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ABSTRACT 

Over recent years, Evolutionary Algorithms have emerged as a practical approach to solve 

hard optimization problems in the fields of Science and Technology. The inherent advantage of 

EA over other types of numerical optimization methods lies in the fact that they require very little 

or no prior knowledge regarding differentiability or continuity of the objective function. The 

inspiration to learn evolutionary processes and emulate them on computer comes from varied 

directions, the most pertinent of which is the field of optimization. In most applications of EAs, 

computational complexity is a prohibiting factor. This computational complexity is due to number 

of fitness evaluations. This paper presents one such Evolutionary Algorithm known as Covariance 

Matrix Adaption Evolution Strategies (CMA ES) developed by Nikolaus Hansen, We 

implemented and evaluated its performance on benchmark problems aiming for least number of 

fitness evaluations and prove that the CMA-ES algorithm is efficient in solving optimization 

problems. 
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1. INTRODUCTION 

The constant strive for designing highly productive systems that respond in a quick and 

efficient way has made optimization a core concern for engineers. Optimization is a series of 

actions performed through continuous learning for achieving the best possible result for a problem 

under given circumstances. Thus, an optimization algorithm tries to find the best possible solution 

from all feasible solutions for a problem through a predefined approach. Unfortunately, many real-

world problems are very challenging and require huge computational resources to solve, brute 

force search methods are useless in these cases [1]. They simply take too much time to find the 

optimal solution. Moreover, in these cases it is always appreciated to find a reasonably good 

enough solution (sub-optimal) saving a lot of computational time rather than trying to find the 

perfect solution. 

There is no single method available for solving all optimization problems efficiently. There 

are a number of ways developed for solving the optimization problems, which include 

Mathematical programming methods, stochastic processes, and Statistical methods. 

Stochastic algorithms are a family of algorithms, which try to optimize the fitness function 

through random search techniques. Evolutionary Algorithms are stochastic search methods that 

inherit the nature of natural biological evolution that allow a population of organisms to adapt to 

its environment for survival. The history of this field suggests there are different variants of 

Evolutionary Algorithms mainly Genetic Algorithms and Evolutionary Strategies. Evolution 

strategies were proposed in the 1960’s by Rechenberg and further developed by Schwefel to 

optimize candidate solutions composed of real valued parameters [2]. The common underlying 

idea behind all these techniques is the ‘Survival of the Fittest’ to produce better and better 

approximations to an optimal solution. Given a function to be maximized/minimized, we initialize 
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a population of random solution candidates (“individual”) and explore and improve the candidates 

fitness by a repeated process of selecting the candidates that seed the next generation by 

recombination and mutation until a solution of sufficient fitness is found [1]. 

Evolutionary Algorithms can be implemented with just one of Crossover or Mutation 

operator. However, the research on nature-inspired computation learning suggest the use of both 

Crossover and Mutation operators for a faster convergence to a global optimum [12]. 

In an attempt to generate better individuals, two or more individuals with different but 

desired features are combined to produce a new generation by a process called Crossover 

anticipating individuals with better fitness than the individual’s in the current generation. 

Crossover of the population is achieved using 1) Discrete Recombination, where the offspring 

solutions inherit its components from one or other of two randomly selected parents. 2) 

Intermediate Recombination, where the offspring solutions inherit its components, which are 

weighted average of components, from two or more selected parents. 

Mutation applied to Evolutionary computation, is achieved my adding normally distributed 

random values to each component of an individual at a generation. Evolution Strategies algorithms 

monitor and update the mutation strength dynamically at each generation (typically standard 

deviation of normal distribution) as the individuals approach closer to the global optima, thus, 

mutation is a primary operator in evolutionary strategies. 

Once the offspring is generated by the process of Crossover and Mutation, the Selection 

of candidate to parent next generation is based on fitness ranking of individuals in offspring and 

one of the selection strategy. (µ + λ) - ES [5], where the mutants and parents compete with each 

other, (µ , λ) – ES [5], where just mutants compete with each other to parent the next generation. 
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The parent and mutant population can be as low as 1, which results in (1 + λ)-ES or (1, λ)-ES, 

(1,1)-ES and (1+1)-ES [3][4]. 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) developed by Nikolaus 

Hansen is an evolutionary algorithm for difficult non-linear non-convex black-box optimization 

problems in continuous domains [3]. The CMA-ES is considered as state-of-the-art in evolutionary 

computation and has been adopted as one of the standard tools for continuous optimization in many 

(probably hundreds of) research labs and industrial environments around the world that is proved 

to converge at optimal solution in very few generations, thus, decreasing the time complexity [8]. 

Some of the key features of CMA-ES are: 

- CMA-ES is feasible on non-separable and/or badly conditioned problems since it is a second 

order approach estimating a positive definite matrix within an iterative procedure [7]. 

- In contrast to quasi-Newton methods, the CMA-ES does not use or approximate gradients and 

does not even presume or require their existence. This makes the method feasible on non-

smooth and even non-continuous problems, as well as on multimodal and/or noisy problems 

[7]. 

- It turns out to be a particularly reliable and highly competitive evolutionary algorithm for local 

optimization and, surprising at first sight, also for global optimization. 

- The CMA-ES does not require tedious parameter tuning for its application. In fact, the choice 

of strategy internal parameters is completely automated. 

This paper is composed of six chapters, which are as follows: Chapter 1 introduces the 

basic ES and CMA-ES algorithms. Chapter 2 describes CMA-ES in detail. Chapter 3 presents the 

implementation details of the algorithm with a snapshot of pseudo code and Java implementation. 

Chapter 4 presents the IEEE CEC’ 2013 Test Suite and lists its first 20 benchmark functions for 
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the Optimization Algorithms. The experimental setup to test the CMA-ES performance on the test 

suite follows later in the chapter. Chapter 5 presents and discusses the results obtained. The results 

for each dimensionality are presented with data statistics that include the Best, Worst, Mean and 

Standard- Deviation values obtained for every benchmark function evaluated. Chapter 6 discusses 

the results obtained with other optimization algorithms. 

