed a lower yield compared to untreated plots of the same genotype, but the 

differences were not statistically significant, suggesting that phytotoxicity, if it really occurred, 

did not discernibly interfere with the 2011 experiment, but may have had some low level of 

influence on yield. In 2012 through 2014, the fungicide applications were meant to resemble 

practices most likely adopted by growers, rather than efforts to completely exclude disease as in 
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2011 and the less aggressive fungicide applications may have decreased putative phytotoxic 

effects. Although statistically insignificant based on the 2011 data, it possibly alleviated a small 

amount of antagonistic variability.  

Although the genotypes selected for 2012-2014 provided only a modest range of 

susceptible to moderately susceptible ratings, based on previous yield trial observations (Ransom 

et al., 2014), they were chosen because they represent elite malting cultivars commonly grown in 

ND and a promising advanced malting barley line from the NDSU breeding program.  

Understanding the ideal stage at which to evaluate disease and what plant organs to 

assess is critical (James, 1974). In cereals, assessing disease on the top two to three leaves, which 

include the flag leaf and the flag-minus-one leaf, is usually considered adequate for foliar 

pathogens since “these two leaves produce most of the dry matter in the grain” (James, 1974). 

Disease assessments at the Feekes 11.1 to Feekes 11.2 growth stages have been correlated with 

yield losses due to various foliar diseases (James et al., 1968, Jayasena et al., 2007, Van Den 

Berg and Rossnagel, 1990, Bhathal et al., 2003), since most of the kernel dry weight has 

accumulated by this time (Nelson et al., 1988), and natural senescence of the upper leaves after 

this period can interfere with foliar disease assessments. The flag-minus-one leaf was chosen in 

this study in an effort to minimize the risk of over-estimating disease severity, since the flag leaf 

of some of the genotypes used were small relative to the flag leaf of other genotypes and the 

flag-minus-one leaves are larger and more consistent in size across the genotypes tested.  

The fungicide applications utilized in this research were meant to either protect plants 

completely (in 2011) or to help generate differences in disease levels, rather than providing data 

to assess management strategies regarding efficacy and timing of fungicide applications. To this 

end, the treatments were generally successful in providing a range of disease severity at Feekes 
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11.1-11.2, with percent disease for the main effect of treatment across year-sites ranging from 

0.6% to 7.3%, 1.6% to 12.8%, and 0.4% to 13.2% for 2011, 2013 and 2014, respectively. 

Despite the achievement of a range of disease severity in 2013 Dickinson and 2014 Nesson 

Valley, individual non-treated genotypes did not differ in yield from the corresponding 

fungicide-treated genotypes. Disease levels in treated versus corresponding non-treated 

genotypes at these sites may not have been great enough to separate yield differences at levels of 

significance. Eight of the twelve nontreated genotypes actually yielded numerically better than 

the treated genotypes in 2014 Nesson Valley, but these differences were not significant. A lack 

of significant differences between treated and untreated genotypes at 2014 Nesson Valley may 

be due to inadequate disease control, since the year-site was sprayed slightly later than other 

year-sites, and the optimal window for protection may have passed since lesions were already 

present on upper leaves when the fungicide was applied.  

Significant interactions between treatment and genotype for percent disease were 

observed in four of seven year-sites. For the comparisons of interest, the non-treated plots or 

subplots had significantly higher disease than the corresponding treated pots where differences 

were statistically significant for a given genotype, and the difference in disease of non-treated 

genotypes ranged from 2-29.3% more than disease in treated genotypes. Among the non-

significant comparisons, the magnitude of the difference between non-treated and treated plots 

for a given genotype ranged from 0% to 21.7%, and no plot that received fungicide had a higher 

disease level than its corresponding non-treated plot. Thus, differences in magnitude in percent 

disease between treated and non-treated plots among genotypes were observed, and such 

differences in magnitude of disease imply that the genotypes used differ in susceptibility to 

SFNB, which is a goal when using different genotypes to explore disease and yield loss 
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relationships. However, only two comparisons of corresponding yield loss were significant, 

namely for 04/566/70/8, an experimental line at 2011 Langdon, with adjusted percent disease of 

29.3% corresponding to a yield loss of 24.3%; and Rawson, having an adjusted percent disease 

of 2% corresponding to 19.9% yield loss at 2014 Osnabrock. Genotypes such as Pinnacle that 

tended to have high disease levels did not experience corresponding significant yield loss at any 

year site compared to plots of Pinnacle that received fungicide (data not shown). Thus, since the 

magnitude of such interactions varied from genotype to genotype and from year-site to year-site, 

and since corresponding yield losses were seldom significant for treated and untreated genotypes 

that showed significantly different disease levels, the interactions were essentially ignored and 

the main effects were chosen for further examination.  

Based on main effect of treatment, where the treatment that did not receive any fungicide 

had significantly higher levels of disease at each year-site compared to the sprayed treatment  

(Figure 2.2), and where corresponding yields for the non-protected treatment were lower than the 

protected treatment for six of the seven year-sites (Figure 2.3; significant for four of seven year-

sites), it can be speculated that even one application of fungicide, aimed to protect the flag and 

flag-minus-one leaves, can lead to a reduction in percent disease severity and associated yield 

loss. Yield losses that can be attributed to SFNB ranged from 3.5% to 10.0% across genotypes in 

four of seven year-sites. The 10% yield loss, which was experienced at 2014 Dickinson, 

corresponded to 10.9% APD, and the 3.5% yield loss experienced at 2014 Osnabrock 

corresponded to 3.3% APD. Within each year-site, whether a specific genotype experienced 

more or less yield loss associated with disease compared to other genotypes could not be 

discerned from this study, although some cultivars, such as Pinnacle, showed no significant yield 
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loss despite presence of APD of up to 21.7%. In general, however, a single fungicide treatment 

may be economical under North Dakota growing conditions, regardless of genotype grown.  

Quality parameters were also sometimes reduced in the presence of net blotch in this 

study. For example, test weights were significantly reduced from 0.35% to 1.75% in non-

protected treatments compared to protected treatments at four of seven year-sites, and this 

tendency was observed at the remaining three year-sites. In barley destined for malting, high 

protein is undesirable because it reduces malt quality (Smith, 1990); and protein above a 

threshold of 13.0-13.5% is not desirable. Protein has been shown to increase in barley under 

drought conditions (Morgan and Riggs, 1981, Grant et al., 1991), or other abiotic stress (Smith, 

1990). Thus, we speculated that SFNB would lead to increases in protein in our study, as was 

reported in Jayasena et al. (2007). However, in no instance did we find significant increases in 

protein in the presence of disease, and marginal reduction in protein due to disease was observed 

at one of seven year-sites. Genotype had a significant effect on protein level in six of seven year-

sites, and the six-rowed genotypes tended to show higher levels of protein than the two-rowed 

genotypes. The two-rowed cultivar Pinnacle had the least amount of protein in every year. 

Brightness (color) was reduced by 0.22% to 1.5%, corresponding to percent disease levels of 

3.7% to 7.3%. Percent plump kernels were reduced up to 4.9%, which corresponded to 19.3% 

disease at 2013 Dickinson; and screenings increased by up to 49.2%, which corresponded to 

13.2% disease at 2014 Dickinson.  

In yield-response trials, differing yield potential among genotypes used can confound 

interpretation of results. In our trials, we did see differing yield potentials among year-sites, as 

expected, but yields among genotypes receiving fungicide treatment within year-sites generally 

did not differ significantly from one another in the absence of disease (data not shown). To 
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overcome the problem of differing yield potentials among year-sites, and to accommodate 

incomplete exclusion of disease in the protected treatments, we used PYL and APD to allow 

comparisons among year-sites. The model in the present study from the simple linear regression 

of the means of PYL on APD predicts a 0.77% increase in yield loss with each 1% increase in 

percent disease. Interestingly, if data presented by Jayasena et al. (2007) is converted to APD 

and PYL and regression of PYL on APD is performed in a manner comparable to that presented 

here, a similar pattern is observed: the slope is 0.76, with the model explaining 89% of the 

variation when the intercept is forced to zero (data not shown). The slopes of the two models do 

not significantly differ (P=0.92), suggesting that SFNB in ND may affect yield in a similar 

manner as SFNB in Australia. This similarity occurs despite the use of different barley 

genotypes. However, mean percent disease of non-protected treatments in this study ranged from 

3.7 to 19.3% (Figure 2.2; adjusted percent disease ranging from 2.8% to 12.2%), with 

corresponding yield losses of 0.8 to 8.6% (Figure 2.3); while yield losses of 44% were recorded 

in Western Australia, in response to a disease severity of 54% at medium milk stage on the top 

three leaves (Jayasena et al., 2007), and 22% yield loss corresponding to 68.5% disease severity 

on the top three leaves at the medium milk stage observed by Khan (1989) in short-season 

environments. Thus, although our model and that of Jayasena et al. (2007) are similar, the extent 

of potential yield losses under higher disease pressure in ND remains unknown.  

Some genotypes within unsprayed plots yielded as well as their sprayed counterparts, 

suggesting that a certain level of ‘field tolerance’ may exist in some genotypes commonly grown 

in ND. Tolerance refers to the ability of a plant to yield well even in the presence of a disease 

(Agrios, 2005). For example, despite having disease severity levels of up to 36.7%, 22.3%, 

25.0%, and 15.0%, the non-protected treatment of AC Metcalfe, Conrad, Haxby, and Pinnacle, 
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respectively, did not yield significantly less than their protected counterpart at any year-site. 

However, since disease levels did not exceed 50% in this study, we could not determine if these 

genotypes could tolerate higher disease levels. On the other hand, Rawson experienced a 

significant yield loss at one year-site when comparing its non-treated and treated counterparts 

when only 2% disease was observed, indicating that sensitivity to SFNB, in terms of impact on 

yield, varies among the genotypes used.  

In general, the two-rowed genotypes used in this study appeared to be more susceptible to 

SFNB than the six-rowed genotypes used. Two-rowed cultivars Pinnacle and Conrad regularly 

experienced among the highest percent disease at most year-sites. Six-rowed cultivars such as 

Innovation, Quest, and Tradition experienced among the lowest percent disease (Figure 2.1) in 

most year-sites, but they also experienced among the lowest yields. It is beyond the intent of this 

study to generalize these results to all two-rowed cultivars, since very specific cultivars were 

chosen due to their popularity of use in ND. However, if such a trend can be generalized, this 

may pose challenges, since demand for two-rowed cultivars is increasing in the region, both by 

large brewing companies and by the numerous craft brewers that have arisen over the past few 

years. Increased production of susceptible two-rowed cultivars may increase inoculum, thus 

potentially setting the stage for a future epidemic.  

Preliminary results from a study exploring the phenotypic and genotypic variation of ND, 

Montana, and Idaho isolates of P. teres f. maculata indicate that the pathogen is virulent on most 

barley lines examined at the seedling stage on a set of thirty genetically disparate genotypes. 

Disease assessment on field variety trials also indicates that the most commonly grown cultivars 

in ND are susceptible or moderately susceptible to infection by P. teres f. maculata (Ransom et 

al., 2014). Use of susceptible genotypes that contribute to inoculum build-up, combined with 
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cycles of cool, wet weather, and no-till practices have led to SFNB being the most prevalent and 

severe foliar barley disease in parts of Australia (McLean et al., 2010). Similar conditions with 

respect to possible inoculum build-up, weather patterns, and agricultural practices can occur in 

ND. Recently, SFNB reportedly occurred at levels that reduced yields remarkably in northeast 

Montana in 2013, suggesting that ND may be poised for a similar epidemic. Even at low levels 

of disease, we report here yield losses of 20- 24% due to SFNB disease severity levels ranging 

from 2-30% for certain genotypes, while other genotypes such as Pinnacle did not experience a 

statistically significant yield loss despite experiencing levels of disease up to 25%. Since we do 

not yet know how these cultivars will respond to higher levels of disease under North Dakota 

growing conditions, diligence in breeding for resistance to diseases such as SFNB should 

continue, since host resistance may offer the most economical strategy to managing SFNB at this 

time.  
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CHAPTER 3. VIRULENCE STRUCTURE AND POPULATION GENETICS OF 

PYRENOPHORA TERES F. MACULATA IN THE UPPER GREAT PLAINS OF THE 

UNITED STATES 

Abstract 

Virulence of 177 isolates of Pyrenophora teres f. maculata collected from five 

geographically diverse regions in North Dakota and Montana (DIC, FAR, LAN, NES, and SYD) 

in 2012 and from one location in Idaho (BLA) in 2013 was assayed on a set of thirty barley 

genotypes that showed a differential reaction to diverse isolates of P. teres f. maculata. High-

density genotyping of 140 isolates was accomplished via the generation of 2,951 single-

nucleotide polymorphism markers using a two-enzyme restriction-associated DNA genotyping-

by-sequencing (RAD-GBS) approach. The phenotype and genotype data were utilized for the 

analysis of virulence structure and population genetics and structure. Although the BLA 

population tended to respond differently than the North Dakota and Montana populations on 19 

of the 30 barley genotypes, and generally clustered in the same groups based on a virulence 

phenotype dissimilarity matrix, few isolates were identical in terms of virulence patterns across 

the barley differential set. At least 54 virulence clusters were identified based on coefficient of 

variation ≥80%, showing that the virulence structure in the P. teres f. maculata population 

analyzed is complex. Evidence for sexual recombination in each population includes the ratio of 

mating-type idiomorphs that do not significantly differ from a 1:1 ratio; most populations 

showed low Index of Association values, which suggests some degree of random association; 

and AMOVA revealed high variation within populations (92%) and low variation among 

populations (8%), which further supports sexual recombination. Pairwise ΦPT values ranged from 

0 to 0.1858, with the BLA population having ΦPT values significantly different from DIC, 
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FAR/LAN, NES, and SYD. The correlation between linear genetic distance and linear 

geographic distance was not significant (P>0.05). The genetic and virulence differentiation 

between the BLA population and other populations may be due in part to selection pressure or 

year of sampling. This work demonstrates high diversity in the pathogen, with respect to 

virulence and population genetics, and it provides evidence for sexual recombination; such 

characteristics of P. teres f. maculata may pose challenges when breeding for genetic resistance.  

Introduction 

Spot form net blotch of barley is caused by the necrotrophic fungus Pyrenophora teres f. 

maculata. P. teres f. maculata is closely related to P. teres f. teres, the pathogen that causes net 

form net blotch, and a recent study suggests the two organisms are likely separate species that 

diverged over 500,000 years ago (Ellwood et al. 2012). Earlier work based on hybridization 

experiments suggested the separate pathogens were possibly forms of the same species 

(McDonald 1967, Smedegård-Petersen 1978). Subsequent genetic studies based on AFLP, 

RFLP, and other molecular markers provided evidence that the two forms are genetically isolated 

(Rau et al. 2003, Leisova et al. 2005, Serenius et al. 2005, Rau et al. 2007, Lehmensiek et al. 

2010) and that hybridization appears to be rare in nature (Campbell et al. 2002, McLean et al. 

2014). Furthermore, resistance to SFNB and NFNB are controlled by different genes in barley 

(Friesen et al. 2006, Manninen et al. 2006), and these differences in host resistance genes have in 

practice compelled breeders and plant pathologists to effectively treat the two pathogens as 

separate species since they were first proposed as separate forms (Smedegård-Petersen 1971).  

The pathogen is a heterothallic fungus since sexual recombination can only occur 

between two compatible individuals with different mating-type idiomorphs (McDonald 1963), 

known as MAT1-1 (MAT1) and MAT1-2 (MAT2). Presence of both mating types in a 1:1 ratio 
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within populations of P. teres provides evidence that a population may be sexually recombining 

(Serenius et al. 2005, Liu et al. 2012), a major factor contributing to the increased likelihood that 

deployed resistances will provide selection pressure to select for combinations of virulence genes 

or effectors that rapidly adapt the pathogen populations towards host susceptibility (McDonald 

and Linde 2002).  

P. teres f. maculata has recently been formally documented to occur in North Dakota 

(ND) (Liu and Friesen 2010) and Idaho (ID) (Marshall et al., 2015), and has been known to 

occur in western Montana (MT) for decades (Karki and Sharp 1986) and more recently in the 

eastern MT/western ND region (Lartey et al. 2012); all three states are in the northern tier of the 

United States of America (USA). Yield losses up to 25% have been reported in Canada and 

Western Australia (Khan and Tekauz 1982), and in Australia, another study measured 55% 

SFNB at one of three locations with an associated yield loss of up to 44% (Jayasena et al. 2007). 

Even at low disease pressure, we showed under natural field conditions in ND that with every 

1% increase in SFNB disease severity, a 0.77% increase in yield loss was detected (Chapter 2). 

In 2011, yield losses believed to be due to SFNB were estimated between 50% and 75% on 

irrigated barley in eastern Montana (Roesler, 2012). Such potential yield losses due to SFNB is 

cause for major concern among growers in the region and steps are being made towards 

managing this disease. Factors such as cool, wet weather, the increasing adoption of low- or no-

till farming practices, and the use of susceptible cultivars that potentially increase inoculum have 

been implicated in problems with SFNB elsewhere, as reviewed by McLean et al. (2009). 

Similar conditions occur in the barley producing regions of the USA, and a convergence of these 

factors can potentially lead to a large negative economic impact on barley production in the 

region.  
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The disease can reportedly be managed with one well-timed application of fungicide 

(Jayasena et al. 2002). However, the optimal fungicide mode of action and timing of application 

have not yet been demonstrated for the northern barley-producing regions of the USA, and extra 

fungicide applications at earlier growth stages are often not economical for growers that already 

apply fungicide at the boot and heading stages for management of Fusarium head blight. Thus, 

the characterization and deployment of host resistances will likely be the most economically 

effective and sustainable approach to managing SFNB in barley. To this end, several barley 

genotypes that show promising resistances or lack of susceptibility have been identified from 

screening a global collection of several thousand barley genotypes (Neupane et al. 2015). These 

lines were further evaluated to identify genetic markers associated with resistance (Tamang et al. 

2015), which will allow breeders to incorporate resistance to SFNB into regionally adapted 

cultivars utilizing marker assisted selection.  

A challenge to breeding for resistance to SFNB is the diversity of the pathogen’s 

virulence effectors and the multitude of susceptibility genes in the host that they potentially 

target. Thus, understanding the evolutionary potential of the pathogen and the complex host-

parasite genetic interactions is important to judiciously deploy resistance (McDonald and Linde 

2002). P. teres f. maculata can undergo a sexual stage, forming ascospores, but it spends most of 

its lifecycle as a haploid, asexually reproducing organism that propagates via conidia, and in 

some regions of the world where P. teres f. maculata is found, the sexual stage has not been 

confirmed (Berg and Rossnagel 1991). Spores can be dispersed great distances via wind or rain 

splash. The relative importance of each type of inoculum, ascospores versus conidia, in the 

epidemiology of SFNB in the northern USA is not known. The diversity of putative quantitative 

virulence effectors within P. teres f. maculata, its functional sexual and asexual life cycles, and 
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high gene flow suggests that SFNB may need to be managed by a breeding approach that 

implements quantitative resistances, along with any major resistance genes and possibly through 

the use of cultivar mixtures or multilines (McDonald and Linde 2002). However, use of mixtures 

or multilines has not been an accepted practice especially with malting barley where specific 

malting characteristics requires strict homogeneity. Although mixtures have reportedly reduced 

yield loss due to foliar diseases in some areas (Mundt et al., 1994; Wolfe, 1997), at least one 

report has indicated that mixtures do not always increase yield in the presence of disease 

(Paynter and Hills, 2007). We are continually learning more about necrotrophic specialist 

interactions that follow the inverse gene-for-gene model, and this information generated by 

understanding the necrotrophic effectors on the pathogen side and their corresponding 

susceptibility targets in the host is allowing for more intelligent approaches to breeding for 

resistance against these pathogens. Yet, we have little knowledge or data showing how these 

approaches will hold up in the field and if breeding against multiple quantitative dominant 

susceptibility targets will result in durable resistance when under pressure by a diverse pathogen 

population.  

Barley is an important crop in the northern United States where it is grown primarily for 

the malting industry, and states such as MT, ID, and ND are historically among the top producers 

of the crop. Barley that does not meet the stringent quality specifications for malt is typically 

downgraded to use as animal feed. Two different types of barley are grown in the region, two-

rowed cultivars and six-rowed cultivars, which differ primarily by the number of fertile florets 

per rachis node, but they also differ in quality parameters. The two-rowed cultivars tend to have 

lower protein and plumper kernels desired by the malt industry compared to six-rowed cultivars. 

Industry demand for two-rowed barley cultivars is increasing as they typically have a better malt 
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profile, yet the two-rowed cultivars tend to be more susceptible to infection by P. teres f. 

maculata at the adult plant stage in the region, although some of the susceptible two-rowed 

cultivars such as Pinnacle appear to have field tolerance (Chapter 2), particularly for late-onset of 

disease that develops past the Feekes 11.1-11.2 growth stage. Since high levels of disease have 

not been observed at growth stages prior to Feekes 11.1-11.2 in the region, impact of early-

season disease on yield of these suspected ‘field tolerant’ cultivars is not known. As a result, 

efforts to incorporate resistance should continue; however, understanding the virulence and 

genetic structure of the pathogen is important to develop a rational breeding approach that can 

maximize available resistances.  

The genetic diversity and virulence structure of P. teres f. maculata isolates collected 

from populations in the United States had not been investigated prior to this study. Here, we 

report on the collection of isolates from three diverse locations across ND and one location in 

eastern MT in 2012, and from one location in eastern ID in 2013, which is geographically 

isolated from MT and ND populations by the Rocky Mountain Range. The virulence structure of 

these isolates was assessed on a set of thirty barley genotypes with differential reaction types to 

infection by P. teres f. maculata. In addition, we quantified the genetic diversity of the isolates 

based on SNPs and evaluated the frequency of mating type alleles to determine if these 

populations of P. teres f. maculata undergo random mating. The objectives of this study were to 

characterize the virulence profile and genetic diversity among and within populations of P. teres 

f. maculata from five different locations in three states across the northern tier of the USA, to 

better understand the evolutionary potential of the pathogen and the optimal approach to breed 

for resistance.  
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Materials and Methods 

Collection of Pyrenophora teres Isolates 

Six locations were sampled for Pyrenophora teres (Figure 3.1). ND populations were 

collected from North Dakota State University Research and Extension Centers at Dickinson 

(DIC), Fargo (FAR), Langdon (LAN), and Nesson Valley Township (NES); the MT population 

(SYD) was obtained from Anheuser-Busch research plots in Sydney, MT by the research 

program of Dr. Timothy Friesen (USDA-ARS, Fargo, ND). The ID population (BLA) originated 

from a commercial field about 32 km west of Blackfoot, ID and was kindly provided by Dr. 

Juliet Marshall (University of Idaho). All sites were sampled at one time period in the growing 

season (Table 3.1), with sampling of ND and MT targeting full expansion of the top three leaves 

(flag, flag-minus-one, flag-minus-two) at about growth stages Feekes 10.5 to Feekes 11.2, which 

correspond to full head emergence and soft dough stage, respectively. At DIC, LAN, and NES, 

two adjacent fields approximately 0.2 ha each were sampled: one planted to the six-rowed barley 

cultivar Tradition and one planted to the two-rowed barley cultivar Pinnacle. Only one field 

(Pinnacle) was sampled in FAR. Both Tradition and Pinnacle are considered susceptible to P. 

teres f. maculata, but Tradition is reportedly less susceptible than Pinnacle at the adult plant 

stage, based on breeder variety trial field notes (Ransom et al. 2014). At DIC, FAR, and NES 

fields, six collection sites were arranged in two parallel rows 10 m apart, with three sites per row 

and 10 m between each site; and from each site, a flag-minus-one or flag-minus-two leaf with 

spot-type lesions was arbitrarily collected from each of ten plants. At SYD, each cultivar, 

Pinnacle and Tradition, were arranged in plots 3.7 m by 1.2 m and replicated four times; each 

replicate was at least 7.3 m from the other, and 15 leaves were arbitrarily selected from each of 

the four replicates for the two cultivars. In LAN, three sites 10 m apart along one transect were 



 80  

sampled in Pinnacle and Tradition strip plots. Thus, 60 leaves were collected from each barley 

cultivar at DIC, FAR, NES, and SYD (240 leaves total) and 30 leaves were collected from each 

barley cultivar in LAN. Leaves were kept at 4°C for up to one week, until isolate collections 

could be made. For BLA, 21 arbitrarily selected leaves with spot-type lesions were collected 

from the upper canopy of a field of the two-rowed barley cultivar Moravian 69. The BLA field 

was the only field to have been sown into barley residue, in its second consecutive year of barley 

and its seventh year of implementing no-till. Leaves from BLA were air-dried and stored at room 

temperature until isolates were collected on 8 June 2013. 

 

Figure 3.1. Map of Pyrenophora teres collection sites. =FAR; =LAN; =DIC; =NES; 

=SYD; =BLA; =Mountains. 

To induce sporulation on symptomatic leaf tissue for isolate collection, portions of leaves 

with spot-type lesions were either directly incubated on water agar, or they were first surface-

sanitized by soaking in a 1% sodium hypochlorite solution for two minutes, then rinsed three 

times in sterile reverse-osmosis water and blotted dry with sterile paper towels prior to 

incubating on water agar in the dark for one to seven days. Spores typically formed within or 

along margins of lesions, and single spores consistent with P. teres were identified based on 

morphology and transferred to V8PDA growth medium (per liter water: 150 mL V8 juice, 10 g 
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potato dextrose agar [Difco Laboratories Inc, Franklin Lakes, NJ, USA], 3 g calcium carbonate, 

10 g agar), allowed to sporulate again in the dark for up to seven days, then single-spore cultured 

a second time to ensure isolates were monoconidial. Isolates were allowed to grow for seven to 

ten days, then air-dried as 4-mm plugs and stored at -20°C until ready for use.  

Table 3.1. Summary of P. teres f. maculata isolates used in analyses. 

Location 

ID 

Location Previous 

Crop 

Sampling 

Date 

Barley 

Cultivar 

Total 

Number 

Collected 

No. used in 

Virulence 

Analyses 

No. used in 

Pop. 

Genetics 

Analyses 

FAR Fargo, ND 

 

Soybean 11 July 2012 Pinnacle 5 4 2 

LAN Langdon, ND 

 

 

Unknown 3 July 2012 Pinnacle 9 9 9 

 Tradition 5 5 5 

DIC Dickinson, ND 

 

 

Spring 

wheat 
21 June 2012 Pinnacle 26 26 23 

 Tradition 21 20 21 

NES Nesson Valley 

Township, ND 

 

Sugarbeet 22 June 2012 Pinnacle 12 12 11 

 Soybean Tradition 13 13 11 

SYD Sydney, MT 

 

 

Unknown 27 June 2012 Pinnacle 38 37 24 

 Tradition 11 11 7 

BLA Blackfoot, ID Barley 5 June 2013 Moravian 69 42 40 27 

   Grand Total: 182 177 140 

 

Phenotyping for Virulence  

Each P. teres f. maculata isolate was evaluated on a set of thirty barley genotypes that 

included Pinnacle as a susceptible check and CIho14219 as a resistant check (Table 3.2). Some 

of the genotypes used were selected from a global barley collection based on their differential 

response to four isolates of P. teres f. maculata from different regions around the world 

(Neupane et al. 2015), and others were selected based on differential responses to these or other 

P. teres f. maculata isolates (personal communication. Dr. Timothay Friesen, USDA-ARS; 

McLean 2011, Karki and Sharp 1986, Wu et al. 2003, McLean et al. 2011). For each barley 

genotype, two to three seeds were sown in each of two 3.81 cm × 20.96 cm Cone-tainers® filled 
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with Metro Mix® 902 professional potting mix. The two cone-tainers per genotype (60 cone-

tainers), with a total of four to six plants per genotype, were placed in the middle of a rack in a 

randomized manner, with the perimeter 38 cone-tainers sown to the barley cultivar Robust or 

other barley genotypes to serve as a border. Plants were grown in the greenhouse and inoculated 

when the second leaf was fully expanded and the third leaf was about half to fully emerged, 

which corresponds to the two- to three- leaf stage about two weeks after sowing.  

