
NDSU SCHOLAR: APPLICATION TO SEARCH ARTICLES RELEVANT TO

A RESEARCH PROBLEM

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Rahul Sharma

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

August 2015

Fargo, North Dakota

North Dakota State University
Graduate School

Title

NDSU SCHOLAR: APPLICATION TO SEARCH ARTICLES RELEVANT TO

A RESEARCH PROBLEM

 By

Rahul Sharma

The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

 Dr. Kenneth Magel

Chair

 Dr. Gursimran Walia

 Dr. Sudharshan Srinivasan

 Approved by Department Chair:

 08/19/2015

Kenneth Magel
Date Signature

iii

ABSTRACT

Because of recent development in the field of computers, there has been substantial

growth in the field of online education that varies from online tutors to electronic research

papers. Now days, a student can find almost any resource on the internet on any topic they wish

to choose from. This platform also assists students in doing their research on a particular topic by

providing them a search interface where they can enter their query and get relevant results. Some

examples of these search engines are Google Scholar, ASK etc. I have built an online search

application that will help assist the students of North Dakota State University (current, or

alumni) to search for a research problem in the field of computer science by providing a user

friendly interface that will help in finding relevant articles for their query from a large

bibliographical database.

iv

ACKNOWLEDGEMENTS

I want to thank my adviser- Dr. Kenneth Magel for guiding me the correct and rational

way for this project and also giving me ideas on how to develop and test the application. His

support and assistance in helping with this paper has been invaluable. His constant willingness to

discuss my application throughout these semesters is greatly appreciated.

I’m grateful to Dr. Gursimran Walia for taking out the time to be a part of my supervisory

committee and also providing his feedback on the paper.

I’m grateful to Dr. Sudharshan Srinivasan for taking out the time to be a part of my

supervisory committee and also providing his feedback on the paper.

I'm also grateful to my family-Subodh Kumar, Renuka Sharma and Rohan Sharma for

giving me moral support in completing this paper. I also dedicate this paper to my two lovely

dogs- dollar and junior.

I am also grateful to Mr.Anurag Goswami for his relentless support and motivation in

completing this paper.

Finally, I’m grateful to the Computer Science department for all their help and support in

my Bachelor's and Master’s program.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. PROBLEM STATEMENT AND INTRODUCTION .. 1

1.1. Explanation of Terms ... 3

1.2. Organization of the Paper .. 4

2. BACKGROUND RESEARCH .. 6

3. DESIGN .. 11

3.1. Search Interface ... 11

3.2. Backend Database .. 11

3.3. Use Case Diagram.. 14

3.4. Functional Requirements ... 15

3.5. Architecture Diagram... 18

3.6. Non Functional Requirements ... 19

4. IMPLEMENTATION ... 20

4.1. Tools and Techniques .. 20

4.2. Classes.. 21

4.3. Sequence Diagram ... 25

4.4. State Transition Diagram ... 26

4.5. Screenshots of NDSU Scholar ... 27

5. TESTING .. 30

5.1. Black Box Testing.. 30

5.2. Unit Tests ... 35

vi

5.3. Comparison to Google Scholar and Microsoft Academic Search 38

6. CONCLUSION AND FUTURE WORK ... 42

6.1. Conclusion ... 42

6.2. Future Work ... 43

7. REFERENCES ... 45

8. BIBLIOGRAPHY ... 47

vii

LIST OF TABLES

Table Page

 1: NDSU Scholar Functional Requirements ... 15

 2: NDSU Scholar Classes Explanation ... 23

 3: NDSU Scholar Class Design Patterns .. 25

 4: Black Box Testing States .. 30

 5: Black Box Test Cases ... 31

 6: Black Box Test Cases for Functionalities ... 32

 7: Comparison of NDSU Scholar with Google Scholar and Microsoft Academic Search 40