  



 

5 
 

2. COVERIANCE MATRIX ADAPTION - EVOLUTION STRATEGIES     

(CMA-ES) 

The CMA-ES algorithm was first proposed by Nikolaus Hansen in 2001. It is a bio-inspired 

optimization algorithm. CMA-ES relies on a distribution model of a candidate population 

(Parameterized Multivariate Normal Distribution) in order to explore the design space [1]. It is 

based on selection and adaption strategy of the sample population while preserving and modifying 

the strategy parameters, the convergence property of previous generations (Covariance Matrix), 

and utilizing the knowledge in generating the next generation population. In each generation the 

parent for the next generation is calculated with a weighted average of λ selected candidates from 

µ offsprings generated at that generation using a (λ, µ)-selection. The next generation population 

is generated by sampling a multi-variate normal distribution of the Covariance Matrix with the 

Variance at the generation g over the mean of the generation 𝑀   𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔)) [3]. The 

step size 𝜎(𝑔) determines the overall variance of the mutation at generation g. The variable property 

of step size 𝜎 at each generation plays a vital role in controlling the premature convergence and 

close convergence to global optima. 

The CMA-ES works through a cycle of stages represented in Figure 1. 
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Figure 1. Evolutionary strategies life cycle. 

 

CMA-ES Search for the Global optima in D dimensions begins with generation of µ D-

dimensional real valued members by sampling a multivariate Normal distribution around the Mean 

M at any generation. In general, the equation can be written as: 

                          𝑥𝑘
(𝑔+1)

   ∼    𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔))   for k = 1,…,λ                                                (1) 

Where  𝑥𝑘
(𝑔+1)

 represent the 𝑘𝑡ℎ Sample member generated at generation (g+1). Each member of 

the population can be broadly termed as a vector and can be represented as: 

                             𝑋𝑖 = [𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝐷]        For i = 1,2,3,…, µ                                               (2) 

Thus from Equation (1), in order to pass to the next generation (g+2), the parameters 

𝑀(𝑔+1) , 𝐶(𝑔+1), 𝜎(𝑔+1) needs to be calculated. Each of these parameters represents a step in the 

algorithm and are discussed in next three sections. 
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2.1. Selection and Recombination 

The crossover nature of the Evolutionary process is achieved by calculating the Mean 

Vector for every generation and then mutating the mean vector to generate the offspring. The mean 

vector M(g+1) for generation g is the weighted average of the µ selected best individuals in the 

order of the fitness ranking on the objective function from sample space 𝑥𝑘
(𝑔+1)

 for k = 0,1,2,…, 

µ. The weighted vector can be an equal vector or linear vector. With equal weighted vector, all the 

selected samples will have equal portion in the resultant mean (𝑊𝑖 = 1/ λ ). With the Linear Weight 

vector configuration𝑊𝑖, the fittest point has higher portion of genes than the point with lower 

fitness. 

   𝑊𝑖 = log(µ + 1) − log (𝑖 + 1), ∑𝑤𝑖 = 1 , 𝑊1 > 𝑊2 > 𝑊3 > ⋯𝑊λ> 0 for i = 1,2… λ.         (3) 

2.2. Covariance Matrix Adaption 

The Covariance Matrix Adaption determines the varying mutation for the child population 

in the evolutionary process. The offspring at a generation are sampled according to multivariate 

normal distribution in 𝑅𝑛, while Recombination described in Section 2.1 amounts to selecting a 

new mean at generation g+1, the mutation amounts to the sampling of the normal distribution of 

Covariance Matrix multiplied by Step Size around Mean. The dependencies between the variables 

in the distribution are represented by the Covariance Matrix. The Covariance Matrix Adaption is 

a method to update the covariance Matrix of this distribution, which amounts to learning a second 

order model of the underlying objective function. 

The mean of the distribution is updated in such a way that the likelihood of the previously 

successful candidate solution is maximized, and the covariance Matrix is updated in such a way 

that the likelihood of previously successful search steps is increased. 
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𝑪(𝒈+𝟏) = (𝟏 − 𝒄𝟏 − 𝒄µ)𝑪
𝒈 + 𝒄1 𝑷𝒄

(𝒈+𝟏)
𝑷𝒄
(𝒈+𝟏)𝑻 

+ 𝒄µ 

 

                                                                             × ∑ 𝒘𝒊
µ 
𝒊=𝟏 (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
) (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)
𝑻

            (4) 

 

2.3. Step Size Control 

The Covariance matrix adaption above does not control the overall scale of the distribution, 

i.e. Step-Size. The covariance matrix increases the scale in only one direction for each selected 

step, and can decrease the scale only by fading out old information via the factor 1- C1 - Cµ less 

information. To control the step-size 𝜎(𝑔) we exploit the evolution path and this can be applied 

independent of the covariance matrix adaption and is denoted as Cumulative step length adaption 

(CSA) as below. 

- Whenever the evolution path is short, single steps cancel each other. In this case the step 

size should be decreased. 

- Whenever the evolution path is long and single steps are pointing in the same direction, 

the step size should be increased to reduce the number of steps. 

To decide whether the evolution path is long or short, the path length is compared with expected 

length under random selection. If the selection path biases the evolution path to be longer than 

expected, 𝜎 is increased, and if the selection path biases the evolution path to be shorter than 

expected, 𝜎 in decreased. 
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3. IMPLEMENTATION 

3.1. Pseudo Code 

Presented below is the pseudo code followed by detailed explanation of the major steps in 

the algorithm [6] [7]. 

