

IMPLEMENTATION AND EVALUATION OF CMA-ES ALGORITHM

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Srikanth Reddy Gagganapalli

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

November 2015

Fargo, North Dakota

North Dakota State University

Graduate School

Title

IMPLEMENTATION AND EVALUATION OF CMA-ES ALGORITHM

 By

Srikanth Reddy Gagganapalli

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Simone Ludwig

 Chair

Dr. Saeed Salem

Dr. María de los Ángeles Alfonseca-Cubero

 Approved:

 11/03/2015 Dr. Brian M. Slator

 Date Department Chair

iii

ABSTRACT

Over recent years, Evolutionary Algorithms have emerged as a practical approach to solve

hard optimization problems in the fields of Science and Technology. The inherent advantage of

EA over other types of numerical optimization methods lies in the fact that they require very little

or no prior knowledge regarding differentiability or continuity of the objective function. The

inspiration to learn evolutionary processes and emulate them on computer comes from varied

directions, the most pertinent of which is the field of optimization. In most applications of EAs,

computational complexity is a prohibiting factor. This computational complexity is due to number

of fitness evaluations. This paper presents one such Evolutionary Algorithm known as Covariance

Matrix Adaption Evolution Strategies (CMA ES) developed by Nikolaus Hansen, We

implemented and evaluated its performance on benchmark problems aiming for least number of

fitness evaluations and prove that the CMA-ES algorithm is efficient in solving optimization

problems.

iv

ACKNOWLEDGEMENTS

I would like to convey my earnestness to my primary advisor and mentor, Dr. Simone

Ludwig for her enthusiastic and encouraging support during the pursuit of my research. This

defense paper is as much as a product of her guidance as the work of my own research. I also

express my sincere regards to Dr. Saeed Salem from Computer Science Department and Dr. María

de los Ángeles Alfonseca-Cubero from mathematics Department for being on my supervisory

committee and providing their feedback.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

2. COVERIANCE MATRIX ADAPTION - EVOLUTION STRATEGIES (CMA-ES) 5

2.1. Selection and Recombination ... 7

2.2. Covariance Matrix Adaption .. 7

2.3. Step Size Control .. 8

3. IMPLEMENTATION ... 9

3.1. Pseudo Code ... 9

3.1.1. Generate Sample Population ... 10

3.1.2. Selection and Recombination .. 10

3.1.3. Covariance Matrix Adaption ... 11

3.1.4. Variance Adaption ... 12

3.2. Source Code Overview .. 12

3.2.1. CMAES.java .. 14

3.2.2. CMAEvolutionStrategy.java ... 15

3.2.3. UpdateDistribution .. 15

3.2.4. CMAParameters.java ... 16

4. EXPERIMENTAL SETUP ... 17

4.1. IEEE CEC’ 2013 Test Suite ... 17

4.1.1. Sphere Function ... 20

4.1.2. Rotated High Conditioned Elliptic Function ... 21

vi

4.1.3. Rotated Bent Cigar Function ... 22

4.1.4. Rotated Discus Function .. 23

4.1.5. Different Powers Function... 24

4.1.6. Rotated Rosenbrock’s Function... 25

4.1.7. Rotated Schaffers F7 Function .. 26

4.1.8. Rotated Ackley’s Function .. 27

4.1.9. Asymmetrical Rotated Weierstrass Function .. 28

4.1.10. Rotated Griewank’s Function .. 29

4.1.11. Rastrigin’s Function .. 30

4.1.12. Rotated Rastrigin’s Function ... 31

4.1.13. Non-Continuous Rotated Rastrigin’s Function ... 32

4.1.14. Schwefel's Function ... 33

4.1.15. Rotated Schwefel's Function ... 34

4.1.16. Rotated Katsuura Function .. 35

4.1.17. Lunacek Bi_Rastrigin Function ... 36

4.1.18. Rotated Lunacek Bi_Rastrigin Function ... 37

4.1.19. Expanded Griewank’s plus Rosenbrock’s Function .. 38

4.1.20. Expanded Scaffer’s F6 Function ... 39

4.2. Experimental Settings .. 40

5. RESULTS ... 41

6. CONCLUSION AND FUTURE WORK ... 55

7. REFERENCES ... 56

vii

LIST OF TABLES

Table Page

1. IEEE CEC’ 2013 Function definitions and descriptions. ... 19

2. Performance of CMA-ES at problem dimensionality 10 .. 41

3. Performance of CMA-ES at problem dimensionality 30 .. 52

4. Performance of CMA-ES at problem dimensionality 50 .. 53

viii

LIST OF FIGURES

Figure Page

1. Evolutionary strategies life cycle. ... 6

2. CMA-ES Pseudo Code ... 9

3. Source Code Overview ... 13

4. CMA-ES Core logic .. 15

5. Mean Update ... 15

6. Coveriance Matrix Update .. 16

7. Weight Vector ... 16

8. F1 .. 20

9. F2 .. 21

10. F4 .. 22

11. F4 .. 23

12. F5 .. 24

13. F6 .. 25

14. F7 .. 26

15. F8 .. 27

16. F9 .. 28

17. F10 .. 29

18. F11 .. 30

19. F12 .. 31

20. F13 .. 32

21. F14 .. 33

ix

22. F15 .. 34

23. F16 .. 35

24. F17 .. 36

25. F18 .. 37

26. F19 .. 38

27. F20 .. 39

28. Average fitness curve of CMA-ES for F1 .. 42

29. Average fitness curve of CMA-ES for F2 .. 42

30. Average fitness curve of CMA-ES for F3 .. 43

31. Average fitness curve of CMA-ES for F4 .. 43

32. Average fitness curve of CMA-ES for F5 .. 44

33. Average fitness curve of CMA-ES for F6 .. 44

34. Average fitness curve of CMA-ES for F7 .. 45

35.Average fitness curve of CMA-ES for F8 ... 45

36. Average fitness curve of CMA-ES for F9 .. 46

37. Average fitness curve of CMA-ES for F10 .. 46

38. Average fitness curve of CMA-ES for F11 .. 47

39. Average fitness curve of CMA-ES for F12 .. 47

40. Average fitness curve of CMA-ES for F13 .. 48

41. Average fitness curve of CMA-ES for F14 .. 48

42. Average fitness curve of CMA-ES for F15 .. 49

43. Average fitness curve of CMA-ES for F16 .. 49

44. Average fitness curve of CMA-ES for F17 .. 50

x

45. Average fitness curve of CMA-ES for F18 .. 50

46. Average fitness curve of CMA-ES for F19 .. 51

47. Average fitness curve of CMA-ES for F20 .. 51

1

1. INTRODUCTION

The constant strive for designing highly productive systems that respond in a quick and

efficient way has made optimization a core concern for engineers. Optimization is a series of

actions performed through continuous learning for achieving the best possible result for a problem

under given circumstances. Thus, an optimization algorithm tries to find the best possible solution

from all feasible solutions for a problem through a predefined approach. Unfortunately, many real-

world problems are very challenging and require huge computational resources to solve, brute

force search methods are useless in these cases [1]. They simply take too much time to find the

optimal solution. Moreover, in these cases it is always appreciated to find a reasonably good

enough solution (sub-optimal) saving a lot of computational time rather than trying to find the

perfect solution.

