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ABSTRACT 

In cloud-computing environments, every service in an application is deployed as a 

different service instance. All service instances are deployed at a different level of end-to-end 

Quality of Service (QoS), which are described in the Service Level Agreement (SLA). To satisfy 

the given SLAs and end-to-end QoS requirements of an application, the application is required to 

optimize its deployment configuration of service instances. In this paper, a genetic algorithm is 

implemented, as proposed in literature, to solve this problem by searching for the optimal 

solution from a search space while satisfying the given SLA. The algorithm estimates the 

performance of an application by minimizing the latency allowing SLAs to be defined in a 

probabilistic manner. Simulation results demonstrate that the genetic algorithm implemented in 

this paper obtains the deployment configurations that satisfy the given SLA. 
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1. INTRODUCTION 

1.1. Cloud Computing 

Cloud Computing (CC), or in simpler shorthand just "the cloud", focuses on maximizing 

the effectiveness of the shared resources. Cloud resources are usually not only shared by multiple 

users but are also dynamically reallocated per demand. CC is a general term for anything that 

involves delivering hosted services over the Internet. CC can be defined as a new style of 

computing in which dynamically scalable and often-virtualized resources are provided as 

services over the Internet [1].  

The goal of CC is to provide end users with a considerable processing power and 

computing resources that allow them to run the applications and other user requirements. In 

general, CC depends on the power and resources of computer networks. With this architecture, 

clients have access to the resources provided by the cloud provider as described in their Service 

Level Agreement (SLA). Clouds using virtualization technology and data centers allocate 

distributed resources for clients, as they need. Often traditional scheduling techniques [2, 3] and 

allocation strategies [4] cannot be used in cloud computing, in which the number of end user 

requests increases and decreases over time in an unpredictable way. This leads to difficulties of 

analysis and discovery of information from incoming requests to distribute the available 

resources according to user requirements and constraints of cloud provider. Similarly, 

unpredictable requests due to the increased costs of server load, the total execution time of the 

task, and the difficulty of making an optimal decision in the whole group of tasks. Amazon EC2 

[5], introduces cloud services that allow users to acquire and release resources on-demand. 

Amazon EC2 also allows workflow systems to increase and decrease the pool of available 
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resources when the demands are changing and unpredictable needs of users are involved in the 

allocation process. 

 

Figure 1. Types of cloud computing 

Cloud computing allows users to run applications remotely, as shown in Figure 1. The 

first is the public cloud services, which can be sold to anyone on the Internet (e.g., Amazon 

Elastic Compute Cloud (EC2) [5] and Google App Engine [6]). The second type of cloud is a 

private cloud that supplies hosted services to a limited number of customers (end users). In the 

type of hybrid cloud, the infrastructure is a composition of two or more clouds (private, 

community or public) that remain unique entities but are bound together by standardized or 

proprietary technology. In general, clouds are deployed to clients by giving them three access 
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levels. These services are broadly divided into three categories: Infrastructure-as-a-Service 

(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (Saas). 

1.1.1.  Software as a Service 

Software-as-a-Service (SaaS) is a software distribution model in which applications are 

accessible through a single interface, like a web browser over the Internet. Users do not have to 

consider the underlying cloud infrastructure including servers, storage, platforms, etc. 

1.1.2.  Platform as a Service  

Platform-as-a-Service (PaaS) provides a high level of integrated applications that control 

of distributed applications and their hosting environment configurations. In general, developers 

accept all instructions on the type of software that can be written to change built-in scalability. 

1.1.3.  Infrastructure as a Service 

Infrastructure-as-a-Service (IaaS) provides users with computation processing, storage, 

networks and computing resources. IaaS users can implement an arbitrary application, which is 

able to grow up and down dynamically. Also, IaaS sends programs and related data, while the 

cloud provider does the computation processing and returns the result. 

 This paper focuses on service-oriented applications in cloud computing environment 

Software-as-Service (SaaS). 

1.2.  Service Deployment Optimization 

 The main objective of this paper is optimizing service deployments in cloud computing 

environments. The deployment of a service can be done in one or more service instances. A 

service can be operated at different end-to-end Quality of Service (QOS) levels. A genetic 

algorithm is implemented in this paper by leveraging queuing theory, in order to optimize the 

deployment configuration of service instances by the application to satisfy given SLAs. 
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Simulation results demonstrate that the algorithm efficiently minimizes the latency to obtain 

deployment configurations that satisfy given SLA. 