 

Step 1: Initialize the CMA-ES Parameters 

             D            no. of dimensions 

             λ             Offspring population size (4.0 + 3.0 Log(D)) 

             µ             Parent population for next generation (floor(λ/2) ) 

             𝜎𝑆𝑡𝑎𝑟𝑡      Initial standard deviation. 

             c𝑐𝑜𝑣         Covariance learning rate 

 

Step 2: While stopping criterion is not met do 

Step 3:          Update the Covariance Matrix 𝐶(𝑔+1) (see Covariance Matrix Adaption) 

                         

𝑪(𝒈+𝟏)    (𝟏 − 𝒄𝒄𝒐𝒗)𝑪
𝒈 + 

𝒄𝒄𝒐𝒗
µ𝒄𝒐𝒗 

 𝑷𝒄
(𝒈+𝟏)

𝑷𝒄
(𝒈+𝟏)𝑻 

+ 𝒄𝒄𝒐𝒗 (𝟏 − 
𝟏

µ𝒄𝒐𝒗
) 

 

× ∑𝒘𝒊

× 

𝒊=𝟏

(
𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)(

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)

𝑻

    

 

Step 4:         Update the Step Size 𝜎𝑔 (see Step Size adaption) 

                   

𝜎𝑔+1   𝜎𝑔 × exp(
𝑐𝜎
𝑑𝜎
(

||𝑃𝜎||

𝐸 𝑁(0, 𝐼) 
 − 1)) 

Step 5:          Generate Sample Population for generation g+1 

                              𝑥𝑘
(𝑔+1)

   ∼    𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔))   for k = 1,…,λ 

Step 6:          Update the mean for generation g+1 

                                  𝑚(𝑔+1)
 ∑ 𝑤𝑖𝑥𝑖:λ

(𝑔+1)
 

µ
𝑖=1  

Step 7:           Update best ever solution 

Step 8:     End While 

Figure 2. CMA-ES Pseudo Code 
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The CMA-ES algorithm consists of 3 major steps as described above. For any algorithm, 

the stopping criteria should be an integral part and for CMA-ES it can be specified in the following 

ways: 

1) Running the Algorithm for a pre-defined number of generations. 

2) Stopping any further execution when the algorithm does not make any growth in approaching 

the solution. 

3) Stopping when the Algorithm reaches a pre-defined objective function value. 

 

3.1.1. Generate Sample Population 

The population of a new search point at generation (g+1) is generated by sampling a 

multi-variate of the normal distribution with mean 𝑀(𝑔) using Equation (1). 

                  𝑥𝑘
(𝑔+1)

   ∼    𝑁(𝑀(𝑔), (𝜎(𝑔))2 𝐶(𝑔))   for k = 1,…,λ       

 

3.1.2. Selection and Recombination 

The new mean of the search distribution for Generation g+1 is the weighted average of best 

µ selected children from λ sample points generated by Equation (1). 

                                   𝑚(𝑔+1) = ∑ 𝑤𝑖𝑥𝑖:λ
(𝑔+1)

 
µ
𝑖=1                                                                           (5) 

 

                       ∑ 𝑤𝑖 = 1        𝑤𝑖 > 0   𝑓𝑜𝑟     𝑤𝑖 =  1,… , µ     
µ
𝑖=1                                    (6) 

 

The individual weights for the weight vector are defined based on µ𝑒𝑓𝑓 such that 1 < µ𝑒𝑓𝑓 

< µ. In our case we choose µ𝑒𝑓𝑓 ≈ λ/4, which is a reasonable setting for 𝑤𝑖. 

                                                   µ𝑒𝑓𝑓 = (∑ 𝑤𝑖
2µ

𝑖=1 )
−1

                                                                  (7)                                       
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3.1.3. Covariance Matrix Adaption 

The goal of this step is to calculate the Covariance matrix at the generation g. Below are 

some of the parameters that are used in the process of calculating the Covariance matrix. The 

current generation Covariance matrix depends on the learning curve based on the previous 

Covariance matrix. 

 

𝑪(𝒈+𝟏) = (𝟏 − 𝒄𝒄𝒐𝒗)𝑪
𝒈 + 

𝒄𝒄𝒐𝒗
µ𝒄𝒐𝒗 

 𝑷𝒄
(𝒈+𝟏)

𝑷𝒄
(𝒈+𝟏)𝑻 

+ 𝒄𝒄𝒐𝒗 (𝟏 − 
𝟏

µ𝒄𝒐𝒗
) 

 

                                                                             × ∑ 𝒘𝒊
× 
𝒊=𝟏 (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
) (

𝑿𝟏:λ
(𝒈+𝟏)

−𝑴𝒈

𝜎(𝑔)
)
𝑻

               (8)           

 

Where  

      𝒄𝒄𝒐𝒗 is a strategy parameter equal to    
𝑚𝑖𝑛(µ𝑐𝑜𝑣 , µ𝑒𝑓𝑓 , 𝑛

2 )
𝑛2
⁄   

     µ𝒄𝒐𝒗 is > 0 and  µ𝒄𝒐𝒗  ~ µ𝑒𝑓𝑓 in most cases. In our case µ𝑒𝑓𝑓 = 3.4 

      𝑷𝒄
(𝒈+𝟏)

 is the evolution path. As a sequence of steps the strategy takes over a number of 

generations. The evolution path can be derived as: 

 

            𝑃𝐶
(𝑔+1)

=  (1 − 𝑐𝑐)𝑃𝐶
(𝑔)
+ √𝑐𝑐(2 − 𝑐𝑐)µ𝑒𝑓𝑓   

𝑀(𝑔+1)−𝑀𝑔

𝜎(𝑔)
                                   (9) 
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3.1.4. Variance Adaption 

Along with the Covariance Matrix adaption, the Variance/Step Size is updated every 

generation. It is updated using the cumulative step size adaption (CSA) and can be defined as: 

 

                           𝜎𝑔+1 = 𝜎𝑔 × exp(
𝑐𝜎

𝑑𝜎
(

||𝑃𝜎||

𝐸 𝑁(0,𝐼) 
 − 1))                                                            (10) 

 

And 𝑃𝜎 is derived as: 

  

   

                          𝑃𝜎  =  (1 − 𝑐𝜎)𝑃𝜎 + √1 − (1 − 𝑐𝜎)2√µ𝑤𝐶𝐾
−1/2  

𝑀𝐾+1− 𝑀𝐾+1

𝜎𝑘
                      (11) 

 

   where  µ𝑤 = (∑ 𝑤𝑖
2µ

𝑖=1 )
−1

 

 

3.2. Source Code Overview 

The CMA-ES Algorithm has been implemented in the JAVA Programming language. The 

package consists of 7 core classes and a properties file. The kernel is implemented in CMAES.java. 

