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ABSTRACT 

The necrotrophic fungus Parastagonospora nodorum (teleomorph; Phaeosphaeria 

nodorum), is the causal agent of Septoria nodorum blotch (SNB) on common wheat (Triticum 

aestivum L.) and durum wheat (Triticum turgidum L.). SNB is a serious foliar and glume disease 

which causes significant yield losses in major wheat growing areas and has serious impact on 

grain quality. P. nodorum produces necrotrophic effectors (NEs) that are recognized by and 

interact with dominant host sensitivity genes in an inverse gene-for-gene manner. The NE-host 

interaction is critical to induce necrotrophic effector-triggered susceptibility (NETS), resulting in 

SNB disease. To date, nine NE-host sensitivity gene interactions, following a NETS model, have 

been identified in the P. nodorum-wheat pathosystem. One of the NE-host sensitivity gene 

interactions, SnTox6-Snn6 interaction was characterized in this study. The SnTox6-Snn6 

interaction was shown to be light dependent and Snn6 was located to a major disease 

susceptibility QTL on wheat chromosome 6A. SnTox1, another NE first identified in our lab, 

interacts with the corresponding wheat sensitivity gene Snn1. SnTox1 was further characterized 

in this study. The SnTox1 protein harbors C-terminal domains with a high degree of structural 

homology to plant chitin binding proteins and was subsequently shown to bind chitin, a main 

component of the fungal cell wall. Therefore, SnTox1 was hypothesized to compete with wheat 

chitinases to bind chitin, preventing fungal cell wall degradation. To investigate this hypothesis, 

the SnTox1 binding affinity with chitin was tested, as well as its potential function in the 

protection against chitinases during fungal mycelial growth. To identify additional NE regions, 

genome wide association study (GWAS) technology was used. A global collection of 191 P. 

nodorum isolates were genotyped using a restriction-site associated DNA genotyping by 

sequencing (RAD-GBS) protocol to identify SNP markers. Phenotypic data including fungal 
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inoculations and culture filtrate infiltrations were collected using 191 P. nodorum isolates across 

several wheat lines. GWAS analyses were performed by regressing the phenotypic data and 

genotypic data by running multiple GWAS models.  
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GENERAL INTRODUCTION 

Plant pathogens are often classified into two groups, the biotrophic pathogens and the 

necrotrophic pathogens. Necrotrophic pathogens derive food from dead and dying cells (Agrios, 

1997) and they kill the host cell quickly after infection and feed on the remains (Glazebrook, 

2005). In this process, the necrotrophic effectors (NE, formerly called host-selective toxins or 

HSTs) are critical for disease development. NEs determine the virulence and pathogenicity of the 

pathogens that produce them (Wolpert et al., 2002). NEs are toxic only to the plants that serve as 

hosts for the pathogens and have little or no toxicity against non-susceptible plants (Prell and 

Day, 2001). Currently, many NEs have been identified and their modes of action have been 

described (Wolpert et al., 2002). Recently, at least nine NEs have been identified in the 

necrotrophic fungus Parastagonospora nodorum (teleomorph; Phaeosphaeria nodorum), the 

causal agent of Septoria nodorum blotch (SNB) on common wheat (Triticum aestivum L.) and 

durum wheat (Triticum turgidum L.). NEs have been shown to play an important role in disease 

development (Friesen et al., 2008b). SNB is a serious foliar and glume disease which causes 

significant yield losses in major wheat growing areas and has serious impact on grain quality 

(King et al., 1983; Fried and Meister, 1987; Wicki et al., 1999). P. nodorum - produced NEs are 

recognized by and interact with dominant host sensitivity genes in an inverse gene-for-gene 

manner (Liu et al., 2004a; Liu et al., 2004b; Friesen et al., 2006; Liu et al., 2006; Friesen et al., 

2007; Friesen et al., 2008b; Abeysekara et al., 2009b). The NE-host interaction is critical to 

inducing necrotrophic effector-triggered susceptibility (NETS). To date, nine NE-host sensitivity 

gene interactions, following a NETS model, have been identified in the P. nodorum-wheat 

pathosystem including SnTox1-Snn1 (Liu et al., 2004a), SnToxA-Tsn1 (Friesen et al., 2006; 

Faris et al., 2010), SnTox2-Snn2 (Friesen et al., 2007), SnTox3-Snn3-B1 (Friesen et al., 2007; 
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Liu et al., 2009), SnTox3-Snn3-D1 (Zhang et al., 2011), SnTox4-Snn4 (Abeysekara et al., 

2009a), SnTox5-Snn5 (Friesen et al., 2012), SnTox6-Snn6 (Gao et al., 2015, this study) and 

SnTox7-Snn7 (Shi et al., 2015).  

The first objective in this study was to use a wheat mapping population that segregated 

for sensitivity to NEs produced by the local P. nodorum isolate Sn6 to identify and characterize a 

new interaction involving the NE designated SnTox6 and the host sensitivity gene designated 

Snn6. SnTox6 is a small secreted protein that induces necrosis on wheat lines harboring Snn6. 

The SnTox6-Snn6 interaction was light dependent and was shown to underlie a major disease 

susceptibility QTL on wheat chromosome 6A. This work expands the knowledge of the wheat-P. 

nodorum interaction and further establishes the SNB system as a model pathosystems for 

necrotrophic specialist interactions. 

The second objective was to functionally characterize SnTox1 to define its role in 

pathogenesis. The interaction of SnTox1-Snn1 was first identified in our lab. SnTox1 was shown 

to correspond with the wheat dominant sensitivity gene Snn1 and induced an oxidative burst, 

DNA laddering, and up regulation of pathogen related (PR) genes such as PR-1 and chitinase 

genes (Liu et al., 2012). These responses result in susceptibility rather than resistance of wheat 

cultivars which carry the Snn1 gene. Interestingly, the SnTox1 protein harbors C-terminal 

domains with a high degree of structural homology to plant chitin binding proteins (Liu et al., 

2012) and was subsequently shown to bind chitin, a main component of the fungal cell wall. 

Therefore SnTox1 was hypothesized to compete with wheat chitinases to bind chitin and prevent 

fungal cell wall degradation. To investigate this hypothesis, first the SnTox1 binding affinity for 

different forms of chitin and chitosan was tested. Secondly, the protection function of SnTox1 

was tested for mycelial growth against chitinase. In this study, two wheat chitinases were cloned 
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and expressed and were used to treat several fungal species including P. nodorum, Neurospora 

crassa, Pyrenophora teres f. teres and Cercospora beticola. This study supported evidence that 

SnTox1 has two functions in pathogenesis (i.e. induction of cell death and protection from 

chitinases). 

The third objective was to identify additional NE regions using genome wide association 

study (GWAS) technology. As mentioned above, the NEs produced by P. nodorum are 

recognized directly or indirectly by wheat dominant sensitivity genes that confer susceptibility. 

Until now, three NE genes have been cloned including SnToxA, SnTox1 and SnTox3. To 

identify more NE gene regions, I used GWAS using a global collection of 191 isolates (13 US 

states, Australia, Denmark, Finland, Latvia, Lithuania, Norway, Sweden, Brazil, Switzerland, 

China, South Africa, and Iran). All 191 isolates were genotyped by RAD-GBS and the virulence 

of the 191 isolates were phenotype onto four wheat differential lines including BG223 (SnTox2 

sensitive), ITMI37 (SnTox6 sensitive), ITMI44 (SnTox5 sensitive), and LP29 (SnTox5 

sensitive) to identify SnTox2, SnTox6, and SnTox5 genes. Marker trait association were 

performed using different models including naive, population structure (Q model), kinship (IBS 

model), and population structure + kinship (Q+IBS). GWAS analysis was shown to be useful to 

identify the genomic regions associated with NE sensitivity and pathogen susceptibility.  
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CHAPTER 1. LITERATURE REVIEW 

Wheat 

The evolution of wheat 

Wheat is an important cereal grain crop cultivated worldwide. It is a member of the grass 

family (Poaceae) which includes other crop plants such as sorghum, maize, rice, and barley. 

Under the Poaceae family, wheat (Triticum), barley (Hordeum), oat (Avena), and brome 

(Brachypodium) have been grouped in the sub-family of Pooidea. The other two sub-families are 

Panicoideae (Represented by sorghum and maize) and Ehrharloideae (represented by rice). All 

the grass species are believed to have evolved from a common ancestor 50-70 million years ago 

through genome duplication and chromosome fusion (Bolot et al., 2009). The phylogenetic 

analysis based on RFLP genome mapping of the species revealed that wheat has the closest 

relationship with barley. Brome is relatively more related to wheat compared to oats and rice. 

Sorghum and maize have a distant relationship to wheat (Kellogg, 2001; Gaut, 2002). All wheat 

species belong to the genus Triticum. This genus contains six species: Triticum monococcum L. 

(AA genome), T. urartu Tumanian ex Gandilyan (AA genome), T. turgidum L. (AABB 

genome), T. timopheevii (Zhuk.) Zhuk. (AAGG genome), T. aestivum L. (AABBDD genome), 

and T. zhukovskyi Menabde & Ericz (AAAAGG genome). All the species can be grouped into 3 

sections: Monococcon (einkorn wheat), containing diploid species; Dicoccoidea (emmer wheat), 

containing tetraploid species; and Triticum (common wheat), containing hexaploid species. In 

these six species, T. urartu Tumanian ex Gandilyan was found only in wild, and the two 

hexaploid species, T. aestivum L. and T. Zhukovskyi Menabde & Ericz were found only in 

cultivated form. The other three species can be found in both wild and domesticated forms 

(reviewed in Matsuoka, 2011). The evolution of wheat is postulated to be the result of the 
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allopolyploidization through hybridization with species in the genus of Aegilops (Tsunewaki, 

2009). The species in the section Monococcun is thought to have diverged about 1 million years 

ago (Huang et al., 2002). The evolution of wild tetraploid T. turgidum ssp. dicoccoides (Körn Ex 

Asch. & Graebn Thell) (AABB genome) and T. timopheevii ssp. armeniacum (Jakubz) van 

slageren (AAGG genome) happened about 0.5 million years ago and after the divergence of  T. 

monococcum and T. urartu (Faris et al., 2002). T. turgidum and T. timopheevii were evolved by 

the hybridization between T. urartu Tumanian ex Gandilyan (2n=2x=14, AA) and two plasmon 

types of diploid Ae. speltoides Tausch (SS genome). During this evolution, two independent 

hybridizations happened and were believed to be associated with the origin of T. turgidum and T. 

timopheevii (reviewed in Matsuoka, 2011). The diversification within the AABB and AAGG 

genome species likely happened through allopolyploid hundreds of thousands of years later. In 

the period of agricultural development in the Fertile Crescent (about 10,000 years ago), T. 

turgidum, T. timopheevii and T. monococcum were domesticated (Feldman, 2000; Salamini et al., 

2002). The natural hybridization that occurred between the tetraploid cultivars and the diploid 

Aegilops and Triticum species resulted in the evolution of hexaploid Triticum. The species T. 

aestivum was believed to have arisen through spontaneous hybridization between T. turgidum 

and A. tauschii Coss (DD genome donor) 8,000 years ago (Kihara, 1944; McFadden and Sears, 

1944), while T. zhukovskyi was produced through hybridization between T. timopheevii and T. 

monococcum (Kihara, 1966; Dvorak et al., 1993).  

Based on the events of common wheat evolution, it is believed that the diploid goatgrass 

species Ae. tauschii Coss is the donor of the DD genome, and T. urartu is the donor of the AA 

genome. Ae. speltoides was designated the donor of the BB genome. However some studies 

showed that the BB genome is highly diverse among the species in the genus Aegilops, and at 
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first it was designated as the SS genome rather than BB. In addition, the BB genome of Ae. 

speltoides is also shared by Ae. bicornis (Sb), Ae. longissima (Sl), Ae. searssii (Ss), and Ae. 

sharonesis (Ssh). So the origin of the BB genome is still under debate (Slageren and Areas, 

1994). The most popular hypothesis is that Ae. speltoides, whose S genome is close to the B 

genome of bread wheat is the B genome donor of bread and durum wheat, based on supporting 

evidences including karyotype data, C-banding of chromosomes, cytology, electrophoretic 

mobilities of proteins, the geographical distributions of wild wheat, low-copy and repetitive 

DNA sequence analysis by restriction fragment length polymorphism (RFLP) technique and 

plasmon analysis (Faris et al., 2002). It has been concluded that the D genome originated from 

Ae. tauschii, the A genome from T. urartu and the B genome from Ae. speltoides. In polyploid 

wheat, the B genome is shown to be higher in diversification than the A genome (Faris et al., 

2002; Petersen et al., 2006). 

Domestication of wheat 

It is generally agreed that wheat cultivation started about 10,000 years ago (Shewry, 

2009) during the Neolithic period when hunters and gatherers started practicing agriculture. 

Einkorn wheat (T. monococcum) which arose from its wild progenitor, T. boeticum was the first 

species of wheat to be domesticated and eventually cultivated (Heun et al., 1997). This diploid 

species of wheat was a useful crop before the Bronze Age. It’s cultivation however, ceased in the 

Bronze Age in favor of polyploid wheats that were better suited to various climates and had 

better harvesting properties (Salamini et al., 2002). The second species of wheat to be 

domesticated was emmer, T. dicoccum which is tetraploid and was domesticated from its wild 

progenitor T. dicoccoides. The difference in polyploid wheat gives emmer superior cultivation 

advantage over einkorn. Domesticated emmer is easy to handle during harvest due to its tough 
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rachis that keeps spikelets intact (Salamini et al., 2002). The final and probably the most 

important stage of wheat domestication was the discovery of free-threshing wheat of greater 

polyploid status.  This event included domestication of durum wheat and bread wheat. Durum 

wheat is tetraploid and known to have been domesticated from its ancestor T. dicoccum. Like 

most hexaploid wheat, durum wheat is free-threshing and cultivated worldwide for making pasta 

(Peng et al., 2011).   The modern species of wheat, mostly cultivated hexaploid bread wheat, T. 

aestivum which has no known ancestor resulted from a cross between two different species; 

diploid wild grass T. tauschii and tetraploid emmer wheat (Dubcovsky and Dvorak, 2007; 

Shewry, 2009; Charmet, 2011). This hybridization probably happened by accident as the 

cultivation of emmer wheat expanded.  

Major wheat diseases and defense mechanisms 

According to a disease survey performed by North Dakota State University, major wheat 

diseases in the U.S include common bunt caused by Tilletia caries, Fusarium head blight caused 

by Fusarium spp., loose smut caused by Ustilago tritici, Septoria nodorum blotch caused by 

Parastagonospora nodorum, leaf rust caused by Puccinia triticina, Septoria tritici blotch caused 

by Zymoseptoria tritici, stem rust caused by Puccinia graminis, stripe rust caused by Puccinia 

striiformis, tan spot caused by Pyrenophora tritici-repentis, Cephalosporium stripe caused by 

Cephalosporium gramineum, common root rot caused by Cochliobolus sativus, bacterial streak 

caused by Xanthomonas campestris, and virus diseases including barley yellow dwarf, wheat soil 

borne mosaic and wheat spindle streak mosaic. Most disease losses are caused by fungal 

pathogens. The complex of SNB and STB were regarded as the most common diseases, since 

Septoria nodorum blotch (SNB) was found together with Septoria tritici blotch (STB) in many 

wheat growing regions (McMullen et al., 2002). 
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To invade plants, fungal pathogens can develop feeding structures, or directly enter host 

epidermal cells. After successful entry into the host cell by pathogens, plants develop a series of 

immune events including an oxidative burst, defense gene induction and deposition of callose-

rich papillae, and biosynthesis of salicylic acid or jasmonic acid to regulate local or systemic 

defense mechanisms (Eulgem et al., 1999; Flors et al., 2005; Torres et al., 2006; Heil and Ton, 

2008).  

The evolution of the plant immune system can be described as a zigzag model (Jones and 

Dangl, 2006). In phase 1, plants sense the invasion of a pathogen by recognition of pathogen-

associated molecular patterns (PAMP), also referred to as microbe-associated molecular patterns 

(MAMP), which include flagellin, chitin, glycoproteins or lipopolysaccharides (Ahmad et al., 

2010). PAMPs and MAMPs are thought to be recognized by pattern-recognition receptors (PRR) 

resulting in PAMP-trigger immunity (PTI). In phase 2, virulent pathogens produce effectors to 

suppress PTI and overcome the basal defense of their host. This event is referred to as effector 

triggered susceptibility (ETS). In phase 3, selected plant varieties develop NB-LRR resistant 

proteins (R proteins) to recognize specific effectors, giving rise to a hypersensitive response 

(HR) to limit the growth of pathogens at certain stages of invasion. This event is referred to as 

effector-trigger immunity (ETI). In phase 4, under the pressure of ETI, selected pathogen isolates 

modify or eliminate the original effectors and evolve new effectors, while the host concurrently 

develops new R proteins to recognize the new effectors that trigger ETI (Jones and Dangl, 2006). 

Septoria nodorum blotch (SNB) of wheat 

Distribution and importance of SNB 

SNB is a serious foliar and glume disease which has caused significant yield losses in the 

major wheat growing areas and has had serious impact on grain quality (King et al., 1983; Fried 
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and Meister, 1987; Wicki et al., 1999). SNB was first reported in 1845 by Berkeley in England 

as glume blotch on wheat. According to a 1919 disease survey report , SNB caused 0.25% and 

0.5% yield loss in Delaware and Maryland, respectively (Weber 1992). By 1922, SNB had been 

reported in many countries including Italy, Sweden, Switzerland, Germany, France, Australia 

and the U.S. (Weber, 1992). Since 1945, SNB has been reported as leaf and glume blotch in 

additional countries or regions including Canada (Machacek, 1945), Argentina, Brazil, India, 

Western Europe (Scharen, 1964a), Asia and Africa (Saari and Wilcoxson, 1974). In the U.S., 

SNB was reported as a common disease in the Southeastern wheat-growing area (Shaner and 

Buechley, 1995) and under favorable conditions, SNB has been shown to cause 30% yield loss in 

wheat (Bhathal et al., 2003).  In the southeastern U.S., yield loss caused by SNB achieved 30-

50% for some vulnerable wheat cultivars (Scharen and Krupinsk, 1969; Nelson et al., 1974). 

SNB has also been reported to cause 31% yield loss in Australia (Bhathal et al., 2003) and 50% 

in Europe (Karjalainen et al., 1983). 

Symptom development 

In SNB disease, infected leaves are initially water soaked with small chlorotic lesions. As 

the disease develops, the lesions expand to become lens shaped and turn from yellow to red-

brown. Finally, more lesions with gray-brown color coalesce resulting in whole tissue death. Pin-

point brown specks (pycnidia) are shown on the center of lesions, a sign of SNB disease. On the 

glumes, lesions develop from the tip and then cover the whole glume becoming dark brown to 

dark purple, resulting in a completely dried appearance. The infected leaves and glumes may 

result in shriveled kernels (Liu, 2006). 
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Causal organism 

The causal agent of SNB disease is the necrotrophic fungus, Parastagonospora (syn. 

Septoria, Leptosphaeria, Stagonospora) nodorum (teleomorph: Phaeosphaeria nodorum), which 

attacks both common wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L.). It 

belongs to the order Pleosporales which is under the Dothideomycete class of the Ascomycetes. 

The asexual state was first described as Septoria nodorum in the 1850s by Miles Berkeley (Eyal, 

1987). In 2001, Septoria nodorum was moved from the genus Septoria to Stagonospora, based 

on ITS sequence analysis (Goodwin and Zismann, 2001).  Quaedvlieg et al. (2013) analyzed the 

sequences of the partial 28S nuclear ribosomeal DNA and RPB2 genes of 347 isolates 

representing 170 species in the genus Stagonospora and found several cereal pathogens, 

including P. nodorum, were distinguished from other species. The morphology of 

Parastagonospora and Stagonospora differ in that the conidia spores of Parastagonospora are 

cylindrical, granular to multi-guttulate, while that of Stagonospora are subcylindrical to fusoid-

ellipsoidal. The Sexual stage of Parastagonospora are phaeosphaeria-like, while that of 

Stagonospora are didymella-like (Quaedvlieg et al., 2013). Therefore, P. nodorum was move to 

the genus Parastagonospora and renamed as Parastagonospora nodorum. 

Pathogen biology and epidemiology 

P. nodorum is a heterothallic fungus, therefore the sexual reproduction of P. nodorum 

needs two mating types, MAT-1-1 and MAT-1-2. Isolates carrying the two mating types develop 

pseudothecia which is the sexual fruiting body. The sexual spores, ascospores, are born in asci 

which are produced in the pseudothecia (Eyal, 1987; Fitt et al., 1989). Ascospores of P. nodorum 

are wind-dispersed and have long-distance travel capability (Solomon et al., 2006a). Ascospores 

have thick dark cell walls which can protect the spores from desiccation under extreme 
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conditions (Eyal, 1987; Fitt et al., 1989). The asexual spores are produced in pycnidia, a 

spherical, dark-brown fruiting body containing pycnidiospores. The pycnidiospores are protected 

by a mucilaginous matrix (Eyal, 1987).  In dry weather conditions, proteins and sugars are 

produced from the mucilage that protect the pycnidiospores from desiccation. The concentrated 

mucilage can inhibit the germination of pycnidiospores (Fitt et al., 1989). In humid conditions, 

the mucilage absorbs water, causing swelling inside the pycnidium and induction of spore 

germination (Brennan et al., 1985; Fitt et al., 1989).  

The source of primary inoculum for SNB is typically ascospores (Rapilly et al., 1973). 

However, the infected wheat straw or stubble carrying pycnidia and the infected seed carrying 

mycelium or pycnidiospores are also an important source of primary inoculum (Machacek, 1945; 

Cunfer, 1978; Cunfer, 1983). P. nodorum overwinters as pseudothecia, vegetative mycelium or 

pycnidia in wheat straw, seed, or grasses. In the early growing season, the sexual fruiting bodies 

produce airborne ascospores that are dispersed by wind as primary inoculum (Solomon et al., 

2006b). The pycnidia form on leaf tissue and pycnidiospores (conidia) are dispersed by rain-

splash (Solomon et al., 2006b). Conidia act as secondary inoculum in a repeating cycle (Solomon 

et al., 2006a) throughout the growing season. Two to four cycles of asexual reproduction can 

infect wheat and cause significant disease losses (Solomon et al., 2006b). Severe SNB disease is 

favored by long wet periods at temperatures between 20°C and 28°C (Scharen, 1964a; Djurle et 

al., 1996). The overwintering structure can survive in infected residue for 2-3 years (Scharen, 

1964b). 
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Disease management 

Cultural practice 

The primary inoculum can be reduced by crop rotation and burying the infected wheat 

stubbles (Harrower, 1974; Eyal, 1981). Tillage is necessary to reduce the source of inoculum 

because the overwintering structures can survive for 2-3 years (Leath et al., 1993). The primary 

inoculum can also be reduced by removing some grass species that serve as alternative hosts for 

P. nodorum (Leath et al., 1993). 

Seed treatment 

Infected seed can be an important source of primary inoculum; therefore, seed treatment 

is useful for disease control. Lagerberg et al. (1996) developed serological methods to identify 

the pathogen in seeds. Based on the detection information, fungicide is applied to the seed before 

planting. 