viii

LIST OF FIGURES

Figure Page

1: Google Scholar Homepage ... 7

2: Microsoft Academic Search Homepage ... 8

3: INFOMINE Homepage ... 9

4: RefSeek Homepage ... 10

5: Google CSE Main Page .. 13

6: Google CSE Preferences Page .. 13

7: NDSU Scholar Use Case Diagram ... 14

8: NDSU Scholar Architecture Diagram .. 18

9: NDSU Scholar Class Diagram .. 22

10: NDSU Scholar Sequence Diagram ... 26

11: NDSU Scholar State Transition Diagram ... 27

12: NDSU Scholar Login Page ... 28

13: NDSU Scholar Admin Page.. 28

14: NDSU Scholar Home Page: Input String- markov chain theory 29

15: NDSU Scholar Result Page .. 29

16: Loading .bib file- Unit Test .. 36

17: Object creation and parsing data- Unit Test ... 37

18: Proportion of documents gathered by Google Scholar and Microsoft Academic Search

according to disciplines [11] ... 38

19: Proportion of citations gathered by Google Scholar and Microsoft Academic Search

according to disciplines [11] ... 39

1

1. PROBLEM STATEMENT AND INTRODUCTION

 Problem Statement: Develop a web based search engine that will be used for searching

articles relevant to a research problem in the field of computer science. This application will be

developed for the North Dakota State University Computer Science Department.

 Introduction: This paper provides the explanation and the steps I followed to develop a

web based search engine for the NDSU Computer Science (CS) Department. The paper also

describes the challenges faced while gathering data and designing the database for this

application . The paper will also describe the search algorithm that I derived for this application

based on the data set that I retrieved from the database.

 There is a need for students who are working on a research problem to have a user

friendly interface that will search articles relevant to their problem. The scope of this is very

large because of the numerous articles on the internet which includes the NDSU catalog. We

need an application that will perform the task of finding these articles related to the field of

Computer Science only. The scope of our application would be providing the user with a

collection of relevant Computer Science research articles for a particular search request.

 Because of the nature of my application, the scope is only limited to Computer Science

scholarly articles and the problem is to develop a dynamic interface that would provide an

efficient solution to a given search request by a user. I have developed a user friendly interface

that provides efficient and fast processing of the request. The performance of my application is

solely based on how the data is stored in the database and the indexing of the data columns . My

application displays the list of all relevant articles that belong to a particular search request i.e.

the title of the paper, the author, link to the article, year the article was published and the number

of pages to all the relevant articles for a given request with maximum accuracy and precision.

2

 I have built a system that is similar to a bibliographic database search engine because of

the nature and implementation of my application. I was determined to find an efficient solution

for finding computer science articles relevant to a research problem. NDSU Scholar has the

following functionalities:

1. A user friendly GUI that will be compatible with popular web browsers such as Internet

Explorer, Google Chrome, Mozilla Firefox etc.

2. A properly formatted HTML page that will return back the results for a given search

query in the correct order.

3. A Login Page that will only allow NDSU students (current, alumni) to use the

application. I will be using this login data for creating a cache table to store the most

recent keywords for a particular user. This functionality is intended for future releases of

my application.

4. A set of articles returned that will be concise to the search query with their proper

bibliographical information.

5. The retrieved data set will be free of any duplicates for a search query.

6. My application will allow the user to sort articles by year and date the article was entered

in the bibliography.

7. My application will allow users to specify a maximum age for the articles for a search

query.

8. My application has proper links for navigating to and fro the search engine.

 The main motive of my application is to help computer science students find articles

relevant to their research area. My application will also provide users the functionality to sort and

3

filter the articles based on their need. My implemented system replicates most of the functions of

a traditional bibliographic search engine.

 The database for NDSU Scholar is the backbone of this application. There are two ways

through which we can create the database for NDSU Scholar.

1. We can get the bibliographical information from NDSU library on request from the

stakeholder.

2. We can create a web crawler that will parse through a huge dataset which will be in the

BibTeX format and capture the relevant data and store it in the database.