Inoculum was prepared by growing isolates on V8PDA in the dark for 4-6 days at room 

temperature, followed by continuous exposure to cool, white fluorescent light for 24 h at ambient 

temperatures, and finally keeping them in the dark at 15-17°C for 24-48 h. Plates were then 

flooded with water and spores were released by gently agitating the agar surface with a rubber 

policeman. The resulting spore slurry was strained through two layers of cheesecloth and spore 

concentration was adjusted to ~2,000 spores per mL. Two drops of polysorbate 20 were added 

per 100 mL spore suspension immediately prior to inoculation, and each 98-conetainer rack of 

seedlings was inoculated with approximately 100 mL of a spore suspension (one isolate per 

rack); plants were sprayed with the spore suspension just until run-off, using an atomizer 

pressurized sprayer with an air pump at 51.7 kPa. Following inoculation, plants were 

immediately placed in 100% relative humidity under light for 24 h. The racks of seedlings were 

then transferred to pans of water amended with Peters 20-0-20 water-soluble fertilizer at the rate 

of 1 ounce per gallon of water and incubated in a growth chamber under a 12-h photoperiod at 

21-23°C.  
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Table 3.2. Barley genotypes used to differentiate seedling lesion type induced by the interaction 

with Pyrenophora teres f. maculata.  

Genotype Reference Country of origin Row type Acc. Type 

Pinnacle None USA 2 cultivar 

81-82/033 McLean 2011    

Arimont (CI15509) Karki and Sharp 1986; 

McLean 2011 

USA, Med 6 cultivar 

Chebec McLean 2011 Australia (Algeria parent) 2 cultivar 

Keel McLean et al. 2010 South Australia 2 cultivar 

Kombar (CI15694) McLean et al. 2010 USA 6 cultivar 

Skiff McLean et al. 2010 Australia 2 cultivar 

CI3576 Arabi et al. 1992; McLean 

2011 

Egypt 2 Landrace 

CI5791 Karki and Sharp 1986 Ethiopia  Landrace 

CI9214 McLean et al. 2010;  

Williams et al. 2003 Aus J. 

Ag Res – 54:1387-1394 

Korea  Landrace 

CI9776 Karki and Sharp 1986 Morocco   

CI9819 Karki and Sharp 1986 Ethiopia 2  

CI7584 McLean et al. 2010; Karki 

and Sharp 1986; CIho7584, 

see Wu et al. 2003 

USA   

CIho 14219 

(BCN127) 

Neupane et al. 2015 Mongolia 6 Landrace 

CIho2353 (BCN10) Neupane et al. 2015 Turkmenistan   

CIho3694 (BCN27) Neupane et al. 2015 Egypt   

CIho4050 (BCN31) Neupane et al. 2015 Mongolia   

MXB468 McLean 2011  2  

PI269151 

(BCN380) 

Neupane et al. 2015 United Kingdom   

PI369731 

(BCN646) 

Neupane et al. 2015 Kazakhstan   

PI392501 

(BCN709) 

Neupane et al. 2015 South Africa   

PI467375 

(BCN821) 

Neupane et al. 2015 France   

PI467729 

(BCN839) 

Neupane et al. 2015 Norway   

PI485524 

(BCN873) 

Neupane et al. 2015 United Kingdom   

PI498434 

(BCN880) 

Neupane et al. 2015 New Zealand   

PI513205 

(BCN893) 

Neupane et al. 2015 Pakistan   

PI565826 

(BCN940)  

Neupane et al. 2015 China   

PI573662 

(BCN956) 

Neupane et al. 2015 Georgia   

TR250 Gupta et al. 2006, Grewal et 

al. 2007 

   

TR326 McLean 2011    
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Reaction types were evaluated seven days post-inoculation, using a 1 to 5 scale as 

described by Neupane et al. (2015), where 1 is highly resistant and 5 is highly susceptible 

(Figure 3.2). Although the scale is categorical, it also coincides closely with lesion length, such 

that lesion length increases by about 1 mm with each scale increment, and includes a component 

related to percent severity. Leaves having lesions of intermediate size between two categories 

were given an intermediate rating; for example, if most lesions fell between categories 2 and 3 in 

terms of length, the leaf was given a value of 2.5.Such intermediate scores were also applied in 

cases where two different reaction types were approximately equally represented on a leaf. 

Reaction type evaluations were conducted as an incomplete randomized block design, with 

blocks of six isolates evaluated at a time. Each isolate was evaluated at least three times.  

 
1 2 3 4 5 

 

Figure 3.2. Seedling lesion reaction type scale. Image courtesy T. Friesen. 1=Small dark 

pinpoint  necrotic lesions; 2=Pinpoint  lesions with small amounts of necrosis and chlorosis 

surrounding the penetration point; 3=Necrotic or chlorotic lesions 2-3 mm in size with little 

coalescence of lesions; 4=Coalescing necrotic or chlorotic lesions >3 mm across; and 5=Necrotic 

or chlorotic lesions coalescing and covering greater than 70% of the leaf area.  
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DNA Extraction, and Identification of Form and Mating Type 

To obtain genomic DNA (gDNA), monoconidial isolates were grown on V8PDA for 7-

10 days in the dark. Resulting hyphae were scraped from the agar surface using clean glass slide 

cove slips, transferred to 1.5-mL tubes, lyophilized, and then homogenized either in 2-mL screw-

cap microcentrifuge tubes containing about one-third volume 1-mm glass beads using a pestle 

attached to a hand-held power drill; or in pre-filled 2-mL screw-cap microcentrifuge tubes 

containing Lysing Matrix A (cat. no. 116910; MP Biomedicals, LLC.; Santa Ana, CA, USA) and 

vortexed on a Vortex-Genie 2 with a Genie Vortex adapter (model 13000-V1-24; MO BIO 

Laboratories, Carlsbad, CA, USA), until a uniform powder was obtained (2-6 minutes). A 

modified cetyltrimethylammonium bromide (CTAB) method was used for DNA extraction, 

where about 100 mg of macerated tissue was mixed with 750 µL DNA extraction buffer 

(0.140M sorbitol, 220 mM Tris-HCl, 22 mM ethylendiamenetetraacetic acid, 0.8M NaCl, 0.8% 

CTAB, 1% sarcosine) and 5 µL RNase containing 20mg/mL, vortexed vigorously, and incubated 

at  65°C for 45 mins. After centrifuging at 13,000 g for 8 mins, 600 µL chloroform:isoamyl 

alcohol (24:1) was added and the slurry was mixed completely to obtain a smooth emulsion. The 

resulting emulsion was centrifuged at 13,000 g for 15 minutes. To precipitate the gNDA, the 

aqueous layer was collected and mixed well with 1/10th volume 3M sodium acetate and an equal 

amount of isopropyl alcohol, mixed well by inversion, and centrifuged at 13,000 g for 10 min. 

Supernatant was removed and pellets were rinsed with 70% cold ethanol, and after removing 

alcohol, pellets were air-dried then re-suspended in 50 µL TE buffer and stored at -20°C.  

Since spores of P. teres f. maculata and P. teres f. teres cannot be distinguished based on 

morphology, form was identified using PCR primers that target SNPs unique to each form within 

the mating type locus using gDNA as template (Lu et al. 2010), or by evaluating symptoms after 
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inoculating isolates on the barley cultivars Hector and Pinnacle. When PCR was used to 

determine form, amplifications were performed in 25-µL reactions containing 2.5 µL of each 

forward and reverse primer for mating type and form (Lu et al. 2010), 12.5 µL 2× GoTaq® 

Green master mix (Promega, Madison, WI, USA), 5.5 µL water, and 2 µL DNA template (~10-

80 ng genomic DNA). Cycling parameters included denaturation at 95°C for 5 mins, followed by 

thirty cycles of denaturing at 95°C for 20 s, annealing at 58°C for 30 s, and extension at 72°C for 

1 min; a final extension at 72°C for 10 mins and a 4°C hold concluded the amplification.  

Mating type was determined by using previously published primers (Lu et al. 2010), as 

described above to determine form via PCR, or the following primers targeting the two different 

idiomorphs of the mating type locus (courtesy of Dr. Timothy Friesen, USDA): PtAlpha-F: 5’-

TGCTGGAGCTGCAGACAAGG-3’ and PtAlpha-R: 5’-CGGCGTGTATGTCAGCTTGG-3’, 

with expected amplicon size of 200 bp; and PtHMG-F: 5’-CAGCCTTCCGCTTCTTTTCG-3’ 

and PtHMG-R: 5’-TCGCGGAAGATGATCCAACA-3’, with expected amplicon size of 250bp. 

Amplifications were performed in 20-µL reactions containing 10 µL 2× GoTaq® Green master 

mix (Promega, Madison, WI, USA), 1 µL (10µM) each forward and reverse primers, 6 µL 

molecular-grade sterile water, and 2 µL DNA template (about 10-80 ng genomic DNA). PCR 

cycling parameters were preceded by denaturation at 95°C for 5 min, followed by 35 cycles of 

denaturation at 95°C for 30 s, annealing at 63°C for 30 s, and extension at 72°C for 1 min. 

Amplicons were visually scored after electrophoresis in 1-1.5% agarose stained with GelRed™ 

(Biotium Inc., Hayward, CA, USA; cat. no. 41003) at the rate of 0.4 µl GelRed™ per 10 mL 

agarose. To assess whether mating types occur in a 1:1 ratio, which provides evidence of 

possible sexual recombination, χ2 tests for goodness-of-fit were performed for each population 

designated by location.  
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GBS Library Construction and Sequencing 

Construction and sequencing of GBS libraries were conducted as previously described 

(LeBoldus et al. 2015), using the Ion Torrent™ Personal Genome Machine® (PGM) System 

(Ion Torrent Systems, Inc., Guilford, CT, USA), with minor modifications. About 400 to 600 ng 

of RNA-free gDNA per P. teres f. maculata isolate were digested with HhaI enzyme (NEB, 

Ipswich, MA, USA) for 2.5 h at 37°C, followed by a second digestion with ApeKI enzyme 

(NEB, Ipswich, MA, USA) at 65°C for 2.5 h. Reactions were extracted and the digested gDNA 

was then precipitated, washed, and air dried. The digested gDNA of each isolate was re-

suspended in reaction components to ligate a universal adapter, ABC1, and a unique adapter, P1 

(Figure 3.3) to the resulting fragments. Prior to use, equal volumes of each forward and reverse 

adapter (100µM each) were transferred to individual 1.5-mL capped tubes (one tube per adapter) 

and placed in 100 mL of water in a beaker, boiled for two minutes, and allowed to cool on the 

bench top for 45-60 minutes.  

ABC1 Adapter 

 

Hha1 overhang  

in gDNA insert 
    5’-CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATCGNNN… 

3’-T*T*GGTGATGCGGAGGCGAAAGGAGAGATACCCGTCAGCCACTAGCNNN… 

 

ApeKI 

overhang in 

gDNA insert barcode key 

P1 Adapter 

…NNNCWGATYYYYYYYYYYYCTGAGTCGGAGACACGCAGGGATGAGATGG*T*T-3’ 

…NNNGWCTAXXXXXXXXXXXGACTCAGCCTCTGTGCGTCCCTACTCTACC-5’ 

 sequencing primer 

Figure 3.3. Adapter sequences for GBS. Top: ABC1 Adapter; Bottom: P1 adapter. 

The ABC1 adapter contains a sequence complementary to the oligonucleotide sequences 

bonded to the Ion Sphere Particles (ISP) to facilitate the polymerase enzyme-based transfer of 

complementary DNA fragments to the ISP using the Ion Torrent One-Touch2® system. The P1 

adapters include unique barcode sequences (Table 3.3) to identify and partition specific isolate 
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sequences when pooling many isolates in GBS libraries for sequencing in parallel, along with a 

sequencing primer site that initiates the sequence reaction in the Ion Torrent PGM® system. To 

ensure uniformity of reactions, 1 µl if each isolate was visualized after electrophoresis on a 1% 

agarose gel stained with GelRed™ (Biotium Inc., Hayward, CA, USA; cat. no. 41003) at the rate 

of 0.5 µl per 10 mL agarose. Isolates were then adjusted for uniformity as needed and pooled 

into four libraries of 36 to 48 isolates each. Libraries were size-selected for ~275bp +/- 10% 

using a Pippin Prep™ (Sage Science, Beverly, MA, USA) per manufacturer instructions for the 

2% agarose gel cassette (cat. no. CDF2010) and “tight” size selection. Each library was 

sequenced on separate Ion 318™ microprocessor chips using the Ion Torrent PGM® system 

after attachment to ISP and enrichment, as described (LeBoldus et al. 2015).  

Table 3.3. Barcode sequences used in the P1 adapters for genotyping-by-sequencing. 

Adapter Name Barcode sequences (5'-3') Adapter Name Barcode sequences (5'-3') 

ABC1 CTAAGGTAAC ABC26 TTACAACCTC 

ABC2 TAAGGAGAAC ABC27 AACCATCCGC 

ABC3 AAGAGGATTC ABC28 ATCCGGAATC 

ABC4 TACCAAGATC ABC29 TCGACCACTC 

ABC5 CAGAAGGAAC ABC31 TCCAAGCTGC 

ABC6 CTGCAAGTTC ABC32 TCTTACACAC 

ABC7 TTCGTGATTC ABC33 ATGCTGAGAC 

ABC8 TTCCGATAAC ABC34 CTATGCACTC 

ABC9 TGAGCGGAAC ABC35 GTAACGATAC 

ABC10 CTGACCGAAC ABC36 TAGCGTTAGC 

ABC11 TCCTCGAATC ABC37 CATTCGATAC 

ABC12 TAGGTGGTTC ABC38 GAATCCGTAC 

ABC13 TCTAACGGAC ABC39 ATGCAAGTAC 

ABC14 TTGGAGTGTC ABC40 GTACGAATGC 

ABC15 TCTAGAGGTC ABC41 CTAGGTAGAC 

ABC16 TCTGGATGAC ABC42 TACCATGTAC 

ABC17 TCTATTCGTC ABC43 GAACTTCGAC 

ABC18 AGGCAATTGC ABC44 TAGCCTTATC 

ABC19 TTAGTCGGAC ABC45 CACTGTAAGC 

ABC20 CAGATCCATC ABC46 ATATGTCGAC 

ABC21 TCGCAATTAC ABC47 TTACGACGTC 

ABC22 TTCGAGACGC ABC48 CTGACGATTC 

ABC23 TGCCACGAAC ABC49 ATACGAATGC 

ABC24 AACCTCATTC ABC50 CGTCAATTGC 

ABC25 CCTGAGATAC   
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Sequence Analysis and SNP Marker Calling 

Raw sequence data were obtained from the Ion Torrent Server, a required computing 

hardware and software component of the Ion Torrent PGM®. Data for each isolate were 

provided as separate fasta files to the server, based on the partitioning of the isolate-specific bar-

coded adaptor sequence. P. teres f. maculata isolate 12DP306 was de novo assembled in CLC 

Genomics Workbench (CLC Bio, Qiagen, Aarhus, Denmark) requiring 90% sequence identity, 

and subsequently used as the reference isolate, denoted as A05v2, for further assembly of the 

remaining isolates. Sequencing reads were aligned to A05v2 using a Burrows-Wheeler 

Alignment tool BWA-MEM, with default settings. SNPs were identified and genotypes assigned 

via SAMtools/BCFtools, and variants were post-filtered to an individual genotype quality of >10 

and a minimum read depth of 2. Heterozygotes were coded as missing data since the isolates 

used were haploid. The data files were then compiled into a variant call format (.vcf) file format 

for importation into Excel for further filtering based on minor allele frequency (2/n), quality 

(>100), and missing data per tag (<33%).  

Virulence Structure Analyses 

To test the hypothesis that significant differences in virulence occur among individual 

isolates, barley genotypes, and isolate-genotype interactions, a two-way analysis of variance 

(ANOVA) for seedling reaction type (across three replicates) was performed using the GLM 

procedure in SAS® software, version 9.3 (SAS Institute, Cary, NC, USA). To test the hypothesis 

that significant differences in virulence exist between pre-defined populations (rather than 

individual isolates), mixed model analysis using the MIXED procedure were conducted. In one 

model, populations were pre-defined by location, and fixed effects were barley genotype, 

location, and genotype-location interactions, with isolate nested within location designated as a 
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random effect. A second model tested whether virulence of isolates obtained from Tradition was 

greater than that of isolates obtained from Pinnacle, and only DIC, LAN, NES, and SYD were 

used in this analysis since FAR had insufficient numbers of isolates. In this model, fixed effects 

were field origin (Tradition or Pinnacle), barley genotype, and field-genotype interactions, with 

isolate as a random effect; the analyses were performed by location, which excluded any 

potential field-location interactions. Significance was assessed using P≤0.05, and Tukey’s P-

value adjustment for multiple comparisons was implemented for more than two comparisons. 

Cluster analysis to identify complexity of virulence among isolates was conducted using the 

CLUSTER procedure in SAS. The DISTANCE procedure was first implemented to generate a 

dissimilarity matrix, based on the city block method for quantitative data; then, the resulting 

dissimilarity matrix was used as input data for the CLUSTER procedure, using the average 

linkage method.  

Population Genetics and Population Structure Analyses 

A panel of isolates and corresponding SNP data derived from GBS was compiled by 

optimizing for the greatest number of isolates based on filtering SNPs for quality (>100), missing 

data (≤35%), and polymorphism (where at least two individuals carry the minor allele) and used 

for all population genetic and structure analyses. Population structure of the ND, MT, and ID 

isolates of P. teres f. maculata was inferred using the software package STRUCTURE v. 2.3.4 

(Pritchard et al. 2000). For each hypothetical number of subpopulations (k) 1 through 12, 

STRUCTURE was run twenty times, with a burn-in period of 50,000 iterations followed by 

500,000 Monte Carlo Markov Chain (MCMC) iterations, assuming admixture and independent 

loci, with no prior locations. The Δk approach as described by Evanno et al. (Evanno et al. 2005) 

was implemented to estimate the optimal number of subpopulations, via STRUCTURE 
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Harvester (Earl and vonHoldt 2012). Once k was estimated, STRUCTURE was repeated for the 

selected k with a burn-in period of 500,000 and 750,000 MCMC to assign isolates to 

subpopulations. Isolates were assigned to a subpopulation based on membership probability (Q) 

greater than 0.80, and those with Q<0.80 were designated as part of an admixed subpopulation.  

The poppr package (Kamvar et al. 2014) within the software program R (R Core Team, 

2013, Vienna, Austria) was used to calculate summary statistics for loci: number of alleles; 

Simpson’s index of diversity, 1-D (Simpson 1949), which ranges from 0  to 1 and the greater the 

value, the greater the diversity; Nei's 1978 expected heterozygosity, Hexp (Nei 1978), which is a 

measure of gene diversity; and genetic evenness (Grünwald et al., 2003). For each population 

based on location or field origin, poppr was used to calculate the number of multi-locus 

genotypes (MLG) and the Shannon-Wiener Index of diversity, H.  

Linkage disequilibrium (LD) was evaluated in R using the poppr and magrittr packages, 

where significant tests of the index of association, IA, which is a measure of random association 

between loci according to the method of Brown et al. (1980), were determined by implementing 

1,000 randomizations for each population (DIC, FAR/LAN, NES, SYD, and BLA). Under the 

null hypothesis of no linkage among markers (random association of markers), the observed IA 

does not differ from the expected IA of zero. If the observed IA is significantly different from 

zero, the null hypothesis is rejected and the results can be taken as evidence of nonrandom 

association of markers. In addition to IA, a less biased measure of association that takes into 

account the number of loci sampled, �̅�𝐷, was also used in multilocus analysis, and significance 

tests were based on 1000 permutations.  

The panel of isolates and corresponding SNPs were subjected to analysis of molecular 

variance (AMOVA) using GenAlEx version 6.5 (Peakall and Smouse 2006, Peakall and Smouse 
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2012), with 10,000 data permutations and 1,000 pairwise population permutations and 

interpolation of missing data by replacing them with the average genetic distances for each 

population-level pairwise contrast. ΦPT was calculated, which is analogous to FST and is a 

measure of genetic differentiation (Excoffier et al. 1992). The null hypothesis in AMOVA is that 

isolates are sampled from a global population; thus, ΦPT values that are significantly greater than 

zero provide evidence of genetic differentiation. Mantel tests for genetic isolation based on 

geographic distance was implemented with 10,000 permutations in GenAlEx, by plotting 

linearized ΦPT against linear genetic distances of populations. Two Mantel tests were performed: 

one test included data from all locations, and a second test included only DIC, FAR/LAN, NES, 

and SYD, excluding BLA due to its geographic isolation. This approach of AMOVA and Mantel 

tests is similar to one used by Burchhardt and Cubeta (Burchhardt and Cubeta 2014).  

Results 

Isolates Collected and Mating Type Frequency  

A total of 239 putative P. teres f. maculata isolates were collected from DIC, FAR, LAN, 

NES, SYD, and BLA. Of these, 12 were not viable for DNA isolation and/or did not produce a 

sufficient number of spores for inoculation and 45 were determined to be P. teres f. teres, based 

on molecular or phenotypic tests. In all, of 182 isolates of P. teres f. maculata obtained, 177 

isolates were used in virulence evaluations and 140 isolates were used in population genetics 

analyses (Table 3.4). Both mating types, MAT1 and MAT2, were detected in isolates from every 

location, and the MAT1:MAT2 ratios were 28:17, 3:1, 6:7, 9:13, 26:21, and 21:20 for isolates 

tested from DIC, FAR, LAN, NES, SYD, and BLA, respectively. The ratios of the two mating 

types did not significantly differ from the expected 1:1 ratio within populations, based on χ2 tests 

for goodness-of-fit (P=0.101, 0.782, 0.394, 0.466, and 0.876 for DIC, LAN, NES, SYD, and 



 93  

BLA, respectively (since FAR had only three isolates, its mating type ratio was not evaluated 

using the χ2 test for goodness-of-fit). Thus, the null hypothesis that the mating type ratios fit the 

expected 1:1 ratio of a sexually recombining population cannot be rejected.  

Table 3.4. Isolates of Pyrenophora teres collected, mating types, and mean lesion type across 

thirty barley genotypes for viable isolates of form maculata. 

Isolatea 
Pyrenophora 

teres form 

Mating 

type 

GBS Chip # 

And Adapter 

Code 

Tube 

ID 

Average 

lesion 

reaction type 

Max Min 

Difference 

(Max-

Min) 

12DP101 maculata 1 1A01 1 3.0 3.8 1.7 2.2 

12DP102 maculata 1 1A02 2 2.7 3.7 1.0 2.7 

12DP103 maculata 2 2A01 3 3.0 4.0 1.3 2.8 

12DP108 maculata 2 2A02 4 2.8 3.8 1.0 2.8 

12DP110 maculata 2 1A03 5 2.5 4.0 1.0 3.0 

12DP201 maculata 1 5A02 6 2.5 4.0 1.0 3.0 

12DP203 maculata 1 2A03 7 2.6 3.7 1.0 2.7 

12DP206 maculata 1 2A04 8 2.5 3.5 1.0 2.5 

12DP207 maculata 2 2A05 9 2.9 3.5 1.3 2.2 

12DP301 maculata 2 2A06 11 3.1 3.8 1.3 2.5 

12DP305 maculata 1 1A04 12 2.9 4.0 1.3 2.8 

12DP306 maculata 1 1A05 13 2.8 3.7 1.5 2.2 

12DP307 maculata 1 1A06 14 2.9 4.0 1.7 2.3 

12DP310 maculata 1 1A07 15 2.9 3.8 1.3 2.6 

12DP403 maculata 2 5A03 16 2.3 3.2 1.2 2.0 

12DP407 maculata 1 1A08 17 2.9 3.8 1.5 2.3 

12DP408 maculata 1 2A07 18 2.5 3.7 1.2 2.5 

12DP501 maculata NA 2A08 19 2.6 3.5 1.0 2.5 

12DP504 maculata 2 2A09 20 2.7 3.5 1.0 2.5 

12DP505 maculata 1 2A10 21 3.0 4.2 1.3 2.8 

12DP508 maculata 1 2A11 22 2.9 3.7 1.3 2.3 

12DP509 maculata 2 1A09 23 2.4 3.8 1.2 2.6 

12DP608 maculata 2 1A10 24 2.5 3.8 1.0 2.8 

12DP609 maculata 2 1A11 25 2.8 3.7 1.0 2.7 

12DP309 maculata 2 3A13 125 3.2 4.5 1.3 3.2 

12DP304 maculata 1 4A07 135 3.2 4.3 1.5 2.8 

12DT107 maculata 1 1A12 27 2.8 4.0 1.3 2.7 

12DT108 maculata 1 1A13 28 2.3 3.7 1.0 2.7 

12DT109 maculata 2 1A14 29 2.9 4.0 1.3 2.7 

12DT202 maculata 1 1A15 30 2.8 3.8 1.0 2.8 

12DT304 maculata 1 1A16 31 2.9 4.3 1.2 3.2 

12DT305 maculata 1 1A17 32 2.7 4.0 1.0 3.0 

12DT402 maculata 1 1A18 33 3.0 4.0 1.7 2.3 

12DT404 maculata 2 2A12 34 3.0 4.0 1.3 2.7 

12DT409 maculata 2 1A19 35 2.8 3.8 1.2 2.7 

12DT410 maculata 1 2A13 36 3.0 4.2 1.3 2.8 

12DT501 maculata 1 3A01 37 3.4 4.8 1.8 3.0 

12DT503 maculata 1 2A14 38 3.1 4.3 1.5 2.8 

12DT508.1 maculata 1 1A20 39 2.6 3.7 1.2 2.5 

12DT508.2 maculata 2 1A21 40 2.5 3.7 1.0 2.7 

12DT510 maculata 2 not tested 42 3.0 4.0 1.3 2.7 

12DT602.2 maculata 1 1A22 44 2.2 3.5 1.0 2.5 
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Table 3.4. Isolates of Pyrenophora teres collected, mating types, and mean lesion type across 

thirty barley genotypes for viable isolates of form maculata (continued). 

 

Isolatea 
Pyrenophora 

teres form 

Mating 

type 

GBS Chip # 

And Adapter 

Code 

Tube 

ID 

Average 

lesion 

reaction type 

Max Min 

Difference 

(Max-

Min) 

12DT604 maculata 2 1A23 45 2.6 3.8 1.2 2.7 

12DT606.1 maculata 1 1A24 46 not viable    

12DT606.2 maculata 1 3A19 134 3.1 4.3 1.5 2.8 

12DT607 maculata 2 1A25 47 not viable    

12DT609 maculata 1 2A15 48 3.0 4.2 1.2 3.0 

12DT610 maculata 1 1A26 49 2.9 4.3 1.3 3.0 

12FP102 teres 1 not tested 114     

12FP104 teres 1 not tested 115     

12FP209 maculata 1 not tested 116 3.0 4.0 1.2 2.8 

12FP310 maculata 1 4A05 118 3.0 4.0 1.3 2.7 

12FP401 maculata 1 4A06 119 2.9 4.0 1.3 2.7 

12FP601 maculata 2 5A10 121 3.1 4.3 1.3 2.9 

12LP102 maculata 2 3A05 93 3.0 3.8 1.3 2.5 

12LP104 teres 1 not tested 94     

12LP108 maculata 2 3A06 95 3.3 4.7 1.5 3.2 

12LP109 maculata 1 2A26 96 2.7 3.7 1.2 2.5 

12LP201 maculata 2 2A27 97 3.0 3.8 1.3 2.5 

12LP202 maculata 1 3A07 98 3.4 4.3 1.3 3.0 

12LP204 maculata 2 3A18 133 2.8 4.0 1.2 2.8 

12LP205 maculata 2 3A08 99 2.5 3.7 1.2 2.5 

12LP207 maculata 1 3A09 100 2.7 3.8 1.3 2.5 

12LP208 teres NA not tested 101     

12LP209 maculata 2 3A10 102 3.1 4.0 1.7 2.3 

12LP210 teres NA not tested 103     

12LT109 teres NA not tested 104     

12LT204 maculata 1 3A11 105 3.2 4.3 1.0 3.3 

12LT301 teres NA not tested 106     

12LT302 teres NA not tested 107     

12LT309 teres NA not tested 108     

12LT410 maculata 1 3A12 109 3.1 4.0 1.5 2.5 

12LT501 maculata 1 4A03 110 2.8 3.8 1.0 2.8 

12LT509 maculata 2 4A04 111 3.1 4.2 1.7 2.5 

12LT605 teres 2  112     

12LT606 maculata 2 1A39 113 2.9 3.8 1.5 2.3 

12NP101 maculata 2 3A14 127 3.1 4.0 1.5 2.5 

12NP102 maculata 1 1A27 50 3.0 4.2 1.7 2.5 

12NP104 teres NA not tested 51     

12NP107 maculata 2 2A16 53 2.9 3.7 1.5 2.2 

12NP109 teres 1 1A28 54     

12NP110 teres 2 not tested 55     

12NP202 teres 1 1A29 56     

12NP203 maculata 1 1A31 57 2.6 3.7 1.0 2.7 

12NP205 teres 2 not tested 59     

12NP207 maculata 2 1A33 60 2.7 4.0 1.0 3.0 

12NP209 maculata 1 1A34 62 2.8 3.7 1.2 2.5 

12NP305 teres 2 not tested 63     

12NP310 teres 2 not tested 64     

12NP402 maculata 1 2A17 65 3.1 4.5 1.3 3.2 

12NP403 teres NA not tested 66     
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Table 3.4. Isolates of Pyrenophora teres collected, mating types, and mean lesion type across 

thirty barley genotypes for viable isolates of form maculata (continued). 