The user can specify the number of dimensions, functions to be executed, number of runs, exit 

criteria and CMA-ES configuration parameters in the Properties file 

CMAEvolutionStrategy.properties. Any method that represents the benchmark function can be 

added to the class FunctionCollector.java. The kernel reads the arguments from the properties file, 

executes the Algorithm and reports the results. Below are the primary classes and their purpose.  
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Figure 3. Source Code Overview 
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Figure 3. Source Code Overview (continued) 

 

3.2.1. CMAES.java 

This class contains the main method that reads the properties file for properties such as 

Number of Runs, Benchmark Function list, Dimensions to be executed, and then calls the 

CMAEvolutionStrategies class, Writing the stats file and drawing the graphs. 
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3.2.2. CMAEvolutionStrategy.java 

This is the core of the application with below methods. 

 

Figure 4. CMA-ES Core logic 

 

SamplePopulation():  This method generates sample population from Mean Vector at 

generation G, Standard Deviation at generation G and Covariance matrix at Generation G. 

 

3.2.3. UpdateDistribution 

This method generates the Mean Vector Xmean to be used in generation G+1 and updates 

the covariance matrix C for generation G+1. 

 

Figure 5. Mean Update 
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Figure 6. Coveriance Matrix Update 

  

3.2.4. CMAParameters.java 

This class is used to store and retrieve all the CMAES parameters read from the 

CMAEvolutionStrategies.properties file throughout the execution. Major methods include: 

setWeights(): setting the weight vector based on the recombination type. 

 

Figure 7. Weight Vector 
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4. EXPERIMENTAL SETUP 

4.1. IEEE CEC’ 2013 Test Suite 

Optimization problems are real world problems that we come across in the field of 

Mathematics, Science, Engineering, Business and Economics. Various factors contribute to the 

problems faced in searching the optimal solution. Firstly, with the increase in the number of 

variables associated with a problem the search space grows exponentially. Secondly, the properties 

of the problem tend to change as the dimensionality of the problem increases. Thirdly, computation 

of such large-scale problems is expensive. The IEEE CEC’ 2013 [9] Test Suite is a set of 

benchmark functions that try to emulate the properties of real world large scale optimization 

problems to evaluate evolutionary algorithms. IEEE CEC’ Test suites have constantly evolved 

over time with the advances in the field of Large Scale Global Optimization commonly known as 

LSGO. In essence, it provides a framework on which to test and report the performance of EA. 

All the problems listed in the Test Suite are minimization problems. For the sake of 

overview, the functions are described briefly. These functions are described in detail in [9]. The 

following terminology that is frequently used in the test suite is as follows:  

D is the dimensionality of the problem. 

O is the shifted global minimum of the problem. 

𝑴𝒏 is the orthogonally rotated matrix obtained from Gram-Schmidt ortho-normalization process.  

𝚲𝜶 = a diagonal matrix in D dimensions with i𝑡ℎ diagonal value as 𝛼
𝑖−1

2(𝐷−1) for i =1,2…D 

𝑇𝑎𝑠𝑦
𝛽
: 𝑖𝑓 𝒙𝒊 > 𝟎, 𝒙𝒊 = 𝒙𝒊

𝟏+𝜷
𝒊−𝟏

𝑫−𝟏
√𝒙𝒊
   

𝑇𝑜𝑠𝑧: 𝑓𝑜𝑟  𝒙𝒊 = 𝑠𝑖𝑔𝑛(𝒙𝒊)exp (𝑥̈ + 0.049(sin(𝒄𝟏𝑥𝑖̈) + sin(𝒄𝟏𝑥𝑖̈))), 𝑓𝑜𝑟 𝑖 = 1 𝑎𝑛𝑑 𝐷 
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𝑤ℎ𝑒𝑟𝑒              𝑥𝑖̈ =  {
log(𝑚𝑜𝑑(𝒙𝒊))  𝑖𝑓  𝒙𝒊 ≠ 𝟎

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

𝑠𝑖𝑔𝑛(𝒙𝒊) = {
−1        𝑖𝑓  𝒙𝒊 < 0 
0      𝑖𝑓   𝒙𝒊 = 𝟎
1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  𝒄𝟏          = {
10   𝑖𝑓  𝒙𝒊 < 0
5.5      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  𝒄𝟐          = {
7.9   𝑖𝑓  𝒙𝒊 < 0
3.1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Given these definitions, the functions are briefly described in the next section. 
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Table 1. IEEE CEC’ 2013 Function definitions and descriptions 

 Function 

No. 

Function Name fi*=fi(x*)(shifted 

global minimum) 

Unimodal Functions 

1 Sphere Function -1400 

2 Rotated High Conditioned 

Elliptic Function 

-1300 

3 Rotated Bent Cigar Function -1200 

4 Rotated Discus Function -1100 

5 Different Powers Function -1000 

Multimodal 

Functions 

6 Rotated Rosenbrock’s Function -900 

7 Rotated Schaffers F7 Function -800 

8 Rotated Ackley’s Function -700 

9 Rotated Weierstrass Function -600 

10 Rotated Griewank’s Function -500 

11 Rastrigin’s Function -400 

12 Rotated Rastrigin’s Function -300 

13 Non-Continuous Rotated 

Rastrigin’s Function 

-200 

14 Schwefel's Function -100 

15 Rotated Schwefel's Function 100 

16 Rotated Katsuura Function 200 

17 Lunacek Bi_Rastrigin Function 300 

18 Rotated Lunacek Bi_Rastrigin 

Function 

400 

19 Expanded Griewank’s plus 

Rosenbrock’s Function 

500 

20 Expanded Schaffer’s F6 Function 600 
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4.1.1. Sphere Function 

𝑓1(𝑥) =  ∑𝑧𝑖
2

𝐷

𝑖=1

+ 𝑓1
∗, 𝑧 = 𝑥 − 𝑜 

 

                      Figure 8. F1 

Properties: 

1 Unimodal 

2 Separable 
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4.1.2. Rotated High Conditioned Elliptic Function 

𝑓2(𝑥) =  ∑(106)
𝑖−1
𝐷−1 𝑧𝑖

2

𝐷

𝑖=1

+ 𝑓2
∗, 𝑧 = 𝑇𝑜𝑠𝑧(𝑀1(𝑥 − 𝑜)) 