 Step 1 will be a quick and easy solution since we can design our application on top of an

already existing database whereas Step 2 will be tedious and complicated to design since we

would have to develop a web crawler and a BibTeX parser that will convert the information

from the data set links from BibTeX format to a SQL friendly format that my application will

use in order to generate formatted HTML tables to display the result set for the given search

query. In either ways, the stakeholder has to assume the fact that the database may not always be

consistent and errors may arise based on the conversion of the information gathered. NDSU

Scholar will be developed to support simultaneous users at a time. This will require a dedicated

database server and a web server that will handle and process the requests by users. This server

set will be provided by the NDSU CS Department.

1.1. Explanation of Terms

 In this section, we explain the terms and abbreviations used in this paper.

1. GUI: Graphical User Interface

2. NDSU: North Dakota State University

3. Backend: This is referred to the database server that processes the requests

4

4. SQL: Structured Query Language

5. HTML: Hyper Text Markup Language

6. PHP: Hypertext Preprocessor; which is a popular scripting language

7. Web crawler: A program that will download the contents of a given valid URL

into a text file

8. BibTeX : It is a popular reference management software which is used for

formatting list of references

9. Stakeholder: A person who has a stake in the process. This can be the end user or

the person developing the application

10. IEEE: Institute of Electrical and Electronics Engineers

11. ACM: Association for Computer Machinery

12. SIAM: Society for Industrial and Applied Mathematics

13. WWW: World Wide Web

14. CSE: Custom Search Engine which is a service offered by Google that lets a user

create and manage their own custom search engine.

15. API: Application Programming Interface

16. NDSU-CAS: North Dakota State University Central Authentication Service

1.2. Organization of the Paper

 This paper is organized into 6 chapters, starting with the Problem Statement and

Introduction. Chapter 2 discusses the research that I did on the topic, followed by Chapter 3

which explains the how the application was designed by determining the use cases and planning

an architecture. Chapter 4 shows the implementation of the application that I developed with

detailed state transition diagram, sequence diagram, class diagram and the flow of a user’s

5

interaction with the application exemplified by screenshots . Chapter 5 discusses the how the

testing of the application was done and the results generated. Chapter 6 gives the Conclusion and

Future Work for the application. Chapter 7 and 8 are the References and Bibliography section.

6

2. BACKGROUND RESEARCH

 There are already existing search engines such as Google Scholar, Scirus, CiteSeer,

RefSeek, Microsoft Academic Search etc that search for scholarly literature articles across a

wide range of topics. The similarities between these search engines is that they have a user

friendly GUI and all of them index through a large set of bibliographical entries for their data.

The database of these applications consists of bibliographic records which is an organized

collection of references to published literature including journal and newspaper articles, reports,

government and legal publications, books etc. 95% of students use Google or Yahoo [1] for their

search preferences and general search engines are the preferred [2].

 Students believe that results from these search engines have less accuracy and therefore

are unsuccessful in giving a right solution to their search queries [3]. Research [4] suggested that

blogs and wikipedia received the same relevance as academic sources. Hence problem with

search results is accuracy as well as irregularity in the output of these search queries. Therefore

an alternative (customized) search engine needs to be identified that will solve this purpose for

students seeking information on similar interest [5] especially in the field of computer science.

This will serve the purpose of limiting sources for computer science students or graduates.

 Developing a customized search engine for students will resolve the difficulty of

evaluating the results from generalized search engines by automatically narrowing down

information which includes more accurate and applicable information. This will enable as well

encourage computer science students or graduates more thoughtful use of resources.

7

 There are various search engines [6] which illustrate the strengths and serve the purpose

of results that are suitable for students looking for certain information for getting their job done.

Following is the description of search engines that was found useful for academic research:

 Google Scholar

 Google Scholar(https://scholar.google.com/) is a popular search engine that is used by

 students for searching research articles. It indexes the full text or metadata of scholarly

 literature across an array of publishing formats and disciplines. It includes most peer

 reviewed journals of U.S and Europe scholarly publications, scholarly books and other

 non peered review journals. Some researchers estimate it contains approximately 160

 million documents [7] and approximately 80-90% coverage of all articles published in

 English [8].