 

Isolatea 
Pyrenophora 

teres form 

Mating 

type 

GBS Chip # 

And Adapter 

Code 

Tube 

ID 

Average 

lesion 

reaction type 

Max Min 

Difference 

(Max-

Min) 

12NP404 maculata 1 2A18 67 3.0 3.8 1.3 2.5 

12NP408 teres 2 not tested 68     

12NP410 teres 1 1A35 69     

12NP410.2 teres NA not tested 70     

12NP501 teres 2 not tested 71     

12NP502 maculata NA 2A19 72 2.8 3.8 1.0 2.8 

12NP503 maculata 1 3A15 128 3.2 4.3 1.7 2.7 

12NP507 maculata 1 1A36 73 2.9 3.8 1.5 2.3 

12NP605 teres 1 not tested 75     

12NP606.1 teres 1 1A38 76     

12NP607 maculata 1 2A20 78 3.1 4.2 1.7 2.5 

12NT203 maculata 2 not tested 129 3.3 4.3 1.5 2.8 

12NT208 maculata 2 3A16 130 2.9 4.3 1.2 3.2 

12NT209 maculata 2 2A21 80 3.2 4.2 1.7 2.5 

12NT308 teres 2 not tested 81     

12NT310 teres 1 not tested 131     

12NT407 maculata 2 2A22 82 3.2 4.2 1.8 2.3 

12NT408 teres 2 not tested 83     

12NT409 maculata 2 2A23 84 3.0 3.8 1.5 2.3 

12NT501 maculata 2 3A17 132 3.1 4.0 1.5 2.5 

12NT503 maculata 2 2A24 85 3.6 4.7 1.7 3.0 

12NT504.1 teres NA not tested 86     

12NT504.2 maculata 2 2A25 87 2.8 3.8 1.3 2.5 

12NT505 maculata 2 4A01 88 3.2 4.2 1.5 2.7 

12NT510 maculata 1 3A02 89 2.8 3.8 1.2 2.7 

12NT603 maculata 2 4A02 90 3.2 4.0 1.3 2.7 

12NT604 maculata 1 3A03 91 2.7 3.8 1.2 2.7 

12NT608 maculata 2 3A04 92 3.4 4.8 1.5 3.3 

Pin-A1 maculata 1 3A20 171 3.3 4.5 1.7 2.8 

Pin-A3 maculata 2 3A21 173 2.6 3.7 1.0 2.7 

Pin-A5 maculata 1 3A22 175 2.9 4.0 1.3 2.7 

Pin-A6 maculata 2 3A23 176 2.9 4.0 1.2 2.8 

Pin-A7 maculata 1 4A15 177 3.5 4.7 2.0 2.7 

Pin-A8 maculata 1 3A24 178 3.1 4.2 1.2 3.0 

Pin-A10 maculata NA 3A25 180 2.9 4.3 1.3 2.9 

Pin-A11 maculata 1 4A16 181 3.0 4.0 1.5 2.5 

Pin-A12 maculata 2 4A22 182 3.0 4.0 1.3 2.7 

Pin-A13 maculata 1 4A17 183 2.6 4.0 1.0 3.0 

Pin-A14 maculata 1 3A26 184 3.0 4.0 1.3 2.7 

Pin-A15 maculata 2 5A17 185 3.0 4.0 1.3 2.7 

Pin-B1 maculata 1 5A18 186 3.1 4.3 1.0 3.3 

Pin-B2 maculata 2 3A27 187 2.4 3.7 1.2 2.5 

Pin-B3 maculata 1 4A18 188 2.7 4.0 1.2 2.8 

Pin-B4 maculata 2 5A19 189 2.9 4.0 1.0 3.0 

Pin-C1 maculata 1 3A28 191 3.1 4.2 1.3 2.8 

Pin-C2 maculata 2 5A20 192 3.3 4.3 1.5 2.8 

Pin-C3 maculata 1 3A29 193 3.0 3.8 1.2 2.7 

Pin-C4 teres NA not tested 194     

Pin-C7 maculata 1 3A31 197 3.2 4.3 1.3 3.0 
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Table 3.4. Isolates of Pyrenophora teres collected, mating types, and mean lesion type across 

thirty barley genotypes for viable isolates of form maculata (continued). 

 

Isolatea 
Pyrenophora 

teres form 

Mating 

type 

GBS Chip # 

And Adapter 

Code 

Tube 

ID 

Average 

lesion 

reaction type 

Max Min 

Difference 

(Max-

Min) 

Pin-C8 maculata 1 5A21 198 3.4 4.3 1.5 2.8 

Pin-C9 maculata 2 3A32 199 2.8 4.2 1.0 3.2 

Pin-C10 maculata 1 3A33 200 3.2 4.2 1.5 2.7 

Pin-C14 maculata 1 3A34 201 3.1 4.2 1.5 2.7 

Pin-C15 maculata 2 3A35 202 3.4 4.3 1.7 2.7 

Pin-D1 maculata 1 3A36 203 2.6 3.5 1.0 2.5 

Pin-D2 maculata NA 5A22 204 3.3 4.3 1.5 2.8 

Pin-D3 maculata 2 3A37 205 2.9 4.0 1.0 3.0 

Pin-D4 maculata 1 5A23 206 3.0 4.0 1.2 2.8 

Pin-D6 maculata 1 5A24 207 3.6 4.7 1.5 3.2 

Pin-D7 maculata 1 5A25 208 3.0 4.0 1.2 2.8 

Pin-D8 maculata 2 5A26 209 2.5 4.0 1.3 2.8 

Pin-D9 maculata 1 5A27 210 3.1 4.2 1.2 3.0 

Pin-D10 maculata NA not tested 211 3.3 4.2 1.8 2.3 

Pin-D11 maculata 1 3A38 212 3.1 4.3 1.3 2.9 

Pin-D12 maculata 2 5A28 213 3.2 4.2 1.3 2.8 

Pin-D13 maculata 2 5A29 214 2.8 4.3 1.2 3.1 

Pin-D14 maculata 1 3A39 215 3.1 4.2 1.3 2.8 

Tra-A2 teres NA not tested 137     

Tra-A3 teres NA not tested 138     

Tra-A5 teres NA not tested 139     

Tra-A8 teres NA not tested 140     

Tra-A9 maculata 2 4A08 141 3.0 4.2 1.7 2.5 

Tra-A10 maculata 1 5A12 142 3.2 4.3 1.2 3.2 

Tra-A12 teres NA not tested 143     

Tra-A13 teres NA not tested 144     

Tra-B1 maculata 2 4A09 145 3.0 4.0 1.5 2.5 

Tra-B2 maculata 2 4A10 146 3.2 4.2 1.3 2.8 

Tra-B3 teres NA not tested 147     

Tra-B4 teres NA not tested 148     

Tra-B5 teres NA not tested 149     

Tra-B6 teres NA not tested 150     

Tra-C2 teres NA not tested 151     

Tra-C3 teres NA not tested 152     

Tra-C4 maculata 1 5A13 153 3.0 4.2 1.5 2.7 

Tra-C7 teres NA not tested 154     

Tra-C10 maculata 2 4A11 156 2.8 3.8 1.2 2.7 

Tra-C13 maculata 1 5A14 159 2.9 3.9 1.3 2.5 

Tra-C14 maculata 2 4A12 160 2.6 4.0 1.0 3.0 

Tra-D6 maculata 2 4A13 163 2.9 4.0 1.5 2.5 

Tra-D7 teres NA not tested 164     

Tra-D9 teres NA not tested 166     

Tra-D10 teres NA  167     

Tra-D12 maculata 2 4A14 168 3.2 4.0 1.3 2.7 

Tra-D14 teres NA  170     

13IM1.2 maculata 1 4A34 216 2.8 4.2 1.2 3.0 

13IM2.1 maculata 1 5A31 217 3.0 4.7 1.2 3.5 

13IM2.2 maculata 1 4A35 218 2.8 4.2 1.2 3.0 

13IM2.3 maculata 2 not tested 219 2.7 4.0 1.2 2.8 
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Table 3.4. Isolates of Pyrenophora teres collected, mating types, and mean lesion type across 

thirty barley genotypes for viable isolates of form maculata (continued). 

 

Isolatea 
Pyrenophora 

teres form 

Mating 

type 

GBS Chip # 

And Adapter 

Code 

Tube 

ID 

Average 

lesion 

reaction type 

Max Min 

Difference 

(Max-

Min) 

13IM2.4 maculata 2 not tested 220 3.0 4.3 1.3 3.0 

13IM3.1 maculata 1 2A28 221 2.9 4.2 1.2 3.0 

13IM4.1 maculata 1 4A36 222 3.4 4.3 1.7 2.6 

13IM4.2 maculata 2 2A29 223 2.9 4.3 1.2 3.2 

13IM5.2 maculata 1 2A31 224 2.4 3.8 1.2 2.6 

13IM5.3 maculata 2 5A33 225 2.6 4.0 1.2 2.8 

13IM6.1 maculata 2 5A34 226 2.7 3.7 1.2 2.5 

13IM6.2 maculata 2 4A37 227 2.9 4.2 1.3 2.8 

13IM7.1 maculata 1 4A38 228 3.0 4.0 1.3 2.7 

13IM7.2 maculata 2 3A40 229 2.5 3.8 1.0 2.8 

13IM8.2 maculata 1 3A41 230 2.7 3.8 1.0 2.8 

13IM8.3 maculata 2 5A36 231 3.4 4.5 1.3 3.2 

13IM9.2 maculata 2 2A32 233 2.8 3.8 1.2 2.7 

13IM11.1 maculata 2 2A46 235 3.2 4.3 1.5 2.8 

13IM11.1A maculata 2 2A33 236 3.0 4.3 1.5 2.8 

13IM11.1B maculata 2 4A39 237 3.2 4.0 1.3 2.7 

13IM13.1 maculata 2 2A34 238 3.1 4.5 1.5 3.0 

13IM14.1 maculata 2 2A35 239 3.3 4.3 1.7 2.7 

13IM14.2 maculata 1 4A40 240 2.2 3.5 1.0 2.5 

13IM14.3 maculata 1 3A42 241 3.1 4.3 1.2 3.2 

13IM15.1 maculata 2 2A36 242 3.1 4.3 1.4 2.9 

13IM16.1 maculata 1 2A37 243 3.0 4.3 1.2 3.2 

13IM16.2 maculata 1 2A38 244 3.2 4.5 1.3 3.2 

13IM17.2 maculata 1 2A39 245 3.2 4.7 1.3 3.3 

13IM17.3 maculata 1 2A40 246 2.6 3.8 1.2 2.7 

13IM18.1 maculata 1 2A41 247 3.1 4.3 1.2 3.1 

13IM18.1A maculata 1 2A42 248 3.0 4.2 1.2 3.0 

13IM18.1B maculata 1 4A41 249 3.0 4.0 1.5 2.5 

13IM19.1 maculata 1 2A43 250 2.6 4.2 1.2 3.0 

13IM19.1A maculata 1 5A38 251 2.7 4.0 1.0 3.0 

13IM20.1 maculata 2 2A44 252 2.6 4.0 1.3 2.7 

13IM20.2 maculata 2 2A45 253 3.2 4.3 1.2 3.2 

13IM20.3 maculata 2 3A43 254 3.4 4.7 1.7 3.0 

13IM20.4 maculata 2 4A42 255 2.0 3.0 1.0 2.0 

13IM21.1 maculata 1 3A44 256 3.5 4.3 2.0 2.3 

13IM21.2A maculata 1 3A45 257 3.3 4.5 1.5 3.0 
aIsolate codes beginning with D, F, L, N and I refer to isolates from Dickinson, Fargo, Langdon, 

Nesson Valley, and Idaho locations; Montana isolates are preceded by Pin or Tra; codes 

containing the letter P were collected from the barley cultivar Pinnacle; those with the letter T 

were collected from Tradition; and those with the letter M were collected from Moravian 69. 

 

Virulence Structure 

177 isolates were viable and produced sufficient spores to perform virulence assays. 

Phenotypic data were pooled for 173 of the isolates since variances were homogeneous based on 
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the Bartlett test, and means were used in analyses. The four isolates that failed the homogeneity 

of variance test were excluded from analyses. The overall distribution of reaction types was 

nearly normal (Figure 3.4) but slightly skewed towards virulence. The overall median reaction 

type was 3.0, and the mean was 2.9. All isolates showed differential responses on the barley set, 

in that the difference between the maximum reaction type and the minimum reaction type for 

each isolate was at least 2.0 (Table 3.4). Across the entire set of barley lines, 93 isolates were 

virulent (≥3 mean reaction type), 83 isolates were intermediate (mean reaction type between 2 

and 3), and only 1 isolate was avirulent (≤2 mean reaction type). 99.4% of isolates were virulent 

(mean reaction type ≥3) on the susceptible check, Pinnacle, with an overall mean reaction type of 

3.6 (range: 2.7 to 4.3). Four isolates had intermediate reaction types on Pinnacle, with means of 

2.7 to 2.8; two of these isolates originated from the BLA population, and two were from the SYD 

population. Nearly all isolates led to reaction types of ≤2 on the resistant check, CIho14219; five 

isolates (1 each from DIC, SYD, and NES; and 2 from BLA) showed a slightly higher mean 

reaction type of 2.2. The twenty most virulent isolates across all barley lines had mean reaction 

types ranging from 3.4 to 3.6; eight, six, three, two, and one isolate were from SYD, BLA, NES, 

LAN, and DIC, respectively. Seventeen isolates had mean reaction types of 2.5 or less across all 

the barley lines, and ten, four, two, and one were from DIC, BLA, SYD, and LAN, respectively.  

 

Figure 3.4. Distribution of lesion types of Pyrenophora teres f. maculata on a set of thirty barley 

genotypes that show differential responses to a global collection of the pathogen.  
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Distribution of reaction types varied by barley line (Figure 3.5). Barley lines that 

experienced the smallest range of disease reaction types among isolates were the checks 

CIho14219 and Pinnacle, along with TR326 and CI5791 (mean reaction types 1.4, 3.6, 3.4, and 

3.5, respectively); barley lines having the largest difference in disease reaction type among 

isolates included CI3576, MXB468, CI9776, CI7584, PI467729, and CIho3694 (mean reaction 

types: 2.2, 2.4, 3.1, 2.7, 3.5, and 2.8 respectively). Barley lines with reaction types that were 

skewed towards less susceptible/resistant include CIho14219, CI3576, CI9214, CIho2353, 

CIho4050, MXB468, and PI153205. In contrast, barley lines Chebec, Kombar, Pinnacle, Skiff, 

CI9776, PI269151, PI392501, PI467375, PI467729, PI485524, PI498434, and TR326 were 

skewed more towards susceptibility. The percentage of virulent isolates (with mean reaction type 

≥3.0) varied among populations and barley lines (Table 3.5).  
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Figure 3.5. Distribution of lesion types of 177 isolates of Pyrenophora teres f. maculata on 

thirty barley genotypes at the seedling stage (shown: data from three replicates for each isolate).  
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Table 3.5. Range of lesion types of Pyrenophora teres f. maculata isolates from different 

locations on thirty barley genotypes at the seedling stage. 

Barley Genotype 
Range of mean lesion type (% reactions ≥3) 

DIC FAR LAN NES SYD BLA 

Pinnacle 

(susceptible check) 
3.0-4.3 (100) 3.5-4.0 (100) 3.0-4.3 (100) 3.0-4.3 (100) 2.8-4.0 (96) 2.7-4.2 (95) 

CIho14219 

(resistant check) 
1.0-2.2 (0) 1.2-1.5 (0) 1.0-1.8 (0) 1.0-1.8 (0) 1.0-2.0 (0) 1.0-2.2 (0) 

81-82/033 2.0-3.7 (46) 3.2-3.7 (100) 2.7-3.8 (79) 2.3-4.2 (88) 2.3-4.0 (81) 2.0-4.0 (60) 

Arimont 2.2-3.5 (20) 2.7-3.2 (75) 2.5-3.3 (57) 2.5-3.5 (68) 2.3-3.8 (75) 1.3-4.3 (45) 

Chebec 2.3-4.2 (91) 3.3-3.7 (100) 2.8-4.0 (93) 3.0-4.3 (100) 2.0-4.2 (92) 2.8-4.5 (98) 

Keel 1.7-3.8 (37) 2.7-3.2 (50) 2.0-3.3 (14) 1.8-3.7 (56) 2.2-3.5 (54) 1.8-4.2 (80) 

Kombar 2.2-4.2 (80) 3.5-4.0 (100) 3.3-4.0 (100) 2.3-4.2 (96) 2.3-4.3 (96) 1.8-3.7 (43) 

Skiff 1.7-4.2 (91) 3.5-4.0 (100) 3.2-4.2 (100) 3.0-4.5 (100) 2.5-4.3 (94) 2.7-4.7 (98) 

CI3576 1.0-3.5 (9) 1.3-2.7 (0) 1.3-2.3 (0) 1.2-3.3 (20) 1.2-3.8 (21) 1.8-4.5 (60) 

CI5791 3.0-4.0 (100) 3.3-4.0 (100) 2.7-4.0 (93) 2.8-4.2 (96) 2.8-4.3 (96) 2.8-4.5 (95) 

CI9214 1.0-3.0 (2) 2.0-2.8 (0) 1.2-3.2 (7) 1.5-3.0 (4) 1.0-3.2 (2) 1.0-2.5 (0) 

CI9776 1.3-4.2 (50) 1.5-3.2 (50) 1.7-3.5 (36) 1.3-3.8 (48) 2.0-4.0 (73) 2.7-4.5 (95) 

CI9819 2.0-4.2 (78) 2.8-3.8 (50) 3.2-4.0 (100) 2.5-3.8 (76) 1.8-4.3 (81) 1.7-3.3 (10) 

CI7584 1.3-4.0 (59) 1.8-3.7 (75) 2.7-3.8 (71) 1.0-3.8 (68) 1.3-4.2 (67) 1.3-3.2 (3) 

CIho2353  1.2-2.7 (0) 1.3-2.0 (0) 1.3-2.8 (0) 1.3-3.0 (4) 1.0-3.0 (2) 1.0-2.0 (0) 

CIho3694  1.3-3.7 (24) 2.3-3.2 (75) 2.2-3.5 (36) 1.3-3.3 (28) 2.3-4.0 (65) 1.7-4.3 (73) 

CIho4050  1.0-3.0 (2) 1.7-2.0 (0) 1.3-2.7 (0) 1.3-2.7 (0) 1.3-2.8 (0) 1.2-3.2 (5) 

MXB468 1.0-3.8 (7) 1.8-3.5 (25) 1.5-2.3 (0) 1.5-3.8 (20) 1.0-3.8 (29) 1.5-4.3 (83) 

PI269151  2.2-4.2 (78) 3.5-4.2 (100) 2.8-4.0 (93) 3.0-4.3 (100) 2.2-4.2 (98) 2.3-4.5 (93) 

PI369731  1.0-3.3 (11) 2.5-3.2 (50) 2.2-3.2 (36) 1.5-3.7 (20) 2.0-3.7 (44) 1.3-4.0 (45) 

PI392501  2.5-4.5 (87) 3.5-4.3 (100) 3.3-4.3 (100) 2.7-4.5 (96) 2.8-4.3 (98) 2.3-4.2 (85) 

PI467375  2.5-4.3 (78) 3.3-3.8 (100) 3.0-4.2 (100) 2.3-4.0 (96) 2.2-4.3 (85) 2.0-4.0 (68) 

PI467729  1.8-4.8 (74) 3.2-4.0 (100) 2.3-4.3 (86) 2.8-4.8 (84) 1.8-4.7 (92) 2.5-4.7 (95) 

PI485524  2.0-4.0 (83) 3.0-3.7 (100) 2.5-3.8 (71) 2.8-4.2 (92) 2.3-4.3 (92) 2.0-4.0 (85) 

PI498434  2.3-4.2 (74) 3.2-3.8 (100) 2.8-4.2 (93) 2.8-4.0 (88) 2.3-4.3 (94) 2.7-4.7 (95) 

PI513205  1.2-3.3 (17) 1.5-2.3 (0) 1.7-3.5 (7) 1.2-3.2 (28) 1.0-3.5 (8) 1.0-3.7 (13) 

PI565826  1.0-3.8 (39) 2.5-3.3 (75) 2.3-3.8 (86) 2.0-3.7 (56) 1.5-4.0 (58) 1.2-2.8 (0) 

PI573662  2.2-3.8 (46) 2.7-3.5 (50) 2.3-3.3 (43) 2.3-3.7 (72) 1.7-4.0 (46) 1.7-4.2 (78) 

TR250 1.5-3.7 (48) 2.5-3.3 (50) 2.3-3.8 (86) 2.3-3.7 (76) 1.7-4.2 (54) 1.5-3.2 (5) 

TR326 2.5-3.8 (87) 3.2-3.7 (100) 2.7-4.0 (79) 3.0-4.0 (100) 2.5-4.0 (92) 2.3-4.0 (84) 

 

The two-way ANOVA indicated that differences in virulence among individual isolates, 

susceptibility of the barley genotypes, and the isolate-genotype interactions were significant 

(P<0.0001, Table 3.6). For the mixed model analyses, the four FAR isolates were pooled with 

the 14 LAN isolates due to small sample size; the pooled population represented an eastern ND 

population, denoted as FAR/LAN. The mixed model analysis to test the hypothesis that 

significant differences in virulence exist between pre-defined populations showed that the 

virulence of populations, susceptibility of genotypes, and interaction between population and 
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genotype was significant (Table 3.7). The DIC population was significantly less virulent than the 

SYD and NES populations (adjusted P<0.05, Figure 3.6).  

Table 3.6. Two-way ANOVA to test the hypothesis that significant differences in virulence 

occur among individual isolates, barley genotypes, and isolate-genotype interactions. 

  

Source of variation DF Type III SS Mean Square F Value Pr > F 

Isolate 172 1198.857218 6.970100 21.32 <. 0001 

Genotype 29 5519.403890 190.324272 582.18 <. 0001 

Isolate × Genotype interaction 4986 3000.421968 0.601769 1.84 <. 0001 

 % Coeff Var Root MSE Lesion Type Mean   

 19.44556 0.571768 2.940352   

 

Table 3.7. Mixed model analyses to test for differences in population virulence, genotype 

susceptibility, and the interaction between genotype and population.  

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Genotype 29 15E3 471.88 <. 0001 

Location 4 168 5.48 0.0004 

Genotype × Location interaction 116 15E3 23.07 <. 0001 

 

 

Figure 3.6. Mean virulence of populations. DIC is significantly less virulent than SYD and NES 

(adjusted P=0.0002 and 0.0124, respectively). Error bars indicate +/- standard error. 

Differences in susceptibility across all barley genotypes were also significant (Table 3.7). 
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significant, and were largely due to the unique virulence profile of the BLA population compared 

to DIC, FAR/LAN, and SYD populations (Figure 3.7): on eleven genotypes (Chebec, CI3576, 

Keel, Skiff, CI9776, CIho3694, MXB468, PI369731, PI467729, PI498434, and PI573662), the 

BLA population was significantly more virulent than two or more other populations; and the 

BLA population was significantly less virulent on eleven genotypes (81-82/033, Kombar, 

CI7584, CI9214, CI9819, CIho2353, PI392501, PI467375, PI513205, PI565826, and TR250) 

than two or more of the other populations (adjusted P<0.0001 to P=0.0361). In general, DIC, 

FAR/LAN, NES, and SYD populations reacted similarly on the thirty barley genotypes, except 

on CIho3694, where NES and DIC were significantly less virulent than SYD and BLA (adjusted 

P<0.0001 to 0.0306) (Figure 3.7).   

 

 

Figure 3.7. Population virulence and genotype interactions. The BLA population was more 

virulent on eleven barley genotypes (top) and less virulent on eleven barley genotypes (bottom) 

compared to two or more other populations. Error bars indicate +/- standard error.  
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The mixed model analysis to test the hypothesis that populations of isolates that 

originated from different barley cultivars differed in virulence showed that the subpopulation 

collected from Pinnacle at NES was significantly less virulent than the subpopulation collected 

from Tradition at NES (P=0.0460, Table 3.8). Numerically, mean virulence of the subpopulation 

collected from Tradition was always slightly higher than mean virulence of the subpopulation 

collected from Pinnacle for DIC, FAR/LAN, NES and SYD, but the difference was not 

significant at these locations (P=0.7786, 0.6136, and 0.8889, respectively).  

Table 3.8. Mixed model analyses to test for differences in population virulence based on barley 

cultivar from which populations were collected (field origin). 

 Population, P-value 

Effect DIC FAR/LAN NES SYD 

Field 0.7786 0.6136 0.046 0.8889 

Line <0.0001 <0.0001 <0.0001 <0.0001 

Field × Line 0.5245 0.9193 0.1823 0.0048 

Field Origin Mean Virulence 

Pinnacle 2.77 2.96 2.92* 3.03 

Tradition 2.79 3.01 3.07* 3.04 

Cluster analysis of isolate virulence on each genotype revealed a high degree of 

complexity in terms of virulence structure (Figure 3.8). The BLA isolates usually clustered 

among five groups, while DIC, FAR, LAN, NES, and SYD isolates were intermixed among 

clusters corresponding to different virulence profiles across the thirty barley genotypes. Over 52 

groupings at coefficient of variation ≥0.80 based on virulence patterns of isolates on the 30 

barley genotypes were defined by the cluster analysis. The tendency of the BLA isolates to 

cluster together in virulence groups, along with the mixed model analysis showing population 

virulence and barley genotype interactions unique to BLA suggest that this population is 

differentiated from others based on virulence patterns.  
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Population Genetics Summary Statistics and Underlying Population Structure 

All 177 viable isolates were subjected to GBS to obtain SNPs for population genetics 

analyses. However, of the four Ion 318™ chips processed with the Ion Torrent system, one chip 

did not yield adequate data for use due to differing fractions of sequenced DNA or to poor 

quality DNA or both. The reference isolate A05v2 as assembled by CLC Genomics Workbench 

resulted in the construction of 48,968 unique sequence tags. When all isolates were assembled 

with the reference isolates, 22,905 sequence tags were generated from GBS and 122,551 SNPs 

were called, and after an initial filtering step in Excel for quality and MAF of 2/n (where n is the 

total number of individuals), 8,819 sequence tags containing 20,121 SNPs remained, with an 

average of 2.28 SNPs per tag. After further filtering for optimal number of isolates with least 

amount of missing data, the resulting panel used in population genetics analysis consisted of 140 

isolates (Table 3.1) and 72 SNPs across 65 sequence tags.  