Chemical control 

Systemic fungicides such as triazole ergosterol biosynthesis inhibitors were widely used 

for SNB control (Solomon et al., 2006a). Difenoconazole and triadimenol were reported to be 

more effective (Sundin et al., 1999). The latest family of fungicides to be introduced were the 

strobilurins. Strobilurins inhibit mitochondrial respiration of fungi, so the direct antifungal effect 

is important. In addition, strobilurins increase the lifespan of the leaf, thereby reducing 

sporulation on dead tissue (Solomon et al., 2006a). However, the fourth and fifth generations of 

P. nodorum were shown to be less susceptible to the main ingredient of strobilurin, azoxystrobin 

(Morzfeld et al., 2004). In addition, other wheat pathogens can develop resistance to strobilurin 

(Solomon et al., 2006a), therefore the application of strobilurin must be done with caution. 
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Genetic control of resistance 

Sources of resistance to SNB have been found in many wheat cultivars (Xu et al., 2004a). 

In bread wheat, Krupinsky et al. (1972) identified 16 cultivars with high levels of seedling 

resistance to SNB. Liu et al. (2004) reported wheat cultivars BR34 and Erik had high levels of 

SNB resistance at the seedling stage. In synthetic wheat, Friesen et al. (2003) reported 39 

synthetic hexaploid wheat lines showing seedling resistance to SNB disease. In durum wheat, 

resistance to SNB is less common (Xu et al., 2004a) and SNB has become a major problem 

worldwide. Ma and Hughes (1993) evaluated 100 durum wheat genotypes and found only four 

genotypes having seedling resistance to three P. nodorum isolates.  Mullaney et al. (1983) 

observed that some durum wheat lines showed resistance at the seedling stage but were highly 

susceptible to SNB in the adult stage. Resistance to SNB has been reported to be quantitative in 

most cases but qualitative resistance has also been reported (reviewed in Xu et al., 2004b). In the 

past years, resistance associated with SNB on both the leaf and glume has occasionally been 

shown to be qualitative (reviewed in Friesen et al., 2009b; Friesen et al., 2009a), but most studies 

have indicated that resistance to both is quantitatively inherited (Xu et al., 2004b; Friesen et al., 

2008a). Czembor et al. (2003) identified four quantitative trait loci (QTL) on chromosomes 2B, 

3B, 5B and 5D. Schnurbusch et al. (2003) found resistance QTL on 4BL and 3BS. Arseniuk et 

al. (2004) identified a QTL associated with SNB resistance on 6AL and a putative QTL on 6D. 

In 2004, Liu et al. used the International Triticeae Mapping Initiative (ITMI) mapping population 

to identify a major QTL on chromosome 1BS and minor QTL on 3AS, 4AL, 5AL, 4BL, 7BL and 

5DL for seedling resistance to SNB. Toubia-Rahme and Buerstmayr (2003) also identified five 

QTL on choromosome 2A, 3A, 5A, 2B and 1B for glume blotch resistance. Markers associated 

with partial resistance to SNB were also identified in durum wheat (Cao et al., 2001).  More 
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recently, necrotrophic effectors (NEs) were found to be critical for SNB disease development, 

and wheat susceptibility genes corresponding to individual NEs were found to be dominant 

(Friesen et al., 2008a). Therefore, removal of sensitivity to NEs is critical to solving the problem 

of SNB.  

Necrotrophic effectors 

Classification of fungal pathogens 

Plant pathogens are often classified into two groups, the biotrophic pathogens and the 

necrotrophic pathogens. Biotrophic pathogens feed on the living tissue of plants. They do not kill 

the host cell immediately, because they need the undamaged cells to provide metabolism as a 

source of nutrition (Prell and Day, 2001). Some pathogens behave as hemi-biotrophs, that is, 

they may live on the host as biotrophs in the early infection and later on as necrotrophs 

(Glazebrook, 2005). The attack of most biotrophic pathogens on plants consists of spore 

germination,  hyphal penetration, development of a feeding structure such as a haustoria or 

intercellular hyphae, and sporulation (Reuber et al., 1998; Vogel and Somerville, 2000). Some 

other fungal pathogens can penetrate plants through stomata or wounds to get nutrient (Prell and 

Day, 2001). Defense against many biotrophic pathogens follows a gene-for-gene model. A host 

resistance gene (R gene) recognizes an avirulence effector gene (Avr gene) product of the 

pathogen to evoke R gene-mediated resistance. This type of resistance is usually associated with 

the accumulation of reactive oxygen species (ROS) which is required for a hypersensitive 

response (HR) resulting in the elimination of the nutrient source for the biotrophic pathogen.  

Necrotrophic pathogens derive food from dead and dying cells by killing the host cell 

quickly after infection and feeding on the nutrients (Glazebrook, 2005). Killing occurs through 

extracellular enzymes or toxin production. The toxins produced by phytopathogenic fungi that 
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are toxic to plants are called phytotoxins. The two classes of phytotoxins include non-host-

specific toxins (NHST) and host-specific-toxins or host-selective-toxins (HST). NHSTs are toxic 

to a broader range of plant species, not just to the host species and are rarely the primary 

determinant of host range (Prell and Day, 2001). 

Host-selective toxins 

In contrast to NHSTs, HSTs are toxic only to the plants that serve as hosts for the 

pathogen and have little or no toxicity against non-susceptible plants. HSTs are therefore 

determinants for host specificity (Prell and Day, 2001). It was reported that a total of 20 

pathogens have been found to produce HSTs. Among the HSTs that have been described, some 

are low-molecular-weight metabolites, and some others are proteins (Wolpert et al., 2002). In 

most cases, HSTs are the cause for disease. Some studies have shown that disease does not occur 

if the fungal isolate does not produce the toxins. Therefore, HSTs are often considered 

pathogenicity factors (Wolpert et al., 2002). Some well described HSTs include victorin, AAL-

toxins, T-toxin, HC-toxin, the Ptr toxins, and the necrotrophic effectors (formerly HSTs) 

produced in P. nodorum, all of which are produced by necrotrophic fungal pathogens. 

Victorin, a family of cyclized pentapeptides, is produced by the fungus Cochliobolus 

victoriae, the causal agent of Victoria blight of oat (Meehan and Murphy, 1946). Victorin is 

required for pathogenicity, because the isolates not producing victorin cannot cause disease 

while all the isolates producing the toxin are pathogenic on oat lines containing the 

corresponding sensitivity gene (Scheffer et al., 1967). Sensitivity to victorin in oat is conferred 

by the dominant allele at the host Vb locus. The homozygous recessive genotypes (vb vb) are 

insensitive to the toxin and resistant to Victoria blight of oat (Wolpert et al., 2002). The 

interaction of victorin with oat causes mitochondrial dysfunction resulting in immediate loss of 
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electrolytes so that the photo respiratory cycle is broken (Curtis and Wolpert, 2002). In 

Arabidopsis, victorin sensitivity and disease susceptibility was found to be conferred by LOV1, a 

coiled-coil nucleotide-binding-leucine-rich repeat (CC-NB-LRR) protein (Lorang et al. 2007). 

Dysfunction of LOV1 mutants in victorin insensitive lines were found to be due to mutation in 

the conserved motifs which are required for resistance. Therefore, LOV1 was proposed to 

function as a resistance gene to the naturally occurring pathogens of Arabidopsis (Sweat et al., 

2008). Lorang et al. (2012) found that a defense-associated thioredoxin TRX-h5 was involved in 

the interaction of LOV1 and victorin. In the absence of LOV1, victorin inhibits TRX-h5, 

resulting in resistance. While in the presence of LOV1, victorin binds with TRX-h5 to activate 

LOV1 and induce a resistance-like response to cause disease susceptibility. 

AAL- toxins including AAL-toxin TA and TB, are a group of HSTs sharing similar 

structure produced by Alternaria alternata, the causal agent of Alternaria stem canker of tomato 

(Gilchrist and Grogan, 1976). Like victorin, AAL-toxins also dictate the pathogenicity of the 

pathogen. Sensitivity to AAL- toxin is conditioned by the homozygous recessive alleles at the 

asc locus (Clouse and Gilchrist, 1987). The homozygous dominant genotype (Asc/ Asc) is 

insensitive to the toxin and resistant to the disease (Grogan et al., 1975), whereas the 

heterozygous genotype (Asc/asc) is intermediate for sensitivity (Gilchrist and Grogan, 1976). 

This group of toxins may be involved in the ceramide signaling pathway to inhibit ceramide 

syntheses and disrupt the life cycle of cells (Gilchrist et al., 1995). 

T-toxin is produced by Cochliobolus heterostrophus race T (Levings III et al., 1995). C. 

heterostrophus is the fungal pathogen causing southern corn leaf blight. This disease occurs on 

maize carrying the Texas cytoplasm for male sterility (cms-T) (Levings III et al., 1995). The cms-

T genotype maize is selectively sensitive to T-toxin. However this does not mean T-toxin is 
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required for pathogenicity. The T-toxin producing isolates are more virulent than race O, but race 

O is still pathogenic on T-cytoplasm maize (Yoder et al., 1997). The sensitivity to T-toxin is 

determined by a 13-kDa protein (URF13) which is encoded by the T-urf13 gene in the cms-T 

mitochondria (Dewey et al., 1986). This protein is located in the inner mitochondrial membrane. 

Directly binding to T-toxin leads to a hydrophilic pore formation that permeabilizes the inner 

mitochondrial membrane (Levings III et al., 1995; Rhoads et al., 1998). 

HC-toxin is a cyclic tetrapeptide produced by the fungus Cochliobolus carbonum, the 

pathogen causing northern leaf spot and ear rot of maize (Gross et al., 1982). Among the three 

races of the pathogen, only race 1 produces this toxin and induces more serious disease 

symptoms than races 2 and 3 (Scheffer and Ullstrup, 1965). The dominant allele at the host locus 

Hm1 encodes the HC-toxin reductase which can inactivate the toxin and lead to resistance to the 

pathogen (Johal and Briggs, 1992). If the homozygous recessive mutant genotype (hm1/hm1) 

occurs, the host will be fully sensitive to the toxin (Multani et al., 1998). The site of action of 

HC-toxin is the enzyme histone deacetylase (HDAC) (Brosch et al., 1995). HC-toxin inhibits the 

activity of HDAC when the core histone H3 and H4 are assembled in chromatin. As a result, the 

synthesis of the protein involved in the host defense responses is suppressed (Ciuffetti et al., 

1995). 

Ptr toxins are produced by Pyrenophora tritici-repentis, the causal agent of tan spot of 

wheat. Currently, at least 8 races have been identified and distinguished based on their 

production of one or more of three HSTs (Ptr ToxA, B, and C) (Lamari et al., 2003). Each of 

these HSTs provides pathogenicity on susceptible wheat lines. Ptr ToxA, produced by race 1, 2, 

7 and 8, was the first proteinaceous HST to be described (Ref). Sensitivity to Ptr ToxA is 

governed by the Tsn1 locus (Faris et al., 1996) allowing Ptr ToxA to accumulate within sensitive 
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cells (Ciuffetti et al., 2010). The toxin is localized to the chloroplast of sensitive wheat 

mesophyll cells. When Tsn1 is present, the accumulation of Ptr ToxA leads to the increase of 

reactive oxygen species resulting in cell death (Manning and Ciuffetti, 2005).  

Ptr ToxB is produced by P. tritici-repentis races 5, 6, 7 and 8. This toxin is a 6.5 kDa 

protein with a 23-aa signal peptide (Strelkov et al., 2001; Lamari et al., 2003). Race 3 and race 4 

have also been found to carry Ptr ToxB homologs (Strelkov and Lamari, 2003). For Ptr ToxA, a 

single copy of the gene is sufficient for pathogenicity, however, Ptr ToxB requires more than one 

copy to cause significant symptoms on susceptible wheat. At least five copies of the Ptr ToxB 

gene have been found in race 5 (Martinez et al., 2004). Virulence triggered by Ptr ToxB is 

variable based on the number of gene copies. Numerous studies have indicated that higher copy 

number increases the virulence of the pathogen (Ciuffetti et al., 2010). The possible mode of 

action of Ptr ToxB is to trigger a decrease in chlorophyll a, b and increase the production of ROS 

(Ciuffetti et al., 2010). 

Although all of the HSTs discussed above have different modes of action, and the 

sensitivities to them are conferred by different gene allele modes of the host (some are governed 

by homozygous dominant alleles, some by semi-dominant, and some by recessive alleles), many 

of them trigger PCD or responses that are hallmarks of the classic resistance response induced by 

avirulence effectors. For example, the oat varieties sensitive to Victorin were all found to be 

resistant to crown rust disease caused by Puccinia coronata due to the dominant Pc2 crown rust 

resistance gene in Victoria oat (Litzenberger, 1949; Wolpert et al., 2002). As mentioned above, 

victorin sensitivity is conferred by the dominant Vb gene, and it has been hard to separate the Vb 

gene and the Pc2 gene (Luke and Wheeler, 1955; Luke et al., 1966). All of these facts indicate 

that these two gene loci are tightly linked or more likely they are the same gene. However, the 



 

21 

 

oat – crown rust interaction is a classic gene-for-gene interaction (Luke et al., 1966), that is, an 

Avr gene product activates the host R gene pathway to trigger a resistance response. Some other 

studies showed that victorin can induce many plant responses similar to that induced by 

avirulence effectors, including callose deposition, respiratory burst, and lipid peroxidation 

(Romanko, 1959; Walton and Earle, 1985; Navarre and Wolpert, 1999). In addition, victorin can 

induce a PCD-like response including DNA laddering, cell shrinkage and heterochromatin 

condensation which are similar to animal apoptosis (Singh et al., 1968; Navarre and Wolpert, 

1999; Yao et al., 2001). The AAL-toxins can also induce an apoptotic-like response such as 

DNA laddering and formation of apoptotic-like bodies in the toxin-sensitive hosts (Wang et al., 

1996a). The similar responses were also observed in the monkey kidney cells which express 

AAL-toxins (Wang et al., 1996b; Jones, 2000). Both Victorin and T-toxin can cause dysfunction 

of the mitochondria. It is known that mitochondria are important in the regulation of the PCD 

process both in animals and plants (Jones, 2000; Wolpert et al., 2002). Microarray analysis 

provided evidence that Ptr ToxA was involved in the early up-regulation of PR protein genes and 

the enzyme genes which play key roles in the phenylpropanoid, jasmonic acid and ethylene 

biosynthesis pathways (Pandelova et al., 2009). These HST-induced host-pathogen interactions 

share similar host defense responses to those in the Avr effector-induced host-pathogen 

interactions. Therefore, HSTs can utilize the host resistance responses to confer a compatible 

reaction between hosts and pathogens. 

Evidence presented so far indicate that HSTs are complicated and are not generally toxic 

but often act as effectors to elicit a host response. As mentioned above, in some cases, HSTs 

evoke host induced cell death, indicating that HSTs do not kill the host cells but rather elicit the 

host to kill its own cells via PCD. Since all HSTs found to be produced by necrotrophic fungi act 
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as effectors and play a key role in disease development, here we refer to them as necrotrophic 

effectors (NEs). 

Necrotrophic effectors in P. nodorum 

Like some other plant fungal pathogens, Parastagonospora. nodorum has been reported 

to produce cell wall degrading enzymes such as xylanase, polygalacturonase, cellulase and 

butyrate esterase that could be involved in disease (Lalaoui et al., 2000). The cell wall degrading 

enzymes may be critical for penetration and infection of the pathogen. In addition, a low 

molecular weight cationic acid (Kent and Strobel, 1976) and a toxic compound, septorine (Devys 

et al., 1978) produced from P. nodorum were found to be toxic to wheat. However, none of these 

toxic compounds mentioned above were found to be host-selective (Bousquet and Skajennikoff, 

1974). Keller (1994) found that a crude extract of P. nodorum had a selective action in vitro to 

wheat embryos of different varieties. Wicki (1999) found the crude extract may contain one or 

more HSTs, and that wheat cultivars with different resistance levels correlated with responses to 

the crude extracts. 

Due in part to a lack of understanding of the disease, Septoria nodorum blotch (SNB) was 

still a significant problem in the U.S. Resistance associated with SNB on both the leaf and glume 

has occasionally been shown to be qualitative (reviewed in Friesen et al., 2009b), but most 

studies have indicated that the resistance to both is quantitatively inherited (Xu et al., 2004b; 

Friesen et al., 2008a). Since the first P. nodorum NE interaction was identified in 2004 (Liu et 

al., 2004a; 2004b), it has been shown that the wheat-P. nodorum pathosystem is dependent on 

the production of NEs which are recognized by and interact with dominant host sensitivity genes 

to induce a virulent reaction (Liu et al., 2004a; 2004b; 2006; 2006; Friesen et al., 2007; 2008b). 

In some cases, NEs in P. nodorum can act additively as virulence factors to cause more serious 
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disease (Friesen et al., 2007). NEs are characterized as determinants of host specificity and are 

critical to the virulence or pathogenicity of necrotrophic fungal pathogens (Walton, 1996; 

Friesen et al., 2008a). NEs produced from some necrotrophic pathogens are directly or indirectly 

recognized by a corresponding dominant host sensitivity gene to cause a susceptible (compatible) 

reaction (Lamari et al., 2003; Manning and Ciuffetti, 2005; Friesen et al., 2007).  This interaction 

is similar to the classic gene-for-gene model (Flor, 1956), in which the Avr effectors secreted by 

biotrophic pathogens are recognized by dominant R-gene products in the host, leading to a 

resistant (incompatible) interaction. Therefore, the NE interaction is described as an inverse 

gene-for-gene model. If either the NE gene or the host dominant sensitivity gene is absent, the 

compatible reaction will not occur, leading to resistance. 

Currently, nine P. nodorum produced NEs have been reported (reviewed in Friesen et al., 

2010; Friesen et al., 2012; Zhang et al., 2010; Shi et al., 2015; Gao et al., 2015). Each NE 

corresponds to a sensitivity gene in wheat that triggers a susceptible reaction which follows an 

inverse gene-for-gene model. 

SnTox1-Snn1 
 
SnTox1 was the first NE detected from P. nodorum. It was shown to be a secreted protein 

between 10 and 30kDa in size (Liu et al., 2004a). Host sensitivity to SnTox1 was governed by a 

single dominant gene designated Snn1 (Liu et al., 2004b). It was physically and genetically 

mapped to a gene-rich region on the distal end of the short arm of chromosome 1B using the 

Chinese Spring wheat chromosome deletion lines and the International Triticeae Mapping 

Initiative (ITMI) mapping population (Liu et al., 2004b). Snn1 accounted for 58% of the disease 

variation across the ITMI population at the 5 day evaluation when inoculating with SnTox1 

producing isolates, indicating that SnTox1 plays an important role in SNB disease development 
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(Liu et al., 2004b). Liu et al. (2012) found the SnTox1-Snn1 interaction was light-dependent, and 

both are necessary for pathogen penetration and host cell death. In the Snn1 wheat genotype, 

SnTox1 triggers a series of classic defense responses including H2O2 production, the up-

regulation of PR genes and obvious DNA laddering. To elucidate its molecular nature, Snn1 was 

located to a 0.46 cM interval by high-resolution mapping (Reddy et al., 2008). Two EST-based 

markers which had high homology to NBS-LRR resistance-like genes were found to co-

segregate with Snn1 in 8501 gametes. Two microsatellite markers Xfcp618 and Xpsp3000 were 

found to delineate Snn1 to a 0.9cM interval and were consider as particularly diagnostic for Snn1 

(Friesen and Faris, 2010). 

SnToxA-Tsn1 

The SnToxA-Tsn1 interaction was the second NE-host interaction identified in the wheat-

SNB system (Friesen et al., 2006). ToxA was the first proteinaceous NE found in any 

pathosystem (Friesen and Faris, 2010) and was first purified from the tan spot fungus, 

Pyrenophora tritici-repentis (Tomas and Bockus, 1987; Ballance et al., 1989), another 

necrotrophic pathogen of wheat and durum, and was designated Ptr ToxA (Ciuffetti et al., 1997; 

Ballance et al., 1996). The PtrToxA gene encodes a 178 amino acid pre-pro-protein containing a 

signal peptide (Ballance et al., 1996; Ciuffetti et al., 1997), a pro-region or N-domain (residues 

23 to 60) and a 13.2 kDa mature peptide (residues 61-178) (Tuori et al., 2000). A 3-dimensional 

structure analysis of Ptr ToxA revealed that a cell attachment RGD motif (Arg-Gly-Asp) is 

present in a hydrophilic loop (Sarma et al., 2005). The RGD motif is likely responsible for 

internalizing Ptr ToxA into the cytoplasm where it localizes to the chloroplast (Sarma et al., 

2005). When a GFP-ToxA fusion protein was transformed to wheat by biolistic bombardment, 

cell death was found in both sensitive and insensitive wheat genotypes (Manning and Ciuffetti, 
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2005). It is possible that ToxA can trigger some intracellular machinery to cause cell death in 

both genotypes, but the internalization of Ptr ToxA occurs only in the wheat genotype carrying 

the corresponding sensitivity gene, Tsn1 (Manning and Ciuffetti, 2005; Manning et al., 2008). 

The SnToxA gene was shown to be more than 99% identical to the PtrToxA gene (Friesen et al., 

2006). These two genes were also found to be functionally identical (Liu et al., 2006). The ToxA 

gene has likely been present longer in P. nodorum due to the presence of 11 SnToxA haplotypes 

in the P. nodorum population, compared to only a single ToxA haplotype being present in the P. 

tritici-repentis population (Friesen et al., 2006). The 11kb flanking region of ToxA contains a 

transposase-like gene, which gave a hint of possible movement of ToxA from P. nodorum to P. 

tritici-repentis (Friesen et al., 2006). Approximately, 40% of a global collection of P. nodorum 

isolates have the SnToxA gene (McDonald et al., 2013). Sensitivity to SnToxA is also governed 

by the dominant Tsn1 gene, which maps to the long arm of wheat chromosome 5B (Faris et al., 

1996). With the work of saturation mapping and BAC contig flanking sequences of the Tsn1 

locus, two microsatellite markers Xfcp1 and Xfcp2 were developed which flanked Tsn1 at genetic 

distances of 0.3 and 0.5 cM (Haen et al., 2004; Liu et al., 2006). Zhang et al. (2009) developed 

two additional microsatellite markers Xfcp394 and Xfcp620 which delineated Tsn1 to a 0.07 cM 

genetic interval. The SnToxA-Tsn1 interaction accounts for as much as 95% of the SNB 

variation (Faris and Friesen, 2009). This interaction is light dependent and can cause disruption 

of host photosynthesis and cell death (Manning and Ciuffetti, 2005; Manning et al., 2009). Tsn1 

contains a serine/threonine protein kinase and NBS-LRR like regions, indicating that Tsn1 is a 

disease resistance-like gene (Faris et al., 2010).  Tsn1 is not an integrin-like protein or an 

extracellular receptor-like protein, therefore Tsn1 is likely not the receptor for Ptr ToxA/SnToxA 
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(Faris et al., 2010). This indicates that ToxA may enter the cell by another mechanism before it is 

recognized by Tsn1.  

