GENETIC AND PHENOTYPIC ASSESMENT OF IRON AND FOLATE CONCENTRATION

IN LENTIL (LENS CULINARIS MEDIK.)

A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science

By

Debjyoti Sen Gupta

In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

> Major Program: Cereal Science

> November 2015

Fargo, North Dakota

North Dakota State University Graduate School

Title

GENETIC AND PHENOTYPIC ASSESMENT OF IRON AND FOLATE

CONCENTRATION IN LENTIL (LENS CULINARIS MEDIK.)

By

Debjyoti Sen Gupta

The Supervisory Committee certifies that this disquisition complies with North Dakota

State University's regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Kevin McPhee Chair Dr. Clifford A. Hall III Dr. Joel Caton Dr. Rebecca J. McGee Dr. Shiv Kumar Dr. James J. Hammond

Approved:

December 10th 2015 _{Date} Dr. Richard Horsley

Department Chair

ABSTRACT

Micronutrients and vitamins are chemical elements required in trace quantities for normal human growth and development. Micronutrients and vitamin deficiency is prevalent throughout the world. The first objective of this research was to determine folate concentration in 10 lentil genotypes and evaluate the effect of environment on folate concentration. Folate concentration ranged from 216 to 290 μ g/100 g with a mean of 255 μ g/100 g and the concentration differed across years and locations. A significant genotype × environment interaction effect was observed for lentil folate concentration. The second objective was to measure the iron, zinc, copper, calcium and magnesium concentration in 26 cultivated and wild lentils. Significant variation in Fe, Zn, Cu, Ca, and Mg concentration among Lens species and no single genotype had high concentrations of all micronutrients. The third objective was to determine genetic diversity among 29 cultivated and wild lentils using 39 simple sequence repeat markers. Thirteen of 39 SSR markers were polymorphic among the 29 lentil genotypes. Cluster analysis grouped the genotypes into 4 clusters broadly based on the genotyping data and this grouping had correspondence with the pedigree relationships of the genotypes. The fourth objective was to develop expressed sequence tags-simple sequence repeats (EST-SSRs) markers in lentil. Lentil EST sequences (9513) from the NCBI database were assembled into 4053 unigenes. Unigenes were screened for simple sequence repeats and 348 primer pairs were designed. Fifty-seven primer pairs were polymorphic among the 22 lentil genotypes providing additional gene-specific primers for use in lentil breeding. The fifth objective was to develop gene specific molecular markers for iron metabolism related genes in lentil and to study their gene expression in the presence of excess iron. Gene specific markers were developed for Ferritin-1, BHLH-1, and IRT*l* to allow detailed study of the iron metabolic pathway in lentil. Differential gene expression of

iii

Ferritin-1 and *IRT-1* under excess iron was observed at 2 hours but not at 8 hours and 24 hours. Results of these studies contribute to a broad understanding of the genetic variation, environmental influence on and expression of genes related to micronutrient and vitamin concentration and metabolism in lentil.

ACKNOWLEDGEMENTS

I am indebted to my program's major advisor, Dr. Kevin McPhee (Professor, Department of Plant Sciences), for extending all resources and guidance as and when required by me in due course of study. I am also thankful to his family for being supportive with enormous hospitability on many occasions. I acknowledge the support and guidance received from all of my Ph.D. program supervisory committee members; Dr. Shiv Kumar, Dr. Clifford A. Hall III, Dr. Joel Caton, Dr. James J. Hammond, and Dr. Rebecca J. McGee. I am grateful to the Indian Council of Agricultural Research (ICAR, India) and Department of Agricultural Research and Education (DARE), Ministry of Agriculture and Farmers Welfare, Government of India for granting me study leave and awarding 'Netaji Subhas- ICAR International Fellowship' throughout the program. I am also thankful to Dr. Dil Thavarajah (Assistant Professor, Clemson University), for guiding me in research. Financial support for my research was from ND Agricultural Experiment Station, NDSU, USA; Northern Pulse Growers Association, USA and ICARDA (International Center for Agricultural Research in the Dry Areas), Morocco. I also thank Dr Clarice J. Coyne, Dr. Rebecca J. McGee, Dr. Dorrie Main, Tony Chen, Dr. Gopesh C. Saha, Yu Ma, Peng Chen for fecilitating my two separate visits to Washington State University (WSU), Pullman. I show my gratitude to Dr. Frank Manthey (Professor and cereal science program coordinator) for helping me out to better plan my Ph.D. study. I want to thank Rian Lee (Research specialist, Dry Bean Genetics) and Tao Wang (Research Assistant Professor, Core Biology Facility) to help me in laboratories with my questions. I want to thank my all batchmates in NDSU, friends in cereal science program and friends in Fargo for being around. I specially thank Ankur, Ruchi, Milind, Anant, Ajay, Puneet, Jaidev, Palak, Arko, Anjan, George, Mihiri, Lingzhu, Gabby for extending the warmth of the family so that I did miss my home less. I show my gratitude to my parents, Mr.

Gautam Sen Gupta and Mrs. Bijeta Sen Gupta and my sister, Suparna Gupta for allowing me to be away from them for these years and concentrate on my studies. I am thankful to my collegues and friends in India, Dr. Aditya Pratap, Dr. Sanjeev Gupta, and Dr. Jitendra Kumar for taking care of things on many instances on behalf of me. I thank Chair, Department of Plant Sciences, NDSU and Director, Indian Institute of Pulses Research, India for fecilitating my doctoral study in NDSU. Lastly, I thank each and every one who helped me in laboratories, greenhouses, classes and beyond to achieve this degree.

DEDICATION

I dedicate this piece of work to my grandfather, late Mr. Satyendra Nath Sengupta, who ignited that little fire within me during the very early stage of my academic career about the importance of education in life. I also want to dedicate this thesis to the lentil growers' community

worldwide.

TABLE OF CONTENTS

ABSTRACT	iii
ACKNOWLEDGEMENTS	v
DEDICATION	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	XV
LIST OF APPENDIX TABLES	xvii
LIST OF APPENDIX FIGURES	xviii
CHAPTER 1. GENERAL INTRODUCTION	1
Literature cited	
CHAPTER 2. LITERATURE REVIEW	
Malnutrition	
Micronutrients and vitamins	14
Iron	
Folates	
Biofortification	
Lentil	
Sources of high micronutrient and vitamin B9 concentration	
Availability of molecular markers in lentil for quality traits	
Literature cited	
CHAPTER 3. LENTIL-A RICH SOURCE OF FOLATES	
Abstract	
Introduction	
Materials and methods	

Materials	38
Seed samples	39
Sample preparation and analysis	40
Statistical analysis	41
Results	42
Analysis of variance components	42
Total folate density among lentil cultivars	42
Cluster analysis based on folate least-squares means	43
Comparison with other food legumes	45
Discussion	46
Literature cited	49
CHAPTER 4. GENETIC VARIATION OF MINERAL CONCENTRATIONS IN <i>LENS</i> GENOTYPES	53
Abstract	53
Introduction	54
Materials and methods	56
Materials	56
Greenhouse experiment	56
Mineral concentration	58
Statistical analysis	59
Results	59
Cluster analysis based on the mineral concentrations	64
Discussion	65
Literature cited	69
CHAPTER 5. GENETIC DIVERSITY ANALYSIS OF CULTIVATED AND WILD LENTIL SPECIES	74

Abstract	74
Introduction	74
Materials and methods	76
Plant materials	76
Genotyping of plant materials	76
Statistical analysis	77
Results	82
SSR genotyping	82
Cluster and PCA analysis	82
Discussion	85
Literature cited	86
CHAPTER 6. DEVELOPMENT OF A PANEL OF UNIGENE DERIVED POLYMORPHIC EST-SSR MARKERS IN LENTIL USING PUBLIC DATABASE INFORMATION	91
Abstract	91
Introduction	92
Materials and methods	94
EST sequences assembly, SSR detection and functional annotation	94
Database mining	95
Plant material and DNA extraction	96
PCR amplification	98
Results	99
Assembly and SSR detection	99
Assembly and SSR detection Structural and functional annotation of ESTs and EST-SSRs	99 100
Assembly and SSR detection Structural and functional annotation of ESTs and EST-SSRs Frequency and distribution of EST-SSRs	99 100 101

Discussion	121
Literature cited	
CHAPTER 7. DEVELOPMENT OF MOLECULAR MARKERS FOR IRON METABOLISM RELATED GENES IN LENTIL AND THEIR EXPRESSION ANALYSIS UNDER EXCESS IRON	130
Abstract	
Introduction	
Materials and methods	
Plant materials and treatments	
Development of markers	
Isolation of RNA and synthesis of complementary DNA	
Quantitative PCR	
Statistical analysis of gene expression analysis	
Results	
Development of markers	
Expression analysis of <i>Ferritin-1</i> and <i>IRT-1</i> gene	141
Discussion	
Literature cited	
CHAPTER 8. OVERALL CONCLUSIONS AND FUTURE RESEARCH	
APPENDIX A. TABLES	
APPENDIX B. FIGURES	
APPENDIX C. LIST OF UNIGENE SEQUENCES	

LIST OF TABLES

<u>Table</u> <u>Pag</u>	<u>e</u>
1.1. Prevalence of micronutrient deficiency in the world	2
1.2. Food matrix factors acting as a promoter or inhibitor to Fe bioavailability in lentil	6
3.1. Pooled analysis of variance for folate concentration for 10 lentil varieties grown in North Dakota, USA in 2010 and 2011.	3
3.2. Mean concentration of folate and genotype effect by year and location	4
3.3. Mean folate concentration and % recommended daily allowance (%RDA) of folatesfrom 10 lentil varieties grown in North Dakota, USA, in 2010 and 2011	4
3.4. Comparison of folate concentrations and %RDA from other pulse crops grown in the USA	5
4.1. Brief description of 26 genotypes analyzed for five micronutrients	7
4.2. Mean iron (Fe) and zinc (Zn) concentrations for 26 genotypes and the fraction of the recommended daily allowance (RDA) that each genotype would supply based on 100 g serving size.	1
4.3. Mean copper (Cu), calcium (Ca) and magnesium (Mg) concentration of 26 genotypes and for 26 genotypes and the fraction of the recommended daily allowance (RDA) that each genotype would supply based on 100 g serving size.	3
5.1. Description of <i>Lens</i> genotypes used for genotyping with 39 SSR markers	8
5.2. Primer sequences of 13 polymorphic markers used in the genotyping of 29 <i>Lens</i> genotypes and their characteristics	4
6.1. Details of plant materials used for testing of 219 primer pairs	7
6.2. Summary of data mining of unigene sequences of <i>Lens culinaris</i>	0
6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs.	1
 7.1. Nucleotide BLAST results of <i>M. truncatula ferritin-2</i> gene sequence (NCBI reference no. XM_003616637.1) with CDC Redberry 454 contig sequences in Knowpulse database showing bit score, percent identity and e-value (http://knowpulse.usask.ca). 	6

7.2. Sequence information and T _m (melting temperature) of primers designed based on the CDC Redberry contig (LcRBContig00605) to clone <i>Ferritin-1</i> gene in lentil
7.3. Amplification statistics for one <i>Ferritin-1</i> , one <i>BHLH-1</i> , one <i>IRT-1</i> gene specific primer pairs, and one primer pair for each reference gene (<i>GADPH, Actin</i>)
7.4. Differentially expressed <i>Ferritin-1</i> and <i>IRT-1</i> genes in CDC Redberry shoot and root tissues over time (2, 8 and 24 h) in three replicates under excess iron
7.5. Significance of differential expression of samples over time (TC) in excess iron in relation to control samples in shoot and root tissue of CDC Redberry genotype

LIST OF FIGURES

<u>Figure</u> <u>Page</u>
2.1. General process of biofortification research
3.1. Dendrogram based on dissimilarity matrix data following the unweighted pair group mean average method
4.1. Dendrogram based on mineral concentrations of 26 <i>Lens</i> genotypes following unweighted pair group mean average method
5.1. Dendrogram showing genetic similarity among 29 Lens genotypes using 13 polymorphic SSRs based genotyping data
6.1. Contig length distribution of the 4053 unigenes102
6.2. Functional annotation of EST-SSRs
6.3. Functional annotation of unigenes
6.4. GO category-Biological process annotation of 4053 unigenes
6.5. GO category-Biological process annotation of 373 EST-SSRs
6.6. GO category-cellular component annotation of 4053 unigenes
6.7. GO category-cellular component annotation of 373 EST-SSRs 107
6.8. GO category-molecular function annotation of 4053 unigenes
6.9. GO category-molecular function annotation of 373 EST-SSRs
6.10. Distribution of the simple sequence repeats across 4053 Lens culinaris unigenes 110
 7.1. Sequence alignment between <i>Medicago truncatula ferritin-2</i> full length CDS (NCBI reference no. XM_003616637.1) and lentil <i>Ferritin-1</i> partial genomic sequence using MultAlin tool (Corpet et al. 1988) with default parameter values
7.2. Sequence alignment between <i>Medicago truncatula BHLH</i> full length CDS (NCBI reference number XM_003606283.1) and lentil <i>BHLH-1</i> partial genomic sequence using MultAlin (Corpet et al. 1988) with default parameter values
7.3. Dissociation curve for <i>Ferritin-1</i> primer pairs141
7.4. Dissociation curve for <i>BHLH-1</i> primer pairs142
7.5. Dissociation curve for <i>IRT-1</i> primer pairs

LIST OF ABBREVIATIONS

AFLP	.Amplified Length Polymorphism
BHLH	.Basic Helix Loop Helix
BMI	.Body Mass Index
CDC	.US Centers for Disease Control and Prevention
DNA	.Deoxyribonucleic Acid
EST-SSRs	.Expressed Sequence Tag-Simple Sequence Repeats
FAO	Food and Agriculture Organization
FIT	.Fer-like Fe Deficiency Induced Transcription Factor
GO	.Gene Ontology
ICARDA	International Center for Agricultural Research in the Dry Areas
IPS	Inter Pro Scan
IRT	Iron Transporter Like Protein
MA	Mugineic Acid
MIRA	Mimicking Intelligent Read Assembly
MISA	Microsatellite Identification Tool
NCBI	National Center for Biological Information
NTDs	Neural Tube Defects
PIC	Polymorphism Information Content
qPCR	Quantitative PCR
QPM	Quality Protein Maize
QTL	Quantitative Trait Loci
RDA	Recommended Daily Allowance

RIL	Recombinant Inbred Line
RP-HPLC	.Reverse Phase-High Performance Liquid Chromatography
SCN	.Standing Committee on Nutrition
SNP	.Single Nucleotide Polymorphism
SSRs	.Simple Sequence Repeats
THF	.Tetrahydrofolic Acid
UN	.United Nations
UNICEF	.United Nations Children's Fund
UPGMA	.Unweighted Pair Group Method With Arithmatic Mean
UPLC-MS	.Ultra Performance Liquid Chromatography-Mass Spectrometry
USDA/ARS	.United States Department of Agriculture/Agriculture Research Service
VIT	.Vacuolar Iron Transporter
WHO	.World Health Organization
ZIP	Zinc and Iron Transporter Like Protein

LIST OF APPENDIX TABLES

Table	<u>Page</u>
A1. Details of 39 molecular markers used for the genetic diversity analysis of 29 <i>Lens</i> genotypes	153
A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences	155
A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database.	176
A4. Details of RNA quality data of the 36 samples of Lens culinaris	230

LIST OF APPENDIX FIGURES

Figure	Page
A1. Amplification efficiency of <i>Ferritin1</i> primer pairs	231
A2. Amplification efficiency of <i>BHLH1</i> primer pairs	231
A3. Amplification efficiency of <i>IRT1</i> primer pairs	232
A4. Amplification efficiency of GADPH primer pairs	232
A5. Amplification efficiency of Actin primer pairs	233

CHAPTER 1. GENERAL INTRODUCTION

More than 20 million childhood deaths occurr every year due to micronutrient deficiency (Anonymous 2008), and diet-related non-communicable diseases (cardiovascular diseases, cancers, chronic respiratory diseases and diabetes) (Bouis and Welch 2010). The United Nations (UN) recently announced that the increase in chronic, non-communicable diseases including diabetes, heart disease, and cancer has resulted in 36 million deaths around the world annually, claiming more lives than all other causes combined (World Health Organization, WHO 2005). These chronic diseases are not isolated to developed countries and are even more pronounced in the developing world. Such chronic diseases have caused more deaths than infectious diseases throughout the world (except Africa) in recent years (UN 2011). Therefore, enrichment of micronutrients in staple food crops is important for nutrition security of human beings especially in the developing world.

Anaemia is a common nutritional disorder affecting humans and according to the World Health Organization (WHO 2005), about two billion people are anemic. Anaemia is a health condition characterized by low hemoglobin concentrations in the blood and threshold levels vary based on gender and race. There are generally two causes for anaemia: dietary micronutrient and vitamin deficiency like Fe, folate, vitamin B12 and or Vitamin A deficiency and infectious diseases such as malaria, hookworm infections, schistosomiasis, and thalassaemia (WHO 2007). Iron deficiency may or may not be accompanied with anaemia but always has an important negative impact on human health. The effect of Fe deficiency is more pronounced in pregnant women and children (WHO 2007). Sometimes this has severe consequences leading to mortality of the new born children or even the fetus during the prenatal stage.

Deficiency	Affected people	Health consequences
Iron (Fe)	2 billion	Reduced cognitive ability, anaemia,
		maternal mortality (UN system standing committee on nutrition 2004)
Vitamin A	250 million	Night blindness, xerophthalmia,
		keratomalacia and immune system failure
		(UN system standing committee on nutrition 2004)
Zinc (Zn)	2 billion	Infectious diseases, poor child growth, maternal mortality, reduced birth weight (WHO 2005)

Table 1.1. Prevalence of micronutrient deficiency in the world.

Children with acute iron deficiency show mental retardedness, laziness and in the case of working persons, reduced capacity to work (WHO 2007).

Folic acid (synthetic oxidized form of naturally occurring folates) consists of a paminobenzoic molecule linked to a pteridine ring and one molecule of glutamic acid. Food folates, which exist in various forms, contain additional glutamate residues, making them polyglutamates (Bailey and Gregory 2006). Folate is a water soluble B vitamin involved in numerous biochemical reactions involving one carbon transfer, for example, purine and pyrimidine synthesis as well as amino acid interconversions (Krumdieck 1990). Prevention of chromosome breakage and hypomethylation of DNA (Fenech 2001) by folates aids in the reduction of risk factors leading to cancer and also plays a critical role in regulating homocysteine status, an important risk factor for cardiovascular ailments (Pancharuniti et al. 1994). Lower levels of plasma folate are correlated with various health risks including neural tube defects (NTDs), which are a prime concern along with a few other congenital defects (Berry et al. 2000). Folate deficiency is also associated with macrocytic anaemia (enlarged red blood cells) (Boushey et al. 1995). There were reports of strong correlation between folate deficiency and iron deficiency causing anaemia (WHO 2007). Populations in developing countries including Southeast Asia and Africa consume mostly cereal based diets. The 'Green Revolution' contributed to sustaining the cereal based diet to avert famine (Bouis and Welch 2010). The cereal based diets in most cases supply adequate calories but are insufficient to provide recommended quantities of micronutrients to the human body. Many countries have observed an increase in malnutrition cases due to the dependence on cereal based cropping systems (Welch and Graham 1999).

Biofortification is the development of micronutrient and or vitamin rich crops using traditional crop improvement practices as well as modern biotechnology tools. It is a more sustainable and cost effective method than food supplementation, fortification and diet diversification. Though agronomic biofortification i.e. application of micronutrients through soil amendments, foliar sprays or irrigation water is practiced, in the case of Fe has not been successful (Bouis and Welch 2010; Tagliavini et al. 2000; Tagliavini and Rombola 2001). Genetic biofortification is a cost effective way to provide access to nutritional foods for people who are living in remote, less privileged areas of the world as it requires a one-time initial investment and easy seed multiplication through plant breeding interventions make it a promising approach.

Under the umbrella of the HarvestPlus program of CGIAR (Consultative Group of International Agricultural Research) the initial phase of biofortification programs included six food crops, common bean, cassava, maize, rice, sweet potato, and wheat. The initial phase of investment resulted in many success stories like orange sweet potato (OSP) cultivars with high levels of β –carotene (over 200 mg/g) (Bouis and Islam 2012), and beans with improved agronomic traits and grain type and 50–70% more Fe have been bred through conventional breeding (Nestel et al. 2006). Though conventional breeding is still the focus of the HarvestPlus

program, research into transgenic approaches are in some cases necessary and are being used. The most popular and earliest example of a success story of transgenic biofortification research was development of Golden Rice or β -carotene rich rice. Golden rice transgenic lines have been tested in field or controlled trials in the Philippines (transgenic of RC-28), and Bangladesh (transgenic of BRRI Dhan-29) and will certainly help to fight against Fe deficiency. Recently, an Fe rich, high yielding pearl millet cultivar, ICTP 8203-Fe, has been launched as a result of collaborative effort between the HarvestPlus program and Nirmal Seeds, a Hyderabad, India based seed company. The ongoing HarvestPlus phase included more food crops and a few more food legumes, especially lentil which is a regular component of the daily diet in major regions in South and Southeast Asia. Food legumes play a significant role as far as food security by supplying protein, dietary fiber along with essential micronutrients like Fe, Zn and Se with beta carotene and folates.

Iron and folate bioavailability of a staple food crop mainly depends on food matrix factors. The concentration of promoter and inhibitor compounds in any food crop is influenced by both genetic and environmental factors. Modern plant breeding and molecular biology tools now make it possible to reduce antinutrients, such as phytic acid (PA) or increase the concentration of promoter substances, such as beta-carotene, ascorbic acid and phytoferritin in plant foods. Promoters and inhibitors of Fe absorption within the food matrix must be considered with respect to the bioavailability of non-heme Fe in a food crop (Cook et al. 1972). Phytic acid (PA), nearly ubiquitous in plants and used as the primary form of phosphorous (P) storage, inhibits absorption of Fe in the gut (Turnbull et al. 1962). Other inhibitors include fiber, heavy metals, and certain polyphenols and tannins (Glahn et al. 2002).

Enrichment with prebiotics, beta-carotene, ascorbic acid and phytoferritin in plant-based diets has been shown to enhance the bioavailability of non-heme Fe in human (Welch 2002). Prebiotics improve Fe bioavailability as a result of biological fermentation of short chain polymers by natural microflora present in the colon (Yeung et al. 2005). Addition of vitamin A or beta-carotene can improve Fe bioavailability from plant-based foods (e.g., rice, wheat, corn) (Garcia-Carsal et al. 2000).

Analysis of lentil food matrix components, along with cell culture and preliminary human nutrition studies, reveals clear mineral absorption promoter and inhibitor roles in modulating the levels of mineral bioavailability. Lentils contain high levels of Fe absorption promoters, such as prebiotics and beta-carotene, and are low in antinutrients, such as phytic acid and polyphenols (Thavarajah and Thavarajah 2012). It is reported that molar ratios of phytic acid:Fe above 10 lead to reduced human Fe bioavailability (Ariza-Nieto et al. 2007).

The term 'folates' collectively denotes the naturally occurring derivatives of folic acid (vitamin B9). Among the many naturally occurring polyglutamyl forms of tetrahydrofolic acid (THF) 5-methyl-THF, 10-formyl-THF, and 5-formyl THF, are the predominant forms of storage in food legumes (Yarbaeva et al. 2011; Hefni et al. 2009). Microbiological assay of folate estimation is erroneous (Hefni et al. 2009). It usually gives higher values compared to more accurate HPLC methods using the tri-enzyme extraction method (Talamond et al. 2000).

Lentil (*Lens culinaris* ssp. *culinaris* Medik.) is an important cool season food legume crop cultivated throughout West Asia, North Africa, the Indian subcontinent, North America, and Australia (FAOSTATS 2010). Global production of lentil is around 5 MT with 392 KT being produced in the United States; 1947 KT from Canada (the largest exporter), 900 KT from India (the largest consumer and importer), 711 KT from Bangladesh, 447 KT from Turkey, 140 KT

from Australia, 125 KT from China, 123 KT from Ethiopia, 79 KT from Iran, and 77 KT from Syria (FAOSTAT 2010). Lentil is rich in protein (20-30%) with dietary fiber and a wide range of micronutrients. Lentil has a capacity to fix biological nitrogen making it a useful component for soil fertility and water management in cereal based cropping systems.

Genetic variation exists for micronutrient concentration (Graham and Welch 2000; Bouis 2003; Graham et al. 2001) and plant breeding tools can improve β -carotene, iron, zinc, and other minerals in food crops through selection for appropriate genetic material (Nestel et al. 2006). Micronutrient density and yield are positively correlated unlike protein content and yield (Nestel et al. 2006). Also, it is possible to combine multiple nutrition traits in a single cultivar along with high yield (Nestel et al. 2006).

Knowledge of genetic diversity for a particular trait of interest can be a predictive tool for estimating genetic variation in segregating populations or hybrid progeny. Development of molecular markers linked with the loci controlling micronutrient concentration requires initial large scale evaluation of available germplasm sets of different food legumes.

Table 1.2. Food	d matrix factors a	acting as a promot	er or inhibitor to	Fe bioavailability in
lentil.				

Source: Welch 2002.

After identification of potential genotypes, suitable mapping populations can be

developed for particular traits (Talukder et al. 2010; Beebe et al. 2000). Studies conducted to map and tag the gene(s)/QTL controlling micronutrient status in legumes and model plants have reported quantitative inheritance patterns resulting in identification of gene(s)/QTL(s) capable of explaining modest amounts of phenotypic variation for micronutrient concentration [Sompong et al. 2012 (for phytic acid in mungbean), Blair et al. 2005; Gelin et al. 2007; Cichy et al. 2009; Blair et al. 2010 a,b; (for Fe and Zn in common bean), Sankaran et al. 2009 (for several mineral elements in *Medicago truncatula*), Waters and Grusak 2008 (for several seed mineral contents in *Arabidopsis thaliana*), Walker et al. 2006 (for phytic acid in soybean)].

The objectives of this research were:

- 1. To quantify the folate concentration of lentil genotypes and characterize the genotype x environment interaction effect on folate concentration.
- 2. To determine iron and zinc concentration among cultivated and wild genotypes of lentil (*Lens culinaris* Medik.).
- 3. To measure genetic diversity of a set of cultivated and wild lentil genotypes with simple sequence repeats (SSRs) markers.
- 4. To develop expressed sequence tagged-simple sequence repeats markers (EST-SSRs) in lentil and validate those markers within a diverse set of lentil genotypes.
- 5. To develop useful molecular markers in lentil for iron metabolism related genes and evaluate their differential expression under excess iron.

Literature cited

- Anonymous (2008) The Copenhagen Consensus 2008—Results. p. 1–6. Available at http://www.copenhagenconsensus.com/default.aspx?ID=953 The Copenhagen Consensus Cent., Frederiksberg, Denmark (accessed April 24 2015)
- Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of iron bioavailability patterns in eight bean (*Phaseolus vulgaris* L.) genotypes using the caco-2 cell *in vitro* model. J Agric Food Chem 55:7950-7956
- Bailey LB and Gregory JF (2006) Folate. In: Present knowledge in nutrition. Bowman B and Russell R (eds) Washington, DC, International Life Sciences Institute. I:278-301
- Beebe S, Gonzalez AV, Renfigo J (2000) Research on trace minerals in common bean. Food Nutr Bull 21:387–391
- Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411
- Bouis H, Islam Y (2012) Delivering nutrients widely through biofortifi cation: building on orange sweet potato. Focus 19, Brief 11. http://www.ifpri.org/sites/default/fi les/publications/focus19_11.pdf
- Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20
- Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LYC, Gindler J, Hong S-X, Correa A (2000) Prevention of neural-tube defects with folic acid in China. N Engl J Med 341:1485–1490

- Boushey CJ, Shirley AAB, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 274:1049–1057
- Blair MW, Astudillo C, Beebe S (2005) Analysis of nutritional quality traits in an andean recombinant inbred line population. Bean Improv Coop 48:52-53
- Blair MW, Knewtson SJB, Astudillo C, Li C, Fernandez AC, Grusak MA (2010a) Variation and inheritance of iron reductase activity in the roots of common bean (*Phaseolus vulgaris* L.) and association with seed iron accumulation QTL. BMC Plant Biology 10:215
- Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010b) QTL for seed iron and zinc concentration and content in a mesoamerican common bean (*Phaseolus vulgaris* L.) population. Theor Appl Genet 121:1059–1070
- Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL Analysis of seed iron, zinc, and phosphorus levels in an andean bean population. Crop Sci 49:1742–1750
- Cook JD, Layrisse M, Martinez-Torres C, Walker R, Monsen E, Finch, CA (1972) Food iron absorption measured by an extrinsic tag. J Clin Invest 51:805-815

FAOSTATS (2010) http://faostats.fao.org (accessed April 24 2015)

- Fenech M (2001) The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat Res 475:56–67
- Garcia-Casal MN, Leets I, Layrisse M (2000) Beta-carotene and inhibitors of iron absorption modify iron uptake by caco-2 cells. J Nutr 130:5-9
- Gelin JR, Forster S, Grafton KF, McClean P, Rojas-Cifuentes GA (2007) Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (*Phaseolus vulgaris* L.). Crop Sci 47:1361–1366

- Glahn RP, Wortley GM, South PK, Miller DD (2002) Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl₂: studies using an *in vitro* digestion/caco-2 cell model. J Agric Food Chem 50:390-395
- Graham RD, Welch RM (2000) Plant food micronutrient composition and human nutrition. Commun Soil Sci Plant Anal 31(11-14):1627-40
- Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142
- Hefni, M, Ohrvik V, Tabekha M, and Witthoft C (2009) Folate content in foods commonly consumed in Egypt. Food Chem Doi:10.1016/j.foodchem.2009.12.044
- Krumdieck C (1990) Folic acid. In: Brown ME (ed) Present knowledge in nutrition. ILSI, Washington, DC, pp 179–188
- Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067
- Pancharuniti N, Lewis CA, Sauberlich HE, Perkins LL, Go RC, Alvarez JO, Macaluso M, Acton RT, Copeland RB, Cousins AL (1994) Plasma homocyst(e)ine, folate, and vitamin B-12 concentrations and risk for early-onset coronary artery disease. Am J Clin Nutr 59:940–948
- Sankaran R, Huguet T, Grusak M (2009) Identification of QTL affecting seed mineral concentrations and content in the model legume *Medicago truncatula*. Theor Appl Genet 119:241-253

- UN system Standing Committee on Nutrition (2004) 5th report on the world nutrition situation: nutrition for improved development outcomes – March 2004.
 http://www.unscn.org/layout/modules/resources/files/rwns5.pdf (accessed April 24 2015)
- Sompong U, Somta P, Raboy V, Srinives P (2012) Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci 62: 87–92
- Tagliavini M, Rambola AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15:71–92
- Tagliavini M, Abadia J, Rombola A, Abadia A, Tsipouridis C, Marangoni B (2000) Agronomic means for the control of iron defi ciency chlorosis in deciduous fruit trees. J Plant Nutr 23:11–12
- Talamond P, Doulbeau S, Rochette I, Guyot, JP (2000) Anion-exchange high-performance liquid chromatography with conductivity detection for the analysis of phytic acid in food. J Chromatogr 871:7-12
- Talukder ZI, Anderson F, Miklas PN, Blair MW, Osorno J, Dilawari M, Hossain KG (2010)Genetic diversity and selection of genotypes to enhance Zn and Fe content in commonbean. Can J Plant Sci 90:49-60
- Thavarajah D, Thavarajah P (2012) Lentils (*Lens culinaris* L.): a superior whole food solution to micronutrient malnutrition. In: Betancourt A, Gaitan H (eds) Micronutrients sources, properties, and health effects. nova science publishers, New York, pp 179-91
- Turnbull A, Cleton F, Finch CA (1962) Iron absorption. IV. The absorption of hemoglobin iron. J Clin Invest 41:1897-907

UN (2011) Expert Paper, No. 2011/2- prevention and treatment of chronic diseases in developing countries.

http://www.un.org/en/development/desa/population/publications/pdf/expert/2011-

2-gaziano.pdf. Accessed 24 Apr 2015

- Walker DR, Scaboo AM, Pantalone VR, Wilcox JR, Boerma HR (2006) Genetic mapping of loci associated with seed phytic acid content in CX1834-1-2 Soybean. Crop Sci 46:390–397
- Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytologist 179:1033-1047
- Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crops Res 60:1-10
- Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132(3):495S-9S
- World Health Organization, WHO (2005) The world health report- make every mother and child count. http://www.who.org/whr (accessed April 24 2015). World Health Organization, Geneva
- WHO (2007) The world health report- A safer future: global public health security in the 21st century. http://www.who.org/whr (accessed April 24 2015). World Health Organization, Geneva
- Yarbaeva SN, Giraud D, Albrecht JA (2011) Iron and Folate contents of Tajik legumes. Food Nutr Sci 2:337-34
- Yeung CK, Glahn RP, Welch RM, Miller DD (2005) Prebiotics and iron bioavailability-is there a connection? J Food Sci 70:R88-R92

CHAPTER 2. LITERATURE REVIEW

Malnutrition

"Status of child undernutrition remains unacceptable throughout the world, with 90 percent of the developing world's chronically undernourished children living in Asia and Africa" (UNICEF 2009). Children less than five years of age suffer more from malnutrition (UNICEF 2009). In developing countries like India, 43 percent of children under the age of five are underweight and 48 percent are stunted (Arnold et al. 2009). Malnutrition is more common for children of mothers who are undernourished themselves than for children whose mothers are not undernourished (UNICEF 2009). In 2013 about 17,000 child deaths occurred each day (WHO 2015b) and about 35% of annual child deaths under the age of five were due to malnutrition (WHO 2013).

The term malnutrition refers to both undernutrition and overnutrition. Hence, obesity or overweight is also referred to as malnutrition. Overweight and obesity both indicate the excessive accumulation of body fat. Body mass index (BMI) is a ratio between body weight in kilograms (kg) and the square of body height in meters (m²). BMI equal or above 25 is considered overweight and BMI equal to or above 30 is considered obese. Obesity is a serious issue in developed countries and worldwide where 1.9 billion are overweight adults (18 years old or above), and at least 600 million are obese (WHO 2015a).

Intake of high carbohydrate, high fat food (energy-dense food) along with minimal or no physical activity increases the frequency of overweight or obese children as well as adults in all age groups. China and some African nations have the lowest percentage of obese indivduals (WHO 2015a). It was estimated that 42 million children under the age of five were overweight or obese in 2013 (WHO 2015a). Malnutrition initially included calorie and protein insufficiency as

sole parameters to be considered, however, today, micronutrient and vitamin deficiency are also being considered as components of malnutrition. There is opportunity to reduce malnutrition by ensuring proper nutrition of children in the first two years of life (1000 days), girls during adolescence, and mothers during pregnancy and lactation. Vitamin and micronutrient deficiencies are highly prevalent throughout the developing world. Anaemia in young children is a serious concern, because it may increase the chances of getting infected by infectious diseases and generally leads to impaired growth and development (UNICEF 2009).

Micronutrients and vitamins

Micronutrients and vitamins are chemical compounds important to human nutrition. At least 30 essential micronutrients exist that cannot be synthesized by the human body and must be obtained through food, either of plant or animal origin (Shergill-Bonner 2013). Recommended dietary intake varies by age, sex, and special circumstances and many countries adopt nutritional standards set forth by international organizations like FAO (Food and Agriculture Organization) and WHO (World Health Organization). United States of America and European Union have their own standard recommendation for daily intake of micronutrients and vitamins.

Micronutrients are required in trace quantities and recommended daily allowances are measured in milligrams per day and they act as cofactors in metabolic pathways. For example, zinc is a cofactor in hundreds of enzymes (Shergill-Bonner 2013). Vitamins are also required in trace quantities and recommended daily allowances are measured in micrograms. Vitamins and their derivatives function as coenzymes for biochemical reactions.

Iron

Iron (Fe) is an important micronutrient for plant growth and survival and must be supplied from the soil solution. Fe is involved in numerous biological or cellular functions including photosynthesis, respiration and other redox reactions (Kim and Guerinot 2007). Iron is one of the most abundant elements on earth, however, it is not readily available to plants due its low solubility in the soil solution (Guerinot and Yi 1994). Deficiency in Fe supply to the plants results in development of deficiency symptoms including veinal or inter-veinal chloroloris, stunting, changes in color of the leaves and other green plant organs. Accumulation of Fe in high concentrations is toxic to the plants and the optimum concentration ranges from 10⁻⁹ to 10⁻⁴ M for optimum plant growth depending on the plant species. During respiration reduction of molecular oxygen produces superoxides and peroxides. Superoxides and peroxides are catalyzed by iron ions to generate hydroxy radicals (Halliwell and Gutteridge 1992). Plants have evolved systems to avoid any cellular damages arising from free radicals and to maintain iron homeostasis, an equilibrium state between iron deficiency and iron toxicity.

There are two strategies within plants for Fe uptake and transport from the soil solution. Strategy I is reduction based and is common for dicot species and involves the plants extruding protons and phenolic compounds into the rhizosphere (the volume of soil area where roots are spread out) to lower the soil pH and make Fe⁺³ more soluble (Olsen et al. 1981). Strategy II is used by monocots and is chelation-based where plants release mugineic acid (MA) phytosiderophores which bind to Fe⁺³. Phytosiderophores are Fe⁺³ solubilizing molecules secreted by graminaceous plants (plant family: poaceae) under Fe deficient conditions (Takagi et al. 1976). Nine different types of MAs have been identified and all are synthesized from a

common precursor, S-adenosyl-methionine (Bashir et al. 2006). Strategy II is considered more efficient for Fe uptake and transport.

Fe is bound to chelating compounds as it reaches the root symplast and is then released into the xylem. Fe release from the xylem vessel to leaf tissues is not clearly understood (Kim and Guerinot 2007). A small proportion of Fe is also transported through phloem sap and it is believed that many ZIP (zinc and iron transporter like protein) and IRT (iron regulating transporter like protein) genes facilitate movement of Fe across membranes in leaf and shoot tissues (Vert et al. 2002).

Vacuoles accumulate Fe and in Arabidopsis, VIT1 (Vacuolar Iron Transporter I) is an important transporter responsible for Fe storage (Kim et al. 2006). In addition to VIT, the Nramp gene family (Natural Resistance Associated Macrophage Proteins) is active in transport of Fe (Curie et al. 2001). Ferritin proteins are the principal form of Fe storage in plants. It can store up to 4500 atoms of Fe per molecule. Ferritin is controlled by a gene family and ferritin coding genes and proteins share sequence similarity across plant and animal species and genera which indicates conservation of function. Many different ferritin genes have been cloned and characterized in different plant species including Arabidopsis (Petit et al. 2001), maize (Fobisloisy et al. 1995), Medicago truncatula (Györgyey et al. 2000), soybean (Glycine max) (Masuda et al. 2001), common bean (*Phaseolus vulgaris*) (Spence et al. 1991) and rice (Lucca et al. 2001). A limited number of species use both strategies for Fe uptake and translocation, for example, rice (Oryza sativa) (Inoue et al. 2009). Translocation through the casparian strip is mediated by different chelators like citrate, nicotinamine and MAs (Kobayashi and Nishizawa 2012). Xylem loading involves efflux transporters and phloem loading was assumed to have influx transporters (Kobayashi and Nishizawa 2012). Efflux and influx transporters play important roles during Fe

translocation. For example, YSL (Yellow Stripe Like) genes are involved in Fe translocation in many plant species (Curie et al. 2001). Plants use different strategies for uptake and storage of Fe and deficiency or toxicity is managed through changes in gene expression for different transporters, Fe storage genes and other associated genes involved in iron metabolism.

Folates

Folate or vitamin B9 provides methyl groups for certain metabolic reactions and deficiency of folate results in anaemia and neural tube defects. Naturally occurring folates are the pteroglutamyl forms of synthetic folic acid. Folic acid is the stable oxidized form (Colman et al. 1975) and natural folates are sensitive to oxidation and are less stable (Murphy et al. 1976). Deficiency of dietary folates may cause neural tube defects in new borns including neural tube defects, spina bifida and anencephaly. Spina bifida is a spinal cord defect and anencephaly is a birth defect where portions of the brain, skull and scalp are partially absent in new borns. Werler et al. (1999) reported that folic acid supplementation of 400 micrograms per day had a positive impact in reducing the number of neural tube defects in newborns. They evaluated 3 basic approaches, folic acid supplements, consumption of folate rich food and fortifying food with synthetic folic acid, to meet the daily intake recommendation by the CDC (US Centers for Disease Control and Prevention). CDC recommendations emphasize daily intake of 400 micrograms of folic acid supplements for all women of child bearing age and to not consume more than 1 mg of folic acid on a daily basis. Women who did not take folic acid supplements usually consumed lower quantities than prescribed. This is due to the fact that bioavailability of food folates was low compared to synthetic folic acid supplements (McNulty and Pentieva 2004). Folate bioavailability differs among foods, for example, egg yolk, liver and orange juice have greater bioavailability than cabbage, lima beans and lettuce (Seyoum and Selhub 1998).

The natural form of folates is the polyglutamyl form and it is hydrolyzed into the monoglutamyl form in the intestine during or before absorption (Halsted and Tamura 1979). Hydrolysis is catalyzed by the conjugase enzyme (EC 3.4.12.10). Two types of folate conjugase are present – an intracellular form and the other is a brush border membrane (brush border membrane is the microvilli covered epithelium cell layer in intestine) bound form (Reisenauer et al. 1977). Folate bioavailability is reduced by factors which impair the conversion of polyglutamyl folates into the monoglutamyl form and prevent absorption through the brush border membrane in the human intestine. For example, trypsin inhibitors, phytohaemagglutinins and different folate binding proteins reduce conjugase enzyme activity (Bhandari and Gregory 1990). The extent of inhibition ranged between null to more than 50% inhibition among different food sources (Bhandari and Gregory 1990; Reisenauer and Halsted 1981).

The most popular method to estimate folate concentration is a microbiological assay involving *Lactobacillus* species. Han and Tyler (2003) used a tri-enzyme extraction and a microbiological assay using *Lactobacillus rhamnosus* L. to estimate total folate concentration in lentil, dry bean and peas. Tri-enzyme (α -amylase, protease, conjugase) extraction is reported to be more efficient than the single enzyme (conjugase) extraction method (Martin et al. 1990). The shortcomings of the microbiological assay to estimate folate concentration resulted in development of a high performance liquid chromatography (HPLC) method that has been adopted by many workers (Gujska and Kuncewicz 2005; Póo-Prieto et al. 2006).

Biofortification

The increase in global food production from the 'Green Revolution' saved millions of lives, however, a steep rise in non-communicable diseases like cardiovascular disease and cancer have been observed (Welch and Graham 1999). This rise in non-communicable diseases is
attributed to nutrient deficiency over a large proportion of the world population.

'Biofortification' has been proposed to combat micronutrient and vitamin deficiencies (White and Broadley 2009, Welch and Graham 1999, 2004). Biofortification involves developing nutrient dense crop plants using plant breeding or modern plant biotechnological tools (White and Boadley 2009) (Fig. 2.1). Originally 'biofortification' was coined by Steve Beebe as a technique to improve the nutritional value of crop plants through genetic selection (Morgan 2013). Johns and Eyzaguirre (2007) reviewed different biofortication programs across the globe on different crop plants, for example canola, cottonseed oil, maize, potato, rice, soybean, sunflower, sweet potato and tomato. They clearly pointed out the necessity of a localized effort in terms of selection of a target crop for nutritional profile improvement as well as the need of increased funding and development of infrastructure to carry out detailed nutritional analysis (Johns and Eyzaguirre 2007). Efforts to improve the nutritional quality should fit well in an ongoing breeding program due to limitation of resources (Johns and Eyzaguirre 2007). One example of a localized and community based biofortification program is the BioCassava Plus Program of CGIAR and other NARS (National Agricultural Research Systems) partners in Africa (Sayre et al. 2011). It was reported that about 250 million people in African nations depend on cassava as the primary daily calorie intake source (Sayre et al. 2011). A typical cassava meal (500 gm) provides sufficient calories, however, it is deficient in micronutrients (example iron, zinc), vitamins (example Provitamin A) and protein (Sayre et al. 2011). The BioCassava Plus program targeted iron, zinc, provitamin A and protein concentration and completion of the first phase resulted in an increase in target nutrients. The ongoing second phase involves confined field trials, release and adoption strategies in African countries like Kenya and Nigeria (Sayre et al. 2011). Meenakshi et al. (2010) critically analyzed the ongoing

HarvestPlus driven biofortification programs across different African and Asian countries with the objective to compare the cost of biofortication programs and impact of realized gains in monetary value. Results showed that biofortication programs are costly and they have a significant positive impact in terms of realized gain (Meenakshi et al. 2010). Nestel et al. (2006) supported the idea of biofortification to alleviate malnutrition along with food fortification or dietary supplementation. Genetic or agronomic biofortification could also be more effective in countries where no coordinated or regulated food fortication program exists.

Fig. 2.1. General process of biofortification research.

A recent study in India has shown consumption of iron biofortified pearl millet decreased the iron deficiency in school children (Finkelstein et al. 2015). A Zinc biofortified rice variety (BRRI 72) has been released in Bangladesh for cultivation, this variety is high yielding and has high concentration of zinc (23 mg kg⁻¹). In India, Indira Gandhi Krishi Viswavidyalaya (a land grant agriculture university) released the first high zinc rice variety (Chattisgarh zinc rice 1) for cultivation. The grain zinc content of this variety is reported to be 6-8 parts per million. Vitamin A biofortified orange maize increased the body storage of vitamin A in Zambian children (Gannon et al. 2014). There are growing evidences that vitamin A biofortified sweet potato is improving the health status of the children in Mozambique (Jones et al. 2015).

Lentil

Lentil (Lens culinaris Medik.) is a nutritious food legume crop. Lentil is grown mainly in five different regions of the world; Canada (35%), India, Nepal, and Bangladesh (30%), Turkey and Syria (13%), Australia (8%), and the Midwestern region of the USA (4%) (FAOSTATS 2013). The total world lentil production is about 5 million tons (FAOSTATS 2013) and it is grown over an area of 4.3 million ha. Lentil is one of the earliest plant species domesticated and used in the 'Mediterranean Fertile Crescent' (Cubero 1981). The cultivated lentil was studied in detail by Barulina (1930). Lentil taxonomy is as follows: Kingdom: Plantae (Plants), Subkingdom: Tracheobionta (Vascular Plants), Superdivision: Spermatophyta (Seed plants), Division: Magnoliophyta (Flowering plants), Class: Magnoliopsida (Dicotyledons), Subclass: Rosidae, Order: Fabales, Family: Fabaceae, Genus: Lens Mill., Species: Lens culinaris Medik. (Ferguson et al. 2000). Lentil is self-pollinated and it has a diploid (2n=14) genome size of about 4 Gb (Arumuganathan and Earle 1991). Lens is a small genus of the Viciae tribe and is comprised of only one cultivated species (L. culinaris Medik.) and a few wild species or subspecies, including L. ervoides, L. nigricans, L. lamottei, L. culinaris subsp. orientalis, and L. culinaris subsp. tomentosus (Ferguson et al. 2000). L. orientalis is the most probable originator of cultivated L. culinaris Medik. (Sandhu and Singh 2007). Based on seed size there are two varietal groups of cultivated lentils, microsperma and macrosperma; microsperma is the smallseeded type (seed diameter, 2-6 mm) and macrosperma is the large-seeded type (seed diameter,

6-9 mm) (Barulina 1930). *Microsperma* varieties are mostly grown in Asia and Africa and *macrosperma* varieties are grown in the Mediterranean region and North America.

Lentil is considered a cool season crop species and is grown as a summer crop in temperate climates (for example in USA and Canada) and as a winter crop in subtropical climates (for example in India, Pakistan, Nepal). This climatic adaptation is due to the fact that lentil growth is adversely affected above 27°C and it can be grown from sea level up to 3000 m. Lentil is grown under rainfed conditions and requires comparatively colder temperature during initial growth stages (18-25°C) and warmer weather during maturity (25-30°C). Drought and frost tolerance are moderate. The lentil crop is seed propagated and sowing rate and row to row spacing varies from one growing condition to another. It can be grown in loam or clay loam soil and can withstand moderate alkalinity. Lentil is susceptible to any kind of water logging conditions.

Different organizations maintain and preserve the germplasm of cultivated and wild lentil species. The International Centre for Agricultural Research in the Dry Areas (ICARDA, Morocco) developed and maintains a germplasm mini core set comprised of 109 cultivated accessions from 15 countries and 52 wild accessions (*L. culinaris* ssp. *orientalis*, *L. culinaris* ssp. *tomentosus* and *L. culinaris* ssp. *odemensis*) from 11 countries (Kumar et al. 2015). Another mini core set of lentil was developed and is maintained by USDA/ARS, Regional Plant Introduction Station, Pullman, USA and is comprised of 384 accessions and is consists of germplasm lines from various countries along with the cultivars, breeding lines and mapping population parents (Simon and Hannan 1995).

Lentil is a potential crop for genetic biofortification due to its rich nutritional profile (Thavarajah and Thavarajah 2012). The narrow genetic base of lentil is similar to other food

legume species, therefore, wild species have to be explored along with cultivated species to find donors for high micronutrient traits. Information regarding mineral trait variability and inheritance is required to initiate an interspecific hybridization program, yet limited nutritional trait information is available for a wide range of *Lens* species.

Sources of high micronutrient and vitamin B9 concentration

Knowledge of available sources of quality traits (micronutrients and vitamins) is prerequisite for a biofortification program and evaluation of genetic resources is necessary to identify suitable sources. A limited number of studies exist in lentil reporting micronutrient and other quality traits. Karaköy et al. (2012) studied the mineral status of Turkish lentil landraces and cultivars in lentil and reported that Fe concentrations ranged between 49.4 to 81.4 mg kg⁻¹. The concentrations reported for Zn, Cu, Ca, and Mg were 46.9-73.1 mg kg⁻¹, 9.1-16.9 mg kg⁻¹, 480-1280 mg kg⁻¹ and 850-1260 mg kg⁻¹, respectively (Karaköy et al. 2012). In another study, Solanki et al. (1999) evaluated improved lentil cultivars in India. They reported Fe and Ca concentrations from 80-92 (mg kg⁻¹), and 1150-1650 (mg kg⁻¹), respectively. Thavarajah et al. (2009) reported Fe and Zn concentrations from 73-90 and 44-54 mg kg⁻¹, respectively, in a set of lentil cultivars grown at 9 locations in Canada over 2 years. Zia-Ul-Haq et al. (2011) evaluated four improved lentil cultivars in Pakistan for different micronutrients and reported on Fe, Zn, Cu, and Ca concentrations ranging from 27-32, 39-44, 89-99, and 1180-1210 mg kg⁻¹, respectively. In a study comparing micronutrient concentrations in different legumes, Iqbal et al. (2006) found that Fe, Zn, Cu, Ca and Mg concentration was 31, 44, 99, 1200, and 45 (mg kg⁻¹), respectively, in lentil. Alghamdi et al. (2014) studied 35 advanced breeding lines of cultivated lentil in Saudi Arabia and reported concentrations for Mg (1261-1573 mg kg⁻¹), Ca (64.9-84 mg kg⁻¹), Fe (65.7-85.7 mg kg⁻¹), Zn (26.3 -45.1 mg kg⁻¹), and Cu (8.6 -13.7 mg kg⁻¹).

Recently, Jha et al. (2015) evaluated a set of 4 popular cultivars of each food legume (pea, common bean, lentil and chickpea) from replicated field trials over two locations for folate concentration. The tri –enzyme extraction of seed samples and ultra-performance liquid chromatography coupled with mass spectrometry (UPLC–MS/MS) was used to quantify folate monoglutamate concentrations. Folate concentration ranged between 136.5-182.4 µg/100 g (lentil), 164.6 -232.4 µg/100 g [common bean (*Phaseolus vulgaris*)], 351.5-588.8 µg/100 g [chickpea (*Cicer arietinum*)] and 22.8-29.6 µg/100 g [pea (*Pisum sativum*)]. Significant environment effect on folate concentrations was detected (Jha et al. 2015).

Singh et al. (2015) studied 30 lentil genotypes comprising Mediterranean landraces, breeding lines and released varieties in India for folate concentration. Mean total folate concentration was 222 μ g/100 g and ranged from 114.4 to 448.1 μ g/100 g. Mediterranean landraces were reported having higher folate concentration compared to other tested lentil genotypes.

Availability of molecular markers in lentil for quality traits

Hundreds of SSRs (simple sequence repeats), EST-SSRs (expressed sequence taggedsingle sequence repeats) or SNPs (single nucleotide polymorphisms) (Kaur et al. 2011, 2014; Verma et al. 2013, 2014) have been reported in lentil. Among the validated molecular markers only a limited number of markers were reported to be polymorphic (Hamweigh et al. 2009; Kaur et al. 2011, 2014; Verma et al. 2013, 2014). Hamweigh et al. (2009) developed 14 microsatellite markers from a genomic library developed in lentil genotype ILL5588. Kaur et al (2011) validated a set of 166 EST-SSR markers among which 79 (47.5%) were polymorphic. The test genotypes were 12 cutivated lentils and one wild lentil genotype (*L. nigricans*). In a separate

study, Kaur et al. (2014) reported 61 polymorphic SSRs and 264 SNPs after testing 546 SSRs and 768 SNPs, respectively, in a lentil recombinant inbred line (RIL) population.

Verma et al. (2013) using the transcriptome sequencing and *de novo* assembly analyzed the simple sequence repeats in lentil. Twenty-three primer pairs out of the 54 (42.6%) showed polymorphism while tesing among a set of 24 genotypes comprising lentil, *Glycine*, *Medicago* and *Vigna* genotypes. Amplified alleles ranged between 2-4 and polymorphism information content ranged between 0.06-0.88 with an average of 0.47.

Verma et al. (2014) developed EST-SSRs through transcriptome sequencing of lentil genotype 'Precoz' and validated 33 polymorphic EST-SSRs among 46 lentil and other food legume genotypes. Alleles amplified ranged between 2–5 with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus.

Recently, Andeden et al. (2015) developed (CA)n, (GA)n, (AAC)n and (ATG)n repeat enriched libraries and by sequencing these libraries found 78 polymorphic SSR markers. Wong et al. (2015) developed genome wide 5389 non-redundant SNPs using a two enzyme genotyping by sequencing (GBS) method.

Ates et al. (2014) mapped 121 QTLs (quantitative trait loci) influencing the uptake of important micronutrients such as Mn and Zn uptake in lentil using a recombinant inbred line (RIL) population derived from the cross between CDC Redberry/ILL7502. In another study (Aldemir et al. 2014), AFLP (amplified fragment length polymorphism), SSR and SNP markers were used for genotyping. Aldemir et al. (2014) reported 4 QTLs controlling iron concentration using 181 molecular markers (150 AFLPs, 27 SSRs and 4 SNPs). The mapping population they

used was a recombinant inbred line population derived from a cross between ILL 8006–BM (Barimasur-4) x CDC Milestone.

Literature cited

- Aldemir SB, Sever T, Ates D, Yagmur B, Kaya HB, Temel HY, Kahriman A, Ozkan H, Tanyolac MB (2014) QTL mapping of genes controlling Fe uptake in lentil (*Lens culinaris* L.) seed using recombinant inbred lines. In: Plant and Animal Genome Conference XXII San Diego, CA, January 11–15, P3360 https://pag.confex.com/pag/xxii/ webprogram/Paper9689.html.
- Alghamdi SS, Khan AM, Ammar MH. El-Harty EH, Migdadi HM, El-Khalik SMA, Al-Shameri AM, Javed MM, Al-Faifi SA (2014) Phenological, nutritional and molecular diversity assessment among 35 introduced lentil (*Lens culinaris* Medik.) genotypes grown in Saudi Arabia. International J Mol Sci 15:277-295
- Andeden EE, Faheem SB, Esra Ç, Faruk T, Hakan Ö (2015) Development, characterization and mapping of microsatellite markers for lentil (*Lens culinaris* Medik.). Plant Breeding doi:10.1111/pbr.12296
- Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 93:208-218
- Arnold F, Parasuraman S, Arokiasamy P, Kothari M (2009) Nutrition in India. National Family Health Survey (NFHS-3), India, 2005-06. Mumbai: International Institute for Population Sciences; Calverton, Maryland, USA: ICF Macro.