There is no single method available for solving all optimization problems efficiently. There

are a number of ways developed for solving the optimization problems, which include

Mathematical programming methods, stochastic processes, and Statistical methods.

Stochastic algorithms are a family of algorithms, which try to optimize the fitness function

through random search techniques. Evolutionary Algorithms are stochastic search methods that

inherit the nature of natural biological evolution that allow a population of organisms to adapt to

its environment for survival. The history of this field suggests there are different variants of

Evolutionary Algorithms mainly Genetic Algorithms and Evolutionary Strategies. Evolution

strategies were proposed in the 1960’s by Rechenberg and further developed by Schwefel to

optimize candidate solutions composed of real valued parameters [2]. The common underlying

idea behind all these techniques is the ‘Survival of the Fittest’ to produce better and better

approximations to an optimal solution. Given a function to be maximized/minimized, we initialize

2

a population of random solution candidates (“individual”) and explore and improve the candidates

fitness by a repeated process of selecting the candidates that seed the next generation by

recombination and mutation until a solution of sufficient fitness is found [1].

Evolutionary Algorithms can be implemented with just one of Crossover or Mutation

operator. However, the research on nature-inspired computation learning suggest the use of both

Crossover and Mutation operators for a faster convergence to a global optimum [12].

In an attempt to generate better individuals, two or more individuals with different but

desired features are combined to produce a new generation by a process called Crossover

anticipating individuals with better fitness than the individual’s in the current generation.

Crossover of the population is achieved using 1) Discrete Recombination, where the offspring

solutions inherit its components from one or other of two randomly selected parents. 2)

Intermediate Recombination, where the offspring solutions inherit its components, which are

weighted average of components, from two or more selected parents.

Mutation applied to Evolutionary computation, is achieved my adding normally distributed

random values to each component of an individual at a generation. Evolution Strategies algorithms

monitor and update the mutation strength dynamically at each generation (typically standard

deviation of normal distribution) as the individuals approach closer to the global optima, thus,

mutation is a primary operator in evolutionary strategies.

Once the offspring is generated by the process of Crossover and Mutation, the Selection

of candidate to parent next generation is based on fitness ranking of individuals in offspring and

one of the selection strategy. (µ + λ) - ES [5], where the mutants and parents compete with each

other, (µ , λ) – ES [5], where just mutants compete with each other to parent the next generation.

3

The parent and mutant population can be as low as 1, which results in (1 + λ)-ES or (1, λ)-ES,

(1,1)-ES and (1+1)-ES [3][4].

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) developed by Nikolaus

Hansen is an evolutionary algorithm for difficult non-linear non-convex black-box optimization

problems in continuous domains [3]. The CMA-ES is considered as state-of-the-art in evolutionary

computation and has been adopted as one of the standard tools for continuous optimization in many

(probably hundreds of) research labs and industrial environments around the world that is proved

to converge at optimal solution in very few generations, thus, decreasing the time complexity [8].

Some of the key features of CMA-ES are:

- CMA-ES is feasible on non-separable and/or badly conditioned problems since it is a second

order approach estimating a positive definite matrix within an iterative procedure [7].

- In contrast to quasi-Newton methods, the CMA-ES does not use or approximate gradients and

does not even presume or require their existence. This makes the method feasible on non-

smooth and even non-continuous problems, as well as on multimodal and/or noisy problems

[7].

- It turns out to be a particularly reliable and highly competitive evolutionary algorithm for local

optimization and, surprising at first sight, also for global optimization.

- The CMA-ES does not require tedious parameter tuning for its application. In fact, the choice

of strategy internal parameters is completely automated.

This paper is composed of six chapters, which are as follows: Chapter 1 introduces the

basic ES and CMA-ES algorithms. Chapter 2 describes CMA-ES in detail. Chapter 3 presents the

implementation details of the algorithm with a snapshot of pseudo code and Java implementation.

Chapter 4 presents the IEEE CEC’ 2013 Test Suite and lists its first 20 benchmark functions for

4

the Optimization Algorithms. The experimental setup to test the CMA-ES performance on the test

suite follows later in the chapter. Chapter 5 presents and discusses the results obtained. The results

for each dimensionality are presented with data statistics that include the Best, Worst, Mean and

Standard- Deviation values obtained for every benchmark function evaluated. Chapter 6 discusses

the results obtained with other optimization algorithms.

5

2. COVERIANCE MATRIX ADAPTION - EVOLUTION STRATEGIES

(CMA-ES)

The CMA-ES algorithm was first proposed by Nikolaus Hansen in 2001. It is a bio-inspired

optimization algorithm. CMA-ES relies on a distribution model of a candidate population

(Parameterized Multivariate Normal Distribution) in order to explore the design space [1]. It is

based on selection and adaption strategy of the sample population while preserving and modifying

the strategy parameters, the convergence property of previous generations (Covariance Matrix),

and utilizing the knowledge in generating the next generation population. In each generation the

parent for the next generation is calculated with a weighted average of λ selected candidates from

µ offsprings generated at that generation using a (λ, µ)-selection. The next generation population

is generated by sampling a multi-variate normal distribution of the Covariance Matrix with the

Variance at the generation g over the mean of the generation 𝑀 𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔)) [3]. The

step size 𝜎(𝑔) determines the overall variance of the mutation at generation g. The variable property

of step size 𝜎 at each generation plays a vital role in controlling the premature convergence and

close convergence to global optima.

The CMA-ES works through a cycle of stages represented in Figure 1.

6

Figure 1. Evolutionary strategies life cycle.

CMA-ES Search for the Global optima in D dimensions begins with generation of µ D-

dimensional real valued members by sampling a multivariate Normal distribution around the Mean

M at any generation. In general, the equation can be written as:

 𝑥𝑘
(𝑔+1)

 ∼ 𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔)) for k = 1,…,λ (1)

Where 𝑥𝑘
(𝑔+1)

 represent the 𝑘𝑡ℎ Sample member generated at generation (g+1). Each member of

the population can be broadly termed as a vector and can be represented as:

 𝑋𝑖 = [𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝐷] For i = 1,2,3,…, µ (2)

Thus from Equation (1), in order to pass to the next generation (g+2), the parameters

𝑀(𝑔+1) , 𝐶(𝑔+1), 𝜎(𝑔+1) needs to be calculated. Each of these parameters represents a step in the

algorithm and are discussed in next three sections.