SnTox2-Snn2 

The third NE identified from P. nodorum was SnTox2 (Friesen et al., 2007). SnTox2 is 

also a small secreted protein and is in the size range of 7 to 10 kDa, causing necrosis on wheat 

genotypes harboring the Snn2 gene which was located to the short arm of wheat chromosome 

2D. A wheat recombinant inbred (RI) population derived from BR34×Grandin segregating for 

Snn2 and Tsn1 was inoculated with P. nodorum isolates which produced both SnTox2 and 

SnToxA. The SnTox2-Snn2 interaction accounted for 47% of the disease variation, and the 

SnToxA-Tsn1 interaction accounted for 20% of the disease variation (Friesen et al., 2007). These 

two interactions were shown to have additive effects and together they accounted for 65% of the 

variation in SNB susceptibility. The additive level of disease variation explains that the wheat 

resistance to SNB is quantitatively inherited, and that P. nodorum can produce multiple NEs to 

cause disease. Zhang et al. (2009) developed an EST-based marker XTC253803 and a 

microsatellite marker Xcfd51, mapping Snn2 to a 4.0 cM interval. 

SnTox3-Snn3 

SnTox3 is a 693 bp intron-free gene encoding an immature protein of 230 amino acids 

containing a 20 amino acid signal peptide, and a 30 amino acid predicted pro-sequence resulting 

in an 18 kDa mature protein. The six cysteine residues in the mature SnTox3 sequence likely 

form three disulfide bridges which are important to structure stability and function of the protein 

(Liu et al., 2009). The host locus conferring sensitivity to SnTox3 locates near the telomere end 

of the short arm of chromosome 5B (Friesen et al., 2008b) and was designated Snn3. The 

SnTox3-Snn3 interaction accounted for at most 18% of the disease variation (Friesen et al., 
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2008b). In addition, it is less important for disease development, because it is found to be 

significant only in the absence of the SnToxA-Tsn1 interaction. The SnToxA-Tsn1 interaction is 

epistatic to the SnTox3-Snn3 interaction, and the SnTox2-Snn2 interaction was shown to have a 

relatively stronger effect (Friesen et al., 2008b). Disruption of SnTox3 resulted in elimination of 

a significant QTL on Snn3, but the significant QTL at the other loci such as Snn2 remained, 

indicating the SnTox3-Snn3 interaction is independent of the other NE-host sensitivity gene 

interactions (Liu et al., 2009; Oliver et al., 2012). A microsatellite marker Xcfd20 has been 

identified that is tightly linked to Snn3 at 0.5 cM. More recently, a gene from Aegilops tauschii 

(Coss.) (2n = 2x = 14, DD genomes), the D-genome donor of hexaploid wheat, has been found to 

confer SnTox3 sensitivity (Zhang et al., 2010). Zhang et al. (2010)  reported this gene to be 

likely homeologous with Snn3 and was mapped to the distal end of chromosome arm 5DS. 

Zhang et al. (2010) designated Snn3 on 5BS as Snn3-B1 and the recently reported gene on 5DS 

as Snn3-D1. The subsequent high-resolution mapping work led to observations of the 

microsatellite markers Xcfd18 and Xhbg337, which delimited Snn3 to a 1.44 cM interval. 

SnTox4-Snn4 

SnTox4 was estimated to be 10–30 kDa in size and proteinaceous in nature (Abeysekara 

et al., 2009b). Sensitivity to SnTox4 is conferred by the single dominant gene Snn4, which was 

mapped to the short arm of chromosome 1A. The SnTox4-Snn4 interaction resulted in a mottled 

necrotic reaction and accounted for as much as 41% of the disease variation. The EST-based 

markers XBG262267 and XBG262975 and the microsatellite marker Xcfd58 delineated Snn4 to a 

2.5 cM interval.  
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SnTox5-Snn5 

The sixth NE-wheat interaction reported was the SnTox5-Snn5 interaction. The size of 

SnTox5 is in the range of 10-30kDa (Friesen et al. 2012). The dominant sensitivity gene Snn5 

mapped to the long arm of wheat chromosome 4B. The SnTox5-Snn5 interaction conferred 37-

63% of the SNB disease variation. The SnTox5-Snn5 interaction is epistatic to the SnTox3-Snn3 

interaction, while the interactions of SnTox5-Snn5 and SnToxA-Tsn1 together increase the level 

of SNB disease (Friesen et al. 2012). 

SnTox6-Snn6 

The seventh identified interaction was SnTox6-Snn6 which is also light dependent like 

several other NE-wheat sensitivity gene interactions (Gao et al., 2015). SnTox6 is a small 

secreted protein whose size is about 12kDa.  The corresponding sensitivity gene Snn6 was 

mapped to the long arm of wheat chromosome 6A. The compatible SnTox6-Snn6 interaction 

accounted for 27% of the SNB disease variation (Gao et al. 2015) (see Chapter 2). 

SnTox7-Snn7 

The latest reported interaction was SnTox7-Snn7. Like the other identified P. nodorum 

NEs, SnTox7 is a small secreted protein with an estimated size of less than 30 kDa. Additionally, 

SnTox7 was resistant to heat and chemical degradation (Shi et al., 2015). The wheat gene 

conferring sensitivity to SnTox7 (Snn7) mapped to a 2.7-cM interval on the long arm of wheat 

chromosome 2D. The SnTox7-Snn7 interaction explained 33% of the SNB disease variation in a 

population segregating for Snn7. The Snn7 sensitivity allele was evaluated on a set of 52 

hexaploid wheat lines with diverse genetic origins. Only a few lines likely carried the Snn7 

allele, showing that Snn7 is relatively rare.  
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Genome wide association study 

Linkage disequilibrium (LD) 

Association mapping, also known as linkage disequilibrium (LD) mapping, is a relatively 

new genetic method used to analyze complex traits in natural populations (Mackay and Powell, 

2007). Association mapping exploits the recombination events at the population level to map 

markers associated with traits onto genomic regions (Varshney and Tuberosa, 2008).  Linkage 

disequilibrium is (LD) the non-random association of specific alleles at different genetic loci for 

traits in a natural population (Abdurakhmonov and Abdukarimov, 2008).  LD can be affected by 

many factors such as population size, population structure, recombination rates, mutations, and 

genetic variation between lineages (Gupta et al., 2005; Mackay and Powell, 2007). In the marker 

trait association (MTA) analysis, LD correlates the phenotypic variation with the genotype 

(Borba et al., 2010) and identifies markers associated with traits (Thornsberry et al., 2001; 

Hirschhorn and Daly, 2005). 

Population structure 

Population structure, an important component which can reduce false positive association 

between markers and traits of interest (Kennedy et al., 1992), is a consequence of departure of 

random mating, resulting in some individuals that are more related than others in a nature 

population(Breseghello and Sorrells, 2006). Population structure is made of non-random mating 

within a species, resulting in change of allele frequencies (Ersoz et al., 2008). Non-random 

mating can be caused by genetic drift or events in domestication. These events may affect the 

presence ratio of certain markers causing false association with a phenotype (Pritchard et al., 

2000b). To account for population structure, statistical approaches including genomic control 

(GC) and structured association (SA) are exploited to calculate the non-independence of loci and 
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thereby adjusting for population structure (Ersoz et al., 2008). In association mapping, the 

program STRUCTURE is designed to calculate the degree of population admixture of every 

individual using random unlinked markers (Pritchard et al., 2000a). The program STRUCTURE 

assumes that all individuals are unrelated and keep Hardy-Weinberg equilibrium in a population. 

Individuals are clustered into subpopulations by calculating the proportion of each individual 

genome that are derived from different inferred groups using an MCMC Bayesian algorithm, and 

the association statistics are calculated by stratifying by cluster (Pritchard et al., 2000a). Another 

approach to compute population structure is principle component analysis (PCA). Principle 

components (PCs) not only reflect population structure, but also reflect family relatedness 

(Patterson et al., 2006) and long range LD (Clayton et al., 2005). By computing PCs, these 

effects can be eliminated by removing related samples, regions of long range LD and low-quality 

data. In order to account for population structure, PCs capture the genetic ancestry of each 

individual and fix this effect in a regression-based association test (Price et al., 2006; Price et al., 

2010). In PCA, the genotype data is used to infer continuous axes of genetic variation to reduce 

the data to a small number of dimensions. The top eigenvectors can be inferred as a covariance 

matrix between individuals. Through computing residuals of linear regression, the genotypes and 

phenotypes are continuously adjusted by counting the attribution to ancestry along each axis. The 

ancestry-adjusted genotypes and phenotypes are used for association statistical analysis (Price et 

al., 2006). 

Steps and models of association mapping 

The process of association mapping includes (1) Selection of individuals with wide 

genetic diversity to form a natural population, (2) measuring the phenotypic data of each 

individual for traits of interest, (3) genotyping each individual using molecular markers, (4) 
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analyzing the population structure and the relatedness between pairs of each individual and (5) 

correlating the phenotypic data with genotypic data to identify markers associated with traits of 

interest (Reich et al., 2001). The models of association mapping include a general linear model 

(GLM) and a mixed linear model (MLM). GLM models use the subpopulations (Q matrix) as 

covariates to regress the genotype with phenotype (Thornsberry et al., 2001). The GLM model 

cannot reduce false positives and have low statistical power (Yu et al., 2006). The MLM model 

or Q+K model combines population structure (Q-matrix) and relatedness of pairwise individuals, 

kinship (K matrix) as covariates in regression (Yu et al., 2006). In the Q+K model, random 

markers are used to estimate the Q and K matrix and then fit them into a mixed model which can 

cross the boundary of family-based and population-based variance (Yu et al., 2006). Another 

method is to replace the Q matrix with PCA to consider population structure and family 

relatedness as the covariances (Zhao et al., 2007; Weber et al., 2008). In the MLM model, 

genetic similarity of each individual and the heritability of the phenotype are used as covariances 

between each pair of individuals. This covariance is fixed and the phenotype is regressed with 

principal components of the genotype matrix or Q matrix (Kang et al., 2010). Therefore, in some 

cases the MLM model is more effective than the GLM model because the MLM model corrects 

more false association of the population and relatedness in association (Zhao et al., 2007).  

Hoffman (2013) introduced the effective degree of freedom to measure MLM complexity and the 

influence of each PC on the fit of the MLM. By leveraging the MLM framework and the 

effective degrees of freedom, a novel model, the low rank linear mixed model (LRLMM) was 

proposed using an algorithm describe by Lippert et al. (2011) to learn the dimensionality of the 

correction for population structure and kinship. LRLMM produces a low-dimensional fit to the 
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data and is less affected by a high degree of uncertain strength of the population and kinship 

correction. 
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CHAPTER 2. IDENTIFICATION AND CHARACTERIZATION OF THE 

SNTOX6-SNN6 INTERACTION IN THE PARASTAGONOSPORA 

NODORUM - WHEAT PATHOSYSTEM 

Abstract 

Parastagonospora nodorum is a necrotrophic fungal pathogen that causes Septoria 

nodorum blotch (SNB) on wheat. P. nodorum produces necrotrophic effectors (NE) that are 

recognized by dominant host sensitivity gene products resulting in disease development. To date, 

nine NE-host sensitivity gene interactions have been identified. Here, I used a wheat mapping 

population that segregated for sensitivity to two previously characterized interactions (SnTox1-

Snn1 and SnTox3-Snn3-B1) to identify and characterize a new interaction involving the NE 

(SnTox6) and the host sensitivity gene (Snn6). SnTox6 is a small secreted protein that induces 

necrosis on wheat lines harboring Snn6. The SnTox6-Snn6 interaction was light dependent and 

underlay a major disease susceptibility QTL. No other QTL were identified even though the P. 

nodorum isolate used in this study harbored both the SnTox1 and SnTox3 genes. This work 

expands our knowledge of the wheat-P. nodorum interaction and further establishes this system 

as a model for necrotrophic specialist pathosystems. 

Introduction 

Fungal pathogens are divided into classes including biotrophs, necrotrophs, and hemi-

biotrophs based on their pathogenic lifestyle. Resistance to biotrophic pathogens typically 

follows the classical gene-for-gene model (Flor, 1956), where pathogen-produced effectors are 

thought to suppress PAMP-triggered-immunity in the early stages of resistance, but in turn are 

recognized directly or indirectly by corresponding dominant host resistance gene products to 

evoke a resistant (incompatible) reaction, termed effector-triggered immunity (ETI) (Flor, 1956; 
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Chisholm et al., 2006; Jones and Dangl, 2006). Once recognition of an effector takes place, a 

series of host responses are induced (Nurnberger et al., 2004).  

Necrotrophic pathogens can be divided into two groups including necrotrophic 

generalists that typically attack several host species and necrotrophic specialists that typically 

attack a single or closely related host species (Andrew et al., 2012). Necrotrophic specialist 

pathogens such as Parastagonospora nodorum often secrete necrotrophic effectors (NEs) 

(formerly called host-selective toxins or HSTs) that induce necrotrophic effector-triggered 

susceptibility (NETS) (Friesen et al., 2008a). More than 20 necrotrophic specialist fungal 

pathogens have been shown to produce NEs, which are determinants of pathogenicity or 

virulence and often determine host specificity of a pathogen (Wolpert et al., 2002; Stergiopoulos 

et al., 2013). In many cases, NEs are recognized directly or indirectly by a corresponding host 

sensitivity gene product resulting in a susceptible (compatible) interaction (Wolpert et al., 2002; 

Lamari et al., 2003; Manning and Ciuffetti, 2005; Friesen et al., 2007; Oliver and Solomon, 

2010). Disease is reduced if either the pathogen does not produce an NE or the host does not 

carry the corresponding sensitivity gene (Wolpert et al., 2002; Friesen et al., 2008a). Therefore, 

the NE-host susceptibility gene interaction has been described as an inverse gene-for-gene model 

(Friesen et al., 2007).  

Parastagonospora nodorum (Synonyms: Phaeosphaeria nodorum, Stagonospora 

nodorum) is a necrotrophic filamentous fungal pathogen causing Septoria nodorum blotch (SNB) 

(formerly Stagonospora nodorum blotch) on common wheat (Triticum aestivum) and durum 

wheat (T. turgidum) and is capable of affecting both leaves and glumes. SNB has occurred in 

most wheat-growing regions and often has negative impact on yield and grain quality (King et 

al., 1983; Fried and Meister, 1987; Wicki et al., 1999). An effective way to control SNB is 
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through the development of resistant cultivars. The inheritance of SNB resistance is often 

complex, and conferred by multiple quantitative trait loci (QTL) throughout the wheat genome, 

whereas qualitative resistance to SNB has rarely been reported (Xu et al., 2004; Friesen et al., 

2008a).  

In the last decade, genetic dissection of the wheat-P. nodorum system has revealed that P. 

nodorum produces multiple NEs (Friesen et al., 2008a; Friesen and Faris, 2010; Oliver et al., 

2012 ) and the recognition of P. nodorum NEs by corresponding wheat sensitivity genes leads to 

the induction of necrosis, a result of programmed cell death (PCD) and eventually SNB disease 

through the mechanisms associated with NETS. To date, nine NE-host sensitivity gene 

interactions have been identified in the P. nodorum-wheat pathosystem, each of which follows a 

NETS model (Reviewed in Friesen and Faris, 2010; Oliver et al., 2012). These nine interactions 

include SnTox1-Snn1 (Liu et al., 2004a), SnToxA-Tsn1 (Friesen et al., 2006; Faris et al., 2010), 

SnTox2-Snn2 (Friesen et al., 2007), SnTox3-Snn3-B1 (Friesen et al., 2007; Liu et al., 2009), 

SnTox3-Snn3-D1 (Zhang et al., 2011), SnTox4-Snn4 (Abeysekara et al., 2009), SnTox5-Snn5 

(Friesen et al., 2012), SnTox6-Snn6 (Gao et al., 2015, this study)SnTox7-Snn7 (Shi et al., 2015) 

which were shown to explain from 18 to 95% of the disease variation. These NE-host 

interactions have been implicated in both seedling and adult plant field susceptibility (Friesen et 

al., 2009). 

Here a novel proteinaceous NE produced by P. nodorum which has been designated 

SnTox6 is characterized. Additionally, the corresponding host gene Snn6, which confers 

sensitivity to SnTox6 on the long arm of wheat chromosome 6A was identified and it was shown 

that a compatible SnTox6-Snn6 interaction played a significant role in the development of SNB 

in wheat.  
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Materials and methods 

Plant materials and P. nodorum strains 

I used 106 RILs of the ITMI population, which was developed from a cross between the 

synthetic hexaploid wheat W-7984 (SNB moderately resistant) and the hard red spring wheat 

cultivar Opata 85 (SNB moderately susceptible) (Nelson et al., 1995). To date, over 2,000 

molecular markers have been placed on the genetic linkage maps developed in this population 

(http://wheat.pw.usda.gov/GG2/index.shtml). Opata 85 is sensitive to the P. nodorum NEs 

SnTox3, and the novel NE reported here, SnTox6. W-7984 is sensitive only to SnTox1 (Liu et 

al., 2004a). We used the ITMI population to map the Snn6 locus and characterize the SnTox6-

Snn6 interaction. The RIL ITMI37 is insensitive to SnTox1 and SnTox3, but was shown to be 

sensitive to the novel NE SnTox6 and was therefore used as a differential line in characterizing 

the SnTox6 protein.  

The P. nodorum isolate Sn6 has been reported to produce multiple NEs including 

SnToxA, SnTox2, and SnTox3, (Friesen et al., 2007; Friesen et al., 2008a; Friesen et al., 2012) 

that interact with Tsn1, Snn2, and Snn3, respectively. Sn6 and the SnTox3 disruption strain 

Sn6∆SnTox3 (see below for description) was used to identify and partially purify SnTox6 and to 

characterize the SnTox6-Snn6 interaction. Because the ITMI population segregates for Snn1 and 

Snn3-B1, but the SnTox1-Snn1 and SnTox3-Snn3-B1 interactions were not associated with 

disease, we investigated transcriptional expression of the SnTox1 and SnTox3 genes in Sn6 

during infection. The RILs ITMI6 and ITMI10, which are each sensitive to SnTox1, SnTox3 and 

SnTox6, were used to perform reverse transcription (RT)-PCR after being inoculated with Sn6. 

Because isolates Sn2000 and Sn4 were used to report the cloning of SnTox1 (Liu et al., 2012) 
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and SnTox3 (Liu et al., 2009) respectively, these two isolates were used to inoculate ITMI6 and 

ITMI10 for the evaluation of SnTox1 and SnTox3 expression as positive controls.  

Because SnTox3 was produced abundantly in culture and it was difficult to separate 

SnTox3 from SnTox6 by chromatography methods, we generated a strain of Sn6 in which we 

disrupted SnTox3. This strain, Sn6∆SnTox3, was used for mapping the SnTox6 sensitivity gene 

Snn6 and for characterization of the SnTox6-Snn6 interaction. 

The SnTox3 gene was disrupted using a split marker strategy as described by Liu et al. 

(2009). The SnTox3 gene was disrupted by inserting the hygromycin phosphotransferase gene 

(hph) expression cassette, which confers resistance to hygromycin, into a SalI restriction site of 

the SnTox3 gene. The disruption fragments containing the hph cassette in the middle of the 

SnTox3 open reading frame were transformed into Sn6 using PEG-mediated transformation 

methods following fungal protoplasting as described by Liu and Friesen (2012). The transformed 

colonies were screened by PCR. The primers SnTox3g0F and HY (Table 2.1) were used to 

amplify a fragment extending from the SnTox3 5’ flanking region into the middle of the hph 

gene. The primers SnTox3cF and SnTox3cR (Table 2.1) were used to amplify the disrupted 

SnTox3 fragment containing the hph expression cassette. The primers SnActinF and SnActinR 

(Table 2.1) were used to amplify the P. nodorum actin gene (Act1; Genbank accession number 

EAT90788) as an internal control to monitor RT-PCR efficiency and cDNA quality. PCR 

reaction mix without DNA (H2O) was used as a negative control to make sure that all reagents 

were free of contamination. PCR was run using the following parameters: 94℃ 4 min; 30 cycles 

of 94 ℃ for 30 sec, 60 ℃ for 30 sec, and 72 ℃ for 3 min, followed by 72 ℃ 10 min. The 

SnTox3 disrupted strain Sn6∆SnTox3, was used for CF infiltration to map Snn6 (see below). The 



 

51 

 

wild type isolate Sn6 and Sn6∆SnTox3 were used in conidial inoculations to evaluate the 

SnTox6-Snn6 interaction (see below). 

Table 2.1. Primers used in Chapter 2 for the amplification of SnTox1 (top), SnTox3 (middle) 
and the Parastagonospora nodorum actin gene, SnActin (bottom). 

Primer pair Sequence Amplicon size (bp) 

SnTox1cF 

SnTox1cR 

ATGAAGCTTACTATGGTCTTGT  

TGTGGCAGCTAACTAGCACA 
356 

SnTox3cF 

SnTox3cR 

CTCGAACCACGTGGACCCGGA  

CTCCCCTCGTGGGATTGCCCCATATG 

600 from wild type Sn6, 

~ 3200 from Sn6∆SnTox3 

SnTox3g0F 

HY 

ATCCCAGACATCCCACTCAA 

GGATGCCTCCGCTCGAAGTA 
~ 2900 

SnActinF 

SnActinR 

CTGCTTTGAGATCCACAT 

GTCACCACTTTCAACTCC 
255 

 

Purification of SnTox6 

CFs of P. nodorum isolate Sn6 and the SnTox3 disrupted strain Sn6∆SnTox3 were grown 

and harvested as described by Friesen and Faris (2012). The bioactivity of SnTox6 was tested 

weekly by infiltrating leaves of the differential line ITMI37. Three replications were completed 

with each replication consisting of seven ITMI37 seedlings. SnTox6 was partially purified from 

the CFs of Sn6 and Sn6∆SnTox3 using low pressure and high pressure liquid chromatography 

techniques (Friesen and Faris, 2012). A total of 200 ml of Sn6 CF was dialyzed overnight against 

water in 3,500 MWCO dialysis tubing (Fisher Scientific) and then loaded onto a 5 ml Hitrap 

SPXL ion exchange column using an AKTA Prime plus system (GE healthcare). The column 

was equilibrated with a 20 mM sodium acetate buffer (pH 5.0). The active NE was eluted using 

20 mM sodium acetate (pH 5.0) plus a gradient elution of 0-300 mM NaCl over 150 ml at a flow 
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rate of 5 ml/min. The eluted proteins were separated into 28 fractions of 5 ml each. The fractions 

were tested by infiltration on the SnTox6 differential line ITMI37. The active fractions were 

combined and concentrated to 10 ml by freeze drying and were loaded onto a HiLoad 16/60 

Superdex 30 prep-grade gel filtration column (GE Healthcare) for purification by size exclusion 

chromatography. Size standards, blue dextran (2,000 kDa), cytochrome C (12.3 kDa), and 

aprotinin (6.5 kDa) were added to identify the approximate molecular weight of SnTox6. The 

sample was run in a buffer of 20 mM sodium acetate plus 100 mM NaCl (pH 5.0) at a flow rate 

of 1 ml/min. A total of thirty-six 5 ml fractions were collected.  

The fractions were assayed again by infiltration on ITMI37. The active fractions were 

combined and frozen at -20℃ overnight. The frozen fractions were freeze dried followed by re-

dissolving in 500 µl distilled water. The concentrated fractions were loaded onto an analytical 

grade high-performance liquid chromatography (HPLC) BioSep SEC-S2000 column for the final 

size-exclusion purification. Carbonic anhydrase (30 kDa), cytochrome C and aprotinin were used 

as size standards to estimate the approximate size of SnTox6. The sample was run in a buffer 

consisting of 20 mM sodium acetate plus 500 mM NaCl (pH5.0) at a flow rate of 1 ml/min. The 

1 ml fractions were collected and assayed by infiltration on ITMI37.  

