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ABSTRACT 

 

 Data clustering has been received considerable attention in many applications, such as 

data mining, document retrieval, image segmentation and pattern classification. The enlarging 

volumes of information emerging by the progress of technology, makes clustering of very large 

scale of data a challenging task. In order to deal with the problem, many researchers try to design 

efficient parallel clustering algorithms. In this paper, we propose a parallel k-means++ clustering 

algorithm based on MapReduce, which is simple like traditional K-means, yet more powerful 

because the initial centroid selection process is not random. It follows a formula to plot initial 

centroids at equal distance and then iterates repeatedly like k-means to converge and produce 

final cluster. This makes this algorithm faster and parallelizing makes it more scalable. The 

experimental results demonstrate that the proposed algorithm can scale well and efficiently 

process large datasets. 
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1. INTRODUCTION 

Data analysis underlies many computing applications, either in a design phase or as part 

of their operations. Data analysis procedures can be bifurcated as either exploratory or 

confirmatory based on the availability of appropriate models for the data source, but a key 

element in both types of procedures is the grouping, or classification of measurements based on 

either (i) goodness-of-fit to a postulated model, or (ii) natural groupings (clustering) revealed 

through analysis. Clustering is the unsupervised classification of patterns (observations, data 

items, or feature vectors) into groups (clusters) based on similarity. The clustering problem has 

been addressed in many contexts and by researchers in many disciplines; this reflects its broad 

appeal and usefulness as one of the steps in exploratory data analysis.  

 

Figure 1. Data Clustering [1] 

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It 

can be achieved by various algorithms that differ significantly in their notion of what constitutes 

a cluster and how to efficiently find them. Popular notions of clusters include groups with 

small distances among the cluster members. Intuitively, patterns within a valid cluster are more 

similar to each other than they are to a pattern belonging to a different cluster. An example of 

clustering is depicted in Figure 1. [1] The input patterns are shown in Figure 1(a), and the desired 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Distance_function
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clusters are shown in Figure 1(b). Clustering is a main task of exploratory data mining, and a 

common technique for statistical data analysis, used in many fields, including learning, 

pattern, image analysis, information retrieval, and bioinformatics. [2] 

However, with increasing volume of data and its heterogeneous nature, the clustering 

process is becoming more complex day by day. This paper concentrates on analyzing high 

volume of data with an optimized clustering technique.  

1.1. Big Data 

With the development of information technology, data volumes processed by many 

applications will routinely cross the peta-scale threshold – huge volume of data and that is ‘big 

data’. However, volume of data is one of the attributes which makes a data set big data but it is 

not the only one. There are many other qualities, which makes big data different from traditional 

data set. [3] Some of them are: 

Velocity of data: The data reception rate is much faster than traditional data. Big data 

velocity deals with the pace at which data flows in from sources like business processes, 

machines, networks and human interaction with things like social media sites, mobile devices, 

etc. The flow of data is massive and continuous. To cope up with that speed the processing speed 

also needs to be very fast.  

Variety of data: There is no predefined structure for big data set. Rather, to be very 

specific, most of time it is semi-structured or unstructured. Previously we used to store data from 

sources like spreadsheets and databases. Now data comes in the form of emails, photos, videos, 

monitoring devices, PDFs, audio, etc. This variety of unstructured data creates problems for 

storage, mining and analyzing data. So, none of the traditional structured query language or 

processes works on that.  

https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Bioinformatics
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Values of data: A big data set has its own intrinsic values, which refers to the biases, 

noise and abnormality in data. Is the data that is being stored, and mined meaningful to the 

problem being analyzed? Values of big data is the biggest challenge when compared to things 

like volume and velocity. As part of the big data strategy data needs to be cleaned and processed 

to keep ‘dirty data’ from accumulating in systems.  

Martin Wattenberg, Fernanda Viégas and, Katherine Hollenbach were able to present a 

visual representation of big data’s properties using daily Wikipedia edits. [4] Figure 2 represents 

the visual effect. 

  

Figure 2. Visualization of Daily Wikipedia Edits Created By IBM [4] 

Now when we know what does big data mean, the obvious next question is how to make 

it comprehensible? Big data sets are so large or complex that traditional data processing 

https://en.wikipedia.org/wiki/Data_set
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applications are inadequate. It is neither feasible to label this large collection of data nor can we 

have prior knowledge about the number and nature. Big data requires exceptional technologies to 

efficiently process large quantities of data within tolerable execution times. A 2011 McKinsey 

report [5] suggests suitable technologies include A/B testing, crowdsourcing, data fusion and 

integration, genetic algorithms, machine learning, natural language processing, signal processing, 

simulation, time series analysis and visualization. Among all these, clustering is one of the most 

accepted machine learning techniques which provides efficient browsing, search, 

recommendation and organization of data. Clustering can be defined as the key to big data 

problem because it can work with huge volumes of unstructured data (which is the main 

bottleneck for big data) [3]. Clustering can retrieve relevant information from unstructured data 

by categorizing it based on similarity. 