Figure 1: Google Scholar Homepage

8

 Microsoft Academic Search

 Microsoft Academic Search(http://academic.research.microsoft.com/) is a popular free

 search engine for scholarly articles and literature. It provides a very user friendly

 interface to students and also provides filtering functionalities based on categories

 (computer science, social science etc). It is based on a semantic network that has

 bibliographical information for scholarly papers published in journals, conferences and

 universities. It is estimated that Microsoft Academic Search indexes over 40 million

 publications and 20 million authors till date, although their service has not been

 updated since 2013 and therefore a decline has been seen in the number of indexed

 documents [9].

Figure 2: Microsoft Academic Search Homepage

9

 INFOMINE

 INFOMINE(http://infomine.ucr.edu) was a search engine that is utilized for preselected

 content by real people (2008) created by the university of California, Wake Forest

 University, California State University, The University of Detroit-Mercy, and other

 universities. This search engine was a powerful tool for students who are unaware of

 search terms to be used and how to limit search results. It also consisted of many

 features such as RSS feeds to help students to be updated of certain topics. However,

 after 20 years of serving the academic and research community, the University of

 California Riverside Library ended the INFOMINE service on December 15, 2014.

Figure 3: INFOMINE Homepage

10

 RefSeek

 RefSeek (http://www.refseek.com) is a search engine used by students for subject

 searching. This search engine has a database of 1 billion documents whose material is not

 preselected by individuals and is therefore larger than INFOMINE. RefSeek has an

 ability to narrow down search results by a particular subject which allows the user to

 search for a specific domain. It returns results for scholarly articles and scholarly

 websites. The drawbacks of RefSeek include inability to save results, save search history

 and use advance searching.

Figure 4: RefSeek Homepage

 Therefore motivated from these search engines, I came to a conclusion to develop a

customized search engine for computer science students which would provide concise results to

search queries and therefore will encourage students to use more of search engines like such.

11

3. DESIGN

 This section discusses how my application was designed by showing the use cases and

the functional requirements derived from it. We shall also discuss the architecture of the

application in the form of an architecture diagram. We shall conclude this section by discussing

the non-functional requirements of the application.

3.1. Search Interface

 The front end of my application is the GUI that will be shown to every user that logs in to

the system. My main motive was to try out some of the popular search engines discussed in

Chapter 2 and get an idea of how their search interface is and also how the result set was

generated and shown to the user. I derived that that my application should have display a result

page that should contain relevant information about a search query. I also derived that my

application should use every usable word from a given search query and that my application

should return the maximum number of results with good precision and accuracy.

3.2. Backend Database

 Since the nature of my application involved research articles, I determined that there was

a need of a bibliographical database to be created as the backend of my application. A

bibliographical database consists of information about electronic journal articles that can be

found in periodicals such as ACM, SIAM etc. Some of the information types that are stored in

this database include abstract, author name, title, year etc. Some of the databases even store the

links to the full text content of the journal.

 Keeping these facts in mind, my next step was to determine how the database for my

application was to be designed. I tried to find some free bibliographical database providers like

BioOne, Thomson Reuters etc but those providers had their own search interface and therefore I

12

was unable to incorporate their database into my application. Another problem that I encountered

was that if I wanted to access their database, I had to pay some amount of money that varied

from provider to provider. Therefore I decided to design my own database that would overcome

this financial barrier plus I would have full control of my database which means that I could

design the database according to my application requirements.

 With all these shortcomings, I decided to investigate more into BibTeX format and I

tried to find some data online that was in this format. I was able to find a huge dataset of

bibliographical entries that were only related to computer science articles [10] which consisted of

272 links that have data in BibTeX format with some in UNIX bib format. All these links point

to a number of Internet bibliography collections from ACM, SIAM, IEEE and other magazines

and journals.