7

2.1. Selection and Recombination

The crossover nature of the Evolutionary process is achieved by calculating the Mean

Vector for every generation and then mutating the mean vector to generate the offspring. The mean

vector M(g+1) for generation g is the weighted average of the µ selected best individuals in the

order of the fitness ranking on the objective function from sample space 𝑥𝑘
(𝑔+1)

 for k = 0,1,2,…,

µ. The weighted vector can be an equal vector or linear vector. With equal weighted vector, all the

selected samples will have equal portion in the resultant mean (𝑊𝑖 = 1/ λ). With the Linear Weight

vector configuration𝑊𝑖, the fittest point has higher portion of genes than the point with lower

fitness.

 𝑊𝑖 = log(µ + 1) − log (𝑖 + 1), ∑𝑤𝑖 = 1 , 𝑊1 > 𝑊2 > 𝑊3 > ⋯𝑊λ> 0 for i = 1,2… λ. (3)

2.2. Covariance Matrix Adaption

The Covariance Matrix Adaption determines the varying mutation for the child population

in the evolutionary process. The offspring at a generation are sampled according to multivariate

normal distribution in 𝑅𝑛, while Recombination described in Section 2.1 amounts to selecting a

new mean at generation g+1, the mutation amounts to the sampling of the normal distribution of

Covariance Matrix multiplied by Step Size around Mean. The dependencies between the variables

in the distribution are represented by the Covariance Matrix. The Covariance Matrix Adaption is

a method to update the covariance Matrix of this distribution, which amounts to learning a second

order model of the underlying objective function.

The mean of the distribution is updated in such a way that the likelihood of the previously

successful candidate solution is maximized, and the covariance Matrix is updated in such a way

that the likelihood of previously successful search steps is increased.

8

𝑪(𝒈+𝟏) = (𝟏 − 𝒄𝟏 − 𝒄µ)𝑪
𝒈 + 𝒄1 𝑷𝒄

(𝒈+𝟏)
𝑷𝒄
(𝒈+𝟏)𝑻

+ 𝒄µ

 × ∑ 𝒘𝒊
µ
𝒊=𝟏 (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
) (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)
𝑻

 (4)

2.3. Step Size Control

The Covariance matrix adaption above does not control the overall scale of the distribution,

i.e. Step-Size. The covariance matrix increases the scale in only one direction for each selected

step, and can decrease the scale only by fading out old information via the factor 1- C1 - Cµ less

information. To control the step-size 𝜎(𝑔) we exploit the evolution path and this can be applied

independent of the covariance matrix adaption and is denoted as Cumulative step length adaption

(CSA) as below.

- Whenever the evolution path is short, single steps cancel each other. In this case the step

size should be decreased.

- Whenever the evolution path is long and single steps are pointing in the same direction,

the step size should be increased to reduce the number of steps.

To decide whether the evolution path is long or short, the path length is compared with expected

length under random selection. If the selection path biases the evolution path to be longer than

expected, 𝜎 is increased, and if the selection path biases the evolution path to be shorter than

expected, 𝜎 in decreased.

9

3. IMPLEMENTATION

3.1. Pseudo Code

Presented below is the pseudo code followed by detailed explanation of the major steps in

the algorithm [6] [7].

Step 1: Initialize the CMA-ES Parameters

 D  no. of dimensions

 λ  Offspring population size (4.0 + 3.0 Log(D))

 µ  Parent population for next generation (floor(λ/2))

 𝜎𝑆𝑡𝑎𝑟𝑡  Initial standard deviation.

 c𝑐𝑜𝑣  Covariance learning rate

Step 2: While stopping criterion is not met do

Step 3: Update the Covariance Matrix 𝐶(𝑔+1) (see Covariance Matrix Adaption)

𝑪(𝒈+𝟏)  (𝟏 − 𝒄𝒄𝒐𝒗)𝑪
𝒈 +

𝒄𝒄𝒐𝒗
µ𝒄𝒐𝒗

 𝑷𝒄
(𝒈+𝟏)

𝑷𝒄
(𝒈+𝟏)𝑻

+ 𝒄𝒄𝒐𝒗 (𝟏 −
𝟏

µ𝒄𝒐𝒗
)

× ∑𝒘𝒊

×

𝒊=𝟏

(
𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)(

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)

𝑻

Step 4: Update the Step Size 𝜎𝑔 (see Step Size adaption)

𝜎𝑔+1  𝜎𝑔 × exp(
𝑐𝜎
𝑑𝜎
(

||𝑃𝜎||

𝐸 𝑁(0, 𝐼)
 − 1))

Step 5: Generate Sample Population for generation g+1

 𝑥𝑘
(𝑔+1)

 ∼ 𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔)) for k = 1,…,λ

Step 6: Update the mean for generation g+1

 𝑚(𝑔+1)
 ∑ 𝑤𝑖𝑥𝑖:λ

(𝑔+1)

µ
𝑖=1

Step 7: Update best ever solution

Step 8: End While

Figure 2. CMA-ES Pseudo Code

10

The CMA-ES algorithm consists of 3 major steps as described above. For any algorithm,

the stopping criteria should be an integral part and for CMA-ES it can be specified in the following

ways:

1) Running the Algorithm for a pre-defined number of generations.

2) Stopping any further execution when the algorithm does not make any growth in approaching

the solution.

3) Stopping when the Algorithm reaches a pre-defined objective function value.

3.1.1. Generate Sample Population

The population of a new search point at generation (g+1) is generated by sampling a

multi-variate of the normal distribution with mean 𝑀(𝑔) using Equation (1).

 𝑥𝑘
(𝑔+1)

 ∼ 𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔)) for k = 1,…,λ

3.1.2. Selection and Recombination

The new mean of the search distribution for Generation g+1 is the weighted average of best

µ selected children from λ sample points generated by Equation (1).

 𝑚(𝑔+1) = ∑ 𝑤𝑖𝑥𝑖:λ
(𝑔+1)

µ
𝑖=1 (5)

 ∑ 𝑤𝑖 = 1 𝑤𝑖 > 0 𝑓𝑜𝑟 𝑤𝑖 = 1,… , µ
µ
𝑖=1 (6)

The individual weights for the weight vector are defined based on µ𝑒𝑓𝑓 such that 1 < µ𝑒𝑓𝑓

< µ. In our case we choose µ𝑒𝑓𝑓 ≈ λ/4, which is a reasonable setting for 𝑤𝑖.