This paper envisions service-oriented applications in cloud computing environments. A 

service-oriented application consists of a set of services and a workflow. Each service 

encapsulates the function of an application component. Each workflow defines how services 

interact with each other. When an application is uploaded to a cloud, the cloud deploys each 

service in the application as one or more service instances. Each service instance runs on a 

process or a thread and operates based on a particular deployment plan. Different service 

instances operate at different quality of service levels. For example, Amazon Elastic [5] 

Compute Cloud offers five different deployment plans that allow service instances to yield 

different QoS levels by providing different amounts of resources at different prices. If an 

application is intended to serve different categories of users (e.g. users with for-fee and free 

memberships), it is instantiated with multiple workflow instances, each of which is responsible 

for offering a specific QoS level to a particular user category. A SLA is defined upon a workflow 

as its end-to-end QoS requirements such as throughput, latency and cost (e.g., resource 

utilization fees). In order to satisfy given SLAs, application developers (or cloud engineers) are 

required to optimize a deployment configuration of service instances for each user category by 

considering which deployment plans and how many service instances to use for each service. For 

example, a deployment configuration may be intended to improve the latency of a heavily 

accessed service by deploying its instance with an expensive deployment plan that allocates a 

large amount of resources.  
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1.3.  Genetic Algorithms 

Genetic algorithms are one of the best ways to solve a problem for which little is known, 

they use the principles of selection and evolution to produce several solutions to a given 

problem. 

Genetic algorithms tend to thrive in an environment in which there is a very large set of 

candidate solutions and in which the search space is uneven. The basic process for a genetic 

algorithm is: 

1. Initialization - Create an initial population. This population is usually randomly generated 

and can be of any desired size, from only a few individuals to thousands. 

2. Evaluation - Each member of the population is then evaluated and we calculate a 'fitness' for 

that individual. The fitness value is calculated by how well it fits with our desired 

requirements. These requirements could be simple, 'faster algorithms are better', or more 

complex, 'stronger materials are better but they shouldn't be too heavy'. 

3. Selection - We want to be constantly improving our population’s overall fitness. Selection 

helps us to do this by discarding the bad designs and only keeping the best individuals in the 

population. There are a few different selection methods but the basic idea is the same, make 

it more likely that fitter individuals will be selected for our next generation. 

4. Crossover - During crossover we create new individuals by combining aspects of our 

selected individuals. The hope is that by combining certain traits from two or more 

individuals we will create an even 'fitter' offspring, which will inherit the best traits from 

each of its parents. 
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5. Mutation - We need to add a little bit of randomness into our population’s genetics otherwise 

every combination of solutions we can create would be in our initial population. Mutation 

typically works by making very small changes at random to an individual genome. 

6. And repeat! - Now we have our next generation we can start again from step two until we 

reach a termination condition. 

Evolutionary algorithms are typically used to provide good approximate solutions to 

problems that cannot be solved easily using other techniques such as linear programming.  
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2. RELATED WORK 

A number of research efforts have investigated the SSDO problem [7-10]. Based on 

previously proposed GA [11], this paper describes and implements SSDO Problem in Cloud 

computing environments.  

Simple Additive Weighting (SAW) is the most widely used method by defining a fitness 

function [12] to solve the SSDO problem and a number of research efforts which are based on 

Search Based Software Engineering have investigated this to seek an optimal solution [13-15]; 

however, it is difficult to determine weight values in a fitness function as objectives often have 

different value ranges and priorities. And also, it is known that for non-trivial optimization 

problems, SAW does not work well as it is mainly designed to seek a single optimal solution.  

Linear Programming is another major method used to solve SSDO problem [16, 17] but it 

is not suitable, as it cannot reveal the trade-offs among Quality of service objectives. In linear 

programming, the computational time grows exponentially with the search space size and it is 

not trivial to define the problem in linear form and it is not scalable [18-21]. 

This paper leverages a multi objective GA as a software base search engine technique to 

solve large-scale SSDO problems, as GA’s scale better than linear programming. Several 

research efforts have investigated multi objective GAs for the SSDO problem [22-24]. However, 

most of them do not support the assumptions that the current cloud computing platforms make. 