The infiltrated leaves were scored three days post-infiltration using a 0-3 scale (0 = no 

reaction, 1 = mottled chlorosis, 2 = chlorosis/necrosis without tissue collapse, 3 = necrosis with 

complete tissue collapse) (Friesen and Faris, 2012). The HPLC gel filtration fractions having 

SnTox6 activity were separated using SDS-PAGE gel electrophoresis as described by Liu et al. 

(2009). In brief, the fractions were loaded into a precast 16.5% tris-tricine polyacrylamide gel 

and subjected to electrophoresis in a Bio-Rad Mini PROTEAN 3 system (Bio-Rad, Hercules, 
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CA). The separated samples were stained with Coomassie blue solution (0.2% Coomassie Blue 

R250, 7.5% acetic acid and 50% ethanol) to show the protein bands. 

2-DGE separation of SnTox6 produced by Sn6 

Sn6 proteins in the final HPLC gel filtration fraction 20 were separated by isoelectric 

focusing (IEF) in the first dimension and SDS-PAGE in the second dimension as described by 

Sharma et al. (2007). In brief, 500 µg of total protein in 125 µl of ReadyPrep 2-D starter kit 

rehydrated buffer (Bio-Rad) was loaded overnight into 7 cm IPG strips (pH 3-10, nonlinear, Bio-

Rad). IEF was conducted in the Ettan IPGphor 3 system (GE healthcare). After IEF, the IPG 

strips were equilibrated in 5 mL equilibration buffer 1 (6 M urea, 2% w/v SDS, 0.375 M Tris-

HCl, pH 8.8, 20% v/v glycerol, and 130 mM DTT) twice and equilibration buffer 2 (6 M urea, 

2% w/v SDS, 0.375 M Tris-HCl, pH 8.8, 20% v/v glycerol, and 135 mM iodoacetamide) an 

additional two times. SDS-PAGE was performed in the mini PROTEAN system (Bio-Rad) as 

described by Laemmli (1970) on 13% polyacrylamide gels at a constant voltage (100 V). The 

PAGE gel was fixed in 50% methanol and 7% acetic acid for 30 min, stained in SYPRO Ruby 

gel stain solution overnight and de-stained in 10% methanol and 7% acetic acid for 30 min. 

Mass spectrometry of SnTox6 

Spots in the SDS-PAGE gel were cut and subjected to in-gel tryptic digestion as 

described by Shevchenko et al. (1996). Lyophilized tryptic peptides were desalted according to 

Rappsilber et al. (2003). Eluted peptides were dried in vacuo and reconstituted in 98:2:0.1 

water:acetonitrile:trifluoroacetic acid. Approximately 0.2 µg of each gel spot was analyzed by 

capillary LC-MS as previously described (Lin-Moshier et al., 2013) on a Velos Orbitrap mass 

spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA) with higher energy collision 
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induced dissociation (HCD) activation at the Center for Mass Spectrometry and Proteomics, 

University of Minnesota.  

Mass spectral database search 

Peaks® Studio (Ma et al., 2003) 6.0 build 20120620 (Bioinformatics Solutions, Inc, 

Waterloo, ON CA) software package was used for interpretation of tandem MS (mass spectra) 

and protein inference. Database searches included the P. nodorum SN15 protein database 

(http://genome.jgi.doe.gov/Stano2/Stano2.home.html), as well as six frame translation databases 

of SN15 and Sn4. The six way translation databases of SN15 and Sn4 were generated by 

translating the genomic DNA sequences (Hane et al., 2007; Syme et al., 2013) between stop 

codons for all six frames using CLC Genomic Workbench (CLC Bio). All the protein databases 

were concatenated with the common lab contaminant proteins from 

http://www.thegpm.org/crap/. Search parameters included parent mass error tolerance 20.0 ppm; 

fragment mass error tolerance 0.1 Da; precursor mass search type monoisotopic; enzyme trypsin 

with max missed cleavages 2 and non-specific trypsin cleavage; variable modifications 

methionine oxidation; fixed modifications carbamidomethyl cysteine; maximum variable 

modifications per peptide 5; false discovery rate calculation On; spectra merge options: 0.2 

minutes within 10.0 ppm mass window; charge correction on for charge states 2 – 8; spectral 

filter quality >0.65. Support for the detection of peptides from each supporting tandem MS data 

was based on: 1) high confidence Peaks® Peptide Score (minimum -10 logP35); 2) a minimum 

of 3 consecutive b- or y-type peptide fragment ions; 3) high precursor mass accuracy (<7 ppm) 

and a maximum 30 kDa molecular weight (Zhang et al., 2012). 
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SnTox6 protease sensitivity 

SnTox6 from HPLC was treated with 1 mg/ml Pronase (EMD Biosciences Inc., San 

Diego, CA, USA), a mixture of endo- and exo-proteases, for 4 h at room temperature. The 

Pronase treated sample, the non-Pronase treated sample (positive control), and the Pronase only 

(negative control) were then infiltrated on ITMI37. In order to show that the protease (Pronase) 

was not affecting the receptor or downstream signaling of SnTox6 recognition, we combined 

SnTox6 and Pronase and immediately infiltrated the mixture on ITMI37. Additionally, we 

pretreated leaves of ITMI37 by infiltrating with Pronase at a concentration of 1 mg/ml, waited 4 

h and then infiltrated the same leaf area with SnTox6. All five treatments involving Pronase 

sensitivity were performed using a total of three replicates. Leaf necrosis was evaluated 3 days 

post-infiltration (Fig. 3). 

Light dependence of the SnTox6-Snn6 interaction 

The partially purified SnTox6 from HPLC was used to infiltrate ITMI37 and plants were 

subjected to either a 12 h photoperiod or 24 h dark conditions. Three replicates were completed 

for both treatments with each replication consisting of seven ITMI37 plants. Necrotic activity 

was evaluated 3 days post-infiltration. 

Identification of the Snn6 locus 

CFs of Sn6 were infiltrated into the second leaf of W-7984, Opata 85, and 106 RILs of 

the ITMI population. Approximately 25 μl of the active CFs were infiltrated using a 1 ml 

needleless syringe. The infiltrated region was labeled using a non-toxic felt marker. The 

infiltrated plants were grown in a growth chamber at 21℃ under a 12 h photoperiod.  At least 

three replications were completed for each line with each replication consisting of two plants 

organized in racks of 98 (Stuewe and Sons Inc., Corvallis, OR, USA). The infiltrated leaves were 
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scored three days post-infiltration using a 0-3 scale where 0 = no reaction, 1 = mottled chlorosis, 

2 = chlorosis/necrosis without tissue collapse, 3 = necrosis with complete tissue collapse (Friesen 

and Faris, 2012).  

A total of 505 genetic markers previously mapped in the ITMI population were 

downloaded from the Graingenes website (http://wheat.pw.usda.gov/GG2/index.shtml) and used 

to reassemble the linkage maps of all 21 chromosomes. The average infiltration data of three 

replications was regressed on the 505 genetic markers using simple interval-regression as 

described by Liu et al. (2004a). A LOD (logarithm (base 10) of odds) threshold of approximately 

3.0 at an experiment-wise error (α) level of 0.05 was determined by executing a permutation test 

with 5,000 permutations. 

Mapping of the Snn6 locus and additional molecular markers 

CFs of Sn6∆SnTox3 were infiltrated into the second leaf of the parents and 106 RILs of 

the ITMI population. The infiltrated leaves were scored three days post-infiltration using a 0-3 

scale (Friesen and Faris, 2012). Plants scored as 0 were insensitive, meaning that these plants 

inherited the snn6 allele from W-7984, whereas plants scored as 1, 2 and 3 were sensitive and 

possessed the Snn6 allele from Opata 85.  

The insensitivity/ sensitivity data were converted to genotypic scores to place the Snn6 

locus on the ITMI map using the software program Mapmaker v2.0 (Lander et al., 1987). The 

‘try’ command was used to place the Snn6 locus in the most likely position relative to the 

molecular markers that made up the linkage map of chromosome 6A. Genetic distances were 

calculated using the Kosambi mapping function (Kosambi, 1944).  

Nine additional markers were placed on the 6A linkage map in the vicinity of the Snn6 

locus. These included the two microsatellite markers Xhbe385 and Xhbg402 previously shown 
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by Torada et al. (2006) to identify loci in the distal region of the wheat chromosome arm 6AL. 

PCR conditions followed those of Torada et al. (2006). The other seven markers were developed 

from wheat ESTs (GenBank accession numbers BF145792, BE494057, BE591377, BF428729, 

BE424987, BE403326, and BE590952) that were previously shown to detect loci within the 

most distal bin of the long arm of the chromosome 6A physical map (Qi et al., 2004). PCR 

amplification and visualization of amplified products was done as described in Lu et al. (2006). 

The microsatellite and EST-based markers were added to the ITMI chromosome 6A linkage map 

as described above for Snn6. 

SNB disease evaluation 

The P. nodorum isolates Sn6 and Sn6∆SnTox3 were cultured on V8-potato dextrose agar 

(PDA) for 6-7 days as described by (Friesen and Faris, 2012). Conidia (pycnidiospores) served 

as inoculum and were adjusted to a concentration of 1×106 spores/ml and sprayed onto juvenile 

plants at the two to three leaf stage as described by Friesen and Faris (2012). The inoculated 

plants were subjected to 100% relative humidity in the light for 24 h in a mist chamber and then 

grown in a growth chamber at 21ºC under a 12 h photoperiod for 6 additional days. The disease 

on the second leaf of each inoculated plant was scored 7 days post-inoculation using a 0-5 rating 

scale based on lesion type (Liu et al., 2004b). Three replications were completed with each 

replication consisting of two cones per line with two plants per cone with a single cone border of 

the susceptible wheat variety Alsen to reduce any edge effect.  

To determine the effects of host NE sensitivity genes on the development of SNB (i.e. the 

effects of the SnTox6-Snn6 interaction), the average 7-day disease phenotypic data of three 

replications was regressed on the data for the 514 genetic markers with composite interval-

regression mapping using the software QGene v4.0 (Joehanes and Nelson, 2008). A LOD 
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threshold of approximate 3.0 at an experiment-wise error (α) level of 0.05 was determined by 

executing a permutation test with 5,000 permutations. 

Expression analysis of SnTox3 and SnTox1 

Total RNA of ITMI6 and ITMI10 was extracted using the RNeasy plant Mini Kit 

(QIAGEN) 3 days after inoculating with Sn6, Sn2000 and Sn4. Because Sn2000 and Sn4 were 

used to clone SnTox1 and SnTox3 respectively, we used cDNA of Sn2000 and Sn4 inoculated 

ITMI6 and ITMI10 as positive controls for SnTox1 and SnTox3 amplification, respectively. The 

three day time point was used because both SnTox3 and SnTox1 have been shown to be 

produced most abundantly at 3 days post inoculation (Liu et al., 2009; Liu et al., 2012). The total 

RNA was reverse transcribed using TaqMan Reverse Transcription Reagents (Roche) and the 

resulting cDNA was used as template to conduct reverse transcription-PCR (RT-PCR). The 

primers SnTox1cF and SnTox1cR (Table 2.1) were used to amplify SnTox1 (Snog_20078; 

Genebank accession number XM_001797453.1). The primers SnTox3cF and SnTox3cR (Table 

2.1) were used to amplify SnTox3 (Snog_08981; Genbank accession number XM_001799232.1). 

The primers SnActinF and SnActinR (Table 2.1) were used to amplify the P. nodorum actin gene 

(Act1; Genbank accession number EAT90788) as an internal control. A PCR reaction mix 

without DNA (H2O) was used as a negative control. PCR was run using the following 

parameters: 94℃ 4 min; 30 cycles of 94 ℃ for 30 sec, 60 ℃ for 30 sec, and 72 ℃ for 30 sec, 

followed by 72 ℃ 10 min. 

Results 

The identification of a novel NE-wheat gene interaction 

Culture filtrate (CF) of the P. nodorum fungal isolate Sn6 was used to infiltrate leaves of 

wheat lines W-7984 and Opata 85, the parents of the International Triticeae Mapping Initiative 
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(ITMI) population. W-7984 was insensitive to Sn6 CF whereas Opata 85 was sensitive, 

indicating at least one NE other than SnTox1 was being produced by Sn6, because W-7984 is 

sensitive only to SnTox1 and Opata 85 is insensitive to SnTox1 (Liu et al., 2004a). To determine 

if the NE produced by Sn6 was different from the other NEs that have been reported, we used the 

CF of isolate Sn6 to infiltrate several of the SNB differential lines with known NE sensitivities 

including BG223 (SnTox2), BG220 (SnTox3), AF89 (SnTox4) and LP29 (SnTox5), as well as 

the ITMI population. Sn6 had previously been shown by Friesen et al. (2007) to produce 

SnToxA. Previous work and current Sn6 culture filtrate infiltration of these differential lines 

showed that Sn6 produced SnToxA, SnTox2, and SnTox3, but not SnTox4 or SnTox5 (Table 

2.2). However, neither SnToxA nor SnTox2 sensitivity segregated in the ITMI population.  

Interval regression analysis of Sn6 CF infiltration data on the ITMI population marker data 

revealed two loci, one at the distal end of the short arm of chromosome 5BS, which is the same 

location of Snn3-B1 identified in the BG population (Friesen et al., 2008b; Zhang et al., 2011), 

and a novel locus on chromosome 6A (Figure 2.1). We designated the novel NE produced by 

isolate Sn6 as SnTox6, and the wheat gene conferring sensitivity to SnTox6 as Snn6.  
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Table 2.2. Culture filtrate (CF) infiltration reactions of P. nodorum isolate Sn6 in SNB 
differential lines which are sensitive to SnToxA, SnTox1, SnTox2, SnTox3, SnTox4 and 
SnTox5, respectively 

SNB differential lines Sn6 CF reaction 

1BG261 (SnToxA) + 

M6 (SnTox1) - 

BG223 (SnTox2) + 

BG220 (SnTox3) + 

AF89 (SnTox4) - 

LP29 (SnTox5) - 

1(Friesen et al., 2007)  
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Figure 2.1. QTL analysis of sensitivity induced by the P. nodorum isolate Sn6 onto the ITMI 
population. 

Interval-regression map of wheat chromosomes 6A (left) and 5B (right) generated using the 
average 3-day reaction to culture filtrates of P. nodorum isolate Sn6 in the ITMI recombinant 
inbred population. A centiMorgan (cM) scale is indicated to the right of the maps and the 
markers are indicated on the left. LOD scales are shown across the bottoms of the maps, and the 
significant QTL threshold is shown by the dotted line. 
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To evaluate the genetics of the wheat gene conferring sensitivity to SnTox6 alone, we 

generated and confirmed (Figure 2.2) an SnTox3-disrupted mutant, which was named 

Sn6∆SnTox3. Because the SnTox3 gene was disrupted in Sn6∆SnTox3, and Sn6∆SnTox3 was 

confirmed to show similar SnTox6 activity as the wild type (Figuer 2.4), the CF of Sn6∆SnTox3 

was used to infiltrate the ITMI population resulting in a 58:48 sensitive: insensitive ratio, which 

was not significantly different from the expected 1:1 ratio (χ2
 df = 1= 0.943, P = 0.3315), indicating 

that sensitivity to SnTox6 is controlled by the single host gene, Snn6. 

 

Figure 2.2. PCR screening and confirmation of the SnTox3 disruption in the Sn6∆SnTox3 strain. 

The primers SnTox3g0F and HY amplify a 1.2kb 5’ SnTox3 gene region plus a 1.2 kb partial hph 
gene region to generate a total fragment size of 2.9 kb (SnTox3g0F-HY) from Sn6∆SnTox3, the 
SnTox3 disruption strain. No amplification is observed in the wild type (Sn6) or the ectopic 
insertion strain (Sn6Ect). The primers SnTox3CF and SnTox3CR amplify a 600 bp fragment 
(SnToxCF-SnToxCR) in the wild type and ectopic strains indicating that the SnTox3 gene 
remains intact, while they amplify a 3.2 kb fragment (600 bp of SnTox3 plus 2.6 kb of the hph 
expression cassette) in the SnTox3-disrupted strains. The P. nodorum actin gene was amplified as 
an internal control. The PCR reaction mix without DNA (H2O) was used as a negative control. 
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Snn6 mapped to the long arm of chromosome 6A 

Reactions of the ITMI recombinant inbred lines (RILs) to the CF infiltration of 

Sn6∆SnTox3 were converted to genotypic scores to allow linkage analysis of Snn6 relative to the 

molecular markers. Due to the disruption of SnTox3, the interaction of SnTox3-Snn3-B1 was 

eliminated, allowing the evaluation of only the gene (Snn6) conferring sensitivity to SnTox6. 

The Snn6 gene mapped near the distal end of the long arm of chromosome 6A (Figure 2.3).  

Because most of the markers near Snn6 were restriction fragment length polymorphism 

(RFLP) markers, which are not user-friendly or suitable for high-throughput genotyping or 

marker-assisted selection, we placed nine additional PCR-based markers on the ITMI 6A map.  

Two of the nine markers were microsatellite markers Xhbe385.2 and Xhbg402, which were 

previously developed by Torada et al. (2006).  We developed the remaining seven PCR-based 

markers (XBF145792, XBE494057, XBE591377, XBF428729, XBE424987, XBE403326, and 

XBE590952) from wheat expressed sequence-tagged (EST) sequences 

(http://wheat.pw.usda.gov/NSF/). Four of the nine PCR-based markers mapped within 10 cM of 

Snn6, with markers XBE424987 and XBE403326 immediately flanking the gene and delineating 

it to a 3.2 cM interval (Figure 2.3). 
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Figure 2.3. QTL analysis of disease susceptibility induced by the P. nodorum isolate Sn6 onto 
the ITMI population.  

Composite interval-regression map of wheat chromosomes 6A generated by the average 7-day 
disease reaction scores using P. nodorum isolate Sn6 on the ITMI recombinant inbred 
population. A centiMorgan (cM) scale is indicated to the right of the map and the markers are 
indicated on the left of the map. A LOD scale is indicated on the x-axis, and the significant QTL 
threshold is shown by the dotted line. The marker conferring the largest QTL is shown in bold, 
and the two flanking markers are shown in boxes. 
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SnTox6 is a small, secreted, necrosis-inducing protein  

The wheat line ITMI37 was chosen as a differential line to characterize the SnTox6 

protein because it contained only one known sensitivity gene, Snn6, which confers sensitivity to 

SnTox6. ITMI37 was shown to be insensitive to the Pichia pastoris heterologous expression 

cultures of SnTox1 and SnTox3, as well as all other known NEs based on P. nodorum culture 

filtrate infiltrations.  

When infiltrated on ITMI37, three-week old CFs of Sn6 and Sn6∆SnTox3 induced strong 

necrosis and therefore we used these cultures to purify SnTox6. Initial purification was done by 

low-pressure ion exchange chromatography using a 5 ml Hitrap SPXL cation exchange column 

(GE Healthcare). The SnTox6 activity on ITMI37 eluted between 75 and 270 mM NaCl 

(fractions 6 to 19) with the strongest NE activity identified in the fractions eluting between 135 

and 225 mM NaCl (fractions 10 to 15) and showing type 2 and 3 reactions (0 = no reaction, 1 = 

mottled chlorosis, 2 = chlorosis/necrosis without tissue collapse, 3 = necrosis with complete 

tissue collapse) as described in Friesen and Faris (2012) (Figure 2.4. A, D, G). Tissue 

necrosis/damage at the infiltration point was not associated with the NE interaction and therefore 

the region between the infiltration point and the black marked lines was used for scoring. 

Fractions before 6 and after 19 did not show SnTox6 activity (reaction type 0) on ITMI37 (data 

not shown).  

The active fractions (fraction 10 to 15) were combined and further separated by size 

exclusion chromatography using a HiLoad 16/60 Superdex 30 prep-grade gel filtration column. 

The eluted fractions were assayed by infiltration on ITMI37, and activity eluted between blue 

dextran (2000 kDa) and aprotinin (6.5 kDa) (fractions 8 to 18). Fractions before 8 and after 18 

showed no SnTox6 activity (reaction type 0) on ITMI37 (data not shown). The strongest NE 
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activity (type 2 and 3 reactions) was identified in fractions 12 and 13 from Sn6 (Figure 2.4. B, E) 

and 11, 12 and 13 from Sn6∆SnTox3 (Figure 2.4 B, H). Cytochrome C (12.3 kDa) eluted in 

fraction 12 indicating the size of the eluted fractions 11, 12 and 13, which contained the strongest 

NE activity, were close to the size of cytochrome C.  

Fractions 11, 12 and 13 were then subjected to a final purification by size exclusion 

HPLC. The eluted fractions between 17 and 23 were assayed by infiltration on ITMI37. The 

fractions 19, 20 and 21 showed 2 or 3 type reactions, indicating these fractions contained the 

most significant SnTox6 activity (Figure 2.4. C, F, I). Fractions before 17 and after 23 did not 

have SnTox6 activity (reaction type 0) on ITMI37 (data not shown). Fractions 19 and 20 eluted 

between cytochrome C (12.3 kDa) and aprotinin (6.5 kDa), and fraction 21 eluted after aprotinin 

(Figure 2.4. C, F, I). The infiltration of fraction 19, 20 and 21 from Sn6∆SnTox3 showed type 2, 

3, 2 reactions, respectively (Figure 2.4. I), indicating fraction 20 from Sn6∆SnTox3 had the 

strongest SnTox6 activity. This result provided evidence for the molecular mass of SnTox6 being 

at or less than that of cytochrome C.   

To further investigate the molecular size of SnTox6 from Sn6, the HPLC gel filtration 

fractions 19, 20 and 21 (Figure 2.4. F) were subjected to sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) analysis. Fractions 19, 20 and 21 showed a strong band around 

12 kDa. Fractions 20 and 21 showed another band around 8 kDa which was not visible in 

fraction 19 (Figure 2.5). Because all three fractions had SnTox6 activity, we hypothesized that 

the larger band with a size around 12 kDa contained SnTox6.  
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Figure 2.4. Partial purification of SnTox6 (A, B, C), and NE bioassays of SnTox6 from Sn6 (D, 

E, F) and Sn6∆SnTox3 (G, H, I). 

(A) Cation exchange chromatography with a 0 to 300 mM NaCl gradient elution of dialyzed Sn6 
and Sn6∆SnTox3 culture filtrates. The y-axis indicates the UV absorbance at 280 nm (blue curve 
Sn6, green curve Sn6∆SnTox3) with the x-axis indicating the fraction number. The salt gradient 
is indicated by the gray line. The fraction range with NE activity is indicated by the vertical 
black dashed lines. The activity of SnTox6 was observed by infiltrating the differential line 
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ITMI37 with the eluted fractions from Sn6 (D) and Sn6∆SnTox3 (G). (B) Size exclusion 
purification of SnTox6 separated by gel filtration chromatography (left). The y-axis shows the 
UV absorbance (blue curve for Sn6, green curve for Sn6∆SnTox3) with the x-axis showing the 
fraction number. The fractions with NE activity are indicated by the vertical black dashed lines. 
The NE bioassay of SnTox6 was observed by infiltrating the differential line ITMI37 with the 
eluted fractions from Sn6 (E) and Sn6∆SnTox3 (H). (C) A final size exclusion purification of 
SnTox6 separated by HPLC gel filtration chromatography. The y-axis shows the UV absorbance 
and the x-axis shows the eluted fraction numbers. The absorbance of the Sn6 sample is indicated 
by the blue line, and Sn6∆SnTox3 is indicated by the green line. The size standards cytochrome 
C (12.3 kDa), aprotinin (6.5 kDa) and carbonic anhydrase (30 kDa) are indicated by the red, 
black, and pink lines, respectively. The fractions with NE activity are indicated by the vertical 
black dashed lines. The presence of SnTox6 observed by infiltrating the differential line ITMI37 
with the eluted fractions from Sn6 (F) and Sn6∆SnTox3 (I). The eluted fraction numbers are 
indicated on the left side of each infiltrated ITMI37 leaf of panels (D) - (I). The relative activity 
of all the eluted fractions were scored on a 0 to 3 scale where 0 = no reaction, 1 = mottled 
chlorosis, 2 = chlorosis/necrosis without tissue collapse, 3 = necrosis with complete tissue 
collapse (Friesen and Faris, 2012). 0 to 3 scores are indicated to the right of each corresponding 
ITMI37 leaf. 
 