- Ates D, Aldemir SB, Sever T, Yagmur B, Kaya HB, Temel HY, Kahriman A, Ozkan H, Tanyolac MB (2014) Identification of QTLs controlling genes to Mn and Zn uptake in lentil seeds.
 In: Plant and animal genome XXII, San Diego, CA, January 11–15, P 0361. https://pag. confex.com/pag/xxii/webprogram/Paper9687.html. Accessed April 23 2015
- Barulina EI (1930) The lentils of the USSR and other countries. Tr Po Prikl Bot Genet Sel [Bull Appl Genet Select] Suppl 40:1-319
- Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Satoshi M, Naoko KN (2006)
 Cloning and characterization of deoxymugineic acid synthase genes from graminaceous
 plants. J Biol Chem 281(43):32395-32402
- Bhandari SD, Gregory JF (1990) Inhibition by selected food components of human and porcine intestinal pteroylpolyglutamate hydrolase activity. American J Cln Nutr 51(1):87-94
- Cubero JI (1981) Origin, taxonomy and domestication. Lentils. Slough, CAB International, pp 15-38
- Colman N, Green R, Metz J (1975) Prevention of folate deficiency by food fortification. II. Absorption of folic acid from fortified staple foods. American J Clin Nutr 28:459–464
- Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow
 stripe 1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–49
- FAOSTATS (2013) http://faostats.fao.org (accessed April 24 2015)

- Ferguson ME, Maxted N, van Slageren M, Robertson, LD (2000) A re-assessment of the taxonomy of *Lens* Mill. (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133:41– 59
- Fobis-Loisy I, Loridon K, Lobre'aux S, Lebrun M, Briat JF. 1995. Structure and differential expression in response to iron and abscisic acid of two maize ferritin genes. European J Biochem 231:609–619
- Food and Drug Administration (1996) Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Federal Register 61:8781–97
- Finkelstein JL, Mehta S, Udipi SA, Ghugre PS, Luna SV, Wenger MJ, Laura EM, Przybyszewski EM, Haas JD (2015) A randomized trial of iron-biofortified pearl millet in school children in india. J Nutr:jn208009
- Gannon B, Kaliwile C, Arscott SA, Schmaelzle S, Chileshe J, Kalungwana N, Mosonda M, Pixley K, Masi C, Tanumihardjo SA (2014) Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. Am J Cln Nutr 100(6):1541-1550
- Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104(3):815
- Gujska E, Kuncewicz A (2005) Determination of folate in some cereals and commercial cerealgrain products consumed in Poland using trienzyme extraction and high-performance liquid chromatography methods. Eur Food Res Technol 221(1-2):208-213

- Györgyey J, Vaubert D, Jiménez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of *Medicago truncatula* nodule expressed sequence tags. Mol Plant Microbe In 13(1):62-71
- Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307(1):108–112
- Halsted CH, Tamura T (1979) Folate deficiency in liver disease. Problems in liver diseases. Stratton, New York, pp 91-100
- Hamwieh A, Udupa SM, Sarker A, Jung C, Baum M (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breeding Sci 59(1):77-86
- Han JY, Tyler RT (2003) Determination of folate concentrations in pulses by a microbiological method employing trienzyme extraction. J Agr Food Chem 51(18):5315-5318
- Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron (III)deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284(6):3470-3479
- Jha AB, Ashokkumar K, Diapari M, Ambrose SJ, Zhang H, Tar'an B, Bett KE, Vandenberg A, Warkentin TD, Purves RW (2015) Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. J Food Compos Anal 42:134-140
- Jones KM, de Brauw A (2015) Using agriculture to improve child health: promoting orange sweet potatoes reduces diarrhea. World Dev 74:15-24
- Johns T, Eyzaguirre PB (2007) BiofortiWcation, biodiversity and diet: A search for complementary applications against poverty and malnutrition. Food Policy 32:1-24

- Karaköy T, Erdem H, Baloch FS, Toklu F, Eker S, Kilian B, Özkan H (2012) Diversity of macro-and micronutrients in the seeds of lentil landraces. Sci World J Available at doi:10.1100/2012/710412
- Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011)
 Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265
- Kaur S, Cogan NO, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014) EST-SNP discovery and dense genetic mapping in lentil (*Lens culinaris* Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127(3):703-713
- Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in *Arabidopsis* seed requires the vacuolar membrane transporter VIT1. Science 314(5803):1295-1298
- Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–80
- Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131-152
- Krumdieck C (1990) Folic acid. In: Brown ME (ed) Present knowledge in nutrition. ILSI,Washington, DC, pp 179–188
- Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:78 doi: 10.3389/fpls.2015.00078
- Ladizinsky G, Cohen D, Muehlbauer FJ (1985) Hybridization in the genus *Lens* by means of embryo culture. Theor Appl Genet 70:97-101

- Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102(2-3):392-397
- Martin JI, Landen WO, Jr, Soliman AGM, Eitenmiller, RR (1990) Application of a tri-enzyme extraction for total folate determination in foods. J Assoc Off Ana Chem 73:805-808
- Masuda T, Goto F, Yoshihara T (2001) A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. J Biol Chem 276(22):19575-19579

McNulty H, Pentieva (2004) Folate bioavailability. Proc Nutr Soc 63(04):529-536

- Meenakshi JV, Nancy J, Manyong V, De Groote H, Javelosa J, Yanggen D, Naher F, Garcia J,
 Gonzales C, and Meng E (2010) How cost-effective is biofortification in combating
 micronutrient malnutrition? An ex ante assessment. HarvestPlus Working Paper #2.
 Washington, DC: International Food Policy Research Institute.
- Morgan J (2013) Biofortification. Lasting solutions to micronutrient malnutrition and world hunger. CSA News doi:10.2134/csa2013-58-1-1
- Murphy M, Keating M, Boyle P, Weir DG, Scott JM (1976) The elucidation of the mechanism of folate catabolism in the rat. Biochem Bioph Res Co 71:1017–1024
- Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067
- Olsen RA, Bennett JH, Blume D et al (1981) Chemical aspects of the Fe stress response mechanism in tomatoes. J Plant Nutr 3(6):905-921
- Petit JM, van WO, Briat JF, Lobréaux S (2001) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1and ZmFer1 plant ferritin genes by iron. J Biol Chem 276(8):5584-5590

- Póo-Prieto R, Haytowitz DB, Holden JM, Rogers G, Choumenkovitch SF, Jacques PF, Selhub, J (2006) Use of the affinity/HPLC method for quantitative estimation of folic acid in enriched cereal-grain products. J Nutr 136(12):3079-3083
- Reisenauer AM, Krumdieck CL, Halsted CH (1977) Folate conjugase: two separate activities in human jejunum. Science 198(4313):196-197
- Reisenauer AM, Halsted CH (1981) Human jejunal brush border folate conjugase. Characteristics and inhibition by salicylazosulfapyridine. BBA-Enzymology 659(1):62-69
- Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquete C, Fellman C, Fregene M, Gruissem W,
 Mallowa S, Manary M, Maziya-Dixon B, Mbanaro A, Schchtman DP, Siritunga D,
 Taylor N, Vanderschurn H, Zhang P (2011) The BioCassava plus program:
 biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62: 251-272
- Sandhu JS, Singh S (2007) History and origin. In: Lentil. An ancient crop for modern times. Yadav SS, McNeil DL, Stevenson PC (eds), Springer, The Netherlands, pp 1-9
- Seyoum E, Selhub J (1998) Properties of food folates determined by stability and susceptibility to intestinal pteroylpolyglutamate hydrolase action. J Nutr 128(11):1956-1960
- Shergill-Bonner R (2013) Micronutrients. Paediatr Child Healt 23(8):331-336
- Singh J, Srivastava RP, Gupta S, Basu PS, Kumar J (2015) Genetic variability for vitamin B9 and total dietary fiber in lentil (*Lens culinaris* L.) cultivars. Int J Food Properties (in press)
- Simon CJ, Hannan RM (1995) Development and use of core subsets of cool-season food legume germplasm collections. Hort Sci 30(4):907-907

- Solanki IS, Kapoor AC, Singh, U (1999) Nutritional parameters and yield evaluation of newly developed genotypes of lentil (*Lens culinaris* Medik.). Plant Foods Hum Nutr 54:79–87
- Spence MJ, Henzl MT, Lammers PJ (1991) The structure of a *Phaseolus vulgaris* cDNA encoding the iron storage protein ferritin. Plant Mol Biol 17(3): 499-504
- Takagi SI (1976) Naturally occurring iron-chelating compounds in oat-and rice-root washings: I.
 Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22(4):423-433
- Thavarajah D, Thavarajah P, Sarker A, Vandenberg A (2009). Lentils (*Lens culinaris* Medikus subspecies *culinaris*): a whole food for increased iron and zinc intake. J Agr Food Chem 57:5413–5419
- Thavarajah D, Thavarajah P (2012) U.S. Pulse Quality Survey 2; North Dakota State University: Fargo, ND, p 12
- UNICEF (2009) Tracking progress on child and maternal nutrition. http://unicef.in/Story/1124/Nutrition (accessed April 15, 2015)
- UNICEF (2010) Facts for life. Fourth edition, New York. http://www.unicef.org/eapro/factsforlife-en-full.pdf (accessed April 15, 2015)
- Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (*Lens culinaris* Medik.) transcriptome. Plant Biotechnol J 11:894-905
- Verma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S (2014) Exploring genetic variability within lentil (*Lens culinaris* Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41(9):5607-5625

- Werler MM, Hayes C, Louik C, Shapiro S, Mitchell AA (1999) Multivitamin supplementation and risk of birth defects. American J Epidemiol 150(7):675-682
- Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable and nutritious. Field Crops Res 60:1-10
- Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353-364
- White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets: iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182:49-84. doi: 10.1111/j.1469-8137.2008.0273
- WHO (2013) Essential nutrition actions: improving maternal, newborn, infant and young child health and nutrition.

http://apps.who.int/iris/bitstream/10665/84409/1/9789241505550_eng.pdf?ua=1(accessed April 15, 2015)

- WHO (2015a) Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed April 15, 2015)
- WHO (2015b) Global health observatory data. http://www.who.int/gho/child_health/mortality/mortality_under_five/en/ (accessed April 15, 2015)
- Wong MM, Gujaria-Verma N, Ramsay L, Yuan HY, Caron C, Diapari M, Vandeberg A, Bett K E (2015) Classification and characterization of species within the genus *Lens* using genotyping-by-sequencing (GBS). PloS One 10:e0122025

Zia-Ul-Haq M, Ahmad S, Shad MA, Iqbal S, Qayum M, Ahmad A, Luthria DL, Amarowicz, R (2011) Compositional studies of lentil (*Lens culinaris* Medik.) cultivars commonly grown in Pakistan. Pakistan J Bot 43:1563–1567

CHAPTER 3. LENTIL-A RICH SOURCE OF FOLATES

Abstract

The potential for genetic biofortification of U.S.-grown lentils (*Lens culinaris* L.) with bioavailable folate has not been widely studied. The objectives of this study were (1) to determine the folate concentration of 10 commercial lentil cultivars grown in Minot and McLean counties, North Dakota, USA, in 2010 and 2011, (2) to determine the genotype (G) × environmental (E) interactions for folate concentration in lentil cultivars, and (3) to compare the folate concentration of other pulses [field peas (*Pisum sativum* L.) and chickpea (*Cicer arietinum* L.)] grown in the United States. Folate concentration in lentil cultivars ranged from 216 to 290 μ g/100 g with a mean of 255 μ g/100 g. In addition, lentil showed higher folate concentration compared to chickpea (42–125 μ g/100 g), yellow field pea (41–55 μ g/100 g), and green field pea (50–202 μ g/100 g). A 100 g serving of lentils could provide a significant amount of the recommended daily allowance of dietary folates (54–73%) for adults. A significant year × location interaction on lentil folate concentration was observed; this indicates that possible location sourcing may be required for future lentil folate research.

Introduction

Folate deficiency is a global problem affecting millions of people in both developed and developing countries (UN, 2008). Inadequate intake of folic acid during pregnancy increases the risks of preterm delivery, low birth weight, fetal growth retardation, and developmental neural tube defects (NTDs). In addition, low folate intake and elevated homocysteine levels are associated with the occurrence of neurodegenerative disorders, cardiovascular diseases, and a range of cancers, while adequate intake of both folates and folic acid in diets decreases total homocysteine levels in plasma (Blancquarert et al. 2010; Ray et al. 2000; Jacques et al. 1999).

Tetrahydrofolate and derivatives, collectively called folates, are water-soluble B-vitamins. Humans and animals cannot synthesize folates, and therefore they must be supplied from plantbased and animal foods including liver and eggs. Pteroylmonoglutamic acid (folic acid) is the synthetic form of folate used in supplements and food fortification. In 1998, US and Canada mandated folic acid enrichment in all grain products to lower the risk of NTDs. This resulted in a 20–53% decrease in the incidence of NTDs and more than a 38% reduction in the prevalence of anencephaly (Blancquarert et al. 2010; Green, 2002). Currently, the recommended daily intake (RDA) of folate is 400 µg of dietary folate equivalent for adults and 600 µg for pregnant women (Institute of Medicine, 1998). Folic acid fortification and supplementation approaches have been adopted in many parts of the world, largely due to folate bioavailability (Blancquarert et al. 2010; Rader 2002). Thus, alternative approaches to supply daily folates through biofortification of staple food crops may provide a sustainable means to provide bioavailable folates to people in many parts of the world (The Office of Dietary Supplements 2012). Most staple food crops, including cereals, potato (Solanum tuberosum L.), and banana (Musa sp), are poor sources of dietary folates, and diets based on these foods often do not reach the folate RDA of 400 μ g/day (UN, 2008; Institute of medicine, 1998). Generally, leafy vegetables contain more folates (1.5–4.5 nmol/g fresh weight) than roots (0.3 nmol/g fresh weight) and fruits (0.2–0.8 nmol/g fresh weight) (Scott et al. 2000). The USDA nutrient database shows lentils (Lens culinaris L.) and common beans (Phaseolus vulgaris L.) are two pulses that are rich in folates (U.S. Department of Agriculture, 2012). Lentil is a traditional pulse crop mostly grown in low-rainfall, dryland cropping systems in rotation with cereals, wheat and rice. Annual world lentil production is approximately 4.4 M tons, about 90% of which occurs in five specific regions: Canada (35%-1.53 t); India, Nepal, and Bangladesh (30%-1.23 t); Turkey and Syria (13%-0.55 t); Australia

(8%-0.38 t); and the Midwestern region of the USA including North Dakota, South Dakota, and eastern Montana (4%-0.21 t) (FAOSTATS 2010). Lentils are an emerging crop in North Dakota, and Montana, providing economic benefits in addition to the benefits derived from crop rotation, nitrogen fixation, and sustainable agriculture (Northern Pulses Growers Association 2013). Lentil cultivars are grouped into at least six market classes, including extra small red, small red, small green, medium green, large green, and dark green speckled. This classification is based on the size and color of the seed (Thavarajah et al. 2012). Lentils are rich in protein (20-30%), prebiotics (including fructooligosaccharides, galactooligosaccharide, and resistant starch), and minerals, and are naturally low in phytic acid (Thavarajah et al. 2011; Thavarajah et al. 2009; Johnson et al. 2013a). Therefore, the selection and development of lentils cultivars high in bioavailable folates could have large benefits due to the complementarity profiles of other bioactive molecules present in lentils. To our knowledge, this study is the first comprehensive study on USA-grown lentils to assess their potential as a source of folates for future genetic studies on biofortification. The objectives of this study were (1) to determine the folate concentration of 10 commercial lentil cultivars grown in Minot and McLean counties, North Dakota, USA in 2010 and 2011, (2) to determine the genotype x environment interactions for folate concentration in lentil cultivars and (3) to compare the folate concentration of other pulses [field peas (Pisum sativum L.) and chickpea (Cicer arietinum L.)] grown in the USA.

Materials and methods

Materials

Standards, reagents, and high-purity solvents used for high-performance liquid chromatographic (HPLC) analyses and enzymatic assays were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Folate standards were freshly prepared each day. Water, distilled and deionized (ddH₂O) to a resistance of \geq 18.2 M Ω (Milli-Q Water System, Millipore, Milford, MA, USA), was used for sample extractions and preparation.

Seed samples

The following commercial lentil cultivars were included: CDC Redberry, CDC Red Rider, CDC Lemay, CDC Greenland, CDC Rouleau, CDC Richlea, Riveland, CDC Rosetown, CDC Viceroy, and Pennell (Johnson et al. 2013a). An approximately 250–300 g subsample of seeds was collected. These seed samples were randomly taken from an entire harvested plot with three replications, two locations, and two years (2010 and 2011; total number of samples = 120). Two selected counties were Ward (48° 23' 25" N, 101° 29' 58" W, 27.2 cm average rainfall, and 17.2 °C mean growing season temperature) and McLean (47° 57' 74" N, 101° 239' 60" W, 36.3 cm average rainfall, and 17.2 °C mean growing season temperature), North Dakota. Samples were hand-cleaned of debris, air-dried (40 °C), and ground to pass through a sieve size of 0.25 mm using a top-loading UD grinder (Unholtz Dickie Corp., Wallingford, CT, USA). Samples of 10–20 g of ground seed (7.3% moisture) were stored at -40 °C until analysis. The moisture contents of these ground lentil seeds were measured using AACC method 44-15A (AACC International, 2013). In addition, three yellow field pea (DS Admiral, CDC Meadow, and Spider), five green field pea (CDC Striker, Shamrock, SGDP, K2, and Arcadia), and eight chickpea (CDC Frontier, Sierra, Dylan, Dwelley, Bronic, Billy Bean, Troy, and Sawyer) commercial seed samples were collected from the 2012 Pulse Quality Survey (Thavarajah and Thavarajah, 2012). A total of 16 seed samples were collected from North Dakota, Idaho, and Washington. An approximately 500-1000 g subsample of seeds was collected from the 2012 Pulse Quality Survey conducted at the NDSU Pulse Quality and Nutrition Laboratory. Field pea and chickpea samples followed the same processing method as previously described for lentils.

Sample preparation and analysis

Homogenization

A finely ground sample of 0.25 g was weighed and dispersed in 12.5 mL of extraction buffer solution [75 mM potassium phosphate buffer (pH 6.0) containing 52 mM sodium ascorbate and 0.1% (v/v) 2- mercaptoethanol] (Hefni et al. 2010). The mixture was homogenized for 30 s using a vortex mixer. This procedure was done using amber-colored vials under minimum light conditions.

Trienzyme Treatments

The homogenized seed samples were treated with enzymes according to the method described by Hefni et al. (2010). The seed samples were incubated with 1 mL of α -amylase (3000 U/mL) from Aspergillus oryzae (EC 3.2.1.1) for 1 h, followed by submersion in a boiling water bath (75 °C) for 12 min, and then cooled on ice. When the samples were cool, 2 mL of protease (5 mg/ mL) from Streptococcus griseus (EC 3.4.24.31) was added to each, incubated at 37 °C for 1.5 h, and inactivated by submersion in a boiling water bath for 5 min. Finally, 0.2 mL of conjugase from rat serum was added to each sample, and the samples were incubated at 37 °C for 2.5 h. (Hefni et al. 2010). The enzymes were deactivated by placing the sample in a boiling water bath for 5 min and then cooling it on ice. The samples were centrifuged at 4000 rpm for 15 min, and 1 mL of supernatant was collected in amber-colored bottles (minimum light condition) to reduce the breakdown of isolated folates. Then, these samples were immediately analyzed on a reversed phase high performance liquid chromatograph (RP-HPLC) (Jastrebova et al. 2013). Seed folate concentration was measured by HPLC (Agilent 1260, Agilent Technologies, Santa Clara, CA, USA) with a fluorescence detector at excitation and emission wavelengths 290 and 360 nm, respectively. Folates were separated on a C18 column (Prodigy 5 μ m, 250 \times 4.6 mm

C18 column, Phenomenex, Torrance, CA, USA), with a guard column (Prodigy 5 μ m, 30 × 4.6 mm, Phenomenex). The column temperature was maintained at room temperature, 25 ± 1 °C, during the experiment. The mobile phase was acetonitrile and a 30 mM potassium phosphate buffer (pH 2.3) at a flow rate of 0.4 mL/min. The gradient was initiated at 5% acetonitrile and kept for 5 min and then linearly increased to 25% over 20 min. The gradient was kept at 25% acetonitrile for another 6 min. The concentration of the samples was quantified as micrograms of tetrahydrofolic acid (THF) equivalents per 100 g of dry sample. The concentrations of those analyzed THFs were detected within a linear range of 0.1–2.5 μ g/g (r² > 0.99). The minimal detectable limit was 0.01 μ g/g. An external laboratory reference, CDC Redberry, was also used daily to ensure the accuracy, sensitivity, and reproducibility of detection. High-resolution mass spectrometry was used to confirm the samples and THF standards using a Bruker Daltonics BioTOF (mode, positive; dry gas temperature, 200 °C; capillary, 4500 V; ionization source, ESI; data reported, m/z) at the NDSU Core Synthesis and Analytical Service Facility, Fargo, ND, USA.

Statistical analysis

The experimental design was a randomized complete block design with three replicates of 10 commercial lentil genotypes grown at two locations over two years (n = 120). For combined analysis, the General Linear Model procedure (PROC GLM) of SAS version 9.3 (SAS Institute Inc., 2008) was used to perform analysis of variance with replicates, locations, and genotypes considered as random factors. A separate analysis of variance was performed for each year using SAS PROC GLM. Means were separated by Fisher's protected least significant difference (LSD) at P < 0.05. Lentil folate concentrations were subjected to dissimilarity coefficient analysis using NTSYSpc ver. 2.2. (Rohlf 2009). A dendrogram was constructed following an unweighted pair group method with arithmetic average (UPGMA) based on a dissimilarity matrix using NTSYSpc ver. 2.2. (Rohlf 2009).

Results

Analysis of variance components

In combined analysis of variance, genotype effects were not statistically significant (P < 0.05) (Table 3.1). However, individual location and year specific ANOVA showed that genotypic effects and genotype (G) × environment (E) interactions were significant (P < 0.05), with the exception of McClean County in 2011 (Table 3.2). Partitioning of variance further indicated that year × location and year × location × genotype interaction effects were statistically significant (P < 0.05) (Table 3.1).

For 2010, total folate concentration ranged from 196 to 329 μ g/100 g with an average of 263 μ g/100 g over two locations (Table 3.2). For 2011, total folate concentration ranged from 187 to 310 μ g/100 g with an average of 249 μ g/100 g over two locations (Table 3.2). In this experiment, the total folate concentration in lentils was quantified as tetrahydrofolate (THF).

Total folate density among lentil cultivars

The total folate concentration of lentil cultivars ranged from 216 to 290 μ g/100 g with an average of 255 μ g/100 g (Table 3.3). A small red cultivar, CDC Rouleau, showed the highest concentration of 290 μ g/100 g, and a large green cultivar, CDC Greenland, showed the lowest (216 μ g/100 g). Percent recommended dietary intake (%RDA) of folates is 400 μ g/day. Therefore, a single serving of 100 g of lentil on a dry weight basis can supply on average 64% of RDA.

Source	df ^{,a}	Mean square ^b
Genotype	9	9220
Location	1	1904
Year	1	8467
Year*Location	1	399746**
Year*Genotype	9	2545
Location*Genotype	9	13758
Year*Location*Genotype	9	6880**
Error	72	2037

Table 3.1. Pooled analysis of variance for folate concentration for 10 lentil varieties grown in North Dakota, USA in 2010 and 2011.

Degrees of freedom based on three replicates. ^{*b*} Mean square was significantly different at P < 0.05 (**) and P < 0.1 (*).

Percent contribution to the folate RDA varies from 54% (CDC Greenland) to 73% (CDC Rouleau) from a single serving of 100 g of lentils (Table 3.3).

Cluster analysis based on folate least-squares means

Ten lentil cultivars were grouped into three clusters based on the mean values generated from unweighted pair group mean average method of analysis (Fig. 3.1). The two cultivars in cluster I, CDC Rouleau and CDC Richlea ($287-290 \mu g/100 g$ of folate), had the highest level of folate (Fig. 3.1). Cultivars CDC Rosetown, Pennell, CDC Red Rider, and CDC Viceroy were classified as cluster II with a moderate level of folate ($244-269 \mu g/100 g$) (Fig. 3.1). Cluster III consisted of CDC Lemay, Riveland, CDC Redberry, and CDC Greenland with a comparatively lower level of folate ($216-228 \mu g/100 g$) (Fig. 3.1).

Year	Location	folate (µg/100g) ^a	Genotype effect ^b
2010	McLean	196 ^x	**
	Ward	329 ^y	*
	Mean	263	
	SE	13.94	
2011	McLean	310 ^x	NS
	Ward	187 ^y	**
	Mean	249	
	SE	13.03	

Table 3.2. Mean concentration of folate and genotype effect by year and location.

^a Means within a column followed by different letters are significantly different at p < 0.05(n = 60).

^b Genotype effect was significantly different at P < 0.05 (**) and P < 0.1 (*). NS, not significant.

Table 3.3. Mean folate concentration and % recommended daily allowance (%RDA) of
folates from 10 lentil varieties grown in North Dakota, USA, in 2010 and 2011.

Market class	Cultivar	Folate (µg/100g) ^a	% RDA from 100g serving ^b
Small red	CDC Red Rider	252 a	<u>63</u>
	CDC Redberry	219 b	55
	CDC Rouleau	290 a	73
Medium green	CDC Richlea	287 a	72
Extra small red	CDC Rosetown	269 a	67
Large green	Pennell	262 a	66
	CDC Greenland	216 b	54
	Riveland	222 a	56
Small green	CDC Viceroy	244 a	61
Dark green speckled	CDC Lemay	228 b	57
Mean		255	62
SE ^c		13	

^a Means within a column followed by different letters are significantly different at P < 0.05. b The % RDA for folates (400 µg per day for adults) was calculated based on the 100 g serving of lentils (4). cSE, standard error of combined data (n = 120).

Market Class	Cultivar	State	folate (µg/100g)	% RDA from
				100g serving
Yellow Peas	DS Admiral	ND	54	14
	CDC Meadows	ND	41	10
	Spider	ND	55	14
	Mean		50	12
	SE		4	
Green Pea	CDC Striker	ND	50	12
	Shamrock	ND	63	16
	SGDP	ND	202	51
	K2	ND	53	13
	Arcadia	ND	156	39
	Mean		105	26
	SE		35	
Kabuli Chickpea	CDC Frontier	ND	125	31
	Sierra	WA	66	17
	Dylan	WA	54	14
	Dwelley	ID	54	14
	Bronic	ID	59	15
	Billy Bean	ID	42	11
	Troy	ID	70	18
	Sawyer	ID	48	12
	Mean		65	16
	SE		8	

Table 3.4. Comparison of folate concentrations and %RDA from other pulse crops grown in the USA.

Comparison with other food legumes

The total folate concentration in yellow field peas ranged from 41 to 55 μ g/100 g with an average of 50 μ g/100 g, and green field pea folate concentration ranged from 50 to 202 μ g/100 g with an average of 105 μ g/100 g (Table 3.4). Chickpea cultivars had folate concentrations ranging from 42 to 125 μ g/100 g with an average of 65 μ g/100 g (Table 3.4). A 100 g of serving of yellow field peas, green field peas, and chickpeas can supply 12, 26, and 16% of the daily folate intake requirement, respectively (Table 3.4).

Discussion

A folate concentration of 255 μ g/100 g (on average) makes lentil a promising whole food source of folates. To our knowledge, this is the first study to quantify total folate levels in lentils in a replicated field study and the first to analyze variance components in a multiyear and multilocation experiment for folate concentration. Nutritional quality traits of most staple food crops including micronutrient and prebiotic concentrations are mostly influenced by genotype (G) × environment (E) interaction (Falcon 2011; Welch and Graham 1999). In 2010, total folate concentration ranged between 196 and 329 μ g/100 g over two locations.

Fig. 3.1. Dendrogram based on dissimilarity matrix data following the unweighted pair group mean average method.

In 2011, total folate concentration varied from 187 to 310 μ g/100 g over the locations. In May 2011, the Federal Emergency Management Agency declared both Ward and McLean counties as officially affected by flood damage, and both counties were eligible for public assistance (Federal Emergency Management Agency, 2011). This major meteorological difference between the years contributed to the high year × location and year × location × genotype variance components.

This effect of an interaction component influencing total variances for folate concentration is comparable to the results of several previous studies involving micronutrients, prebiotics, and phenolics in lentil (Johnson et al. 2013a; Johnson et al. 2013b; Thavarajah et al. 2011). The predominance of $G \times E$ interaction effects indicates the necessity to include soil fertility analysis of the experimental site particularly before and after the experiment; this analysis will help to evaluate the genetic potential of a genotype for folate concentration more accurately. The grouping of cultivars based on folate concentration will assist in further genetic and agronomic studies for selection and breeding within these lentil market classes. Chickpea and field pea are other cool-season food legumes that are grown extensively in the temperate areas of the world; however, the average concentration of folate (255 µg/100 g) in lentil is higher than in chickpeas and in yellow and green field peas.

This study also indicates that the range of variability within the species is comparatively lower in lentil (216–290 µg/100 g) compared to other food legumes (in the case of kabuli chickpea and field peas folate ranged from 42 to 125 µg/100 g and from 41 to 202 µg/100 g, respectively) (Table 4). The USDA Nutrition Database indicated that total dietary folate equivalences for raw lentils, field peas, and chickpeas are as follows: 479 µg/100 g for lentils, 557 µg/100 g for field peas, and 65 µg/100 g for chickpeas (U.S Department of Agriculture,

2012). Gover et al. reported that the folate concentration of 12 different common beans grown in different locations of the United States ranged from 202 to 257 µg/100 g, and both of these results are similar to the results reported in this study (Goyar et al. 2008). Food folate levels have been measured using different analytical methods including HPLC and microbial assays (Yarbaeva et al. 2011; Hefni et al. 2010; Goyer et al. 2008; Han et al. 2003). These assays include a microbiological method using Lactobacillus rhamnosus (Yarbaeva et al. 2011; Han et al. 2003) and HPLC-MS methods (Yarbaeva et al. 2011; Hefni et al. 2010). Liquid chromatography-mass spectrometry (LC-MS) enables the simultaneous identification and quantification of different folates. In the present study 5-methyl-THF and 10-formyl-THF forms were qualitatively identified to determine the presence of different folate forms. An exhaustive analysis by different excitation/emission by fluorescence detection and use of LC-MS would have provided a range of other folate presence due to the analytical capabilities of those methods. No attempts were made in this study as high-resolution mass spectrometry analysis may not be a feasible high-throughput screening tool due to the time and cost constraints. Therefore, HPLC may be a rapid screening tool when a large number of lentil samples are selected for breeding purposes. Research on folate bioavailability in staple food crops is limited. Food folates are converted to monoglutamyl tetrahydrofolate before absorption in the jejunum. Many factors affect folate bioavailability including folate form, host background, quantity of folate ingested, and nutrient status (Blancquarert et al. 2010). There have been contradictory reports regarding the bioavailability of different folate forms or folic acid. For example, a few studies have suggested that folic acid is more bioavailable than other forms (Gregory et al. 1992). However, other studies reported that there are no significant differences in terms of bioavailability of folic acid and other folate forms (Gregory et al. 1992). Because most of the folate in legumes remains

as THF, the estimates of THF are appropriate as a measure of folate concentrations in lentils (Yarbaeva et al. 2011). Global biofortification efforts for increased levels of micronutrients in lentils have been limited to a few research groups (Johnson et al. 2013a; Thavarajah et al. 2011). A few studies have been reported in which staple crops have been determined to have a useful level of genetic variability for micronutrients including iron, zinc, pro-vitamin A, and carotenoids (Welch and Graham, 2005; Gharam and Welch 2000; Welch and Graham, 1999). On the basis of these initial observations, more detailed future study is suggested to determine the range of genetic diversity that exists in lentil germplasm. This would be helpful to generate data for the entire range of existing genetic variability in this crop species and its close relatives. Furthermore, any future study should also take into consideration the environment and its interaction on genotype effects.

Literature cited

AACC International (2013) Approved Methods AACCI Method 44-15.02

- Blancquaert D, Storozhenko S, Loizeau K, De Steur H, De Brouwer V, Viaene J, Ravanel SP, Rebeille F, Lambert W, Van Der Straeten D (2010) Folates and folic acid: from fundamental research toward sustainable health. Crit Rev Plant Sci 29 (1):14–35
- Falcon CM (2011) Mapping the genes controlling inulin content in wheat. Ph.D. Honors thesis, cornell university, ithaca, NY

FAOSTATS (2010) http://faostat.fao.org/

- Federal Emergency Management Agency (2011) North Dakota Flooding (FEMA-1981-DR), 2011
- Goyer A, Navarre D, Miklas PN (2008) Folate content in select dry bean genotypes. In Annual Report; Bean Improvement Cooperative: East Lansing, MI, p. 132

- Graham RD, Welch R (2000) Plant food micronutrient composition and human nutrition. Commun Soil Sci Plant Anal 31 (11–14):1627–1640
- Green NS (2002) Folic acid supplementation and prevention of birth defects. J Nutr 132 (8):2356S-2360S
- Gregory JF III, Bhandari SD, Bailey LB, Toth JP (1992) Relative bioavailability of deuteriumlabeled monoglutamyl tetrahydrofolates and folic acid in human subjects. Am J Clin Nutr 55:1147–1153
- Han J, Tyler R (2003) Determination of folate concentration in pulses by a microbial method employing trienzyme extraction. J Agric Food Chem 51:5315–5318
- Hefni M, Oehrvik V, Tabekha M, Witthoeft C (2010) Folate content in foods commonly consumed in Egypt. Food Chem 121 (2):540–545
- Institute of Medicine (1998) Food and Nutrition Board. Dietary Reference Intakes, Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy Press, Washington, DC
- Jacques PF, Selhub J, Bostom AG, Wilson PWF, Rosenberg IH (1999) The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 340:1449–1454
- Jastrebova J, Witthoft C, Grahn A, Svensson U (2003) HPLC determination of folates in raw and processed beetroots. Food Chem 80:579–588
- Johnson C, Thavarajah D, Combs GF Jr, Thavarajah P (2013) Lentil (*Lens culinaris* L.): a prebiotic rich whole food legume. Food Res Int 52:107–113

Johnson C, Thavarajah D, Thavarajah P (2013) The influence of phenolic and phytic acid food matrix factors on iron bioavailability potential in 10 commercial lentil genotypes (*Lens culinaris* L.). J Food Compos Anal DOI: 10.1016/j.jfca.2013.94.003

Northern Pulse Growers Association (2013) http://www.northernpulse.com/growers/

- Rader JI (2002) Folic acid fortification, folate status and plasma homocysteine. J Nutr 132 (8):2466S-2470S
- Ray JG, Cole DE, Boss SC (2000) An Ontario-wide study of vitamin B12, serum folate, and red cell folate levels in relation toplasma homocysteine: is a preventable public health issue on the rise? Clin Biochem 33 (5):337–343
- Rohlf FL (2009) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.2; Applied Biostatistics, NY

SAS Institute Inc (2008) SAS/SATS 9.3 User's Guide; SAS Institute: Cary, NC, 2008

- Scott J, Rebeille F, Fletcher J (2000) Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80 (7):795–824
- Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (*Lens culinaris* L.). J Agric Food Chem 56:10747–10753
- Thavarajah D, Thavarajah P (2012) U.S. Pulse Quality Survey 2; North Dakota State University: Fargo, ND, p 12
- Thavarajah D, Thavarajah P, Sarker A, Vandenberg A (2009) Lentils (*Lens culinaris* Medikus subspecies *culinaris*): a whole food for increased iron and zinc intake. J Agric Food Chem 57 (12):5413–5419

- Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs GF. Vandenberg A
 (2011) The potential of lentil (*Lens culinaris* L.) as a whole food for increased selenium,
 iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180 (1):123–128
- The Office of Dietary Supplements (2012) Dietary Fact Sheet, Folates, National Institute of Health, Bethesda, MD
- U.S. Department of Agriculture (2012) Agricultural Research Service USDA National Nutrient Database for Standard Reference, 25, http://ndb.nal.usda.gov
- UN (2008) The United Nations University Conclusions of a WHO Technical Consultation on
 Folate and Vitamin B12 Deficiencies; The United Nations University: Tokyo, Japan, Vol.
 29 (2)
- Welch R, Graham RD (2005) Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J Trace Elem Med Biol 18:299–307
- Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crops Res 60:1–10
- Yarbaeva SN, Giraud D, Albrecht JA (2011) Iron and folate contents of Tajik legumes. Food Nutr Sci 2:337–343

CHAPTER 4. GENETIC VARIATION OF MINERAL CONCENTRATIONS IN *LENS* GENOTYPES

Abstract

Lentil (Lens culinaris Medik.) is an important staple food crop grown in many parts of the world. Information on the seed mineral concentration of genetically diverse Lens genotypes is limited. The objective of this study was to determine the genetic variation of iron (Fe), zinc (Zn), calcium (Ca), copper (Cu), and magnesium (Mg) concentrations in 26 lentil accessions representing 4 Lens species, and 3 subspecies of Lens culinaris. Plants were grown in a greenhouse using a completely randomized design with three replicates. Lentil seed mineral concentration was measured using acid digestion followed by inductively coupled plasma-optical emission spectroscopy. Significant variation in Fe, Zn, Ca, Cu, and Mg concentrations was observed across the different Lens species. Seed concentrations of Fe, Zn, Ca, Cu, and Mg varied from 26-92, 17-51, 97-536, 3-12 and 272-892 mg kg⁻¹, respectively. Mineral concentrations for L. lamottei (Fe=64-80, Zn=26-40, Ca=311-434, Cu=2-6, Mg=754-839 mg kg⁻¹, respectively), L. nigricans (60-70, 33-39, 508-590, 3-4, 445-738 mg kg⁻¹, respectively) and L. ervoides (65, 37, 339, 6, 638 mg kg⁻¹, respectively) were within the range of *Lens culinaris* genotypes. No wild species of lentil was found superior to cultivated lentils for all micronutrients studied. The results indicated that the development of intra-specific populations using contrast parents from cultivated species would be better for mapping genes/QTLs associated with mineral nutrient concentrations in lentil.

Introduction

Two billion people around the world suffer from micronutrient malnutrition (IFAD/FAO/WFP 2011). Micronutrient deficiency results from inadequate intake of vitamins and minerals in diets. Different methods are available today to prevent micronutrient malnutrition, including food fortification, dietary supplementation, diversification, and biofortification. Biofortification, using traditional plant breeding practices combined with biotechnology, is a sustainable approach to the development of mineral-dense staple crops (Pfeiffer and McClafferty 2007; Welch and Graham 1999). Biofortification has been a success for several staple food crops including high protein maize (Zea mays L.) (QPM), β -carotene rich sweet potato (Ipomoea batatas) and rice (Oryza sativa), iron (Fe) rich common bean (Phaseolus vulgaris) and pearl millet (Pennisetum glaucum) cultivars are cultivated in many countries (Bouis et al. 2013). These crop cultivars are gaining popularity among growers in Asia and Africa. White and Broadley (2009) reviewed different mineral biofortification research activities in various crops. They highlighted the potential of agronomic as well as the genetic biofortication to improve the availability of seven mineral traits in human diet, namely, iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se) (White and Broadley 2009).

The development of biofortified crop varieties, particularly nutrient rich food legumes, would have a positive impact in alleviating mineral malnutrition in Asian and African nations. Lentil (*Lens culinaris* Medik.) is a popular pulse crop, grown and consumed throughout the world. *Lens* is a small genus belonging to the Fabaceae family of the Viciae tribe. The genus contains one cultivated species (*L. culinaris* subsp. *culinaris*) with three subspecies (*L. culinaris* subsp. *culinaris*, *L. culinaris* subsp. *orientalis*, and *L. culinaris* subsp. *tomentosus*) and three wild
species (L. ervoides, L. nigricans, and L. lamottei) (Ferguson et al. 2000). Lentil is a potential candidate for mineral biofortification as its nutritional profile is rich in Fe, Zn, and Se (Thavarajah et al. 2011; USDA National Nutrient Database 2015). Identification of mineral dense lentil genotypes is a priority for biofortification research. Karaköy et al. (2012) evaluated mineral concentration of a set of Turkish landraces and cultivated genotypes of lentil and reported considerable genetic variability for Fe, Zn, Cu, Ca, and Mg concentrations. Alghamdi et al. (2014) evaluated 35 advanced ICARDA breeding lines in Saudi Arabia under one field location over two seasons and reported significant variation for Fe, Zn, Cu, Ca, Mg, phosphorus (P), potassium (K), and manganese (Mn) concentrations. However, there is limited information regarding the variation in mineral concentrations among the subspecies of L. culinaris and the wild relatives. If high mineral concentrations exist in the subspecies or wild relatives, interspecific hybridization could be used to introgress improved nutritional quality into cultivated lentil (Ladizinsky 1985). The Lens subspecies and wild relatives are in use in breeding programs as sources of novel traits such as disease resistance not found in the cultivated lentil (Fiala et al. 2009). Lentil and its wild relatives should be evaluated to determine the variability for mineral concentrations and to identify potential candidate donors. The objectives of this study were to: (a) determine the mineral concentrations of 26 Lens genotypes grown under greenhouse conditions, (b) separate lentil genotypes into different groups based on the seed mineral concentration.

Materials and methods

Materials

Chemicals

Chemical reagents and standards used for mineral digestion and analytical determinations were purchased from Alfa Aesar, VWR International and Sigma–Aldrich Co. (St. Louis, MO, USA) and used without further purification. Water (distilled and deionized; ddH_2O) was purified by a Milli-Q Water System (Millipore, Milford, MA, USA) to a resistance of 18.2 M Ω or greater.

Plant materials

The experimental genotypes included 12 *L. culinaris* subsp. *culinaris*, 4 *L. culinaris* subsp. *orientalis*, 3 *L. culinaris* subsp. *tomentosus*, 1 *L. culinaris* subsp. *odemensis*, 1 *L. ervoides*, 3 *L. lamottei* and 2 *L. nigricans* genotypes (Table 4.1). This set of genotypes was selected as it represents different market classes of cultivated lentil as well as the subspecies of *L. culinaris* and the wild relatives. The seeds were obtained from the USDA-ARS Grain Legume Genetics and Physiology Research Unit, WSU, Pullman, Washington, USA and maintained as single plant selections in the former Pulse Quality Laboratory, NDSU, Fargo, ND, USA.

Greenhouse experiment

Ten surface sterilized seeds from each lentil genotype were placed in sterile petri dishes with absorbent filter paper saturated with Millipore filtered water. The petri dishes were placed in the dark at room temperature (22°C). Every second day, the absorbent paper was saturated with 2-3 mL of Millipore water. Plastic pots (15.25cm) were filled with approximately 300 g of a peat- perlite-vermiculite mixture (Sunshine Grow Mix Number 1, Sun Gro Horticulture Canada

Species	Genotype/accession	Remark
L. culinaris subsp. culinaris	CDC Redberry	small red cultivated type
L. culinaris subsp. culinaris	CDC Rosetown	extra small red cultivated type
L. culinaris subsp. culinaris	CDC Rouleau	small red cultivated type
L. culinaris subsp. culinaris	CDC LeMay	small french green cultivated type
L. culinaris subsp. culinaris	CDC Red Rider	medium red cultivated type
L. culinaris subsp. culinaris	CDC Greenland	large green cultivated type
L. culinaris subsp. culinaris	Barimasur-2	small red cultivated type
L. culinaris subsp. culinaris	Barimasur-3	small red cultivated type
L. culinaris subsp. culinaris	Barimasur-4	small red cultivated type
L. culinaris subsp. culinaris	Riveland	large green cultivated type
L. culinaris subsp. culinaris	Eston	small green cultivated type
L. culinaris subsp. culinaris	Pennell	large green cultivated type
L. culinaris subsp. orientalis	IG72594	small seeded wild type
L. culinaris subsp. orientalis	IG72603	small seeded wild type
L. culinaris subsp. orientalis	IG72618	small seeded wild type
L. culinaris subsp. orientalis	IG72896	small seeded wild type
L. culinaris subsp. tomentosus	IG72830	small seeded wild type
L. culinaris subsp. tomentosus	IG72614	small seeded wild type
L. culinaris subsp. tomentosus	IG72616	small seeded wild type
L. culinaris subsp. odemensiss	IG72688	small seeded wild type
L. ervoides	IG72815	small seeded wild type
L. lamottei	IG110810	small seeded wild type
L. lamottei	IG110812	small seeded wild type
L. lamottei	IG110813	small seeded wild type
L. nigricans	IG72548	small seeded wild type
L. nigricans	IG72549	small seeded wild type

Table 4.1. Brief description of 26 genotypes analyzed for five micronutrients.

Inc., ON, Canada) and saturated with deionized water. The pots were allowed to drain overnight, and then the weight of each pot recorded. At seeding, three germinated seeds of each lentil genotype were sown in pots at 70% field capacity. A total of 78 pots were seeded: three replicates of the 26 genotypes with randomization among the pots following a complete randomized design. Greenhouse conditions were as follows: day/night temperatures of 22 °C/ 16 °C; photosynthetically active radiation levels of 300 µmol m⁻²·s⁻¹ using a 16 h photoperiod beginning at 0600 local time, and 50-60% relative humidity.Pots were watered to approximately 70% of free draining moisture concentration every day and 250 mL of nutrient solution were

added to all pots every two weeks. Nutrient concentrations of the all-purpose Plants-Prod 20-20-20 Classic fertilizer solution (Plant Products Co. Ltd., Brampton, ON, Canada) were 20% total N, 20% total P, 20% soluble K, 0.02% B, 0.05% chelated Cu, 0.1% chelated Fe, 0.05% Mo, 0.05% Zn, and 1% EDTA. Plants were thinned to two per pot after one week. Plants were harvested at physiological maturity and threshed individually. Seeds were ground using a stainless steel coffee grinder to obtain fine quality flour.

Mineral concentration

Mineral (Fe, Zn, Cu, Ca, Mg) concentrations in lentil seeds were determined using a previously described modified HNO₃-H₂O₂ method (Alcok et al. 1987; Thavarajah et al. 2009). Finely ground seed samples (500 mg) were placed in individual digestion tubes. Six mL of concentrated (70%) nitric acid (HNO₃) was added to each digestion tube. The digestion tubes were placed in a 90 °C digestion block for one hour and they were shaken at 15 and 45 minutes. Three mL of 30% w/w hydrogen peroxide (H₂O₂) was then added to each tube. The tubes were kept for 15 m at 90 °C temperature. Finally, 3 mL of 6 M hydrochloric acid (HCl) was added to each digestion tube, and the tubes were kept in the digestion block for 5 minutes. Upon complete digestion (the time required for complete digestion was determined in earlier laboratory experiments, the complete digestion is indicated by the discontinuation of brown smoke coming out from the digestion tube), the tubes were removed from the digestion block, the volume was adjusted to 10 mL, and then filtered (Whatman No. 1 filter papers) using a vacuum system (Gardener Denver Thomas Inc., Welch Vacuum Technologies, LA, USA). Mineral concentrations of the filtrates were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES); ICP-6500 Duo, Thermo Fisher Scientific, Pittsburg, PA, USA). Plasma settings of the ICP were, flush pump rate-75 rpm, analysis pump rate- 50 rpm, pump stabilization time- 5 s, pump tubing type- orange/white tygon. Source setting of the ICP were, RF powar-1150, auxillary gas flow- 1 litre/min, nebulizer gas flow- 0.7 litre/min. Sample flush time of the ICP was 10 s with 3 repeats and plasma view was in autoview mode. Measurements of total minerals were validated using National Institute of Standards and Technology (NIST) standard reference material (SRM) 1576a (wheat flour; [Fe]=14.11±0.13 mg kg⁻¹, [Zn]=11.61±0.26 mg kg⁻¹, [Ca]=191.4±3.3 mg kg⁻¹, [Mg]=398±12 mg kg⁻¹, [Cu]=2.03±0.14 mg kg⁻¹). Calibration curves for Fe, Zn, and Cu concentration were made using serial dilutions from 0.5 to 50.0 mg L⁻¹. The detection limit was 5 μ g L⁻¹. Calibration curves for Ca and Mg concentration were made using serial dilutions from 10 to 500 mg L⁻¹.

Statistical analysis

The experimental design was a completely randomized design (CRD) with three replicates of 26 *Lens* genotypes (n=78). Analysis of variance was performed using the General Linear Model (PROC GLM) of SAS version 9.3 (SAS Institute, 2009). Means were separated using Fisher's protected least significant difference (LSD) at P < 0.05. Lentil mineral concentrations were subjected to dissimilarity coefficient analysis using NTSYSpc ver. 2.2 (Rohlf 2009). Cluster analysis following an unweighted pair group method with arithmetic average (UPGMA) based on a dissimilarity matrix data was performed using NTSYSpc ver. 2.2. A dendrogram was developed using cluster analysis.

Results

Mean Fe concentration was 61 mg kg⁻¹ across all 26 lentil genotypes tested (Table 4.2). Among the 20 *L. culinaris* genotypes, Fe concentration ranged from 26 (IG72830) to 92 mg kg⁻¹ (CDC Red Rider) with a mean of 58 mg kg⁻¹. CDC Redberry and CDC Red Rider had a significantly higher concentration of Fe compared to other tested genotypes. Fe concentration was significantly lower in the genotypes belonging to different *L. culinaris* subspecies (*L. culinaris* subsp. *culinaris*, *L. culinaris* subsp. *orientalis*, and *L. culinaris* subsp. *tomentosus*) than in improved cultivars or breeding lines (*L. culinaris* subsp. *culinaris*). *L. lamottei* genotype IG110810 had a significantly higher concentration (80 mg kg⁻¹) of Fe compared to other non-*culinaris* wild types. All the non-*culinaris* wild type genotypes differed significantly in terms of Fe concentration except IG110812 (*L. lamottei*) and IG72815 (*L. ervoides*). Notably, CDC bred cultivars had significantly higher Fe concentrations than the Barimasur series, with the exception of Eston. Percent recommended daily allowance (RDA) of Fe for the genotypes evaluated ranged from 14-51% per serving.

For the 26 lentil genotypes evaluated, the mean Zn concentration was 33 mg kg⁻¹ (Table 4.2). Zn concentration ranged from 17 (IG72830) to 51 mg kg⁻¹ (CDC Rosetown) among the 20 *L. culinaris* genotypes with a mean of 32 mg kg⁻¹ (Table 4.2). Within *L. culinaris* subsp. *culinaris* genotypes CDC Rosetown (51 mg kg⁻¹) had a significantly higher concentration of Zn compared to other genotypes. Among the other subspecies (*L. culinaris* subsp. *culinaris*, *L. culinaris* subsp. *orientalis*, and *L. culinaris* subsp. *tomentosus*) IG72614 (43 mg kg⁻¹) had a significantly higher concentration of Zn compared to other genotypes differed significantly in terms of Zn concentration. Means within a column followed by different letters are significantly different at P< 0.05 (n = 78), Percent RDA values were calculated with daily requirement of 18 mg of Fe and 8 mg of Zn (females, age 19+ years) (Otten et al. 2006). Percent RDAs were calculated based on the serving size of 100 g of dry

Genotype		%RDA		%RDA
	Fe concentration Zn concentrati		Zn concentration	
	(mg·kg-1)		(mg·kg-1)	
CDC Redberry	91 a	51	37 c,d	46
CDC Rosetown	82 a,b,c	46	51 a	64
CDC Rouleau	71 a,b,c,d,e	39	46 a,b	58
CDC LeMay	68 b,c,d,e,f	38	31 d,e,f,g,h	39
CDC Red Rider	92 a	51	45 a,b	56
CDC Greenland	64 c,d,e, f,g,	36	43 b,c	54
Barimasur-2	52 e,f,g,h,i,j	29	33 d,e,f,g	41
Barimasur-3	46 f,g,i,j,k,h	26	31 d,e,f,g,h	39
Barimasur-4	36 i,j,k	20	25 h,i,j	31
Riveland	62 c,d,e,f,g,h	34	30 e,f,g,h,i	38
Eston	39 h,i,j,k	22	17 k	21
Pennell	87 a,b	48	36 c,d,e	45
IG72594	54 e,f,g,h,i	30	33 d,e,f	41
IG72603	34 j,k	19	18 k	23
IG72830	26 k	14	17 k	21
IG72688	36 i,j,k	20	22 j,k	28
IG72614	58 d,e,f,g,h	32	43 b,c	54
IG72616	61 c,d,e,f,g,h	34	36 c,d,e	45
IG72618	43 g,h,i,j,k	24	24 i.j.k	30
IG72896	67 b,c,d,e,f	37	26 g,h,i,j	33
IG110810	80 a,b,c,d	44	26 f,g,h,i,j	33
IG110812	64 b,c,d,e,f,g	36	40 b,c	50
IG110813	70 a,b,c,d,e	39	31 b,c	39
IG72548	60 c,d,e,f,g	33	28 f,g,h,i,j	35
IG72549	71 a,b,c,d,e	39	33 d,e,f	41
IG72815	65 b,c,d,e,f,g	36	37 c,d,e	46
Mean	61	39	33	41
SE	2.4		1.1	
Range	26-92	14-51	17-51	21-64

Table 4.2. Mean iron (Fe) and zinc (Zn) concentrations for 26 genotypes and the fraction of the recommended daily allowance (RDA) that each genotype would supply based on 100 g serving size.

lentil. Among the non-culinaris wild types, IG110812 (40 mg kg-1) had significantly higher concentration of Zn. There was no significant difference for zinc concentration between CDC

cultivars and Barimasur series. Each serving of lentil accounts for 21-64% of RDA of Zn (8 mg) (Otten et al. 2006).

The mean Cu concentration across all lentil genotypes was 6 mg kg⁻¹ (Table 4.3). Cu concentration among the 20 *L. culinaris* genotypes ranged from 2.6 (IG72688) to 12.0 mg kg⁻¹ (CDC Rosetown) with a mean of 6 mg kg⁻¹. Within *L. culinaris* subsp. *culinaris* genotypes, CDC Rosetown (12 mg kg⁻¹) had significantly higher concentration of Cu compared to other genotypes. Among the other subspecies (*L. culinaris* subsp. *culinaris*, *L. culinaris* subsp. *orientalis*, and *L. culinaris* subsp. *tomentosus*), genotypes belonging to *tomentosus* subspecies, IG72614 (12 mg kg⁻¹) and IG72616 (12 mg kg⁻¹) had significantly higher concentration of Cu than other genotypes. Among the non-*culinaris* wild type genotypes IG110812 (6 mg kg⁻¹) and IG72815 (6 mg kg⁻¹) recorded significantly higher concentration of Cu. CDC cultivars had significantly higher Cu concentrations than the Barimasur series (except Eston, 4 mg kg⁻¹). Tested lentil genotypes have the potential to meet 22-133% of the Cu RDA (0.9 mg) (Otten et al., 2006) per serving.

Among all evaluated lentil genotypes, the mean Ca concentration was 339 mg kg⁻¹ (Table 4.3). Mean Ca concentration among the 20 *L. culinaris* genotypes was 323 mg kg⁻¹, with the lowest concentration in Eston (97 mg kg⁻¹) and the highest in Pennell (536 mg kg⁻¹). Within *L. culinaris* subsp. *culinaris* genotypes, Pennell (536 mg kg⁻¹) had significantly higher concentration of Ca compared to other genotypes. Genotype from the *orientalis* subspecies [IG72594 (534 mg kg-1)] had a significantly higher concentration of Ca than other genotypes. Among the non-culinaris wild type genotypes belonging to *L. nigricans*, IG72548 (508 mg kg-1) and IG72549 (590 mg kg-1), had a significantly higher concentration of Ca. There was no

Genotype	Cu	%RDA	Ca	%AI	Ma	%RDA
	(mg_1kg^{-1}) (mg_1kg^{-1}) (mg_1kg^{-1})					
CDC Redherry	$\frac{(\log kg)}{10 h}$	111	$\frac{110 \text{ kg}}{323 \text{ h}}$	3	<u>(IIIg Kg)</u> 272.1	0
CDC Resetown	12.0 a	133	257 ef	3	123 i k 1	14
CDC Rouleau	12.0 a	100	2570,1	3	556 h	19
CDC LoMov	9.0 0,0,u 7 d o f	100 78	100 b	3	$\frac{350}{20}$ n,1,1	18
CDC Leiviay	7 u,c,i 10 h	70	4090	+ 1	656 d o f a h i	27
CDC Keu Kluel	100 00b a d	100	3010,c	4 2	$610 \text{ f}_{\alpha} \text{ h}_{i}$	21
DC Greenland	9.00, c, d	100	203 1,g	2	6101, g, n, 1	20
Darimasur-2	4.0 g,n,i,j	44	33 / 0, c, d, e	3	097 c, a, e, i, g, ii, i 707 la s 1 s f s 1	22
Barimasur-3	4.01, j, K	44	314 b,c,d,e	3 2	/0/b,c,d,e,I,g,n	25
Barimasur-4	6.0 I,g,n,1	0/ 00	344 b,c,d,e	3	662 d,e,I,g,n,1	21
Riveland	8.0 b,c,d	89	355 b,c,d	4	53 / 11,j	l /
Eston	4.0 g,h,1,J	44	97 h	l	331 Ik,I	11
Pennell	7.0 d,e,f	78	536 a	5	892 a	29
IG72594	3.0 j,k	33	534 a	5	584 g,h,i,j	19
IG72603	3.0 j,k	33	313 b,c,d,e	3	581 g,h,i,j	19
IG72830	4.0 j,k	44	112 g,h	1	375 1k,1	12
IG72688	3.0 j,k	33	352 b,c,d,e	4	643 e,f,g,h,i	21
IG72614	6.0 e,f	67	304 c,d,e	3	807 a,b,c,d	26
IG72616	6.0 e,f,g	67	341 b,c,d,e	3	865 a,b	28
IG72618	4.0 h,i,j	44	264 d,e,f	3	540 i,j	17
IG72896	3.0 j,k	33	368 b,c	4	732 a,b,c,d,e,f,g	24
IG110810	2.0 k	22	357 b,c,d	4	754 a,b,c,d,e,f	24
IG110812	6.0e,f,g,h	67	311 c,d,e	3	789 a,b,c,d,e	25
IG110813	5.0 e.f	56	434 c.d.e	4	839 a.b.c.d	27
IG72548	4.0 i.i.k	44	508 a	5	738 a.b.c.d.e.f.g	24
IG72549	3.0 j.k	33	590 a	6	445 i.k	14
IG72815	6.0 e.f	67	292 c.d.e.f	3	756 a.b.c.d.e.f	24
Mean	6	67	339	3	638	21
SE	0.3	<i></i>	14	e e	21	
Range	2-12	22-133	97-590	1-6	272-892	9-29

Table 4.3. Mean copper (Cu), calcium (Ca) and magnesium (Mg) concentration of 26 genotypes and for 26 genotypes and the fraction of the recommended daily allowance (RDA) that each genotype would supply based on 100 g serving size.

Range2-1222-13397-5901-6272-8929-29Means within a column followed by different letters are significantly different at P < 0.05 (n =78), Percent RDA were calculated with daily requirement of 900 µg for Cu, 1000 mg for Ca, and310 mg for Mg (females, age 19+) (Otten et al. 2006). Percent RDAs were calculated based onthe serving size of 100 g of dry lentil. For Ca, Adequate Intake (AI) values are available, not theRDA (Otten et al. 2006).

significant difference for Ca concentration between the CDC cultivars and the Barimasur series. Percent RDA (1000 mg) of Ca (Otten et al 2006) ranged from 1-6% per serving.