For example, they do not consider binding multiple service instances to a service and do not 

consider differentiated SLAs and support service deployment configurations that model 

applications in cloud computing.  
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3. PROBLEM STATEMENT 

3.1.  Problem 

In a Cloud environment, a SLA is defined upon a workflow as its end–to–end QoS 

requirements such as latency, throughput and cost. In order to satisfy given SLAs, cloud 

engineers are required to optimize a deployment configuration of service instances for each user 

category by considering which deployment plans and how many service instances to use for each 

service. 

This decision-making problem, called the SLA-aware service deployment optimization 

(SSDO) problem [1], is a combinatorial optimization problem that searches the optimal 

combinations of service instances and deployment plans. There exist three research issues in this 

problem. First, it is known NP-hard, which can take a significant amount of time, labor and costs 

to find the optimal deployment configurations from a huge search space (i.e. a huge number of 

possible combinations of service instances and deployment plans). The second issue is that the 

SSDO problem often faces trade-offs among conflicting QoS objectives in SLAs. For example, 

in order to reduce its latency, a service instance may be deployed with an expensive deployment 

plan; however, this is against another objective to reduce cost. Moreover, if the service’s latency 

is excessively reduced for a user category, the other user categories may not be able to satisfy 

their latency requirements. The third issue is that traditional SLAs often consider QoS 

requirements as their average (e.g., average latency). This fails to consider fluctuation/variance 

in runtime QoS measures. 

This paper is closely aligned with the paper in [1] by implementing and evaluating the 

authors’ proposed optimization algorithm, which addresses these research issues. Given multiple 

configurations, application developers can better understand the trades among QoS objectives 
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and make a well-informed decision to choose the best deployment configuration for them 

according to their requirements and preferences.  

Simulation results demonstrate that quality deployment configurations that satisfy given 

SLAs by heuristically examining very limited regions in the entire search space. 

3.2.  Work Flow and Service Deployment 

In a Cloud environment, a workflow consists of a set of services connected based on 

service dependencies. An example workflow in Figure 2 consists of four services. It has a branch 

after Service 1 and executes Service 2 and Service 3 in parallel and Service 4. In order to process 

requests, each service is instantiated as a service instance and deployed on a particular 

deployment plan. A set of service instances and deployment plans is collectively called a 

deployment configuration. 

 

Figure 2. Example of a workflow 

In Figure 3, Service 1 is instantiated as three service instances and deployed on two-

deployment plan 1 and one deployment plan 3. We assume that a deployment plan cannot 

operate more than two service instances of the same service, but it can have instances of different 

services at a time. Deployment plan 2 in Figure 3 has two service instances. Each deployment 

configuration can have arbitrary number of deployment plans and service instances to improve 
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the service’s latency. A deployment configuration is assumed to have one access point equipped 

with a load balancer (Figure 3). Load balancer’s algorithm must be the same as that of a load 

balancer that an application under development uses. Currently a round robin and CPU load 

balancing algorithm is supported, which dispatches requests to balance deployment plans CPU 

usage. When a deployment configuration uses a round robin load balancer, requests for a certain 

service are dispatched to corresponding service instances with equal probability. For example, in 

Figure 2, when a deployment configuration receives 1,800 requests for Service 1, every second 

each instance of Service 1 receives 600 requests for every second since three instances are 

deployed in deployment configuration. 

 

Figure 3. Example of a Deployment Configuration 

Figure 3 illustrates how an application processes requests from users. When a user sends 

a request to an application, it calls a series of service instances in its deployment configuration 
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according to its workflow and sends the response back to the user. In this example, once 

receiving a request from a user, an application calls one of Service 1’s instances, waits for a 

response from the service instance, calls Service 2 and Service 3 instances in parallel, waits for 

responses from them, then calls the Service 4 instance. A SLA is defined with end-to-end 

throughput, latency and cost of an application. In order to judge whether an application satisfies 

a given SLA, it is required to examine its end-to-end QoS by aggregating measures of individual 

services. 

 

Figure 4. Example of an application 

In this algorithm, the maximum cost of the application is fixed. Therefore, each workflow 

will not have deployment plans more than the summation of each deployment plans cost for each 

user category. The end-to-end throughput is same as the throughput defined in the SLA and 

latency is obtained by leveraging queuing theory to the deployment configurations. 
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3.3. Latency Distribution of Service Instances 

In order to estimate the performance of distributed systems, queuing theory is a well-

established method used in a large number of research studies. The algorithm estimates each 

service instance’s latency in a workflow by leveraging queuing theory, and obtains the end-to–

end latency by applying QoS aggregate functions. 