 

 

Figure 2.5. SDS-PAGE image of the final HPLC gel filtration chromatography fractions 19-21 
and (A) a 2DGE image of the final HPLC gel filtration fraction 20 which contained the highest 
SnTox6 activity (B). 

(A) Ladder consists of a Genscript Smart His Tagged protein standard (Genscript, Piscataway, 
NJ USA). The molecular weight (kDa) of each protein standard is labeled. Lanes labeled 19, 20, 
and 21 contain protein samples from HPLC gel filtration fractions 19, 20, and 21. (B)  The 
Precision Plus Protein™ Dual Xtra size standard is on the left. Spot 1 and 2 were excised and 
subjected to mass spectrometry. 
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In an attempt to isolate SnTox6, we performed 2DGE of the final gel filtration HPLC 

fraction 20 which contained the strongest SnTox6 activity (Figure 2.4. F). Two spots (~12 kDa 

and 8 kDa) were identified (Figure 2.5) and excised from the gel to identify the proteins using 

mass spectrometry. Protein hits with a maximum molecular weight of 30 kDa and a minimum of 

three peptide hits were used. By using the P. nodorum protein database 

(http://genome.jgi.doe.gov/Stano2/Stano2.home.html), one strong hit from the 12 kDa spot 

SNOG_16063 (Figure 2.5. B, Spot 1) was identified which had been previously ruled out as an 

NE (Liu et al., 2009). One hit from the 8 kDa spot (Figure 2.5. B, Spot 2) SNOG_06667 

(ubiquitin) was also identified, which was not likely SnTox6.  

We then used 6-way translation databases generated from the SN15 and Sn4 genomic 

sequences (Hane et al., 2007; Syme et al., 2013) to identify genomic regions (identified by three 

peptide hits) with no previously annotated genes. In addition to the genomic regions harboring 

SNOG_16063 and SNOG_06667, a single three peptide hit from a genomic region that had no 

previously annotated genes in either Sn4 or SN15 was identified in both the Sn4 and SN15 6-

way translation databases. Further work is needed to validate the possibility that this genomic 

region harbors SnTox6. 

To determine if the purified fraction associated with Snn6 sensitivity was a protein, 

fractions 19, 20 and 21 from HPLC gel filtration were combined and digested with Pronase 

(Sigma) and then tested by infiltration on ITMI37. The sample treated with Pronase had no 

activity on ITMI37, whereas the sample without Pronase treatment (positive control) maintained 

strong NE activity (Figure 2.6. A). The Pronase-only infiltration (negative control) showed no 

activity on ITMI37. Additionally, to prove that the Pronase was not acting on the host receptor of 

SnTox6 or affecting downstream signaling, leaves were either infiltrated with SnTox6 that had 
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just been mixed with Pronase or infiltrated with SnTox6 samples after leaves had been pre-

treated for four hours by infiltrated Pronase. Neither treatment reduced the NE activity indicating 

that Pronase did not render the plant insensitive to SnTox6, and that the necrosis induced on 

ITMI37 was induced by a protein (Figure 2.6. A). 

 

 

Figure 2.6. Protease analysis (A) and light dependency testing (B) of the SnTox6-Snn6 
interaction using partially purified SnTox6 infiltrated on ITMI37.  

(A) ITMI37 leaves were infiltrated with untreated SnTox6 (a), SnTox6 treated with Pronase for 4 
h (b), SnTox6 treated with Pronase for 0 h (c), Pronase only followed by SnTox6 infiltration 4 
hours later (d) and Pronase only (e). (B) ITMI37 leaves were infiltrated with SnTox6 and grown 
under a 12 h photoperiod (f), and 24 h dark conditions (g) for 72 h. 
 
 

Sensitivity to SnTox6 is light dependent 

Previous studies have shown that other P. nodorum and Pyrenophora tritici-repentis NE 

interactions are light-dependent (Oliver et al., 2012). To determine if the SnTox6-Snn6 
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interaction was light dependent, fractions 19, 20 and 21 from HPLC gel filtration were combined 

and infiltrated on ITMI37. The infiltrated plants were subjected to either a 12 h photoperiod or 

24 h dark conditions. Strong necrosis occurred on leaves of plants grown under a 12 h 

photoperiod, but no necrosis was evident on plants grown under 24 h dark conditions (Figure 2.6. 

B), indicating that the SnTox6-Snn6 interaction is dependent on light. 

The SnTox6-Snn6 interaction contributes significantly to SNB disease 

Three replications of the ITMI population were inoculated with conidia of isolate Sn6. A 

Bartlett’s Chi-squared test indicated the three replicates were homogeneous (χ2
 df= 2 = 0.0807, P = 

0.960) and therefore were pooled for further analysis. Disease reactions were scored using a 

scale of 0-5 (0 = highly resistant; 5 = highly susceptible) (Liu et al., 2004a; Liu et al., 2004b). 

Average disease reaction types for Opata 85 and W-7984 were 3.0 and 1.5, respectively (Table 

2.3; Figure 2.7). The average disease reaction types of the ITMI population showed a normal 

distribution in a range of 0-4. The mean reaction type of the population was 2.5. SnTox6 

sensitive RILs (Snn6Snn6 genotype) had a mean reaction type of 2.8 with a range of 2.0 to 4.0, 

whereas insensitive RILs (snn6snn6 genotype) had a mean reaction type of 2.1 with a range of 

1.0 to 3.5 (Table 2.3; Figure 2.7). Interval regression analysis revealed a significant association 

(LOD = 7.1) between the Snn6 locus and the disease reaction types (Figure 2.3), which explained 

27% of the disease variation. No other markers in the dataset were associated with SNB caused 

by Sn6 in this population.  
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Table 2.3. Average and range of SNB disease reaction types of parents and RILs of the ITMI 
population for the two genotypes of the Snn6 locus 7 days post inoculation using isolate Sn6 

Genotype Average disease reaction type Reaction type range 

Opata85 3.0 2.5-3.5 

W-7984 1.5 1.0-2.0 

Snn6Snn6 2.8a 2.0-4.0 

snn6snn6 2.1a 1.0-3.5 

a Average disease reaction of the RILs with an Snn6Snn6 genotype is significantly different from 
that of RILs with an snn6snn6 genotype at the 0.01 level of probability 
 

 

Figure 2.7. Histograms of the average SNB disease reaction type induced by Sn6 conidial 
inoculation. 

(A) Average SNB disease reaction types of the ITMI population. (B) Average SNB disease 
reaction types of the SnTox6 sensitive (Snn6, black) and insensitive (snn6, gray) ITMI RIL lines. 

 

The ITMI population also segregated for the NE sensitivity genes Snn1 and Snn3-B1, but 

these genetic loci, which lie on chromosome arms 1BS and 5BS, respectively, were not 

significantly associated with disease caused by Sn6. Therefore, we used conidia of Sn6 to 
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inoculate ITMI6 and ITMI10, both of which are sensitive to SnTox6, SnTox1 and SnTox3 

(Snn1Snn1/Snn3-B1Snn3-B1/Snn6Snn6 genotype), and conducted RT-PCR using RNA collected 

three days after inoculation to check the expression levels of the SnTox1 and SnTox3 genes. 

Also, RNA collected from ITMI6 and ITMI10 three days after inoculation with isolates Sn2000 

and Sn4 were used as controls, because Sn2000 and Sn4 are known to have and express the 

SnTox1 and SnTox3 genes, respectively (Liu et al., 2009; Liu et al., 2012).  No SnTox1 transcript 

was identified in the Sn6 inoculated plants (Figure 2.8), indicating that the SnTox1-Snn1 

interaction was not significant in disease because SnTox1 was not produced by this isolate. On 

the contrary, abundant transcript of SnTox3 was identified in Sn6 (Figure 2.8), even though the 

SnTox3-Snn3-B1 interaction was not significant in disease.  
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Figure 2.8. Reverse transcriptase expression of the SnTox3 and SnTox1 genes. 

Reverse transcriptase PCR were performed using cDNA generated from plant inoculations of 
ITMI6 (top) and ITMI 10 (bottom) using P. nodorum isolates Sn2000, Sn4 and Sn6. Leaf tissue 
was harvested 3 days post inoculation. The P. nodorum actin gene was amplified as an internal 
control. PCR reaction mix without DNA (H2O) was used as a negative control. Size standards 
(M) were loaded on the right and left boarders. 
 
 

Discussion 

The SnTox6-Snn6 interaction is a novel NE-host gene interaction important in the P. 

nodorum-wheat pathosystem. Our previous studies showed that the P. nodorum isolate Sn6 

harbored the genes SnToxA, SnTox1, and SnTox3, and it produces additional NEs including, but 

not limited to, SnTox2 (Friesen et al., 2007). Opata 85, a parent of the ITMI population, was 

moderately susceptible to isolate Sn6 and harbors Snn3-B1 (sensitivity to SnTox3), Snn6 and 
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likely Snn5 (Abeysekara et al., 2009), while the other ITMI parent, W-7984, was moderately 

resistant to Sn6 and harbors only Snn1 (sensitivity to SnTox1) (Liu et al., 2004b). Therefore the 

ITMI RIL population segregated for susceptibility to isolate Sn6. However, the other reported 

NE-sensitivity gene interactions such as the SnTox2-Snn2 and SnTox4-Snn4 interactions are not 

present in the ITMI population because neither ITMI parent harbors the sensitivity genes Snn2 

(sensitivity to SnTox2) or Snn4 (sensitivity to SnTox4). A disease QTL on wheat chromosome 

4B at a similar location as that reported for Snn5 was reported in the ITMI population using 

isolate Sn2000 (Friesen et al., 2012). However, based on infiltration on the SnTox5 differential 

line LP29, the isolate Sn6 does not produce SnTox5. Additionally, if the SnTox5-Snn5 

interaction was contributing to disease, we should have seen a significant QTL on chromosome 

4BL in the Sn6 culture filtrate infiltration and/or spore inoculation, which we did not. 

The sensitivity gene Snn6 mapped to chromosome 6A in the ITMI population and 

accounted for 27% of the SNB disease variation. Previously, a single QTL, QSnl.ihar-6A 

associated with partial resistance to SNB was identified on the long arm of chromosome 6A 

(Arseniuk et al., 2004), however, a comparison of common markers indicated that QSnl.ihar-6A 

is in a different region of 6AL, which would suggest that Snn6 is not the gene responsible for the 

effect of the QSnl.ihar-6A QTL.  

QTL analysis of infiltration data of CFs produced by isolate Sn6 on the ITMI population 

led to the identification of two loci, Snn3-B1 (Zhang et al., 2011) and the novel locus on 

chromosome 6A (Figure 2.1) that were significantly associated with the development of necrosis. 

Although the ITMI population is known to segregate for sensitivity to SnTox1 (Liu et al., 2004a; 

Liu et al., 2012), SnTox3 (Zhang et al., 2011) and SnTox6 (current study), only the SnTox3-

Snn3-B1 and SnTox6-Snn6 interactions were detected by CF infiltrations, and only the SnTox6-
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Snn6 interaction was significant in disease caused by Sn6 conidial inoculations. SnTox1-Snn1 

was previously shown to produce a strong interaction accounting for as much as 63% of the 

disease variation in the ITMI population when inoculated with P. nodorum isolate Sn2000 (Liu 

et al., 2004a; Liu et al., 2004b). However, in the current work, no significance was associated 

with the Snn1 locus either by CF infiltrations or by spore inoculations even though it is known 

that isolate Sn6 harbors the SnTox1 gene.  

Previous work in our lab has shown that the relative level of gene expression of NE genes 

has a significant impact on the level of disease explained by a particular NE-host gene 

interaction (Faris et al., 2011). The height of in planta gene expression for SnTox1 (Liu et al., 

2012) and SnTox3 (Liu et al., 2009) as well as other P. nodorum NEs has been shown to be 

around 72 hours post inoculation (Friesen et al., 2006; Liu et al., 2009; Liu et al., 2012), 

indicating the importance of these effectors in disease development. We therefore evaluated the 

expression of SnTox1 and SnTox3 in planta 72 hours post inoculation to see if expression levels 

could explain the lack of significance in disease across the ITMI population. In planta expression 

of SnTox1 strongly indicated that expression levels of SnTox1 were responsible for the lack of 

significance for the SnTox1-Snn1 interaction since no detectable transcript of SnTox1 was 

identified at the 72 hour time point indicating that regulation of the SnTox1 gene is different 

between isolates of P. nodorum. The failure to detect SnTox1 transcript in Sn6-

inoculated/infiltrated plants provides an explanation for the lack of significance in disease 

associated with the SnTox1-Snn1 interaction.   

Faris et al. (2011) showed that, in the case of the SnToxA-Tsn1 interaction, decreased 

expression levels of SnToxA resulted in a decrease in significance of the SnToxA-Tsn1 

interaction in the presence of other NE interactions and consequently a decrease in average 
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disease across the population. Our results agree with those of Faris et al. (2011) in that, like 

SnToxA, regulation of SnTox1 varies between different isolates of P. nodorum allowing it to play 

a more significant role in SNB for some isolates (e.g. Sn2000) (Liu et al., 2004a; Liu et al., 

2004b; Liu et al., 2012) but less so for others (e.g. Sn6). On the contrary, SnTox3 showed high 

levels of expression both in planta and in culture (data not shown) indicating that the limiting 

factor for the SnTox3-Snn3-B1 interaction lies on the host side and likely in the Snn3-B1 gene or 

pathway. 

Unlike SnTox1, SnTox3 was produced in sufficient quantities in Sn6 CFs to induce 

necrosis upon infiltration. For this reason, and because separation of SnTox3 from SnTox6 by 

chromatography was difficult, we disrupted the SnTox3 gene in isolate Sn6. Infiltration of 

Sn6∆SnTox3 CFs on the ITMI population verified that the SnTox3-disrupted strain did not 

produce SnTox3 (data not shown). Sensitive:insensitive ratios to Sn6∆SnTox3 CF of the ITMI 

population segregated 1:1 indicating a single gene conferred sensitivity to SnTox6. This data also 

allowed us to precisely locate Snn6 to the long arm of wheat chromosome 6A.  

SnTox3 was produced both in culture and in planta during disease development. RT-PCR 

also showed that transcript of SnTox3 was present during infection therefore the lack of 

significance of the SnTox3-Snn3-B1 interaction was not explained by lack of SnTox3 expression 

or SnTox3 production. The SnTox3-Snn3-B1 interaction was previously shown to be a relatively 

weak interaction compared to other reported interactions (Friesen et al., 2008a) and 

predominately masked by stronger interactions including SnToxA-Tsn1 and SnTox2-Snn2 

(Friesen et al., 2008a). Friesen et al. (2007) showed that Sn6 produced SnToxA and SnTox2, but 

did not observe the production of SnTox3. All these results indicate that the SnTox3-Snn3-B1 

interaction can be weak in some populations relative to the other interactions, and even if both 
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host and pathogen components are present, it may not be significant either due to masking by 

other interactions, or due to the small sizes of the populations used in these studies and therefore 

the interaction does not meet the significance threshold used in statistical analysis. Additionally 

it is possible that more than one allele of Snn3-B1 exists. Evidence of different alleles of Snn3-

B1 has been observed where different wheat lines show different levels of sensitivity to the same 

concentration of purified SnTox3 (Faris and Friesen, unpublished data). 

Because a relatively small population (106 lines) was used here to evaluate disease 

produced by isolate Sn6, it is possible that other interactions with relatively minor effects in 

addition to the SnTox3-Snn3-B1 interaction were not statistically significant even though 

collectively these interactions likely contribute to disease. The use of a larger mapping 

population would increase the power to detect interactions with relatively minor effects and 

likely lead to the identification of multiple loci associated with disease development, which 

together would account for more of the variation in SNB. 

SnTox6 is similar to several other small secreted protein effectors produced by 

necrotrophs, hemi-biotrophs, and biotrophs including similar size, secretion, and function in 

terms of conferring rapid induction of programmed cell death (PCD) (Stergiopoulos and de Wit, 

2009; Stergiopoulos et al., 2013). Based on size exclusion chromatography, SDS-PAGE, and 

2DGE, the estimated size of SnTox6 is likely around 12 kDa, comparable to the estimated sizes 

of the other six P. nodorum NEs including SnToxA (13.2 kDa) (Tuori et al., 2000; Friesen et al., 

2006), SnTox1 (10.33 kDa) (Liu et al., 2012), SnTox3 (18 kDa) (Liu et al., 2009), SnTox2 (7-10 

kDa) (Friesen et al., 2007), SnTox4 (10 - 30 kDa) (Abeysekara et al., 2009), and SnTox5 (10 - 30 

kDa) (Friesen et al., 2012).  From the HPLC gel filtration chromatography, the size of SnTox6 
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was not perfectly clear but based on size standards was likely around that of cytochrome C (12.3 

kDa).  

Mass-spectrometry was performed on the two 2DGE spots obtained from the most active 

HPLC gel filtration fraction and used an SN15 protein database (Hane et al., 2007) to identify 

candidate proteins. None of the hits obtained from the SN15 protein database were obvious 

candidates for SnTox6. Therefore, using 6-way translation databases that we generated from the 

SN15 and Sn4 genome sequences (Syme et al., 2013), a single region with three peptide hits was 

identified corresponding to the 12 kDa spot. The genomic region matching this peptide region 

had not been annotated previously (Hane et al., 2007). Additional work to validate this 

gene/protein is underway. 

Like several other P. nodorum (Oliver et al., 2012) and P. tritici-repentis (Pandelova et 

al., 2012) NE interactions, the SnTox6-Snn6 interaction is dependent on light. Therefore, 

SnTox6 is likely to utilize a similar downstream mechanism as SnToxA/Ptr ToxA, SnTox1, 

SnTox2, SnTox4 and SnTox5 to induce necrosis/chlorosis. Currently we are working toward 

isolating SnTox6 and cloning the SnTox6 gene in order to further characterize the SnTox6-Snn6 

interaction. 

SnTox3 induces necrosis (PCD) using two, likely homeologous, genes Snn3-B1 and 

Snn3-D1 (Zhang et al., 2011) which have been shown to account for as much as 18% and more 

than 90% of the disease variation, respectively. The ITMI population segregates for Snn3-B1 and 

likely carries a weaker allele than that present at the Snn3-D1 locus. We are currently evaluating 

several sources of the Snn3-B1 gene as well as attempting to clone both the Snn3-B1 and Snn3-

D1 loci to evaluate the possibility of alleles conferring different intensities of PCD.  
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The P. nodorum-wheat interaction has been studied as a model to reveal the host-

pathogen interaction between necrotrophic specialist pathogens and plant hosts. Unlike the 

biotrophic pathogen-host interactions that follow the classic gene-for-gene model, P. nodorum 

secretes NEs as determinants to trigger a compatible interaction (susceptible) on the host 

genotypes that carry the corresponding sensitivity genes in an inverse gene-for-gene manner. 

Because the NEs produced by P. nodorum are critical to the development of SNB, the 

identification of novel NE-host susceptible gene interactions is significant. This information can 

be used by breeders to identify SNB resistance sources by evaluating breeding lines using each 

NE. Also, the molecular markers identified in this research that flank the Snn6 locus can be used 

in marker-assisted selection schemes to expedite the removal of SnTox6 sensitivity from 

breeding materials and varieties. 
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CHAPTER 3. SNTOX1 BINDS CHITIN TO PROTECT THE FUNGAL 

CELL WALL FROM WHEAT CHITINASE ACTIVITY 

Abstract 

The necrotrophic effector SnTox1 was shown to interact directly or indirectly with the 

wheat dominant sensitivity gene Snn1 and induce an oxidative burst, DNA laddering, and up 

regulation of PR genes such as PR-1 and chitinase genes. These responses result in susceptibility 

rather than resistance of wheat cultivars that carry the Snn1 gene. Interestingly, the SnTox1 

protein contains chitin binding domains and was shown to bind a main component of the fungal 

cell wall, chitin. SnTox1 was therefore hypothesized to prevent fungal cell wall against wheat 

chitinases. To investigate this hypothesis, two wheat chitinases were used to treat several fungal 

species including P. nodorum, Neuorospora crassa, Pyrenophora teres f. teres, and Cercospora 

beticola. All strains harboring SnTox1 grew better than the strain not harboring SnTox1, showing 

that SnTox1 not only protected P. nodorum but also other fungi against degradation by wheat 

chitinase, providing evidence for a second role in pathogenicity.  

Introduction 

When attacked by pathogens, plants utilize a series of strategies to induce a 

hypersensitive response. These strategies include programmed cell death, an oxidative burst, 

reinforcement of plant cell walls, secretion of pathogenesis-related (PR) proteins, and production 

of other secondary metabolites (van den Burg et al., 2006). Most PR proteins accumulate in the 

vacuoles or apoplast where fungal pathogens grow after penetration. Some PR proteins, such as 

fungal cell wall degraded enzymes, hydrolyze different components of the fungal cell wall to 

inhibit the growth of fungal pathogens (van den Burg et al., 2006). Well described PR proteins 

include β-1, 3-glucanases (PR-2), chitinases (PR-3, 4, 8, or 11) and some serine and cysteine 
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proteases (Datta and Muthukrishnan, 1999; Jorda et al., 1999; Jorda and Vera, 2000; Kruger et 

al., 2002). Chitinases are classified into two categories: endochitinases and exochitinases. 

Endochitinases randomly cleave the internal β-1, 4-glycoside bonds of chitin to produce N-

acetylglucosamine. Exochitinases are divided into two subgroups, chitobiosidases which catalyze 

the nondeoxydizing end of the chitin microfibril with the production of di-acetylchitobioses, and 

β-1, 4-N-acetylglucoseaminidases which cleave oligomer products of endochitinases and 

chitobiosidases to produce monomer the N-acetylglucosamine. (Cohen-Kupiec and Chet, 1998). 

Based on structure, chitinases are grouped into at least five classes (class I-V) (Beintema, 1994). 

Some Class I chitinases locate to vacuoles, while other chitinases locate to the apoplastic fluid 

(Collinge et al., 1993). Class I chitinases are basic enzymes made up of an N-terminal chitin-

binding domain followed by a chitinase domain and a C-terminal vacuolar targeting sequence. 

Class II chitinases are acidic extracellular enzymes showing 60-65% identity with class I 

chitinases but lacking the chitin-binding domain and vacuolar targeting sequence. Class IV 

chitinases include acidic and basic extracellular proteins that contain an N-terminal chitin-

binding domain but lack a C-terminal extension. The structure of class IV chitinases show 30-

35% identity with class I and class II chitinases. Classes I, II and IV chitinases belong to the 

glycoside hydrolase family 19 (GH-19). The GH-18 family includes chitinases found in classes 

III and V. Class III chitinases lack a cysteine-rich domain, are extracellular hydrolases without a 

chitin-binding domain and were previously described as lysozyme. The conserved catalytic-

domain of class III chitinases show differences in amino acid sequence compared to the 

chitinases of class I or II. Class V chitinases have no homology with any of the other classes. 