The mean Mg concentration among all tested lentil genotypes was 638 mg kg⁻¹ (Table 4.3). Magnesium concentration ranged between 272 (CDC Redberry) and 892 mg kg⁻¹ (Pennell) among the 20 *L. culinaris* genotypes, with a mean of 616 mg kg⁻¹. Pennell had the highest Mg concentration of all *L. culinaris* subsp. *culinaris* genotypes tested. Within *L. culinaris* subsp. *culinaris* genotypes tested. Within *L. culinaris* subsp. *culinaris* genotypes tested. Within *L. culinaris* subsp. *culinaris* genotypes, Pennell (892 mg kg⁻¹) had a significantly higher concentration of Mg compared to other genotypes. Genotypes from the *tomentosus* subspecies [IG72614 (807 mg kg⁻¹) and IG72616 (865 mg kg⁻¹)] had a significantly higher concentration of Mg than other genotypes. Genotypes belonging to *L. lamottei*, IG110813 (839 mg kg⁻¹) had a significantly higher concentration of Mg compared to other genotypes. The Barimasur series did not significantly differ in Mg concentration from the CDC cultivars. Percent RDA (310 mg) of Mg (Otten et al 2006) ranged from 9-29% per serving.

Cluster analysis based on the mineral concentrations

Based on the cluster analysis, five groups were formed (Fig. 4.1). Cluster I consisted of only one genotype, CDC Redberry, which had a unique mineral profile. Cluster II contained two genotypes, Eston and IG72830. The genotypes constituting Cluster III were: CDC Rosetown, CDC Rouleau, CDC Greenland, Riveland, IG72603, and IG72618. The largest cluster, Cluster IV, consisted of CDC LeMay, CDC Red Rider, Pennell, IG72548, Barimasur-2, Barimasur-3, Barimasur-4, IG72614, IG72616, IG72688, IG110810, IG110812, IG110813, IG72815, IG72896. Cluster V contained two genotypes, IG72594 and IG72549.

Discussion

Lentil is a cool season food legume with a narrow genetic base, therefore genetic variability for individual traits is generally low (Eujayl et al. 1998). This was shown for recently improved lentil cultivars with similar or identical pedigrees (Kumar et al. 2004). Interspecific hybridization, either directly between cross compatible species or indirectly between crossincompatible species using a bridge species, can be used in the genetic improvement of lentils (Kumar et al. 2011). This technique is utilized when a desirable characteristic is present in another related or crossable species (Tullu et al. 2011).

Fig. 4.1. Dendrogram based on mineral concentrations of 26 *Lens* **genotypes following unweighted pair group mean average method.** Five clusters were formed based on mineral concentrations (Fe, Zn, Cu, Ca and Mg) of the 26 genotypes.

Biofortification for mineral traits is a priority research area in food legumes (including lentil) (Grusak 2009; Thavarajah et al. 2009, 2011; Johnson et al. 2013; Iqbal et al. 2006; Hunt 2003). Development of genotypes with higher concentrations of mineral nutrients is important to allow lower quantities of lentil would to be consumed to meet the recommended daily allowance (USDA National Nutrient Database 2015). Thus, lower intake requirements are important from a practical as well as economic point of view. Wild species and subspecies of a genus are usually a poor source for mineral traits, however, crossing two different species or subspecies may generate transgressive segregants due to accumulation of additive genes. The selection of genotypes based on concentration of micronutrients (Fe, Zn, Cu, Ca, Mg) (Tables 4.2 and 4.3) could be utilized to develop intraspecific or interspecific mapping populations. While making interspecific crosses the cross-compatibility has to be taken into consideration. The primary gene pool members are easily cross-compatible (*Lens culinaris* subsp. *culinaris*, *Lens culinaris* subsp. *odemensis*, *Lens culinaris* subsp. *orientalis*, *Lens culinaris* subsp. tomentosus) (Ferguson et al. 2000). Crossing between primary and secondary/tertiary gene pools members (*L. ervoides*, *L. lamottei*, *L. nigricans*) may not be successful or require use of tissue culture based techniques like embryo rescue or use of bridge species in making crosses (Ferguson et al. 2000).

In the present study, significant variation in mineral (Fe, Zn, Cu, Ca, Mg) concentration was observed. Similarly, Karaköy et al. (2012) studied the mineral status of Turkish lentil landraces and cultivars in lentil and reported Fe concentration from 49.4 to 81.4 mg kg⁻¹. The concentrations reported for Zn, Cu, Ca, and Mg were 46.9-73.1 mg kg⁻¹, 9.1-16.9 mg kg⁻¹, 480-1280 mg kg⁻¹ and 850-1260 mg kg⁻¹, respectively. Similarly, Solanki et al. (1999) evaluated improved lentil cultivars in India and reported Fe and Ca concentration from 80 to 92 (mg kg⁻¹), and 1150 to 1650 (mg kg⁻¹), respectively. The Ca concentrations Solanki et al. (1999) reported were higher than those from the present study, possibly due to the genotypic differences in Indian lentil cultivars and or different soil conditions. Thavarajah et al. (2009) reported Fe and Zn concentrations in the range of 73-90 and 44-54 mg kg⁻¹, respectively, in a set of lentil cultivars grown in 9 locations in Saskatchewan, Canada over 2 years. The present study demonstrated more variation for these two micronutrients, which is attributed to the inclusion of related species in addition to L. culinaris. Zia-Ul-Haq et al. (2011) evaluated four improved lentil cultivars in Pakistan for different micronutrients and reported that Fe, Zn, Cu, and Ca concentration ranged from 27-32, 39-44, 89-99, and 1180-1210 (mg kg⁻¹), respectively. In a study comparing micronutrient concentrations in different legumes, Iqbal et al. (2006) found that Fe, Zn, Cu, Ca and Mg concentration was 31, 44, 99, 1200, and 45 (mg kg⁻¹), respectively, in lentil. In these studies, the reported Fe concentration was low and the Ca and Cu concentrations were high compared to the concentrations observed in the present study. The differences may be due to the fact that seeds were not from the single uniform trials, as no information is available from these reports with regard to how plants were grown in the field or greenhouse. In addition, differences might be due to their use of less sensitive or accurate flame/graphite atomic absorption spectrophotometer (AAS) instrument, compared to the more sensitive ICP-OES, to determine micronutrients. AAS is more vulnerable to physical and chemical interferences compared to ICP-OES. Alghamdi et al. (2014) studied 35 advanced breeding lines of cultivated lentil in Saudi Arabia from a field trial over two years and reported concentrations for Mg (1261-1573 mg kg⁻¹), Ca (64.9-84 mg kg⁻¹), Fe (65.7- 85.7 mg kg⁻¹), Zn (26.3 -45.1 mg kg⁻¹), and Cu (8.6 -13.7 mg kg⁻¹). This corresponds closely to the concentrations of Fe, Zn, and Cu but not for Mg and Ca concentration reported in the present study.

Cluster analysis grouped the genotypes into five groups. CDC Redberry, the sole member of Cluster I, has a unique mineral profile with high Fe, low Zn, high Ca, moderately high Cu and low Mg concentrations compared to the other genotypes. For the other clusters the grouping of genotypes based on their mineral concentrations parallels their taxonomic designations (Table 4.1).

The Food and Nutrition Board of the Institute of Medicine, USA established percent recommended daily allowance (RDA) for the minerals (Otten et al., 2006). The RDA is the average recommended daily level of intake of a particular nutrient that is sufficient to meet the nutrient requirements of nearly all (97-98%) healthy people (Otten et al. 2006). The values vary by age and gender and in this study, the RDA used for calculations are for females, 19 to 50 years old. This class of individuals was chosen because for most of the minerals daily intake requirements were higher compared to other age groups. Percent RDA values were calculated based on a 100 g serving size of dry lentils for each of the minerals (Otten et al. 2006). A considerable proportion (for Fe 14-51%, for Zn 21-64%, for Cu 22-133%, for Mg 9-29%) of RDA for minerals would be obtained from consuming 100 g of dry lentils (Table 4.2 and 4.3) which is similar to data reported in previous studies (Thavarajah et al. 2009, 2011). Percent RDA of Ca was only 1-6% in the case of tested lentil genotypes which indicates lentil as not a good source to meet the daily requirements of Ca. Developing lentil varieties with high concentrations of Fe and Zn would be especially beneficial for those parts of the world (Asian and African countries) where 40-45% of school-age children are Fe- and Zn-deficient (de Benoist et al. 2008).

Lentils are an integral part of diets in many countries in Asia, including Bangladesh, Nepal, India, and Pakistan. People living in these areas are affected with mineral deficiencies, particularly iron deficiency. Biofortification of minerals in lentil will have a positive impact on maternal and child health in these mineral deficient areas. Cluster analysis based on the overall mineral profile grouped the tested genotypes into five clusters that corresponded to their genetic relatedness. None of the groups had high concentrations of all the minerals (Fe, Zn, Cu, Ca and Mg). This information could be of potential use for intra- or interspecific hybridization in lentil for quality traits. While this study is not exhaustive, it may serve as a caution for potential linkage drag on seed mineral nutrient concentration when introgressing a desired trait, e.g. disease resistance from the *Lens* subspecies or wild relatives into current cultivars. Utilization of different genotypes with very high and very low mineral concentrations identified may result in the generation of mapping populations that could be used for mapping gene(s) or QTL(s) controlling these micronutrients in lentil. Genomic approaches (Kaur et al. 2011; Verma et al. 2013; Sharpe et al. 2013; Wong et al. 2015) could be used to map or tag genes involved for these mineral traits in lentil and for precision introgression of novel traits from the *Lens* species and wild relatives.

Literature cited

- Alcock, NW (1987) A hydrogen-peroxide digestion system for tissue trace-metal analysis. Biol Tr Ele Res 13:363–370
- Alghamdi SS, Khan AM, Ammar MH. El-Harty EH, Migdadi HM, El-Khalik SMA, Al-Shameri AM, Javed MM, Al-Faifi SA (2014) Phenological, nutritional and molecular diversity assessment among 35 introduced lentil (*Lens culinaris* Medik.) genotypes grown in Saudi Arabia. International J Mol Sci 15:277-295
- Bouis H, Low J, McEwan M, Tanumihardjo S (2013) Biofortification: Evidence and lessons learned linking agriculture and nutrition. FAO, WHO. Published online http://www.fao.org/fileadmin/user_upload/agn/pdf/Biofortification_paper.pdf accessed on 27 Oct 2015.

- de Benoist B, McLean E, Egli I, Cogswell M (2008) Worldwide prevalence of anaemia 1993–2005. World Health Organization. Published online http://apps.who.int/iris/bitstream/10665/43894/1/9789241596657_eng.pdf accessed on 27 Oct 2015.
- Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998) A genetic linkage map of lentil (*Lens* sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83-89.
- Ferguson ME, Maxted N, van Slageren M, Robertson, LD (2000) A re-assessment of the taxonomy of *Lens* Mill. (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133:41– 59
- Fiala, JV, Tullu A, Banniza S, Séguin-Swartz G, Vandenberg A (2009) Interspecies transfer of resistance to anthracnose in lentil (*Lens culinaris* Medic.). Crop Sci 49:825-830
- Grusak M (2009) Nutritional and health-beneficial quality. In: The Lentil: Botany, Production and Uses. Erskine W (ed), CAB International, Oxford, UK. 368-390
- Hunt JR (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Ams J Clin Nutr 78:633S–639S

IFAD/FAO/WFP (2011) The State of Food Insecurity in the World. Rome, Italy: FAO

- Iqbal A, Khalil IA, Ateeq N, Khan MS (2006) Nutritional quality of important food legumes. Food Chem 97:331–335
- Johnson C, Thavarajah D, Combs GF Jr, Thavarajah P (2013) Lentil (*Lens culinaris* L.): a prebiotic rich whole food legume. Food Res Int 52:107–113

- Karaköy T, Erdem H, Baloch FS, Toklu F, Eker S, Kilian B, Özkan H (2012) Diversity of macro-and micronutrients in the seeds of lentil landraces. Sci World J doi:10.1100/2012/710412
- Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011) Transcriptome sequencing of lentil based on second-generation technology permits largescale unigene assembly and SSR marker discovery. BMC Genomics 12:265
- Kumar S, Gupta S, Chandra S, Singh BB (2004) How wide is the genetic base of pulse crops? In:
 Pulses in new perspective, Ali M (ed). Indian Society of Pulses Research and
 Development, Kanpur, India. 211-22. Available at
 http://eprints.icrisat.ac.in/9335/1/Howwide 211-221 20004.pdf
- Kumar S, Imtiaz M, Pratap A, Gupta S (2011) Distant hybridization and alien gene introgression in food legumes. In: Biology and Breeding of Food Legumes. Pratap A, Kumar J (eds), CAB International, Oxford, UK. 81-110
- Ladizinsky G, Cohen D, Muehlbauer FJ (1985) Hybridization in the genus *Lens* by means of embryo culture. Theor Appl Genet 70:97-101.
- Otten JJ, Hellwig JP, Meyers LD (2006) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. The National Academies Press, Washington, DC, USA
- Pfeiffer WH, McClafferty B (2007) HarvestPlus: Breeding crops for better nutrition. Crop Sci 47:89–105
- Rohlf, FJ (2009) NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.21q Exeter Publ, New York, USA
- SAS Institute Inc (2008) SAS/SATS 9.3 User's Guide; SAS Institute: Cary, North Carolina

- Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R, Kagale S, Vijayan P, Vandenberg A, Bett KE (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14:192.
- Solanki IS, Kapoor AC, Singh, U (1999) Nutritional parameters and yield evaluation of newly developed genotypes of lentil (*Lens culinaris* Medik.). Plant Foods Hum Nutr 54:79–87
- Thavarajah D, Thavarajah P, Sarker A, Vandenberg A (2009). Lentils (*Lens culinaris* Medikus Subspecies *culinaris*): a whole food for increased iron and zinc intake. J Agr Food Chem 57:5413–5419
- Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs GF Jr, Vandenberg, A (2011). The potential of lentil (*Lens culinaris* L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180:123–128
- Tullu A, Diederichsen A, Suvorova G, Vandenberg A (2011) Genetic and genomic resources of lentil: status, use and prospects. Plant Genet Resour 9:19-29
- U.S. Department of Agriculture. Agricultural Research Service (2015) USDA National Nutrient Database for Standard Reference, 27. Available at http://ndb.nal.usda.gov/ndb/foods/show/4782?manu=&fgcd= accessed on 27 Oct 2015.
- Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (*Lens culinaris* Medik.) transcriptome. Plant Biotechnol J 11:894-905
- Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable and nutritious. Field Crop Res 60:1–10

- White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets: iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182:49-84. doi: 10.1111/j.1469-8137.2008.0273
- Wong MM, Gujaria-Verma N, Ramsay L, Yuan HY, Caron C, Diapari M, Vandeberg A, Bett K E (2015) Classification and characterization of species within the genus Lens using genotyping-by-sequencing (GBS). PloS One 10:e0122025
- Zia-Ul-Haq M, Ahmad S, Shad MA, Iqbal S, Qayum M, Ahmad A, Luthria DL, Amarowicz, R (2011) Compositional studies of lentil (*Lens culinaris* Medik.) cultivars commonly grown in Pakistan. Pakistan J Bot 43:1563–1567

CHAPTER 5. GENETIC DIVERSITY ANALYSIS OF CULTIVATED AND WILD LENTIL SPECIES

Abstract

Lentil (*Lens culinaris* Medikus) is an important food legume grown extensively throughout the world. This study investigated the genetic relatedness of 29 *Lens* genotypes using simple sequence repeat (SSR) marker-based genotyping. Tissue samples were collected from two-week old seedlings. Twenty-nine *Lens* genotypes were fingerprinted with 39 SSR markers. Thirteen markers were polymorphic among the test genotypes. Thirteen SSRs grouped the 29 *Lens* genotypes, based on their genetic relatedness, into four clusters. Jaccard similarity coefficients ranged between 0.31-0.72. Polymorphic information contents ranged from 0.18-0.64 and average number of alleles amplified per marker was three. Percent variability explained by individual principal components indicated significant diversity. This study demonstrated genetic relatedness among different species of *Lens*.

Introduction

Lentil (*Lens culinaris* Medik.) is a popular food legume consumed heavily in India, Bangladesh, Nepal and many other parts of the world. With the recent trend of gluten-free food products and healthy diet charts, lentil is being introduced extensively to restaurant menus in many parts of the world. Lentil is a high protein, mineral, vitamin, and energy crop with many nutritional benefits (Thavarajah et al. 2011; Sen Gupta et al. 2013). Lentil is mainly grown in Canada, India, Australia, Turkey, USA, Bangladesh, Syria, Iran, Ethiopia and Nepal. Initially, only small to medium sized 'Persian' types were introduced for cultivation in the USA where the primary production areas are Montana, North Dakota, Idaho and Washington. In 2014-15, US grown lentils were expoted to India (33%), Spain (14%), Peru (5%), Mexico (5%), Canada (4%),

other latin-American (<10%) and South-Asian countries (<10%) and the Middle East (<10%) (USDA Economic Research Service Database 2015). USA produced 0.23 MT with average production of 1621 kg/ha (FAOSTAT 2013). The world production of lentil was 4.95 MT with average yields of 1139 kg/ha (FAOSTAT 2013).

Lentil (*Lens culinaris* Medik.) is a member of the leguminosae family, and was derived from the wild progenitor species *Lens culinaris* subsp. *orientalis* (Ferguson et al. 2000). *Lens* is comprised of only one cultivated species (Medik.) and several wild species or subspecies, including *L. ervoides*, *L. nigricans*, *L. lamottei*, *L. culinaris* subsp. *orientalis*, and *L. culinaris* subsp. *tomentosus* (Ferguson et al. 2000).

Molecular markers are useful to assess genetic diversity in crop species including the food legumes (Udupa et al. 1999; Reddy et al. 2010). Transcriptome sequencing or marker transferability have generated hundreds of markers in lentil, however, availability of polymorphic SSR markers and their use in the assessment of genetic diversity is still limited in lentil compared to other food legumes such as chickpea and pigeonpea (Hamwieh et al. 2005, 2009; Kaur et al. 2011, 2014; Datta et al. 2011; Verma et al. 2014). Hamweigh et al. (2009) developed 14 microsatellite markers from a genomic library developed in lentil genotype ILL5588. Kaur et al (2011) validated a set of 166 EST-SSR markers among which 79 were polymorphic. Kaur et al. (2014) reported polymorphic 61 SSRs and 264 SNPs after testing 546 SSRs and 768 SNPs in lentil.

In another study, twenty-three primer pairs showed polymorphism in a set of 24 genotypes comprising lentil, *Glycine*, *Medicago* and *Vigna* genotypes (Verma et al. 2013). Verma et al. (2014) developed EST-SSRs by transcriptome sequencing and validated 33 polymorphic EST-SSRs among 46 lentil and other food legume genotypes. Recently, Andeden et

al. (2015) developed 78 polymorphic SSR markers in lentil. The objective of the current experiment was to assess population structure of 29 genotypes across multiple *Lens* species using SSR markers.

Materials and methods

Plant materials

Twenty-nine *Lens* genotypes were used [CDC Maxim, CDC Rouleau, Barimasur-4 (Sarker et al. 1999), CDC LeMay, CDC Viceroy, Eston, WA8649090 (Kahraman et al 2004a), CDC Rosetown, PI 572359, CDC Richlea, CDC Redberry(Vandenberg et al. 2006), PI 320937, Precoz (Kahraman et al 2004b), CDC Greenland, Pennell (Muehlbauer and McPhee 2004), Riveland (McPhee and Muehlbauer 2009), CDC Red Rider, IG 72618, IG 72688, IG 72549, IG 72603, IG 72830, IG 72594, IG 110813, IG 72614, IG 110812, IG 110810, IG 72616, and IG 72896] (Table 5.1). The seed materials were obtained from the former Pulse Quality and Nutrition Laboratory of North Dakota State University (NDSU), Fargo, North Dakota, USA and the Grain Legume Genetics and Physiology Research Unit, USDA-ARS, WSU, Pullman, Washington, USA.

Genotyping of plant materials

Plant tissue samples were collected from two week old seedlings of individual genotypes. DNA extraction was carried out using a DNeasy® Plant Mini Kit (Qiagen, Valencia, CA, USA), and DNA concentrations were quantified using a Nanodrop 2000c spectrophotometer (Nanodrop, Wilmington, DE, USA). The extracted DNA samples were diluted to a uniform concentration of 20 µg/µL for subsequent polymerase chain reaction (PCR) amplification. Thirty-nine SSR primer pairs (Table A1) developed by genome or transcriptome sequencing of *Medicago (Medicago truncatula* Gaertn.) and/or lentil (Gupta et al. 2012; Kaur et al. 2011) were synthesized by Integrated DNA Technologies (Coralville, IA, USA). The PCR reactions (25 μL volume) were conducted in an ABI 7500 (Applied Biosystems, Foster, CA, USA) thermocycler. Each reaction contained 2.5 μL Taq buffer (Sigma, USA), 1.5 μL MgCl₂ (25 mM) (Sigma, USA), 0.20 mM of each dNTP (Sigma, USA), 0.50 mM of each primer (IDT, USA), 0.25 μL Hot Start Taq polymerase (Sigma, USA), and 20 ng of template DNA. Touchdown PCR conditions were 95 °C for 10 min, followed by 10 cycles of 94 °C for 30 s, 60-50 °C for 30 s, 72 °C for 30 s followed by 25 cycles of 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 30 s and a final elongation step of 72 °C for 10 min (Kaur et al. 2011). The PCR products were resolved in 3% agarose gel (molecular biology grade; Sigma, USA) with bands scored using a gel documentation system. Polymorphism information content (PIC) values of the informative markers were calculated using PICcalc (Nagy et al. 2012).

Statistical analysis

Bands were scored for presence or absence as '1' and '0', respectively. The binary data matrix was subjected to statistical analysis using NTSYS version 2.21q software (Rolhf 2009) following the UPGMA (Un-weighted Pair Group Method with Arithmetic Mean). Principal component analysis (PCA) using NTSYS ver. 2.21q was performed to determine the percent variation explained by individual components.

Table 5.1. Description of *Lens* genotypes used for genotyping with 39 SSR markers.

Genotype	Species	Pedigree description	General description	Reference
CDC Redberry	Lens culinaris Medik.	Cross between 1049F ₃ / 819-5R.	Improved cultivar maintained	Vandenberg et
	subsp. culinaris .	Line 1049F ₃ was derived from	by Crop Development Centre,	al. 2006
		the cross 567-16/545-8. Line	University of Saskatchewan,	
		819-5R was derived from the	Saskatoon, Canada	
		cross 86-360/(458-258G(458-		
		$122/C8L27-RC//Precoz)F_2)F_1.$		
CDC Rosetown	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Not available in public domain	do	
CDC Richlea	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Derived from a selection from the cross Laird/PI 179310.	do	Tahir et al. 2011
CDC Greenland	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Not available in public domain	do	
CDC LeMay	L. culinaris Medik.	CDC LeMay was selected from	do	Vandenberg et
	subsp. <i>culinaris</i>	an F ₂ derived family originating from Cross 983 between PI 486128 and FVR9Y-11. PI		al. 2005
		486128 is the French cultivar Du		
		Puy and FVR9Y-11 is a high-		
		yielding CDC breeding line		
		originally developed from the		
	Loulinguis Madil	cross Du Puy × PI 345634.	de	
CDC Red Rider	L. culturis Medik. subsp. culinaris	Not available in public domain	do	
CDC Maxim	L. culinaris Medik. subsp. culinaris	Not available in public domain	do	
CDC Rouleau	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Not available in public domain	do	

Genotype	Species	Pedigree description	General description	Reference
CDC Viceroy	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Not available in public domain	do	
Riveland	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	F5 selection from the cross of 'Laird'/ VW000412 (cross number X95L073).	Improved cultivar, maintained by Western Regional Plant Introduction Station, Pullman, USA.	McPhee and Muelbauher 2009
Pennell	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	F ₆ selection from the cross of LC660194/'Brewer'.	do	Muehlbauer and McPhee 2004
Eston	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Selection from PI 179307. This is an introduction from Turkey through the U.S. Department of Agriculture.	do	Slinkard and Bhatty 1981
Barimasur-4	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	ILL588/FLIP-84-112L (ILL5782)	Improved cultivar in Bangladesh, maintained by the Western Regional Plant Introduction Station, Pullman, accession no PI 605356.	Sarker et al. 1999
IG 72618	L. culinaris subsp. orientalis (Boiss.) Penert	Germplasm	Wild germplasm collection from Turkey, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648625
IG 72896	<i>L. culinaris</i> subsp. <i>orientalis</i> (Boiss.) Penert	do	Wild germplasm collection from Uzbekistan, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648355

Table 5.1. Description of *Lens* genotypes used for genotyping with 39 SSR markers (continued).

Genotype	Species	Pedigree description	General description	Reference
IG 72594	<i>L. culinaris</i> subsp. <i>orientalis</i> (Boiss.) Penert	do	Wild germplasm collection from Iran, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648651
IG 72603	L. culinaris subsp. orientalis (Boiss.) Penert	do	Wild germplasm collection from Turkey, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648638
IG 72830	L. culinaris subsp. tomentosus (Ladiz.) M.E. Ferguson et al.	do	Wild germplasm collection from Turkey, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648421
IG 72688	L. culinaris subsp. odemensis (Ladiz.) M.E. Ferguson et al.	do	Wild germplasm collection from Syria, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648559
IG 110812	L. lamottei Czefranova	do	Wild germplasm collection from Spain, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648306
IG 72614	L. culinaris subsp. tomentosus (Ladiz.) M.E. Ferguson et al.	do	Germplasm collection from Turkey, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648628
IG 72616	L. culinaris subsp. tomentosus (Ladiz.) M.E. Ferguson et al.	do	Wild germplasm collection from Turkey, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648623

Table 5.1. Description of *Lens* genotypes used for genotyping with 39 SSR markers (continued).

Genotype	Species	Pedigree description	General description	Reference
IG 72549	<i>L. nigricans</i> (M. Bieb.) Webb & Berth	do	Wild germplasm collection from Croatia, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648692
IG 110810	L. lamottei Czefranova	do	Wild germplasm collection from Spain, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648307
PI 320937	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	do	Germplasm collection from Germany, maintained by Western Regional Plant Introduction Station, Pullman, USA. Accession name is ILL 505.	https://www.ge nesys- pgr.org/acn/id/ 46329
WA8649090	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Pureline selection from bulk of 8 PI lines from Turkey (PI 370629 - 370636, consecutively).	Advanced breeding line, maintained by the Western Regional Plant Introduction Station, Pullman, USA.	Kahraman et al 2004a
Precoz	<i>L. culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar	Donated by Argentina, maintained by Western Regional Plant Introduction Station, Pullman, USA.	Kahraman et al 2004b
IG 572359	<i>L. nigricans</i> (M. Bieb.) Webb & Berth	do	Germplasm collection from Turkey, maintained by Western Regional Plant Introduction Station, Pullman, USA.	https://www.ge nesys- pgr.org/acn/id/ 92353
IG 110813	L. lamottei Czefranova	do	Wild germplasm collection from Spain, maintained by ICARDA, Syria.	https://www.ge nesys- pgr.org/acn/id/ 648303

Table 5.1. Description of *Lens* genotypes used for genotyping with 39 SSR markers (continued).

Results

SSR genotyping

Of the 39 primers evaluated, 13 were polymorphic (Table 5.2) and the rest were monomorphic in 3% agarose gel. The polymorphism information content (PIC) of the polymorphic SSR markers ranged from 0.18 to 0.64 with an average value of 0.47. The number of alleles per locus ranged between 2 and 4 with an average of 3. The highest frequency of PIC value was observed between 0.41 and 0.50. Each SSR marker locus generated the expected band size with a range from 75 to 950 bp (Table A1). Out of the 13 polymorphic primers 6 amplified trinucleotide motifs, 1 with a tetra nucleotide motif, 1 with a penta nucleotide motif and 5 with dinucleotide motifs (Table 5.2).

Cluster and PCA analysis

The 13 polymorphic SSR markers identified 106 alleles in the 29 lentil genotypes. Jaccard similarity coefficient ranged between 0.31-0.72 (data not shown). The lowest similarity (0.31) was observed between the following pairs of genotypes: CDC Viceroy and CDC LeMay, WA8649090 and Eston, WA8649090 and CDC Viceroy (data not shown). The highest similarity (0.72) was observed between IG72616 and CDC Rouleau (data not shown). The Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) analysis grouped these genotypes into four major clusters (Fig. 5.1). PCA analysis of the SSR data resulted in clustering the 29 genotypes into four groups and distinct positioning of each genotype was observed within each group. The first three most informative components in the PCA analysis accounted for 37% (14, 12, and 11%, respectively) of the total variation. Genotypes in Cluster I were: CDC Maxim, CDC Rouleau, CDC LeMay, CDC Viceroy, CDC Rosetown, CDC Greenland, CDC Richlea, CDC Redberry, Barimasur-4, Eston, WA8649090, IG572359, Pennell, IG72549, IG72603, IG72688, PI320937 or ILL505, Precoz, Riveland, IG72618 and IG72830. Cluster II consisted of IG72896 and IG72594. The genotypes in Cluster III were: CDC Red Rider, IG110810, IG110812, IG110813 and IG72614. Cluster IV was made of one genotype IG72616. Cluster I carried all cultivated types except CDC Red Rider which belonged to Cluster III.

Fig. 5.1. Dendrogram showing genetic similarity among 29 *Lens* genotypes using 13 polymorphic SSRs based genotyping data. Cluster analysis was performed following unweighted pair group method with arithmetic mean (UPGMA).

-	Primer ID	Forward primer (5'-3')	Reverse primer (5'-3')	Repeat motif	Alleles	PIC*
-						
	PBA_LC_0250	TGATTGATTCGGTACTTTTTG	ATGTTAATAAGCAGCAGCAAC	AAC	3	0.48
	PBA_LC_0237	TGAAACCTTTTTGAAGACAAG	TCCATCTTCTAGATTCTTCCA	TAG	3	0.54
	PBA_LC_0278	GACGCAGAAGATTAAGGAGAC	ATTCTGACCATAACCATTCCT	GAT	3	0.49
	PBA_LC_0315	CTCTGAGCATCAATGAGTTTC	GGCACATTACTGTATGCATTT	GAG	4	0.60
	PBA_LC_0323	GAATCAGTGTTCGTGTTCAAT	TTGAAGAAACCTGAAGATCAA	CGCAT	4	0.64
	PBA_LC_0327	CCAAGAGCCATCAGAAATAG	AGGACTATCACGAAGAAAACC	GAA	4	0.62
	PBA_LC_0369	AATGAGAGATATTCTTTGATTGG	GTGATAGGACTACATGGCAAA	TTCA	3	0.49
	PBA_LC_0373	ATTTGGGCAACATATTCAAG	ACTATACTTTCTCCCGTCGTT	TCA	2	0.28
	AC146588b	GGGTTCTATGCATTCTTCGC	CCTCCCTCCCTCTCTCTCTC	AT	3	0.45
	AC146588c	CCTCCCTCCCTCTCTCTCTC	CCTCCCTCCCTCTCTCTCTC	AT	3	0.41
84	AC148097a	TTGGTGCACCGTATTTTGAG	CCAGGCATCCTTTTCTTTTC	AT	3	0.50
	AC148097b	TTGGTGCACCGTATTTTGAG	CCAGGCATCCTTTTCTTTTC	AT	2	0.18
_	AC152551	TCAGCTTCATCAGCCAAAGA	CCAAACAGGGCCATAGACTC	AT	3	0.48

Table 5.2. Primer sequences of 13 polymorphic markers used in the genotyping of 29 Lens genotypes and their characteristics.

* PIC denotes polymorphic information content.

Discussion

Several molecular marker systems have been used to evaluate lentil, e.g., random amplified polymorphic DNA (RAPD) (Abo-elwafa et al. 1995; Sharma et al. 1995; Ford et al. 1997; Rana et al. 2007), sequence tagged microsatellites (STMS) (Rana et al. 2007; Inder et al. 2008; Datta et al. 2011), SSR (Liu et al. 2008; Hamweigh et al. 2009; Babayeva et al. 2009; Reddy et al. 2010; Kaur et al. 2011, 2014; Verma et al. 2013, 2014), and inter-SSR (ISSR) and amplified fragment length polymorphism (AFLP) (Toklu et al. 2009). Among these, only a few studies (Abo-elwafa et al. 1995; Sharma et al. 1995; Hamweih et al. 2009; Reddy et al. 2010; Alo et al. 2011) included multiple *Lens* species. Clusters of genotypes is in agreement with the pedigree relationships (Table 5.1). Most of the *L. culinaris* subsp. *culinaris* genotypes were grouped together (Cluster I) (Fig. 5.1), and L. culinaris subsp. orientalis are in close proximity in Cluster II. Cluster III predominantly included L. lamottei genotypes along with one L. culinaris subsp. culinaris and one L. culinaris subsp. tomentosus genotype. Cluster IV included only one L. culinaris subsp. tomentosus genotype. The close proximity of L. lamottei and L. culinaris subsp. tomentosus genotypes are in agreement with earlier reports (Alo et al. 2011). The L. *nigricans* genotypes could not be distinguished and this is likely due to the limited number of polymorphic markers used. The L. nigricans genotypes clustered with L. culinaris types in Cluster I which does not agree with previously published relationship (Alo et al. 2011) and may be due to homoplasy (Cieslarová et al. 2011). The main morphological difference between L. *culinaris* and *L. culinaris* subsp. *orientalis* with *L. nigricans* is that of stipule shape; stipules for L. culinaris and L. culinaris subsp. orientalis are oblong or elliptic, lanceolate, whereas L. nigricans has one stipule that is semi-hestate, entire or dentate (Barulina 1930). Selection of genotypes based on genetic relatedness and phenotypic traits could be utilized to develop

intraspecific or interspecific mapping populations. Among the polymorphic markers,

AC146588b, AC146588c, AC148097a, AC148097b, and AC152551 were previously mapped in an intraspecific lentil mapping population [cv. Northfield (ILL5588) × cv. Digger (ILL5722)]. Similarly, polymorphic markers; PBA_LC_0250, PBA_LC_0323, PBA_LC_0369, and PBA_LC_0373 were mapped in an intraspecific lentil mapping population (Cassab × ILL2024) that exhibits segregation for boron tolerance (Kaur et al. 2014). From the present study the allelic differences among the different lentil genotypes for the polymorphic loci are known now, which can be further utilized along with any phenotypic data for trait association with these markers. In summary, these polymorphic markers can be converted to functional markers for future pheonotypic studies.

Literature cited

- Abo-elwafa A, Murai K, Shimada T (1995) Intra- and interspecific variations in *Lens* revealed by RAPD markers. Theor Appl Genet 90:335–340
- Alo F, Furman BJ, Akhunov E, Dvorak J, Gepts, P (2011) Leveraging genomic resources of model species for the assessment of diversity and phylogeny in wild and domesticated lentil. J Heredity 102: 315-329
- Andeden EE, Faheem SB, Esra Ç, Faruk T, Hakan Ö (2015) Development, characterization and mapping of microsatellite markers for lentil (*Lens culinaris* Medik.). Plant Breed doi:10.1111/pbr.12296
- Babayeva S, Akparov Z, Abbasov M, Mammadov A, Zaifizadeh M, Street K (2009) Diversity analysis of Central Asia and Caucasian lentil (*Lens culinaris* Medik.) germplasm using SSR fingerprinting. Genetic Resour Crop Ev 56:293–298

Barulina EI (1930) The lentils of the USSR and other countries. Tr Po Prikl Bot Genet Sel [Bull Appl Genet Select] Suppl 40:1-319

- Cieslarová J, Hanáček P, Fialová E, Hýbl M, Smýkal P (2011) Estimation of pea (*Pisum sativum*L.) microsatellite mutation rate based on pedigree and single-seed descent analyses. J
 Applied Genet 52:391-401
- Datta S, Tiwari S, Kaashyap M, Gupta PP, Choudhury PR, Kumari J, Kumar S (2011) Genetic similarity analysis in lentil using cross-genera legume sequence tagged microsatellite site markers. Crop Sci 51:2412–2422

FAOSTAT (2013) FAO statistical database. FAO, Rome. Available at http://faostat.fao.org

- Ferguson ME, Maxted N, van Slageren M, Robertson, LD (2000) A re-assessment of the taxonomy of Lens Mill. (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133:41– 59
- Ford R, Pang ECK, Taylor PWJ (1997) Diversity analysis and species identification in *Lens* using PCR generated markers. Euphytica 96:247–255
- Gupta D, Taylor PWJ, Inder P, Phan HTT, Ellwood SR, Mathur PN, Sarker A, Ford R (2012) Integration of EST-SSR markers of *Medicago truncatula* into intraspecific linkage map of lentil and identification of QTL conferring resistance to *Ascochyta* blight at seedling and pod stages. Mol Breed 30:429–439 doi: 10.1007/s11032-011-9634-2
- Hamwieh A, Udupa S, Choumane W, Sarker A, Dreyer F, Jung C et al (2005) A genetic linkage map of *Lens* sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677 doi: 10.1007/s00122-004-1892-5

- Hamwieh A, Udupa SM, Sarkar A, Jung C, Baum M (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59:77–86
- Inder P, Materne M, Taylor PWJ, Ford R (2008) Genotyping elite genotypes within the Australian lentil breeding program with lentil-specific sequenced tagged microsatellite site (STMS) markers. Crop Pasture Sci 59:222–225
- Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004a) Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci 44(1):5-12
- Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004b) QTL mapping of winter hardiness genes in lentil. Crop Sci 44(1):13-22
- Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011)
 Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265
- Kaur S, Cogan NO, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014) EST-SNP discovery and dense genetic mapping in lentil (*Lens culinaris* Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127(3):703-713
- Liu J, Guan JP, Xu DX, Zhang XY, Gu J, Zong XX (2008) Genetic diversity and population structure in lentil (*Lens culinaris* Medik.) germplasm detected by SSR Markers. Acta Agron Sin 34:1901-1909

McPhee, K, Muehlbauer, F (2009) Registration of 'Riveland' lentil. J Plant Regis 3:5–9 Muehlbauer F, McPhee K (2004) Registration of 'Pennell' lentil. Crop Sci 44:1488

- Nagy S, Poczai P, Cernák I, Gorji AM, Hegedüs G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochemical Genet 50:670–672
- Rana MK, Kumari R, Singh S, Bhat, KV (2007) Genetic analysis of Indian lentil (Medikus) cultivars and landraces using RAPD and STMS markers. J Plant Biochem Biot 16:53–57
- Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR (2010). Cross-genera legume SSR markers for analysis of genetic diversity in *Lens* species. Plant Breeding 129:514–518
- Rohlf FJ (2009) NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.21q Exeter Publ., New York, USA
- Sarker A, Erskine W, Hassan MS, Afzal MA, Murshed ANMM (1999) Registration of 'Barimasur-4' lentil. Crop Sci 39:876
- Sen Gupta D, Thavarjah D, Knutson P, Thavarajah P, McGee RJ, Coyne CJ, Kumar S (2013). Lentils (*Lens culinaris* L.)- a rich source of folates. J Agr Food Chem 61 (32):7794-7799
- Sharma SK, Dawson IK, Waugh R (1995) Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor Appl Genet 91:647-654
- Slinkard AE, Bhatty RS (1981) 'Eston' lentil. Can J Plant Sci 61:733–734
- Tahir M, Lindeboom N, Baga M, Vandenberg A, Chibbar R(2011) Composition and correlation between major seed constituents in selected lentil (*Lens culinaris* Medik) genotypes. Canadian J Plant Sci 91(5):825-835
- Thavarajah, D, Thavarajah, P, Wejesuriya, A, Rutzke, M, Glahn, RP, Combs, GF Jr, and
 Vandenberg, A (2011). The potential of lentil (*Lens culinaris* L.) as a whole food for
 increased selenium, iron, and zinc intake: preliminary results from a 3 year study.
 Euphytica 180:123–128

- Toklu F, Karaköy T, Hakli E, Bicer T, Brandolini A, Kilian B, ÖZkan, H (2009) Genetic variation among lentil (*Lens culinaris* Medik) landraces from Southeast Turkey. Plant Breeding 128:178–186
- Udupa SM, Robertson LD, Weigand F, Baum M, Kahl G (1999) Allelic variation at (TAA) n microsatellite loci in a world collection of chickpea (*Cicer arietinum* L.) germplasm. Mol Gen Genet MGG 261(2):354-363
- USDA-Economic Research Service database (2015) Vegetables and pulses data. Avaialable at www.ers.usda.gov/data-products/vegetables-and-pulses-data/data-by-commodityimports-and-

exports.aspx?reportPath=/TradeR3/TradeTables&programArea=veg&stat_year=2008&to p=5&HardCopy=True&RowsPerPage=25&groupName=Dry%20Peas%20and%20lentils &commodityName=Lentils (Accessed on Nov 18 2015)

- Vandenberg A, Banniza S, Warkentin TD, Ife S, Barlow B, McHale S, Brolley B, Gan Y, McDonald C, Bandara M, Dueck S (2006) CDC Redberry lentil. Can J Plant Sci 86:97– 498
- Vandenberg A, Vera C, Buchwaldt L, Dueck S, Morrall RAA, Warkentin TD, Banniza S, Slinkard AE (2005) CDC LeMay lentil. Can J Plant Sci 85:159–160
- Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (*Lens culinaris* Medik.) transcriptome. Plant Biotechnol J 11:894-905
- Verma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S (2014) Exploring genetic variability within lentil (*Lens culinaris* Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41(9):5607-5625
CHAPTER 6. DEVELOPMENT OF A PANEL OF UNIGENE DERIVED POLYMORPHIC EST-SSR MARKERS IN LENTIL USING PUBLIC DATABASE INFORMATION

Abstract

Lentil (Lens culinaris Medik.) is a diploid (2n=14) with a genome size of 4063 Mbp and is an important cool season food legume grown worldwide. Availability of genomic resources is limited in this crop species. The objective of this study was to develop polymorphic markers in lentil using publically curated expressed sequence tags (ESTs) information. In this study, 9513 expressed sequence tags (EST) were systematically downloaded from the National Center for Biotechnology Information (NCBI) database to develop unigene-based simple sequence repeat (SSR) markers. The ESTs were assembled into 4053 unigenes, and then analyzed to detect 373 SSRs using the microsatellite identification tool (MISA). Among the 373 SSRs, 26 compound SSRs were observed. Primer pairs for these SSRs were designed using Primer3 v1.14. To classify the functional annotation of ESTs, and EST-SSRs, BLASTx searches (E-value, 1×10^{-5}) were performed against the publicly available UniProt (www.uniprot.org) and NCBI (www.ncbi.nlh.nih.gov) databases. Further functional annotation was performed using the PLAZA comparative genomics and GO annotation was slimmed using the Plant GOSlim category. Among the synthesized 312 primers, 219 successfully amplified Lens DNA. A diverse panel of twenty-two Lens genotypes were tested to identify polymorphic markers using 219 markers. A set of polymorphic 57 markers discriminated the Lens genotypes. This set of polymorphic markers with the functional annotation data are available as molecular tools to lentil breeding.

Introduction

Lentil (*Lens culinaris* Medik.) is a nutritious food legume crop grown throughout the world. Primary production regions include, Canada, Australia, Mid-western USA, Turkey, Syria and the Indian subcontinent (Nepal, India, Bangladesh). Annual world production is about 4.98 m tons (FAOSTAT 2013). USA produced 0.23 MT with average production of 1621 kg/ha (FAOSTAT 2013). US lentil is exported to India, Canada, Latin-America and the Middle-East. Small to medium seeded "Persian" type lentil were produced in USA followed by "Chilean" type (Yadav et al. 2007). Market classes of lentil include extra small red, small red, large red, small green, medium green, large green and French green.

Lentil originated in the Fertile Crescent (south west Asia and Mediterranean region) and believed to be one of the earliest domesticated food crops. The cultivated lentil, *Lens culinaris* has two types, *macrosperma* and *microsperma*, based on the seed and pod characteristics, length of the flowers, size of leaflets, length of vegetation and height of the plant (Barulina 1930). Similar to other food legumes lentil has a narrow genetic base. Realization of potential yield is limited due to various biotic and abiotic stresses like foliar and root diseases, high or low temperature, soil pH, and water logging. Optimization of crop management is also important, for example weed management or fertility which vary among growing environments. Breeding programs worldwide are working to breed for high yielding lentil cultivars with resistance to one or more of these stresses. Many breeding programs have implemented marker assisted breeding to speed up the selection process.

Availability of molecular markers and the ease of use in large breeding programs is a priority for many crop species. Number of available polymorphic markers is limited in lentil; and may be partly due to non-availability of a full genome sequence as well as the complexity of the

large genome (4063 Mbp) (Arumuganathan and Earle, 1991). Hamweigh et al. (2009) developed 14 microsatellite markers from a genomic library developed on lentil cultivar ILL5588. The genetic diversity index calculated based on the number of alleles amplified were reported to be high and markers were powerful enough to discriminate the test major groups, cultivated and wild types. In another study, Kaur et al. (2011) developed EST-SSR markers through transcriptome sequencing of lentil and validated 79 polymorphic EST-SSRs among 13 lentil genotypes including one *L. nigricans* accession. Verma et al. (2013) developed EST-SSRs through transcriptome sequencing of lentil genotype 'Precoz' (Buchwalt et al. 2004) and validated 54 polymorphic EST-SSRs among 22 lentil genotypes including one *L. culinaris* subsp. *orientalis* and two *L. lamottei* genotypes.

The total number of ESTs (9513) for lentil has remained constant in the National Center of Biological Information (NCBI) database. Development of genomic or transcriptome libraries are expensive and time consuming. Researchers working in various crop species like wheat (Gupta et al. 2013), chickpea (Choudhary et al. 2009), pea (Gong et al. 2010), *Medicago* (Gupta and Prasad 2009) have developed polymorphic markers utilizing sequence information available in public databases.

Use of genic SSR markers or EST-SSRs is more important from a breeding point of view. Despite recent advances in molecular marker systems like SNPs (Single Nucleotide Polymorphisms) or DNA array based marker systems SSRs hold promise as a breeder friendly marker system involving limited technical or operating difficulties. SSR markers are reproducible and PCR based resulting in easy application in breeding programs for marker assisted selection or predictions of breeding values. The availability of public databases like NCBI NR, UNIPROT, and TAIR help to further functionally annotate the ESTs or EST-SSRs. This algorithm based or alignment based prediction of gene function could be verified in a trait specific case. The synchronization between functional annotation and wet lab validation largely depends on the standard of draft sequence available. Functional annotation of the SSRs provides opportunity for expression analysis of specific genes. The objectives of this study were to: (1) develop polymorphic SSR markers in lentil using EST sequences, (2) validate polymorphic EST-SSR markers within a diverse panel of *Lens* genotypes including wild lentil species, and (3) functionally annotate the EST-SSRs using publically available protein databases.

Materials and methods

EST sequences assembly, SSR detection and functional annotation

A curated search was performed in NCBI with query ("*Lens culinaris*"[Organism] OR *Lens culinaris* [All Fields]) AND "*Lens culinaris*"[porgn]) and 9,513 expressed sequence tags (ESTs) were systematically downloaded. ESTs representing "*Lens culinaris/Colletotrichum truncatum* mixed EST library"[porgn: __txid880151] were excluded and only *Lens culinaris* specific ESTs were further used for the downstream analysis. All the downloaded ESTs were cleaned for contamination using UniVec available from

www.ncbi.nlm.nih.gov/tools/vecscreen/univec. Subsequently, cleaned ESTs were assembled using the Overlap-Layout-Consensus assembler MIRA (Mimicking Intelligent Read Assembly) (parameters: job = denovo, est, accurate, 454 using the -notraceinfo option) (Chevreux et al. 2004). Following the MIRA assembly, unigenes were created using the CAP3 (Huang and Madan 1999) with parameters –p 95, –o 49, and –t 10000 as previously implemented (Dubey et al. 2011; Zheng et al. 2011; Duvick et al. 2008). In addition to the parameters described in Zheng et al. (2011) the parameter -t value was extended to 10000 which improved the quality of the assembly using the maximum available memory, and avoiding the misassembly of the ESTs and formation of counterfeit longer assemblies as previously suggested (Dubey et al. 2011; Duvick et al. 2008). Assembled unigenes were searched for SSRs using MISA (http://pgrc.ipk-gatersleben.de/misa/) (Thiel et al. 2003). For classifying true SSRs, we defined, a minimum repetitive stretch of 10 nucleotides as mono-, a consecutive stretch of 6 repeat units to be classified as di-, and a stretch of 5 repeat units for each tri-, tetra-, penta- and hexa-nucleotide stretches as simple sequence repeats (SSRs). To identify and classify the compound repeats, the minimum distance between two repetitive units was kept at ≤ 100 bp as previously suggested in MISA (Thiel et al. 2003). Open reading frames were extracted from the assembled unigenes using the extract ORF utility of the EMBOSS package available from http://emboss.sourceforge.net.

Database mining

Development of EST-SSRs and primer design

Following the identification of the SSRs, primer pairs were designed using Primer3 core version 1.1.4 available from http://primer3.sourceforge.net with primer pair parameters minimum and maximum amplicon size: 100-300 bp; primer size (minimum, optimum, maximum): 18-27 bp; primer Tm (minimum, optimum, maximum): 57-63°C; primer GC content: 30-70%; CG clamp: 0; maximum end stability: 250; maximum Tm difference: 2; maximum self-complementarity: 6; maximum 39 self-complementarity: 3; maximum Ns accepted: 0; maximum poly-X:5.

Functional annotation of unigenes and EST-SSRs

For classifying the functional annotation and gene ontology of the ESTs, and EST-SSRs, we performed BLASTx searches (E-value, 1x10⁻⁵) against the publicly available GenBank nr (www.ncbi.nlm.nih.gov), UniProt (www.uniprot.org), and TAIR10 (https://www.arabidopsis.org) databases. Additional functional annotation and gene ontology was obtained using FastAnnotator, which employs a four way classification approach utilizing Blast2GO and additional sequence homology searching by BLAST against NCBI nr, gene ontology (GO) term assignment with default annotation rule parameters, InterProScan (IPS) identification of functional motifs, merging of Blast-based and IPS-based GO annotations and augmentation by Annex (Götz et al. 2008), PRIAM and RPS BLAST (Ashburner et al. 2000; Chen et al. 2012). GO annotations so obtained were further analyzed using GO-SLIM (Plant) and functional GO-SLIM categories were defined.

Plant material and DNA extraction

Four *Lens* genotypes (3 *L. culinaris* and 1 *L. nigricans*) were used for initial screening of 312 primers. A diverse panel of twenty-two *Lens* genotypes, consisting of *L. culinaris* advanced breeding lines, parents of mapping populations, wild types and genotypes of *L. nigricans*, *L. culinaris* ssp. *orientalis*, *L. lamottei* was tested to identify polymorphic markers among those primers amplifying *Lens* DNA. DNA samples were extracted from individual plant leaf tissue when seedlings were 2 weeks old using the DNeasy® Plant Mini Kit (QIAgen). The DNA concentrations of the extracted samples were recorded using a Nanodrop 2000c spectrophotometer (Nanodrop, Wilmington, USA). The extracted DNA samples were diluted to a uniform concentration of 20 μ g/ μ l for successful PCR amplification.

Genotype	Species	Pedigree	Reference
LO56	<i>Lens culinaris</i> Medik. subsp. <i>orientalis</i> (Boiss.) Penert	RIL parent	Havey and Muehlbauer, 1989
WA8649041	<i>Lens culinaris</i> Medik.	Pureline selection from bulk of 8 PI lines from Turkey, RIL parent	Kahraman et al 2004a
ILL669	<i>Lens culinaris</i> Medik.	RIL parent	Kahraman et al 2004a
WA8649090	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Pureline selection from bulk of 8 PI lines from Turkey, RIL parent	Kahraman et al 2004a
Precoz	Medik. subsp. <i>culinaris</i>	Cultivar, Donated from Argentina; Synonym = ILL 1405 RIL parent	Kahraman et al 2004b
Red Chief	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in USA; RIL parent PI 181886/PI 329171	Havey and Muehlbauer 1989
LO4	<i>Lens culinaris</i> subsp. <i>orientalis</i> (Boiss.) Penert	RIL parent	Havey and Muehlbauer 1989
Pennell	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in Northern Plains, F6 selection from the cross of LC660194/'Brewer'.	Muehlbauer and McPhee 2004
Brewer	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in USA; RIL Parent	Muehlbauer, 1987
Barimasur 4	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in Bangladesh. ILL588/FLIP-84-112L (ILL5782).	Sarker et al. 1999a
Emerald II	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in USA	Muehlbauer 1987
PI72618	<i>Lens culinaris</i> subsp. <i>orientalis</i> (Boiss.) Penert	Germplasm from Turkey.	https://www.genesys- pgr.org/acn/id/64862 5
Morton	Medik. subsp. culinaris	Cultivar in USA Autumn-sown, winter-hardy	Muehlbauer and McPhee 2007
Morena	Medik. subsp. <i>culinaris</i>	Cultivar in USA Pardina/PI 297754	Personal communication

Table 6.1. Details of plant materials used for testing of 219 primer pairs.

Genotype	Species	Pedigree	Reference
PI320937 /ILL 505	Lens culinaris	Germplasm collected from	https://www.genesys-
	Medik. subsp. culinaris	Germany	pgr.org/acn/id/46329
Barimasur 2	Medik. subsp. culinaris	Cultivar in Bangladesh, cross between ILL4353/ILL353.	Sarker et al. 1999b
CDC Redberry	Medik. subsp. <i>culinaris</i>	Cross between 1049F3 / 819- 5R. Line 1049F3 was derived from the cross 567-16/545-8. Line 819-5R was derived from the cross 86-360/(458- 258G(458-122/C8L27- RC//Precoz)F ₂)F ₁ .	Vandenberg et al. 2006
Barimasur 3	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in Bangladesh.	Sarker et al., 1999c
Pardina	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in USA	Personal communication
Shasta	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in USA. LC960027/3/PI 345635/'Palouse'//'Brewer'	Personal communication
Avondale	<i>Lens culinaris</i> Medik. subsp. <i>culinaris</i>	Cultivar in USA	Personal communication
Lens nigricans	<i>Lens nigricans</i> (M. Bieb.) Webb & Berth	Germplasm	Personal communication

Table 6.1. Details of plant materials used for testing of 219 primer pairs (continued).

PCR amplification

Three hundred and twelve primer pairs were synthesized from Europhin, USA and used in this study. The PCR reactions (25 µl volume) were conducted in a ABI 7500 (Applied Biosystems, Foster, CA, USA) thermocycler and each reaction comprised of 2.5 µl of Taq buffer (Promega, USA), 1.5 µl MgCl₂ (25 mM) (Promega, USA), 0.20 mM of each dNTP (Promega, USA), 0.50 mM of each primer (Europhin, USA), 0.25 µl of Hot Start Taq polymerase (Promega, USA) and 20 ng of template DNA. For initial screening of primers Touchdown PCRs were performed following conditions using DNA from 4 lentil genotypes: 94°C for 3 minutes, followed by 18 cycles of 94°C for 50 s, 65-55°C for 50 s, 72°C for 50 s followed by 20 cycles of 94°C for 50 s, 55°C for 50 s and 72°C for 50 s and final elongation step of 72°C for 7 m. The PCR products were resolved in 2% agarose gels (molecular biology grade) (Sigma, USA) and bands were scored using gel documentation system. Primers amplifying *Lens* DNA were validated among a set of 22 diverse *Lens* genotypes following the PCR conditions in a ABI 7500 thermocylcer: 94°C for 5 minutes, followed by 42 cycles of 94°C for 1 m, 50°C for 1 m, 72°C for 1 m followed by a final elongation step of 72°C for 5 m. Forward primers were tagged with M13 sequence (CACGACGTTGTAAAACGAC) at the 5 ' end. Four dyes were used to set up the multipliex PCR reactions. PCR products were separated using an ABI3730xl (Applied Biosystems, Foster, CA, USA) according to manufacturer instructions with the addition of the ABI GeneScan LIZ500 size standard and amplification product sizes were determined using the GeneMapper® v3.7 software (Applied Biosystems).

Results

Assembly and SSR detection

A set of 9513 EST were downloaded in FASTA file format from the NCBI and clustered them at identity of 0.95 into 4106 unigene sequences (Table 6.2). Then unigenes which are shorter than 100 bp were removed and also trimmed at the ends for the homopolymer as sequencing ESTs always gives a common problem of homopolymer due to the star and the falling activity of the DNA polymerase. MIRA assembly of 9513 EST sequences ultimately generated 4053 unigene sequences. Lists of unigene sequences for the polymorphic markers will be made available on the cool season food legume database (https://www.coolseasonfoodlegume.org/) (Appendix C).

Parameter	Number
Total ESTs	9513
Total size of examined sequences (bases)	2574487
Total Unigene sequence	4053
Total SSR detected	374
Sequences with more than one SSR	32
Total compound SSR	26
Total ESTs with SSR	348

Table 6.2. Summary of data mining of unigene sequences of *Lens culinaris*.

The total length of analyzed sequences was 2574487 bases (Table 6.2). MISA detected 373 SSR bearing EST sequences among these unigenes (Table 6.2). Out of these EST-SSRs there were 32 sequences with more than one SSR (Table 6.2). Also 26 compound SSRs were observed (Table 6.2). For further analysis 348 EST-SSRs were chosen. Using Primer3 primer pairs were designed for 348 EST-SSRs (Table A2). In addition to that, 658 primer pairs (Table A3) were designed based on the plantGDB assembly (version187a) of *Lens culinaris* [(http://www.plantgdb.org/download/download.php?dir=/Sequence/ESTcontig/Lens_culinaris/cu rrent_version)]. These were designed based on the detected EST-SSRs, which were further e-validated using ipcress *in silico* PCR amplifying software. In the validation experiment 312 primers were used here, among those 48 primers were from the e-validated list (Table A3) and remaining 264 were from Table A2. E-validated primers are coded with prefix "PUT" and other primers with "UN" (Table 6.3).