Missing data per sequence tag ranged from 0.7% to 33%. To determine whether 

sufficient number of SNPs were sampled, a genotype accumulation curve (Figure 3.9) was 

generated using the poppr package within R. The point at which the plotted curve flattens 

corresponds to the optimal number of sequence tags to sample. The optimal number of sequence 

tags in this case is about 44, indicating that a sufficient number of sequence tags were used. Due 

to small sample size, the two isolates from FAR that remained in the panel were pooled with the 

fourteen from LAN, to represent an eastern ND population, FAR/LAN. 
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Figure 3.8. Cluster analysis of virulence. Analyses is based in the CLUSTER procedure in SAS, 

using a distance matrix calculated using the city block method. 
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Figure 3.9. Genotype accumulation curve. Given a random sample of n loci (horizontal axis), 

this analysis evaluates the power to discriminate between individuals (multi-locus genotypes, 

vertical axis). The plateau of the curve indicates the number of loci (SNPs, here) that need to be 

sampled to adequately distinguish among individuals, and corresponds to about 52. 

Population structure was determined for the 140-isolate and 72 SNP panel using 

STRUCTURE and implementing the Evanno method (Evanno et al. 2005) via STRUCTURE 

Harvester (Earl and vonHoldt 2012). Optimal k of 2 and 8 was estimated using this method 

(Figure 3.10). However, since most isolates could be assigned to one of two populations at 

Q>0.80, k=2 appears to represent the best estimate of population groups for this data set (Figure 

3.11). Isolates that could not be assigned to either population at Q>0.80 were designated as being 

part of an admixed population, which comprised 20%, 6%, 15%, 13%, and 22% of isolates from 

DIC, FAR/LAN, NES, SYD, and BLA, respectively. Within the FAR/LAN, NES, and SYD 

populations, which were primarily allocated to one population, 6.2% were assigned to the second 

population comprised of most BLA isolates; and 7.4% of the BLA population was assigned to 

the population represented primarily by DIC, FAR/LAN, NES, and SYD. Interestingly, although 
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the DIC population contained apparently admixed isolates (20%), no DIC isolate could be placed 

in the BLA population.  

 
Figure 3.10. Estimate of k using the Evanno method based on results from the program 

STRUCTURE. Two estimates of k are supported by this method, k=2 and k=8. 

 

 

 

Figure 3.11. Estimated population composition from analyses with the program STRUCTURE 

for k=2 and k=8.Black lines separate the different sampling locations, in order left to right, DIC, 

FAR/LAN, NES, SYD, and BLA.  
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Quality of the panel was evaluated with GenAlEx, and eight of the 72 SNPs were 

recommended for removal, leaving a panel with a total of 64 SNPs that was used in further 

analyses, with missing data ranging from 0.7% to 25%. All markers had two alleles; 1-D ranged 

from 0.014 to 0.477 (mean: 0.097), Hexp ranged from 0.028 to 0.954(mean: 0.195), and evenness 

ranged from 0.332 to 0.956 (mean: 0.467) (Table 3.9). Genetic diversity among populations, as 

measured by MLG, was high, in that every individual was a unique haplotype and none occurred 

more than once among populations; H ranged from 2.77 to 3.78 (overall: 4.94); and genetic 

diversity and evenness were 1.0 for all populations (Table 3.10).  

AMOVA revealed low variation between populations (8%) and high variation among 

isolates within populations (92%) (Table 3.11). Differentiation among populations was 

statistically significant (Table 3.12): BLA was significantly differentiated from DIC, FAR/LAN, 

NES, and SYD; and DIC was significantly different from FAR/LAN and NES.  

The relationship between genetic distance and geographic distance was weakly 

significant (P=0.064, r2=0.8655) when all populations were included and not significant when 

BLA was excluded (P=0.420, r2=0.0596) (Figure 3.12). The BLA population is geographically 

distant from the other locations (811 km to 1244 km) and the Rocky Mountain range separates it 

from them. The weakly significant relationship between genetic and geographic distances when 

BLA is included in the analyses provides further evidence of BLA differentiation.  
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Table 3.9. Marker summary (based on Pyrenophora teres f. maculata reference A05v2). 

Marker  alleles 1-D Hexp Evenness  Marker  alleles 1-D Hexp Evenness 

145_157 2 0.157 0.313 0.547  2228_90 2 0.028 0.056 0.373 

236_115 2 0.028 0.056 0.373  2243_6 2 0.028 0.056 0.373 

391_102 2 0.014 0.028 0.332  2354_119 2 0.056 0.111 0.424 

535_69 2 0.028 0.056 0.373  2657_16 2 0.028 0.056 0.373 

564_24 2 0.157 0.313 0.547  2710_16 2 0.180 0.360 0.571 

614_31 2 0.028 0.056 0.373  2755_53 2 0.108 0.216 0.493 

614_148 2 0.202 0.405 0.595  2861_25 2 0.042 0.084 0.401 

655_95 2 0.028 0.056 0.373  2960_43 2 0.477 0.954 0.956 

655_164 2 0.042 0.084 0.401  3150_91 2 0.108 0.216 0.493 

749_140 2 0.042 0.084 0.401  3162_110 2 0.120 0.241 0.508 

772_110 2 0.028 0.056 0.373  3480_93 2 0.069 0.138 0.444 

804_67 2 0.145 0.290 0.534  3567_8 2 0.042 0.084 0.401 

817_100 2 0.069 0.138 0.444  3567_159 2 0.095 0.190 0.478 

898_93 2 0.042 0.084 0.401  3717_68 2 0.056 0.111 0.424 

973_42 2 0.042 0.084 0.401  4128_77 2 0.028 0.056 0.373 

1055_38 2 0.320 0.640 0.725  4389_61 2 0.028 0.056 0.373 

1055_68 2 0.042 0.084 0.401  4521_60 2 0.320 0.640 0.725 

1154_121 2 0.056 0.111 0.424  4821_127 2 0.056 0.111 0.424 

1154_126 2 0.224 0.448 0.618  5192_126 2 0.168 0.337 0.559 

1218_14 2 0.056 0.111 0.424  5716_60 2 0.120 0.241 0.508 

1246_115 2 0.028 0.056 0.373  6108_50 2 0.028 0.056 0.373 

1348_104 2 0.014 0.028 0.332  6870_143 2 0.028 0.056 0.373 

1383_60 2 0.328 0.657 0.735  7533_171 2 0.180 0.360 0.571 

1614_136 2 0.120 0.241 0.508  7760_112 2 0.168 0.337 0.559 

1673_63 2 0.056 0.111 0.424  7935_22 2 0.145 0.290 0.534 

1724_105 2 0.028 0.056 0.373  8281_103 2 0.014 0.028 0.332 

1742_51 2 0.014 0.028 0.332  11047_61 2 0.120 0.241 0.508 

1845_15 2 0.191 0.383 0.583  11403_16 2 0.360 0.721 0.775 

1881_129 2 0.028 0.056 0.373  11403_135 2 0.082 0.164 0.462 

1896_45 2 0.069 0.138 0.444  12941_25 2 0.056 0.111 0.424 

2016_48 2 0.042 0.084 0.401  15207_102 2 0.095 0.190 0.478 

2083_13 2 0.108 0.216 0.493  15621_83 2 0.028 0.056 0.373 

      mean 2 0.097 0.195 0.467 
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Table 3.10. Population genetics summary statistics and tests for LD. Missing data were replaced 

with the average allele frequency observed before analyses; significance tests for LD (IA and  
�̅�𝑫) are based on 999 permutations.  

Pop N MLG H Hexp Evenness IA P-value �̅�𝑫 P-value 

DIC 44 44 3.78 1 1 0.844 0.001 0.022 0.001 

FAR/LAN 16 16 2.77 1 1 0.528 0.048 0.016 0.06 

NES 22 22 3.09 1 1 1.161 0.001 0.034 0.001 

SYD 31 31 3.43 1 1 0.301 0.074 0.007 0.078 

BLA 27 27 3.3 1 1 0.157 0.196 0.005 0.204 

Total 140 140 4.94 1 1 0.634 -- -- -- 

 

Table 3.11. Analysis of Molecular Variance (AMOVA) for Pyrenophora teres f. maculata 

populations from five diverse regions in the Northern Great Plains of the United States. 

Source df Estimated 

Variance 

Variation 

(%) 

Φ 

Among populations 4 0.293 8  

Within populations, ΦPT 135 3.234 92 0.083 

Total 139 3.527 100  

 

Table 3.12. Pairwise ΦPT values for populations of Pyrenophora teres f. maculata generated by 

AMOVA (lower diagonal) and significance (P-value, upper diagonal).  

Population ID DIC FAR/LAN BLA SYD NES 

DIC -- 0.0019 <0.0001 0.4692 0.0057 

FAR/LAN 0.0463 -- <0.0001 0.2462 0.4695 

BLA 0.1810 0.1858 -- <0.0001 <0.0001 

SYD 0.0000 0.0077 0.1449 -- 0.3031 

NES 0.0279 0.0000 0.1523 0.0045 -- 
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Figure 3.12. Mantel tests of the relationship between genetic distance and geographic distance 

for 140 isolates across five locations, based on 9,999 permutations. A. All populations, including 

the geographically isolated ID population (BLA), P=0.064, r2=0.8655; B. ND (LAN, DIC, and 

NES) and MT (SYD) populations only, P=0.420, r2=0.0596. 

Discussion 

We present here a baseline study that provides valuable information on the virulence 

profiles and genetic structure of P. teres f. maculata populations in the northern United States. 

Virulence structure appears to be complex in P. teres f. maculata. This complexity has been 

reported in P. teres f. maculata populations from both Montana (Karki and Sharp 1986) and 

Australia (McLean et al. 2011). Unlike P. teres f. teres, where distinct pathotypes have been 

described (Tekauz 1990, Steffenson and Webster 1992), such distinct categories have not yet 

been defined for P. teres f. maculata. Underlying structure both in terms of the virulence profile 

and population genetics provide evidence that the BLA population is significantly differentiated 

from DIC, FAR/LAN, NES, and SYD populations. Within all populations, we propose sexual 

recombination is occurring, given the MAT1:MAT2 ratios that do not significantly differ from 

1:1 in each subpopulation (by location); the high genetic diversity, indicated by the fact that all 

140 isolates subjected to population genetics analyses were identified as unique multi-locus 

genotypes; and the high within-population genetic variation and low variation among 

populations as indicated by AMOVA.  
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Population genetics studies with P. teres f. maculata have provided evidence of varying 

degrees of sexual recombination based on multilocus analyses. Rau et al. (2003) were not able to 

reject the null hypothesis of random association for two populations of P. teres f. maculata and 

one population of P. teres f. teres, while, despite low values for IA, the null hypothesis of random 

association was rejected for two other P. teres f. maculata populations. Peever and Milgroom 

(1994), using the same approach, rejected the null hypothesis of random association for a New 

York population of P. teres f. teres, but not for P. teres f. teres populations from Alberta, 

Canada; North Dakota, USA; and Germany. In our study, the values of IA were not significantly 

greater than zero for SYD and BLA, providing evidence of sexual recombination, but they were 

significantly greater than zero for DIC, FAR/LAN, and NES, which suggests that non-random 

association between markers is occurring in these three populations. Other factors besides clonal 

reproduction may be involved in the observed LD in these populations, such as epistatic 

selection; genetic drift; how tightly markers are linked on the same chromosome and the extent 

of recombination; and the rate of decay for linked loci (Milgroom 1996).  

AMOVA results for populations analyzed by Rau et al. (2003) revealed greater genetic 

differences between populations of P. teres f. teres compared to populations of P. teres f. 

maculata in Sardinia, Italy, suggesting that selection pressure (perhaps due to different host 

ranges), gene flow, and/or degree of sexual recombination influence the differences between P. 

teres f. teres and P. teres f. maculata in that region. In our study, AMOVA revealed high genetic 

variation within populations and low genetic variation among populations. The foliar cereal 

pathogen Fusarium graminearum in populations from the upper Midwest USA showed a similar 

result, where low genetic variation was observed among populations and high genetic variation 

was observed within populations (Burlakoti et al. 2008). The life styles of F. graminearum and 
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P. teres f. maculata are similar in that they both can produce haploid conidia and they can 

undergo sexual recombination; however, the disease caused by F. graminearum, fusarium head 

blight, is considered monocyclic since infection occurs during a narrow time period during the 

host life cycle, rather than a polycyclic one like SFNB, where conidia can repeatedly infect leaf 

tissue and cause new infections throughout the growing season. Both pathogens are important on 

barley, and despite differing disease cycles, they both appear to be genetically diverse.  

Along with our AMOVA results, the χ2 tests indicating that the two mating type ratios do 

not differ from a 1:1 ratio in each population provide compelling evidence that sexual 

recombination is occurring in the DIC, FAR/LAN, and NES populations of P. teres f. maculata 

despite non-zero values of IA. Sexual recombination was also inferred for populations of P. teres 

f. teres in ND based on the mating type ratio (Liu et al. 2012). In our study, there are at least 

three scenarios that could explain LD in the presence of sexual recombination. In one scenario, 

the nonrandom association could be due to the timing of isolate collection, possibly during cyclic 

production of conidia, and may represent the mixed reproductive systems that P. teres f. 

maculata can undergo; if sexual recombination occurs infrequently, we may see a slower decay 

of LD. In a second scenario, multiple lineages may be introduced, resulting in admixture that 

may remain stable over time if sexual recombination is rare. This scenario is possible since 

conidia-producing structures that can over-winter have been reported (Shipton 1973). In a third 

scenario, presence of LD in a presumably sexually recombining population may occur due to 

selection pressure for epistatic alleles on different loci. Our study cannot distinguish among these 

possibilities, but LD due to epistatic combinations of alleles at different loci may be the most 

probable of the three scenarios, particularly if sexual recombination is truly occurring in the 

populations.  
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The relative contribution of each reproductive system (asexual vs sexual) may differ 

between BLA and the other regions. The climate in Blackfoot, ID is milder (USDA zone 5b) 

than that of locations in MT and ND (USDA zones 3b or 4a), and such a milder climate might 

allow for more consistent maturation of sexual structures or to development of more viable 

ascospores. The BLA population was collected from a field where no-till practices were 

implemented and the previous crop was barley; mature ascospores may have been present in 

abundance to initiate infections in the BLA population, thus providing stronger evidence of 

random association across markers.  

In the United States, the sexual stage of P. teres f. maculata has not been observed 

directly in the field, and ascospores of P. teres f. maculata have not yet been confirmed. In 

Canada, the sexual stage has also not been confirmed, and only conidia were recovered in spore 

traps that were operating throughout the growing season (Berg and Rossnagel 1991). It is 

possible that LD may be due to clonal reproduction if the pathogen experiences limitations to 

completing its life cycle in MT and ND; the short growing seasons might not allow production of 

fertile structures before winter dormancy begins, and the long, cold winter might not allow 

maturation of fertilized structures. Despite lack of physical evidence of the sexual structures in 

the northern US, the results of AMOVA, the high level of diversity within populations, and the 

presence of essentially 1:1 ratios of mating types lend credible support that our populations of P. 

teres f. maculata are undergoing sexual recombination.  

The differentiation of the BLA population in terms of virulence is likely due to selection 

pressure. Different barley cultivars are grown in Idaho compared to ND and eastern MT, and 

weed hosts may differ, particularly since the growing conditions in the Blackfoot, ID region is 

milder than the MT and ND regions. Although barley cultivars with known resistance to P. teres 



 116  

f. maculata have not been deployed in North America, differences in virulence exists as 

evidenced by the complex virulence profiles reported here. Many different virulence loci and 

potentially many corresponding resistance (or dominant susceptibility) loci possibly exist, which 

may influence selection in a more subtle manner than single dominant resistance genes in hosts. 

In addition, some of the loci in barley may be controlled in an inverse gene-for-gene manner, a 

model which accommodates the concept of dominant susceptibility rather than dominant 

resistance.  

Wild hosts can also potentially confer epistatic selection pressure on the different 

populations. Due to presence of isolates in the BLA population that are similar to isolates in 

other populations, and vice versa, it is possible that all populations were more similar at one time 

but that the BLA population has experienced drift due to geographic isolation. If P. teres f. 

maculata has been in ID for some time before the 2013 confirmation, an extended presence in 

the region could account for the differentiation due to drift, because the BLA region is 

geographically isolated by the Rocky Mountain Range from the MT and ND populations and 

thus gene flow could be restricted. Evidence for geographic isolation of the BLA population can 

be inferred from the weakly significant relationship (P=0.064) between genetic distance and 

geographic distance.  

The presence of ND-like and MT-like isolates in the BLA population may be due to 

movement of seed or other long-distance mechanisms that can move inoculum in both directions. 

However, the occurrence and importance of seed-borne inoculum of P. teres f. maculata has not 

yet been demonstrated (McLean et al., 2009), although it is known to occur with P. teres f. teres 

(Joergensen, 1980). Discerning the cause of the differentiation with high confidence is not 

possible with the present study, particularly since the populations were sampled in only one point 
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in time and the BLA population was taken from a different barley cultivar than the other 

populations. We can in the future monitor changes in these populations, and efforts are currently 

underway to track changes in P. teres f. maculata populations by using association mapping to 

identify a panel of markers that may be useful to predict virulence.  

Hybridization between P. teres f. teres and P. teres f. maculata has been shown to occur 

in the lab (Smedegård-Petersen 1971, Campbell et al. 1999), but it has rarely been documented 

in nature (Campbell et al. 2002, McLean et al. 2014). No effort to identify hybrids were made in 

this present study; however, this is an important question that can be explored with the collection 

of P. teres isolates obtained here, since many were phenotypically aligned with symptoms 

caused by P. teres f. teres. Although P. teres f. maculata and P. teres f. teres were often isolated 

from the same leaves, presumably from infections that originated from conidia, the opportunity 

for hybridization would likely occur during fertilization, and whether timing of this event in P. 

teres f. maculata and P. teres f. teres is synchronous in ND is not known. Isolates that produced 

NFNB-like symptoms were excluded from analysis, but sequencing of these isolates and 

phenotyping across all thirty barley genotypes may provide additional insight towards the 

question of hybridization. The possibility of hybridization is particularly important because 

different genes are involved in resistance to SFNB and NFNB, and if hybridization occurs, new 

combinations of virulences may arise or resistance may break down more rapidly, particularly if 

barley cultivars with dominant resistance to NFNB are deployed. Furthermore, increased 

insensitivity to fungicide in hybrids, despite sensitivity of both parents, has been reported 

(Campbell et al. 1999). Although hybridization appears to be rare, perhaps due to few viable 

ascospores that reportedly result from such crosses, or to differences in timing of fertility, or to 
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some other yet unknown barrier, monitoring populations for possible hybridization is warranted 

because of the potential risk to host resistance and fungicide efficacy.  

Regardless of whether hybridization occurs, it has not yet been demonstrated to be a 

frequent event in nature (Campbell et al. 2002, McLean et al. 2014); and despite the fact that 

hybridization can occur between the two forms, recent evidence supports the concept that P. 

teres f. teres and P. teres f. maculata are separate species (Leisova et al. 2005, Ellwood et al. 

2012). Furthermore, genes that confer resistance to the two pathogens differ in the host (Friesen 

et al. 2006). As a result, population genetics studies and efforts to breed for resistance justifiably 

continue to consider the two pathogens separately. Here, we showed that populations of P. teres 

f. maculata in the United States have a complex virulence structure and are likely undergoing 

sexual recombination, two features that may complicate attempts to breed for resistance. 

Association mapping is being used to examine relationships between SNPs and virulence 

phenotype among isolates in the populations collected here. Understanding the underlying 

genetic components of virulence can aid in efforts to breed for resistance; to monitor shifts in 

virulence in pathogen populations; to provide top-down guidance in finding potential pathogen 

effectors that contribute in understanding host-pathogen interactions; and to develop novel 

approaches to manage plant pathogens.  
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CHAPTER 4. IDENTIFYING MARKERS ASSOCIATED WITH VIRULENCE OR 

AVIRULENCE IN THE HAPLOID FUNGUS PYRENOPHORA TERES F. MACULATA, A 

PATHOGEN OF BARLEY 

Abstract 

Identifying avirulence or virulence factors in plant pathogens aids efforts to understand 

plant-pathogen interactions and to breed for durable resistance. Here, we describe the detection 

via association mapping of marker-trait associations linked with virulence/avirulence in a 

population of Pyrenophora teres f. maculata that was collected from naturally-infected barley 

fields in different regions across North Dakota, eastern Montana, and eastern Idaho. Single 

nucleotide polymorphisms (SNPs) were generated via genotyping-by-sequencing for 82 isolates 

of P. teres f. maculata, and lesion reaction types were obtained for each isolate when challenged 

on seedlings of thirty different barley lines selected for their differential response to a global 

collection of P. teres f. maculata. Association mapping analyses based on the best of eight 

different mixed model analyses that incorporate population structure and relatedness yielded 

forty-five significant (P≤0.001) marker-trait association across 19 genome sequence scaffolds of 

the isolate FGOB10 of P. teres f. maculata. The most frequent best model was that which 

incorporated principal components that accounted for about 50% of the variation, Q50. The most 

significant marker, 01700_198, was found on P. teres f. maculata genome sequence scaffold 

eight when the population was challenged on three different barley lines. Our results identified 

novel virulence/avirulence associations in P. teres f. maculata that will be further explored to 

identify the underlying pathogen effectors/avirulence genes to fill important gaps in our 

understanding of host-pathogen genetic interactions determining susceptibility or resistance in 

this complex pathosystem.  
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Introduction 

Pyrenophora teres f. maculata is an important globally-distributed necrotrophic foliar 

pathogen that causes spot-form net blotch (SFNB) of barley. Yield losses up to 44% 

corresponding to up to 55% disease on upper leaves have been reported for SFNB (Jayasena et 

al., 2007), and in some regions the disease is considered the most prevalent foliar disease of 

barley (McLean et al., 2010). P. teres f. maculata and its close relative, Pyrenophora teres f. 

teres, produce at least two toxins (Bach et al., 1979, Smedegård-Petersen, 1977), known as 

Toxin A and Toxin C. Evidence for the inverse gene-for-gene interaction, resulting from 

instances of necrotrophic effector-triggered susceptibility (NETS) (Liu et al., 2014), which 

includes host-specific toxins, has been described for other members of the Dothideomycetes, and 

such interactions contrast with the traditional gene-for-gene relationship that has successfully 

described plant-pathogen interactions such as the flax-rust pathosystem (Flor, 1971) among 

others (De Wit, 1992). Interestingly, P. teres f. maculata has been observed to undergo an 

apparent brief biotrophic phase (Lightfoot and Able, 2010), where a structure resembling a 

haustorium forms initially, followed by rapid conversion to a necrotrophic lifestyle. As a 

possible hemi-biotroph (Liu et al.,2011), both gene-for-gene and inverse gene-for-gene 

interactions could be predicted to occur in the P. teres f. maculata pathosystem.  

Molecular markers have been linked with avirulence in P. teres f. teres in studies 

involving bi-parental populations where parents displayed a differential reaction on selected 

barley cultivars (Lai et al., 2007, Weiland et al., 1999, Beattie et al., 2007). However, they have 

not been well-characterized, and none have been described for P. teres f. maculata. Avirulence 

or virulence factors produced by P. teres f. maculata are believed to differ from those of P. teres 

f. teres, since host resistance genes for the two pathogens usually differ (Friesen et al., 2006, 
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Cakir et al., 2011), although some QTL identified in bi-parental analyses and MTA identified in 

association mapping studies have detected loci or regions that are linked with resistance to both 

forms (Grewal et al., 2012; Tamang et al., 2015).  

Association mapping (AM) is an approach for seeking marker-trait associations (MTAs) 

that has been applied successfully in humans and crops (Mandel et al., 2013, Gurung et al., 2014, 

Tamang et al., 2015, Lander and Schork, 1994, Mamidi et al., 2011, Poland et al., 2011, Roy et 

al., 2010). This approach takes advantage of reduced linkage disequilibrium, which potentially 

allows for higher resolution mapping, but it is known to produce false associations if underlying 

population structure or kinship is not considered (Pritchard et al., 2000, Lander and Schork, 

1994, Price et al., 2006, Kang et al., 2010). AM in fungi has been reported (Connelly and Akey, 

2012, Palma-Guerrero et al., 2013) but thus far, the approach has only been applied to plant-

pathogenic haploid fungi from only two groups (Dalman et al., 2013, LeBoldus et al., 2015). 

Dalman et al. (Dalman et al., 2013) showed that AM can be used in a small population of a 

haploid fungus. Using SNP markers and association mapping; they successfully identified three 

putatively novel MTAs related to fungal growth in pine or spruce, along with four known MTAs 

that corresponded with previously characterized virulence loci identified in a conventional 

quantitative trait loci (QTL) analysis based on a bi-parental population of the pathogen. 

LeBoldus et al. (2015) further validated the approach in a small population of P. teres f. 

maculata by using SNPs generated by a two-enzyme genotyping-by-sequencing (GBS) approach 

to find MTAs for the mating-type idiomorph. The SNP associated with the mating type locus fell 

within 10,000 bp of the locus based on the genome assembly for P. teres f. teres (Ellwood et al., 

2010).  
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 The objective of this work is to apply AM to a haploid population of P. teres f. maculata 

consisting of isolates collected from different regions in the northern United States to detect 

markers linked with loci that contribute to virulence or avirulence in the pathogen. This work 

will aid efforts to identify and characterize the function of potential necrotrophic effectors or 

other factors that influence virulence or avirulence of P. teres f. maculata, to enhance our 

understanding of host-pathogen interactions, and to help conceive novel approaches to breeding 

for durable resistance which are likely to include strategies to reduce or eliminate the host-

pathogen genetic interactions that result in susceptibility.  

Materials and Methods 

Isolate Collection, Phenotyping, and Genotyping 

A population of 177 viable isolates of P. teres f. maculata were collected from 

geographically diverse regions across North Dakota, eastern Montana, and eastern Idaho, and 

evaluated for seedling reaction type, as described in Chapter 3 (Figure 3.1 and Table 3.1). The 

isolates were inoculated at least three separate times onto a set of thirty barley genotypes (Table 

3.2) selected for their differential response to a small, globally diverse collection of P. teres f. 

maculata based on previous work by Neupane et al. (Neupane et al., 2015) and on unpublished 

data from the laboratory of Dr. Timothy Friesen, USDA-ARS, Fargo, ND; and assessed for 

seedling lesion reaction type using a 1 to 5 scale (Neupane et al., 2015), where 1 is a resistant 

reaction type and 5 is a susceptible reaction type (Figure 3.2).  

DNA was extracted and isolates were genotyped using a two-enzyme genotyping-by-

sequencing (GBS) approach based on the method of LeBoldus et al. (2015) with minor 

modifications as described in Chapter 3.In brief, DNA was extracted using a modified CTAB 

method and GBS libraries were constructed by normalizing extracted DNA to 400 to 600 ng, 
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serially digesting with two different enzymes, and ligating with universal and unique adapters 

that allowed bulking of samples and sequencing on the Ion Torrent PGM system to generate raw 

sequence data from which SNPs were obtained. Sequences were aligned to P. teres f. maculata 

isolate 12DP306, which was de novo assembled requiring 90% sequence identity using DNAStar 

(DNASTAR, Madison, WI, USA) and subsequently used as the reference isolate, denoted as 

A05v1. Sequencing reads were aligned to A05v1 using the approach as in Chapter 3, and post-

processing in Excel further filtered SNPs for minor allele frequency ≥2.4%, quality (>100), and 

missing data per sequence tag (<35%). The resulting association panel consisted of 82 isolates 

with 2,951 SNPs over 1,569 sequence tags. Mating type was determined as described in Chapter 

3 and treated as a trait in AM.  

Linkage Disequilibrium (LD) and LD Decay 

LD correlation coefficients were generated for each P. teres f. maculata scaffold in 

JMP® version 10.0.2 (SAS Institute Inc., Cary, NC, 1989-2007) for each pair-wise comparison 

of markers using the linkage disequilibrium process, with the option of performing LD 

calculations for all pairs within a scaffold and the default setting of EST method for haplotype 

estimation. The correlation coefficients were then combined and squared to generate R2 values 

which were then plotted against physical distance (Kbp). Expected decay of LD was estimated 

using the equation developed by Hill and Robertson (Hill and Robertson, 1968) and implemented 

by others (Mamidi et al., 2011, Tamang et al., 2015), by fitting the equation into a nonlinear 

regression model using the NLIN procedure in SAS v. 9.3 (SAS Institute Inc., Cary, NC, 1989-

2007).  
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Population Structure and Relatedness 

Population structure, Q, was evaluated via principal components analysis (PCA) per the 

suggestion of Zhao et al. (Zhao et al., 2007) using the PCA for Population Stratification process 

in JMP®, which generates eigenvectors for each of the principal components, based on the 

EIGENSTRAT method (Price et al., 2006), and principal components were generated that 

explained about 25% of the variation, Q25, and about 50% of the variation, Q50. 