 Another interesting thing that I found during was that Google offers its own search

engine API called CSE-Google which lets you create and manage your own search engine for

your website. The only thing that is required to incorporate this search engine in your website is

that Google requires a JavaScript to be embedded in your program with the search interface and

your own custom search engine is ready to be used. Please see below screenshots that illustrate

this service provided by Google:

13

Figure 5: Google CSE Main Page

Figure 6: Google CSE Preferences Page

 Using these two interfaces, you can create and manage your search engine. Google offers

a variety of search interface themes to choose from. Once you choose a them, you can specify

the different options to be incorporated in your search engine like speech input, image search etc.

14

Once you choose your options, Google will generate a JavaScript code which you can

incorporate in your website and your search engine is ready to be used.

 After evaluating the pros and cons of this service, I got a general idea on how to build my

application and therefore after a careful background research on how to design my application, I

managed to minimize the functional constraints on my application by taking control of the front

and the back end and therefore was able to create a fully functioning search engine.

3.3. Use Case Diagram

 The purpose of this diagram is to provide a diagrammatic overview of the functions

NDSU Scholar shall provide to a user.

User

Login

Search for articles

Filter Articles

Sort Articles

Navigate Website

Parse BibTex Links

<<uses>>

<<extend>>

<<extend>><<uses>>

<<uses>>

Administrator

Populate Database Entries

<<extend>>

<<uses>>

Create and Maintain Tables, Index

<<uses>>

<<uses>>

Figure 7: NDSU Scholar Use Case Diagram

 Figure 7 models the possible use cases that a user/administrator can perform on the

system. The application will authenticate the user first and determine if it is an administrator or

not. Once the role of the user is determined, the appropriate interface will be displayed. The user

15

can search for articles using the application which only provides links to articles that are being

retrieved from the database. The user is also given the functionality to sort the articles based on

newest to oldest and filter the articles based on the year. The application will be user friendly and

will allow the user to navigate to and fro the site.

 The administrator has the functionality to input a link that points to BibTeX entries and

if the validation succeeds, those entries are populated in the database. The administrator can also

see the statistics on how many entries were inserted in the database. The administrator is also in

charge of the database which involves maintaining, creating, deleting tables, indices on columns,

adding/removing new columns in tables based on user needs.

3.4. Functional Requirements

 This section identifies the functional requirements that are required to build the system.

The functional requirements are derived from the use case diagram and the technical

specifications that are provided to us on what the system should do.

Table 1: NDSU Scholar Functional Requirements

Req. Number Requirement Description

FR-1 The application shall display a standard login page to every user accessing

the URL

FR-2 The application shall display a tabular form asking the user to fill in their

credentials

FR-3 The application shall alert the user if they missed a required field

FR-4 The application shall check against the database if the correct credentials

are provided

16

Table 1: NDSU Scholar Functional Requirements (continued)

Req. Number Requirement Description

FR-5 Upon successful submission, the application shall display a standard

search bar that will allow the logged in user to search for articles

FR-6 The application shall allow every user to search for new queries by

providing the search bar on top

FR-7 The application shall display the results of a search query in a formatted

HTML page to the logged in user

FR-8 The application shall allow the user to display the results based on most

recent articles to oldest by providing a sort button

FR-9 The application shall allow the user to specify a maximum age for the

articles to be searched via text input

FR-10 The application shall then filter the articles based on this filter and display

it to the user

FR-11 The application shall successfully logout an user when the user signs out

FR-12 The application shall allow the administrator to input a link and based on

correct validation, parse the BibTeX data from it.

FR-13 Based on the parsing of the link, the application shall either shown an error

or the statistics of the parsed data

FR-14 The application shall provide the administrator with a database interface

where the admin can add/delete/modify tables, indices, columns

FR-15 The application shall pass in the parameters to the database for retrieval of

articles.