Structural and functional annotation of ESTs and EST-SSRs

Contig length ranged between 199-2599 bp (Fig. 6.1). The most prevalent contig length was 600-799 bp followed by 400-599 and 800-999, respectively (Fig. 6.1). After functional GO-SLIM analysis it was found that distribution of unigenes among GO, Domain and Enzyme

category was 54%, 42% and 4%, respectively (Fig. 6.2). This was consistent with the categorization of EST-SSRs into functional Go, Domain and Enzyme categories which were 56%, 40% and 4%, respectively (Fig. 6.3). In the GO category -Biological Process, the first four processes were oxidation-reduction process, ribosome biogenesis, translation and regulation of transcription, and DNA dependent for total number of unigenes analyzed (Fig. 6.4). Similar trend was observed using GO- Biological Process analysis of EST-SSRs where ranking of processes were as following, oxidation-reduction process, regulation of transcription, DNA dependent, ribosome biogenesis, and translation (Fig. 6.5). Total number of unigenes in GO categorymolecular function showed the first four functions as DNA binding, nutrient reservoir activity, structural constituent of ribosome, and zinc ion binding (Fig. 6.6). However, for EST-SSRs, first four functions were, ATP binding, DNA binding, structural constituent of ribosome, and zinc ion binding in the GO category-molecular function (Fig. 6.7). In the GO category-Cellular Process, first four functions were for nucleus, cytosol, plasma membrane and chloroplast when the total number of unigenes were analyzed (Fig. 6.8). EST-SSRs analyzed for GO category-cellular process the first four functions were cytosol, plasma membrane, nucleus and integral to membrane (Fig. 6.9).

Frequency and distribution of EST-SSRs.

The frequency of SSRs was 6.9 per kb of sequence analyzed (373 SSRs/ 2575 kb of sequences) and there were 21 repeat patterns observed (Fig. 6.10). The most prevalent motif with greatest frequency was the trinucleotide followed by mono-, di-, tetra- and pentanucleotide repeat patterns. The highest number of repeat was observed in case of AG/CT, followed by AAG/CTT, AAC/GTT, ATC/ATG, AT/AT (Fig. 6.10).

Fig. 6.1. Contig length distribution of the 4053 unigenes.

Fig. 6.2. Functional annotation of EST-SSRs.

Fig. 6.3. Functional annotation of unigenes.

Fig. 6.4. GO category-Biological process annotation of 4053 unigenes.

Fig. 6.5. GO category-Biological process annotation of 373 EST-SSRs.

Fig. 6.6. GO category-cellular component annotation of 4053 unigenes.

Fig. 6.7. GO category-cellular component annotation of 373 EST-SSRs.

Fig. 6.8. GO category-molecular function annotation of 4053 unigenes.

Fig. 6.9. GO category-molecular function annotation of 373 EST-SSRs.

Repeat Pattern

Fig. 6.10. Distribution of the simple sequence repeats across 4053 *Lens culinaris* unigenes. *Validation of EST-SSRs*

Among the synthesized 312 primers, 219 successfully amplified *Lens* DNA. A diverse panel of 22 *Lens* genotypes, consisting of *L. culinaris* advanced breeding lines, parents of mapping populations, wild types and genotypes *of L. nigricans*, *L. culinaris ssp. orientalis*, *L. lamottei* was tested to identify polymorphic markers. A set of 57 polymorphic markers were found by testing 219 primers. The number of alleles amplified ranged between 2-17 for each primer and PIC ranged between 0.10-0.91. The average number of alleles produced per primer was seven.

Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	T _m	Allele size	PIC
PUT99	PUT187a Lensculin aris99	(AG)10	Histidine-containing phosphotransfer protein [Medicago truncatula]	GCGACCACT GTGTTGTTTG T	60	ATTTGAAGT CGGTGAGGT CG	60	316-322	0.65
PUT668	PUT187a Lensculin aris668	(AG)9	PHD1 protein [<i>Medicago truncatula</i>]	TTTTGCAGA GACGAGAGA GAAA	60	TCAGGATCG CATTGGTTG TA	60	147-149	0.40
PUT1105	PUT187a Lensculin aris1105	(TTG)6	unknown protein [<i>Medicago truncatula</i>]	AGGAGGAGG AGGATGTTG CT	60	CGCACTTCC AGACAAGTT CA	60	123-129	0.54
PUT1231	PUT187a Lensculin aris1231	(ACC)5	proline rich protein [<i>Medicago truncatula</i>]	TGTGGTACA TGCACACCA AAT	60	GGTGGTAGC AGTGGTGGA GT	60	228-244	0.49
PUT1263	PUT187a Lensculin aris1263	(TGG)5	aspartic proteinase nepenthesin-2 [Medicago truncatula]	TCACTACCG GGAGAAAGT GG	60	CTACCCACC ACCTCCTCA AA	60	130-136	0.10
PUT1271	PUT187a Lensculin aris1271	(AG)6	BEL1-like homeodomain protein [<i>Medicago truncatula</i>]	GGAGAGAAA GAGACGACA GGAG	60	TCGTTTTCTC TTCTGCGGTT	60	234-237	0.35

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs.

Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	T _m	Allele size	PIC
PUT2033	PUT187a Lensculin aris2033	(CCA)8	low-temperature inducible protein [<i>Medicago truncatula</i>]	ACAATCAGG TTTCGGACC AG	60	GCATCATCG ATTTTGTGGT G	60	257-266	0.64
PUT2096	PUT187a Lensculin aris2096	(ATC)5	BHLH transcription factor [<i>Medicago</i> <i>truncatula</i>]	TTGCATGTA TGAAACCGC AT	60	ATGGAGAAG CTAAGGGGG AA	60	267-288	0.50
PUT2104	PUT187a Lensculin aris2104	(AAC) 5	chaperone protein DNAJ [<i>Medicago</i> <i>truncatula</i>]	ATTGCAGCC AGAGTGGAA TC	60	AGAACGGCG TAAGCAGAA AA	60	195-201	0.37
PUT2213	PUT187a Lensculin aris2213	(AAC) 5	unknown protein	CGACCTTCA GAAAGCTTG ATTC	60	CAACGCAGA CAACAACAC AG	59	270-299	0.62
UN3.1	UN0003	(A)12	acyl carrier protein [<i>Medicago truncatula</i>]	TGTGTGTTTG GAGCAATGC T	59	GATGAGGAC CTGGACCTC CT	60	198-204	0.37
UN32	UN0032	(AT)6	eukaryotic aspartyl protease family protein [<i>Medicago truncatula</i>]	TGTTGGTGC TGGTAAGAT AGGT	59	CCCTAACCA GCCCAAAGC AT	60	272-276	0.51
UN33.1	UN0033	(A)10	early nodulin-like protein [<i>Medicago</i> <i>truncatula</i>	CCCAAGCCA ACCATTTTTG C	59	GCATCAGGT TTGCCACCA AG	60	177-182	0.30

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	Tm	Reverse primer (5'-3')	Tm	Allele size	PIC
UN46	UN0046	(TTC)6	phospholipid hydroperoxide glutathione peroxidase [<i>Medicago truncatula</i>]	TCAACTCGC ATCCTCTTCA CA	59	TGATTGGGG GTTTGATGG GG	60	231-238	0.47
UN3776	UN3776	(TATT) 5	PHD finger alfin-like protein [<i>Medicago</i> <i>truncatula</i>]	TCCAGGTAA ACGAGAAGT TGAAGA	60	AGTGTGTGA ATTCGTGCC CA	60	125-313	0.96
UN3302	UN3302	(CCT)5	hypothetical protein MTR_2g010790 [<i>Medicago truncatula</i>]	TGGCACCAC CAAAGAGAC TC	60	TGGGGTTCG AGATTGGGG TA	60	114-266	0.90
UN3176	UN3176	(T)10	protein nuclear fusion defective 6, chloroplastic/mitochon drial isoform X1 [<i>Cicer</i> <i>arietinum</i>]	TTTGCTTTTA GGCCGCCAA G	60	TCCCAGAAT GAAGGGTTA ACCA	59	211-264	0.66
UN3814.1	UN3814	(A)11	cyclin [<i>Medicago</i> truncatula]	TCGGTAGCT GCTAGTGTC AC	59	CTTCCACCA CCACCTTGA CA	60	231-373	0.75
UN3814	UN3814	(T)13	cyclin [<i>Medicago</i> truncatula]	TTGTGCAGG GTCGACCTT AC	60	GTCGATGTC CCAGATCAG CC	60	234-315	0.78

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	Tm	Allele size	PIC
UN3720	UN3720	(A)10	structural maintenance of chromosomes domain protein [<i>Medicago truncatula</i>]	CTCACTCAC CCGAGAAAC TCA	59	CTTCTGCGA CGCAATGCT TT	60	230-387	0.69
UN3519	UN3519	(T)10cc gtattgta tttttacat ccaactta attaaaaa tcctaaca aactaaa aagatatt tcaaaaat (A)10	UDP-D-glucuronate 4- epimerase [<i>Medicago</i> <i>truncatula</i>]	TCCCTTTTCT TCTTGACCG AGA	59	GTTCCGTTTA CGCATGCGA A	60	284-291	0.83
UN3311	UN3311	(GAT)6	hypothetical protein MTR_1g069440 [<i>Medicago truncatula</i>]	ACATGCCTG TGGTGGTTG AT	60	AGTGACACC ATTTTCAGG GTCA	60	290-305	0.79
UN3728	UN3728	(CAA) 5	DCD (development and cell death) domain protein [<i>Medicago</i> <i>truncatula</i>]	ACTCGTCCA CCAAAAATG AACG	60	GCACCACCA AACTTAACT CCC	59	233-295	0.87
UN3652	UN3652	(AAC) 5	growth-regulating factor-like protein [<i>Medicago truncatula</i>]	CCGTTCAAG AAAGCCTGT GG	59	TCCAGATGA TGCTGATGA CCT	59	231-362	0.73

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

Marker	Transcript	SSR	Putative function	Forward primer	T_{m}	Reverse primer	T_{m}	Allele	PIC
	/Unigene I.D.	type		(5'-3')		(5'-3')		sıze	
UN3321	UN3321	(CAC)5	protein PHR1-LIKE 1- like isoform X1 [<i>Cicer</i> <i>arietinum</i>]	ACGACTCTG TTTCTTCCGC A	60	CCCTCCGGA AACTTCTTTG C	59	146-417	0.90
UN3548	UN3548	(A)19	unknown [<i>Medicago</i> truncatula]	GCGGTGGCA AACGTTAAG TA	59	AAGCAGAAC CGAGCCAAG TT	60	178-542	0.90
UN3414	UN3414	(TTC)6	myb-like transcription factor family protein [<i>Medicago truncatula</i>]	CTCCTTCCAT TTCTCTTTTCT GCA	59	GACAAGGGT CAGCAAGGT GA	60	216-226	0.54
UN3326	UN3326	(A)10	uv radiation resistance- associated-like protein [<i>Medicago truncatula</i>]	GGAGTTTCA TGCGCCAAG TT	59	GGGCCCCGT CAAATGTAA CA	61	147-202	0.84
UN3849	UN3849	(AG)7	defender against cell death [<i>Medicago</i> <i>truncatula</i>]	GACGACTTC AGTTGAAAC AGCT	59	TACCTGAAG GAGAGCGGT GA	60	298-347	0.78
UN3573	UN3573	(GT)11	unknown [<i>Medicago</i> truncatula]	AGGCGTCCT TTGTATGCA CA	60	AACAGTCAA CATAAACAA CAGCGA	60	109-120	0.79

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	Tm	Allele size	PIC
UN3291	UN3291	(CAAC)5	vacuolar proton- inorganic pyrophosphatase [<i>Medicago truncatula</i>]	CAACCCATG GTGGTCTCC TC	60	CACGCGGAA AAGATTCAG CC	60	227-242	0.68
UN0079.2	UN0079	(GGC) 5	insecticidal lentil peptide, partial [<i>subsp.</i> <i>culinaris</i>]	TCGGGTGAG ACCATTGTT CG	60	CAGACACCA CTTGTTGCTG C	60	282-297	0.85
UN0099	UN0099	(T)20	transmembrane protein, putative [<i>Medicago</i> <i>truncatula</i>]	TACTCATCG CCGTTGGTG TT	60	TCCTTAGTTT CAAAACAGC TTTCA	57	271-292	0.81
UN0106	UN0106	(ATA)6	xylose isomerase [<i>Medicago truncatula</i>]	AGAAAAGGG GAAGGGGGA GA	60	CTTCCTCCCG ATTCTCACC G	60	131-209	0.68
UN0110	UN0110	(T)11	heat shock protein [<i>Medicago truncatula</i>]	AAGCTGATG CTGACATGC CT	60	CCATAAAAG TATGCCCAA CTTGCA	60	240-243	0.40
UN0119	UN0119	(A)21	Spastin [<i>Medicago</i> truncatula]	ACATTTTGG TTGAAGTCT GCCT	59	AGCTGCCTT GCCTCATTTC T	60	147-399	0.88

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	T _m	Allele size	PIC
UN0123	UN0123	(CT)53	NADH-quinone oxidoreductase subunit F [<i>Medicago</i> <i>truncatula</i>]	ACCGTCTGA TTGAGCACA GT	59	TCCAAAGCC ATCCAGTTC CC	60	142-288	0.91
UN0146	UN0146	(GAT)7	translational elongation factor 1-beta [<i>Medicago truncatula</i>]	TGACACCAA GGCCACTGA AG	60	AGTTTGGAT GCGCCCCAT AA	60	143-461	0.89
UN0225	UN0225	(A)29	40S ribosomal protein SA [<i>Medicago</i> <i>truncatula</i>]	ACATGTTGC AATGCTTTT AGCCT	60	TTCTTGCTTG GCGTTGAAG C	60	190-326	0.77
UN0230	UN0230	(T)10	light-harvesting complex I chlorophyll A/B-binding protein [<i>Medicago truncatula</i>]	AGAGGGCTC CAACTCTGT GA	60	ACGGGCCGA ATAATCATG CA	60	169-179	0.67
UN0281	UN0281	(A)22	predicted: photosystem I subunit O [<i>Cicer</i> <i>arietinum</i>]	TGTCTGGCTT GAGCAGAAG A	59	TGTTGCCAT AGCTTGCCT CA	60	120-250	0.80
UN0536	UN0536	(TA)6	cysteine proteinase inhibitor [<i>Medicago</i> <i>truncatula</i>]	ATAGGCCTG CTTGGACCC TA	60	ACAAAGGCA ATTTCCAAA CGT	57	114-123	0.63

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	Tm	Allele size	PIC
UN0538	UN0538	(T)12	myb transcription factor [<i>Medicago</i> <i>truncatula</i>]	GCAAAGAGC TCGTGTGTGTG TT	59	AGCAGTTAG ATCACAGCT ACCA	59	130-178	0.82
UN0575	UN0575	(T)12	predicted: arabinogalactan peptide 16-like [<i>Cicer</i> <i>arietinum</i>]	CGCTCAATC TCCTTCCCCT G	60	CCTCCTCCG CGTTCTACA AA	60	139-433	0.88
UN0748	UN0748	(A)10	acylamino-acid- releasing enzyme [<i>Medicago truncatula</i>]	CATTGCTGC GTGGTTCAA CA	60	TCAAATATT CAGTGTCAT GTTCTACTT	57	120-240	0.82
UN0755	UN0755	(ACC)5	proline rich protein [<i>Medicago truncatula</i>]	CATGCACAC CAAATCCAC CA	59	TATCGGTGG CACGACAAC AA	60	146-148	0.32
UN0861	UN0861	(GAA) 10	peroxidase [<i>Medicago</i> truncatula]	ACAACACCA TGATGAGCC TTG	59	TGTGTCATC CATGGACCA CA	59	271-359	0.78
UN0931	UN0931	(A)16	snakin-1 [<i>Medicago</i> truncatula]	AGGGACAAG GAAAATGCC CT	59	AGCCCTGTA CATCACCCA AA	59	127-158	0.72

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

	Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	T _m	Allele size	PIC
	UN0953	UN0953	(A)11	legumin [<i>Medicago</i> truncatula]	ACCTCGCAG CCATGAGAT TC	60	GCTCTCGCG AATCTTTGC AG	60	204-211	0.67
	UN0982	UN0982	(A)18	non-specific lipid- transfer protein 3 [<i>Lens</i> <i>culinaris</i>]	TGATGGTGC GGTTTCAAG GT	60	CCTACTCCC CCATCCAGG TT	60	206-421	0.77
11	UN1014	UN1014	(A)19	Histone H3 [<i>Medicago truncatula</i>]	AGCTACCTG GCTACCCAT TT	58	GGATTTGCG AGCGGTTTG TT	60	130-467	0.84
0	UN1128	UN1128	(A)10	predicted: membrane- anchored ubiquitin-fold protein 3 [<i>Cicer</i> <i>arietinum</i>]	CACCAACAA CAACAGCAG CA	60	CCAACTCCT CTTCCGGCA TT	60	313-325	0.38
	UN1583	UN1583	(TAT)5	unknown protein	CTTCCCGAT CGTCGTATC GT	59	TCAATTTTCT GCATCATGA ACCT	57	177-319	0.41
	UN1952	UN1952	(TAT)8	1-aminocyclopropane- 1-carboxylate oxidase [<i>Medicago truncatula</i>]	AGGACAAGT GTTGGTGTG GG	60	CAGTTCTAA ATCACTGCA TCGCA	60	264-285	0.70

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

-	Marker	Transcript /Unigene I.D.	SSR type	Putative function	Forward primer (5'-3')	T _m	Reverse primer (5'-3')	T _m	Allele size	PIC
_	UN2594	UN2594	(A)11c ataatag catctatt aaaacat acatgat ggacaa gcaatttc tcaac (A)12	wound-responsive family protein [<i>Medicago truncatula</i>]	TTCTTCTTCT CAATTCAGA TCAACTT	57	GTACCTAAG CTGCTGGGG TC	60	215-251	0.82
120	UN2787	UN2787	(CAC)7	adenylate kinase [<i>Medicago truncatula</i>]	GCTACAAAA AGCGCGTTT GC	60	TCATAACAC GTAGCGGCT CC	60	105-211	0.49
	UN2827	UN2827	(TAA)5	hypothetical protein MTR_1g084000 [<i>Medicago truncatula</i>]	AGCAGAAAG CACATTGCA CA	59	CAAAGGCTG GGAAGGCAA AG	60	285-293	0.41

Table 6.3. Tm, allele size, polymorphism information content (PIC), SSR type, and sequences of each of the 57 polymorphic expressed sequenced tagged-simple sequence repeats (EST-SSRs) primer pairs (continued).

Discussion

MIRA assembly is flexible, allowing short reads like ESTs to be assembled into contigs and specific trimming further improved the quality of the sequences (http://miraassembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html). The number of SSR containing sequences detected was very high compared to other studies however it yielded a lower number of polymorphic markers. These polymorphic markers successfully discriminated the test genotypes and grouped genetically more related individuals. Simple sequence based markers are the most robust and easy to use marker systems. Moreover, capillary based gel separation technologies now help to detect small differences in length among the alleles. Polymorphic marker generated as many as seventeen alleles. Similar results were obtained in other crops where EST databases were used to develop SSR markers (Akash and Myers 2012; Gong et al. 2010; Gupta and Prasad 2009; Choudhary et al. 2009; Gupta et al. 2013). Kumar et al. (2015) reviewed the recent development of genic SSR markers in lentil (Kaur et al. 2011, 2014; Verma et al. 2013, 2014) and Andeden et al. (2015) developed 78 polymorphic SSR markers in lentil. However the number of polymorphic genic SSR markers were still limited. Kaur et al. (2011) validated a subset of 192 EST-SSR markers across a panel of 12 cultivated lentil genotypes which showed 47.5% polymorphism from a set of 2,393 EST-SSR markers. Kaur et al. (2014) found 40 polymorphic markers after testing 516 EST-SSRs. Andeden et al. (2015) developed (CA)n, (GA) n, (AAC)n and (ATG)n repeats enriched libraries and by sequencing these libraries found 78 polymorphic SSR markers using a set of 15 Turkish lentil genotypes. This study observed 21.6% polymorphism (out of the 360 primers validated 78 were polymorphic). In the present study 26% polymorphism was found by testing 219 markers in 22 cultivated and wild lentil genotypes. Verma et al. (2013) reported 42.59% polymorphism while validating 54

markers among 22 lentil and other genera, *Medicago*, *Glycine* and *Vigna*. The inclusion of other genera would have contributed to the higher polymorphism percentage. The use of SSR markers for diversity analysis or grouping of genotypes based on genetic relatedness in lentil or other closely related food legumes are reported by many workers (Wu et al. 2014; Kwon et al. 2012; Reddy et al. 2010; Liu et al. 2008). Kaur et al. 2011 and Verma et al. 2013 also found comparable grouping ability of the test polymorphic markers. The number of alleles amplified per locus was comparatively very low in case of Verma et al. (2013) (2.3 alleles) and Andeden et al. (2015) (5.1 alleles) compared to this study (7 alleles). Wong et al. (2015) classified four gene pools in lentil using genotyping-by-sequencing (GBS) of 60 genotypes. These were primary, secondary, tertiary and quaternary gene pools that were formed by *L. culinaris/ L. orientalis/ L. tomentosus, L. lamottei/ L. odemensis, L. ervoides*, respectively.

The distribution of functional annotation categories between the total ESTs and EST-SSRs were less comparable. It is noteworthy to mention that further SLIM-ing of GO categories improved the authenticity of the annotation data. It was observed that most of the functions under any annotation category remain the same between the unigenes and EST-SSRs. Functional annotations of the EST-SSR flanking regions indicated the involvement in the translating portion of the genome. This is important from the point of view of the development of functional markers in lentil. The lentil genome sequencing project is underway with the most recent draft (v 0.7) with approximately 150X coverage produced scaffolds covering about half of the genome. The initial assembly resulted in useful SNPs suitable for marker assisted selection (Bett et al. 2015). Development of dense genetic maps is a prerequisite in lentil (Sharpe et al. 2013) and recently EST-SSR and SNPs were mapped in lentil (Gupta et al. 2012; Kaur et al. 2014). In conclusion, a polymorphic set of 57 markers were developed in lentils. Out of these 14 amplify the identical SSRs reported by Kaur et al. (2011). These were further validated among diverse lentil genotypes. These markers could be used by the lentil research community for molecular breeding.

Literature cited

- Akash MW, Myers GO (2012) The development of faba bean expressed sequence tag–simple sequence repeats (EST-SSRs) and their validity in diversity analysis. Plant breeding 131(4):522-530
- Andeden EE, Faheem SB, Esra Ç, Faruk T, Hakan Ö (2015) Development, characterization and mapping of microsatellite markers for lentil (*Lens culinaris* Medik.). Plant Breed doi:10.1111/pbr.12296
- Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 93:208-218
- Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25-29
- Barulina H (1930) Lentils of the USSR and other countries. In: Bulletin of Applied Botany, Genetics and Plant Breeding Supplement. USSR Institute of Plant Industry of the Lenin Academy of Agricultural Science, Leningrad, USSR, pp 265-304

- Bett K, Ramsay L, Crystal C, Sharpe AG, Cook DR, Penmetsa R Varma, Chang P, Coyne CJ, McGee R, Main D, Vandenberg A (2015) Len Gen: The international lentil genome sequencing project. In: Plant and Animal Genome XXIII Conference. https://pag.confex.com/pag/xxiii/webprogram/Paper14074.html Accessed 7 July 2015.
- Bhadauria V, Bett KE, Zhou T, Vandenberg A, Wei Y, Banniza S (2013) Identification of defense genes responsive to the anthracnose pathogen *Colletotrichum truncatum*. BMC Genetics 14:31
- Buchwalt L, Anderson KL, Morrall RAA, Gossen BD, Bernier CC (2004) Identification of lentil germplasm resistant to *Colletotrichum truncatum* and characterization of two pathogen races. Phytopathology 94:236-243
- Chen TW, Gan RCR, Wu TH, Huang PJ, Lee CY, Chen YYM, Chen CC, Tang P (2012) FastAnnotator-an efficient transcript annotation web tool. BMC Genomics 13:S9
- Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147-1159
- Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591-608
- Datta S, Tiwari S, Kaashyap M, Gupta PP, Choudhury PR, Kumari J, Kumar S (2011) Genetic similarity analysis in lentil using cross-genera legume sequence tagged microsatellite site markers. Crop Sci 51:2412-2422

- Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (*Cajanus cajan* L.). DNA Res 18:153-164
- Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ, Lushbough C, BrendelV (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:D959-65
- FAOSTAT (2013) FAO statistical database. FAO, Rome. Available at http://faostat.fao.org
- Gong Ym, Xu Sc, Mao Wh, Hu Qz, Zhang Gw, Ding J, Li Yd (2010) Developing new SSR markers from ESTs of pea (*Pisum sativum* L.). J Zhejiang University SCIENCE B 11:702-707
- Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa (2008) A high-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420-3435
- Gupta S, Prasad M (2009) Development and characterization of eSSR markers in *Medicago truncatula* and their transferability in leguminous and non-leguminous species. Genome 52: 761-771. doi:10.1139/G09-051
- Gupta D, Taylor PWJ, Inder P, Phan HTT, Ellwood SR, Mathur PN, Sarker A, Ford R (2012) Integration of EST-SSR markers of *Medicago truncatula* into intraspecific linkage map of lentil and identification of QTL conferring resistance to ascochyta blight at seedling and pod stages. Mol Breed 30:429-39

- Gupta S, Bharalee R, Das R, Thakur D (2013) Bioinformatics tools for development of fast and cost effective simple sequence repeat (SSR), and single nucleotide polymorphisms (SNP) markers from expressed sequence tags (ESTs). African J Biotechnol 12:4713-4721
- Hamwieh A, Udupa SM, Sarker A, Jung C, Baum M (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breeding Sci 59(1):77-86
- Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77(3):395-401
- Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868-877
- Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004a) Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci 44(1):5-12
- Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004b) QTL mapping of winter hardiness genes in lentil. Crop Sci 44(1):13-22
- Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011)
 Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265
- Kaur S, Cogan NO, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014) EST-SNP discovery and dense genetic mapping in lentil (*Lens culinaris* Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127(3):703-713
- Kumar J, Pratap A, Solanki RK, Gupta DS, Goyal A, Chaturvedi SK, Nadarajan N, Kumar S (2012) Genomic resources for improving food legume crops. J Agric Sci-London 150:289-318
- Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:78. doi: 10.3389/fpls.2015.00078
- Kwon SJ, Brown AF, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee KE, Coyne CJ (2012) Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (*Pisum sativum* L.) core collection. Genes Genomics 34:305-320
- Liu J, Guan JP, Xu DX, Zhang XY, Gu J, Zong XX (2008) Genetic diversity and population structure in lentil (*Lens culinaris* Medik.) germplasm detected by SSR Markers. Acta Agron Sin 34:1901-1909
- Muehlbauer FJ (1987) Registration of 'Brewer' and 'Emerald' lentil. Crop Sci 27(5):1088-1089

Muehlbauer F, McPhee K (2004) Registration of 'Pennell' lentil. Crop Sci 44:1488

- Muehlbauer FJ, McPhee KE (2007) Registration of 'Morton'winter-hardy lentil. Crop Sci 47(1): 438-39
- NCBI (2015) Available at: http://www.ncbi.nlm.nih.gov/nucest/?term=lentil [accessed on June 6, 2015].
- Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR (2010) Cross-genera legume SSR markers for analysis of genetic diversity in *Lens* species. Plant Breeding 129:514-518
- Sarker A, Erskine W, Hassan MS, Afzal MA, Murshed ANMM (1999a) Registration of 'Barimasur-4' lentil. Crop Sci 39:876
- Sarker A, Erskine W, Hassan MS, Mian W, Debnath N (1999b) Registration of 'Barimasur-2' lentil. Crop Sci 39:875

- Sarker A, Kumar J, Rahman MM, Hassan MS, Zaman W, Afzal MA, Murshed ANMM (1999c) Registration of 'Barimasur-3' lentil. Crop Sci 39:1536
- Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R, et al (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14(1):192
- Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). Theor Appl Genet 106:411-422
- Vandenberg A, Banniza S, Warkentin TD, Ife S, Barlow B, McHale S, Brolley B, Gan Y,
 McDonald C, Bandara M, Dueck S (2006) CDC Redberry lentil. Can J Plant Sci 86:497-498
- Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (*Lens culinaris* Medik.) transcriptome. Plant Biotechnol J 11:894-905
- Verma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S (2014) Exploring genetic variability within lentil (*Lens culinaris* Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41(9):5607-5625.
- Wong MM, Gujaria-Verma N, Ramsay L, Yuan HY, Caron C, Diapari M, Vandenberg A, Bett KE (2015) Classification and characterization of species within the genus *Lens* using genotyping-by-sequencing (GBS). Plos One 10(3):e0122025 doi:10.1371/journal.pone.0122025

- Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y (2014) Genetic analysis and molecular characterization of Chinese sesame (*Sesamum indicum* L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. BMC Genet 15:35
- Yadav SS, Rizvi AZ, Manohar M, Verma AK, Shrestha R, Chen C, Bejiga G, Chen W, Yadav M, Bahl PN (2007) Lentil growers and production systems around the world. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil an ancient crop of modern times. 1st edn.
 Springer, The Netherlands, p 426
- Zheng Y, Zhao L, Gao J, Fei Z (2011) iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics 12:453

CHAPTER 7. DEVELOPMENT OF MOLECULAR MARKERS FOR IRON METABOLISM RELATED GENES IN LENTIL AND THEIR EXPRESSION ANALYSIS UNDER EXCESS IRON

Abstract

Multiple genes and transcription factors are involved in the uptake and translocation of iron in plants from soil. The sequence information about iron uptake and translocation related genes is largely unkown in lentil (Lens culinaris Medik). This study was designed to develop iron metabolism related molecular markers for Ferritin-1, BHLH-1 (Basic helix loop helix) or FER-like transcription factor protein and IRT-1 (Iron related transporter) genes using genome synteny with barrel medic (Medicago truncatula). The second objective of this study was to analyze differential gene expression under excess iron conditions over time (2h, 8h, 24h). Specific molecular markers were developed for iron metabolism related genes (Ferritin-1, BHLH-1, IRT-1) and validated in lentil. Gene specific markers for Ferritin-1 and IRT-1 were used for quantitative PCR (qPCR) studies based on their amplification efficiency. Significant differential expression of *Ferritin-1* and *IRT-1* was observed under excess iron conditions through qPCR based gene expression analysis. Regulation of iron uptake and translocation in lentil needs further characterization. Greater emphasis should be given to development of conditions simulating field conditions under external iron supply and considering adult plant physiology.

Introduction

Iron (Fe) uptake in plants is a complex physiological process governed by homeostatic mechanisms in the plant. Homeostatic mechanisms involve absorption, translocation and redistribution of Fe within the plant system at a particular concentration $(10^{-9}-10^{-4} \text{ mol/l})$

(Romheld and Scaaf 2004). Lower iron concentration leads to Fe-deficiency symptoms including chlorosis and necrosis in leaves and ultimately loss in biomass as well as grain yield. Higher concentrations of Fe within the plant system results in generation of free radical species which damage various cellular components by interacting with protein, lipid, carbohydrates and even with DNA. According to Welch and Graham (2004), there are four different barriers controlling homeostatic mechanisms of mineral uptake in plants; (A) the root-soil interphase known as rhizosphere, (B) root-cell plasma membrane, (C) translocation to edible plant organs (grains/tubers), and (D) bioavailability of minerals.

Ferritin is an iron-carrying protein in plants and has a multimeric (24-mer) cage-like structure that carries up to 4500 atoms of Fe within its core (Crichton et al. 1978; Wade et al. 1993). The ferritin protein is highly conserved within the animal and plant kingdom (Ragland et al. 1990). Ferritin meets the metabolic need for iron when required by the metabolome as well as prevents any kind of oxidative stress (Raymond and Bryan 1995; Waldo and Theil 1996; Harrison et al. 1998). Plant ferritin subunit sequences share between 39% and 49% similarity with mammalian ferritin sequences (Briat et al. 2009). This similarity increases when comparisons are made within the plant kingdom or among close plant families. Iron homeostasis is important due to the minute balance that exists between iron deficiency and toxicity and that affects plant physiology. Impaired plant physiology ultimately affects crop yield. Ferritin regulates iron homeostasis to prevent interaction of iron with other cellular components which may result in generation of free radicals during oxidative stress. In plants, ferritin consists of a single kind of subunit and ferritin bound Fe is highly bioavailable (Kalgaonkar and Lonnerdal 2008).

Lentil (*Lens culinaris* Medik.) being a dicot plant uses strategy I where ferric iron is reduced at the rhizosphere and absorbed as ferrous iron by the root. Monocot plants use a different strategy to uptake iron from the soil (strategy II). In *Arabidopsis thaliana*, reduction of ferric Fe is accomplished by Fe reductase FRO2 (ferric reductase oxidase-2; Robinson et al. 1999). This was the first report of cloning and gene function elucidation of any major iron metabolism related gene in plants. Uptake of ferrous Fe into the root is carried out by the metal transporter IRT1 (iron-regulated transporter; Eide et al. 1996; Vert et al. 2002). The basic helixloop-helix (BHLH) transcription factor family in plants is a ubiquitous regulator and is highly conserved, regulating different types of genes during transcription (Heim et al. 2003). The BHLH transcription factor or FIT (FER-like Fe deficiency-induced transcription factor) is reported to be responsible for high-level expression of FRO2 and IRT-1 (Colangelo and Guerinot 2004; Jakoby et al. 2004; Yuan et al. 2005).

Development of gene specific markers and their utilization in understanding metabolic pathways are important genomic goals to achieve in any crop species for their effective utilization in genetic studies or molecular breeding applications *per se*. Availability of specific DNA markers for iron metabolism related genes in lentil are not available. The objectives of the study were to, (1) develop gene (*Ferritin-1*, *BHLH-1*, and *IRT-1*) specific molecular markers in lentil and (2) analyze their gene expression under excess iron over time.

Materials and methods

Plant materials and treatments

CDC Redberry (Vandenberg et al. 2006) seedlings were raised in the laboratory and fresh tissue was collected for DNA and RNA extraction. For gene expression analysis, CDC Redberry seeds were germinated on wet filter paper in an incubator maintained at 25°C. Seedlings were

transferred to hydroponic growth in 50 mL tubes containing distilled water and kept under growing conditions of 16 h of light and at 25°C for eight days after germination. After complete development of the first trifoliolate leaf (18–21 days of growth), two different treatments were made: (1) control with distilled water (iron deficient condition), (2) induction of excess iron condition by addition of 500 μ M of Fe-EDTA, 150 mM of sodium citrate and 75 μ M FeSO₄ (Lobre'aux et al. 1995). Treatments were applied for 24 h and samples were collected 2, 8 and 24 h after treatment. Three biological replications were included for each treatment.

Development of markers

Full length coding sequences (CDS) for three ferritin genes (*ferritin-1*, *ferritin-2*, *ferritin-3*) for *Medicago truncatula* were acquired from the NCBI (National Center for Biological Information) nucleotide database on 15 April 2015. We downloaded the complete coding sequence of *Ferritin-2* mRNA (NCBI reference sequence: XM_003616637.1) of *M. truncatula* in FASTA format and performed a nucleotide BLAST search against CDC Redberry 454 contig sequences in the Knowpulse database

(http://www.knowpulse.usask.ca/portal/blast/nucleotide/nucleotide). The contig sequence with the highest bit score and lowest e-value and, therefore, having the highest similarity with the query sequence (*M. truncatula Ferritin-2*) was identified. Then the contig sequence was downloaded from the Knowpulse database and used to design primers. Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) was used to design five primer pairs using default parameters (Table 7.1). One primer pair (FerrClo5) with reproducible and clear amplification was chosen for further analysis and development of qPCR compatible primers for the Ferritin gene in lentil. In addition, one primer pair specific to a lentil BHLH (Basic Helix Loop Helix) transcription factor or FER-like Transcription Factor gene sequence was synthesized. Primers were also designed for the iron-related transporter gene based on the *IRT1* mRNA coding sequence (CDS) (LegumeIP database reference no. IMGA[Medtr8g105030.1] of *M. truncatula* for the amplification of lentil *IRT-1* in the qPCR experiment. The amplicon of Ferritin as well as the BHLH transcription factor gene were beyond the range of optimum product size (>250 bp) for qPCR experiment and thus were gel purified using a gel purification kit (IBI, MIDSCI, St. Louis, USA) (Vogelstein and Gillespie, 1979) following manufacturer's instructions and sequenced using the Sanger sequencing method (Etonbiosciences Inc., San Diego, CA). The gene sequences were aligned with the respective *M. truncatula mRNA* sequences (*Ferritin-2* and *BHLH* transcription factor gene, respectively) and primer pairs were designed for qPCR experiments based on the putative exonic sequences, their sequence identity, gap and the desired product size using Primer3 software

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Based on these sequences one primer pair for *Ferritin-1* and another primer pair for *BHLH-1* transcription factor were designed for qPCR. Primers for *IRT-1* were directly used in qPCR and were within the qPCR compatible product size range (<100 bp amplicon size).

Isolation of RNA and synthesis of complementary DNA

Total RNA was extracted from 100 mg of fresh leaves of individual treatments using the QIAGEN® RNeasy Mini Kit (QIAGEN, California, USA) according to manufacturer instructions. The quality of the RNA extracts were determined by the spectrophotometer Nano-Drop (ND-1000) (NanoDrop Technologies, Welmington, USA). To check the integrity of the RNA, the samples were stained, separated and visualized by electrophoresis in a 1 % agarose gel. Details about the quality of the RNA samples can be found in Table A4. The first strand of cDNA was synthesized from 1 µg of total RNA in a 20 µL reaction using SuperScript III First

Strand Synthesis Supermix RT-PCR Kit (Invitrogen, USA). The cDNAs were diluted to 2 ng μ L⁻¹.

Quantitative PCR

Three primer pairs were used for gene expression analysis, *Ferritin1* (developed using PCR based cloning and sequencing), *BHLH1* (developed using PCR based cloning and sequencing) and *IRT1* (primer designed based on *M. truncatula IRT1* gene sequence). Expression levels of mRNA were evaluated in a SYBR Green dye using an Applied Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems, USA). PCR amplifications were carried out in triplicate in 20 μ L reactions containing Maxima SYBR Green mixer (Fermentas, USA), 250 nM of each primer and 4 ng of cDNA. On each plate, the reference genes (*GADPH* and *Actin*) and negative controls were included. Amplification conditions were 50 °C for 2 min, 95 °C for 10 min, 40 cycles at 95 °C for 15 s, 60 °C for 1 min. The calibration curves for each primer pair were plotted using five serial dilutions of the cDNA in water. To verify the specificity of amplification a dissociation curve analysis step was added to the qPCR amplification protocol. Amplification efficiency, slope and R² value were determined for each primer pair. Amplification efficiencies were calculated by E = (10^{-1/slope} – 1) x 100.

Statistical analysis of gene expression analysis

Cycle threshold (C_T) values were determined using SDS software (Applied Biosystems, USA). Gene expression data were analyzed using the C_T values and amplification efficiency values using method $2^{-\Delta\Delta CT}$ (Livak et al. 2001). Geometric means of reference genes were used to normalize the C_T values of the individual samples. The program REST 2009—Relative Expression Software Tool (Pfaffl 2001) was used to determine if the differences between the treatments were statistically significant (*P*<0.05).

Results

Development of markers

After performing BLASTn analysis using *ferritin-2* mRNA sequence of *Medicago truncatula* in the KnowPulse database (University of Saskatchewan, Canada) one contig sequence was identified, LcRBContig00605, based on BIT score (700), sequence identity (91%) and e-value (0) (Table 7.1). BLASTn results using other plant species resulted into the identification of this contig sequence (LcRBContig00605) (data not shown). Five primer pairs were designed using Primer-BLAST, *FerrClo1, FerrClo2, FerrClo3, FerrClo4*, and *FerrClo5* (Table 7.2). Among the five primer pairs *FerrClo5* produced reproducible and clear amplification of CDC Redberry genomic DNA. Optimum PCR conditions for *FerrClo5* primers in a ABI 7500 thermocylcer were established : 94°C for 5 minutes, followed by 30 cycles of 94°C for 1 m, 60°C for 1 m, 72°C for 1 m followed by a final elongation step of 72°C for 5 m. The amplified DNA fragment was gel purified and sequenced using Sanger's method to obtain a 390 bases long sequence. The sequence has been submitted to National Center of Biological Information (NCBI) database. Alignment of the partial genomic DNA sequence with the *M*.

Table 7.1. Nucleotide BLAST results of *M. truncatula ferritin-2* gene sequence (NCBI reference no. XM_003616637.1) with CDC Redberry 454 contig sequences in Knowpulse database showing bit score, percent identity and e-value (http://knowpulse.usask.ca).

Hit*	Bit Score	Identity%	E-value
LcRBContig00605	700	91	0.00e+0
LcRBContig02360	530	90	1.53e-103
LcRBContig20139	142	93	4.44e-5
LcRBContig24460	167	94	1.39e-40
LcRBContig24460	167	94	1.39e-40
LcRBContig13391	167	94	1.39e-40
LcRBContig07868	167	94	1.39e-40
LcRBContig07177	167	94	1.39e-40
LcRBContig01318	167	94	1.39e-40
LcRBContig24151	111	91	7.13e-24

*First 10 relevant hits are shown here

truncatula ferritin-2 mRNA sequence (NCBI reference sequence: XM_003616637.1) showed a 92 bp sequence overlap with no gap (Fig. 7.1). This potential exonic sequence was used to design primers (*Ferritin-1*) using Primer-BLAST.

Primer pairs developed in a previous study were used to amplify the *BHLH-1* gene in CDC Redberry genomic DNA. Optimum PCR conditions for *BHLH-1* primer pairs in a ABI 7500 thermocylcer were established: 94°C for 5 minutes, followed by 30 cycles of 94°C for 1 m, 60°C for 1 m, 72°C for 1 m followed by a final elongation step of 72°C for 5 m. The amplified fragment sequenced by Sanger's sequencing method and A 490 base long sequence for *BHLH-1* was submitted to the NCBI database. This sequence was aligned with *M. truncatula BHLH* mRNA sequence (NCBI reference number XM_003606283.1) and based on the alignment (Fig. 7.2) a 75 bp sequence with no gap (potential exonic sequence) was used to design qPCR compatible primers for *BHLH-1* in lentil using Primer-BLAST.

Table 7.2 Sequence information and T_m (melting temperature) of primers designed based on the CDC Redberry contig (LcRBContig00605) to clone *Ferritin-1* gene in lentil.

Primer	Forward sequence(5'-3')	Reverse sequence(5'-3')	T _m
name			(°C)
FerrClo1	TGCTGATAAGGGTGATGCGCT	GGCTTCCACCTGTTCACCCA	64
FerrClo2	AACCTGCACAGTGTTGCCTC	AGTGCCAGACACCATGTCCT	62
FerrClo3	GTTGCGCTGAAAGGTCTTGCT	GCCAAGTGCACATCACCAGT	62
FerrClo4	ACGTTGCGCTGAAAGGTCTTG	TGCCAAGTGCACATCACCAG	62
FerrClo5	CTGGTGATGTGCACTTGGCA	GCTGCAGCTGCTTCCTCACT	62

Fig. 7.1. Sequence alignment between *Medicago truncatula ferritin-2* full length CDS (NCBI reference no. XM_003616637.1) and lentil *Ferritin-1* partial genomic sequence using MultAlin tool (Corpet et al. 1988) with default parameter values. From 721 to 812 was used to design qPCR compatible primers.

Fig. 7.2. Sequence alignment between *Medicago truncatula BHLH* full length CDS (NCBI reference number XM_003606283.1) and lentil *BHLH-1* partial genomic sequence using MultAlin (Corpet et al. 1988) with default parameter values. From 425 to 449 was used to design qPCR compatible primers.

Using a *M. truncatula* iron regulated transporter gene mRNA sequence [LegumeIP database reference no. IMGA(Medtr8g105030.1)] primer pairs (IRT1) were designed for the qPCR study. Dissociation curve analysis of the three pairs of primers (*Ferritin-1*, *BHLH-1*, *IRT-1*) showed specific amplification (Figs. 7.3, 7.4, 7.5). Amplification efficiency of the designed primer pairs and reference genes (*GADPH, Actin*) were found to be >90% with the exception of *BHLH-1* primer pairs (Table 7.3). Slope values ranged from -0.02 to -3.55 and R² values ranged between 0.0034 and 0.9972.

Table 7.3. Amplification statistics for one *Ferritin-1*, one *BHLH-1*, one *IRT-1* gene specific primer pairs, and one primer pair for each reference gene (*GADPH, Actin*).

Gene	Forward	Reverse	Tm	Size	Slope	\mathbb{R}^2	E
	sequence	sequence	(°C)				
Ferritin-1	AGATATCCG	AAGATG	61	84	-3.32	0.9968	100.07
	AGTATGTTG	CACGAA					
	CTCAG	TGAAGC					
		AGAAA					
IRT-1	GTCGCTGT	GTGAGC	61	159	-3.12	0.9954	109.18
	TTTGCTAG	TTCTCCT					
	GTGC	CTTCCCT					
BHLH-1	TTATTAGG	TTGCGAT	59	74	-0.02	0.0034	6.55e+
	GTTAGACT	CTTTGGT					42
	CAACGCA	TCCCA					
GADPH	TGGGCGAA	GAATTG	60	57	-3.15	0.9954	107.71
	AACTCCAC	CTGCAG					
	TTTG	CCTTGTG					
		А					
Actin	CCAAATCA	GTGAAA	60	64	-3.55	0.9972	91.25
	TGTTTGAG	GAACGG					
	GCTTTTAA	CCTGAAT					
		AGC					

Here, T_m =melting temperature, Size=amplicon length, Slope=slope of the trend line in amplification efficiency graph, R²=regression coefficient, E=amplification efficiency

Gene	Plant tissue		Time Course							
		2h	2h	2h	8h	8h	8h	24h	24h	24h
	Shoot tissue									
Ferritin-1		0.29	1.0	3.03	0.47	0.79	1.45	2.7	1.41	0.83
IRT-1		0.37	1.47	0.38	0.15	0.44	1.79	1.38	1.0	0.20
	Root tissue									
Ferritin-1		1.81	3.29	3.05	0.22	0.52	1.45	0.64	0.32	0.82
IRT-1		1.70	5.03	4.59	0.30	0.55	1.73	0.73	0.44	1.14

Table 7.4. Differentially expressed *Ferritin-1* and *IRT-1* genes in CDC Redberry shoot and root tissues over time (2, 8 and 24 h) in three replicates under excess iron.

Table 7.5. Significance of differential expression of samples over time (TC) in excess iron in relation to control samples in shoot and root tissue of CDC Redberry genotype.

TC (h)	Gene	Tissue	N	E	SE	95 % CI	P(H1)	Remark
2h	Ferritin-1	shoot	3	0.474	0.241 -	0.159 -	0.199	NS
					0.938	1.264		
8h	Ferritin-1	shoot	3	1.056	0.763 -	0.711 -	0.724	NS
					1.411	1.843		
24h	Ferritin-1	shoot	3	1.049	0.589 -	0.377 -	0.832	NS
					2.150	2.792		
2h	Ferritin-1	root	3	2.724	1.866 -	1.342 -	0	Up regulated,
					4.644	5.267		significant
8h	Ferritin-1	root	3	0.554	0.310 -	0.228 -	0.28	NS
					1.018	1.395		
24h	Ferritin-1	root	3	0.558	0.383 -	0.096		NS
					0.796			
2h	IRT-1	shoot	3	0.591	0.223 -	0.116 -	0.539	NS
					1.443	2.883		
8h	IRT-1	shoot	3	0.487	0.218 -	0.162 -	0.298	NS
					1.634	1.835		
24h	IRT-1	shoot	3	0.65	0.283 -	0.211 -	0.517	NS
					1.280	2.734		
2h	IRT-1	root	3	3.563	2.186 -	1.874 -	0	Up regulated,
					5.066	5.405		significant
8h	IRT-1	root	3	0.672	0.386 -	0.313 -	0.245	NS
					1.101	1.640		
24h	IRT-1	root	3	0.715	0.504 -	0.441 -	0.192	NS
					1.129	1.382		

Here, N= number of biological replications, E= Differential expression, SE= standard error, P (H1)= Probability of alternative hypothesis

Expression analysis of Ferritin-1 and IRT-1 gene

Using the $2^{-\Delta\Delta CT}$ method (Livak et al. 2001), changes in gene transcripts were calculated for the treated samples (under excess iron condition) compared to the control treatments (irondeficient condition) (Table 7.4). For *Ferritin-1* and *IRT-1* genes the changes in gene transcript were not significantly different for the shoot tissue (Table 7.5). A 2.72 fold increase in *Ferritin-1* gene transcripts was observed in root tissue after 2 h of iron treatment (*P*<0.05) (Table 7.5). Similarly, a 3.56 fold increase in *IRT-1* gene transcripts was observed (*P*<0.05) (Table 7.5).

Fig. 7.3 Dissociation curve for *Ferritin-1* **primer pairs.** Derivative plotted in Y axis is the negative of the rate of change in fluorescence as a fraction of temperature and temperature is plotted on the X axis of the graph.

Fig. 7.4 Dissociation curve for *BHLH-1* **primer pairs.** Derivative plotted in Y axis is the negative of the rate of change in fluorescence as a fraction of temperature and temperature is plotted on the X axis of the graph.

Fig. 7.5 Dissociation curve for *IRT-1* **primer pairs.** Derivative plotted in Y axis is the negative of the rate of change in fluorescence as a fraction of temperature and temperature is plotted on the X axis of the graph.

Discussion

Iron uptake from the soil and translocation within the plant is a complex physiological process. It involves multiple genes and transcription factors. The magnitude of mRNA transcript

synthesis under excess iron conditions for iron metabolism related genes (*Ferritin-1*, *BHLH-1*, *IRT-1*) in lentil was evaluated in this study. Two genes, *Ferritin-1 and IRT-1*, were quantitatively assayed for differential gene expression while *BHLH-1* primers failed to exhibit amplification efficiency above 90 percent. Ideally gene-specific primers with amplification efficiency >90 percent are considered for qPCR experiments (Udvardi et al. 2008).

Dissociation curve analysis (Figs.7.3, 7.4, 7.5) which is the dsDNA melting curve analysis (Udvardi et al. 2008) added at the end of PCR run showed the specificity for single amplicon amplification and expected melting temperature for the individual primer pairs. All of the three primer pairs exhibited a typical single peak with expected melting temperatures (Fig.7.3, 7.4, 7.5). Gene expression quantification values (C_T values) were normalized using geometric means of C_T values of the two reference genes (*GADPH*, *Actin*) (Vandesompele et al. 2002). *Actin* and *GADPH* were used in studies in lentil, pea and common bean exhibiting stability of expression across tissues and plant parts (Saha and Vandemark 2012, 2013, DeLaat et al. 2014). The objective behind the normalization of qPCR data was to remove the sampling error, which may arise due to RNA quantity and quality differences across samples (Table A4).

In this study we developed gene-specific molecular markers for three genes (*Ferritin-1*, *BHLH-1*, *IRT-1*) in lentil. Primers for *Ferritin-1* and *IRT-1* were used in differential gene expression analysis. Partial genomic DNA sequences of *Ferritin-1* and *BHLH-1* were submitted to the NCBI database. These sequences are available to clone full length genomic sequences of each gene in lentil. The partial genomic DNA sequence *BHLH-1* gene can be further analyzed and used to develop qPCR compatible primers for this gene. It can be hypothesized from the comparative genomic synteny of lentil with *M. truncatula* (Phan et al. 2007) that a ferritin gene family does exist in lentil and other ferritin genes in *M. truncatula* (*ferritin-1* and *ferritin-3*)

could be used to develop molecular markers for the respective ferritin genes in lentil. In addition, once the lentil whole genome sequence is released cloning and characterization of ferritin and other iron metabolism related genes will be easier.

In gene expression analysis under excess iron it was observed that only samples with 2 h excess iron treatments exhibited significant differential gene expression (Table 7.5) for both genes (Ferritin-1 and IRT-1) in root tissues. The absence of such kinetics in gene expression change for samples that were given 8 h or 24 h excess iron treatments across the tissues was observed. The possible reason could be the different iron homeostatis mechanisms in lentil compared to other plant species studied under similar conditions. Development of an assay to find out the reason behind such variation could first start with the standardization of external iron treatments in lentil. In common bean by applying identical excess iron concentration (Lobre'aux et al. 1995) in leaf tissue similar kinetics of differential gene expression of ferritin genes (PvFer1, PvFer2, and PvFer1) were observed (DeLaat et al. 2014). Out of the three genotypes (IAC-Diplomata, Carioca, and BAT 477) used there had been significant genotypic differences of ferritin gene expression for two ferritin genes (PvFer1, PvFer2) (DeLaat et al. 2014). There were no significant differences among the treatments (control with distilled water, osmotic shock causing polyethylene glycol (PEG) treated, excess iron treated, PEG + excess iron treated) for any of the ferritin genes (DeLaat et al. 2014). The interaction between time and treatment was only significant for the PvFer2 and interaction between time and cultivar was significant for PvFer3 ferritin gene (DeLaat et al. 2014). In most of the treatments ferritin genes were up regulated, however, there were treatments where PvFer1 and PvFer3 were down regulated (DeLaat et al. 2014) over time. The above mentioned facts for common bean ferritin genes support the results we obtained in the case of *Ferritin-1* and *IRT-1* genes under identical

conditions. Further, the gene expression levels for iron metabolism related genes were low in lentil as evident by the high C_T values. Number of biological replications may be increased to improve power of the test. The difference between seedling and adult plant physiology should be taken into consideration in future experiments. In summary, gene specific markers were developed for 3 iron metabolism related genes (*Ferritin-1*, *BHLH-1*, *IRT-1*) in lentil using PCR based cloning and significant differential expression was observed for *Ferritin-1* and *IRT-1* genes at the transcriptional level.

Literature cited

- Briat JF, Céline D, Karl R, Frédéric G (2009) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806–814
- Colangelo EP, Guerinot ML (2004) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9(3):322-330
- Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16 (22):10881-10890
- Crichton RR, Ponce-Ortiz YESID, Koch MH, Parfait R, Stuhrmann HB (1978) Isolation and characterization of phytoferritin from pea (*Pisum sativum*) and lentil (*Lens esculenta*). Biochem J 171:349-356
- DeLaat DM, Colombo CA, Chiorato AF, Carbonell SAM (2014) Induction of ferritin synthesis by water deficit and iron excess in common bean (*Phaseolus vulgaris* L.). Mol Biol Rep 41(3):1427-1435
- Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93(11):5624-5628

- Harrison PM, Hempstead PD, Artymiuk PJ, Andrews SC (1998) Structure–function relationships in the ferritins. Met Ions Biol Syst 35:435–477
- Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix– loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735-747
- Jakoby M, Wang HY, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in *Arabidopsis thaliana*. Febs Lett 577(3):528-534
- Kalgaonkar S, Lonnerdal B (2008) Effects of dietary factors on iron uptake from ferritin by Caco-2 cells. J Nutr Biochem 19:33–39
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 4:402–408
- Lobre'aux S, Thoiron S, Briat JF (1995) Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress. Plant J 8:443–449
- Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2002–2007 33
- Phan HT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive macrosynteny between *Medicago truncatula* and *ssp. culinaris*. Theor Appl Genet 114(3):549-558
- Ragland M, Briat JF, Gagnon J, Laulhere JP, Massenet O, Theil EC (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem 265(30):18339-18344

- Raymond KN, Bryan BL (1995) The coordination chemistry of iron in biological transport and storage; iron removal *in vivo*. In: Kessissoglou DP (ed). Bioinorganic Chemistry: an inorganic perspective of life. vol 459, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 13–24
- Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397(6721):694-697
- Römheld V, Schaaf G (2004) Iron transport in plants: Future research in view of a plant nutritionist and a molecular biologist. Soil Sci Plant Nutr 50(7):1003-1012
- Saha GC, Vandemark GJ (2012) Evaluation of expression stability of candidate references genes among green and yellow pea cultivars (*Pisum sativum* L.) subjected to abiotic and biotic stress. American J Plant Sci 3(2):235-242
- Saha GC, Vandemark GJ (2013) Stability of expression of reference genes among different lentil (*Lens culinaris*) genotypes subjected to cold stress, white mold disease, and Aphanomyces root rot. Plant Mol Biol Rep 31(5):1109-1115
- Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20(7):1736-1737
- Vandesompele J, De Preter K, Pattyn F, Poppe B, Van RN, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034
- Vandenberg A, Banniza S, Warkentin TD, Ife S, Barlow B, McHale S, Brolley B, Gan Y, McDonald C, Bandara M, Dueck S (2006) CDC Redberry lentil. Can J Plant Sci 86:97– 498

- Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an *Arabidopsis* transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14(6):1223-1233
- Vogelstein B, Gillespie D (1979) Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci USA 76(2):615-619
- Wade VJ, Treffry A, Laulhère JP, Bauminger ER, Cleton MI, Mann S, Briat JF, Harrison PM (1993) Structure and composition of ferritin cores from pea seed (*Pisum sativum*). Biochim Biophys Acta Protein Struct M 1161(1):91-96
- Waldo GS, Theil EC (1996). Ferritin and iron biomineralization. In: Suslick KS (ed)
 Comprehensive supramolecular chemistry, supramolecular reactivity and transport:
 bioinorganic systems. vol 5, Pergamon Press, Oxford, UK, pp 65–89
- Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353-364
- Yuan YX, Zhang J, Wang DW, Ling HQ (2005) AtbHLH29 of *Arabidopsis thaliana* is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res 15(8):613-621

CHAPTER 8. OVERALL CONCLUSIONS AND FUTURE RESEARCH

Micronutrients act as cofactors for enzymes and vitamins act as coenzymes in metabolic reactions. Both these activities are important for normal growth and development of human body. Iron deficiency is prevalent throughout the world. Folate or vitamin B9 deficiency in child bearing women causes neural tube defects in child. Preventing iron and folate deficiency occurrence is a priority research area. Lentil (Lens culinaris Medik.) is a food legume consumed heavily in developing countries of Southeast Asia where iron and folate deficiencies are prevalent. Biofortification of lentil for iron and folate concentration will positively impact the nutrition status of the consumers. To initiate any biofortification program phenotyping of the existing germplsm resources is important to identify donor sources. Phenotyping was done to find out the present status of lentil genotypes for folate concentrations. It was observed that lentil genotypes used in this study were rich in bioavailable tetrahydrofolate concentration (255 μ g/100 g). Significant genotype x environment effect was observed controlling folate concentration in lentil. Folate concentration is significantly influenced by varying environmental conditions as reported by other workers working on secondary metabolites. In this study only cultivated species were evaluated for folate concentration; inclusion of wild species may exhibit the broader range of diversity for folate. Future experiments involving field samples should take into consideration of the soil fertility status also.