1.2. Clustering Big Data 

Clustering algorithms have emerged as an alternative powerful meta-learning tool to 

accurately analyze the massive volume of data generated by modern applications. In particular, 

their main goal is to categorize data into clusters such that objects are grouped in the same 

cluster when they are similar according to specific metrics. There is a vast body of knowledge in 

the area of clustering and there have been attempts to analyze and categorize them for a larger 

number of applications. However, one of the major issues in using clustering algorithms for big 

data that causes confusion amongst practitioners is the lack of consensus in the definition of their 

properties as well as a lack of formal categorization. [2] [6] 

So far, several researchers have proposed some parallel clustering algorithms, which 

makes the big data analysis process even faster and scalable. But all these parallel clustering 

algorithms have the following drawbacks: a) They assume that all objects can reside in main 

https://en.wikipedia.org/wiki/McKinsey_%26_Company
https://en.wikipedia.org/wiki/A/B_testing
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Data_fusion
https://en.wikipedia.org/wiki/Data_integration
https://en.wikipedia.org/wiki/Genetic_algorithms
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Time_series_analysis
https://en.wikipedia.org/wiki/Visualization_(computer_graphics)
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memory at the same time; b) Their parallel systems have provided restricted programming 

models and used the restrictions to parallelize the computation automatically. Both assumptions 

are prohibitive for very large datasets with millions of objects. MapReduce is a concept or 

programming model, which can take care of this problem.  

1.3. Map-Reduce  

MapReduce is a programming model and an associated implementation for processing 

and generating large data sets. [1] [7]. The Map and Reduce functions of MapReduce are both 

defined with respect to data structured as (key, value) pairs. Map takes one pair of data with a 

type in one data domain, and returns a list of pairs in a different domain. Figure 3 describes the 

overview of the Map function. 

  

Figure 3. Map Function 

The Map function is applied in parallel to every pair in the input dataset. This produces a 

list of pairs for each call. After that, the MapReduce framework collects all pairs with the same 

key from all lists and groups them together, creating one group for each key. 

The Reduce function is then applied in parallel to each group, which in turn produces a 

collection of values in the same domain. Figure 4 represents the concept of the Reduce function. 

  

Figure 4. Reduce Function 

Each Reduce call typically produces either one value v3 or an empty return, though one 

call is allowed to return more than one value. The returns of all calls are collected as the desired 
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result list. Thus, the MapReduce framework transforms a list of (key, value) pairs into a list of 

values. 

 Programs written in this functional style are automatically parallelized and executed on a 

large cluster of commodity machines. The run-time system takes care of the details of 

partitioning the input data, scheduling the program's execution across a set of machines, handling 

machine failures, and managing the required inter-machine communication. This allows 

programmers without any experience with parallel and distributed systems to easily utilize the 

resources of a large distributed system. 

In general, we use a framework or commodity software called Hadoop (Apache Hadoop) 

[8] which helps to easily implement program into map reduce. 

1.3.1. Hadoop 

Hadoop MapReduce is a software framework for easily writing applications which 

process vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of 

nodes) of commodity hardware in a reliable, fault-tolerant manner. 

A MapReduce job usually splits the input data-set into independent chunks which are 

processed by the map tasks in a completely parallel manner. The framework sorts the outputs of 

the maps, which are then the inputs to the reduce tasks. Typically, both the input and the output 

of the job are stored in a file-system. The framework takes care of scheduling tasks, monitoring 

them and re-executes the failed tasks. 

Typically, the compute nodes and the storage nodes are the same, that is, the MapReduce 

framework and the Hadoop Distributed File System are running on the same set of nodes. This 

configuration allows the framework to effectively schedule tasks on the nodes where data is 

already present, resulting in very high aggregate bandwidth across the cluster. 
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The MapReduce framework consists of a single master JobTracker and one slave 

TaskTracker per cluster-node. The master is responsible for scheduling the jobs' component tasks 

on the slaves, monitoring them and re-executing the failed tasks. The slaves execute the tasks as 

directed by the master. 