Population relatedness, K, was estimated using two approaches: identity-by-state (IBS) 

and identity-by-descent (IBD) in JMP® by means of the Relationship Matrix process. The IBS 

relative kinship matrix is generated in JMP® using SAS Distance Procedure with the method of 

Gower’s Similarity Metric and the option of Range Standardization, and it is the probability of 

two individuals sharing the same copy of an allele, which may or may not be inherited from a 

common ancestor. The IBD relative kinship matrix refers to the probability that two individuals 

share an allele that came from the same ancestor. The approach implemented in JMP® to 

generate the IBD relative kinship matrix does not require a known pedigree; this particular 

process computes an estimate of IBD across all markers using the following formula:  

IBDi,j = ( Xi,l - 2p ) * ( Xj,l – 2q ) / 2pq, 

where Xi,l = 0, 1, or 2, which corresponds to homozygous for the alternate allele, heterozygous, 

or homozygous for the major allele at marker l, respectively, and p and q refer to allele 

frequencies averaged over all loci. To generate the IBD matrix for P. teres f. maculata, which is 

essentially haploid, the number 2 was coded for the major allele and 0 was coded for the 

alternate allele.  
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Association Analyses and Model Testing 

All association analyses were conducted in JMP®, without imputing missing data, using 

the Q-K Mixed Model process, which corrects for type I error (false positives) by taking into 

account population structure (Q) and/or relatedness (K) per the suggestion of Yu et al. (Yu et al., 

2006). Here, PCA was used for Q, as proposed by Zhao et al. (Zhao et al., 2007), and IBD or 

IBS was used for K. In the Q-K Mixed Model process, the population structure variables, Q, are 

fixed effects, and the population relatedness matrix, K, is a random effect. Along with a naïve 

model, eight mixed models were tested: IBS, IBD, Q25 (principal components that account for 

about 25% of the variation), Q50 (principal components that account for about 50% of the 

variation), IBS+Q25, IBS+Q50, IBD+Q25, and IBD+Q50.Each of the thirty barley genotypes 

was analyzed with the nine models separately, and the model with the best fit to expected p-

values and with the lowest mean square difference (MSD) between observed p-values and 

expected p-values was selected as optimal (Gurung et al., 2014, Mamidi et al., 2011, Tamang et 

al., 2015, Kertho et al., 2015).  

MSD was calculated using the following equation from Mamidi et al. (Mamidi et al., 

2011):  

MSD = (∑ [𝑝𝑖 − (
𝑖

𝑛
)]2)/𝑛𝑛

𝑖=1 , 

where i is the rank number, pi is the ith-ranked observed p-value, i/n is the expected p-value, and 

n is the number of markers. Markers were considered significant at P ≤ 0.001, which corresponds 

to -log10(p-value) ≥ 3.0. 

Markers generated from the de novo assembly of A05v1 here were aligned to a 

preliminary genome assembly of P. teres f. maculata constructed by the laboratory of Dr. 

Timothy Friesen (personal communication) which was used as an annotated reference for 
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association mapping model testing. FGOB10 (an isolate of P. teres f. maculata collected from 

Fargo, ND in 2010) was used as the reference for annotation.  

Results 

Isolate Collection, Phenotyping, and Genotyping, and the Association Mapping Panel 

Of the 177 viable isolates of P. teres f. maculata that were evaluated for virulence, 82 

isolates were selected for the AM panel (Table 4.1), which was optimized for high quality SNPs, 

and further filtered for <30% missing data and >2% MAF to yield 2,951 SNPs over 1,570 

sequence tags. Detailed information on the virulence profile of all 177 isolates is available in 

Chapter 3. For the 82 isolates used in AM here, the average lesion reaction response was 2.9 and 

the median was 3.0, similar to the 177 isolates described in Chapter 3. The phenotypic 

distributions of the 82 isolates on the 30 barley lines varied (Table 4.2). Four barley lines 

CI3576, CI9776, CIho3694, and MXB468 showed a strong differential response of 3 or more, 

with lesion response ranges of 1.3 to 4.3, 1.3 to 4.3, 1.0 to 4.0, and 1.0 to 4.3, respectively. 

Eighteen barley lines showed a moderate differential response of 2 to less than 3. Eight of the 

thirty barley lines showed poor differential lesion reactions, with differences between the most 

and least virulent isolates being 1.8 or less: CIho14219 (range: 1.0-2.2), Pinnacle (range: 2.7-

4.3), CI5791 (range: 2.8-4.5), TR326 (range: 2.3-4.0), Skiff (range: 2.7-4.5), PI467375 (range: 

2.2-4.0), PI498434 (range: 25-4.3), and CIho2353 (range: 1.2-3.0).  
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Table 4.1. Isolates of Pyrenophora teres selected for association mapping.  

Isolatea 
Tube 

ID 

Pyrenophora 

teres form 

Mating 

type 

GBS Chip # 

And Adapter 

Code 

Average 

lesion type 
Max Min 

Difference 

(Max-Min) 

12DP101 1 maculata 1 1A01 3.0 3.8 1.7 2.2 

12DP102 2 maculata 1 1A02 2.7 3.7 1.0 2.7 

12DP103 3 maculata 2 2A01 3.0 4.0 1.3 2.8 

12DP108 4 maculata 2 2A02 2.8 3.8 1.0 2.8 

12DP110 5 maculata 2 1A03 2.5 4.0 1.0 3.0 

12DP203 7 maculata 1 2A03 2.6 3.7 1.0 2.7 

12DP206 8 maculata 1 2A04 2.5 3.5 1.0 2.5 

12DP207 9 maculata 2 2A05 2.9 3.5 1.3 2.2 

12DP301 11 maculata 2 2A06 3.1 3.8 1.3 2.5 

12DP305 12 maculata 1 1A04 2.9 4.0 1.3 2.8 

12DP306 13 maculata 1 1A05 2.8 3.7 1.5 2.2 

12DP307 14 maculata 1 1A06 2.9 4.0 1.7 2.3 

12DP310 15 maculata 1 1A07 2.9 3.8 1.3 2.6 

12DP407 17 maculata 1 1A08 2.9 3.8 1.5 2.3 

12DP408 18 maculata 1 2A07 2.5 3.7 1.2 2.5 

12DP501 19 maculata 1 2A08 2.6 3.5 1.0 2.5 

12DP505 21 maculata 1 2A10 3.0 4.2 1.3 2.8 

12DP508 22 maculata 1 2A11 2.9 3.7 1.3 2.3 

12DP509 23 maculata 2 1A09 2.4 3.8 1.2 2.6 

12DP608 24 maculata 2 1A10 2.5 3.8 1.0 2.8 

12DP609 25 maculata 2 1A11 2.8 3.7 1.0 2.7 

12DT107 27 maculata 1 1A12 2.8 4.0 1.3 2.7 

12DT108 28 maculata 1 1A13 2.3 3.7 1.0 2.7 

12DT109 29 maculata 2 1A14 2.9 4.0 1.3 2.7 

12DT202 30 maculata 1 1A15 2.8 3.8 1.0 2.8 

12DT304 31 maculata 1 1A16 2.9 4.3 1.2 3.2 

12DT305 32 maculata 1 1A17 2.7 4.0 1.0 3.0 

12DT402 33 maculata 1 1A18 3.0 4.0 1.7 2.3 

12DT404 34 maculata 2 2A12 3.0 4.0 1.3 2.7 

12DT409 35 maculata 2 1A19 2.8 3.8 1.2 2.7 

12DT410 36 maculata 1 2A13 3.0 4.2 1.3 2.8 

12DT503 38 maculata 1 2A14 3.1 4.3 1.5 2.8 

12DT508.1 39 maculata 1 1A20 2.6 3.7 1.2 2.5 

12DT508.2 40 maculata 2 1A21 2.5 3.7 1.0 2.7 

12DT604 45 maculata 2 1A23 2.6 3.8 1.2 2.7 

12DT610 49 maculata 1 1A26 2.9 4.3 1.3 3.0 

12FP310 118 maculata 1 4A05 3.0 4.0 1.3 2.7 

12FP401 119 maculata 1 4A06 2.9 4.0 1.3 2.7 

12LP201 97 maculata 2 2A27 3.0 3.8 1.3 2.5 

12LT501 110 maculata 1 4A03 2.8 3.8 1.0 2.8 

12LT509 111 maculata 2 4A04 3.1 4.2 1.7 2.5 

12LT606 113 maculata 2 1A39 2.9 3.8 1.5 2.3 

12NP102 50 maculata 1 1A27 3.0 4.2 1.7 2.5 

12NP107 53 maculata 2 2A16 2.9 3.7 1.5 2.2 

12NP207 60 maculata 2 1A33 2.7 4.0 1.0 3.0 

12NP209 62 maculata 1 1A34 2.8 3.7 1.2 2.5 

12NP402 65 maculata 1 2A17 3.1 4.5 1.3 3.2 

12NP507 73 maculata 1 1A36 2.9 3.8 1.5 2.3 

12NP607 78 maculata 1 2A20 3.1 4.2 1.7 2.5 

12NT407 82 maculata 2 2A22 3.2 4.2 1.8 2.3 

12NT409 84 maculata 2 2A23 3.0 3.8 1.5 2.3 

12NT503 85 maculata 2 2A24 3.6 4.7 1.7 3.0 
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Table 4.1. Isolates of Pyrenophora teres selected for association mapping (continued). 

Isolatea 
Tube 

ID 

Pyrenophora 

teres form 

Mating 

type 

GBS Chip # 

And Adapter 

Code 

Average 

lesion type 
Max Min 

Difference 

(Max-Min) 

12NT504.2 87 maculata 2 2A25 2.8 3.8 1.3 2.5 

12NT505 88 maculata 2 4A01 3.2 4.2 1.5 2.7 

12NT603 90 maculata 2 4A02 3.2 4.0 1.3 2.7 

Pin-A11 181 maculata 1 4A16 3.0 4.0 1.5 2.5 

Pin-A12 182 maculata 2 4A22 3.0 4.0 1.3 2.7 

Pin-B3 188 maculata 1 4A18 2.7 4.0 1.2 2.8 

Tra-A9 141 maculata 2 4A08 3.0 4.2 1.7 2.5 

Tra-B1 145 maculata 2 4A09 3.0 4.0 1.5 2.5 

Tra-B2 146 maculata 2 4A10 3.2 4.2 1.3 2.8 

Tra-C10 156 maculata 2 4A11 2.8 3.8 1.2 2.7 

Tra-C14 160 maculata 2 4A12 2.6 4.0 1.0 3.0 

Tra-D6 163 maculata 2 4A13 2.9 4.0 1.5 2.5 

Tra-D12 168 maculata 2 4A14 3.2 4.0 1.3 2.7 

13IM1.2 216 maculata 1 4A34 2.8 4.2 1.2 3.0 

13IM2.2 218 maculata 1 4A35 2.8 4.2 1.2 3.0 

13IM4.1 222 maculata 2 4A36 3.4 4.3 1.7 2.6 

13IM4.2 223 maculata 2 2A29 2.9 4.3 1.2 3.2 

13IM5.2 224 maculata 1 2A31 2.4 3.8 1.2 2.6 

13IM6.2 227 maculata 2 4A37 2.9 4.2 1.3 2.8 

13IM9.2 233 maculata 2 2A32 2.8 3.8 1.2 2.7 

13IM11.1 235 maculata 2 2A46 3.2 4.3 1.5 2.8 

13IM11.1B 237 maculata 2 4A39 3.2 4.0 1.3 2.7 

13IM14.1 239 maculata 2 2A35 3.3 4.3 1.7 2.7 

13IM14.2 240 maculata 1 4A40 2.2 3.5 1.0 2.5 

13IM15.1 242 maculata 2 2A36 3.1 4.3 1.4 2.9 

13IM17.3 246 maculata 1 2A40 2.6 3.8 1.2 2.7 

13IM18.1 247 maculata 1 2A41 3.1 4.3 1.2 3.1 

13IM18.1B 249 maculata 1 4A41 3.0 4.0 1.5 2.5 

13IM19.1 250 maculata 1 2A43 2.6 4.2 1.2 3.0 

13IM20.2 253 maculata 2 2A45 3.2 4.3 1.2 3.2 
aIsolate codes beginning with 12 and 13 were collected in 2012 and 2013, respectively; D, F, L, N and I refer to 

isolates from Dickinson, Fargo, Langdon, Nesson Valley, and Idaho locations; Montana isolates were collected in 

2012 and are preceded by Pin or Tra; codes with P or Pin were collected from the barley cultivar Pinnacle; those 

with T or Tra were collected from Tradition; and those with the letter M were collected from Moravian 69. 
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Table 4.2. Range of lesion reaction types of eighty-two isolates of Pyrenophora teres f. 

maculata on thirty barley genotypes at the seedling stage. 

Barley Genotype 
Range of mean lesion 

type (% reactions ≥3) 

81-82/033 2.0-4.0 (62.2) 

Arimont 1.8-4.3 (41.5) 

Chebec 2.0-4.5 (95.1) 

CI3576 1.0-4.3 (17.1) 

CI5791 2.8-4.5 (97.6) 

CI7584 1.3-4.0 (51.2) 

CI9214 1.0-3.0 (2.4) 

CI9776 1.3-4.3 (62.2) 

CI9819 1.7-4.2 (67.1) 

CIho14219 (resistant check) 1.0-2.2 (0) 

CIho2353  1.2-3.0 (1.2) 

CIho3694  1.3-4.3 (31.7) 

CIho4050  1.0-3.0 (1.2) 

Keel 1.8-4.2 (50) 

Kombar 2.2-4.2 (76.8) 

MXB468 1.0-4.0 (20.7) 

PI269151  2.3-4.5 (89) 

PI369731  1.3-3.8 (20.7) 

PI392501  2.3-4.3 (90.2) 

PI467375  2.2-4.0 (80.5) 

PI467729  1.8-4.7 (85.4) 

PI485524  2.0-4.2 (82.9) 

PI498434  2.5-4.3 (89) 

PI513205  1.0-3.5 (17.1) 

PI565826  1.0-3.8 (42.7) 

PI573662  1.7-3.8 (50) 

Pinnacle (susceptible check) 2.7-4.3 (97.6) 

Skiff 2.7-4.5 (97.6) 

TR250 1.5-3.7 (47.6) 

TR326 2.3-4.0 (89) 

 

LD, Population Structure and Kinship  

LD decay was estimated by performing nonlinear regression of R2 values from pairwise 

comparisons of all markers on physical distances (Figure 4.1). The genome-wide LD decay was 

less than 10,000 bp at R2<0.1.  

Five principal components, Q25, explained 26.5% of the variation, and fifteen principal 

components, Q50, explained 53.5% of the variation. Both were used as cofactors in the mixed 

model analyses. The first, second, and third PCA explained 7.9%, 5.7%, and 4.8% of the 

variation, respectively, with the remaining thirteen PCAs each accounting for 2.0-4.2%.   We 
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hypothesize that the first PC was based primarily on isolate origin (Figure 4.2), and subsequent 

PCs suggested subtle but complex structure.  

 

Figure 4.1. Genome-wide linkage disequilibrium (LD) decay plot. LD is measured as R2 

between pairs of polymorphic marker loci and plotted against physical distance (kbp), based on a 

preliminary assembly of Pyrenophora teres f. maculata (personal communication, from the 

laboratory of Dr. Timothy Friesen, USDA).  

 

Figure 4.2. Principal Component Analyses. Left: PC1 vs PC2; Middle: PC1 vs PC3; Right: PC2 

vs PC3. 

For the IBS matrix, forty pairwise comparisons shared <70% identity; 36 of these were 

comparisons between an ID isolate and an isolate from elsewhere (ND or MT). About 48% of ID 
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isolates shared between 80% and 90% similarity with each other; while about 64% of ND and 

MT isolates shared between 80% and 90% similarity with each other. Among the MT and ND 

isolates, 70 pairwise comparisons involving 19 isolates revealed ≥90% IBS. Four ID isolates 

shared ≥90% similarity with one or more isolates: one ID isolate shared ≥90% with one isolate 

from MT and one from ND; another ID isolate shared high similarity (≥90% but less than 100% 

similarity) with two other ID isolates; a third ID isolate shared ≥90% with yet another ID isolate; 

and two ID isolates shared 100% similarity with each other. Two isolates from ND shared 100% 

similarity with two other ND isolates; overall, only three pairs of isolates shared 100% IBS. 

Isolates were generally genetically diverse (Figures 4.3 and 4.4A). For the IBD matrix, over 60% 

of the isolates were not related, as indicated by the peak above 0 (Figures 4.4B and 4.5), but 

probable familial relationships were evident as the peaks above 0.05 through 0.40 suggest. In 

general, ID isolates tended to have higher probabilities of sharing a common ancestor than 

isolates collected from other locations (Figure 4.5).  
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Figure 4.3. Relationship matrix, Identity-By-State. Isolate codes at left: Dark blue = SW ND; 

light blue = NW ND; grey = Eastern ND; light red = MT; dark red = ID. Heirarchical clustering 

in the software JMP Genomics is based on the Fast Ward method. Pairwise comparisons shaded 

in dark red indicate 100% identity. 
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Figure 4.4. Distribution of pairwise relative kinship estimates in a population of Pyrenophora 

teres f. maculata. A. Identity-By-State; B. Identity-By-Descent. 

  

Figure 4.5. Relationship matrix, Identity-By-Descent. Heirarchical clustering in the software 

JMP Genomics is based on the Fast Ward method. Pairwise comparisons shaded in dark purple 

indicate that the two isolates do not share a recent ancestor. 
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AM and MTA Model Testing  

To control for false positives, one naïve model and eight different mixed models (Q25, 

Q50, IBS, IBD, Q25+IBS, Q25+IBD, Q50+IBS, and Q50+IBD) were evaluated using 

association mapping to seek MTAs for virulence/avirulence and for mating type. The model with 

the best fit to the expected p-values (Figure 4.6) and lowest MSD (Table 4.3) was selected as 

optimal. No single model was best for all interactions; however, the mixed model that 

incorporated Q50 (principal components that explained about 50% of the variation; 53.3% here) 

was selected as optimal more often than all other models, for nine genotypes out of thirty; 

however, significant MTAs were found in P. teres f. maculata for only six of these genotypes. 

Eighteen barley genotype-P. teres f. maculata interactions yielded significant MTAs for 

virulence/avirulence. In all, forty-one MTAs were found across 19 scaffolds in P. teres f. 

maculata (Figure 4.7, Table 4.4). Seven and five MTAs for virulence/avirulence were found in 

P. teres f. maculata when interacting with barley genotype PI565826 and PI269151, 

respectively; four were found in P. teres f. maculata when challenged on Chebec and Keel; three 

were found in P. teres f. maculata interactions with CI7584, CI9776, and MXB468; and one to 

two MTAs for virulence/avirulence were detected in P. teres f. maculata when challenged on 

barley genotypes Pinnacle, CI3576, Kombar, CI9819, CIho2353, CIho4050, PI467729, 

PI498434, PI213205, and TR250. Three MTAs were not mapped to the P. teres f. maculata 

assembly (SNP markers 17984_70, 32462_240, and 12742_345, from the P. teres f. maculata 

interaction with genotypes CI9819, Keel, and TR250, respectively). No MTAs for 

virulence/avirulence were detected in P. teres f. maculata when the pathogen population was 

challenged on 81/82/033, Arimont, CIho14219, CIho3694, CI5791, CI9214, PI369731, 

PI392501, PI467375, PI485524, PI573662, Skiff, and TR326. 
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Figure 4.6. Model comparison for virulence/avirulence in Pyrenophora teres f. maculata 

challenged on 20 barley genotypes. The observed -Log10(p-values) vs. expected –Log10(p-

values) plots are shown for the naïve model (gray) and the models that take into account 

population structure (Q50, red; Q25, orange), kinship (IBS, blue; IBD, light blue ), or both 

(Q50+IBS, purple; Q50+IBD,dark blue; Q25+IBS, dark green; Q25+IBD, light green ). The 

expected p-values are represented by the black diagonal line.  
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Table 4.3. Mean square difference (MSD) for each of nine models tested, best model based on lowest MSD, and number of marker 

trait associations significant at p-value≤0.001 for each genotype challenged with a population of Pyrenophora teres f. maculata.  

Genotype 
Model MSD 

Best Model 
# 

MTAs Naïve Q50 Q50+IBS IBS IBS+Q25 Q25 Q25+IBD Q50+IBD IBD 

81/82/033 0.00157 0.00186 0.00173 0.00270 0.00119 0.00254 0.00118 0.00193 0.00270 Q25+IBD None 

Arimont 0.02450 0.02304 0.00088 0.00408 0.00224 0.01991 0.00225 0.00144 0.00377 Q50+IBS None 

Chebec 0.19895 0.00160 0.00208 0.00806 0.00182 0.00058 0.00255 0.00294 0.00158 Q25 4 

CI3576 0.84752 0.00606 0.00168 0.00408 0.00222 0.01148 0.00177 0.00138 0.01162 Q50+IBD 2 

CI5791 0.00687 0.00104 0.00229 0.00415 0.00197 0.00105 0.00197 0.00229 0.00530 Q50 None 

CI7584 0.30339 0.00148 0.00550 0.00307 0.00151 0.00034 0.00241 0.00550 0.00107 Q25 3 

CI9214 0.18875 0.00611 0.00330 0.00334 0.00787 0.01440 0.00787 0.00314 0.00421 Q50+IBD None 

CI9776 0.21138 0.00183 0.00418 0.00170 0.00169 0.00265 0.00589 0.00995 0.00133 IBD 3 

CI9819 0.68375 0.00978 0.00036 0.00072 0.00069 0.01465 0.00080 0.00036 0.00275 Q50+IBS, Q50+IBD 2 

CIho14219 0.00499 0.00141 0.00238 0.00879 0.00252 0.00059 0.00397 0.00378 0.00879 Q25 None 

CIho2353 0.28632 0.00085 0.00285 0.00156 0.00215 0.01610 0.00191 0.00335 0.00217 Q50 1 

CIho3694 0.13317 0.00769 0.00822 0.00306 0.00139 0.00214 0.00139 0.00822 0.00192 Q25+IBS, Q25+IBD 1 

CIho4050 0.00076 0.00134 0.00410 0.00291 0.00098 0.00215 0.00385 0.00406 0.00496 Naïve 1 

Keel 0.05536 0.00162 0.00252 0.00199 0.00178 0.00496 0.00151 0.00283 0.00093 IBD 4 

Kombar 0.32900 0.00175 0.00283 0.00215 0.00544 0.02017 0.00643 0.00283 0.01269 Q50 2 

MXB468 0.96346 0.00939 0.00098 0.00561 0.00100 0.00627 0.00058 0.00064 0.00559 Q25+IBD 3 

P1369731 0.04996 0.00328 0.00108 0.00043 0.00066 0.00152 0.00066 0.00108 0.00445 IBS None 

PI269151 0.03409 0.00374 0.00150 0.00288 0.00058 0.00620 0.00058 0.00147 0.00363 Q25+IBS, Q25+IBD 5 

PI392501 0.00168 0.02345 0.03287 0.00278 0.00637 0.00235 0.00637 0.03287 0.00278 Naïve None 

PI467375 0.02629 0.00328 0.00211 0.00381 0.00311 0.00954 0.00194 0.00140 0.00315 Q50+IBD None 

PI467729 0.20649 0.00213 0.00555 0.01440 0.01289 0.00380 0.00839 0.00563 0.00331 Q50 2 

PI485524 0.00305 0.00163 0.00927 0.00430 0.00857 0.00296 0.01476 0.01749 0.00699 Q50 None 

PI498434 0.47954 0.00257 0.00379 0.00596 0.00315 0.00525 0.00257 0.00794 0.00041 IBD 2 

PI513205 0.02837 0.00088 0.00186 0.00590 0.01375 0.01246 0.00309 0.00163 0.00189 Q50 2 

PI565826 0.37741 0.00084 0.00207 0.00088 0.00128 0.01623 0.00107 0.00223 0.00452 Q50 7 

PI573662 0.08045 0.00109 0.00769 0.00722 0.00862 0.00206 0.00862 0.00769 0.00187 Q50 None 

Pinnacle 0.00219 0.00084 0.00903 0.00495 0.01062 0.00217 0.01032 0.01231 0.00906 Q50 1 

Skiff 0.21343 0.00192 0.00536 0.00560 0.01017 0.00503 0.01130 0.00536 0.00141 IBD None 

TR250 0.08823 0.00124 0.00857 0.00098 0.00090 0.00287 0.00272 0.00966 0.00113 Q25+IBS 1 

TR326 0.00155 0.00179 0.00614 0.00135 0.00143 0.00144 0.00303 0.00653 0.00185 IBS None 

MAT 0.56671 0.55955 0.03075 0.05663 0.04991 0.56937 0.05120 0.03190 0.05764 Q50+IBS 4 
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Figure 4.7. Manhattan plot of markers associated with virulence/avirulence in Pyrenophora teres f. maculata for 19 scaffolds of 

Pyrenophora teres f. maculata. Marker-trait associations significant at P<0.001 appear above the horizontal red dashed line. Scaffolds 

are separated by vertical dashed grey lines, and marker locations are indicated along the x-axis by scaffold number-position number, 

based on a preliminary assembly of P. teres f. maculata (personal communication, from the laboratory of Dr. Timothy Friesen, 

USDA).  
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Marker 1700_198, found on P. teres f. maculata Scaffold 8 at position 1,416,606 and 

bound by markers at positions 1,381,984 and 1,417,586, was the most highly significant MTA 

for virulence/avirulence, and was detected in P. teres f. maculata when interacting with four 

genotypes: CI3576, CI9819, MXB468, and CI7854 (Table 4.4). Marker 7398_109 was 

significant when P. teres f. maculata interacted with barley genotypes Keel and PI498434; and 

marker 48699_80 was significant with barley genotypes CI3576 and MXB468. Marker 

11543_137 and Marker 3196_20 were also highly significant. P. teres f. maculata Scaffold 3 

harbored five MTAs, more than any other scaffold, followed by P. teres f. maculata Scaffolds 2 

and 21, each with four MTAs. The interactions of the Pyrenophora teres f. maculata populations 

with genotype PI565826 revealed the most MTAs for virulence/avirulence.  

For the mating type trait, four MTAs were detected across three P. teres f. maculata 

scaffolds (Table 4.3 and Figure 4.7). The highly significant SNP marker, 17724_48, was 

previously shown to be within 9,500 kb of the mating type locus when analyzed with a smaller 

population of P. teres f. maculata (LeBoldus et al., 2015), based on a genome assembly for P. 

teres f. teres (Ellwood et al., 2010). The best model for the mating type trait was the one that 

incorporated both population structure (Q50) and kinship (IBS); however, the same four markers 

were significant regardless of the model selected (data not shown). 
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Table 4.4. Single nucleotide polymorphism markers significantly associated with 

virulence/avirulence in populations of Pyrenophora teres f. maculata from North Dakota, 

Montana, and Idaho when challenged on different barley genotypes.  