Cultivated (*L. culinaris*) as well as wild species (*L. ervoides*, *L. nigricans*, and *L. lamottei*) were used for mineral analysis. Lentil being a crop with narrow genetic base like any other food legume inclusion of wild species was important. Phenotyping of 26 lentil genotypes were done for iron and other micronutrients (zinc, calcium, magnesium and copper) to know the mineral profile. Significant differences were found between 26 cultivated and wild lentil

genotypes for micronutrient (iron, zinc, calcium, magnesium and copper) concentration. No single genotype had high concentrations of all micronutrients. Genotype with high concentration of any specific micronutrient can be crossed with a genotype with low concentration of that specific micronutrient to develop mapping population. Mapping populations can be used to map the regions in lentil genome controlling micronutrient concentration. Future studies may involve larger set of germplasm or core set of germplasm for phenotyping micronutrients in lentil. It is important to know the proportion of everyday requirement of the body for any micronutrient or vitamin fulfilled by each serving. The data from phenotyping were analyzed to find out the proportion of recommended daily allowance (RDA) 100 g serving size of lentil can provide. It was observed that 100 g serving of lentil can provide considerable fraction of RDA for the micronutrients (Fe, Zn, Cu, and Mg), for example, 100 g serving of lentil could meet 14-51% of RDA for iron. However, 26 lentil genotypes were not a good source of Ca as observed in the study.

Part of the present research concentrated on the genetic aspects: use as well as development of molecular markers to analyze genetic variation in lentil genotypes. Molecular markers were used to know the genetic relatedness of the lentil genotypes. A limited number (13) of simple sequence repeats (SSRs) markers were polymorphic and the cluster analysis grouped 29 cultivated and wild lentils genotypes into 4 clusters broadly based on the genotyping data, which was at par with their pedigree relationships. Number of alleles amplified ranged from 2-4 which indicated the limitation with agarose based allele detection electrophoresis system. More number of SSRs as well as other types of molecular markers, for example, single nucleotide polymorphism or SNP markers could be used to study the genetic diversity in cultivated and wild lentils.

Polymorphic simple sequence repeats markers are limited in lentil. Public databases were used in many crop species like rice, wheat, chickpea, pea, to develop genic simple sequence repeats markers. This approach reduces the cost as development of libraries or clones are not involved. A set of 57 polymorphic expressed sequence tags-simple sequence repeats (EST-SSRs) markers were developed from 9513 EST sequences of lentil available in National Center for Biological Information (NCBI). A diverse set of traits was assigned to these genic markers. The number of alleles amplified ranged from 2-17 for each marker which indicated usefulness of capillary gel electrophoresis system compared to less powerful system like agarose gel electrophoresis for allele detection. These polymorphic primers along with annotation data may help in lentil improvement for yield and nutritional traits. For example, one of the annotated markers, *BHLH-1* used to study for iron uptake in lentil under excess iron. These polymorphic primers could be mapped in lentil genetic map by genotyping a mapping population in lentil.

Micronutrient uptake in plants is a complex physiological process governed by homeostatic mechanisms in the plant. There is existing thin line between the concentration of micronutrients causing deficiency and toxicity in plants. It is therefore important to understand that how plant respond to the external excess supply of micronutrients. In case of iron lentil being a dicot plant uses strategy I where ferric iron is reduced at the rhizosphere and absorbed as ferrous iron by the root. Uptake of ferrous Fe into the root is carried out by the metal transporter *IRT-1* (iron-regulated transporter). The basic helix-loop-helix (*BHLH*) transcription factor family in plants is a ubiquitous regulator and is highly conserved, regulating different types of genes during transcription. The BHLH transcription factor or *FIT* (FER-like Fe deficiency-induced transcription factor) is reported to be responsible for high-level expression of *IRT-1*. Another important gene in iron metabolism is *Ferritin* which codes for iron storage protein ferritin.

Ferritin protein with a cage like structure which carries upto 4300 iron atoms per molecule. In order to understand the gene expressions under external excess iron gene specific markers for three genes (*Ferritin-1*, *BHLH-1*, *IRT-1*) were developed using sequence information in *Medicago truncatula*. *Ferritin-1* and *IRT-1* were differentially expressing under excess iron at 2 hours and not at 8 hours and 24 hours. This transient increase in mRNA of *Ferritin-1* and *IRT-1* and *further* decrease in gene expression over the time course (8 and 24 hours) further supports the existing strong homeostatic response. It is now important to observe the gene expression at translational level under excess iron. Future study may involve strategies to develop quantitative PCR compatible markers for other iron metabolism genes in lentil such as other members of *Ferritin* gene family and other transporters involved in iron uptake and translocation. More emphasis should be given to create actual soil condition under external iron supply. The difference between adult plant and seedling plant physiology should also be taken into consideration.

Results of these studies contributed to a broad understanding of the genetic variation, environmental influence on and expression of genes related to micronutrient and vitamin concentration and metabolism in lentil. The approach applied for iron and folate concentration can be applied to other micronutrients and vitamins.

APPENDIX A. TABLES

Primer name	Туре	Forward primer	Reverse primer	Amplicon size
BE325495	EST-SSR	CAGCCACATTTTGC TGTAAAGA	AGTAACCTTTGAC CCCAGCAT	300-330
BE323614	EST-SSR	GCACCAGGAATAAT CCAATAACA	AGCCGTCCAGTAC CTTTGAC	350
TC16680	EST-SSR	TGGAGCCATCAGAA	ATTACGATCCACC	75
AC123571	SSR	CTGATCCTTTCCAA GAAGCG	CGCTAATTGCTGG	190
AC139354	SSR	TGAGAGAGAGAGG GCGAGAG	AGGGGCTTTTGCC TATTGTT	275
AC139748	SSR	ATCTGGTAGGAGAT GGTGCG	ATGCAGAGGGGTG ATTCAAG	150
AC143341	SSR	CACGTGGGATGTCA CCACTA	GCCTTGCTGCAGA AGCTATT	400
AC146569	SSR	GACAAACGTTCAAT GCCACA	GGCTCCCTCCACT TGTAATG	270
AC146588a	SSR	GGGTTCTATGCATT CTTCGC	CCTCCCTCCCTCTC TCTCTC	410
AC146588b	SSR	GGGTTCTATGCATT CTTCGC	CCTCCCTCCCTCTC TCTCTC	800
AC146588c	SSR	GGGTTCTATGCATT CTTCGC	CCTCCCTCCCTCTC TCTCTC	850
AC148097a	SSR	TTGGTGCACCGTAT TTTGAG	CCAGGCATCCTTT TCTTTTC	700
AC148097b	SSR	TTGGTGCACCGTAT TTTGAG	CCAGGCATCCTTT TCTTTTC	200-220
AC149127a	SSR	GGCTGATTTGAAAC ATGCCA	GGTGGTTGTGGGA CACTTTT	330
AC149127b	SSR	GGCTGATTTGAAAC ATGCCA	GGTGGTTGTGGGA CACTTTT	100
AC149208	SSR	GTTACACCTAGCCC CATCCA	CACCAGAGTTATG CCAGGGT	175
AC153128	SSR	GTTCCAAAAACGCA CCAAGT	CATGACAGCAGTA CATTGCC	550
AC152551	SSR	TCAGCTTCATCAGC CAAAGA	CCAAACAGGGCCA TAGACTC	220
AC157537	SSR	GCGTGGGATCACGT ACTTC	CTCATCCATTGAT CTTTCCG	500–525
CR538722	SSR	GGGTTTGTTGGTAG TCGGTT	TCGAAAAGATGGG TGGAGTC	950

Table A1. Details of 39 molecular markers used for the genetic diversity analysis of 29 *Lens* genotypes (Gupta et al. 2012; Kaur et al. 2011).

Primer name	Туре	Forward primer	Reverse primer	Amplicon size
AC168149	SSR	GGCTGATTTGAAAC ATGCCA	GGTGGTTGTGGGA CACTTTT	475
PBA_LC_0218	EST-SSR	AGTTCTGCTCCTACT TCAACC	GCAGTTGCTGAAG ATATAGGA	149
PBA_LC_0225	EST-SSR	AACTGTTGCTAAAT CTTGTGG	AGCTTGCAAACTT AAATGACA	136
PBA_LC_0237	EST-SSR	AGGGTTTTGATTTTG ATTGTC	TCTTATCAAGATG AGATGTCTTT	118
PBA_LC_0250	EST-SSR	TGCATTTACCATCAT CTCTAAC	TGATTGATTCGGT ACTTTTTG	149
PBA_LC_0254	EST-SSR	ATGTTAATAAGCAG CAGCAAC	AAGTTGCATGTAA CCACAAAC	127
PBA_LC_0273	EST-SSR	TGAAACCTTTTTGA AGACAAG	TCCATCTTCTAGAT TCTTCCA	147
PBA_LC_0278	EST-SSR	GACGCAGAAGATTA	ATTCTGACCATAA	160
PBA_LC_0301	EST-SSR	GTCAAATGAAGTGA	ATTATGGTAACCA	244
PBA_LC_0303	EST-SSR	TAACAGCTGAAATA	TCACTACTCCAAA	165
PBA_LC_0315	EST-SSR	CTCTGAGCATCAAT	GGCACATTACTGT	142
PBA_LC_0323	EST-SSR	GAATCAGTGTTCGT	TTGAAGAAACCTG	150
PBA_LC_0327	EST-SSR	CCAAGAGCCATCAG	AGGACTATCACGA	147
PBA_LC_0341	EST-SSR	AGATCGAAGACAAA	ATTCGCTTTTGAA GAAGGAT	149
PBA_LC_0361	EST-SSR	TTAAGAAAGGAATG	AACTACATGGAAA	155
PBA_LC_0368	EST-SSR	ACTACCAAAGAAGC	CTGAATTGCAAAC TTTCTTTG	142
PBA_LC_0369	EST-SSR	AATGAGAGATATTC	GTGATAGGACTAC	152
PBA_LC_0373	EST-SSR	ATTTGGGCAACATA	ACTATACTTTCTCC CGTCGTT	164
PBA_LC_0383	EST-SSR	CAGCAACAACTTCC TAACACT	GAGTTAGGGTTTG	133

Table A1. Details of 39 molecular markers used for the genetic diversity analysis of 29 *Lens* genotypes (Gupta et al. 2012; Kaur et al. 2011) (continued).

Primer	Forward primer	Reverse primer	T_m	SSR type	Amplicon
name					size (bp)
UN0001	TGATGACGATGAT	GCAGTGATTCC	60	(GA)46	280
	CCACAGCA	CACGAAAGC			
UN0001	TGCGCAAGAACCA	TGAAACCACGG	60	(A)20	251
	CAGATCT	TAAAGCCCA			
UN0002	ACAAAGAGAGCG	GAATTCAGCCA	60	(A)19	260
	AGGAAGCC	CGGTTGCTC			
UN0003	TGTGTGTTTTGGAG	GATGAGGACCT	59	(A)12	212
	CAATGCT	GGACCTCCT			
UN0003	ACCATGTATCACT	AGTGAAGGGGT	58	(T)24	230
	GTGTGGTT	AGGTTGTTGA			
UN0004	TTTTGGCCAAAGG	TGAGCCTTGTA	60	(T)13	149
	TTCAGCG	GCCAACCTT			
UN0007	TGCCACTTTTTCAC	ACCTGGAGACA	59	(A)19	271
	ACCAGA	ATGAGAGAGA			
		GA			
UN0017	TGAGGCTTCTCTC	TGATGTGTTTC	58	(A)19	275
	GTTTGCT	AGTGGTGGT			
UN0019	TTGGCACGCAACA	GGGTATCACGG	60	(AG)51	275
	TCACAAG	AGAAGTTGCA			
UN0020	AAGGAACACACAC	AGCTCGCATTG	60	(GA)49	259
	GCAGAGG	GAAGAACCA			
UN0023	CCTCCCAAAACCT	TGTTGAGCCAT	60	(TA)36	226
	CACTCCC	GGTGTTTGTG			
UN0024	CCGCTGTTTTTGC	AGCAGCAATAG	60	(A)21	275
	ACCAAGT	GAGTAATAGCC			
		А			
UN0026	GCGCATCTCGAAC	GCATCGCCCTC	60	(GAT)6	131
	AGCAAAA	TAGTCCTTC			
UN0027	ACACGCCCATAGA	TCCACTCTCAC	60	(AG)38	267
	AGGAACG	CAACGGAGA			
UN0028	TTGGTCGCAGAAT	TGGCCAGATTC	60	(A)18	276
	CAGAGGC	CAACAAGGA			
UN0029	CAGTTCCGTCCTC	CGAGTTCAGGT	60	(GA)22	280
	CGTTTCA	TTGTTGGCG			
UN0031	CGGTGGTGGTCTC	TACGAGGAGCC	60	(T)10	279
	TTTGCTT	TCAGTACCC			
UN0032	TGTTGGTGCTGGT	CCCTAACCAGC	60	(AT)6	255
	AAGATAGGT	CCAAAGCAT		. ,	
UN0033	CCCAAGCCAACCA	GCATCAGGTTT	59	(A)10	164
	TTTTTGC	GCCACCAAG			
UN0033	GGTGGTGGTGTTT	AGCAATCACCT	60	(TTA)8	162
	TGATGGC	CACTGTGACT			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences.

Primer name	Forward primer	Reverse primer	T _m	SSR type	Amplicon size (bp)
UN0036	CAGTCCCCCTTTG	GGGTAGTTCTG	60	(A)21	270
0110050	CAAATGC	CGGAAAGCT	00	(11)21	270
			50	(Λ) 21 at a α	215
UN0043		ACTITICATA	59	(A)21000g	213
	ACGUCA	CAGGICAAGII		ag(1)23	
UN0046	TCAACTCGCATCC	TGATTGGGGGT	60	(TTC)6	213
	TCTTCACA	TTGATGGGG			
UN0049	AGCTCATAGTGAC	GGTGTAAGTGG	60	(A)10	222
	CAAAGGATGA	GACGCTCAA			
UN0059	CAACCTCTGCTGA	AGCTCATAGTG	60	(T)20	208
	TCTGGGG	ACCAAAGGATG			
		А			
UN0066	GCAAATGCTCAAC	TCAGCGATCCC	60	(A)19	271
	CTCTGCA	AATGACACC			
UN0068	ACGTCGTACCCCT	TTCCTGCGAGC	59	(A)18	114
	CCAATTT	GGAGATAAC			
UN0069	TGACCAAGGTGGA	CCCTCGTCTTA	60	(A)12	248
	ACCATCG	CGTCGATCG		()	
UN0073	TGATCACCGTGGT	AGCTCATAGTG	60	(T)27	199
0110070	ТСАССАА	ACCAAAGGATG	00	(-)-,	
		A			
UN0075	AAGAGTTGCAGAG	TGAACCGGAAC	60	(T)10	251
0110070	AAGCGGC	AAAGGGAGG	00	(1)10	-01
UN0076	GCCAAGGAAGAA	ACCATGGATTT	60	(A)16	238
0110070	GGAGTCCC	GTTGGAGAGGA	00	(1)10	230
UN0079	AACCACAGTCCTC	TGCATGTGTAC	60	(T)11	196
0110077	TGAAGGC	GGTTAGTGCT	00	(1)11	170
UN0079	TCGGGTGAGACCA	CAGACACCACT	60	(GGC)5	270
0110077	TTGTTCG	TGTTGCTGC	00	(000)5	270
UN0080	AGCTCATAGTGAC	CATGGATCTTG	59	(A)19	179
0110000	CAAAGGATGA	GGGAAGCCA	57	(11)17	177
UN0085	AGCTCATAGTGAC	CAGTAGCTGCT	60	(A)19	238
0110005	CAAAGGATGA	GCACTTCCT	00	(11)17	250
UN0087	CCACCACGAAGAT	GCGAGTTGCTA	60	(AG)16gg	279
0110007	TAGTGTCGA		00	(AG) 10gg	21)
	AGGCGTATTAGAG	GGCCAAGAATG	60	g(0A)	208
0110000	CCGAACG	ACCATTCCT	00	(A)17	200
ΙΙΝΙΛΟΘΟ			60	(Λ) 25 at a π	220
UINUU89			00	(A)23ctcg	239
	IIGGAII	UALULALAU		agactagt(1 C)21	

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T _m	SSR type	Amplicon
name					size (bp)
UN0090	TGCATGTGTACGG	TGATGGGTTTT	59	(A)18ctcg	216
	TTAGTGCT	GTTTGGTGACA		ag(T)18	
UN0092	CAAGTTGCTGGTC	AAGCACAGAG	61	(A)18	270
	GAAGGGA	GGGTGGAGAA			
UN0097	AGACGTGTATCAC	CAGGAGGAGTT	59	(A)18	257
	CATCTCCA	CTAGCTGCG			
UN0099	TACTCATCGCCGT	TCCTTAGTTTC	58	(T)20	267
	TGGTGTT	AAAACAGCTTT			
		CA			
UN0106	CAGGAGCAACTTC	TCTCCCCCTTC	60	(T)18	279
	CAGTGCT	CCCTTTTTCT			
UN0106	AGAAAAGGGGAA	CTTCCTCCCGA	60	(ATA)6	173
	GGGGGAGA	TTCTCACCG			
UN0110	AAGCTGATGCTGA	CCATAAAAGTA	60	(T)11	219
	CATGCCT	TGCCCAACTTG			
		CA			
UN0118	TCGGTTTGATGGG	AGGGTGGATTG	60	(A)26	263
	TGGTTGT	TGGCAGAAG			
UN0119	ACATTTTGGTTGA	AGCTGCCTTGC	59	(A)21	265
	AGTCTGCCT	CTCATTTCT			
UN0123	ACCGTCTGATTGA	TCCAAAGCCAT	60	(CT)53	247
	GCACAGT	CCAGTTCCC			
UN0125	CAGGGAGATGCTG	CTACTTCCGCA	60	(A)16	257
	ACAGTGG	CCCACAGTT			
UN0126	GCAGCACTCAATT	TGAAAGGAAA	59	(CT)9c(C	274
	CACCAGC	GGTTTTAGCTG		T)13	
		AGT			
UN0131	GGAAGTGCTTGTG	AGCAGTTTCTC	60	(A)18	255
	CTTGGTT	CAAGCGACA			
UN0133	TGATGCCTATGCT	CAACCTCGACA	60	(A)12	205
	TGCGAAGA	GTGGCCATA			
UN0135	AAGGGAATGCTGA	GCTCTAGCATT	60	(T)12	266
	TCGGCTT	TTGCATGTGAC			
		Т			
UN0136	AGCTCCTGCTCAG	GAGACGCTGCA	60	(A)30	254
	CAAGAAG	CCATTTTCG			
UN0146	TGACACCAAGGCC	AGTTTGGATGC	60	(GAT)7	258
	ACTGAAG	GCCCCATAA		-	
UN0155	CTTGTTGGCCGTTT	CTCCTCCAGTT	60	(TGG)5	227
	TGGGAG	GCAGCAGAA		-	

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T _m	SSR type	Amplicon
name					size (bp)
UN0167	CACGTTACGAAGA	AGAAGCTGCCA	59	(A)22	245
	TGGTCGG	TTTTCCGGA			
UN0201	TCGCATTTTTGCTC	GAAAGATGAG	59	(T)18	279
	AGTTCCT	GGCTGGTGGA			
UN0222	ACCTCCTACCCCT	CAAAACCTGAG	60	(TCA)5	145
	TCTTCCTC	GACCACCGA			
UN0225	ACATGTTGCAATG	TTCTTGCTTGG	60	(A)29	228
	CTTTTAGCCT	CGTTGAAGC			
UN0230	AGAGGGCTCCAAC	ACGGGCCGAAT	60	(T)10	159
	TCTGTGA	AATCATGCA			
UN0235	GCCAAGGCCGACA	TGCAAGGGTAT	60	(A)13ctcg	278
	AATAAGG	TTCTTTTTGTAA		ag(T)28	
		TTGC			
UN0244	ACGTTGAAACATT	GGAAATGTGAT	59	(AAC)5	265
	GGATGTGCT	CAATGGTGGGG			
UN0250	AGTGTGTGAAGTG	AGTTCCACGGA	60	(T)10	206
	TGTGAGTGT	TGAACGCTT			
UN0252	GGCTCAGCCTCAA	ACTTTGGCTTG	60	(A)22	230
	GCAAAAT	CCTCTACCG			
UN0281	TGTCTGGCTTGAG	TGTTGCCATAG	59	(A)22	186
	CAGAAGA	CTTGCCTCA			
UN0292	TGGGAGATGTCTG	CTGGGTCATCA	59	(A)23	255
	TTGGTGT	GCTAAGCCC			
UN0314	GCGAAGGAGTCAT	CGACGAGCCAT	60	(T)10atga	276
	TTGTTCCA	GGATGAAGT		aatatattttg	
				gaattttaatg	
				(A)19	
UN0322	ATGGCGTGAGGAA	TGGAAAAGAA	60	(GTT)9	256
	AACCCTT	CTGAGAGCCAC			
		А			
UN0325	AGAGACAACCTTT	TAAACCGGGAG	59	(A)33	227
	GTTTTGGAGT	CGTTTGTGA			
UN0326	TGCGGATTGAGAA	AGCCAAGCAA	60	(T)11	277
	GGTTGTGA	GCAACCCATA			
UN0334			0	(TTA)5	
UN0350	ACCAAGGGACTGA	GGAATGTCGAA	60	(T)10	103
	ATGCGAT	ACCTGGCCT			
UN0353	CGTGGAGGTGGTG	CTCCCTCCAGT	60	(GGA)5	198
	GATATGG	TTCCACCAC			
UN0383	CCGTTTGATCTTCT	AGGGTCGGCAC	60	(T)10	199
	AAGCCCCT	ATTGTTGAA			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T_m	SSR type	Amplicon
name					size (bp)
UN0390	TTCAATATCTCTG	ATCTTTGCCAC	60	(GAA)5	250
	CCGGCCC	TGCCTCCTC			
UN0400	TGTCGGTTCGCCT	CCAGCTCCGGT	60	(T)11	190
	TCTTGTT	GATGGAAAT			
UN0426	GCTTCACCTGACT	GAAGATCGATC	60	(TAT)5	278
	CTCCACC	CCGTCCGTC			
UN0428	CCTCGGTTTGCCTT	CGTCGAAATCC	60	(A)28	255
	TGCATT	AGGTTCCCA			
UN0470	GGTGGTCCCATCC	GCACGTTTGCA	59	(T)11	277
	ATAGCAC	AGGAAAACA			
UN0476	CAGATGTGTCGTG	TACCACCGACC	60	(A)18	227
	GCCTGAT	CGTGTATCT			
UN0487	GGGTTTGGCTCGA	CCGCACAATCC	60	(T)10	214
	TCACAGA	AATTTGAGCA			
UN0500	TGCGACTTCTCAA	TCAAGATCGTT	60	(T)18	210
	GTTGAATGG	TGCTCATCTGG			
		А			
UN0502	CCGTGTTTCGTTTC	ACTACCACCAC	60	(A)16	180
	CCATTGT	CTGTTCCCT			
UN0518	ACCGCATGACTTC	GCCAAGGTTTG	60	(A)18	279
	GAGGAAG	CCTAGAAGC			
UN0521	GTTTGGCTGCAAC	AGAGTTCACAA	59	(T)13	263
	GTTGAGT	GCTTCACACT			
UN0536	ATAGGCCTGCTTG	ACAAAGGCAAT	59	(TA)6	103
	GACCCTA	TTCCAAACGT			
UN0538	GCAAAGAGCTCGT	AGCAGTTAGAT	59	(T)12	128
	GTGTGTT	CACAGCTACCA			
UN0549	TGCATTTCATGGT	TGGCGCGCAAT	59	(A)19	240
	TCCCATCT	AGAATCTTG			
UN0561	GGATGGCACACTA	TGTCCACTCAA	60	(A)10	214
	GGCCATT	CCCCACAAG			
UN0566	CTAGCTTCCCACG	AGCATGCAATC	60	(T)19	135
	AAGAGCC	TTCACCCCA			
UN0575	CGCTCAATCTCCT	CCTCCTCCGCG	60	(T)12	228
	TCCCCTG	TTCTACAAA			
UN0585	AGCTTGATGTATT	AACACCGATTT	60	(A)15	272
	GTAGCTTCAAAGT	TCCCTCGCT			
UN0591	GCATCCCCCAACT	TCTGTTGGTAC	60	(A)18	203
	ACGATGT	TTCGGTGGC			
UN0596	CGAGGGTTTCGTT	TGGTTCTTCAT	59	(GAA)5	213
	TTCTCCC	CGCTGCCTT			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	Tm	SSR type	Amplicon
name	-	-			size (bp)
UN0607	CGCGCTCTACCAA	CTGCAAGGAGT	60	(CT)19	223
	CAGCATA	AGTCGCCTC			
UN0642	TGGAAGTTGAAGC	GAACCCGGGG	60	(A)10	222
	GACGGTT	ACATGTATGT			
UN0643	TGAGCAGCATCTC	ACCATGCGCAA	59	(TA)6	247
	CGATACA	GGGGATAAA			
UN0660	GGTCGAGATCTCA	TGAAGAATACG	60	(A)18	275
	TGCTGCT	GCGGCGATC			
UN0676	TGACCCATTGTTC	ATGAGGATATT	59	(A)27	198
	AAGGAGGA	GCCCTCGGC			
UN0678	CAAGCCCTTCTAC	CCTCCAATCAA	60	(A)10	263
	GCCTCTT	GATTCAGCTGC			
UN0708	ACTGAGGGGAAA	ACAACCTTAAC	60	(GTG)5	143
	AGGAGGGT	CCCGGTCAG			
UN0737	AGGACAAGTGTTG	CATGAGGGACA	60	(TAT)8	278
	GTGTGGG	GCACCATGT			
UN0745	AGTCGCATTTCCC	ACAAACAACTC	60	(A)12	268
	GTCTGTT	ATGATGTGCCC			
UN0748	CATTGCTGCGTGG	TCAAATATTCA	59	(A)10	210
	TTCAACA	GTGTCATGTTC			
		TACTT			
UN0755	CATGCACACCAAA	TATCGGTGGCA	59	(ACC)5	131
	TCCACCA	CGACAACAA			
UN0771	GCGCATGCTTATG	ACACAGCTTCG	60	(T)11	220
	ACCCATG	CATCACACA			
UN0788	CGACCAGGAAACG	AGCCTCGATCC	60	(AGA)5	241
	GCAAAGA	CCTTCTCTT			
UN0792	CTTGTTTCTCCGCG	TCCACCGTTTG	60	(TAG)5	238
	CTTTCC	GACGAATGT			
UN0832	TTCGCCTTCCCAT	ACAGCATAGCA	58	(A)18ctcg	209
	GTCTTGA	TAGCTACAACT		ag(T)22	
UN0849	TTTCTCATCACCA	GAGGGCGATTC	59	(CTC)5	192
	CCACCCA	TGCTGCTAT			
UN0853	TGGTTCAGGGTGC	GGCTCTACCCT	60	(A)27	277
	GAAATCA	GTGAAGCAT			
UN0854	AGCTGTAAGGCAC	AGTGCTGGTGC	60	(A)27	236
	TGTGTGT	TTCTCCAAG			
UN0855	CCGATCGTTTTTG	GGAGGTGGTTA	60	(CCA)5	259
	CACAACCA	TGGTGGTGG			
UN0856	TGCGAGTTTGATA	CCAGCCGCAAC	59	(TGG)5	166
	AACCGTGT	AACAACTAC			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T _m	SSR type	Amplicon
name	-	-			size (bp)
UN0859	TGCCTTGGTCAGT	TCTGATATCCA	59	(T)21	276
	GTCAACT	GCTGACTGAGC			
UN0860	TCTCCCCGAGTCC	GATGAGGACCT	60	(A)19	193
	ATTTCCT	GGACCTCCT			
UN0861	ACAACACCATGAT	TGTGTCATCCA	59	(GAA)10	256
	GAGCCTTG	TGGACCACA			
UN0863	GATCGTGAGAGTT	CTGAGGCGTAA	60	(GAG)5	246
	GAGGGCG	GTAGCGGAG			
UN0867	CCGCATTATCAAC	TAGCGGAGGAT	60	(GAA)5	255
	CCCGAGA	TGGGAGAGT			
UN0874	TTCGGACTTTCTC	AGGCCTGGCAT	59	(A)20	213
	GGAAGGT	TTTGCTTTT			
UN0881	TGGTGGTCATCAT	GTAACCACGCT	60	(A)19	274
	GGTGGTG	TGAGATCCCT			
UN0881	TCAATTTGCTGCC	CGGGAAGGGT	60	(A)19	249
	GAGGGAT	GAGCAATGTT			
UN0884	TCAGCATGTGTTT	CCCTCCGAGCA	59	(A)18	249
	TTGGGCA	AACTTCCTT			
UN0894	TACACAGAGCACG	ACCTAACCTTC	60	(GAA)5	196
	CAAGGAG	ACCACAAACCT			
UN0897	TGGAGTCTGAAGG	TGCGGGTGCAG	60	(TAG)5	147
	TGGTGAGA	TTTGAGTAA			
UN0898	CAATGGCTCCAAC	CCCATAGCCTT	60	(AAG)5	223
	AAAGGCC	GCTGGAGAC			
UN0912	CCGCCTGCCTAAC	ACCGCAACCTT	60	(A)21	239
	CATCAAA	CTTCTGCTT			
UN0916	AGACTTGTTGTGT	GGCATGGCAGT	60	(A)14	197
	TCATGCATGT	AAGGAGGTT			
UN0931	AGGGACAAGGAA	AGCCCTGTACA	59	(A)16	261
	AATGCCCT	TCACCCAAA			
UN0933	TAACACGGCCGGA	TACTGCCTGAT	60	(T)28	218
	CATGAAA	CGTGCAGTG			
UN0945	GTGTTTGGACTTT	TCACATGACCC	59	(CAATG	261
	ACGGCGT	ATCCTCATCC		G)5	
UN0948	CCAATCATGGCTT	ACCTAACAAGT	58	(AG)8	153
	CTGCTGA	TTCACCGTCT			
UN0949	AGTCACTGTGGTC	TGAGAGGCCAG	60	(A)12	181
	TGATGAACT	TGCTTAAGC			
UN0953	ACCTCGCAGCCAT	GCTCTCGCGAA	60	(A)11	194
	GAGATTC	TCTTTGCAG			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T_m	SSR type	Amplicon
name					size (bp)
UN0956	CCGCAGTCATCCT	TGCATGTGTAC	60	(A)20ctcg	259
	CTTCACC	GGTTAGTGCT		ag(T)19	
UN0960	ATCGTCTTCTTTCT	GCGATTGAGAG	60	(TC)26	147
	CGCGCA	AGGGAGACG			
UN0962	ACAACACCATGAT	TGTGTCATCCA	59	(GAA)6	237
	GAGCCTTG	TGGACCACA			
UN0967	TGCTGGTATAGTG	CCCACAAGTTC	59	(A)19	138
	ACCCAACA	CAAATCCCCT			
UN0967	GTGAGCAAGGAAT	AACATTTGCTT	58	(A)23ctcg	275
	AAAACGAGCT	GCATATCAGAG		agactagttc	
		Т		(GA)64	
UN0975	CCAGGGTCAACCA	TGCATGTGTAC	60	(T)20	202
	GGAGAAC	GGTTAGTGCT			
UN0982	TGATGGTGCGGTT	CCTACTCCCCC	60	(A)18	270
	TCAAGGT	ATCCAGGTT			
UN0990	TCTTTACGGGTTT	TCCCTGCCTCT	60	(A)26	272
	GGCGGTT	CCACAACTA			
UN1001	TGTTGACCACCGT	TACTGCCTGAT	60	(A)19ctcg	275
	TGTGACA	CGTGCAGTG		ag(T)24	
UN1003	TACTGCCTGATCG	CCCATTTGCGA	60	(A)20	252
	TGCAGTG	GACTCACCT			
UN1006	GTGAGCAAGGAAT	CCTAGTGTTGC	60	(A)18	234
	AAAACGAGCT	TGGTGCTGA			
UN1009	TGTTCTTCGGCAT	TGCGCAAGAAC	60	(T)18	226
	GGCTGAT	CACAGATCT			
UN1010	TGCCGTGGATTCC	ACATGGCCAAA	60	(A)18	257
	GTCATAG	ACCACTTGG			
UN1011	TACTGCCTGATCG	TGGTGGTTTGT	60	(A)20ctcg	160
	TGCAGTG	TTTCGCACC		ag(T)18	
UN1012	TACTGCCTGATCG	GCTTGTTCTGC	60	(A)20	172
	TGCAGTG	TTCCTTGGC			
UN1014	GCAGCGCAAAAA	TGCCTCTGCCA	60	(A)19	235
	GTTTAACTCG	CCATACTTG			
UN1014	AGCTACCTGGCTA	GGATTTGCGAG	59	(A)19	195
	CCCATTT	CGGTTTGTT			
UN1017	TGCATGTGTACGG	TCCTCCACAAT	60	(A)18	206
	TTAGTGCT	GGGTTGCTC			
UN1018	TGCGCAAGAACCA	GCGTGAAGGGT	60	(A)21	262
	CAGATCT	AACAACTGC			
UN1019	TTACAGTCTGCTG	CGTGTGGGTCCT	60	(T)21	267
	CTCCTGC	ATCCTCTTGT			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).
Primer	Forward primer	Reverse primer	T_m	SSR type	Amplicon
name					size (bp)
UN1020	GCCCTTCTTAGGA	TTACAGTCTGC	60	(A)28	267
	AAGGCGT	TGCTCCTGC			
UN1020	TGCATGTGTACGG	CCGGCCTTCTT	60	(A)10	151
	TTAGTGCT	GGTTCTCTT			
UN1021	TGTATGGCCAGTA	CGTGTGGTCCT	60	(A)18	197
	CACGGATG	ATCCTCTTGT			
UN1022	AGTCCCTTTGGCT	GCCAACAAATA	60	(A)24	250
	CTGTTTGT	TGCCGCGAT			
UN1023	GCGTGGATCCGAT	ATGACCACCAT	60	(A)19	261
	CTCTGTT	GACCGTGTC			
UN1023	TGCATGTATATGT	ACTGCTGACCT	60	(A)17	248
	GGTGACGAGT	TCACTGCAT			
UN1025	TGCATGTGTACGG	TGTTGCAGTGA	60	(A)18	161
	TTAGTGCT	TTCCCACGA			
UN1028	CGTTGATGACGCA	TCCATTACAAG	60	(TTTTA)6	249
	GCAGATG	ATACTCTCCAT			
		GCA			
UN1030	TGCAGCAAGAATG	GGAAAGGGAA	60	(A)13	277
	AACTGATTTCT	CGGGAATGGT			
UN1038	AGAAGCTCTATTC	GAGCGAGGAG	59	(A)19ctcg	280
	AGTTGTCCAA	GAACCGAAG		ag(T)18	
UN1051	TCACTTGGATTTA	CCAGCATGACC	60	(A)10	228
	CAAACACGCA	CTGATGTGT			
UN1054	TTGGTTATGGTGC	TCACCGTTCAG	60	(T)10	275
	GTCTCCC	GCACATGAA			
UN1064	TTTGGAAACCCTC	GAGGTGGCATC	60	(ACC)5	209
	CTCTGCC	AGTCCAACA			
UN1065	GTGCTTATGCTTTT	ATCCTCCTGTG	60	(A)19	166
	CTGCCAGA	AAATGCCCG			
UN1066	GTAAAGGAAGTGG	TCAGCTGGCTG	60	(A)10	243
	GGCAGGG	TACAAAGGA			
UN1080	AGGGTGGCCTTTG	CGTTATACACC	60	(A)19	242
	CTTTTTC	TGCACCCGT			
UN1085	GACACCGCCCAAC	TGAAAGCCAAA	59	(T)11	253
	TCGAATA	GGTGGAATCA			
UN1097	TCACTGGCGTCGT	AACAGAACGG	60	(A)19	280
	ACCAAG	GTGCATCTCG			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T_m	SSR type	Amplicon
name					size (bp)
UN1107	TCATCTTTCTCAAC	TCTCTCCCTGG	59	(CAA)5aa	278
	TCCATAATCATC	GCTTGTATGA		tgttgtctcta	
				ctggccttcg	
				tttatcattcg	
				atgatcaaca	
				acag(CAA	
)5agattaca	
				gttacaacttc	
				atcaatttcaa	
				tct(CAA)1	
1011100	~ . ~ ~ ~ ~ ~		60	l	• • •
UNII28	CACCAACAACAAC	CCAACICCICI	60	(A)10	210
1011146	AGCAGCA	TCCGGCATT	<u> </u>		1.4.4
UNII46	ACATICAAAATCC	GGGACCCACTT	60	(ACA)5	144
	ACGACGICG	ATATGGCCG	(0	(T) 1 1	277
UNII60	GIUGGIGAACCAC	AGCIGCGAACA	60	(1)11	211
1011242		AGGIGAGAA	60	(Λ) 20	260
UN1242		AATCITICACA	60	(A)30	200
UN1250	AUULAUU	AACUCCUCU	60	(CTT)	276
UN1230	TTCCCTT	ALCENCEC	00	(CTT)0	270
UNI1251	ТСАСАТТТТСТС	TGCGGCTTAGG	50	$(\Lambda)10$	213
011231	GAGTCAGT		57	(A)10	213
UN1258	TTGGCTCAGACTG	TCTGCAGCTTT	60	(A)29	237
0111230	CACTTCT	CCCACCTTT	00	$(11)2^{j}$	237
UN1261	GGAAAAGCTGTTG	TAACGCCGATT	60	(TC)10ta(169
	ATTTTGGCG	CCGATGGAG		TC)6	
UN1262	CGGAAACCGCTCC	TTTGAAGGGCC	60	(GGC)5	223
	ATGTTTG	TCATCCGAC			
UN1279	CAGATCTTGTTTG	CACGCAGAGTA	60	(T)11	249
	GCGCAGG	AAATCACGTGA			
UN1284	ACCTCCTGCAGCT	TGGTCCAACCT	59	(GAA)6	276
	ACTGTTG	ACCAACTCA			
UN1296	ACGGAACACATGT	ACCGTTGCCTG	60	(T)10	267
	GGCTCAT	TAAGTGGAA			
UN1298	CCTGGATGGATGC	GCCCATGTCTT	59	(A)10	191
	TTTGACCT	TGGCTAAAGT			
UN1299	AGTGCGAAAGAGT	CGTTAACAGCA	60	(T)10	267
1011000	ACCGTGT	AGCGCAGAA	60		• • • •
UN1300	ACCGGATTCGAAC	GACCATTGCGT	60	(CTC)5	268
	ACCTGAC	TCCCAATCG			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T _m	SSR type	Amplicon
name	-	-			size (bp)
UN1304	TCAGGGCTTGCAC	TTTGACCCGTC	60	(A)25	217
	TTGATGA	GTTTTCCCT			
UN1349	CTAGCATGGTTGG	TTCTGGCCAAG	60	(A)31	269
	GACACTGT	TGATCGCAT			
UN1437	CCACCTGCTGGTT	GACCATACCCA	60	(GCT)5	172
	ATCCTGG	CCATGTGCA			
UN1438	CGAATTATCGGAT	AGTGAATAACT	59	(A)11	277
	GTGGCGC	CAATTCAACAA			
		GTTCA			
UN1443	CATCAACAACCGT	TGGTCCATTAG	60	(TCT)5	175
	AACCGCC	GAGAGGCGA			
UN1449	GATCCGTTTTCTCC	TCTCCATGCTT	58	(CAA)5cc	235
	ATGCCG	CTTGTTGCT		tt(AAC)6	
UN1464	ACATGGTCAAACA	TGGAGGAACCC	59	(TAT)6	242
	CTCGAGTTG	TAGATAGGAGT			
UN1469	AGGAGCAGCATAA	ACAAAGAGAG	59	(T)10	207
	TACTCTTGAT	CGAGGAAGCC			
UN1470	TGATCCATGGCAG	TTCCAGTAACC	60	(T)10	220
	CTTCCTG	ACTTCCGGC			
UN1471	ACTCAGGTTGTGG	GGTAACCCTCG	60	(AAT)6	262
	CTGGAAC	TGCCGAATT			
UN1474	GGTACTCACCGTT	TCTCCCATTGC	58	(A)25	277
	AAGTGGTT	TTCCTCTTGT			
UN1541	TGACTGTGTGCTT	TGTTTGCTGCC	59	(A)19ctcg	176
	TTACTTCTGA	ACACAAAAGT		agacgaact	
				agtctcgag(
				T)19	
UN1548	GGAACGCTTTCTC	GTCTGTTCACC	60	(A)18	205
	GCTGGTA	ACCAGCTGA			
UN1577	AGGGCTTCTCCTT	AAGCACCACCA	60	(ATG)5	247
	ATTGTGAACA	ACACTTCCA			
UN1583	CTTCCCGATCGTC	TCAATTTTCTG	58	(TAT)5	262
	GTATCGT	CATCATGAACC			
		Т			
UN1603	ACATCATGCTTCC	AGCGAATGGTG	60	(AAC)5	151
	ACTCCCG	GTGGAAGAG			
UN1616	ACAAACTCCCTCA	GGAACGAGATC	60	(A)10	157
	CCACACTC	AGCAGCCAT			
UN1617	AACTTGCCAGACT	GGTGGCAGTGA	60	(A)13	261
	TCGCAGT	TGGAATGGA			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T _m	SSR type	Amplicon
name	-	-			size (bp)
UN1622	TGGTTAAAAGGTG	ATGGCCAAGTT	60	(T)10	178
	ATTGTTTGCCT	TCAGCTGCT			
UN1645	ATGGACTTGCCGA	GCCAGAGAGTT	60	(GAT)5	215
	GAAGTGG	CCATGGCAT			
UN1652	ACATCCCCCAACA	ACGATCCAGTT	59	(A)18ctcg	215
	GATAGTAGT	TGCAAAGGGA		ag(T)19	
UN1678	ATCGGTGTTGCAG	GCAGTACAGAG	59	(AT)7	239
	TTCCTGT	AAATTGATTAT			
		TACCA			
UN1708	TTCCAGCCAAGGT	AACACAGCACC	59	(A)28	271
	CTTAGGA	TTTGTTGCC			
UN1717	TTGTCTTTGTCAGC	CCTACCCGACA	59	(A)10	228
	AATACAACTT	TGGATGCAT			
UN1724	TGAGGCGGCCACA	TTGTGGTCACG	60	(T)11	145
	TACAATT	ACTCACGAG			
UN1753	TACATCTACCGCC	TTCAGCGAGGG	60	(CAA)5	202
	ACCCAGA	TACGTTTCC			
UN1761	TGGAGTCTGAAGG	TGCGGGTGCAG	60	(TAG)5	147
	TGGTGAGA	TTTGAGTAA			
UN1768	AGGAAACCCAAA	TTTGCCGACGA	59	(A)18	244
	ATGCCCTT	GAGAGTGAG			
UN1828	GGCGACGATGATG	CCGAAAAGGGT	59	(A)10	246
	GTTTCAT	AAAACGGCA			
UN1839	TGGTGTTTGCATT	GGCGGGCAAG	59	(A)13	267
	GTGGAGT	GTACAATACA			
UN1849	GTCTGGTGCCGAG	AAACCCCTTGT	60	(TAA)7	242
	TTCAGAA	ATCCGCCTG			
UN1866	AAAAGTCCGGCGA	AGGAACGGTGT	59	(TTA)6	250
	AGAAGGT	CGAGTACAA			
UN1867	CCCTTCTTTACCA	ACCATTCATCA	60	(T)11	218
	AACACCAACC	CTGCACCTTCT			
UN1875	CGCACTGATCGTA	ACGGTTTATCC	59	(T)10	238
	GCAAAGC	AAATTGCATAA			
		CA			
UN1892	TCTGGTGCAAGTC	AGCTAAGCCAT	60	(TTG)9	180
	TGGTGAC	CCACTTGCA			
UN1922	GTGTTTGGACTTT	TCACATGACCC	59	(CAATG	261
	ACGGCGT	ATCCTCATCC		G)5	
UN1934	AATGGAGTCTGAA	AATCTCAGGAG	60	(TAG)6	167
	GGTGGCG	GGTTTGCGG			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T _m	SSR type	Amplicon
name					size (bp)
UN1951	CCGGACCTGGAGC	GCGTACTAAAT	60	(T)14	241
	TGATTTT	CCCACCACCA			
UN1952	AGGACAAGTGTTG	CAGTTCTAAAT	60	(TAT)8	243
	GTGTGGG	CACTGCATCGC			
		А			
UN1954	TTGTGCAGGGTGG	AGCTGTTGGTT	59	(T)11	278
	TTTGGAT	CAACTGTTACA			
UN2000	GCCAAGGTCACAC	CCGCGGTGGAG	60	(CAC)6	200
	ACTCACT	TAATTCTGA			
UN2000	TCTTCGTCGTCTTC	CCTCCTCGGTG	60	(ACA)5	119
	AGCACC	ATGATCTCC			
UN2014	ACCATGGTCGAAT	ACGGTTTTCTT	59	(A)10	157
	CTTCTCCA	AAGAGAATCG			
		AAACA			
UN2098	TACCCTCCGTCCC	TCTGGTTTAGC	60	(TC)6	221
	TCTTCAG	CGCACATGT			
UN2106	AGGAGGTGAAGCT	GCTATGTGTAT	59	(T)12	232
	CTGAATGA	GTGGTTTGGCA			
UN2107	TGCAAGCCTTTCT	GGACATCATCA	60	(A)17	244
	AGGAAGGG	CCACCAGGG			
UN2116	GGCATGTTCAAGT	TGTTGCTGCTG	60	(CAA)5	202
	TCAAGGGC	TTGTTGCTG			
UN2116	GTTATGTGTGGCT	TGTGTATGCTT	59	(A)11	193
	GGGGTGA	TCCAGTCAAAC			
		А			
UN2132	GTTGCAGTTTTGA	ATGTTGCTCAG	60	(TTC)5	197
	GGGCGAG	CCCTTGAGG			
UN2139	TGGATCACTTGTT	GCCAAAATAGT	59	(T)11aaaat	197
	AACCATCTATAAG	TCATTGAAAAC		tcaaaaaatg	
	А	GCA		atgtgaaata	
				aacca(AT)	
				8	
UN2139	GCGTTTTCAATGA	TGGCGTTTTCA	60	(T)11	236
	ACTATTTTGGCA	ATGTTTGTGGT			
UN2154	GTTGCGCCAAAAA	AGCACCAAAGC	60	(TC)6	228
	TTTCCGC	CCTAAGGTT			
UN2157	CACAAAGCAAAG	CCCGTGATCAA	60	(A)10	219
	AGCCACGT	GGCCGATAA			
UN2178	CGTCGTGCAATCA	GTGCATCCTCA	60	(A)10	272
	GAGACCT	TCCCAGTCC			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T _m	SSR type	Amplicon
name					size (bp)
UN2184	TGAGGAAGAAGAT	TTTTCCCAGGG	60	(A)18	221
	GCTGCACA	TGAAGGTCG			
UN2189	AATCTCAAAAAGA	ACACCCAAAAG	59	(GAA)7	254
	TCAAAGAAGAGG	AGCAGTTCCA			
	А				
UN2195	TCTAACACATTTA	TCCACAAGGAG	58	(A)10	242
	CAAAGACTCCAAA	CACTAACCC			
UN2207	TGGGTTTTGATTT	TTGGAGTCGAG	60	(GCGT)5a	273
	GGTGCGG	AGCAAGAGC		tgtattcgtat	
				aatcggtgac	
				(AGA)9	
UN2225	CTTTGTTGTGCCTC	ATGCGAGTGCT	60	(A)18	201
	AGTTGGT	CCTTCTTGG			
UN2252	CCCGGCAAATTCC	TGTTGCCTCGA	60	(GTT)5	257
	TCCAGAT	TCAAGACCC			
UN2278	CTCCCTCAAACAC	AGTCGGTGCGA	60	(CAA)6	227
	CTTCATTGC	AATTCGAGA			
UN2295	GCTTTTGGTTGATT	TGATTGGGATG	58	(A)10	113
	ATGTTTTTGAAGT	ATACAAAGTGG			
		А			
UN2295	TCCCAAATCATAT	ACTGATACCCT	59	(A)10	278
	TCGTTTGGCC	GCAAAGTGC			
UN2298	TTCGCCTTCCCAT	AAGGCCTGGCA	59	(A)19	167
	GTCTTGA	TTTTGCTTT			
UN2333	TTGTTGAGGATCC	GTCAGCAAGCA	59	(T)14	199
	GGGAAGG	AACCAACTGA			
UN2339	AGGTCTTCGCGAA	TGTCATGCAAG	60	(GT)8	271
	CTCACTG	GTCGTGTCA			
UN2374	ACACACAATATAC	ATTGATTCCTT	60	(A)20	207
	CGCCCGA	TGGGGCCGT			
UN2389	AACGGCAGATCTT	ACACAGTATCA	59	(T)11	263
	GATCCGG	AGGTGAACATG			
		A			
UN2393	TTCCTTGTTTGAGT	AGCCTCTTGGG	59	(A)25	269
	GGCCCA	TCATCTTCT			
UN2424	TGCACCATCTTTT	AGAGTGAGTTG	59	(A)19ctcg	171
	GCCTACA	AGTCTTGTTAT		ag(T)22	
		GCT		<u> </u>	
UN2434	TCCCCTTCTATAA	AACATGTCACG	59	(TAT)7	229
	AATCCCTGTTT	GATCCGCTT			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T_m	SSR type	Amplicon
name					size (bp)
UN2469	TCCCCCTTTAGTG	GTGCCAGAGAC	60	(A)18	142
	CAGTTTTGT	GCTTCTCAT			
UN2474	AATGGGCAACAGG	CACTGCATTGT	60	(A)34	228
	TCCAACT	CTCCGACCT			
UN2496	CGCTCACGTCTCC	GGTGGCGGTGG	60	(TA)6	127
	TTTTCCT	TGGAATAAT			
UN2516	GCAGATGCAAAGG	ACTGTCCAAAG	59	(A)10	208
	CTATGGC	TCCAAGCAA			
UN2522	AAGCCAAAGAGA	ACAGCACATAA	60	(T)10	268
	CATCGCCA	CAAAATGCAAC			
		G			
UN2538	TGGTGTCAAGGTG	CGAGGAGGAG	60	(A)19	200
	AAACCCA	TGATTCGACG			
UN2548	TCTTCTCGCTCGTT	TCATCATCCTT	60	(AT)29	280
	TTCGCT	AATCACTTGGG			
		GA			
UN2576	ACATGCGGTTTCA	TTACGATGATC	60	(T)10	234
	TTTGGCC	GAAGGGCCG			
UN2594	TTCTTCTTCTCAAT	GTACCTAAGCT	58	(A)11cata	201
	TCAGATCAACTT	GCTGGGGTC		atagcatctat	
				taaaacatac	
				atgatggaca	
				agcaatttete	
	TOOOTOTOTOTOTO		(0	aac(A)12	104
UN2605		GGAAGAGAGA	60	(C1)8	124
INI2614	ACCGIT		60	(T)11	122
UN2014			60	(1)11	133
11112615			57	(\mathbf{AT})	200
UN2013			57	(AT)0aa(280
	AATUATTTICAUT			A1)22	
UNI2646	GGAAACGGCGCA	GTTTGTCCAAA	60	$(C \Lambda \Lambda) 6$	278
0112040		CGCCACTGA	00	(CAA)0	270
UN12649			60	(T)10	251
0112047	AAAGGGT	AGCATCACA	00	(1)10	201
UN2659	ACACGTGTTGCCA	GCTGACCAAAA	60	(CTT)5	124
01(200)	тстсстт	TCAAGGGCG	00	(011)5	121
UN2661	CTAATGTTGGCAG	CGCTATCCCCA	60	(T)10	279
21.2001	GTGCGC	TATCCAACCA	~ ~	(-)	_,,
UN2676	TGCTGACAGACAC	GAAGAGGAGC	60	(CGG)6	166
	CAATGGG	TGGTAAGGCG		× /	

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	Tm	SSR type	Amplicon
name	-	-			size (bp)
UN2693	ACCTTCTGGTGGC	AACACACGACA	60	(CCA)5	104
	TACCCTA	ACACCACCT			
UN2725	TTTGAACGCCACA	GGACATTCAAC	59	(A)11	230
	ACCAAGA	TTGCTCGCC			
UN2741	TGGAACTCCTTGG	ACTTAAAGTCA	59	(T)10	268
	GGTGTTG	TGAAGCTTACA			
		GGA			
UN2749	TCAGGGCTTGCAC	GGATGACCAGC	60	(A)22	260
	TTGATGA	GGGAATTACA			
UN2755	ACTTGGAGCGGAG	ACATCATTTTT	60	(T)10	182
	GTGAATG	GTCGAATGTGT			
		GGA			
UN2756	TAGAGAGCACCTC	AGTTTGGTGAA	61	(T)10	259
	GTCAGGC	GGTCCAGGC			
UN2787	GCTACAAAAAGCG	TCATAACACGT	60	(CAC)7	209
	CGTTTGC	AGCGGCTCC			
UN2815	TGGCATTTAAGAT	TCTTGGTACAT	59	(A)19ctcg	260
	CAGGTCATCCT	ACTACATGTGT		agactagttct	
		ACA		c(T)17	
UN2823	TCATGATACTGTG	ACTGGAAAAAT	58	(A)27ctcg	209
	GGAAATGTGA	AAATCATTGCT		ag(T)18	
		CAAGT			
UN2827	AGCAGAAAGCAC	CAAAGGCTGGG	59	(TAA)5	264
	ATTGCACA	AAGGCAAAG			
UN2882	TTTTCACTCTTTCA	GCGGAGTCTGT	59	(CT)6	155
	CTTCTCAACC	TCGGAGTAG			
UN2892	TGGCCAGTCTTTG	GCAAATTCTGT	59	(T)10	259
	TGCTAACA	AAAAGGCTACA			
		CA			
UN2894	CCTCTACACGCTC	TCTTTCAACAC	60	(TG)6	279
	TAGCTGC	ACACGCACG			
UN2901	CGAATCGTTGCCC	TTTGACTCGGG	60	(T)12	271
	CGTAAAC	CAGCAGAAT			
UN2913	GGGGTTCTAGGTG	CACATGCAAAT	59	(ATG)5	256
	GAGTTGC	TTCACACGCA			
UN2957	TGGTTCCATTAGG	AGAGCAACCTC	59	(A)10	259
	GTACTGACC	AGCATCACA			
UN2994	ACTTGGGCTCCTA	TGGCTCGGGTT	60	(T)18	211
	CGCAATC	ATTTTTGGGT			
UN2997	ATCACGCACCGAA	CGCTAAACTAA	60	(TC)6	272
	CCTAACA	ACGGTGCCG			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T_{m}	SSR type	Amplicon
name					size (bp)
UN3024	CACTTCATTCTTG	TCCTCGTTCGA	59	(GTT)6	181
	GGCTAGGGA	ATGATCCTGT			
UN3030	CAAAACCCAAACC	CGTTCCCAGCA	60	(CTT)5	245
	CAACGCA	TACCCTTGT			
UN3033	AAGCGCCGAAAG	GGTTGCCTGGA	60	(A)27ctcg	278
	ATGAGACA	ATTATCGGC		agactagt(T	
				C)10	
UN3044	ACAACACCATGAT	TGTGTCATCCA	59	(GAA)10	256
	GAGCCTTG	TGGACCACA			
UN3045	ACACAGAAGAAAT	AGGCCAATCAG	60	(TGA)7	149
	CAATGCATTGC	AGCTAGGGA			
UN3053	GAAAGAGAACTCG	ACATCCCAGGG	60	(C)17	199
	GGGTGGG	AAAAACAAACT			
		G			
UN3074	GAAGACGGGGTTG	TGCAAAGACCA	59	(A)10	275
	CAAATGG	TTTAATCCGAC			
		A	60		
UN3079	CCAAACICITCAC	CGCCGAAAATC	60	(TCTTC)5	155
	CGACACG	GCAGTGTAG	60	(
UN3109	AACACCGGAAAA	GTACCGGAGAT	60	(AGA)5	141
	GAAAGCGC	CCAGCGATG	60	(TT) 1.0	100
UN3116	GCATIGATCICIC	CACCACGITIT	60	(1)10	182
101110	CCGGGAG	CCAGCACIG	60	(1)10	207
UN3119	CAGCUICACCAIC		60	(A)10	207
1012120	ICAICCA		50	() 10	227
UN3130			59	(A)18	221
11112120		GGGCCCCTA	60	$(\Lambda \Lambda C)$ 5	112
UN3130	GAATGTA		00	(AAC)S	112
	UAATUTA	AAAAUAUAUAUA			
LINI3132	ТСАСТССТСТСТСТ	UU TATCCGGTCTT	50	(TCT)6	228
0113132	TCTTCGC	CGTCCTGGT	39	(101)0	228
UN3149	ACTGTTCTTGCTTT	CAGCTTCTCTC	60	(T)11	156
0113147		CCAACCCTG	00	(1)11	150
UN3154	TGTGGCTCTATCTT	GGATGGACCAT	59	(ATTC)5	242
0113134	CTGGGT	GCAGCTTCT	57	(1110)5	272
UN3156	CCATACCAATGGG	ТСАТСТСТААС	58	(A)12	167
51,5100	ACACCC	CCACTAAGGTG		(**)**	- • •
		T			
UN3159	TGAACCAAAATGC	CCTCCATCGTC	60	(A)10	243
	ATGGGGC	ACCCTTAGC			-