17

Table 1: NDSU Scholar Functional Requirements (continued)

Req. Number Requirement Description

FR-16 The application shall use regular expressions to extract out the data from

the BibTeX format and store in the database.

FR-17 The application shall use Natural Language Full Text search for searching

the user query against the database.

 FR-1 to FR-14 actually demonstrates what the application will do when a user invokes an

event on it. The next set of functional requirements are more specific to the development of the

application. FR-15 to FR-17 is the process that the application shall use to refine the search

query to give more accurate results from the database.

18

3.5. Architecture Diagram

Client

Web Server

Database

NDSU SCHOLAR

Send BibTex LinkAuthenticate User Display Search Query Result

Send and Receive Search
Query

Insert Parsed BibTex Data

Figure 8: NDSU Scholar Architecture Diagram

 The architecture of my application is very simple to understand. It is a 2 tier architecture

with the web server acting as the middle layer between the client and the database. The client is

continuously interacting with the web server which handles every user request and processes it.

The critical layer for this application is the web server because it handles the client request and

also the transactions on the database. The web server will call the database on every user query

to retrieve data from the database and also will insert new entries into the database when the

administrator inputs a correct BibTeX link. The database has its own tables and index on the

relevant columns that will help in the search process. The database has no knowledge of the

client and the client has no knowledge of what data is stored in the database thereby maintaining

total abstraction.

19

3.6. Non Functional Requirements

 This section discusses the identified non functional requirements for the application.

These requirements indirectly affect the overall working of the application and are more general

to the performance of the application.

 NFR-1: Integrity-: The application should support different login access from different

users and should give the correct result for every search query provided to it.

 NFR-2: Correctness-: The application should properly manage the transactions and

retrieve the results from the database and confirm transactions to the users with 100 %

accuracy.

 NFR-3: Availability-: The application must be available to user whenever it is needed.

The maintenance phase for the application should not be more than 2 hours and should

ensure that the application is not offline after the maintenance.

 NFR-4: Robustness-: The application should run on any compatible browser that fulfills

the minimum requirements. Also the application database should have a nightly backup

in case of any failure.

 NFR-5: Flexibility-: The application should be dynamic enough in its design and

implementation to be able to cope up with the new requirements from stakeholders.

20

4. IMPLEMENTATION

 This section discusses the tools and the programming languages that was used to build

the application into a fully functional working entity as proposed in the design phase. The

application consists of two main parts which is the front end search interface and the backend

database. Therefore it is absolutely essential that the correct tools are used to build both the

components separately and then integrate them into one entity. The points below will illustrate

how my application was implemented.

4.1. Tools and Techniques

 NDSU Scholar was developed using PHP and HTML-5 with CSS and JavaScript on a

dedicated server hosted on BITNAMI WAMP Stack 5.4.22-0. The database for NDSU Scholar

was created using MySQL hosted on phpmyadmin which is bundled with BITNAMI WAMP

Stack.

 The implementation of NDSU Scholar was divided into two parts and then integrated into

one functioning entity. The front end search interface was built using HTML-5 with CSS style

sheets and form validation was done using JavaScript. This technique was used because HTML-

5 is compatible with most modern browsers that are available. The CSS style sheet was also

designed to give an appealing outlook to the search interface. JavaScript was used to enforce

form validation on the form data to ensure that correct parameters are passed to the web server.

The database was created using MySQL queries but the data inserted into the database was

parsed using a web crawler that is written in PHP scripting language.

21

 For parsing out the BibTeX format links, I used the technique of creating a web crawler

that downloads the contents of the link on to a .bib file and then I used a BibTeX parser to parse

out the data from the link. This BibTeX parser package is available at:

http://pear.php.net/package/Structures_BibTeX

 The parser was tailored according to the data that I got from the BibTeX link and new

functions and variables were incorporated so that correct and concise data would be inserted into

the database. Extensive error handling was done in the web crawler to ensure that there are no

logical errors in the code and correct data is inserted into the database. This was done because

this process is the absolute backbone of the application. Since my application is data oriented i.e.

the functioning of the application depends solely on the data that is being sent and retrieved,

therefore I have used the concept of defensive programming in order to ensure smooth and

efficient searching of articles. It is noted that this process is only invoked when the administrator

is using the interface to input a BibTeX link.