 µ𝑒𝑓𝑓 = (∑ 𝑤𝑖
2µ

𝑖=1)
−1

 (7)

11

3.1.3. Covariance Matrix Adaption

The goal of this step is to calculate the Covariance matrix at the generation g. Below are

some of the parameters that are used in the process of calculating the Covariance matrix. The

current generation Covariance matrix depends on the learning curve based on the previous

Covariance matrix.

𝑪(𝒈+𝟏) = (𝟏 − 𝒄𝒄𝒐𝒗)𝑪
𝒈 +

𝒄𝒄𝒐𝒗
µ𝒄𝒐𝒗

 𝑷𝒄
(𝒈+𝟏)

𝑷𝒄
(𝒈+𝟏)𝑻

+ 𝒄𝒄𝒐𝒗 (𝟏 −
𝟏

µ𝒄𝒐𝒗
)

 × ∑ 𝒘𝒊
×
𝒊=𝟏 (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
) (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)
𝑻

 (8)

Where

 𝒄𝒄𝒐𝒗 is a strategy parameter equal to
𝑚𝑖𝑛(µ𝑐𝑜𝑣 , µ𝑒𝑓𝑓 , 𝑛

2)
𝑛2
⁄

 µ𝒄𝒐𝒗 is > 0 and µ𝒄𝒐𝒗 ~ µ𝑒𝑓𝑓 in most cases. In our case µ𝑒𝑓𝑓 = 3.4

 𝑷𝒄
(𝒈+𝟏)

 is the evolution path. As a sequence of steps the strategy takes over a number of

generations. The evolution path can be derived as:

 𝑃𝐶
(𝑔+1)

= (1 − 𝑐𝑐)𝑃𝐶
(𝑔)
+ √𝑐𝑐(2 − 𝑐𝑐)µ𝑒𝑓𝑓

𝑀(𝑔+1)−𝑀𝑔

𝜎(𝑔)
 (9)

12

3.1.4. Variance Adaption

Along with the Covariance Matrix adaption, the Variance/Step Size is updated every

generation. It is updated using the cumulative step size adaption (CSA) and can be defined as:

 𝜎𝑔+1 = 𝜎𝑔 × exp(
𝑐𝜎

𝑑𝜎
(

||𝑃𝜎||

𝐸 𝑁(0,𝐼)
 − 1)) (10)

And 𝑃𝜎 is derived as:

 𝑃𝜎 = (1 − 𝑐𝜎)𝑃𝜎 + √1 − (1 − 𝑐𝜎)2√µ𝑤𝐶𝐾
−1/2

𝑀𝐾+1− 𝑀𝐾+1

𝜎𝑘
 (11)

 where µ𝑤 = (∑ 𝑤𝑖
2µ

𝑖=1)
−1

3.2. Source Code Overview

The CMA-ES Algorithm has been implemented in the JAVA Programming language. The

package consists of 7 core classes and a properties file. The kernel is implemented in CMAES.java.

The user can specify the number of dimensions, functions to be executed, number of runs, exit

criteria and CMA-ES configuration parameters in the Properties file

CMAEvolutionStrategy.properties. Any method that represents the benchmark function can be

added to the class FunctionCollector.java. The kernel reads the arguments from the properties file,

executes the Algorithm and reports the results. Below are the primary classes and their purpose.

13

Figure 3. Source Code Overview

14

Figure 3. Source Code Overview (continued)

3.2.1. CMAES.java

This class contains the main method that reads the properties file for properties such as

Number of Runs, Benchmark Function list, Dimensions to be executed, and then calls the

CMAEvolutionStrategies class, Writing the stats file and drawing the graphs.

15

3.2.2. CMAEvolutionStrategy.java

This is the core of the application with below methods.

Figure 4. CMA-ES Core logic

SamplePopulation(): This method generates sample population from Mean Vector at

generation G, Standard Deviation at generation G and Covariance matrix at Generation G.

3.2.3. UpdateDistribution

This method generates the Mean Vector Xmean to be used in generation G+1 and updates

the covariance matrix C for generation G+1.

Figure 5. Mean Update

16

Figure 6. Coveriance Matrix Update

3.2.4. CMAParameters.java

This class is used to store and retrieve all the CMAES parameters read from the

CMAEvolutionStrategies.properties file throughout the execution. Major methods include:

setWeights(): setting the weight vector based on the recombination type.

Figure 7. Weight Vector

17

4. EXPERIMENTAL SETUP

4.1. IEEE CEC’ 2013 Test Suite

Optimization problems are real world problems that we come across in the field of

Mathematics, Science, Engineering, Business and Economics. Various factors contribute to the

problems faced in searching the optimal solution. Firstly, with the increase in the number of

variables associated with a problem the search space grows exponentially. Secondly, the properties

of the problem tend to change as the dimensionality of the problem increases. Thirdly, computation

of such large-scale problems is expensive. The IEEE CEC’ 2013 [9] Test Suite is a set of

benchmark functions that try to emulate the properties of real world large scale optimization

problems to evaluate evolutionary algorithms. IEEE CEC’ Test suites have constantly evolved

over time with the advances in the field of Large Scale Global Optimization commonly known as

LSGO. In essence, it provides a framework on which to test and report the performance of EA.

All the problems listed in the Test Suite are minimization problems. For the sake of

overview, the functions are described briefly. These functions are described in detail in [9]. The

following terminology that is frequently used in the test suite is as follows:

D is the dimensionality of the problem.

O is the shifted global minimum of the problem.

𝑴𝒏 is the orthogonally rotated matrix obtained from Gram-Schmidt ortho-normalization process.

𝚲𝜶 = a diagonal matrix in D dimensions with i𝑡ℎ diagonal value as 𝛼
𝑖−1

2(𝐷−1) for i =1,2…D

𝑇𝑎𝑠𝑦
𝛽
: 𝑖𝑓 𝒙𝒊 > 𝟎, 𝒙𝒊 = 𝒙𝒊

𝟏+𝜷
𝒊−𝟏

𝑫−𝟏
√𝒙𝒊

𝑇𝑜𝑠𝑧: 𝑓𝑜𝑟 𝒙𝒊 = 𝑠𝑖𝑔𝑛(𝒙𝒊)exp (𝑥̈ + 0.049(sin(𝒄𝟏𝑥𝑖̈) + sin(𝒄𝟏𝑥𝑖̈))), 𝑓𝑜𝑟 𝑖 = 1 𝑎𝑛𝑑 𝐷

18

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖̈ = {
log(𝑚𝑜𝑑(𝒙𝒊)) 𝑖𝑓 𝒙𝒊 ≠ 𝟎

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑖𝑔𝑛(𝒙𝒊) = {
−1 𝑖𝑓 𝒙𝒊 < 0
0 𝑖𝑓 𝒙𝒊 = 𝟎
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝒄𝟏 = {
10 𝑖𝑓 𝒙𝒊 < 0
5.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝒄𝟐 = {
7.9 𝑖𝑓 𝒙𝒊 < 0
3.1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Given these definitions, the functions are briefly described in the next section.