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	Tm	SSR type	Amplicon
name	-	-			size (bp)
UN3169	CTCTCCCTTGTCGC	CAAGAGGTTGC	60	(TCA)5	101
	ACAAGT	GCATTTGGG			
UN3176	TTTGCTTTTAGGCC	TCCCAGAATGA	59	(T)10	190
	GCCAAG	AGGGTTAACCA			
UN3198	CAAATGGCGGCAT	TTCCTCGCTTC	60	(TGG)5	277
	TATCGGG	CTTTTGCCA			
UN3214	GAGGAAACGGGT	TCAATTGCGAT	60	(AT)7	227
	AGGGCAAA	CATGTTGCAGT			
UN3216	TGTGAAGACGATG	GAAGCACCAG	60	(A)18	246
	ATGACATGGA	AAAGCCTTGC			
UN3291	CAACCCATGGTGG	CACGCGGAAA	60	(CAAC)5	214
	TCTCCTC	AGATTCAGCC			
UN3299	GCCAATCAGTCCA	CGCTCTGTAAC	60	(A)21	275
	GGACACA	CAAAGGAATGC			
UN3302	TGGCACCACCAAA	TGGGGTTCGAG	60	(CCT)5	246
	GAGACTC	ATTGGGGTA			
UN3311	ACATGCCTGTGGT	AGTGACACCAT	60	(GAT)6	272
	GGTTGAT	TTTCAGGGTCA			
UN3321	ACGACTCTGTTTC	CCCTCCGGAAA	59	(CAC)5	253
	TTCCGCA	CTTCTTTGC			
UN3326	GGAGTTTCATGCG	GGGCCCCGTCA	60	(A)10	159
	CCAAGTT	AATGTAACA			
UN3328	TCTGAGTTGGGCG	ACATATCGGGC	60	(A)25	218
	GAACTTC	AACGCGTAA			
UN3346	AGCTTGGTATTAA	TGCCAACCCTA	59	(T)14	100
	TTTGGACCGG	CTTGGAACC			
UN3372	GCTCCCATCTCAG	TGCATGTGTAC	60	(A)18ctcg	247
	CAGTCAA	GGTTAGTGCT		ag(T)22	
UN3375	AGCGCACATTTCA	GAAGCACCAG	60	(A)19	279
	TTTCCGT	AAAGCCTTGC			
UN3409	ACTCTTTACATTG	TCGATCCTCGA	60	(T)12	106
	CTCTTCCACCT	ACGCCATTT			
UN3414	CTCCTTCCATTTCT	GACAAGGGTCA	59	(TTC)6	200
	CTTTCTGCA	GCAAGGTGA			
UN3426	TCATTGCAGCTTC	TATACGTTGAG	60	(TC)6	129
	CAAACCC	CGCGATCGG			
UN3428	TGGACTGTACCAG	CGTCTTTGGTA	60	(A)20	263
	GGTTGGA	CCAGCGTCT			
UN3431	ATGCACCTATCAG	TGGGTTTGGAA	59	(A)10	238
	GGCGTTC	CATGATCATCA			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T_m	SSR type	Amplicon
name					size (bp)
UN3433	GACGGATCTGAAG	ACACTCAATCG	59	(A)10	261
	GCAGCAT	CTTCCAGTT			
UN3444	TTGGACGGTTGGA	GACACACCCCT	60	(ATG)5	158
	ATGGAGG	CTTCGAGTG			
UN3455	GCTTTGGCCTGAA	GGGTTTCTTCA	60	(A)24ctcg	230
	AGAACCTG	CTCCTCCGG		agactagt(T	
				C)6	
UN3489	CAACATGCGATGA	GCTCATGACCA	59	(A)18	280
	GGATTGTCA	CCTTTCCCT			
UN3497			0	(T)11	
UN3504	GCTCCATGAAGCA	AGCTCCACCAC	60	(GAT)5	145
	AATGGGTC	AGCATGTAC			
UN3512	TGGATTGCTCGAA	TGAAGCATCTG	60	(A)12	275
	AGGACCC	GAACAACGGT			
UN3519	TCCCTTTTTCTTCTT	GTTCCGTTTAC	59	(T)10ccgt	267
	GACCGAGA	GCATGCGAA		attgtatttta	
				catccaactt	
				aattaaaaat	
				cctaacaaac	
				taaaaagata	
				tttcaaaaat(
1 D 10 50 1			60	A)10	200
UN3531	TCCATCTTGCCCTC	AATGACCGCGG	60	(A)12	280
	AAAAGCT	AGIGATIGI	60	(1)10	200
UN3548	GCGGIGGCAAACG	AAGCAGAACC	60	(A)19	280
	TTAAGTA	GAGCCAAGTT	(0)	(\mathbf{OT}) 1.1	100
UN35/3	AGGCGICCIIIGI	AACAGICAACA	60	(GI)11	100
	AIGCACA	TAAACAACAGC			
1012570		GA	()	(CCT)	1 4 4
UN35/9		GALLATALLLA	60	(GC1)5	144
1112611			50	$(\mathbf{T})1\mathbf{A}$	260
UN3011	CTCTCAC		39	(1)14	209
	CICICAC	TACACITICCC			
UN12641	ATATCCTTTCCTC		60	(Λ) 20	262
UN3041	CCCCCAT		00	(A)30	202
LINI2652	CCGTTCAAGAAAG	TCCAGATGATG	50	$(\Lambda \Lambda C)$ 5	214
0113032	CCTGTGG	CTGATGACCT	37	(AAC)S	214
11N13680		CGACGCGAGA	60	$(\Lambda)18$	254
0113009	GGTGCTG	AATTTGACCG	00	(1)10	2JT
		ATTIUACCU			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	Tm	SSR type	Amplicon
name					size (bp)
UN3701	TGGATCGATCAAG	ATGCTTCCACT	60	(GTA)6	240
	TTAGGGACG	ACCACTGCC			
UN3711	ACGGGTTGTTTTT	CATCTCCGCAA	59	(G)12	260
	GAAAATGGA	GATCCTCGT			
UN3718	TGGGTTCACTGTT	AGCCATGAGAT	60	(GTG)8	250
	CCAGAGC	TCTTCGAAGGT			
UN3720	CTCACTCACCCGA	CTTCTGCGACG	60	(A)10	217
	GAAACTCA	CAATGCTTT			
UN3728	ACTCGTCCACCAA	GCACCACCAAA	60	(CAA)5	235
	AAATGAACG	CTTAACTCCC			
UN3730	CCCCACCCTGTAG	CCGAACGTTTT	60	(A)25	213
	TTATGTCC	GGTCACGTG			
UN3749	CAGCAATATTCCG	TCGCAGTGGAA	60	(T)13	126
	CGGGTTG	TTAAACAAACA			
		CA			
UN3767	GGGGTTTCTCGTG	GCAAGCTCCTT	60	(A)18	259
	TGGTGAA	CACTGGTCT			
UN3776	TCCAGGTAAACGA	AGTGTGTGAAT	60	(TATT)5	279
	GAAGTTGAAGA	TCGTGCCCA			
UN3814	TCGGTAGCTGCTA	CTTCCACCACC	60	(A)11	248
	GTGTCAC	ACCTTGACA			
UN3814	TTGTGCAGGGTCG	GTCGATGTCCC	60	(T)13	211
	ACCTTAC	AGATCAGCC			
UN3820	GCACCACTTCCAA	ACGTTCCTCTG	59	(T)10	243
	ATCGCAT	GTTCCAACA			
UN3849	GACGACTTCAGTT	TACCTGAAGGA	60	(AG)7	205
	GAAACAGCT	GAGCGGTGA			
UN3857	AGCCGCACAACAG	CCCCTGATTGT	60	(CAG)5	161
	TTTCAAC	TGTTGCTGC			
UN3863	GTTGCAGTTTTGA	ATGTTGCTCAG	60	(TTC)5	197
	GGGCGAG	CCCTTGAGG			
UN3884	GGAACGACAAGTA	AGTGCATCGCT	60	(TA)8	274
	GTGCCGA	CATCGTCAA			
UN3896	GGTGATTATGTAC	TGCTAGTACAC	59	(TA)7	123
	ATGGGATGGGA	ACAGTGGAAG			
		А			
UN3966	CTTGTCCTCACCG	GTCCTACATTA	60	(T)11	193
	GCATGAT	TCCCATGTGAC			
		CA			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer	Forward primer	Reverse primer	T_{m}	SSR type	Amplicon
name					size (bp)
UN3968	CACCCACCCACCA AAATTGC	CCGATCGACTG AAATCGCCA	60	(A)14ccatt ctacataaag aatgatgaac aaaattg(A) 12	265
UN3971	TGGGGGAAAACCA	CCTTGCCAAGG	60	(A)10	256
	AACCACT	GAAACATGC			
UN4009	AGTGCAAGAACAT	ACTAAGTCATT	59	(A)10	275
			50	(\mathbf{T}) 1.0	200
UN4080	ICIGATACITICIT	AATCCAGGTTC	59	(1)10	280
	TGCCACTTCA	CCAGCACAG			
UN4086	CTTGTTGGCCGTTT	CTCCTCCAGTT	60	(TGG)5	227
	TGGGAG	GCAGCAGAA			
UN4086	GCTGCTGAAGCTA	CGAATCGTGGA	60	(A)13	270
	AGGAGGA	TCAGGGACA			

Table A2. Details of 373 primers designed using Primer3 software based on 4513 lentil unigene sequences (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris46	AAAAATG	ATTTGAAG	59	(CCA)5	128
	GGCGAAT	TCGGTGAG			
	ACGAA	GTCG			
PUT187aLensculinaris99	GCGACCA	AGTCAATC	60	(AG)10	191
	CTGTGTT	CATTGTCT			
	GTTTGT	CCGC			
PUT187aLensculinaris112	AATCATG	TTCTCCCTC	60	(AAT)5	264
	AAGATCG	TGCAGCAT			
	ATCCCG	TTT			
PUT187aLensculinaris153	GCATCAC	AGTTGGGT	60	(CCA)5	162
	TGAAGTC	CGTTGAGA			
	AATGGC	TTGG			
PUT187aLensculinaris195	AACGGTG	CTGATAAA	60	(A)11	101
	TTCTTTC	ACGACCCG			
	ATTCGAG	GAAA			
PUT187aLensculinaris214	AAAGCAA	CGTAGATT	60	(AGC)6	253
	GAGGAAA	GCAGGTGA			
	TCAAACT	GCAA			
	CA				
PUT187aLensculinaris238	GCTTCAT	ATCGCGTA	60	(CAC)7	193
	CGTCGTT	TAGGATGA		. ,	
	AATCGG	ACGG			
PUT187aLensculinaris240	CGCAACC	TGGATATG	60	(T)21	108
	TTCTTCT	GTGGTGCA			
	GCTTCT	TTTG			
PUT187aLensculinaris271	ATTCTCA	ATGAAGGT	60	(TCT)5	272
	AGTACGC	GAACGAGT			
	GGCAGT	TCGG			
PUT187aLensculinaris286	TTGCTTC	GAATGTCG	60	(T)10	273
	CTGATGC	AAACCTGG			
	ATTTGA	CCTA			
PUT187aLensculinaris319	CCCTGCT	AGCCTGCT	60	(CAG)5	163
	ATGCAAC	GATGAAGT			
	AAGGAT	TGCT			
PUT187aLensculinaris355	CGTTTGA	TCGGCACA	60	(T)10	194
	TCTTCTA	TTGTTGAA		-	
	AGCCCC	AAGA			
PUT187aLensculinaris405	GCATCCT	CGACAGGA	60	(ATA)11	279
	GAAAAGC	AAAGCGAG			
	AAAAGG	GTAG			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database.

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris471	TTATGTT	CCACTGCC	60	(AGC)5	165
	CCCAGGC	AGAAGATG			
	AAAAGG	AACA			
PUT187aLensculinaris479	AACCTCA	AGGACCAC	60	(CT)7	155
	GAAAAGA	AGGAAGAG			
	AACCCCA	CAGA			
PUT187aLensculinaris525	TCAAGTC	CGGTGGAT	60	(A)10	275
	GATGAGG	ACCAAGCA			
	CAATTTT	TAGG			
PUT187aLensculinaris533	ACACGTT	CGAAAAAG	60	(TTC)5	188
	CGTTTTC	ACGTAGAA			
	GCTTCT	AAATCCA			
PUT187aLensculinaris535	TGAGTTT	GGACATGC	60	(CAA)5	129
	TCAGCAA	CCATGTTC			
	TGGCAA	TTCT			
PUT187aLensculinaris545	CGGGGGA	GGGCATTG	60	(TTC)5	189
	AGAAAGA	GAGAAGAA			
	AAGAAA	CAAG			
PUT187aLensculinaris567	CAACGAA	CCCGTATC	60	(AG)6	267
	AACAGGG	CTTTACTTT			
	AAAAGG	CCCA			
PUT187aLensculinaris622	AAGTCCA	CAACTGAG	60	(AGA)7	138
	AAAAGGT	GGGAAATG			
	TGCACG	GAGA			
PUT187aLensculinaris624	GGTGGCG	TTCTTCAAT	60	(GTG)6	145
	GAGAAGA	TTCCATTG			
	TTATGA	GGC			
PUT187aLensculinaris647	TGCACCA	CATAAAAA	60	(A)19ctc	143
	TCTTTTG	TGATGAGC		gag(T)22	
	CCTACA	TACCTTCA			
		А			
PUT187aLensculinaris666	GCATCTG	AGCAAAAG	60	(A)13	102
	TTAGAAA	CAAAGGCA			
	CACCAAC	AGAA			
	AA				
PUT187aLensculinaris666	TGGTGGT	AGCAATCA	59	(TTA)7	159
	GTTTTGA	CCTCACTG			
	TGGCTA	TGACT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris668	TTTTGCA	TCAGGATC	60	(AG)9	234
	GAGACGA	GCATTGGT			-
	GAGAGAA	TGTA			
	А				
PUT187aLensculinaris682	TCTCGCG	CGGAAATC	60	(CTT)5	272
	TATACCT	GTAGTTTT			
	GCTGTG	GGGA			
PUT187aLensculinaris694	CGCTCTA	CTTTCAAC	60	(TG)6	270
	GCTGCAT	ACACACGC			
	CTCTCC	ACG			
PUT187aLensculinaris716	TATTAGT	CCCAATCT	60	(GTG)5	137
	GGGCGTG	CCACTCCT			
	TGGTCA	CTCA			
PUT187aLensculinaris719	TAACTTT	TGATCCAC	60	(GT)7	183
	CGGTCAT	TGAACTTC			
	GCGTTG	ACGC			
PUT187aLensculinaris760	ATTGGTG	AATTTTCC	60	(GTG)5	176
	AATTTGG	ATCATCCC			
	GGATCA	CTCC			
PUT187aLensculinaris794	GTTCGCC	CTTTACGT	60	(T)18	155
	ACCAAAG	CGTACCCC			
	ACATTT	TCCA			
PUT187aLensculinaris862	CCCCCTT	TCCATTGA	60	(ATG)5	261
	TCCTTAG	AACTTTTT			
	AACTCG	GCTGC			
PUT187aLensculinaris887	AGAAGGC	TCTAATCG	60	(A)10	139
	AGTGGGT	CATCGTTTT			
	GAAGAA	CCC			
PUT187aLensculinaris889	GCAGCCT	CTGCTTAC	60	(TGA)5	236
	CTGAAGA	CCACCACA			
	AAGAGC	ACCT			
PUT187aLensculinaris930	AATCCAT	CGCGGAGT	60	(A)12	276
	CTTGCCC	GATTGTGT			
	TCAAAA	TAAA			
PUT187aLensculinaris931	TGGGGTG	TCATGAAG	60	(T)10	250
	TTGGTTT	CTTACAGG			
	GTTTCT	AAATTACA			
		А			
PUT187aLensculinaris1019	TTCCACT	ACGAACGG	60	(CA)7	182
	TCTGTTT	CTTGCTTTA			
	GCACCA	TGT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris1052	TGGGTTG	TCCAGAAG	59	(TG)6	268
10110/02/00/07/07/2	AATCAAG	GGCAGCTA	0)	(10)0	200
	TTTGGA	AAAA			
PUT187aLensculinaris1056	GAGCGTG	ATGAGACC	60	(A)13	270
	CAGCACA	CTCAACAA		()	_ / 2
	ATTAGA	TGCC			
PUT187aLensculinaris1066	TCAGCTG	GGGCATTT	60	(T)10	226
	GCTGTAC	CCCTTTCTT			
	AAAGGA	TTC			
PUT187aLensculinaris1105	AGGAGGA	CGCACTTC	60	(TTG)6	103
	GGAGGAT	CAGACAAG			
	GTTGCT	TTCA			
PUT187aLensculinaris1196	CCAACCA	TGACGGTT	59	(CCA)6	186
	TTTCAAC	GCTGTTTG			
	GCTAGT	TTGT			
PUT187aLensculinaris1200	TTGTCAC	TTTGGCTT	59	(TA)6	171
	TGTTCCA	AAGAGATT			
	GGCTCTT	CATTACTC			
		А			
PUT187aLensculinaris1231	TGTGGTA	GGTGGTAG	60	(ACC)5	164
	CATGCAC	CAGTGGTG			
	ACCAAAT	GAGT			
PUT187aLensculinaris1232	GCAGGCG	TGAGAATC	60	(A)11	110
	TAGGAGA	ACTTAACC			
	ACTTTG	CAAATGAA		(
PUT187aLensculinaris1259	TCCAACA	AGGCTCCA	60	(A)10	124
	ATTCAGG	GCICCIAI			
	CACAAC	TGGT	(0)		117
PU118/aLensculinaris1263	ICACIAC	CIACCCAC	60	(1GG)5	115
	CGGGAGA	CACCICCI			
DUT197-L and availing vis 1271	AAGIGG	CAAA	60	(ΛC)	100
PUT18/aLensculinaris12/1	GGAGAGA		60	(AG)6	128
	AAGAGAC				
	GACAGGA	GII			
DIT187al angoulingria 1290			60	(TCC)	267
r 0 1 10/alenscumaris1380		GCGTGTTG	00	(100)5	207
	GACCCA				
PUT187al encoulingris 1297	CACCCCC		50	(TC)7	220
1 0 1 10 / al-ciiscuiiiai is 1 30 /			57	(10)/	220
	AGACTC	ATCAA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris1406	ATGACTG CCTCTCC AGCACT	CAGCAAAA TGAGCAAG TGGA	60	(T)12	239
PUT187aLensculinaris1454	GGAGTCG ACGAGTC AGAACC	TAATCTCT CCGGTCAC CGAC	60	(GGT)6	160
PUT187aLensculinaris1486	AAATGAG CATTTTG TGGAGTC A	TTGTAATG CGGCTTAG GCTT	60	(A)10	222
PUT187aLensculinaris1493	AAGGCAT TTGGTGG AATTTG	TGAGACAA TACCTGTTT GAAGC	58	(TAG)5	203
PUT187aLensculinaris1559	GAACAGG GGCTTTG ATGTGT	CAAGCTTA TCCCTCTCC ACC	59	(AGA)10	213
PUT187aLensculinaris1608	ATCCAAT CCCAATC CAATCA	CTGCTGTT GTTGTGGC TGTT	60	(CAA)5tt tcttcaacat (CAA)5	228
PUT187aLensculinaris1710	TGTCTGC TTAGGTG AAGCCA	CTACCGAA CGTTTTGG TCAC	59	(A)25	100
PUT187aLensculinaris1721	AAAAATC GCCACAA TCGCT	CCAGATGC ATTTGCCA TTTA	60	(TTC)5	241
PUT187aLensculinaris1782	TCCTTTC CTATGAG CACAAGT T	AGGGCACA TCAGTTTT GGTC	59	(TC)6	172
PUT187aLensculinaris1792	GACGGTT TAGGTTC GGTTGA	TTTTTGCCA CGCTTCTTC TT	60	(TTC)5	256
PUT187aLensculinaris1800	TGCCTAT AGGACGG	AGAGGGAG AGGAAGAC GGAG	60	(TCG)5	167
PUT187aLensculinaris1801	CCATGTT GTAGGGC AATGTG	CAACCCTC ACTTCCTC CAAA	60	(CAT)5	277

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer		• •	size (bp)
PUT187aLensculinaris1850	TCCAATT	AAAGCAGC	59	(TC)9	273
	CCCAGAA	CTTGTTTG			
	AATTAAA	GAGA			
	А				
PUT187aLensculinaris1855	TCCTTCC	TGAGGATG	60	(CAA)7	122
	CCCTTTC	GTTTGGAA			
	TCATCT	GAGG			
PUT187aLensculinaris1863	TTTCCCC	GTCACGGA	60	(TAT)7	226
	TTCTATA	TCCGCTTA			
	AAATCCC	AGAA			
	TG				
PUT187aLensculinaris1864	TTCGCGA	TCTGTCAT	60	(GT)8	268
	ACTCACT	GCAAGGTC		. ,	
	GTTGTC	GTGT			
PUT187aLensculinaris1870	CCACGTC	ATGGAGTG	60	(CCA)5	139
	ATCAGCA	AATTTGAA		~ /	
	AGAAGA	CCGC			
PUT187aLensculinaris1871	CACATTC	ACCGAGAG	60	(ACA)5	252
	AAAATCC	AAGAGAGT			
	ACGACG	TGCG			
PUT187aLensculinaris1921	CACCCTT	CTTGGGAA	60	(ATA)7tc	241
	TTTCTGC	AGTGCAAA		cctttacag(
	ATTTCAA	TGGT		CAA)5	
PUT187aLensculinaris1925	ATCATCC	ACTCCTCC	60	(CAT)7	195
	CATGGCT	AGCTGCTG			
	TCACAT	ACAC			
PUT187aLensculinaris1935	TCACATA	TCTTGCCT	60	(AAT)5	108
	AACCACA	ATGGCCAA			
	ACAAGCA	CATT			
	А				
PUT187aLensculinaris1979	TGAATCA	CCGGTTCG	60	(AAC)7	175
	AATTGGC	GATCTTCTT		~ /	
	ATGGAA	ACA			
PUT187aLensculinaris1991	CCGCAAC	GAAGGTTG	60	(ACC)6a	166
	AACAACT	TCCTTATG		ctaccagta	
	ACACCA	GCGA		ctacct(C	
				CA)5	
PUT187aLensculinaris2021	ACTAGGA	GAGTGACA	60	(TC)26	141
	AAGGAAA	CGTGAATG		~ /	
	ACGGCG	GTGG			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris2033	ACAATCA	GCATCATC	60	(CCA)8	246
	GGTTTCG	GATTTTGT			
	GACCAG	GGTG			
PUT187aLensculinaris2042	GGCAGGA	CCACAACT	60	(A)30	265
	CCCTCTA	CCCAACCT			
	TGGATT	AACC			
PUT187aLensculinaris2096	TTGCATG	ATGGAGAA	60	(ATC)5	254
	TATGAAA	GCTAAGGG			
	CCGCAT	GGAA			
PUT187aLensculinaris2098	ACACCGA	TTTGATGTT	60	(T)19	222
	CGAATCC	GAGGTGGA			
	AATAGC	GCA			
PUT187aLensculinaris2104	ATTGCAG	AGAACGGC	60	(AAC)5	180
	CCAGAGT	GTAAGCAG			
	GGAATC	AAAA			
PUT187aLensculinaris2112	CATGACA	TGAAGAAC	60	(CAA)5	270
	ACGCAAC	ATCTCGTG			
	AGAACC	CTGG			
PUT187aLensculinaris2134	GCATCAT	CCGGCACT	60	(T)12	277
	TACAGTG	TCCTAATT			
	GTCCCC	CAAA			
PUT187aLensculinaris2168	TTGATGC	TGAAGATT	59	(A)10	132
	CTAATAA	TCATGCTG			
	TAACATG	GTTTTG			
	GTG				
PUT187aLensculinaris2198	TGACTTC	CACTTTGC	60	(GGT)5	115
	TCTGGTG	CATCTCAA			
	GTGGTG	GCAA			
PUT187aLensculinaris2213	CGACCTT	CAACGCAG	60	(AAC)5	265
	CAGAAAG	ACAACAAC		()	
	CTTGATT	ACAG			
	С				
PUT187aLensculinaris2239	CGTAGCT	CCTCGGAT	59	(A)10	261
	GGACTCT	AAACAAAA			
	GGTTGA	AGACAAA			
PUT187aLensculinaris2240	GCAAACA	CAATCCAC	60	(AGA)5	224
	GTCACAA	AAGAACAC		()-	
	TCACCG	CCCT			
PUT187aLensculinaris2320	TGTATCA	CCTACGTT	59	(ATC)8	279
	GTCCATT	TCCTCGAA		(2)0	
	CACCGAA	CAGC			
PUT187aLensculinaris2112 PUT187aLensculinaris2134 PUT187aLensculinaris2168 PUT187aLensculinaris2198 PUT187aLensculinaris2213 PUT187aLensculinaris2239 PUT187aLensculinaris2240 PUT187aLensculinaris2240	GGAATC CATGACA ACGCAAC AGAACC GCATCAT TACAGTG GTCCCC TTGATGC CTAATAA TAACATG GTG TGACTTC TCTGGTG GTGGTG CGACCTT CAGAAAG CTTGATT C CGTAGCT GGACTCT GGTTGA GCAAACA GTCACAA TCACCG TGTATCA	AAAA TGAAGAAC ATCTCGTG CTGG CCGGCACT TCCTAATT CAAA TGAAGATT TCATGCTG GTTTTG CACTTTGC CATCTCAA GCAA CAACGCAG ACAACAAC ACAG CCTCGGAT AAACAAAA AGACAAA AGACAAA CAATCCAC AAGAACAC CCCT CCTACGTT TCCTCGAA CAGC	 60 60 59 60 59 60 59 59 	(CAA)5 (T)12 (A)10 (GGT)5 (AAC)5 (AAC)5 (ATC)8	270 277 132 115 265 261 224 279

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris2408	TGGTATA	TTAAAACC	58	(AT)7	157
	TGCAAGT	TGTATAGC		(),	
	AATAATG	AACCACG			
	AAGTTG				
PUT187aLensculinaris2414	GCAACAT	AGCGAAAG	60	(CCT)7	252
	GGATTCT	ATCGAAGA			
	GGTGTG	CGTG			
PUT187aLensculinaris2431	GATTGCG	AGCAGTTT	60	(TGG)5	240
	GTAACCG	GTGACGAC			
	AGCTAA	GCTA			
PUT187aLensculinaris2434	TGGAGTT	AGTTGCAG	60	(TGG)5	151
	GAGGCTG	CAGAAAGT			
	AGGACT	GCAA			
PUT187aLensculinaris2434	GCTGCTG	CGTGGATC	60	(A)13	265
	AAGCTAA	AGGGACAA			
	GGAGGA	ACTT			
PUT187aLensculinaris2437	GCTGGCA	ACAAAGGT	60	(AT)7	128
	ATGTAGA	GGAGCAAA			
	AACAAAA	GCTG			
	А				
PUT187aLensculinaris2456	CGGGTTC	GGTCTTCC	60	(TGG)5	265
	TGTGCCG	TCGCTTCCT			
	TACTAT	TTT			
PUT187aLensculinaris2473	AGGAGCT	GAAGCACG	60	(AAC)8	208
	AGAAGAG	AGTTTCCTT			
	GGGCAT	TCG			
PUT187aLensculinaris2518	CAACATG	GCTCATGA	60	(A)18	280
	CGATGAG	CCACCTTT			
	GATTGT	CCCT			
PUT187aLensculinaris2559	GCTCTCC	ATCCATGC	60	(AGG)7a	224
	CTGTATC	GAAAATCC		agcattcgc	
	CACCAA	AGAG		agacgtcta	
				tcaagttcct	
				ccctcaaca	
				acatccct(
				GCA)5	
PUT187aLensculinaris2567	ATGGGCC	AGGAATGG	60	(CAA)5	252
	GTAAAAG	AGGAACGG			
	TGGTTA	AGTT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris2570	GCATTTC	GCTTGAAC	60	(AG)7	204
	CGATCCA	TCGTCGAC			
	GAGAAA	AACA			
PUT187aLensculinaris2576	GTCATGG	CCAAATCA	60	(ATG)5	169
	ATCAACC	TCCACATG			
	CGATTT	GTCA			
PUT187aLensculinaris2592	CAACCAA	CGGATTGT	60	(A)11gaa	179
	CCAAAGG	GAGTGGGA		tcgc(T)11	
	CTTCAT	AGTT			
PUT187aLensculinaris2639	GATCACG	GTCCAAAC	60	(TC)6	181
	CACCGAA	CCGAATCT			
	CCTAAC	TCAA			
PUT187aLensculinaris2659	TCACCCG	ATGATCTT	60	(A)10	217
	AGAAACT	CTGCGACG			
	CAAACC	CAAT			
PUT187aLensculinaris2681	CTGGAGC	TCTAGGGC	60	(GAT)5	172
	CATAGTC	CAGAGAGT			
	ACAGCA	TCCA			
PUT187aLensculinaris2742	TGTCTCT	CTGGTGTG	60	(CT)12	119
	GTTTTTA	AGAACGAG			
	CCGTCGC	CTGA			
PUT187aLensculinaris2762	GTTGCCC	AAGCATCA	60	(T)12	232
	CGTAAAC	GGCATAGC			
	AATCAT	GAAT			
PUT187aLensculinaris2791	GAACACA	CCCCTTAA	60	(T)10	197
	TGTGGCT	GATAGCCA			
	CATTCG	GCAA			
PUT187aLensculinaris2815	CTGGCGA	GGCAAATG	59	(T)10	214
	AAAAGAG	ATCTTTAG			
	GACTTG	AAAATAAA			
		А			
PUT187aLensculinaris2823	TTCCGCT	GGGTTTTG	60	(A)10	269
	TTCAATT	CGGTTTAA			
	CCATTC	GTGA			
PUT187aLensculinaris2852	AAATCGA	TAGGATTT	60	(CAG)6	179
	CTTCGAA	TGGTTTCG		·	
	AACCCA	CCAC			
PUT187aLensculinaris2874	TGGTTTT	TGAAGCAG	60	(AT)7	131
	GGTGGTT	GAGTATTT			
	GTCGTA	GGCA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
	-	•			
PUT187aLensculinaris2913	AGATGCC	TGTGGTGG	60	(A)10	196
	ATACCTG	TGATGTTT			
	TGGAGC	GCTT			
PUT187aLensculinaris2969	AGCAGAA	GGAAGGCA	60	(TAA)6	258
	AGCACAT	AAGGTGAA			
	TGCACA	AGAA			
PUT187aLensculinaris2996	CCCAAAG	ATGATCAT	60	(TCA)7	162
	CTCTTCC	TTGGCTTTT			
	TCCTCT	GGC			
PUT187aLensculinaris3005	TCTGCAA	CATGGGTC	60	(AAT)5	124
	CTTCAAC	GGTAGGTA			
	CACTGC	ATGG			
PUT187aLensculinaris3102	GATTGGC	GCAAATTC	60	(T)10	262
	CAGTCTT	TGTAAAAG			
	TGTGCT	GCTACACA			
PUT187aLensculinaris3141	CCAAAAA	ATCATGTA	61	(TC)6	229
	TTTCCGC	GCACCAAA			
	TGGTG	GCCC			
PUT187aLensculinaris3167	GGTTACC	TTACCGTT	61	(TGG)5	176
	ACAATGG	GTTGGAAG			
	TGGAGG	CACC			
PUT187aLensculinaris3173	GCCATAA	GAGAATTG	60	(GTT)5	128
	CGTTACT	CGACGGAG			
	CACCCAG	AAAG			
PUT187aLensculinaris3192	TGCATCA	GCTCTCGT	60	(TTC)5	235
	TGTTACC	GGTTTTCT			
	ACCACC	GGAG			
PUT187aLensculinaris3192	CTCCAGA	GTTGCTGT	60	(CAA)5	264
	AAACCAC	TGTTGCTG			
	GAGAGC	CTGT			
PUT187aLensculinaris3201	TCTCCTC	TTCAAAAC	60	(TCA)5	124
	CTCCTCA	CTGAGGAC			
	TCCAAA	CACC			
PUT187aLensculinaris3228	CTTCCAA	GATAGCGA	60	(TTC)8	114
	ACTTCCC	GCCAAATG			
	AAGCAA	GAAC			
PUT187aLensculinaris3251	CTAAGGG	GTGATTCC	60	(A)19	111
	TGGCCTT	GATGCGTT			
	TGCTTT	TTCT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris3276	CGGAGGA	AATTACGG	60	(AGA)5	142
10110, u 20100 u 111 u 1100 2 , 0	GCATTGA	CGTGGAAA	00	(11011)0	1 12
	GGTTTA	GAGA			
PUT187aLensculinaris3286	CCTTTGC	TTGGGATT	60	(A)25	224
	ACCAGTC	CAGAGAAA		()	
	ATTTTG	TGGC			
PUT187aLensculinaris3338	TGGGTTT	CGATCTCA	60	(A)10	271
	ATTCTAT	CCGAAAAG			
	TGCGGC	GGTA			
PUT187aLensculinaris3408	CCTCCCC	TAAACCGT	60	(CAA)7	178
	ATGAAAA	TGGTTCCA		~ /	
	GAACAA	GGAG			
PUT187aLensculinaris3420	CCTAACC	TTGGAGAA	60	(TTC)5	225
	TTCACCA	TGTGATCC			
	CAAACCT	GTGA			
	С				
PUT187aLensculinaris3421	AACCCCC	CCATCGAT	60	(AAC)6	188
	AAAACCC	TTCCTCGTT			
	TAACAC	GTT			
PUT187aLensculinaris3424	GCGTGGG	TGAAGATT	60	(T)10	262
	AAAACAA	TGGGGGTG			
	AAAGAA	AGAG			
PUT187aLensculinaris3482	CCTAACC	TCGCCGTA	60	(TTC)5	181
	TTCACCA	AGACTGTC			
	CAAACCT	ACTG			
	С				
PUT187aLensculinaris3510	AACAGCC	CACCATTT	60	(A)30	255
	AAAAGCT	TCGATCAA			
	CCTGC	CCCT			
PUT187aLensculinaris3527	ATCGGAG	AGTCCAAG	60	(CAA)5	225
	GACCCCT	AATGATCG			
	TTTATG	GTGG			
PUT187aLensculinaris3532	TGGGGTT	CCACAAAT	59	(ACAAG	265
	GAGTTCT	GTCACCAA		C)6	
	TCAAATG	CACA			
PUT187aLensculinaris3549	CTCCGTG	CGATACGA	60	(T)10	137
	GAAATAG	TCAAATCC			
	ATCCCA	AGCA		(a ()) =	
PUT187aLensculinaris3583	TGGTGTG	CAGCAGCA	60	(CAA)5	178
	TTGAAGA	ACAGAACG			
	AGACGAA	GTTA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
-	primer	primer			size (bp)
PUT187aLensculinaris3589	TGGGAAA	CCGCGCCA	60	(CAA)7g	238
	ATCGAAA	TTTAATAA		aaggttttac	
	GAAATGA	GGTA		tactgctgct	
				gaagaaga	
				aacaacaa	
				caa(CTC)	
				6	
PUT187aLensculinaris3602	TCTTTAT	GGCCGCAA	60	(TCA)5	166
	AGTAGCA	AAAGTCAA			
	GGGGCAG	ATAA			
	C	TOOTOOAT	()		240
PU118/aLensculinaris360/	CACCUIC	IGCICGAI	60	(CTT)5	248
		AACAAGCA			
DUT197-1 angeulinerie2660			60		101
r 0 1 18/aLenscumans3000	TCCCCAC	GGGTTGGG	00	(A11)0	121
PUT187al ensculinaris3671	GGAAAGA	GCATCACC	60	(T)13	245
1 C 1 107 allense anna 15507 1	GGGTGCA	GTGTTTGG	00	(1)15	245
	GAAGTG	TAGA			
PUT187aLensculinaris3717	TGACTTC	TGGTCAGT	60	(TCA)8	229
	CACACCT	GTTGTTGG	00	(1011)0	
	TGCAGA	CTTC			
PUT187aLensculinaris3734	TTGATGG	TTGTCCTTC	60	(GTG)8	233
	GTTCACT	AACCCTTT			
	GTTCCA	TGG			
PUT187aLensculinaris3743	CGCGGAT	TCGCTACG	60	(ACC)6	171
	ACTATCT	ATGTTCTC			
	AGCCCA	GATG			
PUT187aLensculinaris3753	GTTCCTT	TTGAAGCG	60	(ACA)6	157
	CCTTGCT	AGAATCGA			
	GCACTC	GGAT			
PUT187aLensculinaris3798	ACCCACA	TCGATACG	60	(TA)6	256
	CACAAGC	ACATCCTC			
	ACAGAC	GTTG	60		0.51
PUT18/aLensculinaris3800	CICIIGI	CCATCCAA	60	(GAT)5	271
	GGUIGAA	UIGAACGG			
	GAGGUI	AIUI	50	(A)11	100
r 0 1 18/aLenscullnaris 3824	GCACCCC	ACICCAGI	38	(A)11	100
		AUUIUUUI			
	TTAAAU	UIIU			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris3835	CGGTAAA ATATCAC ATTCTCT	GTGGCGTC GGTTATCA ACTC	60	(AAT)5	247
PUT187aLensculinaris3852	TATCTTT GCCACTG	TCCCGTTC AATATCTC TGCC	60	(TTC)5	256
PUT187aLensculinaris3875	AAATGCA TTGATCT CTCCCG	TGCTCATC AAACACCA CGTT	60	(T)10	197
PUT187aLensculinaris3877	TCTCGGT AGCTGCT	CTGCGTTC GATTTGTT CTCA	59	(A)11	216
PUT187aLensculinaris3877	GTGGTGG TGGAAGA	GATGTCCC AGATCAGC CTGT	60	(T)13	268
PUT187aLensculinaris3882	GTGGGAG GGTGTAG	TTTCTCTCC AAATCCAT	60	(GTT)7	184
PUT187aLensculinaris3892	TTCCAGT AAAAATT CAAATTG ATGA	GTTTTGGT GGTGGAAG AGGA	59	(A)10	261
PUT187aLensculinaris3952	AAAATGG AGGATTC GCAGG	GCTGCTAC GAACATCA CGAA	60	(GCA)5	135
PUT187aLensculinaris3989	GGAAACC ATGGATT TGTTGG	ACTTTGTA CCCTCCGT CCCT	60	(GA)6	108
PUT187aLensculinaris4022	TGTTCGA CTTGATC TTTGCG	CGTTTGGA CGAATGTC TTCA	60	(TAG)5	186
PUT187aLensculinaris4024	CAATGAA TGATGCA	TGGCAATT GTTCATGG TAGC	60	(T)11	246
PUT187aLensculinaris4027	ATGGACC ATGCAGC TTCTTC	TTTCCCTTT AGAAGACA AATCCC	60	(TGAA)5	170

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris4063	TCCCTTTT	GGGTATAA	60	(T)10ccgt	222
	CTTCTTG	ACCCACAA		attgtattttt	
	ACCGA	CCGA		acatccaac	
				ttaattaaaa	
				atcctaaca	
				aactaaaaa	
				gatatttcaa	
				aaat(A)l	
				0	• • •
PUT18/aLensculinaris4081	CACCCIT	GIGCCGGI	60	(TC)7	206
	CTICCAT	GGACITAC			
	TCICATI	AGTT			
DUT197-L and only and 4111	C		60	(T A T) 0	227
PU118/aLenscullnaris4111		AAATCACI	00	(1A1)8	237
	AUTOTIC	TTACA			
DUT187al angoulingris/11/	CTGCAAC	GGACTGCC	50	(T)12	271
r 0 1 18/aLenseumans41 14	GTTGAGT	ATTTTAG	39	(1)13	2/1
	TTTGGA	AGTTCA			
PUT187aLensculinaris4158	GCAGCAA	GAAGCAAG	59	(A)13	185
	GAATGAA	GTTGGTGT	09	(11)10	100
	CTGATTT	TGGT			
PUT187aLensculinaris4171	GCTGAAG	TCCACGGA	60	(GAT)5	179
	CAAAACC	CGCACATT			
	AAAAGC	ATTA			
PUT187aLensculinaris4240	AACCGCG	CAGGAACA	60	(CAA)5	167
	TCTGCTA	AGCGGAAG			
	AGGTAA	AAAA			
PUT187aLensculinaris4249	CAAGGAT	GTCCTTGC	60	(AATG)5	273
	CTCGACC	CGGTTGCT			
	CATTCT	ATAA			
PUT187aLensculinaris4305	ACCACCC	AGATTGTA	60	(CCA)5	199
	ATTTTTCT	GGGGGGATG			
	CCTCC	AGGG	()		227
PUT18/aLensculinaris4321	TATAGCG	TGTTGATG	60	(TCT)5	227
	CGTATCC	TGGCCAAT			
	CUTCAC	ICIG	(0		151
PUII8/aLensculinaris4340	IGGAGIT	AGTIGCAG	60	(166)5	151
	GAGGCIG	CAGAAAGT			
	AGGACT	GCAA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
PUT187al ensculinaris/3//			60	(A)17	271
101107aLenseumans+5++	TTCTTGC	ТСССАСТА	00	(11)17	271
	AAGCCT	GGAC			
PUT187aLensculinaris4365	TCTTGCG	CCTAGCTA	60	(TCA)5	151
	ATGGTGA	TGGGCGTT	00	(1011)0	101
	CTCTTG	CTGA			
PUT187aLensculinaris4395	AATCAGG	AATGAAAT	60	(TTC)5	211
	GGTTGCA	GTTGCTCA			
	GTTTTG	GCCC			
PUT187aLensculinaris4416	ACACAAA	ATTTCTGC	61	(A)10	180
	GCAAAGA	CGTTGGAT			
	GCCACG	GAAG			
PUT187aLensculinaris4511	TGTTGAG	GAGCCTCG	60	(CT)6	278
	AGGAAAA	ATACTCCA			
	GGGACG	CCAC			
PUT187aLensculinaris4530	GGAAGTT	TCTTTCTTC	60	(A)10	234
	GAAGCGA	AGGAGAAC			
	CGGTTA	CCG			
PUT187aLensculinaris4540	CATCAGC	GCAGGTTG	60	(TTG)9	269
	AGATGAA	TTGTGGGA			
	TTGTTCC	AGTT			
	Т				
PUT187aLensculinaris4633	CGCTACT	AAGATCTT	60	(TC)13	103
	TCAGCTG	GCTCCTCC			
	CTCCTT	CCAT			
PUT187aLensculinaris4634	GAGGATG	CAAAAGCT	60	(ATC)5	203
	ATGCATC	CTTGGTGT			
	CGAAAT	GGTG		-	
PUT187aLensculinaris4639	GGGATGG	GCACATAA	60	(T)10	232
	ATCCCAA	CAAAATGC			
	GITTIT	AACGA	()		214
PUII8/aLensculinaris46/5	GACITIG	GIIGCICI	60	(GGT)6	214
	GCGAICG	CAAACCAG			
	TIGAAT	AGCC	()	$(\mathbf{T})10$	265
PUT18/aLensculinaris4681	TCTCCGA	ICGAAACA	60	(1)10	265
	TTCCTT	ACCGIAGG			
DUT1970L on an line made 4692			60	$(\Lambda \Lambda C)$	210
r U I I o / aLenscuiinaris4082	AAIGUIU		00	(AAC)0	210
	AAAAAU I	CGTT			
1 0 1 187 alenseumans+082	AAAAAACT GCCACC	GACGAAGA CGTT	00	(AAC)0	210

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
DUT18701 ansouling 1682			60	(TTC)4	220 (UP)
PUT18/aLenscumaris4083	IGUACAU		00	(110)0	229
	ACAAIGI	TCAC			
	IGAIGG	ICAG	(0	(\mathbf{CT})	150
PU118/aLensculinaris4699	CGITACC		60	(C1)6	152
	CAGGAAG				
	TIGCAT	IIGIG	(0)		104
PUT18/aLensculinaris4/01	GGATIGG	GGCTGAGG	60	(GAA)5	124
	GAATGAA	CAAGIGIC			
	GGGTTT	TCTC			
PUT187aLensculinaris4747	AATCGGT	CCCAAATC	60	(GCG)5	144
	GGGGGAG	CTTTCACC			
	AGTAGT	AATG			
PUT187aLensculinaris4762	GGTCGGA	CGGGTCAG	60	(CAA)5	186
	GTAGCTT	GTTGTTGA			
	TCGATG	AGTT			
PUT187aLensculinaris4772	CCGTAAC	AAGCTGAT	60	(CT)7	188
	GCTTCCA	AGGGTCGC			
	CAATTT	AGAA			
PUT187aLensculinaris4820	GTTTGTA	CCAACACT	60	(CGA)5	264
	GGCGGAG	CATTCGCT			
	GAATGA	GAAA			
PUT187aLensculinaris4826	TGGACCC	CTGAATTG	59	(GGT)7	232
	TAACGAA	GGTTGAAC			
	GCTGTT	TTGC			
PUT187aLensculinaris4832	GCGTGTG	CCCGTTCG	60	(AG)6	280
	AGGGTGA	TGTTTGTTT			
	AGTGTA	TTC			
PUT187aLensculinaris4850	ACATAAG	GGTGAGGA	60	(TCA)5	112
	GACGAAA	CAGGACAA			
	ACCCCC	GGAA			
PUT187aLensculinaris4927	CGTAAGG	AACAACGG	60	(A)10	162
1 0 1 10 / 02 010 0 0111010 17 2 /	AAGCCGA	GTCTTGAA	00	(11)10	10-
	TGAAAA	ATCG			
PUT187aLensculinaris4955	GCTACCA	CATGGCAA	59	(AC)7	184
	TAACAGA	CAAAACCA	.,	(1.0)/	
	CAAAACC	AGTG			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris4960	CCCTCCA	CTGGACCG	60	(A)14cca	236
	TCCCAAA	ATCGACTG		ttctacataa	
	AAGAAT	AAAT		agaatgatg	
				aacaaaatt	
				g(A)12	
PUT187aLensculinaris4979	ACCCTAA	GAAACAAA	60	(GAGAG	200
	ATCAGCA	CACACATC		T)5	
	ACACCG	AACCTCA			
PUT187aLensculinaris4992	CCTCGAT	TCAAAGGA	60	(TTC)5	259
	AACTTTC	GAACCGGA			
	AAAACCT	TTTG			
	TG				
PUT187aLensculinaris4999	GTCATTG	ACCCTAAA	60	(TC)6	178
	CAGCTTC	TCAGCAAC			
	CAAACC	ACCG			
PUT187aLensculinaris5000	AGGGCTT	TGAAAGCT	60	(TGA)5	109
	TGTTTTG	TATTGTGG			
	GGTCTT	AGCTGA			
PUT187aLensculinaris5012	ATTTTGA	CTTCTCTTG	60	(A)19	254
	TCCCAGG	GGCTTTGT			
	GAGACC	TGG			
PUT187aLensculinaris5017	GGAAAAT	GCAAGCGC	59	(T)10	279
	TGTAGCG	AGAAGAAG			
	CAAGGT	ATTT			
PUT187aLensculinaris5032	CCACCAC	GAGATAAA	60	(AGT)6	123
	TGTAAAG	CGCCTTCG			
	TAGGGAC	TCCA			
	А				
PUT187aLensculinaris5053	GTCGCAA	AAGATCAT	60	(TAA)7	180
	TTCGCCA	GAGAAGGT			
	GTTATT	GCGG			
PUT187aLensculinaris5069	GTTCAAC	CTTCCTTCC	60	(GAT)5	231
	TTCCACA	CAACCACT			
	GCACCA	TCA			
PUT187aLensculinaris5123	TATTGGG	TCCATTAC	60	(ΤΤΤΤΤΑ)	137
	AGCGAAT	AAGATACT		6	
	CTGACC	CTCCATGC		(1.60
PUT187aLensculinaris5143	TTTCAAT	GCTCCGGA	60	(AATCA	163
	CCCCTGA	TTTTATTTG		A)5	
	CTACGC	GGT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris5219	TGTCTTC	GGGAACTT	60	(TTC)6	280
	CCAACTT	GTCGATGT			
	GTTCCC	GGTT			
PUT187aLensculinaris5231	ATTTTAC	TCCTTATCC	60	(T)20	277
	TCATCGC	TTAGTTTC			
	CGTTGG	AAAACAGC			
PUT187aLensculinaris5284	TTACTTC	TTTGATTTT	60	(A)19	228
	GCCTTCC	GCCTTGTG			
	CATGTC	TGG			
PUT187aLensculinaris5315	ATGACAG	TCTCTTCTC	59	(GAA)5t	274
	CACCAAC	CATTACAC		gagaagag	
	CAAACA	ACTCACA		agtaagagt	
				g(TAT)5	
PUT187aLensculinaris5370	TTACTTC	TTGTTCGC	60	(A)18ctc	168
	GCCTTCC	ATTGTTAA		gag(T)22	
	CATGTC	ATTTCC			
PUT187aLensculinaris5371	CATTTTT	GGCATTTT	60	(A)20	212
	CGGACTT	GCTTTTGA			
	TCTCGG	GGAG			
PUT187aLensculinaris5375	ATCGCGT	CAGGAGAG	60	(GGT)7	243
	ATAGGAT	TGACGGGA			
	GAACGG	AAAA			
PUT187aLensculinaris5424	TCAAAGG	CTCCCTAA	60	(AAG)6	210
	ACACCAT	TGATGGAG			
	CTATGCC	GCAA			
PUT187aLensculinaris5457	AGGAGAT	AACACAGC	60	(T)11	266
	GCACTGG	TTCGCATC			
	ATGCTT	ACAC			
PUT187aLensculinaris5470	CAAGTTC	AAACTGAA	59	(GTT)5	107
	TATGAGT	AAGGGACC			
	GTTGGTA	ACGA			
	ACTATG				
PUT187aLensculinaris5506	TGTGCTT	TCCAACAA	60	(A)19	209
	AACGCCT	CCTCCTCTT			
	CATCAA	TGG			
PUT187aLensculinaris5564	AAGCGTT	GACTGTGC	60	(GAT)5	105
	GCAAAAT	GTCAAATC			
	CCAAGT	AGGA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer	50	(4)10	size (bp)
PUII8/aLensculinaris5627		GAGAAGCI	39	(A)12	196
	ALIGATT	IGIIGGIII			
	CATCAAC	GGC			
		тотоотоо	()		227
PU118/aLensculinaris5634	GAAIIGG	IGIGGIGC	60	(1011)6	237
	CGIIGII	AGIGGAAA			
	CIIGGI	AAIG	(1		265
PUT18/aLensculinaris5655	CGCGCIG	GTATCGGA	61	(CAC)6	265
	AATIGIA	GAAGAAGC			
	CAGACA	AGCG	()		110
PUT18/aLensculinaris5683	CCTAAAA	GACICGGI	60	(CAC)	110
	TCGACCC	TGGCATAG			
	AAACGA	TGGT	60		005
PUT18/aLensculinaris5695	AAGAAAA	CTCATCAT	60	(CAC)/	237
	GCCACAG	CCAAGCAG			
	AAGGCA	GGTT	60		100
PUT18/aLensculinaris5/00	CTTTCCT	TGATGCGT	60	(TCA)5	100
	CCCCATT	GTTTTTGGT			
	TCCTTC	GTT		(
PUT187aLensculinaris5723	TCTCTCT	GGTTTGCC	60	(AAC)7	175
	CCCTGTC	AAGTGGGT			
	CTTCCA	TTTA			
PUT187aLensculinaris5748	GCCTCAA	TTGTTTGA	60	(TGG)7	251
	TAACTTG	AGGATTGC			
	CGCTTC	CTCC			
PUT187aLensculinaris5816	CATGCCT	TGACACCA	60	(GAT)6	269
	GTGGTGG	TTTTCAGG			
	TTGATA	GTCA			
PUT187aLensculinaris5857	CAGGAAA	TTTAGGGG	60	(T)18	271
	TGCAAGC	TTTCTCGTG			
	TCCTTC	TGG			
PUT187aLensculinaris5860	TCAGCAG	GACCTTGA	60	(GAT)5	154
	CGATGTA	CGGGTTGA			
	AAGTGG	AGAA			
PUT187aLensculinaris5867	AGCATTG	GAAGCATC	60	(A)12	122
	GGAGTGG	TGGAACAA			
	AATGAT	CGGT			
PUT187aLensculinaris5906	CAACGGT	AGAATCAC	60	(AC)6	157
	CGCTCAG	TTGGCGTT			
	TTAGAA	GGAC			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris5928	ATTGGAG GCTGAGA	TTGTTGTTG GAATTTGG TGA	59	(ATC)6	270
PUT187aLensculinaris5933	GAAACCG CTCCATG TTTGTT	GCAAAAAC AATTTGAA GGGC	60	(GGC)5	231
PUT187aLensculinaris6039	AAACCAC GCCATCT	CATCGAAT CCAACCTC	60	(TG)6	202
PUT187aLensculinaris6119	TTTCTCTC ACCTTGC	CTGGTGGA GGTGGAGA	60	(CAC)5	183
PUT187aLensculinaris6130	TTGGCGA TGTTAGT	GAGGCACC CACTTTTTA	60	(TGA)6	255
PUT187aLensculinaris6201	CAGCTGT AAGGCAC	GGTAGTGC TGGTGCTT	59	(A)27	240
PUT187aLensculinaris6240	TATTAGC GTTTGCG	ACCGATAT CGTCACCG	60	(TTG)6	178
PUT187aLensculinaris6254	TIGCIG TGCCAGA ATACTAA AATCATC ATCA	TCTC TTGCTGTG GGGTAAAG AAGG	60	(TATTC) 7	223
PUT187aLensculinaris6376	GCTTCAT TGATAGT ACAACGC	TTGTGGTC AATGGTGA ATCC	59	(AC)6	180
PUT187aLensculinaris6395	TGTTCGT GTCTTTC	GAACTCCA AAATCCAT	60	(CTAT)5	278
PUT187aLensculinaris6403	CCGGATA CTGACGA CTGTGTT	GAAAACCC ACCATGGG	59	(CCT)5	167
PUT187aLensculinaris6420	TGTGAAT ATGTCTC	AATAGCTT GTTCCACC	60	(T)10	236
PUT187aLensculinaris6427	CCACAAT GGGAAGG TGATTC	AAAAACCA GCTGCGAA CAAG	60	(T)11	275

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris6431	TCGCTCT	GAGCATGA	59	(CT)8	277
	TCTATTC	AGACGGAG			
	TATCCCG	GAAG			
PUT187aLensculinaris6448	TTCACCT	ATGGTGCT	59	(CAT)5	173
	CATAGAC	AGCATCTT			
	CACTCCA	TGGG			
PUT187aLensculinaris6457	TTTTCTC	CGCGAGAA	60	(TCC)5	126
	GCCGGAT	GAGGAATC			
	TCATAC	AAAG			
PUT187aLensculinaris6495	GGATGGT	AGTCTGAG	60	(GAA)8	270
	GAAGAGG	GCGGATCC			
	GAGACA	TTTT			
PUT187aLensculinaris6504	GTCCCCT	GGGCAAGC	60	(TGC)5	273
	GATTGTT	TATACCAC			
	GTTGCT	CAAA			
PUT187aLensculinaris6504	GTCCCCT	GGGCAAGC	60	(ATT)5	273
	GATTGTT	TATACCAC			
	GTTGCT	CAAA			
PUT187aLensculinaris6505	AGAAGCA	GAAGCATT	60	(CAG)5	172
	GCAGCAC	ATCTTTGG			
	CAATTT	GGCA			
PUT187aLensculinaris6530	GGCACAC	GTCCACTC	60	(A)13	209
	TAGGCCA	AACCCCAC			
	TTGATT	AAGT			
PUT187aLensculinaris6531	GCAGAGA	GCTTTTCA	60	(TG)6	257
	AAGAAAG	GCAACTTC			
	AAAGAAA	AGCC			
	AGAGA				
PUT187aLensculinaris6533	TGAAATG	GGCGGAGG	60	(TGA)7	213
	CATGAAA	TAATCTTG			
	ACACAGA	CATA			
	А				
PUT187aLensculinaris6541	CGGAATC	TGTCTTTG	60	(ACA)6	230
	AGGAAGA	GCGACTCT			
	AGAAGC	GTTG			
PUT187aLensculinaris6624	AGTTTCA	GGGCCCCG	61	(A)10	157
	TGCGCCA	TCAAATGT		~ /	
	AGTTCT	AA			
PUT187aLensculinaris6636	TTCTTTG	AGCAAACA	60	(TC)6	117
	CATTTGC	TTTTCACTG		· · /	
	TTGCAT	GGC			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris6654	TCTGGGT	ATGGACCA	60	(ATTC)5	227
	TTCCTCG	TGCAGCTT		()	-
	TTTTCA	CTTC			
PUT187aLensculinaris6665	CACATGA	ATGTGGTT	60	(T)12	232
	AAAGGAG	TGGCATTG			
	GTGAAGC	ATGA			
PUT187aLensculinaris6689	ACCGCAA	TTGATTTTG	60	(CTT)5	222
	ATCATTG	CTAACCCC			
	GAAGTC	ACC			
PUT187aLensculinaris6706	ACCGTTC	TGCAAATT	60	(AAC)5	163
	AAGAAAG	GGAACCAT		× ,	
	CCTGTG	AGCA			
PUT187aLensculinaris6764	TTGGAAT	GATGCAGA	59	(CT)6	224
	GAAAGAC	TGCTACCG			
	CCTTGAG	TTGA			
PUT187aLensculinaris6778	TCTCTTCT	GGCGAATG	60	(AAT)6	274
	TCTGGCC	CTTCTCTG			
	TTCTCC	GTTA			
PUT187aLensculinaris6783	AGATGCC	TAATGGGT	60	(AAC)5	144
	CCAGTTT	TTTGGGAT			
	CAGATG	TGGA			
PUT187aLensculinaris6820	TCTGTGC	ACCCCAGT	60	(TGG)5	272
	ATGGCTT	CTATCACT			
	TCTTTG	CCCC			
PUT187aLensculinaris6840	GTTCAGG	GAAGCATG	60	(A)27	262
	GTGCGAA	TTTACGGT			
	ATCAAT	GGCT			
PUT187aLensculinaris6872	ATATGGG	AGTGACAA	60	(A)10	212
	GGAAAAC	AGTTGGGG			
	CAAACC	ATGG			
PUT187aLensculinaris6925	TGCAGCA	ATGTGGAG	60	(TCA)6	242
	TCTTCAA	CAAAGTTT			
	CACCTC	TCCG			
PUT187aLensculinaris6962	TCCGCCA	TGAAAAAG	60	(ACC)6	223
	TCGAAGT	GGTCAGTG			
	CTTACT	GAGG			
PUT187aLensculinaris6971	ATGCAAT	TGTGGATA	60	(GCT)5	201
	GAATTGG	GTGGCCAT			
	CCGTAT	GAGA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris7092	TATTGGC CAGTTTT TGGCAT	TGGAAAAA TAAATCAT TGCTCAAG	60	(A)27ctc gag(T)18	271
PUT187aLensculinaris7106	TGTCTGG CTTGAGC AGAAGA	GGAAGCAT GTAACCCT TCCA	60	(A)22	214
PUT187aLensculinaris7142	TAGCGAC GGTTTTT GCTCTT	GAGAAGAA AGCATTGC AGCC	60	(A)26	221
PUT187aLensculinaris7232	CAGATAT AGCAAAA TATTCCC TCCA	CAATCACC AGTGGCTT CTCA	60	(ATC)5	129
PUT187aLensculinaris7255	ATTTTGT GTGTGTG CTGGCT	CCTACGCA TTTATAGC AAAGGAA	59	(T)10	153
PUT187aLensculinaris7284	AATAGGG TCAGGTG GTGGTG	CCCGTATC CATGTTAC CCAC	60	(CAC)7	226
PUT187aLensculinaris7376	TGCCCTC GATTTCT ATGGAC	TTGACCTA TCCGATGA TGATG	59	(TCA)7	171
PUT187aLensculinaris7379	CTACAGC ACGTTTG CAAGGA	TGGTCCCA TCCATAGC ACTT	60	(A)11	280
PUT187aLensculinaris7389	CGCGAGA AGACAGA AAACAA	GGTCGGGT TGATAAGG GATT	60	(GAA)5(AAG)6aa aacaaggg ccttccgct ccctttcag cgaatgggt gaagatg gataaaaac actctctccc ttttatataac a(ACC)5	272
PUT187aLensculinaris7407	TGGTATT AATTTGG ACCGGC	TCACTTCA TCATTGCC AACC	60	(T)14	108