Minimally, applications specify the input/output locations and 

supply map and reduce functions via implementations of appropriate interfaces and/or abstract-

classes. These, and other job parameters, comprise the job configuration. The Hadoop job 

client then submits the job (jar/executable, etc.) and configuration to the JobTracker which then 

assumes the responsibility of distributing the software/configuration to the slaves, scheduling 

tasks and monitoring them, providing status and diagnostic information to the job-client. [9] 

In this paper, we implement the k-means++ (with Initial Equidistant Centers) algorithm 

within the MapReduce framework using Hadoop [10] to make the clustering method applicable 

to large-scale data. By applying proper <key, value> pairs, the proposed algorithm can be 

executed in parallel effectively. We conduct comprehensive experiments to evaluate the 

proposed algorithm. The results demonstrate that our algorithm can effectively deal with large 

scale datasets. 
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2. BACKGROUND 

Clustering is useful in several exploratory pattern-analysis, grouping, decision-making, 

and machine-learning situations, including data mining, document retrieval, image segmentation, 

and pattern classification. 

Different approaches to clustering data can be described with the help of the hierarchy 

shown in Figure 5. [11] 

 

Figure 5. Taxonomy of Clustering Approach [11] 

Among all, K-means is one of the simplest unsupervised learning algorithms that solve 

the well-known clustering problem. The term "k-means" was first used by James MacQueen in 

1967 [12], though the idea goes back to Hugo Steinhaus in 1957 [13]. The standard algorithm 

was first proposed by Stuart Lloyd in 1982 [14] as a technique for pulse-code modulation, 

though it was not published outside of Bell Labs until 1982 [15]. In 1965, Forgy published 

essentially the same method, which is why it is sometimes referred to as Lloyd-Forgy [16]. A 

more efficient version was proposed and published in FORTRAN by Hartigan and Wong in 

1975/1979 [17] [18].  

https://en.wikipedia.org/wiki/K-means_clustering#Standard_algorithm
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2.1. K-Means Algorithm 

K-means clustering is a method of cluster analysis, which aims to partition n observations 

into k clusters in which each observation belongs to the cluster with the nearest mean. The most 

common algorithm uses an iterative refinement technique. The procedure follows a simple and 

easy way to classify a given data set through a certain number of clusters (assume k clusters). 

The main idea is to define k centers, one for each cluster. These centers should be placed in an 

arbitrary way but intelligently because different initialization causes different results. So, the 

better choice of initialization makes the algorithm better. The next step is to take each point 

belonging to a given data set and associate it to the nearest center. When no point is remaining, 

the first step is completed and the initial cluster set up is done. At this point we need to re-

calculate k new centroids depending on the mean of the data of each group. After we have these 

k new centroids, a new binding has to be done between the same data set points and the nearest 

new center. This recalculation and association process iterates step by step until no more changes 

are done or in other words the centers do not move any more. Finally, this algorithm aims 

at minimizing an objective function know as squared error function given by [19]: 

                        

 

(1) 

Where, 

                           ‘||xi - vj||’ is the Euclidean distance between xi and vj. 

                           ‘ci’ is the number of data points in ith cluster.  

                           ‘c’ is the number of cluster centers. 

The algorithmic steps for k-means clustering are as follows: 

Let X = {x1,x2,..,xn} be the set of data points and V = {v1,v2,..,vc} be the set of centers. 

Step 1) Randomly select ‘c’ cluster centers. 

https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm/kmeans.JPG?attredirects=0
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Step 2) Calculate the distance between each data point and cluster centers. 

Step 3) Assign the data point to the cluster center whose distance from the cluster center is the 

minimum of all the cluster centers. 

Step 4) Recalculate the new cluster center using:   

 

 

(2) 

Where, ‘ci’ represents the number of data points in ith cluster. 

Step 5) Recalculate the distance between each data point and new obtained cluster centers. 

Step 6) If no data point was reassigned then stop, otherwise repeat from Step 3). 

Figure 6 represents the overall K-Means algorithm concept, how it starts with random 

centroid selection and then iterates until it converges. 

 

Figure 6. K-Means Clustering [20] 
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2.2. Advantages & Disadvantages 

The main advantages of this algorithm are its simplicity and speed, which allows it to run 

on large datasets. Its disadvantage is that it does not yield the same result with each run, since the 

resulting clusters depend on the initial random assignments. It minimizes intra-cluster variance, 

but does not ensure that the result has a global minimum of variance. Another disadvantage is the 

requirement for the concept of a mean to be definable, which is not always the case. [21] 

2.2.1. Initial Random Assignment Problem and K-Means++ 

K-means algorithm begins with k arbitrary “centers”, typically chosen uniformly at 

random from the data points. Each point is then assigned to the nearest center, and each center is 

recomputed as the center of mass of all points assigned to it. These last two steps are repeated 

until the process stabilizes. One can check that change in cluster formation is monotonically 

decreasing, which ensures that no configuration is repeated during the course of the algorithm. 