This class does not have a chitin-binding domain but does contain a C-terminal extension 

(Beintema, 1994).  
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The recognition of pathogen derived molecules by PR proteins is known to trigger plant 

defense (van den Burg et al., 2006). To avoid recognition, fungal pathogens produce effectors 

that bind components of the fungal cell wall and block degradation. The best described example 

of a fungal effector that protects the fungal cell wall degradation is the Cladosporium fulvum 

effector protein Avr4, an effector protein produced by the tomato leaf mold pathogen C. fulvum.  

Avr4 can be recognized by the product of the tomato resistance gene Cf4 to induce a 

hypersensitive response (HR) (Joosten et al., 1997; Thomas et al., 1997), however, the primary 

function of Avr4 is due to its chitin-binding-domain, which confers the ability of Avr4 to bind to 

the cell wall of C. fulvum and prevent chitin hydrolysis by tomato chitinases (van den Burg et al., 

2006). In addition, Avr4 can bind with the cell walls of Trichoderma viride and Fusarium solani 

f. sp. phaseoli and protect growth of these fungi in the presence of plant chitinases (van den Burg 

et al., 2006).   

SnTox1 was the first NE detected from Parastagonospora nodorum and was shown to be 

a secreted protein between 10 and 30kDa in size (Liu et al., 2004a). Host sensitivity to SnTox1 

was governed by a single dominant gene designated Snn1. Snn1 was physically and genetically 

mapped to a gene-rich region on the distal end of the short arm of chromosome 1B using the 

Chinese Spring wheat chromosome deletion lines and the International Triticeae Mapping 

Initiative (ITMI) mapping population (Liu et al., 2004b). Snn1 accounted for as much as 58% of 

the disease variation across the ITMI population at the 5 day evaluation when inoculating with 

SnTox1 producing isolates, showing the importance of SnTox1 in SNB disease development 

(Liu et al., 2004b). Liu et al. (2012) found the SnTox1-Snn1 interaction was light-dependent, and 

was involved in pathogen penetration and the induction of host cell death. In the Snn1 wheat 

genotypes, SnTox1 triggered a series of classic defense responses including H2O2 production, the 
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up-regulation of PR genes and obvious DNA laddering (Liu et al., 2012). Interestingly, like 

Avr4, the SnTox1 protein has a chitin binding domain (CBD) at the C-terminus. The CBD region 

theoretically confers the ability of SnTox1 to bind with a main component of the fungal cell wall, 

chitin. 

SnTox1 is hypothesized to bind the fungal cell wall and thereby protects the cell wall 

from chitinase degradation.  The objective of this study was to investigate the protection function 

of SnTox1 in the presence of chitinases. To investigate the hypothesis, the SnTox1 binding 

affinity for chitin as well as for another polysaccharide, chitosan, was tested. Secondly, two 

wheat chitinases were cloned and the protection function of SnTox1 to these chitinases in P. 

nodorum, as well as several other non-wheat pathogens was tested.  

Material and methods 

Plant and fungal materials 

The spring wheat cultivar Chinese Spring (CS) was used to clone the wheat chitinase IV 

gene AF112966 and wheat chitinase II gene AF112963 to perform a chitinase protection assay. 

The CS Snn1 deletion line CS1BS-18 and CS were infiltrated with purified SnTox1 protein for 

the chitinase gene expression assay.  

For the in vitro chitinase protection assay, ten fungal strains were used including virulent 

P. nodorum isolate Sn2000 wild type and its SnTox1 knockout strain Sn2000∆SnTox1 (Liu et al., 

2012), avirulent P. nodorum isolate Sn79-1087 wild type and its SnTox1 transformed strain 

Sn79-1087+SnTox1, Neurospora crassa isolate Nc2489 wild type and its SnTox1 transformed 

strain Nc2489+SnTox1, Cercospora beticola isolate 0928 wild type and its SnTox1 transformed 

strain Cb0928+SnTox1, Pyrenophora teres isolate 0-1 wild type and its SnTox1 transformed 

strain Ptt0-1+SnTox1. The transformation of SnTox1 into the P. nodorum avirulent isolate Sn79-
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1087 was achieved previously using the plasmid pDAN-SnTox1 which contains SnTox1 and the 

hygromycin resistance gene (Liu et al., 2012). The same plasmid was used to transform N. 

crassa, P. teres f. teres, and C. beticola following the polyethylene glycol-mediated 

transformation method described in Liu and Friesen (2012). The transformants for each fungus 

were tested for the presence of SnTox1 using PCR with the primer pair of SnTox1gF and 

SnTox1gR (Table 3.1). The positive transformants for each fungus were also tested for the 

production of SnTox1 by infiltrating culture filtrates prepared from each onto CS.  

DNA and RNA extraction 

To extracted total RNA and DNA of wheat leaf tissue, wheat leaves with different 

treatments were frozen in liquid nitrogen and were ground with a mortar and pestle. Total RNA 

of wheat leaves was extracted using the RNeasy Plant Mini Kit (QIAGEN) according to the kit 

manual and then reverse transcribed to cDNA. The cDNA samples were used for wheat chitinase 

gene cloning and quantitative measurement of wheat chitinase gene expression. DNA of wheat 

leaves treated with inoculation was extracted using a Biosprint 15 DNA Plant Kit (QIAGEN) and 

Biosprint 15 workstation (QIAGEN) according to the kit manual. The DNA samples were used 

to measure biomass through quantitative PCR. The quantity of DNA and RNA was estimated by 

the Bradford method (Kruger, 1994) using a Qubit (Invitrogen). DNA and RNA was dried by 

lyophilization and adjusted to 200ng/μl by adding sterilized MilliQ water according to the 

original quantity of each DNA or RNA sample.  

Expression and purification of wheat chitinase, SnTox1, and Avr4 

The wheat genes encoding the chitinase IV (Li et al., 2001) which has a chitin binding 

domain (CBD) and the chitinase II (Li et al., 2001) which does not have a CBD were amplified 

from RNA obtained from leaves of Chinese Spring. Total RNA was reverse transcribed to cDNA 
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using the TaqMan reverse transcription reagents (Roche). The wheat chitinase genes without the 

signal sequence were amplified from the cDNA with the forward primers 112963EcoNosig.F 

and 112963Xba+2.R for AF112963 and primers 112966EcoNosig. F and 112966Xbai+2.R for 

AF112966 (Table 3.1). The primer pairs contain EcoRI and XbaI restriction sites, respectively, 

for subsequent sub-cloning into the Pichia pastoris expression vector PGAPZα (Invitrogen). 

PCR was run using the following program: 94 ℃ for 4 min; 30 cycles of 94 ℃ for 30 sec, 60 ℃ 

for 30 sec, and 72 ℃ for 3 min, followed by 72 ℃ for 10 min. The PCR amplicon was cloned 

into the TopoTA vector (Invitrogen) for sequencing. After the sequence confirmation, the 

chitinase gene fragment was released from the TopoTA backbone by EcoRI and XbaI restriction 

enzymes and then was ligated into the PGAPZAα vector between the Pichia α-factor mating 

signal sequence and the 6× histidine tag. Since the Cladosporium fulvum gene Avr4 (provided by 

Pierre deWit, NCBI Accession No. CAA55403) protects fungal cell walls against hydrolysis by 

plant chitinases (van den Burg et al., 2006), Avr4 was used as a positive control. Avr4 without a 

signal peptide sequence was amplified from its plasmid using primers Avr4Eco.F and 

Avr4Xba.R (Table 3.1) containing EcoRI and XbaI restriction sites, respectively, and then was 

cloned into the PGAPZα vector using the same method as above. The expression construct of the 

two chitinase genes, SnTox1, Avr4 and the empty PGAPZα vector were transformed into P. 

pastoris strain X33 using the Pichia EasyComp Transformation Kit (Invitrogen). Positive P. 

pastoris transformant strains were confirmed by PCR using primer pairs 112963EcoNosig.F / 

112963Xba+2.R, 112966EcoNosig. F / 112966Xbai+2.R, Avr4Eco.F / Avr4Xba.R,  20078CF / 

20078CR_NT, and pGAPZF/ 3AOX1 to amplify AF112963, AF112966, Avr4, SnTox1 and 

mutated SnTox1 and partial sequence on the empty PGAPZα vector, respectively (Table 3.1). 
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The PCR program was set up as 94°C 4 min; 94°C 30 sec, 60°C 30 sec, 72°C 1 min, 30 cycles; 

72°C 10 min. The amplicons were further confirmed by sequencing.  

To express the wheat chitinase, SnTox1 and Avr4, the transformed P. pastoris strains 

with the complete expression cassette were cultured in 2 liters of yeast peptone dextran liquid 

media (Invitrogen user manual) at 30 ℃ for 2 days. All culture filtrates were harvested and 

dialyzed overnight against binding buffer (20mM sodium phosphate, 500mM NaCl, 10mM 

Imidazole). The expressed proteins in culture filtrates were then purified using a Ni Sepharose 6 

Fast Flow HisPrep FF 16/10 column (GE Healthcare Life Sciences) and an ÄKTA Prime Plus 

system (GE Healthcare Life Sciences). The eluted fractions containing the purified protein were 

confirmed by running a 16.5% Tricine precast gel (Bio-rad) at 100 volts for 2 h. The purified 

proteins were then dialyzed against water overnight and concentrated by lyophilization. The 

quantity of purified proteins were estimated by the Bradford method (Kruger, 1994) using a 

Qubit (Invitrogen). 

Polysacharide binding assay 

The polysaccharide-binding assay for purified SnTox1-His was performed following a 

protocol described in van den Burg et al. (2006) with minor modifications. Polysaccharide 

compounds for the assay included shrimp shell chitin (Sigma-Aldrich), chitin-beads (New 

England Bioscience), and chitosan (Sigma-Aldrich). Insoluble polyssacharides were hydrated in 

500 µl of incubation buffer (20mM NaCl, 5mM TrisHCl, pH5.5) for 15 min with gentle shaking. 

After centrifugation for 3 min at 16,000 ×g (maximum speed), the buffer was removed. Hydrated 

polysaccharides (10 mg each) were then incubated with a total of 5 µg of purified SnTox1-His in 

a 500 µl solution for 2 h at room temperature with gentle shaking. The supernatants containing 

unbound fractions were collected by centrifugation for 3 min at 12,000g.  The insoluble pellet 
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containing bound SnTox1-His was further washed with 500 µl of incubation buffer and then 

washed with water three times for 10 min each with shaking at room temperature. Bound 

SnTox1-His on the various polysaccharides was then eluted by adding 25 µl Tricine sample 

buffer (Bio-rad) plus 15 µl β-mercaptoethanol and boiled for 10 min. The same amount of 

SnTox3 was used as a negative control. Bound and unbound supernatant fractions of each 

treatment were separated on a 16.5% Tris-Tricine precast gel (Bio-rad) at 100 volts for 2 h. 

Precision Plus Protein Dual Color Standard (Bio-Rad) was added as the protein standard. The 

precast gel was stained in 0.2% Coomassie Blue overnight and destained in sterile water for 8h. 

The gel was scanned using CanoScan LiDE70 (Canon). Three replicates were completed for 

each treatment. 

Testing of the SnTox1 protection mechanism in different fungi 

The dried plugs of all fungal isolates/strains, including wild type, SnTox1-transformed 

strains and SnTox1 knockout strains were regrown on V8-potato dextrose agar plates according 

to the culture methods described by Friesen and Faris (2012).  Spores were harvested and diluted 

at a concentration of 10,000 spores/ml for P. nodorum and N. crassa and 2,000 spores/ml for P. 

teres f. teres, and C. beticola. Spores were inoculated into 200 µl of ½ Fries media in a 96 well 

ELISA plate, followed by the addition of wheat chitinase II (AF112963) or chitinase IV 

(AF112966) at a final concentration of 7μM or 4 μM, respectively. The purified SnTox1-His was 

added to the solution at 25 μM for testing the SnTox1 protection activity. Avr4 was added at the 

final concentration of 25 μM in the presence of wheat chitinase as the positive control. For the 

fungal isolate Sn2000 (containing SnTox1) and transformed isolates with SnTox1, wheat 

chitinases alone were added to test the chitinase protection of endogenous SnTox1. In addition, 

spore cultures without chitinase, SnTox1, SnTox1 mutants or Avr4 were included as controls to 
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ensure the viability of the spores for each fungus. All reactions were set up in a microtiter plate 

(Greiner bio-one) and incubated at room temperature (or 25 °C) with shaking at 20rpm for 30min 

and then incubated under light at room temperature. Three biological replications were 

completed for each treatment. The germination of spores and the growth of mycelia were 

examined at 24 h after the treatment using a Nikon inverted compound microscope 

(EclipseTE2000-U, Nikon). Photographs were taken using a Canon 70D camera attached to the 

microscope. Fungal growth under each treatment was also measured by optical density (OD) 

using an ELx800 Absorbance Microplate Reader (BIO-TEK). The OD values of mycelial 

densities were calculated at 0h and then every 24h for 5 days at an absorbance of 630 nm using 

software Gen 5 2.05. 

Wheat chitinase gene expression after SnTox1 infiltration using qPCR 

Two-week old secondary leaves of CS and CS1BS18 were infiltrated with purified 

SnTox1. Purified protein from the P. pastoris transformant with an empty PGAPZα vector were 

used to infiltrate CS and CS 1BS18 as the negative control. Infiltrated leaf tissue was collected at 

1, 2, 4, 8, 10, 24, 36, 48, 60 and 72 h post infiltration. Three replications were completed, with 

each replication consisting of four leaves. The infiltrated tissue was collected for each time point. 

The first strand cDNA was synthesized from total RNA, and real time PCR was performed using 

SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) and the CFX384 Real-Time PCR 

system (Bio-Rad). The primer pairs AF112966qF / AF112966qR and AF112963qF / 

AF112963qR (Table 3.1) were used for the AF112966 and AF112963 genes, respectively, in 

qPCR. The primers WtActinqF and WtActinqR (Table 3.1) were used for the wheat actin gene as 

an internal control to normalize the relative quantities of chitinase gene expression. Quantitative 

PCR reactions containing three replicates at each time point for each treatment were set up in a 
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384 hard-shell PCR plate (Bio-Rad). Normalized relative quantities of chitinase gene expression 

and standard deviation were calculated using the Bio-Rad CFX Manager software. 
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Table 3.1. Primers used in Chapter 3 

Primer ID Sequences Usage 

112963EcoNosig.F GAATTCGATCCCGTGGAGAGCGTCGTCACC 
Amplify AF112963 gene 
without signal peptide 
sequence 

112963Xbal+2.R TCTAGATAGCAAGTGAGGTTGTTCCCCGGGT 
Amplify AF112963 gene 
without signal peptide 
sequence 

112966EcoNosig.F GAATTCCAGAACTGCGGCTGCCAGCCGAAC Amplify AF112966 gene 
112966 Xbal+2.R TCTAGATAGCAAGTGAGGTTGTTCCCTGGGTC Amplify AF112966 gene 
SnTox1cF ATGAAGCTTACTATGGTCTTGT  Amplify SnTox1 gene 
SnTox1cR_NT TGTGGCAGCTAACTAGCACA Amplify SnTox1 gene 
Avr4Eco.F GAATTCATGCACTACACAACCCTCCTCCTA Amplify Avr4 gene 
Avr4Xba.R TCTAGAGCTTGCGGCGTCTTTACCGGACAC Amplify Avr4 gene 

112963qF CAGAAGCTCGGCTTCAACGGGCTCG  
Quantitative PCR for 
AF112963 gene 
expression 

112963qR GCGCGTTCCCGCCGTTGCACTCGC 
Quantitative PCR for 
AF112963 gene 
expression 

112966qF CTAGCAGCACTAGTCCTATCT 
Quantitative PCR for 
AF112963 gene 
expression 

112966qR ATCGCCGCTCCCGCCGCCGCTCGCCGT 
Quantitative PCR for 
AF112963 gene 
expression 

SnTox1gF TACATCTAGACCTTCTTCCAT 
Amplify genomic region 
of SnTox1 from SnTox1 
transformed strains 

SnTox1gR AATCTAGACGTGTGGTCCGCTAACCTAT 
Amplify genomic region 
of SnTox1 from SnTox1 
transformed strains 

WActinF GCGGTCGAACAACTGGTATT 

Used to amplify the 
wheat actin gene 
fragment as an internal 
control  

WActinR ACCTGACCATCAGGCATCTC 

Used to amplify the 
wheat actin gene 
fragment as an internal 
control  

pGAPZF GTCCCTATTTCAATCAATTGAA 
Amplify the partial 
sequences of pGAPZα 
vector 

3AOX1 GCAAATGGCATTCTGACATCC 
Amplify the partial 
sequences of pGAPZα 
vector 
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Results 

SnTox1 has the ability to bind polysaccharides  

SnTox1 contains a putative chitin binding domain (CBD) at the C-terminus (Liu et al., 

2012), likely providing SnTox1 with the ability to bind chitin. To test this hypothesis, shrimp 

shell chitin, chitin beads, as well as chitosan were used to test the binding activity of SnTox1. 

SnTox1 (10.33 kDa) was found to have strong binding capacity to crab shell chitin and chitin 

beads, but not chitosan (Figure 3.1). The positive control Avr4 (10kDa) showed a similar binding 

result as SnTox1. SnTox3 (25.8kDa) (Liu et al., 2009), the negative control, did not bind with 

any of the polysaccharides tested (Figure 3.1).  

 

Figure 3.1. Polysaccharide binding assay of SnTox1.  

The bound (top) fractions that precipitated with each polysaccharide and the unbound 
supernatant (bottom) that eluted with the incubation buffer are shown on a 16.5% Tris-Tricine 
precast gel (Bio-Rad). The size of SnTox3 is indicated by a black arrow. Precision Plus Protein 
Dual Color Standard (Bio-Rad) was added as a mass standard. 
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Wheat chitinase expression was up regulated at 8 hours post infiltration of SnTox1 

The transcription level of the two wheat chitinase genes AF112963 and AF112966 in CS 

(Snn1) and CS1BS18 (snn1) leaves was examined using quantitative PCR. The CS and CS1BS18 

leaves infiltrated with SnTox1 and the control (the protein peptide from pGAPZα vector) were 

collected at ten post infiltration time points from 1 h to 72 h. In the control infiltration of CS 

(Snn1) and CS1BS (Snn1 locus is absent) leaves, in the absence of SnTox1, expression of the 

chitinase genes was typically at or below that of wheat actin (Figure 3.2. SnTox1-/Snn1 and 

SnTox1-/snn1). However, in the CS leaves infiltrated with SnTox1, both chitinase genes were 

significantly up-regulated at 8h post-infiltration (Figure 3.2. SnTox1+/Snn1). In the CS1BS18 

line infiltrated with SnTox1, the chitinase gene AF112963 were also up-regulated at the 8 hour 

time point but with lower levels compared to that of CS (Figure 3.2. SnTox1+/snn1), showing 

that SnTox1 triggers the expression of AF112963 but that the SnTox1-Snn1 interaction induces 

higher expression of the two wheat chitinase genes possibly due to the induction of PCD. 

Induced by the SnTox1-Snn1 interaction, expression of AF112963 increased 5 fold while 

AF112966 increased around 2 fold of the actin gene expression at 8h post infiltration, (Figure 

3.2).  
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Figure 3.2. SnTox1 induces early upregulation of wheat chitinase genes.  

Relative normalized (normalized by the wheat actin gene, NCBI accession number: AB181991) 
expression of wheat chitinase genes AF112963 and AF112966 in the CS (Snn1) and CS1BS 
(snn1) leaves infiltrated with SnTox1 (SnTox1+) or the nickel column protein prep from the 
empty pGAPZα vector (SnTox1-). 
 
 

SnTox1 has the ability to protect a diversity of fungi from wheat chitinases 

Because SnTox1 has chitin binding activity, and chitin is a main component of the fungal 

cell wall, it was hypothesized that SnTox1 protects the fungal cell wall from plant hydrolytic 

enzymes, such as chitinases.  Wheat chitinase genes AF112963 and AF112966 were cloned, 

expressed, and purified to test the chitinase protection function of SnTox1 for several fungal 

species, including P. nodorum, N. crassa, P. teres f. teres, and C. beticola. In addition, wild type 

isolates were compared for sensitivity to wheat chitinases to strains of each species that had been 

transformed with the SnTox1 gene. SnTox1 transformed strain of P. nodorum 79-1087+SnTox1 

was reported by Liu et al. (2012). Three SnTox1 transformed strains of N. crassa and P. teres f. 

teres and two SnTox1 transformed strains of C. beticola were obtained and confirmed by PCR 

(Figure 3.3. A) and culture filtrate infiltration on wheat line CS (Figure 3.3. B). 
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Figure 3.3. Characterization of SnTox1 transformants in P. teres f. teres (Ptt), C. beticola (Cb), 
and N. crassa (Nc) using PCR testing and culture filtrate infiltrations.  

(A). PCR testing of SnTox1 transformant in P. teres f. teres (top left), C. beticola (top right), and 
N. crassa (bottom). The SN15 isolate was used as a positive control and the original isolate was 
used as a negative control. A DNA ladder (M) was added to confirm the size of PCR 
amplification. (B). Testing of the culture filtrates prepared from the SnTox1- transformants in Ptt 
(top), Cb (middle), and Nc (bottom). 
 
 

Conidia from all fungal strains including N. crassa (Nc2489), C. beticola (Cb0928), P. 

teres f. teres (Ptt0-1), avirulent P. nodorum (Sn79-1087), and virulent P. nodorum Sn2000 as 

well as their corresponding SnTox1 transformed or disrupted strains Nc2489+SnTox1, 

Cb0928+SnTox1, Ptt0-1+SnTox1, Sn79-1087+SnTox1, and Sn2000∆SnTox1, respectively, were 

able to germinate and grow in the absence of wheat chitinases IV AF112966 (Figure 3.4. E, F), 

indicating that all fungal spores were viable and conditions were suitable for fungal growth.  

A B 
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When wheat chitinase IV was included in the assay, the germination of the conidia from P. 

nodorum or N. crassa were stopped whereas P. nodorum Sn2000∆SnTox1, C. beticola and P. 

teres f. teres were able to germinate and grow, but at a significantly reduced rate compared to the 

untreated control (without chitinases IV) (Figure 3.4. A). This reduced growth rate indicated that 

the addition of either wheat chitinase partially or completely inhibited the growth of these fungi, 

most likely due to the enzymatic degradation of the fungal cell wall.   

When added to the chitinase IV/spore mixture, purified SnTox1 provided protection from 

degradation from the wheat chitinases, evidenced by the germination and increased growth of P. 

nodorum Sn79-1087 and N. crassa Nc2489 and the visibly increased growth of P. nodorum 

Sn2000∆SnTox1, C. beticola Cb0928 and P. teres f. teres Ptt0-1 (Figure 3.4. C) after 24 h, 

similar to what was seen for Avr4 (Figure 3.4. D).  