 

                       Figure 9. F2 

 

Properties: 

1 Unimodal 

2 Non-Separable  
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4.1.3. Rotated Bent Cigar Function 

              𝑓3(𝑥) = 𝑧1
2 + 106  ∑ 𝑧𝑖

2𝐷
𝑖=2 + 𝑓3

∗, 𝑧 = 𝑀2(𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜)) 

 

 

                                                                      Figure 10. F4 

Properties: 

1 Unimodal 

2 Non-Separable 

3 Smooth but narrow ridge 
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4.1.4. Rotated Discus Function 

     𝑓3(𝑥) = 106𝑧1
2 + ∑ 𝑧𝑖

2𝐷
𝑖=2 + 𝑓4

∗, 𝑧 = 𝑇𝑜𝑠𝑧(𝑀1(𝑥 − 𝑜)) 

 

 

                                   Figure 11. F4 

 

 Properties: 

1 Unimodal 

2 Separable 

3 Asymmetrical  

4 Smooth Local Irregularities 

  



 

24 
 

4.1.5. Different Powers Function 

             𝑓5(𝑥) = √∑ |𝑧𝑖|
2+4

𝑖−1

𝐷−1𝐷
𝑖=1 + 𝑓5

∗, 𝑧 = (𝑥 − 𝑜) 

 

 

                      Figure 12. F5 

 

Properties: 

1 Unimodal 

2 Separable 
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4.1.6. Rotated Rosenbrock’s Function 

           𝑓5(𝑥) = ∑ (100(𝑧𝑖
2 − 𝑧𝑖+1

2 )2) + (𝑧𝑖 − 1)
2𝐷−1

𝑖=1 + 𝑓6
∗, 𝑧 = 𝑀1

2.048(𝑥−𝑜)

100
+ 1 

 

 

                                  Figure 13. F6 

 

Properties: 

1 Multimodal 

2 Non-Separable 

3 Having a narrow valley from local optimum to global optimum 
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4.1.7. Rotated Schaffers F7 Function 

           𝑓7(𝑥) = (
1

𝐷−1
∑ (√𝑧𝑖 +√𝑧𝑖𝑠𝑖𝑛

2(50𝑧𝑖
0.2)))2 + 𝑓7

∗ 𝐷−1
𝑖=1  

𝑤ℎ𝑒𝑟𝑒 𝑧𝑖 = √𝑦𝑖
2 + 𝑦𝑖+1

2 𝑓𝑜𝑟 𝑖 = 1,… , 𝐷 

𝑎𝑛𝑑    𝑦 = 𝛬10𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜)) 

 

                          Figure 14. F7 

 

Properties: 

1 Multimodal 

2 Non-Separable 

3 Asymmetrical 
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4.1.8. Rotated Ackley’s Function 

𝑓8(𝑥) = −20 exp

(

 −0.2√
1

𝐷
∑𝑧𝑖

2

𝐷

𝑖=1

 

)

 − exp (
1

𝐷
 ∑cos (2𝜋𝑧𝑖))

𝐷

𝑖=1

+ 20 + 𝑒 + 𝑓8
∗  

𝑤ℎ𝑒𝑟𝑒 𝑧 = Λ10𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜)) 

 

 

 

                                Figure 15. F8 

 

Properties: 

1 Multimodal 

2 Non-separable 
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4.1.9. Asymmetrical Rotated Weierstrass Function 

 𝑓9(𝑥) =  ∑( ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]

𝑘𝑚𝑎𝑥

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘. 0.5))

𝑘𝑚𝑎𝑥

𝑘=0

] 

                           +𝑓9
∗  

𝑤ℎ𝑒𝑟𝑒 𝑎 = 0.5, 𝑏 = 3, 𝑘𝑚𝑎𝑥 = 20 

𝑎𝑛𝑑 𝑧 = Λ10𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1

0.5

100
(𝑥 − 𝑜)) 

 

 

 

 

                              Figure 16. F9 

 

 

Properties: 

1 Multimodal 

2 Non-Separable 

3 Asymmetrical 
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4.1.10. Rotated Griewank’s Function 

  𝒇𝟏𝟎(𝒙) = ∑
𝒛𝒊
𝟐

𝟒𝟎𝟎𝟎

𝑫
𝒊=𝟏  –∏  𝑫

𝒊=𝟏 𝐜𝐨𝐬 (
𝒛𝒊

√𝒊
) + 𝟏 + 𝒇𝟏𝟎

∗    

   𝒘𝒉𝒆𝒓𝒆 𝒛 = 𝚲𝟏𝟎𝟎𝑴𝟏
𝟔𝟎𝟎(𝒙−𝒐)

𝟏𝟎𝟎
 

 

 

 

                               Figure 17. F10 

 

 

Properties: 

1 Multimodal 

2 Non-separable 
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4.1.11. Rastrigin’s Function 

  𝒇𝟏𝟏(𝒙) = ∑ (𝒛𝒊
𝟐 − 𝟏𝟎 𝐜𝐨𝐬(𝟐𝝅𝒛𝒊) + 𝟏𝟎)

𝑫
𝒊=𝟏 + 𝒇𝟏𝟏

∗  

  𝒛 = 𝚲𝟏𝟎𝑻𝒂𝒔𝒚
𝟎.𝟐 (𝑻𝒐𝒔𝒛 (

𝟓.𝟏𝟐(𝒙−𝒐)

𝟏𝟎𝟎
) ) 

 

 

 

 

                      Figure 18. F11 

 

Properties: 

1 Multimodal 

2 Non-separable 

3 Huge number of local optima 
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4.1.12. Rotated Rastrigin’s Function 

𝑓12(𝑥) =∑ (𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1
+ 𝑓12

∗  

𝑧 = 𝑀1Λ
10𝑀2𝑇𝑎𝑠𝑦

0.2 (𝑇𝑜𝑠𝑧 (𝑀1
5.12(𝑥 − 𝑜)

100
)) 

 

 

 

               Figure 19. F12 

 

Properties: 