Since there are only k
n
 possible clustering results, the process will always terminate. It is the 

speed and simplicity of the k-means method that makes it appealing but not its accuracy.  

Indeed, there are many natural examples for which the algorithm generates arbitrarily bad 

clustering results (i.e., Iteration is unbounded even when n and k are fixed). This does not rely on 

an adversarial placement of the starting centers, so ultimate result may differ depending on initial 

centroid placement even time required to form same number of cluster with same data points be 

different. 

David Arthur and Sergei Vassilvitski [11] proposed a variant that handles this initial 

randomized centroid choice issue. The new algorithm chooses initial centers depending on a 

particular mathematical function and assigns the datapoints depending on their squared distance 

to the centers already chosen. Choosing centers in this way is both fast and simple, and it already 
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achieves guarantees that the final result would be same, whereas k-means cannot guarantee this. 

The authors proposed this technique to seed the initial centers for k-means, leading to a 

combined algorithm and named it k-means++. [22] 
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3. PARALLEL K-MEANS++ (WITH EQUIDISTANT CENTERS) ALGORITHM 

The k-means algorithm has maintained its popularity due to its simple iterative nature. 

Given a set of cluster centers, each point can independently decide which center is closest to it, 

and given an assignment of points to clusters, computing the optimum center can be done by 

simply averaging the points. Indeed parallel implementations of k-means are readily available 

(see, for example MAHOUT at cwiki.apache.org/MAHOUT/k-means-clustering.html).  

However, from a theoretical standpoint, k-means turns out to be not always a good 

clustering algorithm in terms of efficiency or quality: the running time can be exponential in the 

worst case [23] and even though the final solution is locally optimal, it can be very far away 

from the global optimum (even under repeated random initializations). Nevertheless, in practice 

the simplicity of k-means cannot be beat. Therefore, recent work has focused on improving the 

initialization procedure: deciding on a better way to initialize the clustering dramatically changes 

the performance of the K-Mean’s iteration, both in terms of quality and convergence properties. 

An important step in this direction was taken by Ostrovsky et al. [24], and Arthur and 

Vassilvitskii [22], who showed a simple procedure that both leads to good theoretical guarantees 

for the quality of the solution, and, by virtue of a good starting point, improves upon the running 

time of K-Mean’s iteration in practice. K-means++ [22], the algorithm selects only the first 

center uniformly at random from the data. Each subsequent center is selected with a probability 

proportional to its contribution to the overall error given the previous selections. Intuitively, the 

initialization algorithm exploits the fact that a good clustering is relatively spread out, thus when 

selecting a new cluster center, preference should be given to those further away from the 

previously selected centers. Formally, one can show that the k-means++ initialization leads to an 

O(log k) approximation of the optimum [22], or a constant approximation if the data is known to 
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be well “clusterable” [24]. The experimental evaluation of the k-means++ initialization and the 

variants that followed [25] [26] [27] demonstrated that correctly initializing K-Mean’s iteration 

is crucial if one were to obtain a good solution not only in theory, but also in practice. On a 

variety of datasets the k-means++ initialization obtained order of magnitude improvements over 

the random initialization.  

However, the downside of the k-means++ initialization is its inherently sequential nature. 

Although its total running time is O(nkd), when looking for a k-clustering of n points in R
d,

 is the 

same as that of a single K-mean’s iteration, it is not apparently parallelizable. The probability 

with which a point is chosen to be the i
th

 center depends critically on the realization of the 

previous i−1 centers (it is the previous choices that determine which points are away within the 

current solution). A naive implementation of the k-means++ initialization makes k passes over 

the data in order to produce the initial centers. This fact is exacerbated in the massive data 

scenario. First, as datasets grow, so does the number of classes into which one wishes to partition 

the data. For example, clustering millions of points into k = 100 or k = 1000 is typical, but a k-

means++ initialization would be very slow in these cases. This slowdown is even more 

detrimental when the rest of the algorithm can be implemented in a parallel environment like 

MapReduce [7]. For many applications it is desirable to have an initialization algorithm with 

similar guarantees to k-means++ that can be efficiently parallelized. [28] [29] 