SNP Marker  Ptm 

Scaffold 

Position Barley 

Genotype 

-Log10 

(P-value) 

MAFa 

7398_109 1 836018 Keel 3.3966 8.06 

7398_109 1 836018 PI498434 3.3534 8.06 

9293_248 2 728246 PI513205 3.4285 18.97 

4579_162 2 2147280 CI9776 3.0570 26.67 

5359_252 2 2148153 CI9776 3.2192 29.85 

432_130 2 2370005 PI269151 3.1901 8.22 

3196_20 3 916364 PI269151 3.7695 3.23 

2096_165 3 937507 CI7584 3.106 28.13 

2695_67 3 963132 PI269151 3.2058 8.82 

Repeat-48790_151 3 985872 CI7584 3.0150 12.86 

220_59 3 2156959 PI467729 3.1686 36.99 

5302_148 4 336635 Pinnacle 3.1334 20.97 

Repeat-48699_80 5 1930849 CI3576 3.2624 5.26 

Repeat-48699_80 5 1930849 MXB468 3.2664 5.26 

Repeat-48699_119 5 1930888 PI565826 3.2169 2.47 

3592_18 7 558719 CIho4050 3.4629 21.13 

1239_19 8 372192 PI467729 3.1992 36.36 

2218_13 8 1054490 PI565826 3.0606 12.31 

1700_198 8 1416606 CI7584 3.4412 33.82 

1700_198 8 1416606 CI3576 4.8432 33.82 

1700_198 8 1416606 CI9819 3.9306 33.82 

1700_198 8 1416606 MXB468 3.8504 33.82 

1208_11 9 939665 Chebec 3.1895 13.33 

10134_160 10 953331 PI565826 3.1976 3.03 

15325_223 10 1325275 Kombar 3.2230 12.66 

9176_19 11 377553 Keel 3.0038 6.25 

3367_143 11 530542 CIho2353 3.6445 22.73 

1108_148 12 591676 Kombar 3.0639 14.86 

479_25 12 829432 Chebec 3.2209 7.25 

7267_179 13 97128 PI565826 3.1771 4.55 

11543_137 19 672880 PI513205 3.7826 8.06 

142_37 21 581896 PI565826 3.4049 3.03 

142_115 21 581974 PI565826 3.1182 4.55 

413_105 21 676491 Chebec 3.2621 13.04 

413_139 21 676525 Chebec 3.3152 6.35 

413_139 21 676525 MXB468 3.2992 6.35 

Repeat-48789_69 23 143100 PI565826 3.5416 2.67 

742_42 24 87510 PI498434 3.0098 25.00 

17874_361  25 453742 CI9776 3.0518 18.97 

6211_7 27 360485 PI269151 3.6468 3.39 

6211_35 27 360513 PI269151 3.6768 3.33 

6673_76 28 89573 Keel 3.0553 5.71 

12742_345 unmapped  TR250 3.0386 10.39 

17984_70 unmapped  CI9819 3.0713 18.42 

32462_240 unmapped  Keel 3.038 5.63 
a Minor allele frequency (%) 
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Discussion 

The isolates of P. teres f. maculata used here represent only a small fraction of the 

diversity that is likely present in global populations; yet, a high number of potentially significant 

MTAs were still identified, which speaks to the diversity of the pathogen that has already been 

documented (Liu et al., 2011; Neupane et al., 2015). False positive associations are a concern in 

AM, and one way to minimize them, compared to the naïve model, is to utilize mixed-modeling 

approaches that account for kinship, population structure, or both (Yu et al., 2006). Which model 

performs best depends on factors such as the markers used, population structure, kinship, and 

phenotyping on a particular genotype. Others who have used the approach of Yu et al. have 

demonstrated that it sufficiently controls for false associations in most instances (Kertho et al., 

2015, Tamang et al., 2015, Gurung et al., 2014).  

Another approach is to apply multiple-comparison adjustments to the p-value, such as the 

Benjamini-Hochberg method, or other positive false detection rate (pFDR) approaches. 

However, accounting for kinship and structure may sufficiently reduce the type I error, and 

overly-stringent p-value adjustments may cause loss of significance of important markers in 

some cases, as Tamang et al. (2015) demonstrated on the host side. Thus, we report only non-

adjusted p-values. Although the non-adjusted p-values may lead to a higher rate of false positive 

associations, we feel accounting for kinship and/or structure adequately minimizes this hazard in 

our system, and that pFDR may be too stringent in this particular application of AM and risks the 

loss of potentially important MTAs. Validation of significant markers can occur as more 

information is garnered from other AM and conventional QTL studies involving this pathogen, 

and in downstream analyses as putative virulence or avirulence loci within the pathogen are 

identified and function is discerned.  
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MTAs were not detected when the P. teres f. maculata population was challenged with 

barley genotypes TR326 or Skiff. Differences in lesion reaction types of the P. teres f. maculata 

population on these genotypes were low; thus, failing to detect MTAs is not surprising. 

However, significant QTLs were found when a bi-parental P. teres f. maculata population 

resulting from a cross from an Australian isolate with one from Fargo, ND was challenged on 

these two barley lines (from the laboratory of Dr. Timothy Friesen et al., personal 

communication). The low differential response experienced by the natural P. teres f. maculata 

population used here reflects the possibility that the population was not sufficiently diverse to 

capture phenotypic differences in virulence on these lines.  

MTAs were also not detected on barley genotypes 81/82-033 and PI392501. Lack of 

MTAs is somewhat surprising in these cases, because the difference between most and least 

virulent isolates on barley genotypes 81/82-033 and PI392501 was moderate (from 2 to less than 

3), thus, expecting to detect MTAs was reasonable. Such failure to detect MTAs despite a 

moderate differential response could indicate the possibility that the mixed model may have been 

overly stringent in these cases, or perhaps SNP markers did not adequately cover regions where 

virulence/avirulence loci reside. In addition, and more surprisingly, the interaction of P. teres f. 

maculata on CIho3694 revealed no significant MTAs, despite a large differential response 

among isolates of up to 3.0 in lesion reaction types. It is possible the failure to detect significant 

MTAs with such a large differential may be due to insufficient SNP coverage, such as in 

repetitive regions where avirulence loci have been speculated to occur (Liu et al., 2011), or to 

large insertions or deletions (indels) that would not be detected using GBS. The GBS method 

used here is limited in its ability to detect indels and SNPs in repetitive regions, and these 

limitations could result in important gaps in our hunt for virulence/avirulence factors.  
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The best models that incorporated population structure alone (Q50 or Q25) accounted for 

22 of the MTAs detected. Models that accounted for both population structure (Q50 or Q25) and 

kinship (IBS or IBD) yielded 18 MTAs. No model that accounted for IBS alone yielded 

significant MTAs, while the model that accounted for IBD alone yielded 9 MTAs across three 

barley genotypes (CI9776, Keel, and PI498434). That no model was consistently selected as best 

for all genotype-pathogen interactions highlights the importance of separately evaluating 

multiple models for each interaction; however, for the P. teres f. maculata population evaluated 

here, the models that incorporated population structure, or population structure and kinship 

tended to be best.   

Of forty-one MTAs found, four were common among more than one genotype-P. teres f. 

maculata interaction. The most significant marker detected among all forty-one MTAs was 

marker 1700_198, which was found when the P. teres f. maculata population was challenged on 

CI3576, MXB468, CI9819, and CI7854. In three of four cases, the best model for this marker 

accounted for both structure and kinship. 100% of ID isolates used here with available data for 

1700_198 harbored the minor allele at this site. In contrast, 15% of ND and MT isolates had the 

minor allele at that site. On CI3576 and MXB468, the minor allele at 1700_198 in P. teres f. 

maculata was associated with virulence, while on CI9819 and CI7854 the minor allele was 

associated with avirulence. This opposite reaction type suggests that additional loci are likely 

involved in conferring the susceptibility or resistance response.  

Three additional markers were detected among more than one genotype: marker 

7398_109, found with Keel and PI498434; marker 48699_80, found with MXB468 and CI3576; 

and marker 413_139 on Chebec and MXB468. Since 48699_80 and 1700_198 were both 

detected with MXB468 and CI3576, it is possible these markers may be linked, despite being on 
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separate scaffolds of the preliminary P. teres f. maculata assembly (personal communication, 

from the laboratory of Dr. Timothy Friesen). However, when examining the phenotype and 

corresponding SNPs for this particular marker, a relationship is not obvious, as it is with marker 

1700_198 (data not shown).  

Some MTAs lost significance when the best model was selected, which may suggest that 

at times the mixed model approach based on lowest MSD may be too stringent. For example, 

1700_198 was significant on PI565826 with the model accounting only for IBD, with negative 

log(p-value) of 3.87; however, when the best model is selected, IBS, significance is lost, with -

log(p-value) of 2.62. At times, a less conservative approach may be warranted to ensure 

potentially meaningful markers are not lost. 

QTL have been identified by bi-parental mapping of P. teres f. maculata (personal 

communication, from the laboratory of Dr. Timothy Friesen); at least six MTAs detected here 

fall within QTL described in the bi-parental analysis, and each approach detected novel 

associations. The natural population and the bi-parental population appeared to capture a 

different set of diversity within the pathogen, particularly since all isolates in the natural 

population were collected from the northern US, while the bi-parental population originated from 

two isolates from very different regions around the globe (Australia and Fargo, ND). 

In this work, we have used mixed model association mapping approaches to correct for 

false positives due to population structure and kinship to detect MTAs in a haploid plant 

pathogenic fungus with a necrotrophic lifestyle. We feel that a sufficient number of likely 

associations have been identified to permit pursuit of candidate genes involved in virulence or 

avirulence within P. teres f. maculata, which will further our understanding of host-pathogen 

interactions. In addition, we further validated the approach by applying it to detection of markers 
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associated with the mating type locus and the identification of common regions in a bi-parental 

analysis between a ND isolate of P. teres f. maculata and an Australian one. From this work, we 

provide evidence that the virulence/avirulence mechanisms in P. teres f. maculata are likely 

complex and may vary depending on isolate origin; and future efforts can focus on developing a 

panel of markers linked with avirulence or virulence to monitor shifts in populations of P. teres f. 

maculata that may correspond to evolutionary processes such as selection pressure imposed by 

barley cultivars, cultural practices, weather, and other factors.  
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APPENDIX A. STATISTICAL COMPARISONS OF DISEASE AND YIELD  

Table A1. 2011 Langdon, Percent Disease. 

Effect P-value 

Treatment 

Genotype 

Treatment*Genotype 

Coefficient of variation (transformed) 

0.0145 

<0.0001 

<0.0001 

51.35 

Fungicide Genotype Diseasea  Genotype Diseasea Genotype Diseasea 

Two-Rowed Barley Genotypes 

No AC 

Metcalfe 

5.3a 
04/506/42/8 

25.0a 
2ND26333 

1.3a 

Yes 0.0b 0.0b 0.0a 

No 
Conlon 

5.3a 
04/566/70/8 

30.0a 
2ND27421 

8.0a 

Yes 0.7a 0.7b 1.3a 

No 
Conrad 

15.0a 
2B03-3719 

7.0a 
2ND27440 

6.3a 

Yes 0.0b 0.7b 0.7a 

No 
Haxby 

4.7a 
2ND24388 

5.3a 
C04-78-17 

8.0a 

Yes 0.0b 0.0b 0.7b 

No 
Pinnacle 

6.3a 
2ND25272 

20.7a CDC 

Copeland 

8.0a 

Yes 0.7a 0.7b 0.7b 

No 
Rawson 

5.3a 
2ND25276 

3.3a 
Lilly 

8.0a 

Yes 0.7a 0.0a 0.0b 

Six-Rowed Barley Genotypes 

No 
Celebration 

3.7a 
Lacey 

3.0a 
ND26249 

2.0a 

Yes 0.0a 0.0a 0.0a 

No 
Innovation 

5.3a 
Moravian133 

8.0a 
ND26891 

5.3a 

Yes 0.0b 1.3a 1.3a 

No 
ND 22421 

5.3a 
ND23898 

2.0a 
ND27177 

3.7a 

Yes 1.3a 0.0a 0.7a 

No 
Quest 

3.7a 
ND25160 

3.7a 
ND27245 

10.7a 

Yes 3.0a 2.3a 1.3b 

No 
Stellar-ND 

6.3a 
ND25652 

5.3a 
Rasmusson 

7.0a 

Yes 0.7a 0.0b 0.0b 

No 
Tradition 

5.3a 
ND26036 

3.7a 
Robust 

5.3a 

Yes 0.0b 0.7a 0.7a 
aMeans with different letters within genotype are significantly different (with Bonferroni 

adjustment, at alpha=0.05, such that comparisons are significant at P≤0.0014 based on thirty-six 

tests).  
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Table A2. 2013-2014, Percent disease (analyses performed on transformed data; non-

transformed data shown).  

   2013 2014 

  Dickinson Fargo 
Nesson 

Valley 
Dickinson 

Nesson 

Valley 
Osnabrock 

 P-values 

Genotype 

Treatment 

Genotype*treatment 

0.0590 

0.0003 

0.1472 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.0567 

0.0008 

<0.0001 

0.0418 

<0.0001 

<0.0001 

0.0657 

<0.0001 

<0.0001 

0.0030 

Genotype 
Row 

type 

Fung

icide 
Percent Disease 

AC 

Metcalfe 
2 

No 22.3 5.3a 15.0 14.7a 7.0 2.0a 

Yes 9.7 0.7b 3.7 2.0b 2.0 0.0b 

Conlon 2 
No 25.0 5.3a 9.7 9.7a 7.0 2.0a 

Yes 15.0 2.0a 2.0 2.0b 2.0 0.7a 

Conrad 2 
No 31.7 15.0a 25.0 25.0a 9.7 2.0a 

Yes 15.0 2.0b 12.3 3.7b 9.7 0.7a 

Haxby 2 
No 9.7 4.3a 5.3 15.0a 7.0 2.0a 

Yes 9.7 2.0a 2.0 2.0b 2.0 0.7a 

Pinnacle 2 
No 36.7 7.0a 36.7 25.0a 15.0 20.0a 

Yes 15.0 1.3b 15.0 3.7b 5.3 2.0b 

Rawson 2 
No 15.0 2.0a 12.3 15.0a 7.0 2.0a 

Yes 15.0 2.0a 5.3 2.0b 2.0 0.0b 

Celebratio

n 
6 

No 12.3 2.0a 8.0 7.0a 3.7 2.0a 

Yes 12.3 1.3a 3.7 2.0a 2.0 0.0b 

Innovatio

n 
6 

No 12.3 2.0a 3.7 9.7a 3.7 1.3a 

Yes 12.3 1.3a 2.0 2.0b 2.0 0.7a 

ND22421 6 
No 12.3 3.7a 3.7 12.3a 9.7 3.7a 

Yes 7.0 2.0a 3.7 2.0b 2.0 0.0b 

Quest 6 
No 20.0 2.0a 7.0 7.0a 5.3 2.0a 

Yes 12.3 2.0a 2.0 2.0a 2.0 0.0b 

Stellar-

ND 
6 

No 17.3 2.0a 9.7 15.0a 12.3 3.7a 

Yes 12.3 2.0a 3.7 2.0b 3.7 0.7b 

Tradition 6 
No 17.3 2.0a 8.0 5.3a 5.3 2.0a 

Yes 17.3 0.0b 3.7 2.0a 2.0 0.0b 

CVa (transformed data) 20.53 27.19 22.01 24.84 22.08 41.90 
aCoefficient of variation 
bMeans with different letters within genotype and column are significantly different (at α= 0.05, with 

Bonferroni correction such that comparisons are significant at P≤0.0042 based on twelve tests).  
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Table A3. 2011 yields of sub-plots, treated with fungicide versus not protected with fungicide, 

Langdon.  

Effect P-value 

Treatment 

Genotype 

Treatment×Genotype 

0.1802 

<0.0001 

0.0377 

Fungicide Genotype 
Yield, 

MT/ha 
Genotype 

Yield, 

MT/ha 
Genotype 

Yield, 

MT/ha 

Two-Rowed Barley Genotypes 

No 
AC Metcalfe 

4.08 04/506/42/8 3.51* 2ND26333 4.52* 

Yes 4.24  4.42*  5.17* 

No 
Conlon 

4.40 
04/566/70/8 

3.61*** 
2ND27421 

4.84 

Yes 4.81 4.77*** 5.08 

No 
Conrad 

4.44* 
2B03-3719 

4.28* 
2ND27440 

4.48 

Yes 5.12* 5.11* 4.96 

No 
Haxby 

4.62* 
2ND24388 

4.91 
C04-78-17 

3.77 

Yes 5.52* 5.21 3.68 

No 
Pinnacle 

4.91 
2ND25272 

5.14 CDC 

Copeland 

4.96 

Yes 4.69 5.54 4.43 

No 
Rawson 

4.59 
2ND25276 

4.84 
Lilly 

4.51* 

Yes 4.66 5.37 5.10* 

Six-Rowed Barley Genotypes 

No 
Celebration 

3.95** 
Lacey 

4.69 
ND26249 

4.93 

Yes 5.02** 4.59 5.42 

No 
Innovation 

5.51 
Moravian133 

4.21 
ND26891 

5.04* 

Yes 4.96 4.67 5.72* 

No 
ND 22421 

4.76 
ND23898 

4.81 
ND27177 

4.76 

Yes 5.19 4.78 4.78 

No 
Quest 

4.91 
ND25160 

4.40 
ND27245 

4.23* 

Yes 4.76 4.35 5.03* 

No 
Stellar-ND 

4.82 
ND25652 

4.85 
Rasmusson 

5.03 

Yes 4.44 4.82 5.32 

No 
Tradition 

4.62 
ND26036 

4.35 
Robust 

4.05 

Yes 4.87 4.25 4.51 

Coefficient of variation: 9.06 

*Comparison is significant based on non-adjusted P-value<0.10; **Comparison is significant at 

P<0.0028, based on Bonferroni adjusted P-value at α=0.10 and thirty-six comparisons; ***Comparison 

is significant at P<0.0014, based on Bonferroni adjusted P-value at α=0.05 and thirty-six comparisons.  
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Table A4. 2012 Yields of sub-plots, treated with fungicide versus not protected with fungicide, 

Dickinson, Fargo, Nesson Valley, and Osnabrock.  

Effect P-value 

Genotype 

Treatment 

Genotype*Treatment 

<0.0001 

0.3290 

0.0925 

<0.0001 

0.9433 

0.8358  

0.0009 

0.2536 

0.3832 

0.5493 

0.3242 

0.4783 

Barley 

Genotype 

Row 

Type 
Treatment 

Yield (MT/ha)  

Dickinson Fargo 
Nesson 

Valley 
Osnabrock 

AC 

Metcalfe 
2 

No 3.55 2.57 4.13 3.21 

Yes 3.21 2.56 4.27 2.93 

Conlon 2 
No 3.42 2.01 4.11 2.94 

Yes 3.66 2.23 4.27 3.01 

Conrad 2 
No 4.05 3.09 4.31 3.18 

Yes 4.20 3.15 4.37 3.26 

Haxby 2 
No 3.72 2.42 4.52 3.66 

Yes 3.78 2.91 4.85 3.54 

Pinnacle 2 
No 3.81 3.77 4.81 3.34 

Yes 4.04 3.83 4.89 3.33 

Rawson 2 
No 4.38 3.71 4.84 2.88 

Yes 4.17 3.53 4.75 3.10 

Celebration 6 
No 4.47 3.30 5.20 3.45 

Yes 4.31 2.77 5.27 3.44 

Innovation 6 
No 4.50 3.35 5.65 3.82 

Yes 4.54 3.17 5.87 3.53 

ND 22421 6 
No 4.88 3.28 5.01 3.92 

Yes 4.57 3.27 4.80 3.96 

Quest 6 
No 4.61 3.32 4.65 3.23 

Yes 4.32 3.36 4.69 3.12 

Stellar-ND 6 
No 4.74 3.24 5.32 3.36 

Yes 5.03 3.27 5.23 3.06 

Tradition 6 
No 4.02 3.36 4.92 3.31 

Yes 3.72 3.27 4.78 3.42 

Coefficient of variation: 5.15 12.63 3.33 6.32 
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Table A5. 2013 Yields of sub-plots, treated with fungicide versus not protected with fungicide. 

Six out of 12 genotypes yielded lower for non-fungicide-treated vs treated subplots in Dickinson; 

10 of 12 in Fargo; and 8 of 12 in Nesson Valley. The interactions were not statistically 

significant.  

 
2013 

Dickinson 
2013 Fargo 

2013 Nesson 

Valley 

Effect P-values 

Genotype 

Treatment 

Genotype*Treatment 

0.0979 

0.0911 

0.1725 

0.7361 

0.2435 

0.9766 

0.1076 

0.0739 

0.6663 

Interaction 

Barley 

Genotype 

Row 

type 
Fungicide Mean Yield Mean Yield Mean Yield 

AC 

Metcalfe 
2 

No 3.22 4.39 5.98 

Yes 3.61 4.47 6.09 

Conlon 2 
No 2.41 4.62 4.81 

Yes 2.92 4.72 5.85 

Conrad 2 
No 2.99 4.49 5.26 

Yes 3.05 4.72 5.74 

Haxby 2 
No 3.45 4.51 6.79 

Yes 3.12 4.34 6.74 

Pinnacle 2 
No 2.95 4.37 4.25 

Yes 3.79 4.42 4.05 

Rawson 2 
No 3.64 4.37 4.61 

Yes 3.39 4.47 4.67 

Celebration 6 
No 3.00 4.63 5.54 

Yes 3.68 4.66 5.12 

Innovation 6 
No 3.71 4.52 5.45 

Yes 3.70 4.62 5.21 

ND 22421 6 
No 3.52 4.56 5.48 

Yes 3.70 4.77 6.41 

Quest 6 
No 3.20 5.05 6.11 

Yes 2.99 4.96 6.98 

Stellar-ND 6 
No 3.47 4.33 4.82 

Yes 3.13 4.38 5.41 

Tradition 6 
No 3.16 4.41 4.67 

Yes 3.21 4.53 5.15 

Coefficient of variation: 12.62 5.06 12.63 
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Table A6. 2014 Yields of sub-plots, treated with fungicide versus not protected with fungicide. 

Twelve of twelve genotypes yielded lower for non-protected versus fungicide-treated subplots at 

Dickinson; 5 of 12 at Nesson Valley; and 7 of 12 at Osnabrock. In only one case was the 

interaction significant, at P≤0.05 (Rawson, fungicide-treated versus non-treated, at Osnabrock).  

 
2014 

Dickinson 

2014 Nesson 

Valley 

2014 

Osnabrock 

Effect P-values 

Genotype 

Treatment 

Genotype*Treatment 

0.0138 

0.0039 

0.9610 

0.4702 

0.4885 

0.4437 

0.2084 

0.0191 

0.0275 

Interaction 

Barley 

Genotype 

Row 

type 
Fungicide Mean Yield Mean Yield Mean Yield 

AC 

Metcalfe 
2 

No 4.67 4.55 5.28 

Yes 5.27 4.88 5.42 

Conlon 2 
No 3.72 4.66 5.81 

Yes 3.96 4.39 5.76 

Conrad 2 
No 4.25 4.54 4.76 

Yes 4.72 4.44 5.42 

Haxby 2 
No 4.13 4.95 4.92 

Yes 5.34 4.95 5.48 

Pinnacle 2 
No 4.37 5.09 5.84 

Yes 4.70 4.91 5.43 

Rawson 2 
No 4.10 4.58 4.32 

Yes 4.44 4.68 5.39 

Celebration 6 
No 5.28 5.01 6.09 

Yes 5.54 4.80 5.92 

Innovation 6 
No 5.45 5.09 5.72 

Yes 5.64 4.74 5.64 

ND 22421 6 
No 5.11 4.76 4.90 

Yes 5.30 4.84 5.21 

Quest 6 
No 4.64 4.46 5.00 

Yes 5.28 4.48 4.82 

Stellar-ND 6 
No 4.88 4.79 5.18 

Yes 5.43 4.72 5.20 

Tradition 6 
No 4.70 4.63 4.66 

Yes 5.84 4.82 5.10 

Coefficient of variation: 13.46 4.98 6.18 
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Table A7. Effect of Genotype on Yield (main effect). 2011 Langdon; gray highlighted genotypes 

were also used in 2012, 2013, and 2014 experiments.  

Genotype 
Row 

type 
Yield (MT/ha)a 

ND26891 6 5.38 a       

2ND25272 2 5.34 a b      

Innovation 6 5.24 a b c     

Rasmusso 6 5.18 a b c     

ND26249 6 5.17 a b c     

2ND25276 2 5.11 a b c d    

Haxby 2 5.07 a b c d e   

2ND24388 2 5.06 a b c d e   

ND22421 6 4.98 a b c d e   

2ND27421 2 4.96 a b c d e   

2ND26333 2 4.84 a b c d e f  

ND25652 6 4.84 a b c d e f  

Quest 6 4.84 a b c d e f  

Lilly 2 4.81 a b c d e f  

Pinnacle 2 4.80 a b c d e f  

ND23898 6 4.80 a b c d e f  

Conrad 2 4.78 a b c d e f  

ND27177 6 4.77 a b c d e f  

Tradition 6 4.74 a b c d e f  

2ND27440 2 4.72 a b c d e f  

2B03-371 2 4.70 a b c d e f  

CDC Copeland 2 4.70 a b c d e f  

Lacey 6 4.64 a b c d e f g 

ND27245 6 4.63 a b c d e f g 

Stellar-ND 6 4.63 a b c d e f g 

Rawson 2 4.62 a b c d e f g 

Conlon 2 4.61 a b c d e f g 

Celebration 6 4.49 a b c d e f g 

Moravian 2 4.44 a b c d e f g 

ND25160 6 4.38  b c d e f g 

ND26036 6 4.30   c d e f g 

Robust 6 4.28   c d e f g 

04/566/7 2 4.19    d e f g 

AC Metcalfe 2 4.16     e f g 

04/506/4 2 3.96      f g 

C04-78-1 2 3.72       g 
aMean separation based on Tukey’s adjustment for multiple 

comparisons (P≤0.05); yield of genotypes with a letter in common 

do not significantly differ 

 

  



 

 158 

Table A8. Effect of Genotype on Yield (main effect). Three sites in 2012 and 2014 Dickinson.  

Effect P-value 

Genotype 

Treatment 

Genotype*Treatment 

Coefficient of variation 

<0.0001 

0.3290 

0.0925 

5.15 

<0.0001 

0.9433 

0.8358  

12.63 

0.0009 

0.2536 

0.3832 

3.33 

0.0138 

0.0039 

0.9610 

13.46 

Barley Genotype 
Row 

Type 

Yield (MT/ha)a 

2012 

Dickinson 
2012 Fargo 

2012 Nesson 

Valley 

2014 

Dickinson 

AC Metcalfe 2 3.38 e 2.57 cd 4.20 b 4.97 ab 

Conlon 2 3.54 de 2.12 d 4.19 b 3.83 b 

Conrad 2 4.12 abcde 3.12 abc 4.34 b 4.49 ab 

Haxby 2 3.75 cde 2.67 bcd 4.69 ab 4.73 ab 

Pinnacle 2 3.92 bcde 3.80 a 4.85 ab 4.53 ab 

Rawson 2 4.28 abcd 3.62 a 4.79 ab 4.27 ab 

Celebration 6 4.39 abc 3.04 abcd 5.24 ab 5.41 a 

Innovation 6 4.52 abc 3.26 abc 5.76 a 5.55 a 

ND 22421 6 4.73 ab 3.23 abc 4.90 ab 5.21 ab 

Quest 6 4.46 abc 3.34 ab 4.67 ab 4.96 ab 

Stellar-ND 6 4.89 a 3.26 abc 5.27 ab 5.16 ab 

Tradition 6 3.87 cde 3.32 abc 4.85 ab 5.27 ab 

Coefficient of variation: 5.15 12.63 3.33 13.46 
aMean separation based on Tukey’s (2012) or Tukey-Kramer adjustment (2014) for multiple 

comparisons (P≤0.05); yields within a column with a letter in common do not significantly 

differ.  
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APPENDIX B. VIRULENCE OF PYRENOPHORA TERES F. MACULATA ISOLATES  
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Table B1.  Mean Seedling Lesion Reaction Type of 30 Barley Genotypes to a Natural Population of Pyrenophora teres f. maculata. 