1 Multimodal 

2 Non-separable 

3 Asymmetrical 

4 Huge number of local optima 
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4.1.13. Non-Continuous Rotated Rastrigin’s Function 

𝑓13(𝑥) =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10) + 𝑓13

∗

𝐷

𝑖=1

 

𝑥̈ = 𝑀𝑖

5.12(𝑥 − 𝑜)

100
 

𝑦𝑖 = {

𝑥𝑖̈                        𝑖𝑓 |𝑥𝑖̈| ≤ 0.5

𝑟𝑜𝑢𝑛𝑑(2𝑥̈𝑖)

2
   𝑖𝑓 |𝑥𝑖̈| > 0.5 

𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐷 

𝑧 = 𝑀1Λ
10𝑀2𝑇𝑎𝑠𝑦

0.2 (𝑇𝑜𝑠𝑧(𝑦)) 

 

 

 

                     Figure 20. F13 

 

 

Properties: 

1 Multimodal 

2 Asymmetrical 

3 Huge number of local optima 

4 Non-continuous  
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4.1.14. Schwefel's Function 

𝑓14 = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

+ 𝑓14
∗  

𝑧 = Λ10 (
1000(𝑥 − 𝑜_

100
) + 4.2096874227503𝑒 + 002  

𝑔(𝑧𝑖)

=

{
 
 

 
 𝑧𝑖 sin (|𝑧𝑖|

1
2)                                                                                                       𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖, 500))sin ( √|500 − 𝑚𝑜𝑑(𝑧𝑖, 500 )|) −
𝑧𝑖 − 500)

2

10000𝐷
𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(𝑧𝑖, 500) − 500) sin ( √|𝑚𝑜𝑑(𝑧𝑖, 500 ) − 500|) −
𝑧𝑖 + 500)

2

10000𝐷
if 𝑧𝑖 < −500 

 

 

 

                  Figure 21. F14 

 

 

Properties: 

1 Multimodal 

2 Non-separable 

3 Huge number of local optima 
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4.1.15. Rotated Schwefel's Function  

𝑓15 = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

+ 𝑓15
∗  

𝑧 = Λ10𝑀1 (
1000(𝑥 − 𝑜_

100
) + 4.2096874227503𝑒 + 002  

𝑔(𝑧𝑖) =

{
 
 

 
 𝑧𝑖 sin (|𝑧𝑖|

1
2)                                                                                                       𝑖𝑓 |𝑧𝑖| ≤ 500

(500 −𝑚𝑜𝑑(𝑧𝑖, 500))sin ( √|500 −𝑚𝑜𝑑(𝑧𝑖 , 500 )|) −
(𝑧𝑖 − 500)

2

10000𝐷
𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(𝑧𝑖 , 500) − 500) sin ( √|𝑚𝑜𝑑(𝑧𝑖 , 500 ) − 500|) −
(𝑧𝑖 + 500)

2

10000𝐷
if 𝑧𝑖 < −500 

 

 

 

 

                     Figure 22. F15 

 

Properties: 

1 Multimodal 

2 Asymmetrical 

3 Non-separable 

  



 

35 
 

4.1.16. Rotated Katsuura Function 

𝑓16(𝑥) =
10

𝐷2
∏ 

𝐷

𝑖=1

(1 + 𝑖∑
2𝑗𝑧𝑖 − 𝑟𝑜𝑢𝑛𝑑(2

𝑗𝑧𝑖)

2𝑗
)
10
𝐷1.2

32

𝑗=1

− 
10

𝐷2
+ 𝑓16

∗  

𝑧 = 𝑀2Λ
100(𝑀1

5(𝑥 − 𝑜)

100
)) 

 

 

 

 

                                 Figure 23. F16 

                      

                         

Properties: 

1 Multimodal 

2 Non-separable 

3 Asymmetrical 
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4.1.17. Lunacek Bi_Rastrigin Function 

𝑓17(𝑥) = min (∑(𝑥𝑖̈ − 𝜇0)
2, 𝑑𝐷 + 𝑠∑(𝑥𝑖̈ − 𝜇1)

2

𝐷

𝑖=1

+ 10(𝐷 −∑cos (2𝜋𝑧𝑖))̈ +  𝑓17
∗

𝐷

𝑖=1

𝐷

𝑖=1

  

𝜇0 = 2.5, 𝜇1 = −√
𝜇0
2 − 𝑑

𝑠
, 𝑠 = 1 −

1

2 √𝐷 + 20 − 8.2
, 𝑑 = 1  

𝑦 =
10(𝑥 − 𝑜)

100
, 𝑥𝑖̈ = 2𝑠𝑖𝑔𝑛(𝑥𝑖

∗)𝑦𝑖 + 𝜇0, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐷 

𝑧 = Λ100(𝑥̈ − 𝜇0) 

 

 

                   Figure 4. F17 

 

Properties: 

1 Multimodal 

2 Asymmetrical 
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4.1.18. Rotated Lunacek Bi_Rastrigin Function 

𝑓18(𝑥) = min (∑(𝑥𝑖̈ − 𝜇0)
2, 𝑑𝐷 + 𝑠∑(𝑥𝑖̈ − 𝜇1)

2

𝐷

𝑖=1

+ 10(𝐷 −∑cos (2𝜋𝑧𝑖))̈ +  𝑓18
∗

𝐷

𝑖=1

𝐷

𝑖=1

  

𝜇0 = 2.5, 𝜇1 = −√
𝜇0
2 − 𝑑

𝑠
, 𝑠 = 1 −

1

2 √𝐷 + 20 − 8.2
, 𝑑 = 1 

𝑦 =
10(𝑥 − 𝑜)

100
, 𝑥𝑖̈ = 2𝑠𝑖𝑔𝑛(𝑦𝑖

∗)𝑦𝑖 + 𝜇0, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐷 

𝑧 = 𝑀2Λ
100(𝑀1(𝑥̈ − 𝜇0)) 

 

 

 

                    Figure 25. F18 

 

 

Properties:  

1 Multimodal 

2 Non-separable 

3 Asymmetrical 
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4.1.19. Expanded Griewank’s plus Rosenbrock’s Function 