3.1. Our Contribution 

In this work, we have implemented a parallel version of the k-means++ (with Initial 

Equidistant Centers) initialization algorithm and empirically demonstrate its practical 

effectiveness. The main idea is that, in each iteration, it would require a total of (nk) distance 

computations where n is the number of objects and k is the number of clusters being created. It is 
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obvious that the distance computations between one object with the centers is irrelevant to the 

distance computations between other objects with the corresponding centers. Therefore, distance 

computations between different objects with centers can be executed in parallel. In each 

iteration, the new centers, which are used during the next iteration, should be updated. Hence, the 

iterative procedure must be executed sequentially. This initialization algorithm, which we call k-

means++ (with Initial Equidistant Centers), is quite simple and lends itself to easy parallel 

implementation. We then evaluate the performance of this algorithm using datasets.  

Our key observations in the experiments are: 

• The parallel implementation of k-means++ (with Initial Equidistant Centers) is much 

faster than existing parallel algorithms for k-means because of less number of iterations. As 

initial centroids are fixed and certain, the converging criteria are the same as for parallel k-

means. In conventional k-means the parallel algorithm may iterate repeatedly because of drastic 

change of data points assignment to each cluster in each iteration (as the cluster centroid changes 

more than k-means++). 

• The number of iterations until the K-Means algorithm converges is smallest when using 

k-means++ (with Initial Equidistant Centers) as the seed. 

3.2. The Algorithm 

We now describe the parallel k-means++ (with Initial Equidistant Centers) algorithm 

using the Map-Reduce approach. It starts with the initialization step.  

 

 



 

16 

 

3.2.1. Initialization Function 

As part of the initialization, we have used a mathematical function, which selects the 

initial centroids at equal distance depending on the number of clusters entered as input. The 

pseudo code is represented in Algorithm 1. 

Algorithm 1. Initialization 

Input: Text file contains the data points; Number of Clusters  

Output: Centroid co-ordinates for each cluster 

 

For i=0 to cluster.length 

Centroid_X-Axis = (((MaxXValue - MinXValue) / (clusters.length + 1)) * i) + 

MinXValue; 

           Centroid_Y-Axis = (((MaxYValue - MinYValue) / (clusters.length + 1)) * i) +  

           MinYValue;     

End For 

3.2.2. Map Function 

As discussed earlier, the map class takes the input dataset stored in HDFS and the number 

of clusters to be made as input and assigns each data point to the most relevant cluster. 
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Algorithm 2. Map (key, value) 

Input: text file containing data set 

Output: <key’, value’> pair, where the key’ is the index of the closest center point and value’ 

is a datapoint 

1. If iteration = First  

       { 

                      Choose the centroid at equal distance by reading the entire input dataset 

                 } 

            Else  

               { 

                    Read the centroid file created by Reduce method and assign each individual    

                    centroid to individual cluster 

         }  

    2.  tempEuDT = Double.MAX VALUE; 

    3. index = -1; 

    4. For i=0 to centers.length do 

         dis= ComputeEucledianDist(instance, centers[i]); 

         If dis < tempEuDT 

              { 

                  tempEuDT = dis; 

                 index = i; 

              } 

   5. End For 

   6. Take Centroid as key’; 

   7. Construct value’ as individual datapoint; 

   8. Output < key, value> pair; 

   9. End 

 

Note that Step 2 and Step 3 initialize the auxiliary variable tempEuDT and index. 

3.2.3. Reduce Function 

The Reduce function combines the datapoints corresponding into a single centroid to a 

single cluster. Then by calculation the mean of each cluster, it decides the new centroid clusters 

to be used as input and assigns each data point to the most relevant cluster. 
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Algorithm 3. Reduce (key, value) 

Input: key is the centroid of the cluster, Value is the list of the datapoints from different nodes 

Output: < key, value> pair, where the key’ is the index of the cluster, value’ datapoint. 

1. Assign each datapoint corresponding to a single centroid to an arraylist; 

2. For i=0 to length of arraylist 

    Sum all the value; 

     End For 

3. Take the mean of datapoints; 

4. Add the mean value to the centroid Text file; 

5. If new centroid== Old centroid 

             Set as converged 

    Else 

            Go for next iteration 

    End If 

6. Output < key, value> pair; 

7. End 

 
The algorithm iterates until the converging criteria meets. In this paper, the algorithm    

converges when the location of the current centroid is same as the location of the previous 

centroid. 