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).
Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris7416	GACTGTA ACTCCTT	GCTCGGGT TATTTTTGG	60	(T)18	231
PUT187aLensculinaris7475	AATGGCT TCGCTGA	CTCTGAGC AGCAGTAG	60	(TTC)5	132
PUT187aLensculinaris7478	ACTGGCG GTACTCA	CAGC CCCATTGC TTCCTCTTG	60	(A)25	280
PUT187aLensculinaris7488	TGGGTTT CGTTTTG TATTTGT	TTGGACTCC ATCCATTC TCAA	59	(A)18	206
PUT187aLensculinaris7512	ACCGTAC GGATCAA	TGGTTCCA ACCTTTTC GTTC	60	(AGA)10	223
PUT187aLensculinaris7540	TCTCCTTT ACTCCAC ACACTTC	GAGCACAG TTGTTCCA AGCA	59	(AGG)6	269
PUT187aLensculinaris7660	A GACCGAG GAATACC	TTTCATGC ACTTTTCCC	60	(ATG)5	280
PUT187aLensculinaris7662	AAAGCA CCTCCAA ACGCATC	AAA CTGAGCTT CGTTCATG	60	(TC)7	108
PUT187aLensculinaris7671	GAGAGGC TCATCAT	ATCTCGCT GCTCCACA	60	(TTG)5	182
PUT187aLensculinaris7680	AGGATTG GGAGTGA	ATCT CACCGTTC GTAGTGGA	60	(CA)6	217
PUT187aLensculinaris7732	TAGCCA CTAAGCC TTGTGTC	GTCA ACAAGGTT GAGACAGT	60	(TCA)6	214
PUT187aLensculinaris7747	CGGTTC CCCGAGT CCATTTC	GGGC GGAGGTGG ATTGTGCA	60	(A)19	160
PUT187aLensculinaris7750	CTTTTA ATCCAGC TGACTGA GCATTG	TGTT GGTGATGG AAAAGGAA GTGG	59	(A)21	189

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris7770	ATGGTGC	ACGATCAA	61	(A)21	276
	GGTTTCA	AAGAAAAC			
	AGGTTA	CCGC			
PUT187aLensculinaris7803	AGGTAGG	CGCGGAAT	60	(TCT)6	185
	GATTTGG	GATAGAGG			
	GATTGG	GTAA			
PUT187aLensculinaris7814	TCAAGGG	GTTGTTGC	60	(CAA)5	179
	CTAAGAG	TGCTGTCTT			
	ATGGGA	GGA			
PUT187aLensculinaris7814	ATGTTAT	CAACCACC	59	(A)11	235
	GTGTGGC	CATTTGAA			
	TGGGGT	AAAGT			
PUT187aLensculinaris7900	TGACCCT	ATTGTGCG	60	(GAG)5	244
	GAGGAAG	GAGGAAGA			
	AAATGG	GAAA			
PUT187aLensculinaris7919	CTGGATT	CCATGTTG	60	(A)18	208
	GGCTCTG	TTTGTTTGT			
	GTGTTT	CGC			
PUT187aLensculinaris7927	TGGGAGA	TTCTGCAA	59	(A)23	269
	TGTCTGT	AAGCTTCT			
	TGGTGT	GGGT			
PUT187aLensculinaris7960	TACCTTG	GGAACGAT	60	(CTC)5	204
	CAAACTC	CTCGCTGA			
	CGCTTT	AGAC			
PUT187aLensculinaris8037	GTTGCTG	AGCAGAAG	60	(ACC)5	250
	TAGTAGC	GAGAGGGA			
	CGCCTC	AAGG			
PUT187aLensculinaris8041	GGAATCA	CATCATTG	60	(A)10	239
	AACCACC	ACCCATCA			
	TTTCCA	TCCA			
PUT187aLensculinaris8063	TTTCATC	GTGCCTTA	60	(AAC)5	151
	GTTCCAC	CGGTGTCG			
	AACACAA	TTTT			
PUT187aLensculinaris8066	GTTGCCG	CAAAACCA	60	(GAA)5	275
	GCATTAT	AACCATTC		× /	
	CTTCAT	ACCC			
PUT187aLensculinaris8142	CCCTTTG	GAACCCAT	59	(CAT)5	143
	TTTGGTT	TCGCCACT		× /	
	CATCTTT	AAAA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris8185	CCGTTTC TTGCTCT	GCGAAATT CTCCTAAC	60	(GTT)5	198
	CGTTTC	AGCG			
PUT187aLensculinaris8211	AGGGCAG	TGATTTAT	60	(AAC)6	258
	CCTTAAT	GTTTCGGA		× ,	
	CCAGTT	ACAACG			
PUT187aLensculinaris8336	TGAAAAC	GGGAAGGA	59	(AT)6	278
	ATCAACT	CATGAAAG			
	GTACAAA	CAGA			
	AAGA				
PUT187aLensculinaris8344	ACCGCCC	TGCGGCTC	60	(GAT)6	241
	CAAAATC	TTCTTTTCA		× ,	
	TACTTC	CTT			
PUT187aLensculinaris8355	TGATTAT	GCCACAAA	60	(TA)7	130
	GTACATG	ATGCTAGT			
	GGATGGG	ACACACA			
	А				
PUT187aLensculinaris8369	AAATCGC	TGTTCTGA	60	(CACT)6	202
	ATCCTGC	AGATCGGG			
	AAATTC	AACC			
PUT187aLensculinaris8392	CCACCAC	CGGTGGTT	60	(CCA)7	192
	CAATACC	TTTATGGA			
	AGTTCC	TTGG			
PUT187aLensculinaris8405	TTTGGAT	AATCGCGT	59	(AT)7	207
	AGTGATC	GCTTTGTTT			
	CAGCAAT	TCT			
PUT187aLensculinaris8410	GCAAGTC	ATGGTCTG	61	(A)18	264
	CAAAGAG	TTCACCAC			
	TAGGCG	CAGC			
PUT187aLensculinaris8415	GTGAACC	TGCATCCC	60	(GTG)7	274
	TGGTCAT	TTAACCCA			
	TTTGCC	TTTC			
PUT187aLensculinaris8420	CTACTTC	AGGGAGAT	60	(T)16	256
	CGCACCC	GCTGACAG			
	ACAGTT	TGGT			
PUT187aLensculinaris8422	TCAATTT	CGCACTGG	60	(AAC)6	261
	CATAACC	CTACAAAG			
	ATTCAAG	ATGA			
	CA				

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris8429	CAGAGGT GCGATCT TTGCTA	CCCACCCA TAAAGCTC TCAA	60	(T)12	270
PUT187aLensculinaris8434	AAGCTTC GAGTTGC	CAAAGGAA ATCCAAAG GGAA	60	(A)10	246
PUT187aLensculinaris8440	AAACAGT TTGGAGG GGGAAT	ATCCATCA AGTGAAGG TGGC	60	(TTA)6	257
PUT187aLensculinaris8517	TCTTCTCT TTCAATC TCACCCT	CTTCACAA GAAGGAGA GCGG	60	(CAC)6	250
PUT187aLensculinaris8533	CAACTTG CTCGCAG AATCAG	TGCCACTG ATGTAAAA CCCA	60	(A)18	245
PUT187aLensculinaris8561	GACGACT TCAGTTG AAACAGC TT	CTACCTGA AGGAGAGC GGTG	60	(AG)7	206
PUT187aLensculinaris8574	GCTTTTC CCACCTC TTTTCC	GTTGTACA CCGAACGA	60	(T)11	274
PUT187aLensculinaris8578	TCCCTTTT CACGTCA	GCCGTAAC CTACACCT	60	(CAC)7	150
PUT187aLensculinaris8644	CTTCAGG GCTTGCA CTTGAT	CGTCGTTTT CCCTATGC	60	(A)25	212
PUT187aLensculinaris8649	ATAATGG GCAACAG	CTTTGTGG TTCCAAAA	60	(A)34	146
PUT187aLensculinaris8651	CCTTCGT CACTACC	TACTTTGC AAGCACAG	60	(A)18	243
PUT187aLensculinaris8668	GGAAAGG CGTGCTA	GGAGAACA AGCCCCAT	60	(A)28	272
PUT187aLensculinaris8669	GAGAAA TGTGAGG AAGAAGA TGCTGC	ATTTTCCC AGGGTGAA GGTC	60	(A)18	224

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris8702	ATCATCA	GTTCCAAC	60	(CTT)5	259
2 2 1 10 ; u2 0110 0 01110 1 100 ; 02	AAACCCA	TGTTCCCA	00	(011)0	
	AACCCA	GCAT			
PUT187aLensculinaris8705	TGATCCT	TGAGCACA	60	(TGG)6	259
/	GAGAAGC	AGACATTC		(),	
	GTGAGA	CTCG			
PUT187aLensculinaris8708	AAAGGGA	AGCCCTGT	60	(A)16	263
	CAAGGAA	ACATCACC			
	AATGCC	CAAA			
PUT187aLensculinaris8752	GGTTATG	TCAACAAC	60	(TGG)5tt	277
	GAGGCTA	CTCATTGT		atggtca(T	
	CGGTCA	CGGA		GG)5	
PUT187aLensculinaris8765	TAGCCAC	CTTATGGC	59	(TC)6	195
	CACTGGT	GGAAGAAA			
	TCTGTC	CTGG			
PUT187aLensculinaris8781	TAACTGC	TTCACCCA	60	(T)10	198
	CCAGCTT	TCAAAGCT			
	TCTGCT	ACAAAA			
PUT187aLensculinaris8811	TCATGAC	AAAAACCA	60	(TTG)7	238
	CAGTCCC	TTGGATCC			
	TGATGA	ACCA			
PUT187aLensculinaris8822	TTTCCTCT	GAGCAACC	60	(A)13	257
	TTCAAGG	TCAGCATC			
	GATTCAA	ACAA			
PUT187aLensculinaris8834	CAGGTGC	GTATGGCG	60	(TGG)5	266
	GTGATGA	GTCATCGT			
	ATATCG	CTCT			
PUT187aLensculinaris8849	CCACATT	CTACTCCA	59	(TTC)5	166
	CTTCACC	CAGAGAAG			
	CACCTT	GCCC			
PUT187aLensculinaris8857	CATCTCA	CTTTCGCA	60	(A)11	128
	AACTCCC	CCAATCAA			
	ACAGCA	ACCT	_		
PUT187aLensculinaris8888	TGCTGCA	CAACCCGA	60	(CAT)5	239
	ACACGAT	TTTCGAAA			
	GGTATC	AGAA			
PUT187aLensculinaris8888	TTCTTTTC	GCAATCCG	60	(GGT)5	195
	GAAATCG	CTGAAAAT			
	GGTTG	CAAT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
-	primer	primer			size (bp)
PUT187aLensculinaris8915	TGTGGTC	CTCTCTCTG	60	(AG)6tgtt	263
	ATGGTGG	AGTGTTTC		(AG)6	
	TTATCG	TGTCTCTG			
PUT187aLensculinaris8971	GCTGTAA	TGCCAAGG	60	(A)18	229
	TCCTTTC	TTTGCCTA			
	CTCCCC	GAAG			
PUT187aLensculinaris9004	AGCAGAA	GGAAGGCA	60	(TAA)5	255
	AGCACAT	AAGGTGAA			
	TGCACA	AGAA			
PUT187aLensculinaris9011	GCTGGAC	TACGATCC	60	(T)10	221
	AATCAAT	CTCGGAGA			
	TTCCGT	GAAA			
PUT187aLensculinaris9026	AAATTCG	GGTCGGGT	59	(AAT)5	228
	AATGCTT	ATTAGGTC			
	TTGGGT	CGTT			
PUT187aLensculinaris9031	CTATCAA	AAACTCCC	60	(CTT)6	229
	GGATTTG	ATTGATCT			
	CCTCGC	CATCTCA			
PUT187aLensculinaris9043	TCATTTT	CCTTTGAA	60	(AAG)5	223
	CTCCCAC	GGAAATTC			
	TCCCAC	TCAAACA			
PUT187aLensculinaris9044	GCGGAAC	CACAAGTG	59	(AGA)5	201
	AAGAAAA	AATTCTTA			
	CGTGAT	TTGCGA			
PUT187aLensculinaris9081	ATGAAGA	CCTTCTTCG	60	(CCA)5	117
	TGATTTG	TCAAACGC			
	GACGCC	TTC			
PUT187aLensculinaris9103	CAGCGGT	AACAACCC	60	(T)10	252
	GGTTAAC	AATTGTTA			
	GGTATT	CCGC			
PUT187aLensculinaris9137	ACCCGGT	CCCACACA	59	(TC)15	146
	ACCTAAG	CTCTCCCA			
	ACTTCC	ACTT			
PUT187aLensculinaris9141	TGAAGGG	ATGCTTCC	60	(GTA)6	253
	TAAAGGT	ACTACCAC			
	GGATCG	TGCC			
PUT187aLensculinaris9171	TTGGAAT	CAGGATCA	60	(A)10	259
	CCATTTC	GTCAGCGG			
	TCTGCC	GTAT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris9199	GCAGCGT	GCTTTTTCC	60	(TCA)5ct	274
	AGTAGTA	GGAACGTT		atcgctatct	
	GTGATGG	TTT		cttccatttc	
	С			aattccatttt	
				tctcaaaaa	
				actcaaact	
				cgccgcaat	
				ttcccttgcg	
				tt(GCG)5	
PUT187aLensculinaris9222	TCTCACA	AGGAGGAA	60	(CAC)6	258
	CCACCAA	GAGGCCGT			
	AACCAA	AGAG			
PUT187aLensculinaris9224	CTCTCCA	CTGGACCG	60	(AGA)9	232
	GTGAAGT	ACTTCAGA			
	AGCGGG	GAGG			
PUT187aLensculinaris9281	AACCTTC	AACCTCCA	60	(AGT)5	166
	TTGGCAG	TTTCATCC			
	CAGAAA	ATCG			
PUT187aLensculinaris9322	TCCGTGT	GAAAATAT	60	(CCA)5	173
	CTACCTC	GAGTCTGG			
	CAAACC	TCGTTATG			
		G	60		
PUT18/aLensculinaris9351	CGAGAAT	GGCCGTGA	60	(TG)6	276
	TCGAACC	ATTGAAGA			
	CTGGTA	TIGT	60		~~~
PUT18/aLensculinaris9364	CGIGIIC	TATGGCAA	60	(GTT)5	227
	CCITIAT	CITTIGGT			
	GGIGCI	GCAA	()		015
PUT18/aLensculinaris9382	TTACAAT	IGIIGIAC	60	(IGG)5tt	215
	AACGGIG	ACCCCCAC		accataa(T	
	GCGGTT	ATIG	()	GG)5	0(0
PUI18/aLensculinaris9405	AllGGIG	CAGGIGII	60	(CCT)5	263
	CACICAC	GGGGGGAGA			
	CICCIC	IAIG	()		175
PU118/aLensculinaris9420	CATTICA	ICCGAIAI	60	(CGG)5	1/5
	ACCCCTT	AGUICUGG			
DUT107-L	GUIGII	IGAC	(0		229
ruii8/aLensculinaris9442	GAIGACG		00	(011)9	228
	AUGGUIA	ACAAAGIG			
	IGACCI	UAAA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris9444	TGAAGGT ACTTGTT GCTGCG	TGGAGTGT GCATGTTA GGGA	60	(CAA)8	250
PUT187aLensculinaris9497	GCGTCAT AACAGAA TTCGTCG	TCAAAAGG GTCGACAT CAAA	60	(CAA)5c ggcttaagg agaaggttc ttttcaatact agtttcttcc gcttgttcct aagctcgg aggc(GA A)5cggga ccgagagc tacttgttga tattaatgag attggg(G GA)5	216
PUT187aLensculinaris9562	TCCCACC AAAGAAT GGCTAC	TAAATCCC ACCACCAT GCTT	60	(T)14	264
PUT187aLensculinaris9701	ATTGGGA TGCTGCA TTTCTT	AAATGGTG CATGTGTA CGGT	59	(A)18ctc gag(T)22	208
PUT187aLensculinaris9705	CTGCTTC CGAAATC TCATCG	GCGCCTGA TACTGCTG TTTT	61	(GCG)6	135
PUT187aLensculinaris9711	CAAGGCT CATCAGG ATTGGT	CCTTAGGA GAAGGTGG GTCC	60	(CAA)5	190
PUT187aLensculinaris9800	TTCTTCTC AATTCAG ATCAACT TAAC	GCAAAACA GCCAGAGG AGTC	59	(A)11cat aatagcatc tattaaaaca tacatgatg gacaagca atttctcaac (A)12	233
PUT187aLensculinaris9801	TCAACTA AGAATCG ACCAAGC A	GGTTGAGA TTTCTCGG GGAT	60	(A)10	220

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris9838	TGTGGAC	CCGTTCGT	60	(TAT)7	165
	TGAACTG	TTGTCTGG			
	GACTTGA	ATCT			
PUT187aLensculinaris9870	ATGTCAG	GTTCTGCT	60	(CAA)7	177
	TTCCTCC	GCTGATGT			
	CAGCAC	TCCA			
PUT187aLensculinaris9964	GCTTGGC	GTCTTTTCC	60	(A)29	144
	TCAGACT	CATCGTTC			
	GCACTT	CAA			
PUT187aLensculinaris9998	TGTCGCT	ACACCATG	60	(TTG)5	231
	CATTCCT	CCGTAAAT			
	TGTCTG	GACA			
PUT187aLensculinaris9999	TGACATG	TTCCTCCCT	60	(A)10	215
	TACAGGT	TGATGAGG			
	TCTCAAT	ATG			
	GC				
PUT187aLensculinaris10007	TCATCGT	AGAAGGGG	60	(CAC)5	199
	CATCCAA	AAGATGGG			
	AAAGGA	AGAA			
PUT187aLensculinaris10012	AACCCAA	GAGTGTTA	60	(AAT)6	270
	TTCATTA	AAAGTCCG			
	GGAACGG	GCGA			
PUT187aLensculinaris10017	CGATTCA	CCACCGTT	60	(CAA)6	153
	ATTTGGG	AATCCCAA			
	GAAACA	CATC			
PUT187aLensculinaris10025	TTCCCTT	TTATGGAA	60	(CTT)6	138
	CCCAATT	GTGCGTGG			
	TCTCCT	TGAA			
PUT187aLensculinaris10026	GGGAATG	TCCCACAC	60	(GTT)10	241
	CTATGCG	CATTCTCTC			
	ATGTTT	TCC			
PUT187aLensculinaris10033	GACCAGC	TAACAACG	60	(TCTTC)	275
	ACACACA	ATTGGACC		5	
	ACAACC	ACGA			
PUT187aLensculinaris10048	CCTCAGA	AAGCAAAA	60	(CAT)6	220
	ATCCCAC	CCCTCAAC		-	
	CATCAA	CCTT			
PUT187aLensculinaris10065	GCACCAG	TGCTTGGA	60	(AT)6	255
	CATCCCA	CCCTAAAT			
	ATAGTT	TTGC			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris10101	GACGCAC	TCCAAATT	60	(T)10	232
	TGATCGT	GCATAACA			
	AGCAAA	AAACTGA			
PUT187aLensculinaris10196	CACACAA	CTTTGGGG	60	(A)20	198
	TATACCG	CCGTTGTA			
	CCCGAT	GTAA			
PUT187aLensculinaris10202	TTCCCAG	TGCCTTTTG	60	(CAA)6	248
	GAGCTTT	CAGGTCTT			
	ATTCCC	CTT			
PUT187aLensculinaris10257	GGAGCCA	GCTTGTAT	60	(TA)7	262
	TCATTGA	GAACCGCT			
	ATTCGT	ATTGG			
PUT187aLensculinaris10269	ATTTTCG	TTGACTGC	60	(CTC)7	126
	CGACCAT	GGAGGAAA			
	CAAATC	GAAT			
PUT187aLensculinaris10278	CCGGTGG	CATTCCCA	59	(T)11	280
	AGTTTTC	GAATCTCA			
	TGTTATG	ATTCC			
PUT187aLensculinaris10297	AGCTGTT	AAAACAGG	59	(T)10	144
	GGATTTT	TTCTTTCTC			
	CATGGC	CCG			
PUT187aLensculinaris10315	GATATGC	TCATTTATC	60	(CGG)6	177
	ATTGCGA	TCGCGCTG			
	GGGTTT	TTG			
PUT187aLensculinaris10326	TAGCTTT	GCATCGGT	60	(GA)6	104
	GCCACCA	TCGATTCT			
	CACTTG	CAGT			
PUT187aLensculinaris10344	TCACAAA	CAAACTCT	60	(GGT)5(175
	ACCTCAA	CCAGCGGC		GGA)5	
	CCACCA	TTAC)-	
PUT187aLensculinaris10354	TCTCCAG	GCAAGGAA	60	(TTC)5	196
	CGTCCAA	GGGTTTTT		()-	
	CTTCTT	AGGG			
PUT187aLensculinaris10408	GGTGCGG	ATTTAGAG	60	(GCGT)5	208
	TGTTGTT	ATGTGACC		atgtattcgt	
	GTATTG	GGCG		ataatcggt	
				gac(AGA	
)9	
PUT187aLensculinaris10412	CCACCGC	GGAGAGAG	60	(CAC)5	174
- · · · · · · · · · · · · · · · · · · ·	TAGTACC	GGGAGAGA		-)-	-
	AAATCC	GGTG			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris10444	TGCTGTT	CGGGATGA	60	(TGC)5	167
	CATATTC	ATGGTGGT			
	GCTTGC	TATT			
PUT187aLensculinaris10462	AACTCCA	CACTTTTG	58	(GA)8	280
	TTCTCAT	CTCACCAA			
	CCAGCA	CCAT			
PUT187aLensculinaris10463	GGAAAGA	ACACCCGC	60	(TGT)6	279
	ACAGAGA	TTTCGACA			
	GCGTGG	ATAC			
PUT187aLensculinaris10486	TTTAAGC	ACACAGCA	59	(TCA)13	126
	AGCACCA	ACTGGATG			
	AAACCC	ATGA			
PUT187aLensculinaris10492	ATGCTTT	CACCTGCT	60	(AGC)5	242
	CCCCCTT	GGTTATCC			
	TGAACT	TGGT			
PUT187aLensculinaris10513	AGCAGTG	TCCAAAGT	60	(A)10	225
	GAAGTGG	CCAAGCAA			
	CAAGAT	ATGA			
PUT187aLensculinaris10531	TTTGCAT	CACAAAAT	60	(GTG)5	263
	TCCCCTT	GCCATGGA			
	GATCTC	ACAG			
PUT187aLensculinaris10532	GCCTTCT	TTTCTGAT	59	(T)11	153
	TGTTCCC	GGCCAATA			
	TGTTTC	AGGC			
PUT187aLensculinaris10533	TCCTCCA	CTACTTTTG	60	(TTG)5	152
	GGTCCAA	CAACCCGA			
	AAACAC	TCC			
PUT187aLensculinaris10536	GTTGTTG	GGTTGAAC	60	(CCA)6	115
	CTGTTGC	GGAGTGGA			
	GTGTGT	GTGT			
PUT187aLensculinaris10703	GGCATTT	TGTGTACA	59	(A)19ctc	242
	AAGATCA	ATTGAAGT		gagactagt	
	GGTCATC	TATCATTTT		tctc(T)17	
	С	G			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
PUT187al ensculinaris 10000		GGAATGCT	60	(Δ)1 3	201
1 0 1 10 / al-ch5cu111a11510900	GGAGGAG	GGATCCTG	00	(A)13	201
	TGGCTG	TAGC			
PUT187aL ensculinaris10947	CGAAGCA	TCTGGTAA	59	(ACC)6	117
1 0 1 10 / allensedimans10 / 4 /	CTTCAAC	CGGGATTT	57	(1100)0	11/
	СТСААА	CTGG			
PUT187aLensculinaris10954	CCTCTCA	CACCGTTA	60	(TAG)5	238
	ATCTTTC	GGTCGAAC	00	(1110)5	230
	CGTTGC	GTCT			
PUT187aLensculinaris10965	TGGTACA	TGGTCAAA	59	(AGA)5	276
1 0 1 1 0 / 02 010 0 0111111 1 0 / 00	ATTTCCT	GCTCAATT	• •	(11011)0	
	CTCCCC	CCAG			
PUT187aLensculinaris10980	GCTTTTC	GAAATTCA	60	(A)10	213
	CGAACTT	AACCCCTC			
	CCCTTC	GTCA			
PUT187aLensculinaris10992	CCCCCTT	CAATGGGA	60	(A)18	202
	TAGTGCA	GAAGGCAC			
	GTTTTG	ATTT			
PUT187aLensculinaris10993	TGACCCA	GAGCAACC	60	(A)10	241
	GAAAAGA	TCAGCATC			
	AGGATCA	ACAA			
PUT187aLensculinaris11000	AGTCTGA	GCGGGTGC	60	(TAG)6	146
	AGGTGGC	AGTTTGAG			
	GAGAAG	TAAT			
PUT187aLensculinaris11033	CCGTAAC	GCATCCAA	60	(GTT)5	143
	GGAAGTT	TACGACAT			
	GAAGGA	GATGA			
PUT187aLensculinaris11107	GGATGGT	TGCAAAAT	60	(ACC)5	270
	GATTTTG	CTGCCAAT			
	GTTTGG	TCAG			
PUT187aLensculinaris11119	TTACAAC	GTCGAAGA	60	(TCA)5	207
	CAAAATC	ACTCGCCA			
	GGAGGC	AGAG			
PUT187aLensculinaris11139	TTTATAT	TCATCATG	59	(AT)6	227
	AGACACA	GAGATCAG			
	CACACCC	CAGC			
	AGC				
PUT187aLensculinaris11149	GCATGTC	TAGGCGTC	59	(AC)7	225
	TAAAACA	CTTTGTAT			
	CAACCCA	GCAC			
	А				

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris11150	TAGGCGT CCTTTGT ATGCAC	ACAGTCAA CATAAACA ACAGCGA	59	(GT)11	100
PUT187aLensculinaris11194	TTGCAAT TTCAACT CACTCCC	AAATTCCT TGGTGCGA TGAC	60	(TTC)7	138
PUT187aLensculinaris11209	GGATTGG AAGGAAA TGCAGA	CCAATCCT CCTCCGTA ACAC	60	(CTA)5	106
PUT187aLensculinaris11246	GCGATCC AGGTAAA CGAGAA	GTGAATTC GTGCCCAA ATAA	59	(TATT)5	278
PUT187aLensculinaris11247	CAATGGC TACGTGG	CCGCAATC CAAAACAA CATA	60	(T)10	245
PUT187aLensculinaris11257	CACCATT ACCGCAT CCTCTC	AGCATGGT GATGAACG ATGA	60	(TCT)6tc ccaaccgct ctt(TTC) 5	185
PUT187aLensculinaris11260	TCAGGTT TTGAAGG TGGAGG	TATCAGGC GAACCAAA CTCC	60	(GTA)5	239
PUT187aLensculinaris11265	GAACCAG ATTCTCA TTCTCCTT TC	GCCATTAG AGATGCTG CTCC	60	(CT)9	151
PUT187aLensculinaris11267	ATCAGGT CTCGTTT GGGATG	GGACTTTG TTCGTTGA CCGT	60	(ACT)5	277
PUT187aLensculinaris11279	TGATTTC ACTCCAT AAAGCTG G	GCGACAGA CACAGCAA GAAA	60	(A)10	257
PUT187aLensculinaris11311	AAGATCG TTTGCTC ATCTGGA	TGTGAGTT TTTCTTTGG GGTG	60	(A)18	269
PUT187aLensculinaris11313	GCCATCT TTCAGAT TTTGGG	GATTGGCT GTGAAGCA ATCA	60	(GAT)5	230

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris11425	ATTTTCC	CAATTTTCT	60	(TAT)5	274
	GATTTTC	GCATCATG			
	TTCCCG	AACCT			
PUT187aLensculinaris11432	GGGTGGT	CAAACTGC	60	(TGG)5	277
	CAACAAC	GATGCTTG			
	AGAACC	TCTC			
PUT187aLensculinaris11447	ATGTGTC	GACTGCAA	60	(CT)19	242
	ACAGTTG	GGAGTAGT			
	CTTCGC	CGCC			
PUT187aLensculinaris11460	TCTTTAC	CATCACGT	59	(CAA)5a	274
	AATCTCA	TGTTGTTTG		atgttgtctc	
	ACCTTCA	ATTTG		tactggcctt	
	CAGA			cgtttatcatt	
				cgatgatca	
				acaacag(
				CAA)5ag	
				attacagtta	
				caacttcatc	
				aatttcaatc	
				t(CAA)1	
PUT187al ensculinaris11470	CATTGCT	ΔΟΔΔGΔΤΤ	60	l (T)12	10/
10118/aLenseumans114/0	CTTCCAC	TTGCAAGG	00	(1)12	174
	CTTTCTTT	CCAG			
PUT187aL ensculinaris11/175		TCATGCCT	60	$(C \Lambda \Lambda) 6$	221
101107aLensedimaris11475	GATCACG	TGAATTTG	00	(CAA)0	221
	AAGATG	ATATGG			
PUT187aLensculinaris11545	TGGAAGA	TGGCATCC	60	(GAT)5	217
	TGGGAAG	AAAGCAAT	00	(011)5	217
	ATGGAG	ТАСА			
PUT187aLensculinaris11572	TGGATTT	CAGCATGA	60	(A)10	222
	ACAAACA	CCCTGATG	00	(1)10	
	CGCAAAA	TGTC			
PUT187aLensculinaris11589	GCAAAAG	TTGTTGATT	60	(TTA)5	204
	TTCACGT	TAATGAAA			
	GCTTCA	GAGGAAAA			
		А			
PUT187aLensculinaris11617	GATCCAC	CCTCGTTC	60	(GTT)6	184
	TTCATTC	GAATGATC		. /	
	TTGGGC	CTGT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris11619	TGTTGAG GGATGTG AGTCCA	AACTTGGG TATGTTGG CTGC	60	(ATG)6	127
PUT187aLensculinaris11659	TCACTTC ACCCTAC TTCTTCTT CTC	AATCCAAA TCAGCCAT GGAA	60	(A)11	182
PUT187aLensculinaris11672	TTGTCGA TATGAAT TGCCGA	ACCACCTG CACCACCA GTAT	60	(GGT)7	130
PUT187aLensculinaris11686	TTGCAAA CCTTCAA CACCAA	TCCTCCTTC TCCTCTCTC CC	60	(GGA)8	260
PUT187aLensculinaris11688	CCCAAAT TGTTAAG AAACCAC C	TCGAGAAC TGGGAGAG TCAAA	60	(A)15	279
PUT187aLensculinaris11700	CCAGAAA TCAGATC TAGGGTT TTC	TCCCGAAT CTACAATG GCTC	60	(AGA)5	277
PUT187aLensculinaris11712	CACTTTC ACCATGG CTTCCT	GGGGGAAA TGAGATGG TTTT	60	(TCT)5	168
PUT187aLensculinaris11740	CGAGGAA TCTGAGT TTTAGAA GGA	TTGGAACG ATCACGAA GATG	60	(TTG)5	226
PUT187aLensculinaris11750	TGAACAC TTTCCCC TCACTCT T	TAGAGGAC GCCAAGAC AAGC	60	(TA)6	260
PUT187aLensculinaris11810	ATCACCG CTTCAAA AACCAG	GACGGTGA TACCGAAT GCTT	60	(ATC)6	148
PUT187aLensculinaris11823	CTGCTTT CGAATTG AGGTCAC	TGTGCCCC TACAAGTT CCTC	60	(ATG)6	143
PUT187aLensculinaris11825	TATTACT ACAACGG GCCCCA	CAGATCCC ATTTGCTG ATGA	60	(TA)6	264

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
PUT187al ensculinaris 11830	CTTCTTCT		60	$(\Delta \Delta C)6$	165
		ATGATCGT	00	(AAC)0	105
	GGCGG	AGGG			
PUT187aL ensculinaris11004	GAGCTTT	TTGTGCCA	60	(GGC)5	252
101107aLensedimans11904	GTCTTGG	TCATGTTCT	00	(000)5	252
	TTTGCC	TCC			
PUT187aL ensculinaris11920	GTTTTGG	GCAAAGTC	60	(TTG)6	225
1 0 1 10 / allonsounnaris 1 1 / 20	GAGGTGA	ACACTTGG	00	(110)0	223
	TTTGGA	AGCA			
PUT187aLensculinaris11946	TGGCAAC	CAGCCAAC	60	(CAA)5	243
	ACCAAAA	CTCTTTGTT	00	(0111)5	245
	AGATCA	TCC			
PUT187aLensculinaris11966	AAAAACA	TCCAGTTT	59	(A)18ctc	215
	TCCCCCA	GCAAAGGG	57	gag(T)19	210
	ACAGAT	AATAA		5"5(1)1)	
PUT187aLensculinaris11970	CCTCAGA	CTTCGTATT	59	(TG)7	155
	TTGCACA	AATTCATC	0)	(10)/	100
	AAAGCA	ATTACAAC			
		AT			
PUT187aLensculinaris12087	GTTTTGA	AGCTCAAA	60	(ATA)5	221
	GGGCGTG	TCGACCAC			
	ATTCAT	CATT			
PUT187aLensculinaris12098	CGGGGTC	CAATCCAA	60	(TCA)5	262
	TAGCAGT	TCCATTTG			
	CAACAT	GTCC			
PUT187aLensculinaris12122	CACACAC	TGTGCTGT	60	(TTC)5	172
	ACCCCTT	GAATTTGG			
	CATCAC	TGGT			
PUT187aLensculinaris12151	ATTCCAC	CGGACTTT	61	(GTT)6	189
	GACATGG	GGAATGGA		. ,	
	TCCAAA	AAGA			
PUT187aLensculinaris12167	CTCTCCT	ACACACGA	60	(CCA)5	115
	CCACCAC	CAACACCA			
	CTTCTG	CCTC			
PUT187aLensculinaris12213	AACCTTC	TATTTAGT	60	(A)11	273
	CATGGCA	GGCGCCTA			
	CATGAT	CGCT			
PUT187aLensculinaris12214	ACAACGT	CCTCACTC	60	(GA)6	119
	TAGGGTT	ATACACTC			
	CAAGCG	TTTCTTTCA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon size (bp)
	Printer	Printer			5120 (0p)
PUT187aLensculinaris12216	ATCCACT	TCTGGTGC	60	(ACA)9	174
	IGCAICC	AAGICIGG			
DUT197-1	GAAAAC		()	(1)10	240
PUT18/aLensculinaris12222	TGATCGC	AATICIGA	60	(A)18	249
DUT197-L angenlinerig12222			60	(T)10	220
PUT18/aLenscumaris12225		ACCTCTCA	00	(1)10	230
	UAAAUIU	TTCACC			
DUT197aL angoulingrig12240		TCCCTTCTT	60	(A)11	192
FUI18/aLenscullians12249	ACAGAAA		00	(A)11	165
	GGGAAA				
PUT187al ensculinaris 12252	GGAATTA	GAAATCTG	50	(T)11	280
1 0 1 187 al clise ulliaris 12232	CAGAAAA	GGAAGCAA	39	(1)	280
		GAACA			
	TGA	UAACA			
PUT187aL ensculinaris12267	ATTGACC	TCATTCCC	60	(GTG)5	173
101107aLensedimans12207	AAGTCCA	AACATGAA	00	(010)5	175
	AATCCG	CCAA			
PUT187aLensculinaris12301	AATCAAT	CCAGTCCT	59	(TTC)8ct	176
1 0 1 10 / allonsounnaris 123 0 1	CACCACA	GATCTGGG	57	(TTC)8	170
	ТСТТААА	ТСАТ		(110)0	
	GAATA				
PUT187aLensculinaris12314	TGCCACT	AGGATGCA	60	(CCA)5	250
	TCGATAC	AACCGCTG		()-	
	TGGTGA	TATC			
PUT187aLensculinaris12328	TGCAATA	TCTTAAGG	60	(TCC)6	167
	ACCATGT	CTCCTAAC			
	CGTCGT	GCCA			
PUT187aLensculinaris12336	ACCTCTT	TTGCTGTTC	60	(CTC)5	210
	TCCCTCG	CTTTTCGCT		~ /	
	CATTCT	TT			
PUT187aLensculinaris12359	CGAGCCA	GCGAAGGA	60	(T)19catt	273
	TGGATGA	GTCATTTG		aaaattcca	
	AGTTTT	TTCC		aaatatattt	
				cat(A)10	
PUT187aLensculinaris12368	CACCACT	TTGCTTCCC	60	(CTT)5	195
	GTTCCAT	CCTAAAAC			
	ACCCCT	CTT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris12425	AATGCAA ATGGCAC TTTTGTT	CTTCCTTTG CCTCCTCCT TT	60	(CTT)5	266
PUT187aLensculinaris12440	AAATCCA ACCCTAA	GAATTGAA GTTGGCGA CCAT	60	(ACC)6	119
PUT187aLensculinaris12498	ATGGCAT CAACGAA	CGGAGCAG AGACAAGA	60	(T)12	154
PUT187aLensculinaris12560	TTTGAAA GGAGCAA	TGCAAAAT TGGGAACA	59	(GAT)6	219
PUT187aLensculinaris12572	TCTCAAA AAGATCA AAGAAGA GGA	CCCAAAAG AGCAGTTC CAAA	59	(GAA)7	249
PUT187aLensculinaris12609	CTACCAC CGGCCAT AGTGTT	CACCTTCA AACACGTC CACA	60	(CT)7	101
PUT187aLensculinaris12629	TCACATA AACCACA ACAAGCA	AGAAGTGG CTGCTCTTC AGC	60	(AAT)6	254
PUT187aLensculinaris12639	A CTAATAT GCTTTGC TGGCGG	AACAACAG CAGCACCA ACAG	60	(A)30	275
PUT187aLensculinaris12642	AGAGTTG AAGACGG TGCAAAA	GCTGTCAC CGAGAATG ATGA	60	(AG)8	136
PUT187aLensculinaris12670	TCATCAA TTGGGCT GCAATA	CCTGGATA AACCGGTA GCAA	60	(TTA)5	235
PUT187aLensculinaris12691	TGAGACC CCCTAAC TTTGGA	GTAGCCTC CTCCTCCTC GTT	60	(TTC)5	118
PUT187aLensculinaris12811	GTACCCC AACCCCA TTCTCT	TTCTAAAT CCGTACAC TTTCCC	59	(T)14	272
PUT187aLensculinaris12813	CCGTTAG CTCTCTT CTCTCGG	TCCCTGTTT CGATATCA GCC	60	(CT)8	257

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris12882	CAACATT	ACCCAAAC	60	(TGC)5	153
10110/4201504111411512002	TGGGCTG	CCACTTCA	00	(100)5	100
	GAAGAT	ACAA			
PUT187aLensculinaris12903	GTCCGCC	CCGCCTCT	60	(AAG)6	241
10110,020000000000000000000000000000000	GTCAGTT	TCCTCATT	00	(1110)0	211
	AGAGAG	ATCA			
PUT187aLensculinaris12936	TCATTTC	GGAGGAAG	60	(TC)6	159
	TGCTCCC	TGAGGTTG		()*	
	TGCTTT	GTGA			
PUT187aLensculinaris12960	CTATAAC	GATTCCGA	60	(GGC)5	102
1 0 1 10 / 02 010 0 01100 1 2 / 00	CGGCGAA	TCAGAGGA	00	(000)0	102
	AAAGCA	ACCA			
PUT187aLensculinaris12979	AACCAGA	GCCATTGA	60	(TA)6	198
	CCGTCAC	GGAGTTTG			
	GTCTTT	GTGT			
PUT187aLensculinaris12993	CTTGAGG	CTCCGCCT	60	(GGT)7	171
	ATCGGTG	CCTTTTTCTC			
	TTGGTT	AAT			
PUT187aLensculinaris13013	CCAAATC	AATTATCT	60	(T)10	107
	AATCACA	GGAGGGGG			
	TTTACAT	ATGC			
	TTTG				
PUT187aLensculinaris13076	TTGATCG	CCATAAGC	59	(T)10	238
	GTGATCA	ATGAAAAA			
	GATGGA	CCGA			
PUT187aLensculinaris13101	TCCTAGA	CCGAAAGA	59	(TC)7	199
	TTTTTCTCC	CCAACTGT			
	CTCTCG	GGAT			
PUT187aLensculinaris13175	ACATGGA	AACCACCT	60	(GTG)5	162
	TGGACGG	CCACCACC			
	AACATT	ATAA			
PUT187aLensculinaris13175	TTATGGT	TGCACAAC	60	(GTG)5	259
	GGTGGAG	CAGATTCA			
	GTGGTT	GAGG			
PUT187aLensculinaris13197	CGTTTGA	CATTCCCA	59	(A)33	264
	AAGAGAC	CCAAAGCA			
	AACCTTT	AGAT			
	G			(100
PUT18/aLensculinaris13207	ATTIGGA	GGATCGAC	60	(A)10	198
	GCAAAGA	CICCAATC			
	TGCAGG	AAGA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris13275	CAAGCTT	AATTGAAA	60	(A)19	271
	GGATTCT	CAGAACGG			
	GAGGTTT	GTGC			
	Т				
PUT187aLensculinaris13299	TCAAGGC	CACCGTCA	60	(AAT)7	226
	GGCTGTG	GTCGCACT			
	TAATCT	AAGA			
PUT187aLensculinaris13302	AAGAGCT	CGAAATGA	60	(TTC)5	205
	TTGTCAA	TGCAATAC			
	ACGGGA	GACG			
PUT187aLensculinaris13304	GCGAGTG	ACCACCAT	60	(GAG)5	224
	CTGGTGT	CACACCAT			
	AGTGAA	CTCC			
PUT187aLensculinaris13320	AAAAGCT	ACAGCCTG	60	(TC)10ta	188
	GTTGATT	TTCCGAGA		(TC)6	
	TTGGCG	AAGA			
PUT187aLensculinaris13351	GGTTAAA	TGGGTAGG	60	(T)10	204
	AGGTGAT	AACCAGCA			
	TGTTTGC	AAAC			
	С				
PUT187aLensculinaris13363	GGACTAA	TTATTGGA	59	(ATT)6	237
	AGTAACA	CACAGCGA			
	TGCATTC	GTGC			
	TGA				
PUT187aLensculinaris13383	TGTTCCG	AAAGAAAC	60	(CAA)5	196
	AATTGGA	GCGAAAAC			
	TTGTGA	GAGA			
PUT187aLensculinaris13408	CATATCC	CTATGGTG	60	(TCC)5	101
	ACGATCC	GTCGTCGT			
	CTGCTT	GAAG			
PUT187aLensculinaris13491	CCGTTGC	TGTGGTCC	60	(TCT)5	159
	AGCTTTA	ATTAGGAG			
	GCTTTT	AGGC			
PUT187aLensculinaris13493	AGAGGCT	AACCTTTG	59	(A)10	153
	CTTTTGC	CTACCCTT			
	TTGTCA	GTCAAA			
PUT187aLensculinaris13527	TCTTCCTT	ACGCGGGT	60	(CT)11	273
	GTCGTCA	GTCGTATC			
	CCTCC	TAAC			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris13582	GATGAAC CAAAATG CATGGG	GAAGGAGT TCGTCTTC GTCG	61	(A)10	184
PUT187aLensculinaris13614	GCAGGAG TTTAAGG TGCAGG	TTTACAAT TTCATCAT CATCAATA TCA	59	(A)11	229
PUT187aLensculinaris13647	CAACAAC GTCATCC TTCACG	AAACCCAC CATTTTGA CGAG	60	(CT)9	152
PUT187aLensculinaris13666	TAACAGA TCGGTGC	TCATTCCG ATCGTCTT GTGA	60	(TC)8	151
PUT187aLensculinaris13718	AAAGACC AAGGCAA	ATACCTCA CATTTCGC CGTC	60	(AG)6	268
PUT187aLensculinaris13724	CACTTGA GAGCTTT CTCCCG	GAATTTTC CGATTTTG CTGC	60	(TCG)5	193
PUT187aLensculinaris13758	CACTCAT CCCTTGT	CATGAATC CGATCACC	60	(TTG)7	256
PUT187aLensculinaris13812	CGCTCTC GTAACCT	TCTTCGGA TATTTCATC	60	(GAG)5	193
PUT187aLensculinaris13857	TATCGGC TGCTCCA	GTGTCAAC GAGGAAAA CCGT	60	(CA)6	220
PUT187aLensculinaris13859	GTTGCGG ATTGGTT GAAACT	GGATTACA ATTACAAA TTACAGAC	59	(GAGC) 5gaggtag agagaaata aag(A)13	144
PUT187aLensculinaris13870	AGTCGTC AAAACCA GAACCG	AACGACGA CACATCCT TTCC	60	(AGA)6	262
PUT187aLensculinaris13882	TGAGCTG TTTGGCA GAGAGA	CAAATGAA GCAAAACA CGAAAA	60	(T)11	246
PUT187aLensculinaris13907	CCTCCTA CAGAGAA CAGGGC	CCAATGGA TCGAAACC AAGT	59	(GTA)6	225

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris13957	CTCATAG GCCAAAA GGGTTG	GACAAAAC CCAGAAAA CCCA	60	(T)10	106
PUT187aLensculinaris13966	CGACATT GTTTTAT TCATTGC TC	GCGAGGAG GACAATGT GATT	59	(T)10	271
PUT187aLensculinaris13968	AGCCATG ACACAAC AAATCG	AGCCTTCT CCAGCAAA GACA	60	(A)19	279
PUT187aLensculinaris13976	AGGTTGG ACGATGA ATTTGG	CAGTCAGC AAGCAAAC CAAC	60	(T)14	163
PUT187aLensculinaris14052	CGTCTTG CACCTAC CCATTT	CCAAATGA AGGACCCG TT	59	(TA)7	138
PUT187aLensculinaris14074	AAGCAGA TCTCAAG GGTCCA	GTAAAGGG TGGAGGTG GGAT	60	(CAT)5	124
PUT187aLensculinaris14191	GTTATGG TGCGTCT CCCACT	TCAGGCAC ATGAAAAA TGACA	60	(T)10	265
PUT187aLensculinaris14213	CGTGCTT AATTTTA TAAATTC ATTTTG	GGAAGGTT GGGAAAGA AAGTG	59	(A)10	135
PUT187aLensculinaris14261	TGGATGC GAAGAGT GATGAG	AAACCACC ATGATGAA TCCG	60	(ACA)5	264
PUT187aLensculinaris14261	ATCGGAT TCATCAT GGTGGT	TGAATTGG ACTGAAGG GTCC	60	(TCA)6	263
PUT187aLensculinaris14273	CGGGAGT CTCTTCA ACTGTTT T	GAATTGTT TTGCAAAT CCGC	60	(TCT)7	123
PUT187aLensculinaris14278	CCCGAGA AGTGATT GTAGGC	CAGAGAAA TCCCCTGC TGAG	60	(CTT)5	273

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
DUT107-L and1:	primer	primer	60		$\frac{\text{size}(\text{op})}{201}$
PUII8/aLensculinaris14285	GGGICGA	GUATAACG	60	(GAI))	201
	IGGIGAG	CAACIICC			
	ACATTT	CAAA	(0)	(1)10	2(0)
PUII8/aLensculinaris14288	GUGGIGG	GUGUICUT	60	(A)19	260
	CAAACGT	TCACAAAT			
	TAAGIA	IGA	60		250
PUT18/aLensculinaris14340	IGAAACI	AGITGGTA	60	(AAT)6	270
	CAGGIIG	ACCCTCGT			
	TGGCTG	GCC			
PUT187aLensculinaris14344	TGGTTTG	GCATGAAA	59	(GCT)6	141
	CGTTTGA	ATTAGAAG			
	AGAAGA	CCTTGA	<i></i>	<	
PUT187aLensculinaris14386	CCAAAAG	AACAATGA	60	(A)12	231
	GGTACCA	GAGGCCAG			
	TGCATTA	TGCT			
PUT187aLensculinaris14442	GATGCCA	ATGGTTGT	60	(GGT)5ta	192
	AATATTA	ATCCTCCT		caatggtgg	
	CGGTGGA	CCCC		aggaggag	
				gctataacc	
				atggtggtg	
				gaggagga	
				tacaacca(
				TGG)5	
PUT187aLensculinaris14471	AGGCACC	CGAACGTG	60	(ATC)5	232
	CATGCAT	GTAACGTT			
	AAAGAC	TGTG			
PUT187aLensculinaris14475	TTTTACG	CAGGAGGA	60	(AAT)5	257
	TGAATGT	AGATGATG			
	GGCAGC	AGGC			
PUT187aLensculinaris14486	GAAGTTT	GGGATCCC	59	(A)10	276
	TGTTCTT	GTGAATAT			
	CTAATAG	TTTT			
	GGATGA				
PUT187aLensculinaris14486	CCAAATC	TGATACCC	59	(A)10	274
	ATATTCG	TGCAAAGT		~ /	
	TTTGGC	GCAA			
PUT187aLensculinaris14499	AGGCTTC	TTCTCATCT	60	(GGT)5	127
	CAAGAAG	CCTCCACC		× /	
	GCTACC	ACC			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris14527	AGGATGA AGAGGGT CCACCT	TACTCCCA AACCCTCC CTCT	60	(CTC)5	252
PUT187aLensculinaris14593	TGCCTTA ATTGTTC TTCCACA	TCCATTGA CCTTCACC ATGA	59	(CAAAA)6	200
PUT187aLensculinaris14596	CGTTGAA ACATTGG ATGTGC	AATGTGAT CAATGGTG GGGT	60	(AAC)5	261
PUT187aLensculinaris14623	AAGGATC AATGGTG AAGGAAA A	TCCATTTG AATGCGAT GATG	60	(CAT)5	158
PUT187aLensculinaris14636	ATCTTAT TCCTCCC GTGCCT	TCGAGAAA GGAGACCT GCAT	60	(CCG)5	119
PUT187aLensculinaris14651	AAGATGA GAAAACC CTTAAAT TTTG	CCAAAATA GTTCATTG AAAACGC	59	(T)11aaa attcaaaaa atgatgtga aataaacca (AT)8	173
PUT187aLensculinaris14651	GCGTTTT CAATGAA CTATTTT GG	TGGCGTTT TCAATGTT TGTG	60	(T)11	236
PUT187aLensculinaris14674	CCACGTC GATCTTC CTCTTC	GACCAAAA TCCTCAAC GGAA	60	(GCT)5	255
PUT187aLensculinaris14684	TCATTTC TCCACCG TTAGCC	CCATGCTG CTCCTGAT GATA	60	(CCT)5	101
PUT187aLensculinaris14711	CCATGAA TAAGGAG AACCGTG	CTGTAGGA AGACTTTG CCGC	60	(ATT)6	274
PUT187aLensculinaris14712	GATCATG TTCGGGG	CCAACACC ATCATCAA	60	(TGA)7	277
PUT187aLensculinaris14722	ACCCCTA AGGGTTC AAGTCG	TGGAAAGA AAAGCTGA AGGAA	60	(GAA)5	279

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris14731	TCATGCT	CCTAGCTT	60	(CTC)6	182
	AGAACAA	TGAAGCTG			
	ACCCCC	GACC			
PUT187aLensculinaris14744	TTGGGTG	TGGCATTG	60	(ATC)5gt	254
	ATTTTGT	CAAGATTC		tatcgtccct	
	TTGTGG	AGAG		aatta(TT	
				C)6	
PUT187aLensculinaris14792	AACATGT	TGAATTTG	59	(GGC)5g	269
	GCTTTCT	AGAAGTGC		gagcetttte	
	TGCTTCA	AGCG		tectgeteet	
				geteetget	
				ccttcccct	
				gaaaataac	
				tg(TCC)5	
PUT187aLensculinaris14800	GGTGAGG	CCCCTTTTC	59	(TGA)6	241
	CATGTTG	AAATAACA			
	CCTATT	TTCTTG			
PUT187aLensculinaris14803	CAACACC	ACAGGCTG	60	(CT)6	221
	TCACCAC	GCTCTCAA			
	TCTCTCT	CAGT			
	CT				
PUT187aLensculinaris14811	AAACACA	AATTATGT	60	(CCA)5	196
	TAAGCCG	TGGGCCAT			
	GGACTG	TGGA			
PUT187aLensculinaris14841	AAGCGAA	CAACCATC	60	(GAA)5	246
	ATGGAAT	AACAGCAT			
	TTGACG	GACC			
PUT187aLensculinaris14872	TGGTGTG	TTTTGATGT	60	(T)10	167
	AGGATGA	GTAATGGG			
	TGTGCT	TTTGG			
PUT187aLensculinaris14883	ACCACCC	CCTTGGCA	60	(ACA)5	262
	AAAACAA	AAAACGAC			
	AACCAA	AGAT			
PUT187aLensculinaris14886	GTAGTGC	TCCCACAT	60	(TA)8	228
	CGAGAGA	CATGTCAG			
	ACGAGC	GCTA			
PUT187aLensculinaris14902	GCCACAT	TGGTGCTA	60	(GTT)8	240
	ACACACC	TTCCCACT			
	TTGTGC	GTCA			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon
	primer	primer			size (bp)
PUT187aLensculinaris14938	TGCAATA	TGGAAATT	59	(A)21	279
	TCATCAG	ATCTTCAC			
	TTCACCA	CCCG			
	Α			/	
PUT187aLensculinaris14996	CACCACT	ACGTTCCT	60	(T)10	242
	TCCAAAT	CTGGTTCC			
	CGCATA	AACA			
PUT187aLensculinaris15004	CCATTCC	CCGTTGAA	60	(GGA)5	259
	CATTCCT	GTGGTCCT			
	TCCTTT	TTGT	60		110
PUT187aLensculinaris15033	ATTCTGA	CTTCCTCCC	60	(TCT)5	118
	TGAACGG	TGTCATTTC			
	GGACAC	CA			
PUT187aLensculinaris15073	CGGGAAA	AGATGGCG	60	(CAT)7	278
	GGAATCA	CAGAGACA			
	ATCCA	ACTT			
PUT187aLensculinaris15081	GGGGAGG	GCCAATTT	59	(AG)9	180
	CATTGGA	ACATCCAA			
	AATTAT	TCCA			
PUT187aLensculinaris15130	TGAAAAC	TTTCACAC	60	(ATC)6	169
	GAGCTGA	CTGGAAAC			
	AAAGGAA	CCTC			
PUT187aLensculinaris15165	ATCGGAG	AGAATTGA	60	(GAA)5	170
	AACTTGG	AGCGCAAG			
	ACATGC	GAAA			
PUT187aLensculinaris15207	TTGAGTT	CAGTCTCC	60	(AGA)6	112
	TGAGGGA	TCCTTCGCT			
	ATTGGC	TTG			
PUT187aLensculinaris15303	AGGAGCT	TCACATCT	60	(GAT)6	187
	TTTTCTCT	GAAAACAT			
	TGCGG	AAAAAGGG	<i></i>	()	
PUT187aLensculinaris15318	ATCATTG	TTCAAATG	60	(T)10	275
	ACGCCAT	GGAAAACA			
	TGCATA	CCTTG			
PUT187aLensculinaris15360	TCAACCT	GGGAAGAA	60	(TCA)5	189
	TTCATCT	GAAATGGG			
	CCGACC	GTTC			
PUT187aLensculinaris15376	TGATGCT	GCCACTTT	60	(TGT)5	257
	GCAAAGA	GATGCTCC			
	TGAACC	AATC			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward	Reverse	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris15398	ATGGAAA	CAACTACG	60	(TGA)5	261
10110/4201004111411510590	TGGTGGT	TGTTCCGC	00	(1011)5	201
	GTTGGT	GATA			
PUT187aLensculinaris15403	TCTGGAG	GCACAGGA	60	(GT)6	257
	ACCCCAT	TCACTCAG	00	(01)0	
	GTTACC	TTGC			
PUT187aLensculinaris15446	ACTGCGA	TCAAGGTT	60	(A)10	240
	AGCCTCT	CTCCCCAA			
	CCACTA	ATGA			
PUT187aLensculinaris15518	TAGCTTC	CACAGCAA	60	(GAA)6	235
	GCGGTAA	AAACCAGC			
	AGGAAA	CTTT			
PUT187aLensculinaris15519	CCCATTG	TCCATGAA	60	(A)27	213
	TTCAAGG	AACGTTCG			
	AGGAAA	ATGA			
PUT187aLensculinaris15524	CAAACTA	TTTAATAC	60	(AAT)6	125
	CCTCCAG	TTTGTGGG			
	CACATTC	GGCG			
	А				
PUT187aLensculinaris15540	AAAGACG	ACAGCCTG	60	(GGT)5	190
	GTGGCGT	AAATGACC			
	AAACAC	CAAG			
PUT187aLensculinaris15680	AGCGCTT	TTGTCTCAT	60	(TGT)5	150
	GGTAAGA	CATGCTCG			
	CGAAAA	CTC			
PUT187aLensculinaris15690	TTCATCT	GCCAGGAG	60	(CTT)5	137
	TCTGCCA	TTGGAGAG			
	AAACCC	TGAG			
PUT187aLensculinaris15690	TCTTTGG	TTCACGCA	59	(T)11	270
	GTTTTGA	GAGTAAAA			
	CCAACC	TCACG			
PUT187aLensculinaris15720	AGAAACC	ACCTCAGA	60	(CTT)5	244
	CGCAAGT	GCCGTTGT			
	AAAGCA	TTGT			
PUT187aLensculinaris15753	CCCGATT	GGGACGAT	60	(TTC)5	112
	TGGAACC	GGTTCTTT			
	CTTATT	GGTA	_		
PUT187aLensculinaris15768	TTTGCCC	CTCATCTT	60	(AAC)7	278
	TAAGCCT	GGACCACA			
	CGTAGA	GGGT			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
	1	1			
PUT187aLensculinaris15797	CAGGCTG	AATCTCCA	60	(T)11	238
	ATTCCAT	ACAAAACC			
	TGCTAA	GCAA			
PUT187aLensculinaris15832	ACATTGT	CCTCAGGG	61	(TCAAC	157
	ACTTGTT	GTTACAGG)5	
	CGCGGC	AACA			
PUT187aLensculinaris15847	CTGGTGA	TATGTTGC	60	(TTC)5	154
	TTCTGGT	GATTCGAC			
	CGGTTT	GATG			
PUT187aLensculinaris15848	CCATCAC	TGAACATA	60	(TCT)5	167
	AAACTTT	GATCCATC			
	TCGGGT	CACAACA			
PUT187aLensculinaris15856	CGTGAAG	CACAAGTC	59	(CTT)5	134
	TGGTCCT	ACCGATTG			
	GTTTTG	TTTCA			
PUT187aLensculinaris15875	ACAGCCT	GTTTGTGG	60	(A)10	210
	CACCATC	TGTGGTTT			
	TCATCC	CGTG			
PUT187aLensculinaris15876	GAACGCC	AGTCACCA	60	(A)11	245
	ACAACCA	TTATGCCC			
	AGATTT	AAGG			
PUT187aLensculinaris15887	CTCCCAC	GTGCTGGT	60	(CCA)5	190
	CAGTTGT	GGTGGATA			
	TCCAGT	AGGT			
PUT187aLensculinaris15915	CGGGAAA	GATGCTGA	60	(AGC)6	144
	GAGTTAG	TGCAATTG			
	AAGCCA	TTGG			
PUT187aLensculinaris15936	TCACAGC	GGAGTTGG	60	(CTT)5	125
	CATCACA	TGGAACTT			
	GTCCAT	TGGA			
PUT187aLensculinaris15943	ATGCTAA	CCACCTTC	60	(TTG)5	201
	TGGTGTT	GCTCATGC			
	GTGCCA	TACT			
PUT187aLensculinaris15954	CTTTGGC	GGTGGGGT	60	(A)24ctc	233
	CTGAAAG	TTCTTCACT		gagactagt	
	AACCTG	CCT		(TC)6	
PUT187aLensculinaris15976	TTCCTCT	TTGTTTGCT	60	(AGA)7	110
	GATTGCC	TCCATTCCT			
	TTGCTT	CC			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris16055	TTCTTCC CAAAGTG GACCCT	TTCCTCCG GTGAGAAT	60	(CCA)5	196
PUT187aLensculinaris16072	CCTTTTC ACTCTTT CACTTCT	GCGGAGTC TGTTCGGA GTAG	60	(CT)6	157
PUT187aLensculinaris16105	TGGCCAT AAGAGCT	AAGCCAAA GCATTCTC AAACA	60	(AG)6	240
PUT187aLensculinaris16121	CAACTCG CATCCTC TTCACA	CAAAGGGG TTGGAGTC GTAA	60	(TTC)6	158
PUT187aLensculinaris16138	CTGGTGG TCTTTCA CCCTGT	GGGAGAGG AGTTTGGA GACC	60	(TCA)5	202
PUT187aLensculinaris16203	CATTCGA ATCATGT CTGGCA	TGCTGCTT ATGGCAAT TGAA	60	(TC)6	272
PUT187aLensculinaris16254	TCCCTAG GTGCATC CTCATC	CCTGATGG CTAAGGGT TTGA	60	(T)10	262
PUT187aLensculinaris16273	CAGAAAC ATTAGTT CCGTTTT GAA	TTGATGTG AAAGACAT TTGTTCTG	59	(A)11	249
PUT187aLensculinaris16281	CACAAGT GAATTCT TATTGCG A	TGGAACAA GAAAATGT GATTACAG A	59	(CTT)5ct acttcagett ctgtaatca cgtt(TTC)5	239
PUT187aLensculinaris16321	ATTCCTG GATGGAT GCTTTG	AACAGAGA AAAACACA TGCAGC	60	(A)10	126
PUT187aLensculinaris16323	TTACCAT ACCAATG GGACACC	TGGAGACT CATGTCTA AGCCAC	59	(A)12	177
PUT187aLensculinaris16325	TCCATGT GCATCAC CAGTTT	CAAACCCC ATTTTTGA ACAGA	60	(CTC)5	229

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Primer name/Unigene	Forward primer	Reverse primer	Tm	SSR type	Amplicon size (bp)
PUT187aLensculinaris16329	CCAAAGG CTTTTTC	CTCTTTTCC CCTGATCC	60	(A)10	210
PUT187aLensculinaris16342	GTTTCTG GATCTTC	CATGTTTC AATACAAC	60	(TGC)5	161
PUT187aLensculinaris16344	CACCCA CCCATGA GCTGAGC	GCGG TTGGTTTTG ATTCGGAG	60	(GCA)5	277
PUT187aLensculinaris216350	TACCTT CCCTACC TCTCGTT	GAG CAGAAACC GAAGCTTC	60	(CA)6	241
PUT187aLensculinaris316350	TTCCGT TGCACAA CCAGATT	TTGG TTATGGTG GTGGAGGT	60	(CCA)5	258
PUT187aLensculinaris316356	CAGAGG TCTTCCT CCTTCCA	GGTT GGGAGAGA AAGAAAAG	60	(TTA)6	126
PUT187aLensculinaris316358	ACGCTA TTGTTCT	GGGA TCAAACAA	60	(T)20	251
PUT187aLensculinaris416356	TGGCTT GGCTTCA	TGGC GCCACTAG	60	(A)19	250
PUT187aLensculinaris816356	GAGCGT ACGGTGA	GCCAAGAA TGAG AGCAGCCA	60	(A)11	275
PUT187aLensculinaris916358	GGTTGCT CGTTAT TATCGGT	CAAGCTCA AGAT CAACACTG	60	(A)26	215
	TTGATGG GTGGTT	TTTTGTGG GTGG			

Table A3. Details of 658 primers designed using Primer3 software based on lentil unigene sequences in plantGDB database (continued).