Consider 𝑢𝑢  be the mean unit service rate, which is the average number of requests 

processed per unit time by a service instance running on a unit CPU (e.g., 1GHz CPU). 𝑢𝑢 is the 

inverse of the mean request processing time. According to queuing theory, when a service 

instance runs on a deployment plan with various CPU configurations, and under various request 

arrival rate, it estimates probability distribution of latency when a service instance runs on a 

deployment plan, if the mean unit service rate 𝑢𝑢  of each service instance is known. From 

Equation 1, 𝜆 is the mean request arrival rate, which is the average number of requests to a 

service instance per unit time. By assuming that all services mean unit service rates in the work 

flow are know, we can calculate the probability that the latency (waiting time W in a queue) if 

the mean request arrival rate 𝜆 of every service instance runs on a deployment plan with 𝑛 CPU 

cores each of then is 𝑝 times faster than a unit CPU is given [10,21]. 

Pr(𝑊 ≥  𝛼) =  [
𝑛𝑃𝑛

𝑛 − 𝜌⁄ ]  exp (−2(𝑛 − 𝜌)𝛼) 

                                                                 𝜌 =  𝜆
(𝑝𝜇𝜇)⁄  (1) 

𝑝𝑛 =  𝑝0(𝜌𝑛 𝑛!⁄ ) 

𝑝0 =  
1

⟦∑
𝑝𝑘

𝑘!
𝑛−1
𝑘=0 +  

𝜌𝑛

(𝑛 − 1)! (𝑛 − 𝜌)
⟧
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For example consider a deployment plan in which multiple service instances are deployed 

as shown in the Figure 5, where Service a and b run on a deployment plan. Let 𝑢𝑢𝑎and 𝑢𝑢𝑏 be 

the mean unit request rate of service a and b, respectively. 𝜆𝑎 and 𝜆𝑏 be the mean request arrival 

rates of the services. Here as multiple service instances run on one deployment plan, portion of 

CPU power is assigned to each service instance based on their CPU usage. From Figure 5, for 

each CPU core, service a and b occupy 𝜌𝑎 =  
𝜆𝑎

(𝑛𝑝𝑢𝑢𝑎)⁄  and 𝜌𝑏 =  
𝜆𝑏

(𝑛𝑝𝑢𝑢𝑏)⁄  of CPU power. 

Therefore, for each CPU core, (1 - 𝜌𝑏) and (1- 𝜌𝑎) are available portion of CPU for service a and 

service b, respectively. As each service cannot use complete CPU power, their service rate are 

reduced to 
𝑝𝑢𝑢𝑎

(1 − 𝜌𝑏)⁄  and 
𝑝𝑢𝑢𝑏

(1 − 𝜌𝑎)⁄ . The reduced service rates are applied to Equation 

1 when calculating the service instance’s latency. 

 

Figure 5. Example of services in deployment plan 

When CPU usage exceeds its power, the service rates are reduced so that 𝜌𝑎 +  𝜌𝑏 = 1. 

In order to obtain the probability distribution of the end to-end latency, a Monte Carlo method 

has been adapted since a simple aggregation (e.g., summation of each service’s average latency) 

cannot reveal the probability distribution and lead to a too pessimistic estimation.  

The algorithm simulates the end-to-end latency of one request by: 
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1.  Selecting services to execute (a path in a workflow) according to branching probabilities (all 

services are executed if a workflow has no branches),  

2.  For each service selecting one of instances according to their throughput (an instance with 

larger throughput has higher chance to be selected), 

3.  By determining each instance’s latency (a certain value) according to the probability 

distribution, and  

4.  By aggregating the latency by applying aggregate functions in Table 1. By repeating this 

process many times, i.e., simulating many requests to an application, the algorithm 

approximates the probability distribution of the end-to-end latency. 