In every iterations the reduce method creates the centroid.txt file and saves it to the 

HDFS, and the file is used as the input file for the Map method for the second iteration. 
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4. EXPERIMENTAL SETUP AND RESULTS 

In this section, we present the experimental setup for evaluating MapReduce-enabled k-

means++ (with Initial Equidistant Centers). The parallel algorithm was run using the 

departmental Hadoop cluster. 

4.1. Datasets 

To validate the quality of the algorithm and its implementation, we have mainly selected 

the parameters:  

 Performance of the algorithm on a huge data set 

 Purity of clusters obtained as output 

 Scalability of the implementation with respect to increasing number of nodes. 

The real datasets that are used are the following: 

Iris: We took this dataset from the UCI machine learning repository [30]. The data set 

contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class 

is linearly separable from the other 2; the latter are NOT linearly separable from each other.  

Balance: We took this dataset from the UCI machine learning repository [30]. This data 

set was generated to model psychological experimental results. Each example is classified as 

having the balance scale tip to the right, tip to the left, or be balanced. The attributes are the left 

weight, the left distance, the right weight, and the right distance. The correct way to find the 

class is the greater of (left-distance * left-weight) and (right-distance * right-weight). If they are 

equal, it is balanced. Balance dataset contains total 625 instances with 3 class labels. 

Ecoli: We took this dataset from the UCI machine learning repository [30]. This dataset 

is about protein and bacteria. [31] [32]This dataset contains 336 instances with 8 class labels. 
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Glass: We took this dataset from UCI machine learning repository [30].This dataset 

contains 214 instances with 7 class labels. Vina Spiehler, [33] conducted a comparison test of her 

rule-based system, BEAGLE, the nearest-neighbor algorithm, and discriminant analysis. 

BEAGLE is a product available through VRS Consulting, Inc.  

Mouse: We took this dataset from the UCI machine learning repository [30].  The data 

set consists of the expression levels of 77 proteins/protein modifications that produced detectable 

signals in the nuclear fraction of cortex. There are 38 control mice and 34 trisomic mice (Down 

syndrome), for a total of 72 mice. In the experiments, 15 measurements were registered of each 

protein per sample/mouse. Therefore, for control mice, there are 38x15, or 570 measurements, 

and for trisomic mice, there are 34x15, or 510 measurements. The dataset contains a total of 

1080 measurements per protein and 8 class labels. The eight classes of mice are described based 

on features such as genotype, behavior and treatment. According to genotype, mice can be 

control or trisomic. According to behavior, some mice have been stimulated to learn (context-

shock) and others have not (shock-context) and in order to assess the effect of the drug 

memantine in recovering the ability to learn in trisomic mice, some mice have been injected with 

the drug and others have not.  

Seeds: We took this dataset from the UCI machine learning repository [30]. The 

examined group comprised kernels belonging to three different varieties of wheat: Kama, Rosa 

and Canadian. High quality visualization of the internal kernel structure was detected using a soft 

X-ray technique. It is non-destructive and considerably cheaper than other more sophisticated 

imaging techniques like scanning microscopy or laser technology. The images were recorded on 

13x18 cm X-ray KODAK plates. Studies were conducted using combine harvested wheat grain 
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originating from experimental fields, explored at the Institute of Agrophysics of the Polish 

Academy of Sciences in Lublin. 

Dense: This dataset contains 150 instances with 3 class labels. This dataset is also taken 

from UCI machine learning repository [30]. 

Table 1 describes the datasets: 

Table 1. Real Dataset 

Dataset Instances Class Labels Area 

Iris 150 3 Life 

Balance 625 3 Social 

Ecoli 336 8 Life 

Glass 214 7 Physical 

Seed 210 3 Life 

Mice 1080 4 Life 

Dense 150 3 Social 

 

Synthetic: We have used the datasets generated in [34]. These synthetic datasets have 

been generated using the data generator [35]. The dataset ranges from 0.5 million to 4 million. In 

order to characterize the synthetic datasets, each name has a specific pattern: Number of data, 

number of dimensions and number of clusters shown in Table 2. 

Table 2. Synthetic Dataset  

Dataset #Records 

(Million) 

#Dimension Size(MB) Type #Clusters 

Dataset1 0.5 2 19.07 Synth 5 

F1m2d5c 1 2 41 Synth 5 

F2m2d5c 2 2 83.01 Synth 5 

F4m2d5c 4 2 163.05 Synth 5 
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4.2. Evaluation Measure 

In this paper, we use the purity measure for the evaluation of the cluster quality [36], 

which is the standard measure of clustering quality and is calculated as: 

 

Where Li denotes the true assignments of the data instances in cluster i; q is the number of 

actual clusters in the data set. A clustering algorithm with large purity values indicates better 

clustering solutions. The clustering quality is perfect if the clusters only contain data instances 

from one true cluster; in that case the purity is equal to 1. 