19

Table 1. IEEE CEC’ 2013 Function definitions and descriptions

 Function

No.

Function Name fi*=fi(x*)(shifted

global minimum)

Unimodal Functions

1 Sphere Function -1400

2 Rotated High Conditioned

Elliptic Function

-1300

3 Rotated Bent Cigar Function -1200

4 Rotated Discus Function -1100

5 Different Powers Function -1000

Multimodal

Functions

6 Rotated Rosenbrock’s Function -900

7 Rotated Schaffers F7 Function -800

8 Rotated Ackley’s Function -700

9 Rotated Weierstrass Function -600

10 Rotated Griewank’s Function -500

11 Rastrigin’s Function -400

12 Rotated Rastrigin’s Function -300

13 Non-Continuous Rotated

Rastrigin’s Function

-200

14 Schwefel's Function -100

15 Rotated Schwefel's Function 100

16 Rotated Katsuura Function 200

17 Lunacek Bi_Rastrigin Function 300

18 Rotated Lunacek Bi_Rastrigin

Function

400

19 Expanded Griewank’s plus

Rosenbrock’s Function

500

20 Expanded Schaffer’s F6 Function 600

20

4.1.1. Sphere Function

𝑓1(𝑥) = ∑𝑧𝑖
2

𝐷

𝑖=1

+ 𝑓1
∗, 𝑧 = 𝑥 − 𝑜

 Figure 8. F1

Properties:

1 Unimodal

2 Separable

21

4.1.2. Rotated High Conditioned Elliptic Function

𝑓2(𝑥) = ∑(106)
𝑖−1
𝐷−1 𝑧𝑖

2

𝐷

𝑖=1

+ 𝑓2
∗, 𝑧 = 𝑇𝑜𝑠𝑧(𝑀1(𝑥 − 𝑜))

 Figure 9. F2

Properties:

1 Unimodal

2 Non-Separable

22

4.1.3. Rotated Bent Cigar Function

 𝑓3(𝑥) = 𝑧1
2 + 106 ∑ 𝑧𝑖

2𝐷
𝑖=2 + 𝑓3

∗, 𝑧 = 𝑀2(𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜))

 Figure 10. F4

Properties:

1 Unimodal

2 Non-Separable

3 Smooth but narrow ridge

23

4.1.4. Rotated Discus Function

 𝑓3(𝑥) = 106𝑧1
2 + ∑ 𝑧𝑖

2𝐷
𝑖=2 + 𝑓4

∗, 𝑧 = 𝑇𝑜𝑠𝑧(𝑀1(𝑥 − 𝑜))

 Figure 11. F4

 Properties:

1 Unimodal

2 Separable

3 Asymmetrical

4 Smooth Local Irregularities

24

4.1.5. Different Powers Function

 𝑓5(𝑥) = √∑ |𝑧𝑖|
2+4

𝑖−1

𝐷−1𝐷
𝑖=1 + 𝑓5

∗, 𝑧 = (𝑥 − 𝑜)

 Figure 12. F5

Properties:

1 Unimodal

2 Separable

25

4.1.6. Rotated Rosenbrock’s Function

 𝑓5(𝑥) = ∑ (100(𝑧𝑖
2 − 𝑧𝑖+1

2)2) + (𝑧𝑖 − 1)
2𝐷−1

𝑖=1 + 𝑓6
∗, 𝑧 = 𝑀1

2.048(𝑥−𝑜)

100
+ 1

 Figure 13. F6

Properties:

1 Multimodal

2 Non-Separable

3 Having a narrow valley from local optimum to global optimum

26

4.1.7. Rotated Schaffers F7 Function

 𝑓7(𝑥) = (
1

𝐷−1
∑ (√𝑧𝑖 +√𝑧𝑖𝑠𝑖𝑛

2(50𝑧𝑖
0.2)))2 + 𝑓7

∗ 𝐷−1
𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝑧𝑖 = √𝑦𝑖
2 + 𝑦𝑖+1

2 𝑓𝑜𝑟 𝑖 = 1,… , 𝐷

𝑎𝑛𝑑 𝑦 = 𝛬10𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜))

 Figure 14. F7

Properties:

1 Multimodal

2 Non-Separable

3 Asymmetrical

27

4.1.8. Rotated Ackley’s Function

𝑓8(𝑥) = −20 exp

(

 −0.2√
1

𝐷
∑𝑧𝑖

2

𝐷

𝑖=1

)

 − exp (
1

𝐷
 ∑cos (2𝜋𝑧𝑖))

𝐷

𝑖=1

+ 20 + 𝑒 + 𝑓8
∗

𝑤ℎ𝑒𝑟𝑒 𝑧 = Λ10𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜))

 Figure 15. F8

Properties:

1 Multimodal

2 Non-separable

28

4.1.9. Asymmetrical Rotated Weierstrass Function

 𝑓9(𝑥) = ∑(∑ [𝑎𝑘 cos(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]

𝑘𝑚𝑎𝑥

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘. 0.5))

𝑘𝑚𝑎𝑥

𝑘=0

]

 +𝑓9
∗

𝑤ℎ𝑒𝑟𝑒 𝑎 = 0.5, 𝑏 = 3, 𝑘𝑚𝑎𝑥 = 20

𝑎𝑛𝑑 𝑧 = Λ10𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1

0.5

100
(𝑥 − 𝑜))

 Figure 16. F9

Properties:

1 Multimodal

2 Non-Separable

3 Asymmetrical

29

4.1.10. Rotated Griewank’s Function

 𝒇𝟏𝟎(𝒙) = ∑
𝒛𝒊
𝟐

𝟒𝟎𝟎𝟎

𝑫
𝒊=𝟏 –∏ 𝑫

𝒊=𝟏 𝐜𝐨𝐬 (
𝒛𝒊

√𝒊
) + 𝟏 + 𝒇𝟏𝟎

∗

 𝒘𝒉𝒆𝒓𝒆 𝒛 = 𝚲𝟏𝟎𝟎𝑴𝟏
𝟔𝟎𝟎(𝒙−𝒐)

𝟏𝟎𝟎

 Figure 17. F10

Properties:

1 Multimodal

2 Non-separable

30

4.1.11. Rastrigin’s Function

 𝒇𝟏𝟏(𝒙) = ∑ (𝒛𝒊
𝟐 − 𝟏𝟎 𝐜𝐨𝐬(𝟐𝝅𝒛𝒊) + 𝟏𝟎)