Table 1. Latency Aggregation 

 Sequence Parallel 

Latency (L) ∑ 𝐿𝑠

𝑠⟶𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠

 max
𝑠→𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠

𝐿𝑠 
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4. IMPLEMENTATION 

4.1. Genetic Operations 

4.1.1. Population 

The algorithm maintains a population of individuals, each of which represents a service 

deployment configuration for each user category and encodes it as genes. As the generations 

proceed, the genes evolve and optimize the individuals in generations by repeatedly applying 

genetic operations to them. 

Currently, it is assumed that three user categories: Category 1, 2 and 3. Figure 6 shows an 

example individual. An individual consists of three sets of genes, each of which represents a 

deployment configuration for each user category. A deployment configuration consists of 

deployment plans and service instances. An example in Figure 6 assumes that four types of 

deployment plans are available and three services are defined in a workflow. A deployment plan 

is encoded as a set of four genes; the first gene indicates the type of the deployment plan (i.e., 0 

to 3 represents the index of the type), and the second to fourth genes indicate whether an instance 

of a certain service is deployed on it, i.e., 1 indicates that an instance is deployed. Therefore, the 

first four genes in the example, i.e., 2011, represent a deployment plan of the third type that 

instances of the second and third services are deployed on. Since a deployment configuration can 

have arbitrary number of deployment plans, the number of genes varies depending on the 

number of deployment plans. 
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Figure 6. Example of an Individual 

4.1.2. Fitness Function 

The fitness function is designed to seek individuals that satisfy given SLAs and minimize 

the end-to-end latency as QoS objective. In order to fulfill these requirements, the fitness 

function estimates the distribution of service instances’ latency as explained in Section 2. Table 1 

describes the aggregation functions used when the services are connected in sequence or in 

parallel in a workflow.  

4.1.3. Selection 

Genetic Algorithms use a selection mechanism to select individuals from the population 

to insert into a mating pool. Individuals from the mating pool are used to generate new offspring, 

with the resulting offspring forming the basis of the next generation. As the individuals in the 

mating pool are the ones whose genes are inherited by the next generation, it is desirable that the 

mating pool be comprised of "good" individuals. A selection mechanism in GAs is simply a 

process that favors the selection of better individuals in the population for the mating pool. For 

this algorithm, a binary tournament as the selection mechanism is used, where two individuals 

are randomly selected by selecting the individual with the higher fitness. 
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Table 2. Parameters used in the simulations 

G(max) Maximum number of Generations 

U Population Size 

Q(g) A set of offspring generated at g-th 

generation 

crossover(p1, p2) A function returning two individuals created 

by one point crossover between p1 and p2 

mutation(p) A function randomly changing p’s values 

with 1/n mutation rate 

randomSelection(P) A function returning two randomly selected 

individuals from P 

fitSelection(p1, p2) A function returning either p1 or p2 that has a 

higher fitness value 

P(g) A Set of individuals at the g-th generation 

 

4.1.4. Crossover 

 A one-point crossover operation is performed on genes for each user category. When it 

performs a crossover on two individuals, the crossover operation first picks a set of genes for 

Category 1 users from both two individuals, selects a crossover point on each gene and performs 

a crossover. A crossover point is randomly selected from points dividing deployment plans. For 

example, in Figure 7, a crossover point must be between 4i -th and 4i+ 1-th genes, e.g., 4th and 
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5th or 8th and 9th genes, since a deployment plan is encoded as a set of four genes, crossover 

operation performs crossover on genes for gold users and silver users as well. 

 

Figure 7. Crossover operation 

4.1.5. Mutation 

The mutation operation is designed to change the value of genes and the number of genes 

in an individual. First, in order to provide an opportunity to add a new deployment plan to a 

deployment configuration, the mutation operation adds an empty deployment plan, i.e., a 

deployment plan that no service instances run on, before mutating genes (the type of a 

deployment plan is randomly selected). Mutation occurs on genes with the mutation rate of 1=n 

where n is the number of genes in an individual. When a mutation occurs on a gene used for 

specifying the type of a deployment plan, its value is randomly altered to represent another type 

of deployment plan. When a mutation occurs on a gene used for indicating the existence of a 

service instance, its value is changed from zero to one or one to zero, i.e., non-existent to existent 

or existent to non-existent. Therefore, mutation may turn a newly added empty deployment plan 

into non-empty and may turn existing non-empty deployment plans into empty. After that, the 

mutation operation examines each deployment plan and removes empty deployment plans from a 
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deployment configuration. This way, the number of genes (the number of deployment plans) in 

an individual may change. 