 Once both the front end and the back were developed, they were integrated using PHP

pages to show the end result. Since PHP is a dynamic scripting language that allows HTML, CSS

and JavaScript to be incorporated with its syntax, it was easy to integrate the client with the web

server and display the final result set in a tabular form.

4.2. Classes

 This section will illustrate the classes used to develop my application in the form a UML

class diagram. This will show the variables and methods used in these classes/pages for my

application.

22

<<interface>>
index

userName:String
userPassword:String

checkUser():bool

validate

fname:String
lname:String
passwd:String

authenticate():bool

<<interface>>
indexGetData

fname:String
lname:String
inputURL: String

checkURL(): bool

webcrawler

validURL:String
finalOutput:String
getData:Array
entry:String
authorentry:String
gettitle:String
getjournal:String
getyear:String
getauthors:String
getjournalURL:String
getfJournal:String
getack:String
getbibSource:String
getbibDate:String
getissn:String
getdoi:String
getcoden:String
getmonth:String
getpages:String
getnumber:String
getvolume:String
getabstract:String
getkeywords:String
getcite:String
getentryType:String
getsubject:String
getthesaurs:String
gettreatement:String
getfinalauthors:String
getannote:String
getotherdoi:String
getcrossref:String

unwrap(entry): String
retainLinks(entry):String
getJournalLinks(entry):String
formatAuthor(authorentry):String
parse():Array
getStatistics(): String

<<interface>>
search

fname:String
lname:String
inputSearchQuery:String

validateQuery():bool
logout():void

setParam

getQuery:String
getParam:String

setQuery():session
setParam():session

<<Interface>>

pagination

searchQuery:String
totalrecords:int
totalpages:int
msc:time
startyear:String
endyear:String

filterByYear(startyear,endyear):void
sortByDate():void
sortByYear():void

Figure 9: NDSU Scholar Class Diagram

23

Brief explanations of the classes used in the application are as follows:

Table 2: NDSU Scholar Classes Explanation

Class Name Type Purpose

Index Interface This is an interface that is

implemented by the validate

class. This interface will

basically contain all the

controls needed to display the

login form.

Validate Class This class will process the

user input and authenticate

against the database if the

correct credentials are

provided. Based on the

credentials provided, this class

will redirect to admin page or

user page.

indexGetData Interface This interface can only be

accessed by the administrator

who gives a valid URL that

will be parsed into proper

contents.

24

Table 2: NDSU Scholar Classes Explanation (continued)

Class Name Type Purpose

webcrawler

Class This is the core class that will

parse the URL link from the

indexGetData interface and

parse the data into its

respective contents and store

them in the database.

Search Interface This interface is shown to the

user and the admin which

takes in their search query.

SetParam Class This class takes in every

search query and stores it in a

session to be used throughout

the search process. This class

is very essential as it retains

the search query and

parameters for filtering

pagination Interface This interface displays the

search results of every user

and also provides

functionalities to sort and filter

the search query.

25

Design Patterns identified in the class diagram as follows:

Table 3: NDSU Scholar Class Design Patterns

Design Name Class using this pattern Purpose

Singleton Validate This pattern is being used in

this class because it always

ensures that a single instance

of this class is created and

used for authentication

State Pagination This pattern basically allows

an object to alter its behavior

when internal state changes.

Here this class state changes

based on the input from

setParam class.

4.3. Sequence Diagram

 This section will illustrate the sequential logic of my application in the form of a UML

sequence diagram. The sequence diagram below will show the sequence of steps that each user

will take in order to search for an article using NDSU Scholar. Note that the objects are the

classes that we identified in the class diagram.