Similarly, the SnTox1-transformed P. nodorum strain 79-1087+SnTox1 and N. crassa 

Nc2489+SnTox1 were capable of germination and hyphal growth.  The virulent P. nodorum 

Sn2000 (containing SnTox1) and the SnTox1-transformed C. beticola Cb0928+SnTox1 and P. 

teres f. teres Ptt0-1+SnTox1 also grew denser fungal mass in the presence of wheat chitinase IV 

(Figure 3.4. B) compared to the corresponding strains lacking SnTox1, demonstrating that 

SnTox1 has a chitinase protection function that is effective in multiple fungal species. The 

treatment by wheat chitinase II (AF112963) had similar effects but induced less growth 

inhibition compare to wheat chitinase IV (Figure 3.5; Figure 3.6). Because the hyphal growth of 

P. teres f. teres and C. beticola with and without wheat chitinase IV were hard to differentiate 

under the microscope, another method was used for the chitinase protection assay of SnTox1.  

In addition to the visual assessment shown in Figure 3.4 and Figure 3.5, optical density 

(OD) assay similar to that used for evaluating fungicide resistance (Pryor et al. 2007) was used to 
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evaluate the effectiveness of SnTox1 in protecting from wheat chitinases over time. Analysis 

showed that each fungal species transformed with SnTox1 and P. nodorum Sn2000 which had 

SnTox1 had stronger growth, compared to the corresponding strains that lacked SnTox1, 

evidenced by the increased optical density (Figure 3.6). Addition of purified SnTox1 protein to a 

final concentration of 25µM also resulted in stronger growth compared to the untreated controls 

(Figure 3.6). The addition of purified Avr4, also at a final concentration of 25µM, gave results 

similar to those of SnTox1 (Figure 3.6). 
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Figure 3.4. SnTox1 is capable of protecting different fungi from the degradation of wheat 
chitinases IV (AF112966). 

P. nodorum, N. crassa, C. beticola and P. teres f. teres were used to evaluate the effectiveness of 
SnTox1 in protecting from the wheat chitinase AF112966. Conidia of P. nodorum Sn79-1087 
and Sn2000∆SnTox1, N. crassa Nc2489, C. beticola Cb0928 and P. teres f. teres Ptt0-1 treated 
with chitinase without the addition of SnTox1 or Avr4  (row A) showed limited spore 
germination or hyphal growth. Conidia of P. nodorum strain Sn79-1087+SnTox1, P. nodorum 

wild type Sn2000 (has SnTox1), C. beticola strain Cb0928+SnTox1 and P. teres f. teres strain 
Ptt0-1+SnTox1 were treated with chitinase and showed spore germination and more dense 
hyphal growth than the corresponding strain without the SnTox1 gene (row B). Conidia of strains 
deficient in SnTox1 including P. nodorum Sn79-1087, Sn2000∆SnTox1, N. crassa Nc2489, C. 

beticola Cb0928 and P. teres f. teres Ptt0-1 were treated with purified SnTox1 protein followed 
by the addition of purified chitinase protein (row C). Each combination with the added SnTox1 
protein showed more dense hyphal growth than the corresponding treatment without the addition 
of SnTox1 (row A). Conidia of strains deficient in SnTox1 including P. nodorum Sn79-1087, P. 

nodorum Sn2000∆SnTox1, C. beticola Cb0928 and P. teres f. teres Ptt0-1 treated with Avr4 
with the addition of chitinase (row D) showed a similar result as the treatment with purified 
SnTox1and chitinase (row C). Strains without SnTox1 including P. nodorum Sn79-1087 and 
Sn2000∆SnTox1, N. crassa Nc2489, C. beticola Cb09-28 and P. teres f. teres Ptt0-1 without 
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chitinase, SnTox1 or Avr4 (row E) served as the control and showed dense growth.  Strains 
harboring SnTox1 including P. nodorum Sn79-1087+SnTox1 and Sn2000, N. crassa 

Nc2489+SnTox1, C. beticola Cb0928+SnTox1 and P. teres f. teres Ptt0-1+SnTox1 without 
chitinase, SnTox1 or Avr4 (row F)  showed dense growth similar to the untreated control (row 
E). 

 

 

Figure 3.5. SnTox1 is capable of protecting different fungi from the degradation of wheat 
chitinases II (AF112963).  

Protection assay of SnTox1 against wheat chitinase II at 24 h after treatment. Two fungal species 
were used including Parastagonospora nodorum, and Neurospora crassa. (A). Conidia of P. 

nodorum Sn79-1087 and Sn2000∆SnTox1, and N. crassa Nc2489 treated with AF112963 
without the addition of SnTox1 or Avr4  has limited spore germination or hyphal growth. (B). 
Conidia of P. nodorum Sn79-1087+SnTox1 and Sn2000, and N. crassa Nc2489+SnTox1 treated 
with AF112963 without the addition of SnTox1 or Avr4  showed spore germination and more 
dense hyphal growth. (C). Conidia of strains deficient in SnTox1 including P. nodorum Sn79-
1087, Sn2000∆SnTox1, and N. crassa Nc2489 treated with AF112963 with the addition of 
purified SnTox1 protein showed dense hyphal growth. (D). Conidia of P. nodorum Sn79-1087 
and Sn2000∆SnTox1, and N. crassa Nc2489 treated with AF112963 with the addition of Avr4 
showed similar result as treatment with AF112963 and purified SnTox1.  
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Figure 3.6. Measurement of the density of fungal growth in the presence or absence of SnTox1. 

A 

B 
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Fungal hyphal growth of Parastagonospora nodorum avirulent isolate Sn79-1087 (A), P. 

nodorum virulent isolate Sn2000 (B), Cercospora beticola isolate Cb0928 (C), Pyrenophora 

teres f. teres isolate Ptt0-1 (D) and Neurospora crassa  isolate Nc2489 (E) Each of the five 
graphs shows a strain that is producing SnTox1 (red), and a strain that is deficient in SnTox1 
(blue), as well as a treatment of the SnTox1 deficient strain with purified SnTox1(green) or 
CfAvr4 (purple).   Each of the strain/treatment combinations was treated with either AF12966 
(left) or AF112963 (right) and evaluated using optical density (OD). The graphs show that in 
each case, transformation with SnTox1 (red) or addition of purified SnTox1 (green) increases the 
ability to grow compared to the SnTox1 deficient control (blue line). 
 
 

Discussion 

In previous work, SnTox1 was shown to induce necrosis in wheat lines harboring Snn1, 

the SnTox1 sensitivity gene. Recognition by the Snn1 pathway leads to programmed cell death 

(PCD) as well as several other hallmarks of the defense response, including an increase in 

reactive oxygen species (ROS), DNA laddering, and up regulation of pathogenesis-related (PR) 

proteins including chitinases and other antimicrobial proteins (Liu et al., 2012). In this work, the 

secondary function of SnTox1 was further characterized to show that not only is SnTox1 

involved in the induction of PCD, but SnTox1 also provides a level of protection from chitinases 

that are secreted by the host during an active defense response. To our knowledge, this is the first 

reported case where an effector protein has been shown to have two functions, both of which 

facilitate pathogen success, essentially inducing the host defense response to gain nutrient and 

concurrently providing protection from that host defense response. This interaction is 

reminiscent of other well studied avirulence effectors, for example, Avr2 and Avr4 from C. 

fulvum (de Wit et al., 2009), that have a virulence function but once recognized by the host, also 

set off a classical defense response. However, the major difference is that in these cases, the 

triggering of the defense response via effector recognition results in the hindrance of the 

pathogen rather than the pathogen gaining the advantage as reported here. 
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SnTox1 was shown to be present in approximately 84% of a worldwide collection of P. 

nodorum. This was significantly higher than the prevalence of SnToxA and SnTox3 which were 

present in 40 and 61% (McDonald et al., 2013). It has been speculated that the prevalence of 

each NE should correspond to the prevalence of the sensitivity gene in the wheat population 

unless something else is driving the maintenance of this gene. However, based on the limited 

data on the worldwide collection of hexaploid and tetraploid wheat lines (Faris and Friesen, 

unpublished data), SnTox1 would not be expected to be present at higher levels than SnTox3 and 

SnToxA. The presence of the chitin binding domain and the protection from chitinases that this 

function provides, supplies a hypothesis as to why SnTox1 is so prevalent in the global 

population when the corresponding Snn1 gene is less prevalent. 

Wheat chitinases are strongly upregulated at 8h after infiltration with SnTox1 and 

therefore it is logical that protection from these chitinases would be necessary during the early 

stages of infection to efficiently colonize the host.  Two wheat chitinases, one containing a chitin 

binding domain (AF112966) and the other without a predicted binding domain (AF112963) were 

used to evaluate the effectiveness of SnTox1 at protecting the pathogen in vitro. AF112966 was 

the most effective at limiting the growth of each pathogen used. AF112963 was somewhat less 

effective, however; the protection assays showed SnTox1 provided protection against both 

chitinases. The hypothesis was that SnTox1 was competing against host chitinases that require 

binding in order to effectively hydrolyze chitin. If this hypothesis were completely accurate, 

SnTox1 would have provided protection against AF112966 but not AF112963. Therefore, it was 

somewhat surprising when SnTox1 provided a significant level of protection to AF112963 which 

is not predicted to have a chitin binding domain. Although it is only speculation, it is possible 
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that SnTox1 is providing a barrier such that all chitinases are reduced in their ability to approach 

the chitin layer of the fungal cell wall.  

Four different fungal species, including P. nodorum, N. crassa, P. teres f. teres, and C. 

beticola, were evaluated for their effectiveness in using SnTox1 in protection from wheat 

chitinases. Visual estimation at 24 h of growth (Figure 3.5) and optical density analysis (Figure 

3.6) showed that all four fungi were more fit in the presence of wheat chitinases when they were 

expressing SnTox1 or SnTox1 was added to the growth media. Interestingly, C. beticola and P. 

teres both showed significantly more growth in the absence of SnTox1 than the avirulent Sn79-

1087 and N. crassa. This is likely due to these pathogens having evolved their own chitinase 

protection mechanism. C. beticola harbors an Avr4 homolog and CbAvr4 has been shown to bind 

chitin, showing a potential role in protection during the necrotrophic phase of pathogenesis 

(Stergiopoulos et al., 2010). P. teres f. teres on the other hand does not harbor an Avr4 homolog, 

however, based on a GO term search of the genome sequence, there are at least four chitin 

binding proteins that are not predicted to have hydrolase activity. Of these four, two proteins 

PTT_17444 (NCBI accession number: XP_003304768.1), and PTT_15288 (NCBI accession 

number: XP_003303172.1) are predicted to be small secreted proteins indicating their potential 

function in protection from chitinases. The P. nodorum virulent strain Sn2000 was also observed 

to have significantly more growth than Sn79-1087 in the presence of wheat chitinases without 

SnTox1 (Figure 3.4, 3.5 and 3.6). There is no  Avr4 homolog  in the P. nodorum reference 

genome of SN15 (http://genome.jgi-psf.org/Stano2/Stano2.home.html), but a GO term search 

returned a total of 22 protein hits with a predicted chitin binding domains, and nine proteins, 

including SnTox1, are predicted to be small secreted proteins without predicted hydrolytic 

activity (i.e. not chitinases).  Additionally, only four of these chitin binding proteins are predicted 
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to be present in the Sn79-1087 genome sequence (JGI). Based on these predictions it is likely 

that chitin binding proteins are fairly common in plant pathogens and likely provide redundant or 

overlapping function.   

The chitin binding function of SnTox1 is highly similar to the Avr4 effector, an effector 

that is produced by C. fulvum and also protects from plant chitinases. Theoretically, Avr4 was 

initially an effector that protected C. fulvum from tomato chitinases but was ultimately 

recognized by the tomato resistance gene Cf4 resulting in a defense response that leads to an 

incompatible interaction. SnTox1 has a similar chitinase protection function, however, the 

recognition of SnTox1 by Snn1 results in a compatible interaction. This is a nice comparison of 

the independent evolution of two proteins (SnTox1 and Avr4) with similar functions including 

the induction of the defense response and protection from chitinases. However, P. nodorum 

survives and benefits from recognition of SnTox1 while the recognition of C. fulvum Avr4 

results in avirulence. 

The chitinase protection function of SnTox1 provides added knowledge about the 

lifestyle of necrotrophs. Necrotrophs are thought to induce cell death through effector 

recognition but at the same time also produce effectors that modulate the host defense response 

in a similar way as pathogens classified as biotrophs and hemi-biotrophs. Plant pathologists have 

tried to classify pathogens into neat groups e.g. biotrophs, hemi-biotrophs, and necrotrophs and 

further divided these groups into obligate and non-obligate biotrophs, and haustorial and non-

haustorial hemi-biotrophs, and necrotrophic specialists and generalists. However, it is important 

to understand that each host pathogen interaction has evolved independently of the other host-

pathogen interactions in its “group”. Although the mechanisms of pathogenicity may appear 

similar, and in many cases could be a result of maintaining an ancestral mechanism of 
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pathogenicity, evolution (survival) drives each interaction independently toward surviving the 

defense response long enough to colonize and reproduce. Pathogens classified as biotrophs, 

hemi-biotrophs, and necrotrophs, all have a similar goal, that is, gain nutrient to reproduce 

(sporulate). Future discoveries in plant pathogen interactions will likely find more overlap than 

distinction in “feeding styles” and it may be time to rethink the way we view pathogen 

groupings.  
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CHAPTER 4. GENOME WIDE ASSOCIATION MAPPING OF 

PARASTAGONOSPORA NODORUM IDENTIFIES CANDIDATE 

NECROTROPHIC EFFECTOR GENES  

Abstract 

Parastagonospora nodorum produces necrotrophic effectors (NE) that are critical to the 

virulence of the pathogen. Nine NE-host dominant sensitivity gene interactions have been 

identified, and three NE genes have been cloned. To identify additional NE gene regions in P. 

nodorum, we developed a genome wide association study (GWAS) using 191 isolates with 

global diversity. Genotype of the 191 isolates were generated by restriction site associated DNA 

genotyping-by- sequencing (RAD-GBS). Around 3,000 single nucleotide polymorphism (SNP) 

markers were identified. Inoculation and infiltration data of the 191 isolates was collected on 

wheat differential lines including BG223 (SnTox2 sensitive), ITMI37 (SnTox6 sensitive), 

ITMI44 (SnTox4 sensitive), and LP29 (SnTox5 sensitive). Association analysis were performed 

by four models including naïve, population structure (Q model), kinship estimated by identity by 

states (IBS model) and population structure + Kinship (Q+IBS model) models. Many genomic 

regions associated with NE sensitivity and the underlying candidate NE genes were identified. 

Introduction 

Genome wide association studies (GWAS) are a powerful way to analyze the DNA 

sequence variation across a genome to identify genetic variation associated with traits of interest 

in a natural population (Gibson and Muse, 2009). Numerous quantitative genetic studies have 

been used to map quantitative trait loci (QTL) in plants (reviewed in Zhao et al., 2014). QTL 

analysis uses designed, bi-parent populations that segregate for a certain trait or traits. These 

biparental populations have limited recombination events, and often minor QTL are missed 
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(Zhao et al., 2011). Because GWAS uses populations that contain natural genetic diversity and 

high frequency evolutionary and historical recombination, GWAS is often favorable in targeting 

complex traits because of its relatively high mapping resolution (Doerge, 2002; Holland, 2007). 

Several negatives exist with GWAS data including most prominent of which is the high chance 

of the identification of false positives due to population structure from genotypes from common 

geographic origins, local adaption, and breeding history (Zhu et al., 2008). Therefore, the 

population structure matrix and the familial relatedness need to be considered in GWAS analysis 

(Zhu et al., 2008). To date, due to the reduced cost of genomic technology such as high-

throughput next generation sequencing, and other genomic technology such as genotyping, gene 

expression profiling, comparative genomics and bioinformatics that are helpful to identify more 

markers or functional polymorphisms (Zhu et al., 2008), GWAS is not only widely used to 

identify gene loci for human diseases (Montgomery, 2011), but has also been used in plants (Zhu 

et al., 2008). Examples of GWAS application in plants includes maize, Arabidopsis, sorghum, 

wheat, barley, potato, and rice. Traits identified by GWAS have been used in plants to 

genetically characterize complex traits such as flowering time, kernel composition, disease 

resistance, shoot branching, kernel size, and milling quality (Zhu et al., 2008). In fungi, only a 

few studies using GWAS analysis have been reported. In Saccharomyces cerevisiae, a SNP 

associated with mtDNA copy number was identified by GWAS (Connelly and Akey, 2012). 

Muller et al. (2011) collected 44 clinical and 44 nonclinical S. cerevisiae strains with 

geographical diversity to identify genetic loci associated with clinical background such as 

pseudohyphal formation, cell wall maintenance, and cellular detoxification, conferring 

pathogenesis and virulence-related factors. Dalman et al. (2013) sequenced 23 haploid isolates of 

Heterobasidion annosum, a necrotrophic pathogen of Picea abies and Pinus sylvestris to identify 
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33, 018 SNPs. Using GWAS, twelve SNPs were found to be associated with virulence. Genomic 

regions of the twelve SNPs contained eight candidate virulence genes that showed homology to 

genes in other fungal pathogens. Palma-Guerrero et al. (2013) took advantage of GWAS to 

identify a gene homolog encoding a neuronal calcium sensor showing association with germling 

communication of Neurospora crassa. Although GWAS research in fungi is currently relatively 

less common than in plants and animals, the application of GWAS in fungi has potential because 

fungi have small genomes, many have a haploid chromosomal stage and a short sexual life cycle 

resulting in high levels of diversity among natural populations (Dalman et al., 2013). Here we 

describe the application of GWAS in Parastagonospora nodorum to find novel genomic regions 

containing necrotrophic effector genes conferring virulence on wheat. P. nodorum produces 

necrotrophic effectors (NE) that are critical to the virulence of the pathogen. The NEs produced 

by P. nodorum are recognized directly or indirectly by wheat dominant sensitivity genes that 

confer susceptibility. Up till now, three NE genes have been cloned including SnToxA, SnTox1 

and SnTox3. Since sexual populations of P. nodorum are difficult to produce under lab 

conditions, bi-parental populations have not been used to genetically locate genes involved in 

virulence, namely genes involved in NE production. Therefore, to identify additional NE gene 

regions, we developed a genome wide association study (GWAS) using 191 isolates with global 

diversity (13 US states, Australia, Denmark, Finland, Latvia, Lithuania, Norway, Sweden, Brazil, 

Switzerland, China, South Africa, and Iran). Genomic regions underlying candidate SnTox2, 

SnTox6 and SnTox5 genes were identified by associating genotypes of the 191 isolates and 

phenotypes on wheat differential lines including BG223 (SnTox2 sensitive), ITMI37 (SnTox6 

sensitive), ITMI44 (SnTox5 sensitive), and LP29 (SnTox5 sensitive). 
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Materials and methods 

Plant and fungal materials 

Four differential wheat lines including BG223 (SnTox2 sensitive), ITMI37 (SnTox6 

sensitive), ITMI44 (SnTox5 sensitive), and LP29 (SnTox5 sensitive) were used to identify 

genomic regions of SnTox2, SnTox6 and SnTox5. All the wheat lines were inoculated with spores 

and infiltrated with culture filtrates of 191 P. nodorum isolates. The 191 P. nodorum isolates 

with global diversity were collected from 13 US states, Australia, Denmark, Finland, Latvia, 

Lithuania, Norway, Sweden, Brazil, Switzerland, China, South Africa, and Iran (Table 4.1). 

Phenotypic evaluation 

Conidia (pycnidiospores) of the 191 P. nodorum isolates were collected at a 

concentration of 1×106 spores/ml and sprayed onto seedlings at the two-to-three leaf stage. The 

inoculated plants were subjected to 100% relative humidity in the light for 24h in a mist chamber 

and then moved to a growth chamber at 21ºC under a 12h photoperiod for six additional days. 

The disease on the second leaf of each inoculated plant was scored seven days post-inoculation 

using a 0-5 rating scale based on lesion type (Liu et al., 2004). 

Culture filtrates of the 191 isolates were infiltrated into the second leaf of the wheat lines. 

The infiltrated plants were grown in a growth chamber at 21 ºC under a 12h photoperiod. The 

infiltrated leaves were scored three days post-infiltration using a 0-3 scale as described by 

Friesen and Faris (2012). All inoculation and infiltration experiments consisted of three 

replicates. 

DNA extraction, library preparation, and sequencing 

DNA of the 191 P. nodorum isolates were extracted using a BioSprint 15 system 

(QIAGEN). DNA of each isolate was genotyped using a RAD-GBS approach (Elshire et al., 
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2011). Briefly, the extracted DNA was digested with ApeKI and HhaI (NEB), and then ligated 

with specific barcoded adaptors. The barcoded DNA of 40 isolates were pooled into one tube, so 

five pooled genomic DNA libraries were made. A 3µl sample from each pooled library was 

subjected to a 1% agarose gel at 100 volts for 45 min. The DNA fragments between 200 and 

250bp were collected and purified using a gel extraction kit (QIAGEN) and then were prepared 

using the Pippin Prep kit (Life Technologies) for next-generation sequencing using the Ion 

TorrentTM Personal Genome Machine (PGM) system (Ion Torrent). Library sequencing was 

performed using five Ion Torrent 318 microprocessor chips (Life Technologies).  

Genotypic data analysis 

The P. nodorum isolate that had the most reads was assembled as the reference sequence 

using CLC Genomics Workbench. All the sequencing reads were aligned to the reference 

sequence using the Burrows-Wheeler Aligner 'mem' algorithm. SAM files generated by Burrow-

Wheeler Aligner were converted to BAM files to screen SNP markers based on the alignment 

using SAM tools. SNPs with low quality (<100) were filtered from the database. SNPs having a 

minor allele frequency less than 5% or missing data greater than 30% were eliminated.  

Individual genotypes with quality >10 and minimum read depth of 3 were used. For each 

sequence tag, the single nucleotide polymorphism (SNP) marker with the least missing data was 

chosen resulting in one SNP marker per tag being used as a genotypic marker. The chosen SNPs 

were used for population structure analysis, relatedness analysis and association mapping. SNP 

marker data were imported into Excel and annotated onto sequence of P. nodorum SN15 which 

has been used for whole genome sequencing and de novo assembly (Hane et al., 2007; Syme et 

al., 2013). SNPs were labeled with the sequence tag ID and the location on the corresponding 

SN15 assembled scaffold as the annotation file for GWAS analysis. 
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Population structure analysis 

Population structure was analyzed using STRUCTURE 2.3.4 (Pritchard et al., 2000) to 

estimate the population clusters of the 191 P. nodorum isolates. Population structure in 

STRUCTURE was performed using an admixture model with a burn-in period of 10,000 

followed by 50,000 replications of Markov Chain Monte Carlo. Five runs for each cycle were 

performed with the cluster number between 1 and 10. The optimal value of k (number of 

clusters) was decided based on the relative rate of change in the likelihood of the value (Δk) 

between two successive clusters. The value of Δk was calculated as described by Evanno et al. 

(2005) using STRUCTURE Harvester (Earl and vonHoldt, 2012). Further analyses were 

performed from k=2 to the optimal K plus 3 with a burn-in period of 20,000 followed by 200,000 

replications of Markov Chain Monte Carlo with 20 iterations. The membership probability of 

each isolate at the optimal k was used as the Q matrix for further analysis. 

Relatedness analysis 

Relative kinship was calculated by estimating the pairwise relatedness of the 191 isolates 

at each allele of the 2,983 SNP markers using JMP genomics 6.1. The probability of any two 

individuals sharing the same copy of an allele was computed using Gower’s Similarity Metric 

and a Range Standardization that is referred to as identity by state (IBS) across all markers 

(Stevens et al., 2011). 