𝐵𝑎𝑠𝑖𝑐 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:     𝑔1(𝑥) =∑
𝑥𝑖
2

4000
−∏cos (

𝑥𝑖

√𝑖

𝐷

𝑖=1

𝐷

𝑖=1

) + 1 

𝐵𝑎𝑖𝑠𝑐 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:     𝑔2(𝑥) = ∑ (100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2)𝐷−1

𝑖=1  

𝑓19(𝑥) = 𝑔1(𝑔2(𝑧1, 𝑧2)) + 𝑔1(𝑔2(𝑧2, 𝑧3)) + ⋯+ 𝑔1(𝑔2(𝑧𝐷−1, 𝑧𝐷)) +

                 𝑔1(𝑔2(𝑧𝐷 , 𝑧1)) + 𝑓19
∗   

 

 

                           Figure 26. F19 

 

Properties: 

1 Multimodal 

2 Asymmetrical 
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4.1.20. Expanded Scaffer’s F6 Function 

𝑆𝑐𝑎𝑓𝑓𝑒𝑟′𝑠 𝐹6 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔(𝑥, 𝑦) = 0.5 +
sin2(√𝑥2 + 𝑦2) − 0.5)

(1 + 0.001(𝑥2 + 𝑦2))
2  

𝑓20(𝑥) = 𝑔(𝑧1, 𝑧2) + 𝑔(𝑧2, 𝑧3) + ⋯+ 𝑔(𝑧𝐷−1, 𝑧𝐷) + 𝑔(𝑧𝐷 , 𝑧1) + 𝑓20
∗   

𝑧 = 𝑀2𝑇𝑎𝑠𝑦
0.5 (𝑀1(𝑥 − 𝑜)) 

 

 

 

                         Figure 27. F20 

 

Properties: 

1 Multimodal 

2 Non-separable 

3 Asymmetrical 
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4.2. Experimental Settings 

This paper evaluates the performance of the CMA-ES algorithm on the first 20 benchmark 

functions specified by the IEEE CEC’ 2013 Test Suite. The algorithm is run on 3 different 

dimensions for each function namely 10D, 30D and 50D. Every function evaluation is run 50 times 

and the best, worst, mean, standard deviation values are recorded for each evaluation. 

Since it is highly cumbersome to report all the evaluation sets and evaluation matrices 

pertaining to every function, the best parameter setting results are reported for each function at a 

given dimensionality. 

The test suite suggests two stopping criterion for stopping the algorithm: 1) number of 

evaluations reaches 104 times the problem dimensionality. This stopping criterion is significant as 

real world optimization is computationally intensive, thus, the predefined number of function 

evaluations serve a cutoff parameter to usually constrained computational budget. 2) The 

difference between the best value achieved so far and the global minimum (this difference is 

commonly known as Function Error Value, FEV) is smaller than 10−8. Thus all the results with 

difference below  10−8 are represented as 0.0e+00. 
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5. RESULTS 

Table 1 reports the performance of CMA-ES on benchmark functions at dimensionality 

10D. The best, worst and mean values shown are achieved over 50 runs. For 10D problems, the 

algorithm is able to achieve the global minimum for 7 functions out of total of 20 functions.  

 

Table 2. Performance of CMA-ES at problem dimensionality 10 

D PM F1 F2 F3 F4 F5 

1
0
 D

 

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Worst 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Std 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

 F6 F7 F8 F9 F10 

Best 0.00e+00 2.5e-02 6.25e-01 4.67e-01 0.00e+00 

Worst 3.98e+00 6.25e+02 2.15e+1 1.92e+01 2.8e-02 

Mean 1.01e+00 1.20e+03 2.03e+01 1.01e+01 0.01e+00 

Std 1.73e+00 2.22E+03 7.86e-02 5.72E+00 1.00e-02 

 F11 F12 F13 F14 F15 

Best 1.87e+02 2.90e+02 1.94e+01 1.11e+02 1.74e+03 

Worst 2.31e+02 2.93e+02 5.07e+02 1.70e+02 2.27e+03 

Mean 2.22e+02 2.90e+02 2.83e+02 1.57e+03 2.05e+03 

Std 2.96e+01 5.70e-01 2.57e+02 1.88e+02 1.10e+02 

 F16 F17 F18 F19 F20 

Best 5.80e-02 2.20e+02 2.40e+02 3.59E-01 3.27e+00 

Worst 1.42e+00 5.45e+02 3.80e+02 1.05e+00 5.00e+00 

Mean 2.49e-01 2.84e+02 2.62e+02 8.50e-01 4.63e+00 

Std 2.53e-01 9.80e+01 1.4e+02 2.98e-01 4.75e-01 
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Presented in Figure 22 through Figure 41 are the fitness versus generation plots of the 

CMA-ES algorithm at problem dimensionality of 10D. The initial population is set to 7, initial 

standard deviation is set to 0.5 and µ𝑒𝑓𝑓 = 3.4.  

 

 
Figure 28. Average fitness curve of CMA-ES for F1 

 

 

 
Figure 29. Average fitness curve of CMA-ES for F2 
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Figure 30. Average fitness curve of CMA-ES for F3 

 

 

 

 
Figure 31. Average fitness curve of CMA-ES for F4 
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Figure 32. Average fitness curve of CMA-ES for F5 

 

 

 

 
Figure 33. Average fitness curve of CMA-ES for F6 
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Figure 34. Average fitness curve of CMA-ES for F7 

 

 

 

 

Figure 35. Average fitness curve of CMA-ES for F8 
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Figure 36. Average fitness curve of CMA-ES for F9 

 

 

 

 

Figure 37. Average fitness curve of CMA-ES for F10 
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Figure 38. Average fitness curve of CMA-ES for F11 

 

 

 

 

Figure 39. Average fitness curve of CMA-ES for F12 
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Figure 40. Average fitness curve of CMA-ES for F13 

 

 

 

 

Figure 41. Average fitness curve of CMA-ES for F14 
 

 



 

49 
 

 

Figure 42. Average fitness curve of CMA-ES for F15 

 

 

 

 

Figure 43. Average fitness curve of CMA-ES for F16 
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Figure 44. Average fitness curve of CMA-ES for F17 