𝑫
𝒊=𝟏 + 𝒇𝟏𝟏

∗

 𝒛 = 𝚲𝟏𝟎𝑻𝒂𝒔𝒚
𝟎.𝟐 (𝑻𝒐𝒔𝒛 (

𝟓.𝟏𝟐(𝒙−𝒐)

𝟏𝟎𝟎
))

 Figure 18. F11

Properties:

1 Multimodal

2 Non-separable

3 Huge number of local optima

31

4.1.12. Rotated Rastrigin’s Function

𝑓12(𝑥) =∑ (𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1
+ 𝑓12

∗

𝑧 = 𝑀1Λ
10𝑀2𝑇𝑎𝑠𝑦

0.2 (𝑇𝑜𝑠𝑧 (𝑀1
5.12(𝑥 − 𝑜)

100
))

 Figure 19. F12

Properties:

1 Multimodal

2 Non-separable

3 Asymmetrical

4 Huge number of local optima

32

4.1.13. Non-Continuous Rotated Rastrigin’s Function

𝑓13(𝑥) =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10) + 𝑓13

∗

𝐷

𝑖=1

𝑥̈ = 𝑀𝑖

5.12(𝑥 − 𝑜)

100

𝑦𝑖 = {

𝑥𝑖̈ 𝑖𝑓 |𝑥𝑖̈| ≤ 0.5

𝑟𝑜𝑢𝑛𝑑(2𝑥̈𝑖)

2
 𝑖𝑓 |𝑥𝑖̈| > 0.5

𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐷

𝑧 = 𝑀1Λ
10𝑀2𝑇𝑎𝑠𝑦

0.2 (𝑇𝑜𝑠𝑧(𝑦))

 Figure 20. F13

Properties:

1 Multimodal

2 Asymmetrical

3 Huge number of local optima

4 Non-continuous

33

4.1.14. Schwefel's Function

𝑓14 = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

+ 𝑓14
∗

𝑧 = Λ10 (
1000(𝑥 − 𝑜_

100
) + 4.2096874227503𝑒 + 002

𝑔(𝑧𝑖)

=

{

 𝑧𝑖 sin (|𝑧𝑖|

1
2) 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖, 500))sin (√|500 − 𝑚𝑜𝑑(𝑧𝑖, 500)|) −
𝑧𝑖 − 500)

2

10000𝐷
𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(𝑧𝑖, 500) − 500) sin (√|𝑚𝑜𝑑(𝑧𝑖, 500) − 500|) −
𝑧𝑖 + 500)

2

10000𝐷
if 𝑧𝑖 < −500

 Figure 21. F14

Properties:

1 Multimodal

2 Non-separable

3 Huge number of local optima

34

4.1.15. Rotated Schwefel's Function

𝑓15 = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

+ 𝑓15
∗

𝑧 = Λ10𝑀1 (
1000(𝑥 − 𝑜_

100
) + 4.2096874227503𝑒 + 002

𝑔(𝑧𝑖) =

{

 𝑧𝑖 sin (|𝑧𝑖|

1
2) 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 −𝑚𝑜𝑑(𝑧𝑖, 500))sin (√|500 −𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖 − 500)

2

10000𝐷
𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(𝑧𝑖 , 500) − 500) sin (√|𝑚𝑜𝑑(𝑧𝑖 , 500) − 500|) −
(𝑧𝑖 + 500)

2

10000𝐷
if 𝑧𝑖 < −500

 Figure 22. F15

Properties:

1 Multimodal

2 Asymmetrical

3 Non-separable

35

4.1.16. Rotated Katsuura Function

𝑓16(𝑥) =
10

𝐷2
∏

𝐷

𝑖=1

(1 + 𝑖∑
2𝑗𝑧𝑖 − 𝑟𝑜𝑢𝑛𝑑(2

𝑗𝑧𝑖)

2𝑗
)
10
𝐷1.2

32

𝑗=1

−
10

𝐷2
+ 𝑓16

∗

𝑧 = 𝑀2Λ
100(𝑀1

5(𝑥 − 𝑜)

100
))

 Figure 23. F16

Properties:

1 Multimodal

2 Non-separable

3 Asymmetrical

36

4.1.17. Lunacek Bi_Rastrigin Function

𝑓17(𝑥) = min (∑(𝑥𝑖̈ − 𝜇0)
2, 𝑑𝐷 + 𝑠∑(𝑥𝑖̈ − 𝜇1)

2

𝐷

𝑖=1

+ 10(𝐷 −∑cos (2𝜋𝑧𝑖))̈ + 𝑓17
∗

𝐷

𝑖=1

𝐷

𝑖=1

𝜇0 = 2.5, 𝜇1 = −√
𝜇0
2 − 𝑑

𝑠
, 𝑠 = 1 −

1

2 √𝐷 + 20 − 8.2
, 𝑑 = 1

𝑦 =
10(𝑥 − 𝑜)

100
, 𝑥𝑖̈ = 2𝑠𝑖𝑔𝑛(𝑥𝑖

∗)𝑦𝑖 + 𝜇0, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐷

𝑧 = Λ100(𝑥̈ − 𝜇0)

 Figure 4. F17

Properties:

1 Multimodal

2 Asymmetrical

37

4.1.18. Rotated Lunacek Bi_Rastrigin Function

𝑓18(𝑥) = min (∑(𝑥𝑖̈ − 𝜇0)
2, 𝑑𝐷 + 𝑠∑(𝑥𝑖̈ − 𝜇1)

2

𝐷

𝑖=1

+ 10(𝐷 −∑cos (2𝜋𝑧𝑖))̈ + 𝑓18
∗

𝐷

𝑖=1

𝐷

𝑖=1

𝜇0 = 2.5, 𝜇1 = −√
𝜇0
2 − 𝑑

𝑠
, 𝑠 = 1 −

1

2 √𝐷 + 20 − 8.2
, 𝑑 = 1

𝑦 =
10(𝑥 − 𝑜)

100
, 𝑥𝑖̈ = 2𝑠𝑖𝑔𝑛(𝑦𝑖

∗)𝑦𝑖 + 𝜇0, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐷

𝑧 = 𝑀2Λ
100(𝑀1(𝑥̈ − 𝜇0))

 Figure 25. F18

Properties:

1 Multimodal

2 Non-separable

3 Asymmetrical

38

4.1.19. Expanded Griewank’s plus Rosenbrock’s Function

𝐵𝑎𝑠𝑖𝑐 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔1(𝑥) =∑
𝑥𝑖
2

4000
−∏cos (

𝑥𝑖

√𝑖

𝐷

𝑖=1

𝐷

𝑖=1

) + 1

𝐵𝑎𝑖𝑠𝑐 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔2(𝑥) = ∑ (100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2)𝐷−1