Linkage disequilibrium analysis and association mapping 

Linkage disequilibrium (LD) between SNP locations were calculated using the squared 

allele frequency correlation (r2) which was implemented in JMP genomics 6.1. Decay of LD was 

calculated by fitting an equation developed by Hill and Robertson (Hill and Robertson, 1968) 

into a nonlinear regression curve using JMP genomics 6.1. Association analysis was performed 
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in JMP genomics 6.1. SNPs with the –log10(p-value) or adjusted –log10(p-value) greater than 3 

were considered significant. The naïve model (Pasam et al., 2012), and three mixed models 

including population structure (Q model), kinship (IBS model) and population structure + 

kinship (Q+IBS model) (Yu et al., 2006; Listgarten et al., 2012) were used to identify association 

between SNPs and the phenotypes. False detection rate (pFDR) method was used to reduce false 

positive (type I error). To test the four models, each model was evaluated by a quantile-quantile 

plot (testing the fit of the observed p-value versus the expected p-value of each SNP) and mean 

square deviation (MSD) in JMP genomics 6.1. A model with the best fit of the observed p-value 

to the expected p-value and lowest MSD between observed p-value and expected p-value was 

chosen as the best model (Mamidi et al., 2011; Gurung et al., 2014; Kertho et al., 2015; Tamang 

et al., 2015). 

Results 

Generation of a genomic data set 

Genotyping of the 191 P. nodorum isolates was performed using the RAD-GBS 

technique. Single reads from a 150-base pair (bp) insert library of all the isolates were obtained, 

and a total of 4,019 Mb with a 148bp mean read length of P. nodorum sequence were obtained 

from the Ion Torrent PGM sequencing platform. The isolate Nor-5 (ID: 143) which had the 

highest number of reads (343, 439) was chosen as the reference genotype. Sequence tags of Nor-

5 were mapped to the reference isolate SN15 (Hane et al., 2007; Syme et al., 2013). By screening 

out sequence tags with low quality, (less than 5% minor allele frequency, and more than 30% 

missing data), a total of 2,983 SNPs were identified and used for population structure, kinship 

estimate, and association analysis, providing an average marker density of one marker every 

18kb throughout the 37Mb genome of P. nodorum. 
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Phenotypic analysis of SNB susceptibility and culture filtrate sensitivity of the 191 

isolates     

Four wheat differential lines including BG223, ITMI37, ITMI44 and LP29 were rated for 

SNB susceptibility to spore inoculation and sensitivity to culture filtrate infiltration of the 191 P. 

nodorum isolates. Disease reactions were scored using a scale of 0-5 (see chapter 2). Culture 

filtrate sensitivity was scored using a scale of 0-3 (see chapter 2). Distribution of the average 

disease reaction types (inoculation) of the 191 isolates varied by the wheat differential lines. For 

LP 29, the percentage of isolates showed smaller differences in every 0.5 reaction type interval 

compared to the other differential lines (Figure 4.1). 
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Figure 4.1. Distribution of SNB average disease reaction types of the 191 P. nodorum isolates 
on four wheat genotypes (BG223, ITMI 37, ITMI 44 and LP 29). 
 

 
Population structure and kinship in the panel of the 191 isolates 

Population structure inference for the 191 isolates was conducted using the 2,983 SNP 

markers with the software STRUCTURE. The structure analyses were performed by setting 20 

clusters (k) with five replications for each cluster. The mean log likelihood of each k displaying 

an increased pattern from k=1 to 5, but decreased after k=6 with large error indicating the cluster 
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value greater than k =6 generating noise and not necessarily useful for analysis. The Δk value 

showed a large peak at k=3 and dropped dramatically after k=3 (Figure 4.2). Therefore the 

population structure of the 191 isolates was shown to be made up of three groups (Figure 4.3). 

Using the cutoff of the membership probability = 0.6, a total of 49 isolates collected from North 

Dakota, USA, and Iran were clustered in Group 1. Group 2 included 77 isolates with 11 being 

from the US, one from Lithuania, five from Switzerland, and eight from China. Group three 

contained 30 isolates from Australia and two from South Africa. The remaining 36 isolates from 

Denmark, Finland, Norway, Sweden, Brazil, Switzerland, China and South Africa had a lower 

membership value and were not placed into any of the three groups (Table 4.1). The membership 

probability of each isolate at k =3 was used as the Q matrix for the following analysis. 

The pairwise kinship value was calculated by the similarities between each pair of 

isolates in JMP genomics 7.0. The average kinship value was 0.852. The minimum kinship value 

of 0.8102 showed that all 191 isolates had more than 80% similarity (Figure 4.4). Only 25 

isolates had 100% identity, and the majority had kinship values in a range between 0.8102-

0.9709 (Figure 4.5). This result showed that all 191 isolates had a high level of kinship. 
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Figure 4.2. Evaluation of k using the Evanno method using STRUCTURE. STRUCTURE 
harvester software was used to visualize the STRUCTURE output.  

 

 

Figure 4.3. Population structure of the 191 P. nodorum isolates estimated by the program 
STRUCTURE for k=3.  

Membership values (y axis) of every isolate (x axis) belonging to each group are indicated by the 
distribution of the three colors standing for the three major groups. 
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Table 4.1. Group structure of the 191 P. nodorum isolates 

Group ID Isolate ID Number of isolates Location 
G1 1-19 19 North Dakota, US 
 23-34 12 Minnesota, US 
 187-199 13 Iran 
G2 36-41 6 Oregon, US 
 42-45 4 Arkansas, US 
 46-49 4 Georgia, US 
 50, 51 2 Maryland, US 
 52-59 8 North Carolina, 

US 
 61-62 3 South Carolina, 

US 
 63-66 4 Tennessee, US 
 67-69 3 Virginia, US 
 70, 72-85 15 Ohio, US 
 86-90 5 Texas, US 
 92-100 9 New York, US 
 138 1 Lithuania 
 153, 158, 160-162 5 Switzerland 
 163, 164, 173, 175-179 8 China 
G3 101-130 30 Australia 
 181, 184 2 South Africa 
Unknown 131, 132 2 Denmark 
 133-135 3 Finland 
 139-146 8 Norway 
 147-149 3 Sweden 
 150-152 3 Brazil 
 154-157, 159 5 Switzerland 
 165-172, 174, 180 10 China 
 182, 183 2 South Africa 
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Figure 4.4. Relationship matrix of the 191 P. nodorum isolates. Isolates from different areas 
were labeled by numeric ID on the left with different colors.  

From top to bottom, Blue = North Dakota, Minnesota, US, and two Iran isolates; Red = Iran; 
Light blue = some Minnesota, US isolates not shown in the blue cluster; Brown = Oregon, US; 
Yellow green = other isolates from South East US states in this study except Oregon; Blue green 
= some New York isolates not shown in the yellow green cluster, US; Pink = Australia; Light 
Brown = South Africa; Green = European countries including Finland and Norway, and Brazil; 
Purple = European countries including Denmark, Sweden and Switzerland, and China. 
Hierarchical clustering is based on the Fast Ward method. Similarity shared by pairs of the 191 
P. nodorum isolates were indicated by colors from dark red to dark purple and kinship values 
from 0.8102 to 1 at right side.  
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Figure 4.5. Distribution of pairwise relative kinship estimated by IBS in the population of 191 P. 

nodorum isolates. 

The number of isolate pairs within every 0.125 kinship value between 0.8 and 1.0 are indicated 
on the top of each column. Error bars were calculated by standard deviation. 

 

Linkage disequilibrium and LD decay 

Pairwise linkage disequilibrium was calculated using all 2,983 SNP markers across all 

191 isolates. The average r2 of all the SNP pairs was 0.0432 showing a low LD level amongst the 

191 isolates. LD decay was estimated by regressing the r2 value of all 191 isolate pairs on the 

physical distance using the non-linear regression model. The genome-wide LD decay was 

between 10 and 20 Kb at r2<0.1, showing the average density of SNPs obtained (one SNP every 

18 Kb) meets the minimum requirement for MTA identification (one SNP every 10-20 Kb) 

(Figure 4.6). 
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Figure 4.6. Genome-wide linkage disequilibrium (LD) decay plot. 

The LD value was calculated by the square of correlation coefficient (r2) between pairs of SNPs. 
The LD value of each SNP (y-axis) was plotted against the physical distance (x-axis) of the 
assembled P. nodorum SN15 genome scaffolds. 

 

GWAS model evaluation and identification of marker trait associations 

To identify specific NEs that induce sensitivity on host lines harboring a corresponding 

sensitivity gene (analyzed by culture filtrate infiltration) and then result in SNB disease 

(analyzed by spore inoculation), four models including population structure (Q), kinship (IBS), 

Q+IBS, and a Naïve model were used for four genotypes including BG 223 (has the SnTox2 

sensitivity gene Snn2), ITMI 37 (has the SnTox6 sensitivity gene Snn6), ITMI 44 and LP 29 

(both have the SnTox5 sensitivity gene Snn5). To test the four models, each was evaluated by 
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quantile-quantile plot (Figure 4.7) and mean square deviation (MSD) estimation (Table 4.2). 

Theoretically, a model with the best fit of the observed p-value to the expected p-value and 

lowest MSD should be the best model. To identify the SNPs associated with SnTox2, SnTox6 

and SnTox5 sensitivity and SNB disease, the Q model was chosen for genotype BG 223. For 

genotypes ITMI 37, ITMI 44 and LP 29, both the Q and Naïve models were taken into account 

because these two models showed a better fit for the observed p-value to the expected p-value of 

the SNP markers (Figure 4.7. A) and because the MSD values of the two models were close and 

lower than the other models (Table 4.2). However, in the Q model, significant SNPs were not 

detected for genotype ITMI 37, ITMI 44 or LP 29. Therefore, the Naïve model was chosen as the 

best model for the three genotypes. Similarly, to identify the MTA with host sensitivity conferred 

by SnTox2, SnTox6 and SnTox5, by comparing the four models for the four genotype datasets, 

Q and Q+IBS models were first selected for genotype BG 223, IBS and Q+IBS models were 

chosen for ITMI 44; Q, IBS, and Q+IBS models were chosen for ITMI 37, and the Q and the 

Naïve models were chosen for LP 29 (Figure 4.7. B, Table 4.2). Because the IBS and Q+IBS 

models added stringency to the p-value for genotypes BG 223 and ITMI 37, the Q model was 

selected for BG 223 and ITMI 37. The IBS model generated increased noise for ITMI 44, so the 

Q+IBS model was selected for ITMI 44. The Naïve and Q model showed similar result for 

genotype LP 29, and the Q model added more stringency, therefore, the Q model was selected 

for LP 29. 
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Figure 4.7. Evaluation of models used in marker trait association. 
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Model comparison for inoculation (A) and infiltration (B) data of the 191 isolates on the four 
wheat genotypes (BG 223, ITMI 37, ITMI 44, LP 29) by quantile-quantile plots. The observed –
log(p-value) (y-axis) versus the expected -log(p-value) (x-axis) are shown for the Q, IBS, Q+IBS, 
and the Naïve models. The perfect fit curve between observed and expected p-value is shown by 
the gray diagonal line. 
 

Table 4.2. Mean square deviation (MSD) of the four GWAS models analyzing the inoculation 
and infiltration data of the four wheat genotypes 

Genotype 
Model MSD 

Best model 
Q IBS Q+IBS Naive 

Inoculation 

BG 223 0.0053 0.0108 0.0106 0.0100 Q 

ITMI 37 0.0077 0.0108 0.0100 0.0069 Naïve  

ITMI 44 0.0065 0.0074 0.0081 0.0062 Naïve  

LP 29 0.0064 0.0112 0.0110 0.0069 Naïve  

Infiltration 

BG223 0.0092 0.0166 0.0094 0.0441 Q 

ITMI 37 0.0094 0.0081 0.0083 0.0269 Q 

ITMI 44 0.0106 0.0076 0.0076 0.0324 Q+IBS 

LP 29 0.0064 0.0098 0.0106 0.0052 Q  

 
 
Marker trait association (MTA) analysis was conducted using the best model for the four 

wheat genotypes. One marker SNP4 with a –log10(p-value) = 3.4 (above the threshold) was 

identified by spore inoculation on ITMI 44 (Snn5) (Figure 4.7. A, Table 4.3). Using inoculation 

data from LP29 (Snn5), SNP4 had a –log10(p-value) = 1.8, lower than the calculated 

significance threshold, but higher than most of the other SNPs used (Figure 4.7. A). Two 

common SNPs, SNP1 and SNP2 with significant –log10(p-value) (Table 4.3) were identified by 

spore inoculation on BG 223 (Snn2) and ITMI37 (Snn6) (Figure 4.7. A). Unpublished 
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observations from our lab have shown that SnTox2 and SnTox6 are difficult to separate and 

therefore could be one in the same but  may interact with two different host sensitivity genes. 

The two common SNPs, SNP1 and SNP2 and one additional SNP, SNP3 with MTAs with spore 

inoculations on BG 223 (Figure 4.7. A, Table 4.3) were also identified by culture filtrate 

infiltration on BG 223 and ITMI 37 (Figure 4.7. B, Table 4.3). By investigating the genomic 

regions within the flanking markers of SNP1, SNP2 and SNP3 (associated with SNB 

susceptibility conferred by the SnTox2-Snn2 interaction), 15 genes were detected based on the 

gene annotation of P. nodorum isolate SN15. Among the 15 genes, one gene, gene-3 encodes a 

small secreted protein and is the strongest candidate gene in this region for SnTox2/ SnTox6 

(Figure 4.8. A). Similarly, 14 genes were detected in the genomic region of SNP4 (associated 

with SNB susceptibility conferred by the SnTox5-Snn5 interaction), and three small secreted 

protein genes were prioritized as candidate genes for SnTox5 (Figure 4.8. B). 
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Figure 4.8. Manhattan plots of marker trait association analysis. 

SNPs associated with SNB disease was analyzed by spore inoculation (A) and NE sensitivity 
analyzed by culture filtrate infiltration (B) caused by a specific NE on the four genotypes. –
log10(p-value) or –log10(p-value) corrected by FDR for each SNP is indicated by the y-axis and 
physical distances of the SNPs are mapped on the x-axis (scaffold numbers are not shown). SNPs 
with P values below –log10(p-value) are not shown.  Threshold of significance at P<0.001 
appears as the red dashed line. Common SNPs are labeled by circles with the same color. 
 
 
Table 4.3 Significant SNPs (-log10(p-value) > 3) identified by GWAS analysis 

Trait SNP ID 
Wheat 

genotype 
Treatment -log10(p-value) 

SnTox2 / SnTox6 

SNP1 
BG 223 

Inoculation 5.5 
Infiltration 9.3 

ITMI 37 
Inoculation 4.6 
Infiltration 6.4 

SNP2 
BG 223 

Inoculation 4.5 
Infiltration 6.2 

ITMI 37 
Inoculation 3.1 
Infiltration 4.6 

SNP3 
BG 223 

Inoculation 4.3 
Infiltration 10.4 

ITMI 37 Inoculation 6.1 
SnTox5 SNP4 ITMI 44 Infiltration 3.4 
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Figure 4.9. Genomic regions of SNPs associated with susceptibility conferred by the SnTox2-
Snn2 interaction (A), and the SnTox5-Snn5 interaction (B). 

All genes in the genomic regions of the significant SNPs are listed by the blue arrows. Candidate 
NE genes for SnTox5, SnTox2 and/or SnTox6 are circled in red. 
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Discussion 

Parastagonospora nodorum, causal agent of Septoria nodorum blotch of wheat produces 

multiple necrotrophic effectors (NE) that are critical for SNB disease development. To identify 

the novel NE genes SnTox2, SnTox6 and SnTox5, 191 P. nodorum isolates with global 

distribution were phenotyped on four wheat lines. A RAD-GBS approach to SNP discovery 

resulted in the identification of 2,983 SNP markers with a minor allele frequency >5% that could 

be used in GWAS. To test the independency of the SNP markers, linkage disequilibrium (LD) 

was computed for every pair of the 2,983 SNPs. The average r2 of LD was 0.0432 showing low 

linkage disequilibrium within the 191 P. nodorum isolate population, indicating that the isolates 

used in this panel were diverse enough and provided adequate power for the GWAS analysis. 

The average distance of SNP pairs at LD r2 value >0.8 (a threshold showing a pair of SNPs are 

tightly dependent in a distance at this r2 value) (Bastien et al., 2014) is 25,234bp, indicating that 

on average, one SNP every 25kb is adequate to detect marker trait associations (MTA). In this 

study, the average coverage of SNPs over the whole P. nodorum genome is approximately one 

SNP every 18kb, showing the SNPs used in this study have adequate average coverage, however 

the SNP density on each scaffold does vary. For example, in scaffold 1, the average coverage of 

SNPs is one marker every 8 kb, but the markers in scaffold 49 distribute at an average rate of one 

marker every 32 kb, showing the uneven distribution of SNPs across the whole P. nodorum 

genome. Unequal distribution may be due to the numerous repetitive regions, leading to 

difficulties in identifying polymorphic markers across isolates. Fortunately, all the large 

scaffolds from scaffold 1 to 45 (98% of the whole genome) have coverage averaging at least one 

tag every 17kb, satisfying the estimated average coverage that is required (one marker every 

25kb) for investigating MTAs. 
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One of the major problems in GWAS analysis is the occurrence of false positive MTAs 

(type I error) generated by the simplest linear model (Naïve model). To address this problem, 

two solutions were used in this study. First was the use of mixed models that considered 

population structure, relatedness kinship, or both. The mixed models found significant MTAs 

and were useful in reducing false positives compared to the Naïve model. The second approach 

to reduce type I error was to correct the p-value of each MTA using a positive false detection rate 

(pFDR) method. Theoretically, the chance of identifying false positive MTAs would be reduced 

if both population structure and kinship were used along with pFDR correction in GWAS, 

however, the more factors (population structure, kinship, and p-value adjustment) that are added 

to the models, the higher the chance of not identifying real MTAs (false negatives). Therefore, 

we used a quantile-quantile plot and calculated the mean square deviation (MSD) to evaluate all 

the models including the Naïve, IBS (kinship), Q (population structure) and Q+IBS models. In 

this study, the Q model was selected to identify SNPs associated with SNB disease susceptibility 

on BG 223, and SNPs associated with NE sensitivity on BG 223 and ITMI 37. The Naïve model 

was selected to identify SNPs associated with SNB disease susceptibility on ITMI 37, ITMI 44 

and LP 29, and SNPs associated with NE sensitivity on LP 29 (Table 4. 2). The Q and Naïve 

model for all the analysis generated background noise; therefore, to reduce the false positives, 

pFDR was used to adjust the p-value for all the SNPs. To identify the NE sensitivity on ITMI 44, 

Q+IBS was selected as the optimal model. Because both population structure and relatedness 

kinship were accounted for, reducing the possibility of type I error, pFDR was not conducted. 

The IBS model was not used for the MTA analysis in this study, and the kinship value was only 

used to investigate NE sensitivity in ITMI 44 due to the quantile-quantile plot and MSD test for 

adding IBS into the analysis was not optimal. An additional reason for not including these 
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models is that, based on the kinship evaluation of the 191 P. nodorum isolate panel, all the 

isolates showed high relatedness, indicating kinship may have affected the GWAS analysis 

slightly.  In contrast, the Q matrix was more important than the kinship matrix, because most 

isolates (128 isolates out of the 191 isolates) had a high likelihood (membership value) to be 

classified into a specific group (Figure 4.3), showing that the panel of 191 isolates had 

significant population structure, making it necessary to add the Q matrix to the GWAS study. 

The Q model, however, did not detect any MTAs associated with SNB susceptibility on ITMI 

37, ITMI 44, or LP 29. It is possible that the markers associated with the trait may also 

contribute to the population structure, resulting in the reduction of significance of the SNPs. In 

this case, the Naïve model with p-value adjustment may be optimal for GWAS analysis of this 

data set. 

As mentioned in the previous chapters, P. nodorum produces multiple NEs that interact 

with corresponding sensitivity genes in wheat to induce programmed cell death. P. nodorum is a 

necrotrophic fungal pathogen and has the ability to take advantage of cell death to benefit itself. 

Finally, the PCD response results in SNB disease susceptibility in wheat cultivars harboring the 

corresponding host sensitivity gene. Based on this hypothesis, two phenotypic data sets were 

used including spore inoculation of the 191 P. nodorum isolates onto susceptible wheat lines and 

culture filtrate infiltration of the same 191 P. nodorum isolates on the same wheat set to 

investigate the NE-host sensitivity. To make the connection of a specific NE-host sensitivity 

interaction, such as the SnTox2-Snn2, SnTox6-Snn6, and SnTox5-Snn5 interactions, with the 

SNB disease occurrence, a MTA identified in spore inoculation data would also be expected to 

be identified using the culture filtrate data set. On BG 223 (Snn2), three MTAs, SNP1, SNP2 and 

SNP3, significant for spore inoculation (Figure 4.7. A, Table 4.3) were also significant for 
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culture filtrate infiltration data (Figure 4.7. B, Table 4.3). Interestingly, the three SNPs also 

showed significant MTAs using culture filtrate infiltration on ITMI 37 (Snn6) (Figure 4.7 B, 

Table 4.3) and two of the three, SNP1 and SNP2 were also significant when using the ITMI 37 

spore inoculation data set (Figure 4.7. A, Table 4.3). BG 223 and ITMI 37 contain Snn2 and 

Snn6 which confer sensitivity to SnTox2 and SnTox6, respectively. Previous studies in our lab 

have shown that the SnTox2 and SnTox6 proteins were difficult to separate by chromatography, 

indicating that SnTox2 and SnTox6 could be the same gene and this NE corresponds with two 

different host sensitivity genes. These results provide evidence that the genomic region of 

SnTox2 and SnTox6 may be the same and this gene product may interact with both Snn2 and 

Snn6, resulting in sensitivity and susceptibility on BG 223 and ITMI 37, respectively. One 

marker, SNP4, was associated with SNB susceptibility on ITMI 44 (Snn5). When analyzing 

spore inoculation data on LP 29 (Snn5), SNP4 had a –log10(p-value) = 1.8, higher than most of 

the other SNPs, even though  the –log10(p-value) was below the significance threshold (Figure 

4.7. A). A possible reason for the reduced significance of SNP4 associated with LP 29 spore 

inoculation may have been due to the relatively similar percentage of isolates in each reaction 

type category on LP 29 (Figure 4.1). Another possible reason is that the SNP4 is not close 

enough to the real SnTox5 gene, thereby, to show significance, more SNP markers are needed in 

the future work. Unlike SNP1-3, SNP4 was not identified using culture filtrate infiltration data of 

LP 29. This may be explained by the secretion of SnTox5 in planta, but lack of production in 

culture filtrates. 

The flanking markers of the significant SNPs possibly associated with SnTox2/SnTox6 

span a genomic region of more than 25kb, the estimated minimum physical distance needed to 

detect MTAs. In other words, more markers may be needed to strongly detect the candidate 
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genes for this or other novel NE or NEs. Since the P. nodorum SN15 whole genome sequence is 

assembled and annotated (Hane et al., 2007; Syme et al., 2013) gene annotation information can 

be used to predict candidate genes for SnTox2, SnTox6 or SnTox5. Three high priority genes 

have been identified for SnTox5 and one gene has been identified for SnTox2. Downstream 

characterization and validation such as heterologous expression, gene transformation, and site 

directed gene knock-outs are required to confirm the function of these candidate genes and this 

work is in progress. 
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