 

 

 

 

Figure 45. Average fitness curve of CMA-ES for F18 
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Figure 46. Average fitness curve of CMA-ES for F19 

 

 

 

 

Figure 47. Average fitness curve of CMA-ES for F20 
  



 

52 
 

Table 3. Performance of CMA-ES at problem dimensionality 30 

D PM F1 F2 F3 F4 F5 
3
0
 D

 

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Worst 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Std 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

 F6 F7 F8 F9 F10 

Best 0.00e+00 1.26e+00 2.09e+01 1.63e+01 0.00e+00 

Worst 3.98e+00 7.03e+01 7.00e+02 4.83e+01 9.11e-02 

Mean 2.34e-01 1.78e+01 2.03e+02 3.49e+01 1.49e-02 

Std 9.30e-01 1.34e+01 3.11e+02 7.52e+00 1.41e-02 

 F11 F12 F13 F14 F15 

Best 3.28e+01 5.57e+01 8.30e+01 4.29e+03 3.95e+03 

Worst 9.50e+02 9.63e+02 2.42e+03 5.43e+03 5.33e+03 

Mean 4.63e+02 8.01e+02 1.21e+03 1.57e+03 4.67e+03 

Std 2.72e+02 2.69e+02 5.67e+02 1.88e+02 2.94e+02 

 F16 F17 F18 F19 F20 

Best 2.21e-02 8.53e+02 1.39e+03 1.04e+00 1.27e+01 

Worst 1.34e-01 2.18e+03 1.41e+03 3.12e+00 1.50e+01 

Mean 6.26e-02 1.27e+03 1.40e+03 1.81e+00 1.49e+01 

Std 2.90e-02 2.49e+02 1.02e+02 4.51e-01 3.50e-01 
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Table 4. Performance of CMA-ES at problem dimensionality 50 

D PM F1 F2 F3 F4 F5 
5
0
 D

 

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Worst 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

Std 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

 F6 F7 F8 F9 F10 

Best 0.00e+00 3.52e+00 2.10e+01 4.87e+01 0.00e+00 

Worst 3.98e+00 4.49e+01 7.00e+02 7.91e+01 5.42e-02 

Mean 4.01e-01 2.07e+01 2.03e+02 6.94e+01 1.95e-02 

Std 1.18e+01 8.79e+00 3.11e+02 8.97e+00 1.30e-02 

 F11 F12 F13 F14 F15 

Best 7.31e+02 9.24e+02 1.42e+03 8.38e+03 6.46e+03 

Worst 9.69e+02 9.87e+02 5.87e+03 9.39e+03 8.87e+03 

Mean 8.97e+02 9.56e+02 2.75e+03 8.92e+03 8.09e+03 

Std 4.87e+01 1.44e+01 1.00e+03 2.52e+02 4.88e+02 

 F16 F17 F18 F19 F20 

Best 1.70e-02 2.20e+03 2.48e+03 1.36e+00 2.35e+01 

Worst 1.62e-01 2.76e+03 2.69e+03 4.84e+00 2.50e+01 

Mean 5.39e-02 2.52e+03 2.52e+03 2.75e+00 2.49e+01 

Std 2.53e-02 1.25e+02 2.03e+02 8.42e-02 2.16e-01 

 

 

Figures 28-47 show, for benchmark functions F1-F20, the best fitness achieved as CMA-

ES progresses through the generations. These graphs can be represented as the fitness versus 

generation plots. From the plots, we can observe that the fitness for population gets better and 

better as the generations’ progress, which exhibits the optimization property of the CMA-ES 
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algorithm. For some functions the fitness improvement is very marginal based on the function, for 

such functions the fitness is plotted on a linear scale instead of logarithmic scale to show changes. 

Similar graphs were captured for 30 and 50 Dimensions for all benchmark functions and 

exhibit similar results. Due to space constraints, these graphs are not listed in this document. 

The performance of the CMA-ES algorithm is reported in Table 2, 3 and 4 on 10D, 30D 

and 50D benchmark functions, respectively. The values represented are the Best, Worst, Mean and 

standard deviations fitness values achieved before the exit criteria is reached over a series of 50 

runs. Any value that is less than 1.0 e-08 is represented as 0.0 e +00. 

A glance at the tables and graphs reveal that, optimal values are achieved within very few 

number of function evaluations (generations) varying from a minimum of 200 to a maximum of 

1400 generations. This provides us proof that CMA-ES is indeed a major step forward in the field 

of optimization. The performance of the CMA-ES marginally decreased as the dimensionality of 

the search space increases. From the fact that the search space increases exponentially with the 

increase in dimensions (also known as curse of dimensionality [11]) continuous improvements to 

the optimization algorithms are needed to deal with these problem where highest level of 

optimization is desired. 
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6. CONCLUSION AND FUTURE WORK 

As the requirement of real world optimization problems increase so does the demand for 

highly efficient and robust optimization algorithms. This research work evaluated the validity and 

performance of one such algorithm, Covariance Matrix Adaption Evolution Strategy Algorithm 

(CMA-ES) inspired by the biological evolution process, implemented using the Eclipse 

environment and Java 1.7 Version, on the first 20 benchmark functions specified in IEEE CEC’ 

2013 Test Suite. 

The performance of the algorithm is evaluated by finding the best, worst, mean and 

standard deviations of fitness values achieved from the results of 50 runs for every objective 

function for 10D, 30D and 50D dimensions. The objective function fitness values over generations 

are tracked and plotted for all 20 Benchmark Functions with 10 dimensions. As expected, the 

results confirm that the algorithm efficiently solves the optimization problems in a lesser number 

of generations. 

The algorithm has achieved best possible solution, however, there is still a scope of 

improvement. There are a number of enhancement approaches that have been worked on and still 

there is scope for improvement such as the Modified Covariance Matrix Adaption [10]. This can 

be achieved by varying the control parameters, Selection and Recombination approaches for 

generating the offspring for next generations. In the future, we plan to work on improving this 

process and validate if better results can be achieved with the update to the Covariance Matrix 

Adaption Evolution Strategies.  
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