𝑖=1

𝑓19(𝑥) = 𝑔1(𝑔2(𝑧1, 𝑧2)) + 𝑔1(𝑔2(𝑧2, 𝑧3)) + ⋯+ 𝑔1(𝑔2(𝑧𝐷−1, 𝑧𝐷)) +

 𝑔1(𝑔2(𝑧𝐷 , 𝑧1)) + 𝑓19
∗

 Figure 26. F19

Properties:

1 Multimodal

2 Asymmetrical

39

4.1.20. Expanded Scaffer’s F6 Function

𝑆𝑐𝑎𝑓𝑓𝑒𝑟′𝑠 𝐹6 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔(𝑥, 𝑦) = 0.5 +
sin2(√𝑥2 + 𝑦2) − 0.5)

(1 + 0.001(𝑥2 + 𝑦2))
2

𝑓20(𝑥) = 𝑔(𝑧1, 𝑧2) + 𝑔(𝑧2, 𝑧3) + ⋯+ 𝑔(𝑧𝐷−1, 𝑧𝐷) + 𝑔(𝑧𝐷 , 𝑧1) + 𝑓20
∗

𝑧 = 𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜))

 Figure 27. F20

Properties:

1 Multimodal

2 Non-separable

3 Asymmetrical

40

4.2. Experimental Settings

This paper evaluates the performance of the CMA-ES algorithm on the first 20 benchmark

functions specified by the IEEE CEC’ 2013 Test Suite. The algorithm is run on 3 different

dimensions for each function namely 10D, 30D and 50D. Every function evaluation is run 50 times

and the best, worst, mean, standard deviation values are recorded for each evaluation.

Since it is highly cumbersome to report all the evaluation sets and evaluation matrices

pertaining to every function, the best parameter setting results are reported for each function at a

given dimensionality.

The test suite suggests two stopping criterion for stopping the algorithm: 1) number of

evaluations reaches 104 times the problem dimensionality. This stopping criterion is significant as

real world optimization is computationally intensive, thus, the predefined number of function

evaluations serve a cutoff parameter to usually constrained computational budget. 2) The

difference between the best value achieved so far and the global minimum (this difference is

commonly known as Function Error Value, FEV) is smaller than 10−8. Thus all the results with

difference below 10−8 are represented as 0.0e+00.

41

5. RESULTS

Table 1 reports the performance of CMA-ES on benchmark functions at dimensionality

10D. The best, worst and mean values shown are achieved over 50 runs. For 10D problems, the

algorithm is able to achieve the global minimum for 7 functions out of total of 20 functions.

Table 2. Performance of CMA-ES at problem dimensionality 10

D PM F1 F2 F3 F4 F5

1
0
 D

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Worst 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

 F6 F7 F8 F9 F10

Best 0.00e+00 2.5e-02 6.25e-01 4.67e-01 0.00e+00

Worst 3.98e+00 6.25e+02 2.15e+1 1.92e+01 2.8e-02

Mean 1.01e+00 1.20e+03 2.03e+01 1.01e+01 0.01e+00

Std 1.73e+00 2.22E+03 7.86e-02 5.72E+00 1.00e-02

 F11 F12 F13 F14 F15

Best 1.87e+02 2.90e+02 1.94e+01 1.11e+02 1.74e+03

Worst 2.31e+02 2.93e+02 5.07e+02 1.70e+02 2.27e+03

Mean 2.22e+02 2.90e+02 2.83e+02 1.57e+03 2.05e+03

Std 2.96e+01 5.70e-01 2.57e+02 1.88e+02 1.10e+02

 F16 F17 F18 F19 F20

Best 5.80e-02 2.20e+02 2.40e+02 3.59E-01 3.27e+00

Worst 1.42e+00 5.45e+02 3.80e+02 1.05e+00 5.00e+00

Mean 2.49e-01 2.84e+02 2.62e+02 8.50e-01 4.63e+00

Std 2.53e-01 9.80e+01 1.4e+02 2.98e-01 4.75e-01

42

Presented in Figure 22 through Figure 41 are the fitness versus generation plots of the

CMA-ES algorithm at problem dimensionality of 10D. The initial population is set to 7, initial

standard deviation is set to 0.5 and µ𝑒𝑓𝑓 = 3.4.

Figure 28. Average fitness curve of CMA-ES for F1

Figure 29. Average fitness curve of CMA-ES for F2

43

Figure 30. Average fitness curve of CMA-ES for F3

Figure 31. Average fitness curve of CMA-ES for F4

44

Figure 32. Average fitness curve of CMA-ES for F5

Figure 33. Average fitness curve of CMA-ES for F6

45

Figure 34. Average fitness curve of CMA-ES for F7

Figure 35. Average fitness curve of CMA-ES for F8

46

Figure 36. Average fitness curve of CMA-ES for F9

Figure 37. Average fitness curve of CMA-ES for F10

47

Figure 38. Average fitness curve of CMA-ES for F11

Figure 39. Average fitness curve of CMA-ES for F12

48

Figure 40. Average fitness curve of CMA-ES for F13

Figure 41. Average fitness curve of CMA-ES for F14

49

Figure 42. Average fitness curve of CMA-ES for F15

Figure 43. Average fitness curve of CMA-ES for F16

50

Figure 44. Average fitness curve of CMA-ES for F17

Figure 45. Average fitness curve of CMA-ES for F18

51

Figure 46. Average fitness curve of CMA-ES for F19

Figure 47. Average fitness curve of CMA-ES for F20

52

Table 3. Performance of CMA-ES at problem dimensionality 30

D PM F1 F2 F3 F4 F5
3
0
 D

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Worst 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

 F6 F7 F8 F9 F10

Best 0.00e+00 1.26e+00 2.09e+01 1.63e+01 0.00e+00

Worst 3.98e+00 7.03e+01 7.00e+02 4.83e+01 9.11e-02

Mean 2.34e-01 1.78e+01 2.03e+02 3.49e+01 1.49e-02

Std 9.30e-01 1.34e+01 3.11e+02 7.52e+00 1.41e-02

 F11 F12 F13 F14 F15

Best 3.28e+01 5.57e+01 8.30e+01 4.29e+03 3.95e+03

Worst 9.50e+02 9.63e+02 2.42e+03 5.43e+03 5.33e+03

Mean 4.63e+02 8.01e+02 1.21e+03 1.57e+03 4.67e+03

Std 2.72e+02 2.69e+02 5.67e+02 1.88e+02 2.94e+02

 F16 F17 F18 F19 F20

Best 2.21e-02 8.53e+02 1.39e+03 1.04e+00 1.27e+01

Worst 1.34e-01 2.18e+03 1.41e+03 3.12e+00 1.50e+01

Mean 6.26e-02 1.27e+03 1.40e+03 1.81e+00 1.49e+01

Std 2.90e-02 2.49e+02 1.02e+02 4.51e-01 3.50e-01

53

Table 4. Performance of CMA-ES at problem dimensionality 50

D PM F1 F2 F3 F4 F5
5
0
 D

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Worst 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