Time course	Treatment	Type of tissue	Replication	Absorbance	Absorbance at
(h)	condition		-	at 260/280	260/230 nm
				nm	
2	control	shoot	1	2.17	2.21
8	control	shoot	2	2.19	2.38
24	control	shoot	3	2.20	2.35
2	control	shoot	1	2.18	2.15
8	control	shoot	2	2.16	1.85
24	control	shoot	3	2.15	1.60
2	control	shoot	1	2.15	1.36
8	control	shoot	2	2.19	2.05
24	control	shoot	3	2.17	1.84
2	control	root	1	2.16	2.08
8	control	root	2	2.16	2.25
24	control	root	3	2.12	2.22
2	control	root	1	2.18	2.30
8	control	root	2	2.13	2.33
24	control	root	3	1.77	1.86
2	control	root	1	2.14	2.64
8	control	root	2	2.08	3.83
24	control	root	3	2.16	2.40
2	Excess iron	shoot	1	2.18	2.47
8	Excess iron	shoot	2	2.17	2.50
24	Excess iron	shoot	3	2.14	2.27
2	Excess iron	shoot	1	2.09	1.88
8	Excess iron	shoot	2	2.12	2.19
24	Excess iron	shoot	3	2.10	2.31
2	Excess iron	shoot	1	2.11	2.30
8	Excess iron	shoot	2	2.06	1.55
24	Excess iron	shoot	3	2.14	2.21
2	Excess iron	root	1	2.15	2.30
8	Excess iron	root	2	1.92	1.97
24	Excess iron	root	3	2.15	1.88
2	Excess iron	root	1	2.16	1.35
8	Excess iron	root	2	2.18	2.07
24	Excess iron	root	3	2.19	2.29
2	Excess iron	root	1	2.06	1.36
8	Excess iron	root	2	2.03	1.31
24	Excess iron	root	3	1.87	1.66

Table A4. Details of RNA quality data of the 36 samples of *Lens culinaris*.

APPENDIX B. FIGURES

Log concentration

Fig. A1. Amplification efficiency of *Ferritin1* primer pairs

Fig. A2. Amplification efficiency of BHLH1 primer pairs

Fig. A3. Amplification efficiency of IRT1 primer pairs

Fig. A4. Amplification efficiency of *GADPH* primer pairs

Fig. A5. Amplification efficiency of *Actin* primer pairs

APPENDIX C. LIST OF UNIGENE SEQUENCES

Transcript sequences for PUT series of markers were obtained from plantGDB database (http://www.plantgdb.org/download/download.php?dir=/Sequence/ESTcontig/Lens_culinaris/cur rent_version)

>PUT-187a-Lens_culinaris-99 PlantGDB-assembled Unique Transcript-fragment derived from Lens culinaris mRNAs Jan 31 2012 (based on GenBank release 187).

AAATACATTGTATTTCATTTCCCACGCGACCACTGTGTTGTTGTTGTTGTGACCTGT TTATACTTCATAACACAACTAATTCCTACTACAACTGATTCATACTATAAACAAAGA TCACAACTTTCCAGAGAGAGAGAGAGAGAGAGAGCTTAGGTGGGTTCTTCTTCAATTTC AAGAAACATGGATGTGGGTCAGATGCGGAGACAATGGATTGACTACATCAAACCCA TGTTCACGGAGGGGTTCTTAGATGGTCAGTTTCTGCAACTTCAACAGCTACAAGATG AGAATAACCCTGAATTTGTTTTTGAAGTTGTTTCTCTTTTCTTTGATGATTCTGAGAG GATTCTCAAAGATCTGTCTTTTGCTCTGGAGCAGCAAGTGTTGACTTCAAAAAGT TGATGCTCATGTGCACCAGTTTAAGGGTAGCAGTGCAAGCATAGGTGCAAAAGGGG TGAAAAATGCTTGCATTGCTTTCCGCAACTTCTGTGAGGAACAAAACATAGATGCTT GCCGCAGATGTTTACAGCAAGTGAAACAAGAGTACTTTGTTGTTAAGAATAAGCTTG AAACATTGTTGAGGCTTGAGCAGCAGATAGTTGCAGCTGGCGGCTCGATCCCTATGA TGGAACTGTGTTTTTAAAGTGAGTGATATGTAAAAATGCTTGTATTATGATCCTCTTG TCTGTTGAGGATCATCTATTTCTCGTATGTTTCTTGTGAATGTATGAAATTTTATGTG GATAGAAGTTTTCATCCAATGTACCTTGTTCTTCACAAGAAAACACTTTCATAATCTG С

>PUT-187a-Lens culinaris-668 PlantGDB-assembled Unique Transcript-fragment derived from Lens culinaris mRNAs Jan 31 2012 (based on GenBank release GAGAGAGAGAGAACCACCTCTCACTCCATCTTCACTCTCACTCTTCTACTGCCAGAC CACCAGAACCTGCAATGGACTCGCGCACACAGTATAATCCTCGCACTGTTGAAGAA GTTTTTAGGGATTTCAAGGGTCGTCGAGCTGGTCTCATCAAAGCTCTCACCACTGAT GTTGAAGATTTCTACAACCAATGCGATCCTGATAAGGAGAATTTGTGCTTATACGGC TTTCCTAGTGAGCAGTGGGAAGTTAATTTACCTGCTGAAGAAGTTCCACCGGAGCTT CCCGAGCCTGTGCTCGGAATTAACTTTGCTAGAGATGGCATGCAAGAAAAAGATTG GAGCCAGATTCGGGTTTGACAAATCTGACAGGAAACGCCTTTTCAATATGATCAATG AACTGCCATCGATATTTGAAGTTGTTACTGGTACAGCAAAGAAACAAGTTAAGGAA AAGTCTTCAGTTTCAAACCACAGTGGCAGCAAATCCAAGTCTAGCTCAAAAGTGCG AGCTCCAGAACCTCAGGTTAAGCAGACAAAGGCATTAGAACCTAAAGACGAGGAAG AAGAACTGGATGAGGAAGATGAAGATGAACATGGAGAGACCTTATGTGGTGCATGC GGTGAGCATTATGGAACAGATGAATTCTGGATTTGCTGCGACATCTGTGAGAAGTGG TTCCATGGGAAATGTGTGAAGATTACACCTGCTAGGGCTGAGCATATCAAGCAATAC AAGTGTCCATCATGCAGTAACAACAAGAGAGCTCGCCCATAAGGAGCACTGCATGG CTTGGATCGTTTTCTGATCGTGTTGTTGTTGTTGTTGTTGTTCTCGATCTAGATGTTTAAGT
CAGTTGATGACTTGTTGTGTTTGTTCAATTTAAGTAGTTGTTGTTGTTGTTGTTGAATTG AGGTGACTTTGGAAAATGAAATCTTTTCCTCAATGTTAAGAGGAAAACTAGGATAAT GAAACAGAAATTTATTTTAAAATGATTG

>PUT-187a-Lens_culinaris-1105 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

CTGAAAGAAACTGTCCAATTGGAGACTGGAAGTGAAGAGGAGCAATTTTATTGTTG TTGTGAGAAGAGTCTGGAGAGGAGGAGGAGGAGGATGTTGCTGCTCTAACTACAAATCC TCTTGTTGTTGTTGTTGTTGTGGGTTGAGATTCTTCTCCCATGGGTATGAACTTGTCTG GAAGTGCGTAGCTTAGCAGTAGTAGAAGAAGGAAAGTGAAGAAGGCGAGATCCGTT GGAAGGTGTTGGAACGAAGATTGAGACGGCGGCGCCTGCAACCTCCATAATTGAAT TGAATGAATGCAAGGAAGGAAGGAAGGGTCTAGAT

>PUT-187a-Lens_culinaris-1231 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

>PUT-187a-Lens_culinaris-1263 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

GACATGAAACAGAGTGTGCTTTTGTGATGTTGGCGGGTTTGGTGGTGGTTTGTGTTTACCT TCACAGAGGATGCATTCGAAAGGAGAACAAGGGAACCAGACAAGGTCGCTGCCTGT GTCCATATAGAGAGTTATGAGTTGTGGAGGGTGTGAACCTAGGTTGAAGGAAAGTG TGTAATCACTACCGGGAGAAAGTGGGAGAGAGAAACTTGGGTTTGGTGGTGGTGGTGG TTGTGTTGGTGGTTGAATCGTTTGGTGGAGCGGTTGAGGTTGATTTGAGGAGGTGG TGGGTAGTGTTGAATTGGGTTTTAGAAATTGAGTGTGTTAAGGGTAATAGAATCATT TGAGATGAGGGTGAAAAACAGAGCATGAAACAGAGTAGAAGTAGCAACAACATAG GAGAAGACATTGATTGTTTGTTACTAAGAGGAAGAGAAGA

>PUT-187a-Lens_culinaris-1271 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

>PUT-187a-Lens_culinaris-2033 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

TTAAAAGAGCACGGTTTGCCTCAAACAATGTTTCAAGTTACACGTATTTCCCACTGT ATTTATATACATGACTAAACAGATAAGGAAGACGCCAATTAAGATCTTCAAAGACA ATTTCCATAGATATTTCTCCTGAAATAAAACCACCCAAAGTTTATCAATAATTAAAA CCTCTTCAAATCTTGCAGAATCCAACTCCTGTAAATTAAACTATCATCAAAACGATA ATGGCTTCTTCAGAATCTCACACCACCGCAGGTAGCGGAGAAGGGAAGAAGCATTC AACGAGCGAGCTTATGGCAAGCGCAAAATTGGTAGCAGAGGCAGCACAATCAGGTT TCGGACCAGGAGCTGATGGGAAGGCGCTAGACAAAGGGAAAGTGGCTGATGCAGC AGGAGATCTTCTAGATGCAATTGGTGATTATGCTAAATTGGATGACCAGAAAGGGTT AGGACAATATGTTGATAAGGCTGCTGATTATCTTCATCATTACCACCCCACCACCAC CACCACCACCACCACTACCGGTCATCATCCAACTTCCAAACCAGATCACCACAAAAT CGATGATGCTGCCAAAACTGACGGTGGAGAATCAGGTGGACATGGCCATGGACTTG TTTCGACTCACACAAACAGGGCAGAATATGTTTGAACTAAGATCCTGTGCCCTGTTT GTCTATGTTTTAACTAATTCTGTTGTATGTAATGATTCAATCCTGTTTATTTTCTTTG TATTTAATTTAGTCTCTTTTGGCTACATGTAATTTGTTCATGTCTATGGTGAAACTTTG

>PUT-187a-Lens_culinaris-2096 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

>PUT-187a-Lens_culinaris-2104 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

TCACCCCTCCTATGGAAACAGTTTTTTTGGCCACTCCGATGCAATTGCAGCCAGAGT GGAATCAAGGTGGTTGTGTGTGGCTTCAACTTAACAACAACAACAACCCCTGCGTTTGT AAACACACGTTTCCTTTGTCTGTGTCTGTAAATAATAAGACAAGAACGAGTTGCAGT TGCAGAGGGAGAGACGATGATCCTCTGTCACTTTTTCTGCTTACGCCGTTCTGGGAG TCCAACCCAACTGCTCCGGCGCTGAAATTAAAGCTGCTTTTCGAGCCAAAGTGAAGC AGTTTCACCCAGACCTCAACAGAGATGAAAATGAAACATCGGATGTTATGATTCGCC GCATAATTCAAGCATACCAGATACTATCCAACTACACACCATCACAAATTATTGAAA CGGAGTGCTTAGATCCCTTTGATAGACCAGGGTGTGAAGTCTTTTGATCTTTTGTTA ATGAGCTTCTCTGTGTTGGAAAAGCTTGTTCAAATCCATGTGTTGAAAGAGCATCTC ATGCTTTCACATTTGTCCCTTCTACTGGAACAGCACGTGCGTTTTCTCAAGATCAAGG GGAAGATTACCAAGTTCAGTGTGCTGTTGGACAATGCCCTAGAAGTTGCATTCACTA TGTAACCCCATCACAGAGAATTCTTTTGGAGGAGTTACTTCACAGTATACTGGAAGT ACCATATGATACATCAGCTGAGGCAGAATTACTCTGTTCACTTATAACCAAAGCTAA GTTTGAGAATAACCGATACCAAAAGCCAAAGAAGAAAACCAAATTTTCAACACAGC ATGTTGATTGGTTTTAACGTCTCCGTGTCTTCACTCCCAACCTATAGATACCACTCAG ATTGATGAGACAATCATGGTTCTCAACGCCACCAGTATAAAGTTTATCAGCAACTTT TACTTATACCTATAGTTAGCAATGAGATTAGGC

>PUT-187a-Lens_culinaris-2213 PlantGDB-assembled Unique Transcript-fragment derived from Lens_culinaris mRNAs Jan_31_2012 (based on GenBank release 187).

Unigene sequence of the polymorphic marker UN0003.1

>UN0003

GAAGGATAGGGAAATTGAGGTTTTTAGAAACCAGGTTGAGGAATTGGAGAAGGTTG CAGGTGAGAAGGAACACGAGTCGGGGGGACTGGTCTGCAGAGAAACTGAGATTGCA GAAGGCACTTAAAGAATCTGAGGAGAAAGCAAAGGGTTTCGAAGCGAATATTATTC AGCTGTTGAGATAGTCGATAGAGATTTAAATGGGATACAGCGTGAAAGGAATGAAG TTAAGTTGCAGTGGCCGATTGTAGCGGCGGGAGCAGGATCTACCGTGGCTGTTTTG GGGCAGCAGCTTTGATCTATGTGTACTGCTCAAAACGGAGGTGATTTTTCTCTGATG TGAGAGTAATCAGAGGAAGGGGAATTTGAATGGGATGTTGTAGAGGTTAGATTTAC AAGTCTTTTACTCACAAATATGCTTCAATTTTGTTCGTCATAAAATAATGATGCTTCT ATGGCTTTTGTTTTGAAGCCTGTTAATTTTATTTATGTCGTAGTTGGCATACTGGTTT GGTTGTAGTTGCTTGTTTTATGAGGATTAAAACCATTGTGTGTTTGGAGCAATGCTCT GATTAACTGCAGTTACTAGGTTTTTGGTGTACTAGTGATTACAAGTCTATTGTTATAG TTGCTTTGGAAGTTTGGATTTACAAAAAAAAAAAAAGTTAAAGCTTCATCATCTGAGA AAAAGAGAGAAAGCTACATTGCAAGAAACATGCACAATCCACCTCCACCAGGTCCA GGAGGTCCAGGTCCTCATCACCACCCTGGGCCACCGGATCCTCATCCGCCACCGCCA CATGTTCATCCACCTCCAGGACCAGCACCTCCACCTGGTCCACAGCCACCTCCA CCTGGTCCTCCGGTCCTGGACCACATGGCCACCCTCCACACCACCACCATTGA TTATATGAATATGTGATTAATTAAGATGCTGCTAAGCTTTTATTATATATTGAATAAT ACTTATGTTTACCATGTATCACTGTGTGGGTTATTATATTATGCTTTGTGTGGGCATGTA TTTTTTTTAAATCAAAAAACACCAAAGTTGAATTTATAACACTTCAAAAAAACCAGT ATTTGTTCTTCAAAACAAACTCCTTTCAGAACAATTCATATTATTTTCAACAACCTAC CCCTTCACTTCAATTTGAAAGGGTCAAGGCAAAGATAACAAGAGAAACCAAATTCT GGAAACATCCGGTGAAAGAAGTAAGGAGAAGGTAAAGGTCGCAATGATGTTAAGTT TAACATGAAACCCAAATTTGAAAGGGACACTTTGATTCACTTAACTAGACATGGGGT GGTTAGAAATGTACTCAATAGCAAGCGGACAAGAGTCAATTTTATCAGCTTCCTTGT CTGGGATTTCAAGCTTGAACTCTTCTTCTAGTGCCATTACAATTTCCACGGTGTCTAA GCTGTCCAAACCCAAATCCTTCTGAAAATGCACTTCTGGAGTCACCTTAGAAGGATC

Unigene sequence of the polymorphic marker UN0032

>UN0032

AAGATTTATCACTTATTTTTGATACTGGTAGTGATCTCACTTGGACTCAGTGTCAACC TTGTGCTCGTTCTTGTTACAAACAAGTAGATGAAATATTTGATCCATCAAAGTCTAG TTCTTATTCCAATATCACATGTACTTCTCCAGATTGCACTCAACTCTCTTCAGCTACA GGAAATGACCCGGCTTGTGCTTCATCAACAAAGGCATGTATATATGGGATTCAGTAT GGCGATCAATCTTTTTCGGTCGGATACTTTAGCCGCGAACGGTTGAGTGTAACGTCG ACCGATGCAGTCGACGGTTTTTTATTTGGCTGTGGACAAAACAACCAAGGCCTATTC GGCGGATCAGCCGGTCTGTTAGGCCTCGGTCGTCATCCAATCTCGTTTGTCCAACAA ACCTCTCAGAAATACTATAAAAAGTTTTCTTATTGTCTTCCCTCCACTACTAGCGCCG TTGGCCACCTCACATTCGGTTCCACCAATAGCAAATATGTAAAATACACTCCTTTCTC

Unigene sequence of the polymorphic marker UN0033

>UN0033

Unigene sequence of the polymorphic marker UN0046

>UN0046

CTTCTTCTCAAATCCAATGCTTTGTACTTCAACTCGCATCCTCTTCACAACTACAAGA CTAGCTTTAGTTTCTTCTTCTTCTTCTTCTTCCTTTCACTTTTTCTCCACTAATTATCCAATC TCAGTTTCTTCTCTCTCCAAACAAATCTTTTACTAAACCTAAACCAATTTTTACGACTC CAACCCCTTTGTTCTTCACTCTAAGAACAAATCACGCCATGGCTTCCCCATCAAACC CCCAATCAATTTACGATTTCACCGTTAAGGATGCTAAGGGTAATGATGTTAATCTTG GTGACTACAAGGGAAAGGTCCTTATCATTGTCAATGTTGCTTCACAATGTGGTTTGA CTAACTCCAATTACACAGAGCTGAGTCAGTTGTATGAGAAATACAAACAGAAAGGT TTGGAAATTCTGGCATTCCCATGCAATCAGTTTGGGGCGCAGGAGCCTGGATCTGTT GAAGAGATACAAGACTTTGTGTGCACTCGCTTCAAAGCTGAGTTTCCTGTTTTTGAC AAGGTTGATGTGAATGGTGCCAATGCTGCTCCAATCTACAAGTATCTAAAGTCAAGC AAAGGTGGGCTCTTTGGGGACGGTATCAAATGGAACTTCTCCAAGTTCCTTGTTGAT AAAAATGGCAATGTTGTAGAACGTTATGCACCCACAACATCACCTCTTAGCATTGAG AAGGACTTGTTGAAGTTGCTTGATGCATGAGGAAGAGTTATGAATGTTGGAACCTGG AATAAATAAACATGGATGAAGAGAACTTTACTATTTTGTATGTGAATAAAGGAATGT ATTGCAGGCACATGCTGGTGCAATTCCCTCGATTTGGTATACTTACCCAAACAGTTG TCTCGTATCTTTGGTTTTGGTTCTTCTTCATGAGACTGTGTACTTGACTTATCACTT TTATGAATGTAAATAAGTCCCGTT

Unigene sequence of the polymorphic marker UN3776

>UN3776

Unigene sequenec of the polymorphic marker UN3302

>UN3302

CCTAATCCCAATTCTCAATGGCACCACCAAAGAGACTCCGCCCTGCTCCGCTCGATG ACCCACCCTCCGCCTCCTCCTCCTCCGATGACTTCCCACCGCCTGTATACAAAAA GCCAGAAGATGAAGTTGTCGACGAAGAAGAAGAAGATTCATCCGAAGAAGAAAATGAC CAGGAAGAAGACGATGAAGGTTCTTCTTCCGAAGAAGAAGAAGATTCAACCTCCATC CAAAAACCCTCCACCTTCTACCCCAATCTCGAACCCCAACCCTAAATCCGAATCTGG TTCCGAATCCGAATCCGGTTCTGAATCCGGATCAGAATCCGGATCCGAATCTGATTC TGAACAACAACCTACTCCACCTCCCAACGCCAAAGTTAAGCCTCTCGCATCAAAGCC CATGAAAGCTCAACCACAAGCCCAAGCCCAAGCACAATCCACTCCTCTACCGGCCA GATCTGGTACAAAGCGTGCAAACGAAAACGGTTCTAAACGTGCTACGAAGAAAACA ATCACTGCCAGTGGTGGTTCCCACGACGAGAACGATGTGGATGCAGACGAGAGACGT GAAAATGACCAGCGAAGACTCTAAGAAGATGTCTCAGAAGGGTTTTCACCGAAGAAGAA ACGAGATCGCCATTCTCAAAGGTCTCGCCGAGTTCATAGTGTCAAAAACTGGAAAGGAT CCAATGAAGGACCCGGCCGCGTTTCATAGTTTTGTGAAGAAAATCGATTAAAGCTGAT

GCTAACAGCGAGCAGCTGAAGCGGAAGGTTCGTGGTTTGAAGTTGAAGTTCACAGG CGGTG

Unigene sequence of the polymorphic marker UN3176

>UN3176

Unigene sequence of the polymorphic marker UN3814.1 and UN3814.2

>UN3814

Unigene sequence of the polymorphic marker UN3720

>UN3720

AAGGATAATTTCACAATGAGGCATAGTCATGGTCCATATCCTCCTCAACTACTGGAA AACAAACTCGCTCATCAAGAAGCAGAAATCGAGAGAATCGCCGGCGACAATCACAG ATTATCAATCACACATAGAGCATTAAGAGATGCACTTGTTGATGCTGCACAAGATGT GCAAAAGATAAAATCACACGTTAGAAGCACTCAAACTGAGAGTGATATTCAGATTA GGGTTTTGCTTGATAAGATGGCGAAAATGGAGGTTGAGGTTAGAGCTGGCGATGTT GTCAAGAAGGAGCTTCAACAGGCTCATATGGAGGCGCAGAATTTGGCTGCTTCTAG GCAGGAATTGAGGGCTCAAATTCAATTGGCCTCTCAGGAATTGAAGATGGTTGTTGG TGATCTTAAAAGTATACCTGATTTGCATGCTGAATTTGATGGTTTAATGCAAGAGCA CATGATAATACGTGACACATTCGACTATGAAAAGAGT

Unigene sequence of the polymorphic marker UN3519

>UN3519

Unigene sequence of the polymorphic marker UN3311

>UN3311

Unigene sequence of the polymorphic marker UN3728

>UN3728

Unigene sequence of the polymorphic marker UN3652

>UN3652

Unigene sequence of the polymorphic marker

>UN3321

ATTACGCAACTTGGTGGACCAGATAGAGCAACACCAAAAGGAGTTCTTAGAGTGAT GGGGGTGCCTGGTTTGACCATTTATCATGTTAAAAGCCATTTACAGAAGTATCGCCT GGCGAAGTACTTGCCCGAATCACCAGCTGATGGTAAAGATTCTAAGGATGAGAAAA GGAATTCTGGAGACAGCATTTCTGGCGCTGATTCTTCCCCGGGATTGCAAATCAATG ACGCACTACGGATGCAGATGGAGGTTCAAAAACGTTTGCATGAACAGCTTGAGGTT

Unigene sequence of the polymorphic marker UN3548

>UN3548

Unigene sequence of the polymorphic marker UN3414

>UN3414

Unigene sequence of the polymorphic marker UN3326

>UN3326

Unigene sequence of the polymorphic marker UN3849

>UN3849

Unigene sequence of the polymorphic marker UN3573

>UN3573

AGGTTATATTCCTGGTATAATTTATGCTCTTTATGCAATTATCTTTGTTGATCGTGAT CAGTATTTTGATGAATATAGGCGTCCTTTGTATGCACAATCACAATACTAACACATA GTGTGTGTGTGTGTGTGTGTGTGTGTTTGATTCCACGCGAATCGCTGTTGTTTATGTTGACT GTTATGAATTGTCTTCAACTCTTGAATATGTAATGGATATCAGTTGAATTTGTTTCTT ATATGTAATTCTTATTGAGATTGGACTTGG

Unigene sequenec of the polymorphic marker UN3291

>UN3291

TTTATTATCTTATTATTATCCCTTAATCCCCTCTCTTTAGATTTGAGATACTTTAATTA GGCTGAATCTTTTCCGCGTGGTCATTTTTCTTGTAAAAGTCGAAGTTGATGACGATG GCGATATCATATTTACTGTTTTGCCCCGCGTGGTCATTTTT

Unigene sequenec of the polymorphic marker UN0079.2

>UN0079

CCATATTTATAATTTTGATGAAAACTAGAGCAATTATCCTACTTTTGTCCACACGATT ATCGTCGTCATCATGATGTCAATCGACCAATTCTACTTAAGATCCCGTGCTTGAGTA CATTGTAAGTGATAACTGCTAGGATATTTGTAAGTGATAACTGCTAGGATATGATTG GCACCAAAGGTTAGTTAAGTCAATTTGAATCCACATACTGCAATATAAAGTTGAGCA ATTTACACAGGCAGTCAAACTGTACTGACAAACAGTATAAAATCCAGGACATAAAA AAGAACCTACGCACACAAAATAAGCATATAAAACCAAATGGCCTAAATCATCTACA ATGCGCAGCAGCCGATGGAGTATACAATGACCAGGAAAATCAGGAATATGATGTTG GATTGGCAATCGAAACACAGAATATTTGGATCGTTATTCCAAGTATTACAGTCAGGG TTGGTGGAAGTAACATTTCCGGGCTTCGTCCAGCTTGTTGGGCTCACATAAGTAAAA CCACAGTCCTCTGAAGGCTTACAACATCCAGACTGAAGAGCAGACAACTGCTCAGC ATGAAACATGTCAACAGTATCATTCAAAAACTTCAAATGAAACTCAGAGCAAAGCT TCCCTTTTTTTTTTTTTCTAATATGGAATACTTTTATTAATAAAAAGCAACCACATATAT TACAGCACTAACCGTACACATGCACCATTTATTTAAATTTGGGAGGGTTTCCTTAGA AATCCAACTCTTAAGTTGGAAACAAAGATTGTTTATTTAAAGAACAGGATAGGTTCA CCCTGTGTTGTTTGCATGTTGTTGTTGTTGGATATCAATATTAAGCACCGGCAATATTC TTCAAGAAGTCTTTTGGGGTAATCTTAGAGAAAACGTCTTCTGCTTCAGATTTAGAG GCAAAACACCATCCATATTCAATATCAGAATTTGGATAATGACCGCAATACTTCCCA TCCTCAATGAAGATGGATGTCTGCAATAACCTACAACTAGACCAACAGGGATACAG CGACAGGCTGAAGAGCGACACGGTGGCATCTCAAATGGAGAACAAGCCCCATTACA GTCTGCTGCTGCGTTCTTTGTCTGGAATATACCGAATGTGGCAAACAAGACAAT CAAAGAAGCGAGTTTAACATAAGCCATTGTACGATCAAAAGAAAACCCGCTACAGT TGTTTCGAAATCACAACAACTCAACTTCATCGTTTCGGGTGAGACCATTGTTCGATG GCGGCGGCGGCGGCAGCTTTAACAATGATATTGATGGCAGCCTGCATAGTGTGCAG TACAGCGTCCTACAGGCCTCGCATGGTGGGTGGTAAAACAGAGATCGCTAACGTGA GGACAAACGAGGAGGTACAGGAGCTTGGAAGATTCGCGGTGGATGAGTTTAACCGG AGTGTGAAAGTACGGAAAGAAGGGGGAAGGGGAGTTGAAGTTCGTGGAAGTGGTGG AGGCGCAGCAACAAGTGGTGTCTGGAATCAAGTACTATATGAAGATATGGGTTACG CGGGTGAAGAATGATGGTGCTGAGAGTGAGGATTCCACCATGTTCGATTCAGTGGT GCTGGTTAAGCCATGGCTTTCTTCCAAACATCTTCTTCACTTCGCACCTTCTTCCCAA TGATGATTAACAATAATGAATAATGTTATGTAATGTGATGTACATTAGCACCAGAAG TTCTACCATGGCATCCATGTACTATTTTCAAGTATGTTAATACAATCCGGATCAA TCAATCTATGAATTATAAG

Unigene sequenec of the polymorphic marker UN009

>UN0099

Unigene sequence of the polymorphic marker UN0106

>UN0106

TACGTTGAGAATCACATGAAGATGAAAATCCTCAAATCACAAACATGAAATTATTG AATGAGAGATGAGTGCACAACCATATTTAACATCTAGATGACACAAGGATGGTCCA AAGTCTGATTTGGTACCCAAGCAGCTGCCTTATTCCCAATGAAATGACATACCGGGA CGGTTCCAGGAGCAACTTCCAGTGCTTCATAAAGCAACTCAGGATTCATACCTCTAG TGTCATGGTGGCACACTGTTAAAGCGTTAGTTTTACTTCCGTCTGCGGCAACCAATG AGACCACATAAGCGATTGTGTCACGCACTTGATGGCGAGAGAACTAGTCTCGAGTTT TTTTTTTTTTTTTGAAGAAAGAAAAATCATGTATATTATCAGAAATTACAATCCAC ATTATTATAATAATAATAATAACTACCGTAAATCTGATCGGACTCAAACGGCGA CGGCGGCGGCGTTGTCGTTAGTAGCGTTGGAAGGAGGAAGAGGAGGAGGAGGAGGTAGG ATGTGAAGATCCATCGGTAAATCGGTGAGAATCGGGAGGAAGAACGAGAAGAGCG TCGTCGGGATCATCGGAGGTAGAGAGATTGATGCAAGAACAGCGTTCGAGAGATGA GAAGAAAGCAGTAGCGAGATTCATACCTATCCAGCTGGCCATGCCGTTCCAGCAAA AGCCTTCACCGTCTCTCTCCATAATGGATTGATTGATTCCTTTGCTTCTTTTGCTG AAGAATGGAATTATTTGGGAGGAGAAAATTATGTGTTTTGGGGTGGCCGTGAGGGT TACCAATCTCTTTTGAACACAGATATGGAACGAGAGCTTAATCACTTGGCTAGATTT TTTGAAGCTGCTATTGCTCACAAAAAGAAGATCGGATTCAATGGGACTCTTTTAATT GAACCAAAGCCACAAGAGCCTACGAAACACCAGTATGATTGGGATGCTGCAACTAC AGCTAATTTCTTGCGAAAATATGGACTCGTAGGGGAATTCAAACTTAACATTGAGTG CAACCATGCCACCCTATCTGGTCACAGTTGTCATCATGAGCTTGAAAC

Unigene sequence of the polymorphic marker UN0110

>UN0110

GTGAATATGGCTGGACTGCCAACATGGAAAGAATCATGAAGGCTCAGGCTTTGAGG GACAGCAGCATGGCTGGTTACATGTCAAGCAAGAAAACAATGGAGATCAACCCAGA

Unigene sequence of the polymorphic marker UN0119

>UN0119

GAAGGTTGTATGTGCAAGTCTTTAAATTCAAACCAAGGCCTTCAAGGCTACAGGATT TCAGGATAGCCATTAATAAATAGCTTTAACATGATTAATTTTAGCCATAAACCTTGA TGACCTTGTGTTGGTCTATACTTTAGTTAATTAATGTACATTTACTTAATTTTAAGTA CATGCAAAAATCACATGTTCCGAATAAAGACCTCAATTTGAGCCAAACTCTTCGTTC CACTTCTCAAGCTCTTCCCATTTACTTTGTTTAAACTTGGTCTAATGACACACATTG CTTTCTTGAAATCTTCATACCGCAGTCCTCTTACCTGATTTGCCTTGACAGTGAGAAT GTTTGAACCCAGCTCTCTAATTGGCATCATTGCAGCTTCTTCACACAAGGCTTGCAA ATCACTTCCAGAGTATCCTTCAGTCTCTTTTACAAGCATTTCTAGATCTCTACTAGGT AAGGAGAATGATTGACCCTTGAGTTTGTGTTTTAGCAGAAGTTTCCGAACATTTTCA TTTGGTAAAGGTACGTATATTCTCTTAACCAGTCTTCTAAGAACTGCATCATCCAGTT CCTGTGGCTTATTGGTCGCACCCCGAATTAGGAAATGGCGAAGTCGAAGAATCACA CCGCTCACAATCAATCTTACAAAGCACACAAGAATGGCATCAAAAAGCCAAAGAGG CATCGCCACACTTCAACCAAAGGGATGGATCCAAAGTTCTTGAGGAACCAGAGGTA TGCAAGGAAGCACAACAAGAAAAATGGGGAAATTGCTTCCGATGCTGAGTAAAGTG ATGTCAAATTTAGACTCTGATATTTCAGTACTCTGTTAGCATTTTTGCTCTATTTTAGT CGCTCGTTATTTTATAATACATTTTGGTTGAAGTCTGCCTTTTTTATTGTGTTCGAAGT TGTTGATAGTAGAAAGTTGATCTAAATTTACAGCTTGTAAACTGATGCTAGGAATTT TGATAGAGGTGGTATTGCAAGACTTGCAGGGACATCATCAGTTATAAACAGTATGCC ATTGGATGTGGTTGCAGCTACATTCAACCTGCAGAGAAATGAGGCAAGGCAGCTCA AGTCCAACAATCCTTTCAAATTTCTAATTCCACCGCGTCAGTCTCAGAACAGAGCTT CGGCTTAGATTTGGCACCAAATCTATGATAATAATAATGAAAAGTATGAATAAGAA TACTTAGGCT

Unigene sequence of the polymorphic marker UN0123

>UN0123

CACTAGAATTGTTTTCACAATTATCAGGAAAATGTTTGGTAATATTCTGTGATTCAA GATGCATCAAAACGTTGGTTGTGAGACCTGCTTTGCCGGAGACACTACAACCATTGG ATATAGAATGAGAACCAGGTTTATCAACAAGCATTACTTCAATATCAGCAGGAAGA AAACCAGTATCAGCTTCACTGGATGCTTTATTCGTCTCATTAACACCATCCGCAATTT

TTTGGAGATCAATGGTTTTGGAAGAGCATAGTTCTTCATCAGCATTTGGCACACTAA CAACACTTGAATTGTTTTCACAACTAACAGGCAAATCTTGGGTAATATTCTGTGATT CAATGTTCAATGATGCTGGTTGGGAGACCTGCTAAGCCAGAGGCACCATCACCAT CTGGTACAGAACCATTGTCAAATTCAGTATATACTTCTTGTGATCTAATACCGTCTGA TTGAGCACAGTCGGTCTTAAATCTCAGTTCACCACTATCAGAAATCTTGTGAGAATC TTGGATGATCATGGAAAGAATGAAAGTTGGGAATGCCAAGCTAGAAGAAATTGATA TGCTTCAGGAGGTGACTAAGCAAATTGAAGGGCACACAATCTGCGCCTTGGGTGAT GCTGCTGCATGGCCAGTGCAGGGACTTATCAGGCATTTCAGGCCCGAGCTTGAGAG AAGGATTAAAGAGAATGCACAGAGGGGGGGGTTGCTGCAGGCCACTGGTTAGGGGTGTG ACTACTGGTGGATTGCAAAAATCAAAATAAGGCAGTGCCAATCATTTTGGAAAGAT AGGTGGTTCAGGTTACTCTATTTACTCTTATGCTGTACCAATTATGGCTGGACCATGC CAGAGAAACCATCCAAGCCTGTATAAACTGTGCTCCACCTAAACTTGTCATTTGGCA CATTTTCATGTAATTTGTTAATAATATTTGTATACTGTCTTTATTTTTGAGAAACGTC ATGTTTATGTTTGTTATT

Unigene sequence of the polymorphic marker UN0146

>UN0146

CTTGTTGTCACTCCCTGCTGCTACTTCAATTTGCGTCTCTCAACTCAAGAAAAACAAG CAAATAATGGCAGTCACATTATATAACCTTAAATCTGAATCTGGGTTGAAGAAACTT GACGAGTACCTTCTCACACGCAGTTATATCTCTGGGTATCAAGCTTCAAAGGATGAT ATCACTGTCTATTCAGCTTTGTCATCAGTTCCATCACATGAATTTGTGAATGTTGCTA GGTGGTACAAGCACATTGATGCTTTGTTGAGAATTTCTGGTGTTTCTGGTGAGGGAT CTGGTGTCATTGTGGAATCTTCTCTTGTGGCTGAAGAGGCTATTGCCACTCCTCCAGC TGCTGACACCAAGGCCACTGAAGCAGAGGATGATGATGATGATGATGATGTGGATT TGTTTGGTGAAGAGACTGAGGAAGAAGAAGAAGGCAGCTGAGGAACGTGCAGCAGC CGTGAAGGCATCTAGCAAAAAGAAAGAGAGAGTGGAAAATCATCTGTATTGTTGGATG TGAAGCCATGGGATGATGAAACCGACATGAAAAAGCTTGAAGAAGCAGTGAGGTCT GTTCAGTTGGACGGACTGTTATGGGGGCGCATCCAAACTTGTTCCTGTTGGTTATGGT ATCAAGAAACTTCAAATTATGATGACTATTGTGGATGACCTGGTTTCTGTCGACAAT ATGGTTGAGGATTATCTTACTGTCGAGCCAATCAACGAGTATGTCCAGAGTTGTGAT ATTGTTGCCTTTAATAAAATATAATCTGCTATCCGCGTGACATGGAGATAATGATAG TGGGGAGAGTTTTGCAATAATTAGAGATGATAATCAAGGGTTACTATTAAGCTGAG ATTTTTGTTTTCTGGAAACCTATCTGTTACTGTTGTTTGATGAATTTTGTCTTGTAATT TTATCACTGCTATATGGATTGTGTTATAAATTATTTAAGTTTTAAGAATTGAAGTTGT GTTGTGTGTATTT

Unigene sequence of the polymorphic marker UN0225

>UN0225

CTTCACGGGAGAGAGACGACGGCCACACCCACCGCCAGCAAACATCATCCACCATG GCTACCGCCTCATCCCGTGAACTGTCTCAGAAGGAAGCCGACATCCAAATGATGTTG GCTGCCGATGTTCACCTCGGCACCAAAAATTGTGACTTCCAAATGGATCGTTACATA TTTAAACGCCGAAATGATGGTATTTACATTATAAATCTTGGAAAGACATGGGAAAA GCTGCAACTTGCAGCTAGGGTTATTGTTGCGATTGAGAATCCGCAGGACATTATTGT GCAGTCTGCTAGGCCTTATGGGCAGAGAGCTGTTCTCAAGTTTGCTCAGTATACTGG AGCTCATGCTATTGCTGGAAGGCACACTCCTGGAACCTTCACCAATCAGCTGCAAAC TTCCTTCAGCGAGCCTCGTCTTCTCATCCTCACTGATCCAAGAACCGATCACCAGCC AATCAAAGAAGCTGCTCTTGGAAAATATTCCTACAATTGCATTCTGTGACACTGATTC TCCTATGCGGTATGTTGATATTGGGATTCCTGCCAACAACAAGGGAAAGCATAGCAT AGGTTGTCTCTTTTGGCTTCTGGCTAGGATGGTTTTGCAGATGCGTGGTACTATTCGC CCAGGCCTTAAGTGGGATGTGATGGTGGATCTATTCTTCTATAGAGAACCTGAAGAG GCCAAGGAGCAAGAGGAGGATGAAGTTCCTCCCCCAGAGTATGTCATTGCCGACTT TAATGCGGCTGTTCCATCTGACGGTCAGTGGCCTGCTGCAATTGATCAACCTTGGGC AGATGCTGCTCCTCCAGCCTATTCCAGCAGTTCCAGCAGTCAACTGGACAGCCCC AGAAGCTGTTGCAGTTGCAGGGGGACTGGGGGTGACGCAGTTCCAGCACCACAACAAA TTCCCACTCCCGGAATTGAATCTGTGCCAGCAACCGGCTGGGATTAAACTAGATTAT GATCTTATGATGTTCCATGCCCCTAAGTTTACATTTCCATTCCCAAAGTAATTTTGAG GAAATATTGTTTACGACCTGTGAGATATATTAAGTAAAATTGTACTTTTATTAGTGA CGAGACTAGTTCTCTCATTTCTATCTCTGACTCTGAAACAAAAATCCCAAATTCTCTT CAAGAAAAAGAAAAACCCTAGTGCGATAATCAACCATGGGGAACACCGAAAAGCTT AAAGTGCGAAAAGGAAGAGAAATCA

Unigne sequence of the polymorphic marker UN0230

>UN0230

Unigene sequence of the polymorphic marker UN0281

>UN0281

Unigene sequence of the polymorphic marker UN0536

>UN0536

CCGAATGAGAGCAACTCTTTCTTCTTCCTTATTCTCCCTCTTCTTCGCAATCTCCACC GTTCTTCAATCTTCCGGCGACTGTTCCGATTTCGATCGCCCCCAAATGGCTACCAGA CTAGGAGGCATCCACGATTCCCCCAGCTCTCAGAATTCCCTCGAAACTGAATCCCTC GCTCGATTCGCTGTCGATCAACACAACGCCAAACAGAATTCACTTCTGGAGTTTGCA AGAGTGGTCAAAGCACAGGAACAGGTTGTTGCTGGTACAATGCATCACCTTACTATC GAGGCTATTGATGCGGGTGAGAAGAAGAAGATCTATAACGCCAAAGTCTGGGTAAAACC CTGGCTCAACTTTAAAGAACTTCACGAGTTCAAGCATGCTGCTGATGGTGATGGACC TTCATTTACTTCTGCAGATCTTGGTGTGAAAAAGGATGGCCCCAAGCCGGGGTGGCA GTCTGTACCAACAGAAGACCCTGCAGTTCAGGATGCAGCAAATCATGCTATTAAGA CCATCCAGCAGAGGTCCAATTCACTAGTGCCCTATGAACTCCATGAGGTTTCTGATG CAAAGGCTGAGGTCATCGATGATGTTGCTAAGTTTGATTTGCTTCTCAAGCTCAAGC GAGGAGAAAAACAAGAGAAGTTCAAGGTACAGGTGCACAAGAATAACGAAGGGAG TTTCCATCTTAATCACATGGAAGCAGATCATTCCTAGTAATCTTCATATAAGCTTGGT GAGATGTGTATCATGTATGACTCACACATAACTAGTACGTTTGGAAATTGCCTTTGT TTTATATGTCTCAACAATTATATCAGTGGTTGCCCTTTTCTT

Unigene sequence of the polymorphic marker UN0538

>UN0538

Unigene sequence of the polymorphic marker UN0575

>UN0575

Unigene sequence of the polymorphic marker UN0748

>UN0748

GTCAATGATGTACTCAATGCTATTGATCATGTTATAGACTTGGGACTTGCCAGTCCA TCAAAGATTGCGGTACTTGGTGGTTCACATGGTGGCTTTCTGACAACCCACTTGATT GGCCAGGCTCCAGAGAAGTTTGTTGCAGCAGCAGCTGCTAGAAACCCCGTTTGTAACCTT GCGCTGATGGTTGGTACAACTGATATTCCTGATTGGTGCTTTGTGGAGACCTATGGA ACCAATGGGAGGGATAGGATTACTGAAGCACCTTCAGCAGAGGATCTCACTCTATTT TATAGCAAGTCTCCAATTGCACACATCTCAAAGGTAAAAACACCAACAATTTTCTA TTAGGTGCCCAAGATCTTCGTGTTCCAATTTCAACTGGACTGCAATTGCTCGGGCTT TAAAGGAGAAAGAAGTACCGGTTAAAGTCATCGTGTTTCCAAATGATGTTCATGGA ATTGAAAGACCACAATCAGACTTTGAAAGCTTCCTTAGCATTGCTGCGTGGTTCAAC

Unigene sequence of the polymorphic marker UN0755

>UN0755

Unigene sequence of the polymorphic marker UN0861

>UN0861

TGGACCTCAAATTTATAAAACTACAGCTACACTATTCATAAAACTTACACTTCATTC TCGAAAGCGTCATCTACGCAACTAGTTAACTAAATAATTTAATTGAGATTATAATAA TGGTTTAGTAGGACATTTAGTTAGGTATTTTGTTATTTAAGCACTATCAAGCACTTCA GTGAACTTCACTTCACTCAACAATGTCTCCAAACAAAGCCTTCATCTTCTTAGCTCTC TTATCCTTTTCACCACAGCTCTTCCTAACCATTTCTTCTGCAGAACAAGATAATGGCC TTCTCCTAAACTACTACAAAGAATCATGTCCACAAGCTGAAGAAGTCATCAAAGAA CAAGTCAAACTTCTCTACAAACGCCACAAGAACACCGCTTTCTCATGGCTCAGAAAC ATTTTCCACGACTGTGCTGTTCAGAGTTGTGATGCTTCTTTGTTGCTGACATCCACAA GAAGAAGCTTGTCTGAACAAGAACACGACAGAAGCTTTGGTTTGAGGAATTTTAGG TACATTGATACCATCAAAGAAGCTGTTGAAAGAGAATGCCCTGGTGTTGTTTCTTGC TCTGATATCCTTGTTCTTTCAGCTAGAGATGGAATTGTTTCGTTAGGAGGTCCTTATA TTCCATTGAAAACTGGAAGAAGAGAGAGGGGAGAAAGAGTAGAGTGGATCTGTTGGAG GAGTACCTTCCTGACCACAATGAATCTATTTCTTCTGTTCTTGACAAGTTTGGTGCCA TGGGAATTGACACTCCTGGAGTTGTTTCTTTGCTTGGAGCACACAGTGTTGGTAGAA CTCATTGTACAAAACTAGTGCACCGTTTATACCCAGAAGTTGATCCATCTTTGAATC CAGATCACATTCCACACATGCTAAAGAAGTGTCCCGATTCAATCCCTGACCCTAAGG CAGTACAGTACGTGAGAAATGACCGTGGTACCCCCATGATTCTGGATAACAATTACT

Unigene sequence of the polymorphic marker UN0931

>UN0931

CCAGAGCCAGTTATACAAAATCACAGGTCTATATAATATAGCACTTTTTCTCCTTTTC TTTTATTCCATCCTCTCACAAATCAAAATGAAACCTGTGTTTGCAATATTCGTTATGT GCCTTGTCCTCAGTTCCTCGTTATTGGAAGCTGCATTAGCTGGTGGTTCTGGTATTTG TGACACCAAGTGTGGAGAAAGGTGCTCGAAAGCTTCGGTGCAGGATAGATGCTTGA AGTACTGCGGAATCTGTTGTGAGAAATGTAATTGTGTGCCATCTGGAACTTATGGTA ACAAAGATGAGTGTCCTTGTTACAGAGACATGAAGAACTCAAAGGGACAAGGAAAA TGCCCTTAATTTGCTCACACATGTTTCCTATACTTTCTACTCCACAAAACTTGCATAT GTATCTCTAAGCTTCATTATGTCATGTTCTAAATATTGTACGTTGTTGTGTAAGGGAA ATTTCATCATGTTATGTGAATGTTAGCATGTGAGGATTATAATAAGTTCACAACCTC TGGGTGATGTACAGGGCTAAGCAAGATGCTCCTGTAGTACTGGGCTGGAGGCATCC CTGGGAGGGCCATGATGATCATGGAAGCGGCCATTAATTTTCTTAGGCTCCAGCTAA ACATGAACATCAGAACTTGAAGAATCTATGTTCCTGAATGCGCGTTAATCAAATGGT TACTTTGTTTCATTCAATAAATTGGCTATAAAAGATTCTTTTTACTGTGTTTGAACAC CTTACTCTTTAACTTGGATGAAAGTTTATGGTAGTTGTTGTTTAGACTATTTATCCAT GTTTT

Unigene sequence of the polymorphic marker UN0953

>UN0953

Unigene sequence of the polymorphic marker UN0982

>UN0982

Unigene sequence of the polymorphic marker UN1014

>UN1014

Unigene sequence of the polymorphic marker UN11828

>UN1128

Unigene sequence of the polymorphic marker UN1583

>UN1583

Unigene sequence of the polymorphic protein UN1952

>UN1952

Unigene sequence of the polymorphic protein UN2594

>UN2594

Unigene sequence of the polymorphic protein UN2787

>UN2787

AATGAATTTCTCCGCCGCTTCATCGTCGTTAATCGGAACTCAAACTAACAATTTCCAT AACAATAAGCTACAAAAAGCGCGTTTGCGTTCATCTTCTTCTTCATTTTCACTTAACA CCACTCACCACCACCACCACCACCGACAACCACTACACCTTCATTTTCGTTCTC CAATGTCCTTCCTCTCCGTTCATCCTATACGCGATCTCTTTCTCATTCTTCTATGACTG TGAAGGCGGTGGCGAAGTCGGAGGAGGCGCGCTACGTGTTATGATTTCCGGTGCTCCTG CTTCTGGTAAAGGAACTCAATGCCAGCTTATTGCTAACAAATATGATTTGGTGCATG TTGCTGCTGGAGATTTACTTAGGGCCGAAATTGAAACCGGAAGTGAAAATGGAAAG CGTGCAAAAGGATATATGGAGAAAGGGACAGTTGGTCCCTGATGAAATAGTTGTCAT GATGGTCAAGGATCGTCTCTTGCAGCCAGATTCTGTAGAGAATGGTTGGCTTTGGA

Unigene sequence of the polymorphic protein UN2827

>UN2827

CAATCAATGCTTAACTACCAAAGAAGCAGAAAGCACATTGCACATATTGCTGTGCAT GGTTAATAATAATAATAATGTTGTTGTTGATAAGAAGCAAACATAGGAAAATAAT AACTAAAATTAAAACAACCAAAGAAAGTTTGCAATTAAGTTACATTACATGACATG TTGTCACTCTTTCTTTCTTCAATCTTTTCTTCCTTCTTAGCTTCTTTCACTTCTTTCAC TTCCTTAGTTGCTTTAGCTTCCTTGCTCACTTCTTTCACCTTTGCCTTCCCAGCCTTTG GCTTCATGAAGCAAAAGCACGAGCAACAAGCCCTCACCGTATTAGGGTTTTCTGAAT CCCGATTTCCTCAAACCAACACTGAACCCCCATTAATACCACCACTAGTCATTGCGT TTTCAAATCCTACATTTCTCTCTATCATAACTCTTCAATATTTCGCCTCATCGGTTAC GCGCGAAATCAAACATACTTCGAAAGTGACTGCAATTATTCATGGCTTCTTCTGG TAATCACTCCCGAAGATGTTTTGGAATCGCTTATGAACGACGGCACAATTGATGCCC TTCGATTGAAGATCATCATCAACAGCAGTTAAAGCCAATGAAGAACTCAAGAGTACTACT ATAAAGATGGCTGAACAGAGTAAGGTTCTCAATACTCCTGGGGCCCGAGAAACAGAC CAAAGAGAGC