 

Figure 8. Mutation operation 

4.1.6. Algorithm 

The optimization process starts with randomly generated 𝑢 individuals of population 𝑝𝑔 

at generation 𝑔. Two parents 𝑝𝛼 and 𝑝𝛽 are randomly selected via binary tournament and they 

reproduce two offspring by performing a one-point crossover operation. The offspring 

individuals are mutated. This process is repeated until the number of offspring population 

reaches 𝑢 individuals. Then top 𝑢 individuals are selected based on their fitness values for the 

next generation. This process continues until the maximum number of generations is reached. 

Table 2 show the parameters used in the algorithm. 

 

Step 0: Start 

Step 1: 𝑔 ⇠ 0 

Step 2: 𝑃0 ⇠ Population (A randomly generated 𝑢 individuals) 
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Step 3: Repeat Until g = 𝑔𝑚𝑎𝑥 (maximum number of generations) 

Step 4: Assign Fitness Values to Individuals (𝑃𝑔) 

Step 5: 𝑄𝑔  ⇠  𝜙 

Step 6: Repeat Until |𝑄𝑔| == 𝑢 

Step 7: 𝑝𝑎, 𝑝𝑏 ⇠  𝑃𝑔 (Randomly Selected Individuals via binary tournament) 

Step 8: 𝑝𝛼  ←  𝑝𝑎 𝑜𝑟 𝑝𝑏 (Individual Selected with higher fitness value) 

Step 9: 𝑝𝑎, 𝑝𝑏 ⇠  𝑃𝑔 (Randomly Selected Individuals via binary tournament) 

Step 10: 𝑝𝛽  ←  𝑝𝑎 𝑜𝑟 𝑝𝑏 (Individual Selected with higher fitness value) 

Step 11: 𝑞𝑎, 𝑞𝑏  ←  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑝𝛼, 𝑝𝛽) (A one point crossover operation is performed) 

Step 12: 𝑞𝑎  ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑞𝑎) (Mutation operation is performed) 

Step 13: Add 𝑞𝑎 to 𝑄𝑔 if 𝑄𝑔 does not contain 𝑞𝑎 

Step 14: 𝑞𝑏  ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑞𝑏) (Mutation operation is performed) 

Step 15: Add 𝑞𝑏 to 𝑄𝑔 if 𝑄𝑔 does not contain 𝑞𝑏 

Step 16: Go to Step 6 

Step 17: Assign Fitness Values to Individuals (𝑃𝑔  ∪  𝑄𝑔) 

Step 18: 𝑃𝑔+1  ←   (𝑃𝑔  ∪  𝑄𝑔) (Select top 𝑢 Individuals in terms of Fitness value) 

Step 19: 𝑔 ← 𝑔 + 1 

Step 20: Go to Step 3 

Step 21: End 
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5. SIMULATION AND RESULTS 

5.1.  Simulations 

The algorithm is evaluated through a simulation study. This simulation study simulates 

different workflows. When running on a deployment plan with one 1.0 GHz CPU, each service 

instance possess different requests per second. For example for Figure 1, Service 1, 2, 3 and 4 

process 25, 23, 21, and 19 requests/second, respectively. Table 3 & 4 shows the SLAs used in 

this simulation study. The simulation study assumes 25 category 1 users, 90 of category 2 users, 

and 750 of category 3 users access to the application on the average and allows users in each 

category to send 2, 1 and 0.2 requests per second. Therefore, the required throughput of category 

1, 2 and 3 is 50, 90 and 150 requests per second, respectively. The workflow used in the 

simulation 1 is Service 1 and Service 2, 3 in parallel, and Service 4 in sequence and the 

workflow for Simulation 2 is Service 1, Service 2, 3, 4 in parallel, Service 5, 6 in parallel, and 

Service 7 in sequence. The users have the average latency of 0.40, 0.45, and 0.45 for category 1, 

2 and 3 users, respectively for Simulation 1, and the users have the frequent latency of 0.2, 0.35 

for category 1 and category 2 users, and the latency is not available for category 3 users for 

Simulation 2. There is a limit on the total costs incurred by all of three user categories, which is 

$1000. The Genetic algorithm uses the population size of 100 and the maximum generation of 

150. 