Disease rating is according to a 1 to 5 scale, where 1 is resistant and 5 is susceptible. 
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1 12DP101 3.2 2.8 3.5 1.7 3.7 3.0 2.3 3.2 3.7 2.2 2.5 2.3 1.8 3.0 3.5 1.7 3.3 2.2 3.5 3.5 3.0 3.5 3.5 3.2 3.2 3.3 3.8 3.8 3.0 3.7 

2 12DP102 3.0 2.8 3.2 1.0 3.2 2.8 2.0 2.5 3.0 1.0 1.7 2.7 1.7 2.7 3.7 1.7 2.7 2.5 3.3 3.0 3.3 3.3 3.2 2.3 2.8 3.0 3.5 3.3 2.3 2.8 

3 12DP103 2.7 2.7 3.7 2.0 4.0 3.7 1.5 3.3 3.5 1.3 2.3 2.7 2.0 2.7 3.8 1.8 3.7 2.3 3.5 4.0 3.2 3.5 3.2 3.0 2.7 3.0 3.7 3.7 3.0 3.3 

4 12DP108 2.8 3.0 3.8 1.5 3.5 3.0 2.0 2.8 3.3 1.0 2.0 2.7 2.2 2.5 3.7 1.5 2.8 2.3 3.7 3.5 3.2 3.0 2.5 2.7 3.2 2.8 3.3 3.3 2.7 2.8 

5 12DP110 2.8 2.8 3.3 1.7 3.2 1.7 1.8 1.8 2.7 1.3 1.5 2.2 2.7 2.8 2.7 1.7 3.7 1.8 3.3 2.5 3.3 3.2 3.5 1.7 1.0 2.7 4.0 3.5 1.5 3.7 

6 12DP201 2.5 2.7 3.3 1.2 3.3 3.2 1.2 2.2 3.0 1.0 1.3 2.3 1.5 1.8 4.0 1.2 3.3 1.8 3.3 3.0 3.0 3.2 2.7 1.8 2.0 2.5 3.5 2.8 2.7 3.2 

7 12DP203 2.8 2.5 3.2 3.2 3.0 2.0 1.2 2.2 2.5 1.0 1.8 3.3 1.8 3.0 2.3 2.7 3.5 2.3 3.7 2.5 3.5 2.7 3.5 1.3 1.8 3.5 3.5 3.3 2.8 3.0 

8 12DP206 2.5 2.7 3.0 1.0 3.0 2.0 1.0 3.5 3.2 1.2 2.0 2.0 1.7 2.3 3.3 1.3 3.2 1.3 3.2 3.0 2.5 3.0 2.7 2.2 2.3 2.7 3.3 3.3 3.2 3.2 

9 12DP207 3.2 2.8 3.5 1.3 3.5 2.8 2.5 3.0 3.3 1.3 2.3 2.2 1.7 2.8 3.5 1.7 3.2 2.7 2.8 3.2 3.0 3.3 3.5 2.7 2.8 3.0 3.3 3.5 3.5 3.5 

11 12DP301 3.3 3.5 3.7 1.7 3.7 3.5 1.3 3.8 3.7 1.7 2.7 2.0 2.7 3.8 3.8 2.0 3.5 . 3.7 3.8 3.0 3.5 3.2 3.0 3.3 3.0 3.3 3.8 3.2 3.5 

135 12DP304 3.5 3.0 4.2 3.2 3.5 2.5 2.8 1.8 2.7 1.7 1.8 3.5 2.3 3.7 3.3 3.8 4.2 3.3 3.5 3.8 4.3 3.7 4.2 1.5 2.7 3.8 3.3 3.8 3.2 3.8 

12 12DP305 3.2 2.5 3.5 2.0 4.0 2.8 1.5 2.3 3.0 1.3 1.8 2.8 2.0 2.8 4.0 1.7 4.0 2.0 3.7 3.2 3.5 3.5 3.5 2.3 3.2 3.0 3.7 3.5 2.8 3.5 

13 12DP306 2.5 2.5 3.2 1.5 3.5 3.2 3.0 2.3 3.2 1.8 2.7 3.0 2.3 2.2 3.2 1.5 3.7 2.5 3.5 2.8 3.7 3.5 3.3 2.2 3.2 3.0 3.2 3.0 3.0 3.0 

14 12DP307 3.2 2.8 3.2 1.7 3.7 3.2 2.5 2.3 3.2 1.8 2.3 2.8 2.5 2.7 4.0 2.0 3.8 2.2 3.3 2.8 3.0 3.3 3.2 2.0 3.5 3.0 3.8 3.5 3.2 3.5 

125 12DP309 3.7 3.2 3.7 2.3 3.8 3.0 2.5 3.5 4.0 1.3 2.5 2.8 2.3 2.7 4.0 2.5 3.5 3.0 3.7 4.0 3.7 3.7 3.3 3.3 3.5 3.0 4.0 3.7 3.2 3.7 

15 12DP310 3.3 2.5 3.3 1.8 3.5 2.8 2.5 2.3 3.5 1.3 2.0 3.3 2.2 3.0 3.3 1.8 3.3 2.0 3.7 3.2 3.8 3.2 3.7 2.7 2.7 2.8 3.7 3.7 2.7 3.2 

16 12DP403 2.0 2.5 2.3 1.5 3.0 3.0 1.3 1.3 2.7 1.3 2.2 1.5 1.2 1.7 2.3 1.5 3.2 2.5 3.2 3.0 2.5 3.2 2.7 2.8 3.0 2.3 3.0 1.7 2.7 3.0 

17 12DP407 3.2 2.8 3.5 1.5 3.0 3.8 2.2 3.3 3.3 1.8 2.0 2.2 2.5 3.5 3.5 1.7 3.2 2.0 3.5 3.0 3.3 3.5 3.5 2.2 2.8 2.7 3.5 3.5 3.2 3.3 

18 12DP408 2.8 2.3 3.2 1.7 3.7 3.0 2.3 2.3 3.5 1.2 2.0 2.3 1.5 2.0 3.3 1.7 2.8 2.2 2.8 3.0 2.8 2.5 3.2 1.7 2.7 2.7 3.2 3.5 2.2 2.5 

19 12DP501 2.8 2.3 3.2 1.5 3.5 3.0 1.8 3.3 3.3 1.2 1.8 1.7 1.3 2.8 3.5 1.0 2.7 2.3 3.5 3.5 2.8 3.0 2.7 2.2 3.3 2.7 3.2 2.7 2.3 3.0 

20 12DP504 2.8 3.0 3.5 1.2 3.3 2.5 1.3 2.8 3.5 2.0 2.3 1.7 2.3 1.8 3.5 2.5 2.7 1.0 3.3 3.5 2.8 3.3 2.8 3.2 2.8 3.0 3.2 3.2 2.7 3.0 

21 12DP505 2.8 2.7 3.7 2.5 4.0 2.0 1.8 4.2 3.0 1.8 1.8 3.5 2.0 3.0 2.8 3.3 3.7 . 4.0 3.0 3.7 3.3 3.8 1.3 2.3 3.8 3.8 4.2 2.8 3.3 

22 12DP508 3.2 2.5 3.3 1.8 3.7 3.2 1.7 3.2 3.3 1.3 1.8 2.5 2.7 2.7 3.5 2.3 3.5 1.8 3.7 3.7 3.7 3.5 3.3 2.3 2.8 3.2 3.5 3.3 3.3 3.7 

23 12DP509 2.7 2.3 2.8 1.5 3.8 1.5 1.2 2.8 2.5 2.0 2.0 3.0 3.0 3.2 3.3 1.8 2.8 1.8 3.2 2.7 2.2 2.0 3.0 1.2 1.5 2.5 3.3 3.0 1.8 3.0 

24 12DP608 2.3 2.7 3.3 2.7 3.0 1.3 1.0 2.0 2.2 1.0 1.3 2.5 1.0 2.8 2.2 2.8 3.5 3.0 3.8 2.5 3.5 3.3 3.0 1.2 1.3 3.2 3.3 3.8 2.7 3.2 

25 12DP609 2.7 2.7 3.5 1.5 3.3 3.5 1.3 3.5 3.0 1.0 2.0 1.8 2.2 3.2 3.7 1.5 3.0 1.8 3.3 3.5 3.3 3.0 2.7 2.8 2.3 2.8 3.7 3.5 3.3 3.7 

27 12DT107 2.5 2.7 3.3 3.0 3.2 1.8 1.3 1.8 2.0 1.7 2.0 3.7 2.3 3.2 2.5 3.3 3.5 3.0 4.0 2.5 4.0 3.0 3.7 1.7 2.2 3.2 3.7 3.7 2.2 3.0 

28 12DT108 2.7 2.7 3.2 1.0 3.5 1.3 1.7 2.5 2.3 1.5 2.3 1.5 2.0 2.8 2.8 1.5 2.7 2.2 2.5 2.8 1.8 2.3 2.7 1.5 2.3 2.7 3.0 3.0 2.3 3.0 

29 12DT109 2.7 2.7 3.7 1.5 3.7 3.3 2.0 3.0 3.3 1.3 2.0 2.7 1.8 3.0 4.0 2.2 3.5 2.5 3.5 3.3 3.5 3.3 3.2 2.3 2.0 2.8 3.3 3.7 3.0 3.3 

30 12DT202 2.8 2.3 3.3 2.5 3.2 3.2 1.5 1.7 2.3 1.0 1.8 2.8 1.8 2.5 3.7 2.3 3.8 2.3 2.7 3.5 3.7 3.5 3.7 3.0 3.0 3.3 3.5 3.3 2.8 2.8 

31 12DT304 2.5 2.8 4.0 2.3 3.7 2.0 1.8 3.3 2.7 1.3 1.3 2.7 2.2 3.5 2.2 2.7 3.3 2.3 4.3 3.0 4.2 3.8 3.7 1.2 1.8 3.5 3.7 4.2 2.5 3.8 
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Table B1.  Mean Seedling Lesion Reaction Type of 30 Barley Genotypes to a Natural Population of Pyrenophora teres f. maculata 

(continued). 
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32 12DT305 2.2 2.2 3.3 1.0 3.2 3.5 1.8 3.2 3.5 1.2 1.7 2.3 2.5 2.2 4.0 1.7 3.3 2.0 3.2 3.3 2.7 3.5 2.8 2.7 2.2 2.8 3.0 3.5 2.8 3.0 

33 12DT402 3.3 3.2 3.7 1.8 3.5 3.3 2.3 3.0 4.0 1.7 2.2 3.2 2.3 3.0 3.7 2.0 3.7 2.7 3.5 3.2 3.5 3.3 3.5 2.7 3.0 3.0 3.7 3.7 2.8 3.0 

34 12DT404 3.0 2.5 3.0 1.3 3.2 4.0 2.3 3.3 4.0 1.8 2.0 1.5 2.7 2.3 3.2 1.8 3.7 2.7 3.7 3.7 3.5 3.7 3.2 2.8 3.8 2.7 3.5 3.2 3.5 3.5 

35 12DT409 3.0 2.7 3.3 1.2 3.3 3.0 2.3 3.0 3.3 1.8 1.7 2.3 2.5 2.2 3.7 1.8 3.3 2.0 3.2 3.3 3.3 3.3 3.0 2.7 3.5 2.8 3.7 3.2 3.5 3.2 

36 12DT410 3.2 3.0 3.7 1.7 3.5 3.0 2.3 3.0 3.3 1.3 2.2 1.5 2.2 3.3 4.0 2.3 3.7 2.8 3.7 3.8 3.5 3.5 2.7 2.3 3.2 2.7 4.0 3.7 3.2 3.0 

37 12DT501 3.7 2.8 3.8 3.5 3.3 3.5 1.8 2.5 3.5 1.8 2.5 3.0 2.5 3.2 4.2 2.5 3.7 2.7 4.5 4.3 4.8 4.0 3.8 3.0 2.8 3.8 4.2 4.2 3.7 3.8 

38 12DT503 3.5 2.8 3.5 1.5 3.5 2.5 2.0 3.5 3.7 1.7 2.3 2.2 2.7 2.8 4.0 1.8 3.5 2.7 3.7 3.8 4.0 3.7 3.3 3.0 3.5 3.0 4.3 3.7 3.0 3.7 

39 12DT508.1 2.7 2.8 3.2 1.2 3.3 3.0 2.0 2.8 3.2 1.2 1.3 2.5 1.7 2.7 3.7 1.5 3.0 2.3 2.5 3.0 2.7 2.8 3.0 2.3 2.7 2.3 3.5 3.3 2.8 2.7 

40 12DT508.2 3.0 2.8 3.0 1.0 3.2 2.3 1.2 2.7 3.0 1.2 1.5 1.5 1.7 2.5 3.3 1.5 2.7 1.8 3.0 2.7 3.0 2.7 3.2 2.7 2.5 2.8 3.0 3.2 2.5 3.0 

42 12DT510 2.3 2.8 3.8 1.7 3.7 3.0 1.3 3.8 3.2 1.7 1.8 3.0 2.3 2.7 4.0 2.5 3.8 3.0 3.5 3.8 3.7 3.5 2.7 2.2 2.7 2.3 3.8 3.7 3.2 3.3 

44 12DT602.2 2.5 2.3 2.5 1.0 3.2 2.3 1.7 2.8 3.0 1.0 1.5 1.3 1.3 2.3 2.7 1.3 2.2 1.5 2.7 2.5 2.3 2.5 2.3 2.0 2.7 2.2 3.0 2.8 2.2 2.7 

45 12DT604 2.3 2.5 2.8 2.8 3.5 2.8 1.3 2.7 3.3 1.2 1.3 1.7 2.0 2.8 3.3 1.3 3.0 1.8 3.0 3.2 2.7 3.0 3.0 1.7 2.8 2.3 3.5 3.2 2.8 3.0 

134 12DT606.2 3.5 3.3 3.3 1.5 3.5 3.3 2.5 3.7 3.8 1.8 2.5 3.2 2.2 3.2 4.0 2.2 2.8 2.7 3.5 3.8 3.7 2.8 3.7 2.0 3.0 2.3 3.8 3.7 3.3 3.5 

48 12DT609 3.7 3.3 3.5 1.5 3.7 3.8 1.8 3.2 4.2 1.5 1.2 2.0 2.2 2.3 4.0 2.0 4.0 2.0 4.0 3.5 3.0 3.3 3.3 2.2 3.7 2.7 3.7 4.0 3.2 3.3 

49 12DT610 3.0 2.8 3.5 1.3 4.0 3.5 1.8 3.5 3.8 1.5 2.0 2.3 2.0 3.0 3.7 2.0 3.5 1.5 3.3 3.8 2.8 3.3 3.0 2.5 3.3 2.7 3.7 3.3 3.2 3.2 

116 12FP209 3.7 3.0 3.7 2.7 3.7 1.8 2.8 1.5 2.8 1.2 1.5 3.0 1.7 3.0 3.5 3.5 4.0 3.2 3.8 3.5 4.0 3.0 3.8 1.5 2.5 3.5 4.0 4.0 2.5 3.5 

118 12FP310 3.2 3.0 3.3 1.8 4.0 3.0 2.2 2.5 3.5 1.3 2.0 3.0 2.0 2.8 3.8 2.0 3.5 2.5 3.7 3.3 3.3 3.5 3.7 2.3 3.3 2.8 3.8 3.8 2.8 3.7 

119 12FP401 3.5 3.2 3.7 1.3 3.3 3.0 2.2 3.0 2.8 1.5 1.7 2.3 1.7 3.2 4.0 1.8 3.5 3.0 3.5 3.7 3.2 3.0 3.2 2.3 3.0 2.7 3.5 3.7 3.0 3.3 

121 12FP601 3.3 2.7 3.3 1.7 3.8 3.7 2.0 3.2 3.8 1.5 1.3 3.2 1.8 2.7 3.8 2.0 4.2 2.7 4.3 3.8 3.3 3.7 3.7 2.2 3.3 3.0 4.0 3.5 3.3 3.2 

93 12LP102 3.0 3.3 3.2 1.7 3.8 3.2 1.5 2.3 3.5 1.3 2.5 2.7 2.5 2.7 3.8 1.7 3.5 2.5 3.8 3.7 3.2 3.5 3.3 2.8 3.3 3.2 3.5 3.5 3.3 3.7 

95 12LP108 3.5 2.8 3.7 2.3 3.7 3.3 2.5 2.3 3.7 1.5 2.8 3.3 2.2 2.8 4.0 2.2 4.0 3.0 4.2 4.0 4.3 3.8 4.0 3.5 3.7 3.3 4.0 3.7 3.7 3.8 

96 12LP109 2.7 3.0 3.7 1.7 3.0 2.7 2.3 1.7 3.5 1.2 1.5 2.2 1.5 2.3 3.7 1.8 3.5 2.3 3.5 3.7 3.3 3.0 2.8 2.7 3.0 2.5 3.5 3.5 3.0 2.8 

97 12LP201 3.5 3.2 3.3 1.3 3.3 2.8 2.3 3.0 3.8 1.3 2.5 2.5 1.8 2.3 3.8 2.0 3.5 3.0 3.3 3.8 3.0 3.3 3.2 2.7 3.5 2.8 3.5 3.7 3.2 3.8 

98 12LP202 3.8 3.0 3.8 2.2 4.0 3.8 3.2 3.5 4.0 1.7 2.5 2.3 2.2 3.2 3.7 2.3 4.0 3.2 4.3 4.2 3.3 3.7 4.2 2.7 3.8 3.2 4.0 4.0 3.5 3.8 

133 12LP204 3.0 3.2 3.0 1.7 2.7 3.0 1.2 3.0 3.5 1.7 2.3 2.5 2.7 2.2 4.0 2.3 3.5 2.8 3.7 3.3 3.0 2.5 3.0 2.8 2.3 3.0 3.3 4.0 2.3 2.8 

99 12LP205 2.8 2.7 3.2 1.5 3.0 2.7 1.7 2.5 3.2 1.2 1.5 2.2 1.3 2.0 3.3 2.0 3.0 2.7 3.3 3.0 2.3 2.7 3.0 1.7 2.8 2.3 3.7 3.5 2.5 2.7 

100 12LP207 3.2 2.5 3.0 1.7 3.3 2.7 2.0 2.8 3.3 1.3 1.3 2.2 2.0 2.2 3.7 1.5 2.8 2.2 3.5 3.7 3.0 3.0 3.3 2.5 3.0 2.7 3.8 3.2 3.0 3.3 

102 12LP209 3.3 2.7 3.7 2.0 3.3 3.2 2.3 3.2 3.3 1.7 2.5 3.0 1.8 2.8 4.0 2.0 4.0 2.7 3.5 3.5 3.7 3.5 3.5 2.5 3.2 2.8 3.8 3.7 3.5 3.5 

105 12LT204 3.5 3.2 2.8 2.3 3.8 3.7 1.8 2.8 4.0 1.0 2.3 3.2 1.8 2.7 3.8 1.8 3.8 2.8 4.0 4.2 3.8 3.7 3.5 2.5 3.5 2.8 4.3 3.7 3.8 4.0 

109 12LT410 3.7 3.2 3.2 1.8 3.5 3.0 2.8 3.2 3.2 1.5 2.0 3.2 2.3 3.3 4.0 2.0 3.7 3.0 3.5 4.0 3.3 3.7 3.2 2.0 3.5 3.0 3.7 3.7 3.3 3.5 

110 12LT501 2.8 2.8 3.5 1.7 3.0 3.0 1.7 2.8 3.5 1.0 1.7 2.3 1.8 2.3 3.8 2.2 3.3 2.3 3.5 3.7 2.8 3.2 3.2 2.7 3.3 2.8 3.7 3.3 3.0 3.5 

111 12LT509 3.7 3.2 4.0 1.8 3.7 3.0 2.2 2.7 3.3 1.8 2.2 2.8 1.7 2.7 4.0 2.2 3.8 3.2 4.0 4.0 3.5 2.8 3.0 2.3 3.2 3.0 4.0 4.2 3.5 3.3 
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113 12LT606 3.2 2.7 3.2 1.8 3.2 3.3 2.7 2.8 3.8 1.5 2.3 3.5 1.8 2.5 3.5 1.8 3.3 2.5 3.8 3.3 3.3 2.8 3.2 2.2 3.2 2.8 3.0 3.7 3.0 3.5 

127 12NP101 3.0 3.0 3.8 1.5 3.7 3.8 1.5 3.2 3.8 1.8 2.7 3.0 2.3 3.0 4.0 2.2 4.0 2.7 4.0 3.7 3.5 3.7 2.8 2.8 2.7 3.0 4.0 3.7 3.7 3.8 

50 12NP102 3.2 2.8 3.7 3.0 3.3 2.8 1.8 2.8 2.8 1.7 2.0 2.7 2.5 3.2 3.5 2.8 3.3 2.8 3.5 3.3 4.2 3.5 3.5 2.7 2.5 3.3 3.0 3.8 3.0 3.7 

53 12NP107 3.2 3.2 3.2 2.2 3.0 3.5 2.2 2.5 3.0 1.7 2.3 1.7 1.5 3.2 3.7 1.7 3.0 2.8 3.7 3.0 2.8 3.2 3.0 2.8 3.3 2.7 3.7 3.3 3.3 3.5 

57 12NP203 2.3 2.8 3.3 2.2 3.5 1.0 2.0 2.0 2.8 1.3 1.5 2.3 1.3 3.3 2.3 3.3 3.3 2.5 3.3 2.3 2.8 2.8 2.8 1.3 2.2 3.3 3.7 3.7 2.5 3.0 

60 12NP207 3.2 2.7 3.2 1.5 3.7 2.8 1.8 2.3 3.5 1.0 2.2 2.5 1.8 1.8 3.7 1.8 3.3 2.3 3.2 3.3 3.2 2.8 3.7 1.8 2.5 3.2 4.0 3.5 2.8 3.0 

62 12NP209 2.5 3.0 3.5 1.2 3.5 2.3 2.2 3.5 3.2 1.8 2.0 1.3 2.7 3.3 3.5 2.0 3.5 1.8 2.7 3.0 3.5 3.2 3.2 2.7 3.2 2.3 3.3 3.7 3.2 3.2 

65 12NP402 3.8 3.0 4.2 2.7 3.2 1.8 2.2 1.3 3.3 1.7 1.3 2.5 1.8 3.7 3.8 3.8 3.8 3.5 3.8 3.3 4.5 3.5 3.8 1.7 2.5 3.7 4.0 4.5 2.7 3.5 

67 12NP404 3.2 3.2 3.5 2.0 3.3 3.2 2.5 3.0 3.5 1.3 1.5 3.2 1.8 3.0 3.8 2.3 3.7 3.2 3.5 3.5 3.0 3.7 3.2 1.8 3.7 3.0 3.8 3.7 3.7 3.7 

72 12NP502 3.2 2.5 3.8 3.2 3.8 1.3 2.0 2.2 3.0 1.0 1.3 2.2 1.8 2.8 3.2 2.2 3.5 2.8 3.5 3.2 3.8 3.0 3.8 1.2 2.2 3.2 3.3 3.8 2.3 3.5 

128 12NP503 3.3 3.3 3.7 2.2 3.8 3.3 2.0 2.7 3.3 1.5 1.8 3.3 2.2 3.5 3.5 2.5 3.8 3.2 4.2 4.0 3.8 4.0 3.8 3.0 3.0 3.3 4.3 4.0 3.7 3.8 

73 12NP507 3.3 2.7 3.3 1.5 3.8 3.0 1.8 3.3 3.7 1.5 2.3 2.0 2.0 3.0 3.7 1.8 3.5 1.5 3.5 3.5 3.3 3.2 3.0 2.8 3.3 2.8 3.5 3.5 3.0 3.2 

78 12NP607 3.5 3.2 3.3 1.7 3.5 3.5 2.0 3.2 3.7 1.8 2.5 2.2 2.3 3.0 4.2 1.7 3.7 2.5 3.8 3.7 3.5 3.5 3.0 2.7 3.3 2.8 4.2 3.8 3.2 3.2 

129 12NT203 3.7 3.5 4.3 1.7 3.8 3.2 2.0 3.5 3.5 1.7 1.8 3.3 2.3 3.2 4.2 2.3 4.0 3.0 4.2 3.7 4.0 3.8 3.8 2.2 2.8 3.2 4.0 4.2 3.5 3.8 

130 12NT208 4.2 2.7 3.8 3.3 3.7 1.5 1.8 1.3 2.5 1.2 1.5 3.0 2.0 3.5 3.2 3.0 3.5 2.8 3.0 3.5 3.7 3.3 3.7 1.5 2.0 3.3 3.8 4.3 2.3 3.3 

80 12NT209 3.7 3.2 3.8 1.7 3.8 3.3 2.7 3.7 3.7 1.8 1.8 2.8 2.3 2.7 3.8 2.3 3.8 2.8 3.8 3.5 3.5 3.8 3.2 3.2 3.5 3.0 3.8 4.2 3.5 3.8 

82 12NT407 3.3 3.3 3.5 1.8 4.2 3.3 3.0 3.0 3.8 1.8 2.2 2.7 2.7 2.8 4.2 1.8 3.5 2.8 4.2 3.7 3.8 3.7 3.3 2.8 3.5 3.0 3.8 3.2 3.7 3.8 

84 12NT409 3.5 2.8 3.0 1.7 3.3 3.2 2.5 2.8 3.5 1.5 2.3 2.2 2.2 2.8 3.7 2.2 3.5 2.3 3.8 3.5 3.5 3.7 3.2 3.0 3.5 3.2 3.8 3.0 3.3 3.7 

132 12NT501 3.0 3.0 3.7 1.8 3.5 3.2 2.5 3.8 3.2 1.5 1.5 2.8 2.0 2.8 4.0 2.3 4.0 2.7 3.8 3.7 3.5 3.2 3.8 2.3 3.2 3.0 3.3 3.7 3.5 3.8 

85 12NT503 3.5 3.5 4.0 3.0 3.3 3.2 1.5 3.8 2.5 1.3 2.0 3.2 2.0 3.3 3.8 3.3 4.0 2.8 3.8 4.0 4.0 3.8 3.5 2.7 2.8 3.2 4.0 4.0 3.3 3.7 

87 12NT504.2 3.2 3.3 3.2 1.5 2.8 3.2 1.8 2.8 3.0 1.3 2.0 2.2 1.7 2.8 3.7 1.7 3.5 2.5 3.3 3.8 3.0 3.0 2.8 3.2 2.8 2.3 3.8 3.3 3.0 3.3 

88 12NT505 3.5 3.2 3.3 1.5 3.5 3.3 2.3 2.5 3.3 1.7 3.0 2.7 2.7 2.8 3.8 2.2 3.7 2.7 4.0 4.0 4.0 4.2 3.7 3.0 3.2 3.0 4.2 3.5 3.2 3.8 

89 12NT510 2.8 3.0 3.0 1.7 3.3 3.3 1.7 3.0 3.2 1.2 2.2 2.8 1.8 2.7 3.3 1.5 3.5 2.3 3.3 3.5 2.8 3.5 3.3 2.5 3.2 2.7 3.8 3.2 3.2 3.7 

90 12NT603 3.7 3.5 3.7 1.7 3.8 3.0 2.5 3.3 3.7 1.3 2.3 2.7 2.7 2.7 3.7 2.3 3.8 2.8 3.8 3.5 3.2 3.3 3.5 3.2 3.3 3.2 3.7 3.7 3.7 4.0 

91 12NT604 3.2 3.0 3.8 2.0 3.3 2.8 1.7 2.8 2.8 1.2 1.7 2.3 1.7 2.7 3.7 1.7 3.7 2.0 3.8 3.5 2.8 3.0 3.0 2.2 2.3 2.3 3.5 3.7 2.5 3.0 

92 12NT608 3.5 2.8 3.8 3.2 3.3 3.5 1.8 2.5 2.8 1.5 2.3 3.2 2.0 3.7 4.0 3.7 4.3 3.7 4.5 4.0 4.8 3.8 4.0 3.0 3.0 3.7 4.0 4.2 3.5 3.7 

171 Pin-A1 3.5 3.5 3.8 1.5 3.8 4.2 2.5 3.8 3.5 1.7 2.3 3.2 2.3 3.3 4.0 2.3 4.2 3.0 4.3 4.3 4.0 3.5 3.8 2.5 3.7 2.8 3.8 3.7 3.3 4.0 

180 Pin-A10 2.8 2.7 3.5 2.5 3.3 2.0 1.7 2.7 3.0 1.3 2.3 2.8 2.5 3.3 3.2 3.0 3.3 2.7 3.0 3.0 3.7 3.5 4.3 1.7 2.5 3.0 2.8 4.0 2.5 3.5 

181 Pin-A11 3.3 3.2 3.3 3.0 3.5 2.8 2.2 3.2 2.8 1.5 1.5 2.7 1.8 3.2 4.0 2.8 3.8 2.3 3.3 4.0 3.7 3.3 3.3 2.3 3.0 2.8 2.8 4.0 2.7 3.0 

182 Pin-A12 3.3 2.7 3.7 1.5 3.5 3.5 2.0 3.3 3.7 1.3 2.0 3.3 1.7 3.0 3.7 1.5 3.7 2.8 3.5 3.8 3.2 3.5 3.8 2.7 3.2 3.2 4.0 3.3 3.7 2.8 