 F6 F7 F8 F9 F10

Best 0.00e+00 3.52e+00 2.10e+01 4.87e+01 0.00e+00

Worst 3.98e+00 4.49e+01 7.00e+02 7.91e+01 5.42e-02

Mean 4.01e-01 2.07e+01 2.03e+02 6.94e+01 1.95e-02

Std 1.18e+01 8.79e+00 3.11e+02 8.97e+00 1.30e-02

 F11 F12 F13 F14 F15

Best 7.31e+02 9.24e+02 1.42e+03 8.38e+03 6.46e+03

Worst 9.69e+02 9.87e+02 5.87e+03 9.39e+03 8.87e+03

Mean 8.97e+02 9.56e+02 2.75e+03 8.92e+03 8.09e+03

Std 4.87e+01 1.44e+01 1.00e+03 2.52e+02 4.88e+02

 F16 F17 F18 F19 F20

Best 1.70e-02 2.20e+03 2.48e+03 1.36e+00 2.35e+01

Worst 1.62e-01 2.76e+03 2.69e+03 4.84e+00 2.50e+01

Mean 5.39e-02 2.52e+03 2.52e+03 2.75e+00 2.49e+01

Std 2.53e-02 1.25e+02 2.03e+02 8.42e-02 2.16e-01

Figures 28-47 show, for benchmark functions F1-F20, the best fitness achieved as CMA-

ES progresses through the generations. These graphs can be represented as the fitness versus

generation plots. From the plots, we can observe that the fitness for population gets better and

better as the generations’ progress, which exhibits the optimization property of the CMA-ES

54

algorithm. For some functions the fitness improvement is very marginal based on the function, for

such functions the fitness is plotted on a linear scale instead of logarithmic scale to show changes.

Similar graphs were captured for 30 and 50 Dimensions for all benchmark functions and

exhibit similar results. Due to space constraints, these graphs are not listed in this document.

The performance of the CMA-ES algorithm is reported in Table 2, 3 and 4 on 10D, 30D

and 50D benchmark functions, respectively. The values represented are the Best, Worst, Mean and

standard deviations fitness values achieved before the exit criteria is reached over a series of 50

runs. Any value that is less than 1.0 e-08 is represented as 0.0 e +00.

A glance at the tables and graphs reveal that, optimal values are achieved within very few

number of function evaluations (generations) varying from a minimum of 200 to a maximum of

1400 generations. This provides us proof that CMA-ES is indeed a major step forward in the field

of optimization. The performance of the CMA-ES marginally decreased as the dimensionality of

the search space increases. From the fact that the search space increases exponentially with the

increase in dimensions (also known as curse of dimensionality [11]) continuous improvements to

the optimization algorithms are needed to deal with these problem where highest level of

optimization is desired.

55

6. CONCLUSION AND FUTURE WORK

As the requirement of real world optimization problems increase so does the demand for

highly efficient and robust optimization algorithms. This research work evaluated the validity and

performance of one such algorithm, Covariance Matrix Adaption Evolution Strategy Algorithm

(CMA-ES) inspired by the biological evolution process, implemented using the Eclipse

environment and Java 1.7 Version, on the first 20 benchmark functions specified in IEEE CEC’

2013 Test Suite.

The performance of the algorithm is evaluated by finding the best, worst, mean and

standard deviations of fitness values achieved from the results of 50 runs for every objective

function for 10D, 30D and 50D dimensions. The objective function fitness values over generations

are tracked and plotted for all 20 Benchmark Functions with 10 dimensions. As expected, the

results confirm that the algorithm efficiently solves the optimization problems in a lesser number

of generations.

The algorithm has achieved best possible solution, however, there is still a scope of

improvement. There are a number of enhancement approaches that have been worked on and still

there is scope for improvement such as the Modified Covariance Matrix Adaption [10]. This can

be achieved by varying the control parameters, Selection and Recombination approaches for

generating the offspring for next generations. In the future, we plan to work on improving this

process and validate if better results can be achieved with the update to the Covariance Matrix

Adaption Evolution Strategies.

56

7. REFERENCES

[1] G. W. Greenwood, Finding Solutions to NP Problems, Published in proceedings

CEC 2001, 815-822, 2001.

[2] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive introduction.

Natural Computing 1(1), 3–52, 2002.

[3] N. Hansen,A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution

strategies: The covariance matrix adaptation. In Proceedings of the 1996 IEEE Conference

on Evolutionary Computation (ICEC ’96), pages 312–317, 1996.

[4] C. Igel, , T. Suttorp, N. Hansen: A computational efficient covariance matrix update and a

(1+1)-CMA for evolution strategies. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2006), ACM Press 453–460, 2006.

[5] N. Hansen and A. Ostermeier. Convergence properties of evolution strategies with the

derandomized covariance matrix adaptation: The (μ/μI, λ)-ES. In EUFIT'97, 5th

Europ.Congr.on Intelligent Techniques and Soft Computing, Proceedings, pp. 650-654,

1997.

[6] N. Hansen, The CMA Evolution Strategy: A Tutorial Nikolaus Hansen 2011.

[7] N. Hansen, The CMA Evolution Strategy [Online] https://www.lri.fr/~hansen/

cmaesintro.html .

[8] N. Hansen, SD. Muller, P. Koumoutsakos. Reducing the time complexity of the de-

randomized evolution strategy with covariance matrix adaptation (CMA-ES).

Evolutionary Computation, 11(1):1–18, 2003.

57

[9] J. J. Liang, B.-Y. Qu, P. N. Suganthan, and A. G. Hern´andez-D´ıaz, “Problem definitions

and evaluation criteria for the CEC 2013 special session on real-parameter optimization,”

Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and

Nanyang. Technological University, Singapore, Technical Report 2012, 2013.

[10] R. Chocat, L. Brevault Modified Covariance Matrix Adaptation – Evolution Strategy

algorithm for constrained optimization under uncertainty, application to rocket design.

IFMA, EA3867, Laboratoires de Mécanique et Ingénieries, Clermont Université, CP

104488, 63000 Clermont-Ferrand, France, 2015.

[11] R. E. Bellman, Dynamic Programming, ser. Dover Books on Mathematics. Princeton, NJ,

USA: Princeton University Press / Mineola, NY, USA: Dover Publications, 1957/2003.

[12] R. Burger, The Mathematical Theory of Selection, Recombination, and Mutation. John

Wiley & Sons, Chichester 2000.