Table 3 shows the SLAs used in the first simulation study, and Table 4 shows the SLAs 

used in the second simulation study, and Table 5 shows the deployment plans used in both 

simulations. 
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Table 3. SLA used in the Simulation1 

SLAs 

User Category Throughput (Req/Sec) Latency (Sec) 

(Average) 

Cost ($) Total Cost ($) 

User Category 1 50 0.55 N/A 1,000 

User Category 2 90 0.45 N/A 

User Category 3 150 0.58 N/A 

 

Table 4. SLA used in the Simulation 2 

SLAs 

User Category Throughput (Req/Sec) Latency (Sec) 

(Frequent) 

Cost ($) Total Cost ($) 

User Category 1 50 0.20 N/A 1,000 

User Category 2 90 0.35 N/A 

User Category 3 150 N/A N/A 

 

5.2. Results 

Figure 9, 10 and 11 shows what the mean and minimum latency of Simulation1 yield for 

Category 1,2 and 3 users where the individuals successfully evolve and satisfy SLA for all the 

user categories. Figure 12, 13 and 14 show the mean and minimum latency of Simulation 2. 

Results are obtained through multiple runs and satisfy the given SLAs. 
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Table 5. Deployment plans 

Name CPU Core Speed (GHz) Number of Cores Cost ($) 

High 1.0 4 50 

Mid 1.2 2 30 

Low 1.5 1 10 

 

Simulation 1 starts with the workflow of {s1, {s2, s3}, s4} which posses mean unit 

service rates of {25, 23, 21, 19}. The throughput is 50, 90 and 150 req/sec user category 1, 2 and 

3, respectively, and the total cost limit is $1,000. 

 

Figure 9. Mean and Minimum Latency of Simulation 1 for User Category 1 

Figure 9 shows the mean and minimum latency for user category 1, which satisfies the 

average latency given in the SLA. 
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Figure 10. Mean and Minimum Latency of Simulation 1 for User Category 2 

Figure 10 shows the mean and minimum latency for user category 2, which satisfies the 

average latency given in the SLA. 
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Figure 11. Mean and Minimum Latency of Simulation 1 for User Category 3 

Figure 11 shows the mean and minimum latency for user category 3, which satisfies the 

average latency given in the SLA. 

Simulation 2 starts with the workflow of {s1, {s2, s3, s4}, {s5, s6}, s7} which possess 

mean unit service rates of {29, 24, 22, 20, 21, 22, 27}. The throughput is 50 req/sec and the total 

cost limit is $1,000. 
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Figure 12. Mean and Minimum Latency of Simulation 2 for User Category 1 

Figure 12 shows the mean and minimum latency for User Category 1 for simulation 2. 

The frequent latency is minimized to 0.2 as its optimal solution as the generations evolve and 

satisfying the given SLA. 
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Figure 13. Mean and Minimum Latency of Simulation 2 for User Category 2 

Figure 13 shows the mean and minimum latency for user category 2 for simulation 2, 

which satisfies the frequent latency given in the SLA, in which latency is minimized from 0.65 to 

0.35 as the generations evolve finding the optimal solution in the search space. 
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Figure 14. Mean and Minimum Latency of Simulation 2 for User Category 3 

Although, user category 3 does not have any latency requirement in the SLA, the 

algorithm lowers the latency. Figure 14 shows the minimized latency for the user category 3 as 

the latency is optimized to its minimum. 
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6. CONCLUSION 

6.1. Summary 

In this paper, a genetic algorithm, that was previously proposed [11], is implemented to 

solve the SLA aware Service Deployment Optimizer (SSDO) problem in Cloud computing 

environments. To solve the large-scale SSDO problem, it is required to use the heuristic methods 

like Genetic Algorithms [23-25], as they scale better than linear programming methods. By 

leveraging queuing theory applied to the SSDO problem [31-35], the paper has implemented a 

genetic algorithm to optimize the latency of the service instances deployment in different 

workflows. Simulation results estimate the performance of the application by optimizing the 

deployment configurations and allowing the user to describe the latency in a probabilistic 

manner.  

6.2. Future Improvements 

The paper takes into consideration only the total cost as the objective but does not 

consider the individual cost for each user category, and the throughput is assumed to be the 

throughput as described in the SLA. Future work may include the cost and throughput as end-to-

end QoS objectives to minimize the cost for each user category and maximize the throughput of 

the deployment configurations.  
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