183 Pin-A13 2.8 2.5 3.3 2.7 3.5 1.3 1.3 2.5 1.8 1.0 1.2 2.8 1.3 3.0 3.2 3.3 3.5 2.5 4.0 3.0 3.5 3.3 3.7 1.2 1.7 3.0 3.7 3.3 1.7 3.2 

184 Pin-A14 3.3 3.0 3.3 1.3 3.5 3.5 2.3 3.3 3.5 1.7 1.8 3.0 1.8 2.5 4.0 1.8 3.8 2.5 3.3 3.8 3.3 3.0 3.2 2.8 3.3 2.5 3.8 3.3 3.2 2.8 
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185 Pin-A15 3.0 3.2 3.3 1.5 3.8 3.3 2.3 2.5 3.7 1.3 2.2 3.3 1.7 2.8 3.7 1.7 4.0 3.0 3.7 3.0 3.7 3.7 3.5 2.2 3.2 2.8 3.7 3.3 3.3 3.5 

173 Pin-A3 3.0 2.7 3.3 1.3 3.7 3.2 1.8 3.0 3.3 1.0 1.5 2.7 1.3 2.7 3.5 1.0 3.3 2.0 3.5 3.0 2.5 2.7 2.8 2.0 2.2 1.7 3.2 3.3 2.5 2.8 

175 Pin-A5 3.3 2.8 3.3 1.3 3.3 3.7 2.2 3.0 3.8 1.5 1.7 2.7 1.7 2.8 3.5 1.3 3.5 2.7 3.2 4.0 2.8 3.5 3.5 2.8 3.3 2.7 4.0 3.2 3.5 3.5 

176 Pin-A6 3.2 3.7 3.7 2.8 3.3 2.2 1.7 3.0 2.5 1.2 1.3 3.3 2.0 3.2 3.0 3.2 3.3 2.3 4.0 3.2 3.3 3.0 3.7 1.5 2.7 3.0 4.0 4.0 2.8 3.2 

177 Pin-A7 3.8 3.7 3.8 2.2 4.3 3.5 2.8 4.0 3.8 2.0 2.8 3.3 2.8 3.3 4.0 3.0 4.2 3.7 4.0 3.8 3.8 4.0 4.0 2.2 4.0 3.3 4.0 4.2 3.3 4.0 

178 Pin-A8 3.3 3.0 3.2 3.0 2.8 3.5 2.3 3.0 3.0 1.2 2.2 3.2 2.0 2.8 3.7 2.5 3.8 2.8 3.5 3.8 3.3 3.7 3.7 2.8 2.8 3.3 3.2 3.8 4.2 3.8 

186 Pin-B1 3.0 3.0 4.0 2.7 3.5 2.3 2.3 2.8 3.3 1.3 1.0 3.2 2.3 3.2 4.3 2.8 3.7 3.5 4.2 4.0 3.7 3.8 4.3 1.7 2.8 3.5 3.7 4.3 3.0 3.5 

187 Pin-B2 3.2 3.0 3.3 1.3 3.2 2.8 1.5 3.0 2.5 1.2 1.3 3.0 1.3 2.7 3.7 1.2 2.2 2.0 3.2 2.7 2.8 2.3 2.3 1.5 2.5 2.3 3.2 2.7 2.2 2.5 

188 Pin-B3 2.8 3.0 3.5 1.2 3.2 3.5 1.7 3.0 3.3 1.2 1.5 3.0 1.5 2.7 3.7 1.3 4.0 2.0 3.2 3.2 3.2 2.8 3.3 2.5 2.8 2.5 3.0 3.5 2.7 3.3 

189 Pin-B4 3.8 3.0 3.5 1.2 3.2 3.5 2.0 3.5 3.5 1.0 1.0 2.8 1.8 2.7 4.0 2.0 3.7 3.0 3.8 3.5 3.3 3.5 3.2 1.5 3.0 2.0 3.5 4.0 2.8 3.3 

191 Pin-C1 3.3 3.0 3.2 1.3 3.7 3.7 2.0 3.3 4.0 1.7 2.0 2.5 2.5 2.5 4.0 1.8 4.0 2.8 3.5 3.3 4.2 3.5 3.5 2.5 3.5 2.7 3.7 3.3 3.3 3.2 

200 Pin-C10 4.0 3.2 3.2 1.5 3.8 3.7 2.3 2.8 3.8 1.5 2.2 3.3 2.5 2.7 4.2 1.7 3.7 2.8 4.0 3.7 4.0 3.8 3.7 2.8 3.7 2.8 3.8 3.7 3.2 3.7 

201 Pin-C14 3.5 2.8 3.3 1.7 3.7 3.2 2.8 3.0 3.2 1.5 2.0 3.2 2.0 3.0 3.8 2.3 4.2 2.7 3.8 3.3 3.0 3.2 3.5 2.5 3.5 3.3 4.0 3.7 2.8 3.8 

202 Pin-C15 3.5 3.5 3.2 1.8 3.8 4.2 2.0 3.0 4.2 1.7 3.0 3.5 2.8 3.2 4.0 2.8 4.2 3.2 4.0 3.8 3.8 4.3 3.5 2.8 3.3 2.8 3.8 3.7 3.8 3.8 

192 Pin-C2 3.8 3.3 4.0 3.7 4.0 2.2 1.8 3.5 3.3 1.5 1.5 3.8 2.7 3.2 3.3 3.2 4.2 3.5 4.2 3.0 4.5 3.8 4.2 2.2 2.8 3.7 4.0 4.2 2.8 3.8 

193 Pin-C3 3.5 3.2 3.5 1.2 3.3 3.3 2.2 3.0 3.3 1.5 2.2 3.2 2.0 2.7 3.8 1.7 3.3 3.7 3.8 3.0 3.5 3.2 3.3 2.5 3.0 2.8 3.8 3.3 3.2 3.5 

197 Pin-C7 3.2 3.2 4.0 3.3 3.8 2.5 3.2 3.0 3.3 1.5 1.2 3.7 2.3 3.5 3.5 3.5 3.7 3.5 4.3 4.0 3.7 3.8 4.3 1.3 2.2 3.3 3.8 4.2 2.7 3.5 

198 Pin-C8 3.7 3.2 3.7 3.2 3.5 4.0 2.7 3.7 3.0 1.3 1.7 3.0 2.2 3.3 4.0 3.5 3.8 3.0 4.0 3.8 4.3 3.0 4.0 2.8 3.7 3.2 4.0 4.2 3.7 3.8 

199 Pin-C9 2.8 2.8 3.7 2.7 3.0 1.5 1.8 2.7 2.7 1.2 1.0 2.8 1.7 3.2 3.2 3.5 3.3 2.7 3.3 2.8 3.2 3.2 4.2 1.7 2.3 3.3 3.7 3.8 2.3 3.5 

203 Pin-D1 3.0 3.2 3.0 2.8 3.0 2.0 1.7 2.5 2.7 1.0 1.0 2.5 1.5 2.2 3.0 3.0 3.3 2.7 3.5 2.7 3.0 2.5 3.5 1.0 2.0 3.3 3.0 3.5 2.2 3.0 

211 Pin-D10 3.3 3.7 3.5 1.8 4.0 4.0 2.7 3.5 4.3 1.8 2.7 3.5 1.5 3.0 4.3 2.2 4.2 3.0 4.2 4.3 3.5 4.0 4.0 2.3 3.7 2.7 4.0 3.5 3.8 3.8 

212 Pin-D11 3.3 3.3 4.0 1.3 3.5 3.3 2.5 3.5 3.5 1.5 2.0 2.7 2.0 3.2 4.3 1.7 3.8 3.2 4.0 3.5 3.7 3.7 3.7 2.5 3.5 2.8 3.5 4.0 3.2 3.7 

213 Pin-D12 3.8 3.3 4.0 2.0 4.0 3.3 2.3 3.2 3.7 1.7 2.0 3.5 2.3 2.8 4.2 2.2 4.2 3.0 3.8 4.0 3.2 3.3 3.7 2.5 4.0 2.8 3.8 4.3 2.7 3.5 

214 Pin-D13 2.8 2.3 3.7 2.5 3.3 1.5 2.2 3.5 2.8 1.3 1.2 2.8 1.7 2.5 2.5 2.7 3.3 2.5 3.8 2.8 3.3 3.3 4.3 1.8 2.8 2.7 3.5 3.8 2.2 3.2 

215 Pin-D14 2.7 3.0 3.7 3.8 3.0 2.5 1.8 4.0 3.3 1.5 1.3 3.3 2.0 3.5 3.2 3.2 3.8 3.2 3.8 2.7 4.2 3.7 3.7 2.2 3.0 3.3 3.7 4.0 3.2 3.7 

204 Pin-D2 3.8 3.3 3.8 3.5 3.7 2.5 2.2 3.7 3.2 1.8 1.8 4.0 2.5 3.3 3.7 3.8 4.0 3.3 3.8 3.3 4.0 4.0 4.2 2.0 2.5 3.8 3.7 4.0 3.3 3.7 

205 Pin-D3 3.2 3.2 2.8 2.7 3.0 3.0 1.0 3.0 2.7 1.0 1.8 2.8 2.0 2.5 3.7 2.8 4.0 2.7 3.8 3.7 3.7 3.2 3.7 2.7 2.7 2.8 3.3 3.7 2.7 3.0 

206 Pin-D4 3.3 3.5 3.3 1.2 3.5 3.3 2.0 3.0 4.0 1.7 2.2 3.0 2.0 2.3 4.0 1.7 3.3 3.5 3.7 3.8 3.3 3.3 3.3 2.0 2.7 2.8 3.5 3.5 2.8 3.3 

207 Pin-D6 3.5 3.2 3.7 3.7 3.7 3.5 2.3 3.8 3.3 1.5 2.7 3.7 2.5 3.3 4.2 3.5 4.2 3.7 3.8 4.3 4.7 4.3 4.3 3.2 3.8 4.0 4.0 4.3 4.0 4.0 

208 Pin-D7 3.3 3.3 3.3 3.0 3.2 1.8 2.7 2.7 2.8 1.2 1.3 3.2 2.0 3.0 3.5 3.0 3.5 3.2 3.8 2.8 3.8 3.3 3.8 1.2 3.0 3.3 3.5 4.0 2.5 3.7 

209 Pin-D8 2.5 2.8 2.3 1.5 2.8 3.3 1.8 2.0 3.3 1.3 1.8 2.3 1.3 2.3 4.0 1.3 3.3 2.3 2.8 3.5 1.8 3.5 2.3 2.0 3.0 2.0 3.8 2.5 3.3 3.0 

210 Pin-D9 3.3 3.2 3.7 1.8 3.8 3.8 1.8 3.2 3.8 1.2 2.0 3.0 2.0 2.8 4.2 1.8 3.8 3.0 4.2 3.5 3.7 3.7 3.3 2.0 2.3 3.2 4.0 3.5 2.8 3.2 
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142 Tra-A10 3.7 2.8 3.8 1.8 4.0 3.3 2.3 3.7 3.8 1.2 2.0 3.3 1.8 3.0 3.7 1.8 4.2 3.3 4.3 4.0 3.8 3.0 3.5 2.5 3.8 3.0 3.8 3.7 3.3 3.8 

141 Tra-A9 3.0 3.2 2.3 1.7 3.5 3.7 2.0 2.3 4.2 2.0 2.2 2.8 2.2 2.5 3.8 2.2 3.7 2.7 3.8 3.5 3.3 3.5 3.3 3.0 3.3 3.0 4.0 3.2 3.7 3.2 

145 Tra-B1 3.2 3.2 3.5 1.8 3.7 3.8 2.0 2.8 4.0 1.5 2.2 3.2 2.3 2.8 3.8 1.7 3.5 3.0 3.5 3.8 3.0 3.2 3.2 2.3 3.0 3.0 3.8 3.5 2.3 3.0 

146 Tra-B2 3.5 3.3 3.8 1.5 3.7 3.5 2.3 3.3 4.2 1.3 2.3 3.3 2.0 3.0 3.8 1.5 3.7 2.5 4.2 3.8 3.7 3.5 3.8 3.5 3.7 2.7 3.8 3.7 3.7 3.8 

156 Tra-C10 2.3 3.0 2.0 1.7 3.0 3.5 2.0 2.8 3.7 1.2 2.0 2.5 2.0 2.7 3.8 2.0 3.5 2.7 3.7 3.3 3.3 3.3 3.0 3.0 3.3 2.8 3.7 2.7 3.0 3.5 

159 Tra-C13 3.3 3.2 3.7 3.0 3.8 2.3 1.7 3.2 3.0 1.3 1.3 3.2 2.3 3.0 3.9 3.3 3.5 2.8 3.8 3.3 3.3 3.0 3.7 1.3 2.3 2.8 3.2 3.8 2.7 3.2 

160 Tra-C14 2.7 2.7 4.0 1.3 3.0 1.8 1.3 3.5 3.3 1.3 1.8 2.8 1.7 3.2 2.3 2.2 3.5 2.0 3.2 2.2 3.7 3.2 4.0 1.0 1.5 2.0 3.3 3.0 1.7 4.0 

153 Tra-C4 3.2 3.0 3.0 1.5 3.5 3.3 2.3 2.8 3.3 2.0 1.8 3.3 2.0 2.7 4.2 1.7 3.8 2.5 3.8 3.8 3.7 3.7 3.5 2.5 3.0 3.0 3.5 3.3 3.3 3.7 

168 Tra-D12 4.0 3.8 4.2 1.5 3.7 3.2 2.3 3.8 3.3 1.3 1.5 3.0 2.0 3.5 4.2 2.3 3.8 2.7 4.0 3.8 3.7 3.3 4.0 2.5 3.7 2.7 4.0 4.0 3.7 3.5 

163 Tra-D6 3.2 2.8 3.7 1.5 4.0 3.0 1.7 3.0 3.5 1.5 1.8 2.3 1.7 3.2 3.5 1.8 3.5 2.8 3.8 3.3 3.2 3.5 3.3 1.7 2.3 2.7 3.2 3.8 3.0 3.7 

216 13IM1.2 2.0 2.2 3.7 3.0 3.7 1.8 1.2 3.7 2.2 1.3 1.3 2.7 2.0 2.7 2.7 3.7 3.7 3.2 3.3 3.2 3.7 3.8 3.5 1.7 2.0 2.7 4.2 3.7 2.7 4.0 

217 13IM2.1 3.2 2.8 4.2 3.0 3.8 2.0 1.5 3.5 2.8 1.2 1.7 3.0 1.7 3.5 3.2 3.8 3.5 2.7 4.0 3.2 4.7 4.0 4.5 1.3 1.8 3.5 4.0 3.7 2.3 3.0 

218 13IM2.2 3.0 2.7 4.0 2.8 3.3 1.8 1.5 4.2 2.0 1.3 1.2 3.2 1.7 3.2 3.3 2.8 3.8 2.7 3.2 2.3 3.8 3.5 4.2 1.5 1.7 2.7 3.8 4.0 2.0 3.3 

219 13IM2.3 3.0 2.2 4.0 2.8 3.7 2.0 1.2 4.0 2.3 1.7 1.3 3.3 2.0 3.3 2.5 2.7 3.5 2.8 3.5 2.3 3.5 3.3 3.8 1.5 1.7 2.5 3.3 3.8 1.8 3.2 

220 13IM2.4 3.0 2.8 3.7 3.2 3.7 2.3 1.7 3.7 3.0 1.3 1.5 3.8 1.5 3.7 3.0 3.5 3.3 3.2 3.3 3.7 4.0 3.8 4.3 1.8 1.8 3.2 3.8 4.0 2.0 3.3 

221 13IM3.1 3.7 2.7 3.7 3.5 3.7 1.8 1.2 4.0 2.0 1.2 1.3 3.7 2.0 3.8 2.5 3.8 3.5 2.7 3.2 3.0 3.3 3.2 4.2 2.0 1.7 3.5 3.7 4.0 1.5 3.2 

222 13IM4.1 3.3 3.3 4.5 4.2 3.8 2.7 1.3 4.3 3.3 2.2 1.7 4.3 2.5 4.2 2.8 4.0 4.2 3.0 3.7 4.0 4.2 3.8 4.3 3.0 2.2 3.7 4.0 4.5 2.2 3.5 

223 13IM4.2 2.5 3.2 3.7 3.0 3.8 2.2 1.7 3.8 2.0 1.3 1.2 2.8 1.5 3.2 3.0 3.3 4.0 2.8 3.2 3.0 4.0 2.8 4.0 1.8 1.8 3.8 4.0 4.3 2.3 3.0 

224 13IM5.2 2.5 2.7 3.5 2.2 3.0 1.7 1.3 3.3 1.7 1.3 1.2 2.2 1.8 2.8 2.7 2.2 2.3 1.3 2.3 2.5 3.3 2.7 3.2 1.2 1.2 2.7 3.8 3.7 2.0 2.7 

225 13IM5.3 3.0 2.7 4.0 2.5 3.5 1.5 1.3 2.8 2.2 1.2 1.2 3.0 1.3 2.8 3.3 2.2 3.3 2.5 3.2 3.0 3.3 3.0 3.2 1.2 1.8 3.3 3.5 3.8 2.0 3.3 

226 13IM6.1 2.3 2.3 3.7 2.8 3.2 2.3 1.5 3.0 2.5 1.7 1.2 2.3 2.0 3.3 2.7 3.5 2.3 2.5 2.8 3.3 3.5 3.2 3.0 1.7 2.8 3.2 3.5 3.7 2.0 . 

227 13IM6.2 2.2 3.2 4.2 3.5 3.5 1.8 1.3 3.8 2.0 1.7 1.3 3.3 2.0 3.5 2.8 3.3 3.7 3.0 3.3 2.3 4.2 3.3 4.0 2.3 1.7 3.2 3.7 4.2 2.5 3.0 

228 13IM7.1 3.8 3.0 4.0 3.2 3.5 1.5 1.3 4.0 2.5 1.5 1.5 3.5 2.0 3.3 3.3 3.3 3.3 2.0 3.7 3.5 3.8 3.7 3.7 2.0 2.0 3.2 3.7 4.0 2.7 3.2 

229 13IM7.2 2.0 2.2 3.3 3.5 3.0 1.5 1.0 3.5 2.0 1.2 1.3 2.5 1.7 2.5 2.0 3.0 3.3 2.7 3.2 2.7 3.2 3.2 3.2 2.0 1.7 2.7 3.8 3.8 1.8 2.8 

230 13IM8.2 2.8 2.8 3.3 2.5 3.0 2.0 1.8 3.3 2.3 1.7 1.2 3.8 2.2 3.0 2.2 3.2 3.3 2.5 2.5 2.3 3.3 3.0 3.5 1.0 2.3 3.5 3.7 3.8 1.7 2.5 

231 13IM8.3 4.0 3.5 4.2 3.5 3.8 2.2 1.7 4.5 2.2 2.2 1.7 4.3 3.0 3.3 3.0 4.2 4.2 4.0 4.2 3.7 4.5 4.0 4.5 2.2 2.2 3.8 3.8 4.7 2.7 3.5 

233 13IM9.2 3.0 2.5 3.5 2.8 3.7 2.0 1.2 3.2 2.5 1.3 1.3 3.0 2.3 3.2 3.0 3.3 3.5 3.0 3.2 2.7 3.7 3.0 3.8 2.2 1.8 3.7 3.7 3.7 2.0 3.5 

235 13IM11.1 2.8 3.0 3.8 4.3 3.5 2.2 1.7 4.0 2.5 1.5 1.5 3.8 2.7 3.7 2.8 4.0 3.8 3.0 4.2 3.5 4.0 3.7 4.0 2.0 2.2 3.2 3.8 4.3 3.2 4.0 

236 13IM11.1A 3.0 2.7 4.3 3.2 3.2 1.8 1.8 4.3 2.3 1.5 1.5 3.5 2.0 3.5 3.7 3.8 4.0 2.8 2.8 3.0 4.2 4.0 3.7 1.8 1.7 3.7 4.0 4.0 2.5 3.0 

237 13IM11.1B 3.7 2.8 4.2 3.3 4.0 2.2 1.5 4.0 2.3 1.3 1.5 3.7 2.7 3.7 3.0 3.7 4.0 3.3 3.7 3.3 4.3 3.8 3.8 2.5 2.5 3.3 4.0 4.3 2.8 3.8 

238 13IM13.1 3.5 3.3 3.8 3.5 4.5 2.2 1.5 4.3 2.7 1.5 1.5 3.3 1.8 3.8 3.5 3.2 3.8 3.0 3.3 3.7 4.2 3.2 3.7 1.5 2.3 3.3 3.7 4.2 2.5 3.7 

239 13IM14.1 3.3 3.2 4.3 3.5 4.2 2.5 1.5 4.3 2.5 1.7 1.5 3.2 2.3 3.7 2.7 3.8 4.5 3.2 3.7 3.5 4.7 4.0 4.3 2.7 2.7 3.5 4.0 4.3 2.7 3.7 
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Table B1.  Mean Seedling Lesion Reaction Type of 30 Barley Genotypes to a Natural Population of Pyrenophora teres f. maculata 
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240 13IM14.2 3.2 1.8 3.5 2.0 2.8 1.5 1.3 3.0 1.8 1.0 1.7 2.7 1.2 2.8 2.3 1.5 2.8 2.0 2.5 2.8 2.5 2.0 2.7 2.0 1.5 1.7 2.7 3.5 1.8 2.3 

241 13IM14.3 2.8 3.3 3.8 3.2 4.0 2.3 1.2 3.8 2.3 1.8 1.5 3.3 2.2 3.8 2.3 3.2 4.3 2.7 3.5 3.3 4.0 3.3 4.3 1.7 2.3 3.8 3.5 4.0 2.7 3.3 

242 13IM15.1 3.2 3.3 4.3 3.3 3.3 2.0 1.4 4.2 2.2 1.7 1.7 3.3 2.5 3.5 2.8 3.3 4.0 2.5 3.3 3.3 3.7 3.8 4.0 3.5 2.0 3.5 3.8 4.2 2.5 3.5 

243 13IM16.1 2.7 2.5 3.5 3.2 3.0 2.0 1.3 4.0 2.3 1.3 1.2 3.7 2.0 3.5 3.3 3.7 3.2 2.8 3.3 3.7 4.3 3.5 4.2 2.8 1.7 3.5 4.0 4.2 2.3 3.7 

244 13IM16.2 2.8 2.7 4.3 3.7 3.8 1.8 1.7 4.2 2.3 1.7 1.3 4.2 2.3 3.8 3.0 4.0 4.2 2.8 4.0 3.3 4.5 3.5 4.0 1.3 2.2 4.0 3.8 4.5 2.5 3.5 

245 13IM17.2 2.7 3.5 4.3 3.3 3.8 2.0 2.0 4.3 2.8 1.3 1.5 3.3 1.8 3.5 2.7 4.0 4.2 3.3 3.8 3.0 4.7 2.8 4.2 2.3 2.3 3.5 3.7 4.3 2.7 3.5 

246 13IM17.3 3.0 2.7 3.3 2.0 3.5 1.8 1.2 3.3 2.2 1.2 1.3 2.5 1.5 2.2 2.7 2.5 3.5 2.5 3.0 3.2 3.8 3.5 3.7 1.2 2.0 3.0 3.5 3.5 2.5 2.7 

247 13IM18.1 3.3 4.3 4.2 2.7 3.8 1.7 1.2 3.8 2.7 1.3 1.8 3.8 2.0 3.0 3.0 3.3 3.8 3.5 3.3 3.7 4.3 3.3 4.2 2.8 2.2 3.2 3.3 3.8 1.8 3.0 

248 13IM18.1A 2.8 3.7 3.5 2.7 3.7 1.7 2.0 4.2 2.5 1.5 1.2 3.3 2.0 3.5 2.7 3.3 3.7 3.7 3.0 2.8 4.2 3.5 3.8 3.3 2.0 3.2 3.5 4.0 2.0 3.3 

249 13IM18.1B 3.0 3.8 3.7 2.8 3.7 1.7 1.7 4.0 2.3 1.5 1.7 3.0 2.2 3.0 2.8 3.2 3.7 3.2 3.2 3.0 3.7 3.7 4.0 2.3 1.8 3.3 3.7 3.7 2.3 3.2 

250 13IM19.1 2.3 3.5 4.2 2.8 3.2 1.3 1.5 4.0 2.0 1.3 1.2 2.7 1.7 3.0 2.5 3.2 3.2 2.0 3.0 2.7 3.3 2.8 3.3 2.0 2.0 2.8 3.2 4.0 1.8 3.0 

251 13IM19.1A 2.8 2.2 3.7 2.5 3.3 1.5 1.3 4.0 2.7 1.2 1.0 2.8 1.7 2.3 3.3 3.0 3.7 2.0 3.0 2.8 3.5 3.3 3.5 2.5 1.5 2.5 3.5 3.7 2.0 3.0 

252 13IM20.1 3.0 2.3 3.7 1.8 3.0 1.5 1.3 3.3 2.2 1.3 1.3 2.7 2.0 3.3 2.8 3.0 3.0 2.7 3.0 2.7 3.5 3.0 3.0 1.8 2.2 3.2 3.5 4.0 1.7 . 

253 13IM20.2 3.5 3.2 4.0 3.5 4.5 2.0 1.7 4.3 3.0 1.7 1.7 3.3 2.2 3.7 3.2 3.7 3.8 3.8 3.3 3.3 4.3 3.7 4.3 1.3 2.2 3.7 3.7 4.3 2.5 3.7 

254 13IM20.3 4.0 3.7 4.3 4.0 4.2 2.3 2.2 4.3 2.7 2.2 2.0 3.3 2.8 3.7 2.8 4.2 4.0 3.0 3.7 4.0 4.5 4.0 4.7 3.7 2.2 4.2 4.2 4.5 2.7 3.5 

255 13IM20.4 2.0 1.3 2.8 1.8 2.8 1.5 1.0 2.7 1.7 1.0 1.0 1.7 1.5 1.8 1.8 2.3 3.0 1.7 2.3 2.0 2.5 2.0 2.7 2.0 1.5 2.7 2.7 2.7 1.7 2.5 

256 13IM21.1 3.7 2.8 4.5 4.5 4.0 3.2 2.5 4.2 3.0 2.2 1.7 3.8 3.2 4.0 3.0 4.3 4.3 3.7 3.7 3.8 4.0 3.8 4.3 3.0 2.3 3.7 4.0 4.7 3.2 3.7 

257 13IM21.2A 3.3 3.3 3.8 4.0 3.8 2.2 1.7 4.5 2.5 2.0 2.0 4.0 2.3 3.8 2.8 3.7 3.8 3.5 3.7 3.8 4.5 3.7 4.3 2.7 2.0 3.8 3.8 4.2 2.7 3.5 
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APPENDIX C. SAS CODE 

The following general SAS codes were used for different analyses: 

1. ANOVA for combined analysis (Chapter 2) (kindly provided by Dr. Richard 

Horsley, NDSU Plant Sciences): 

proc mixed method=type3; 

 class yrloc rep variety treatment; 

 model y=variety treatment variety*treatment; 

 random yrloc rep(yrloc) yrloc*variety rep*yrloc(variety)  

yrloc*treatment yrloc*variety*treatment; 

 lsmeans variety/pdiff; 

 lsmeans treatment/pdiff; 

 lsmeans variety*treatment/pdiff; 

run; 

  

2. To obtain the cluster of the virulence data (Chapter 3): 

proc distance data=virulence out=distcityblock;     

    

 var interval(Pinnacle eight Arimont Chebec Keel Kombar

 Skiff CI3576 CI5791 CI9214 CI9776 CI9819

 CI7584 Ciho14219  CIho2353  CIho3694  Ciho4050  MXB468

 PI269151  PI369731  PI392501  PI467375  PI467729  PI485524 

 PI498434  PI513205  PI565826  PI573662  TR250 TR326);  

 id isolid;  

 proc print data=distcityblock;        

   

run;              

ods graphics on;            

proc cluster data=distcityblock method=average 

plots=dendrogram(height=rsq);     

 id isolid; 

run;  

proc cluster data=distcityblock method=average 

plots=dendrogram(height=height); 

 id isolid; 

run; 

 

 

 