We have used the speedup measure to measure the performance of the algorithm by 

continuously increasing the number of nodes and keeping the dataset size the same. [37] 

 

     (4) 

Where T2 is the running time using 2 nodes, and Tn is the running time using n nodes, 

where n is a multiple of 2. 

Lastly we have used scaleup, which is a measure of speedup that increases with 

increasing dataset sizes to evaluate the ability of the parallel algorithm utilizing the cluster nodes 

effectively. 

4.3. Test Cases 

4.3.1. Test Case 1 

We ran the algorithm for four different datasets from 0.5 million records to 4 million 

records to build 5 clusters each time. All the datasets are of 2 dimensional data. 

                                 (3) 
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4.3.2. Test Case 2 

We ran the algorithm for 7 different datasets contain various types of data to measure the 

purity of cluster. Then we compare the output with Table 3. 

Table 3. Cluster Purity Table 

Dataset K-Means HC FF LVQ 

Iris 0.887 0.887 0.860 0.507 

Ecoli 0.774 0.654 0.599 0.654 

Glass 0.542 0.463 0.481 0.411 

Balance 0.659 0.632 0.653 0.619 

Seeds 0.876 0.895 0.667 0.667 

Mouse 0.827 0.91 0.800 0.843 

Vary Density 0.953 0.667 0.667 0.567 

 

4.3.3. Test Case 3 

We ran our algorithm on the dataset containing 2 million records, however we 

continuously increased the number of nodes e.g. 2, 4, 8,…, 16. Then by comparing the running 

time we could able to measure the scalability of the algorithm. 

4.4. Results 

4.4.1. Test Case 1 

When we ran the test case 1, we found with the growth of the dataset size (from 0.5 

million to 4 million) the time taken by the algorithm is increasing in a slower rate. The statistics 

is given in Table 4. 
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Table 4. Performance Testing Results 

Number of Records (million) Time taken (in milliseconds) 

0.5 197166 

1 201563 

2 233865 

4 300989 

 

If we put the result in graphical format, we can find the graph (Figure 7) supports our statement.  

 

Figure 7. Performance Graph 

4.4.2. Test Case 2 

We used seven two-dimensional data sets (as described in Table 8) to perform the purity 

check. In all those data sets the true assignments (each data point is labeled to one of the 

centroids initially) of the clusters are given by the last column of the data set. The assignment the 

clustering algorithm returns is the resulting assignment. And with that information, we have 

calculated the purity by comparing the resulting assignment with the given assignment (given by 

the data set). 
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Iris Dataset: Iris dataset has three different types: Iris-setosa, Iris-versicolor and Iris-

virginica. Resulting assignment of Iris-setosa, Iris-versicolor and Iris-virginica are 50, 45 and 40, 

respectively and the total number of data points is 150. So, the purity is 0.9 (by the below 

calculation). 

(50+45+40)/150 = 0.9. 

Balance Dataset: Balance dataset has three different types: L, R and B. Resulting 

assignment of L, R and B are 116, 113 and 154, respectively. The total number of data points is 

625. Thus, the purity is 0.695. 

(166+113+154)/625 = 0.692. 

Ecoli Dataset: Ecoli dataset has eight different types: cp (cytoplasm), im (inner 

membrane without signal sequence), pp (perisplasm), imU (inner membrane, uncleavable signal 

sequence), om (outer membrane), omL (outer membrane lipoprotein), imL (inner membrane 

lipoprotein), imS (inner membrane, cleavable signal sequence) and the resulting assignments are 

5, 46, 72, 29, 27, 29, 35, 23, respectively. That gives a purity as 0.791 for 336 members. 

(5+46+72+29+27+29+35+23)/336 = 0.791. 

Mice Dataset: Mice dataset has four different types: Ear-Left, Head, Ear-Right and 

noise. The resulting assignments are 100, 144, 88 and 100, respectively. Total number of data is 

500. The purity of the dataset is 0.864. 

(100+144+88+100)/500= 0.864. 

Dense Dataset: Vary dense dataset contains Cluster1, Cluster2 and Cluster3 and their 

resulting assignment counts are 93, 24 and 26 out of 150 in total. 

(93+24+26)/150 = 0.953. 
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Glass Dataset: Glass has seven different types from 1 through 7 and their resulting 

assignment according to the algorithm is 1,50,19,28,13,1 and 4, respectively. So when we put 

these in the purity equation the result is 0.586 for 214 total glass data. 

(1+50+19+28+13+1+14)/214 = 0.586. 

Seeds Dataset: Seeds contains 1, 2 and 3 as type and their resulting assignment is 78, 73 

and 26. The purity of this data set is 0.850. 

(78+73+26)/208=0.850. 

We have compared the calculations with the cluster purity table. Table 5 describes the 

comparison. 

Table 5. Cluster Purity Table for K-Means++ (With Initial Equidistant Centers) 

Dataset Kmeans Kmeans++ 

Iris 0.887 0.900 

Ecoli 0.774 0.791 

Glass 0.542 0.568 

Seed 0.876 0.850 

Balance 0.659 0.692 

Mouse 0.827 0.864 

Vary Density 0.953 0.953 

 

From the result we can see that mostly the purity is >8.0, which is very good in quality, 

and our algorithm has outperformed k-means in most of the cases. Figures 10-16 show the 

comparisons among K-Means, HC, FF, LCQ and K-Means++ algorithm with respect to their 

purity calculations (refer to Table 3 and Table 5). 

Figures 8 through 14 represent the purity comparison among K-means algorithm, HC 

algorithm, FF algorithm, LVQ algorithm and K-Means++ algorithm. 
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Figure 8. Iris Data Set Purity Comparison 

 

Figure 9. Ecoli Dataset Purity Comparison 
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Figure 10. Glass Dataset Purity Comparison 

 

Figure 11. Balance Dataset Purity Comparison 
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Figure 12. Seed Dataset Purity Comparison  

 

Figure 13. Mouse Dataset Purity Comparison 
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Figure 14. Vary Density Dataset Purity Comparison 

4.4.3. Test Case 3 

We used the F2m2d5c dataset to check the scalability of the algorithm with respect to 

increasing the number of nodes from 2 to 16. We found that time required to run the algorithm 

decreases (except for one exception) with increasing number of nodes and keeping all other 

inputs the same each time. That confirms the scalable nature of the algorithm. Table 6 is the 

result, we gathered from the scalability testing. 
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Table 6. Scalability Test Result 

Number of Nodes Time (in milliseconds) 

2 310084 

4 272902 

6 243619 

8 243325 

10 233584 

12 235169 

14 201563 

16 197166 

 

Figure 15 shows how the time required decreases with increasing number of nodes.  

 

Figure 15. Scalability 
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5. CONCLUSIONS AND FUTURE WORK 

As data clustering has attracted a significant amount of research attention, many 

clustering algorithms have been proposed in the past decades. However, the enlarging data in 

applications makes clustering of very large scale of data a challenging task.  

In this paper, we propose a fast parallel k-means++ (with Initial Equidistant Centers) 

clustering algorithm based on MapReduce. This algorithm is an improvement over the 

conventional K-Means clustering algorithm. In K-Means, the initial centroid selection procedure 

is purely random and that hugely affects the overall performance of the algorithm. K-Means++ 

improves the uncertainty of the performance by selecting initial centroids using a predefined 

rule. In this paper, to set the initial centroids we have divided the whole dataset into a certain 

number of clusters first and then from those chunks of data we have taken, e.g. in the 2-

dimensional case, the average of the X-coordinate (by subtracting the minimum X from the 

maximum X and then divide that by length of that chunk) and the average of the Y-coordinate 

(using the same rule as the X-coordinate) for each and every chunk. Then, once the initial 

centroids are set, the rest of the process iterates over the entire data set and assign data to each 

cluster depending on the minimum Euclidean distance from datapoints to cluster centroid. Then, 

once all the datapoints are assigned to the clusters, the new cluster center gets recalculated and 

again the assignment process takes place. Iteration occurs till the current coordinates of all 

centroids are same as previous cycle (the converging criteria). These iterations are taking place 

in parallel following the MapReduce concept because clusters are independent of each other, so 

datapoints assignment or centroid recalculation can take place in parallel for all clusters. Thus, 

the K-means++ algorithm was parallelized using the MapReduce paradigm. 
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From the result of our experiments, we found the purity of the clusters produced by this 

algorithm are very good. Moreover, the performance is good and the result is constant for every 

time we run the algorithm as the initial centroids are always the same for a particular dataset. 

Also, the parallel implementation makes the algorithm robust and scalable. 

Our future work aims to find a mechanism to work with various types of data files, so 

that we can use any data files types for the testing without formatting it in a particular text 

format. Also, we are aiming to apply it on some real data set associated with a real life problem. 
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