26

index
<<UI>>

validate
indexGetData

<<UI>> webcrawler
search
<<UI>>

setParam
pagination

<<UI>>

Send Credentials

Notify Success/Failure

Admin Login

Input BibTex URL

Notify Success/Failure

Show statistics

Go to search page

Set required parameters

Send search query

Display results

Sort and filter articles

New search queryLogout

User login to search page

Figure 10: NDSU Scholar Sequence Diagram

4.4. State Transition Diagram

 This section will illustrate the different states reached on different events invoked by a

user in the form of a UML State Transition Diagram.

27

Login Page

Supply Credentials

Validate user credentials

Incorrect credentials

Validate admin credentials

Admin Page

Input BibTex Link

Search Page
Go to search page

Statistics Page

Start parsing process again

Send search query

Result Page

Show sorted results Show filtered results

Show options

Sort option Filter option

Logout

Logout

Figure 11: NDSU Scholar State Transition Diagram

4.5. Screenshots of NDSU Scholar

 After following the design architecture and UML modeling diagrams, NDSU Scholar was

constructed into a physical application that is ready to be tested. Please see below some screen

shots of my application:

28

Figure 12: NDSU Scholar Login Page

Figure 13: NDSU Scholar Admin Page

29

Figure 14: NDSU Scholar Home Page: Input String- markov chain theory

Figure 15: NDSU Scholar Result Page

 Figures 14 and 15 show the working of NDSU Scholar by a user. It is noted that links to

research articles are being retrieved and shown to the user.

30

5. TESTING

 This section discusses the testing strategies that were performed on my application in

order to ensure its correct functioning. Black box testing was mostly performed to check for

different states that are explained in below section. Some unit testing was also performed on the

classes which mostly pertained to the parsing process of the application. This was done because

this process is very essential to the working of the application. The last step in this section is the

comparison of NDSU Scholar to two popular search engines: Google Scholar and Microsoft

Academic Search.

5.1. Black Box Testing

 Table 4 below lists the different possible states that were deduced.

Table 4: Black Box Testing States

State Description

S1 Application loads correctly on a web browser.

S2 Application validates user credentials correctly.

S3 Application displays search engine interface to user.

S4 Application displays parsing link interface to admin.

S5 Application shows correct result set to the user based on the search query.

S6 Application sorts the search results based on newest to oldest.

S7 Application filters the search results based on the year of the article.

S8 Application parses the contents of the link and shows the statistics to the admin.

S9 Application successfully logouts a user.

 After finding the different states for my application, I performed black box testing by

subjecting different states to different events and if the states changed as expected and reached

31

the desired state, the test was concluded to have been passed. Table 5 illustrates the results of

these tests.

Table 5: Black Box Test Cases

S.No Initial State Event Expected State Test Result

1 S1 Launch

Application

S2 Pass

2 S2 Input User

Credentials

S3 Pass

3 S2 Input Admin

Credentials

S4 Pass

4 S3 Input Search

Query

S5 Pass

5 S5 Sort Query S6 Pass

6 S5 Filter Query S7 Pass

7 S4 Input BibTeX

link

S8 Pass

8 S3 Logout User S9 Pass

9 S4 Logout Admin S9 Pass

 After performing these core tests, additional black box testing was done to check for

some of the major functionalities of NDSU Scholar which include searching for articles, sorting

the result set, filtering the result set, GUI compatibility etc. Please see table 6 that summarizes

the different test cases deduced:

32

Table 6: Black Box Test Cases for Functionalities

S.No Test Case Preconditions Steps Expected

Result

Test

Result

1 Sort By Year User has to be

signed in to

NDSU Scholar

 Input search query

 Click on sort by year

button

The result

set will be

sorted in

ascending

order

according to

the year of

the article.

Pass

2 Sort By Date User has to be

signed in to

NDSU Scholar

 Input search query

 Click on sort by date

button

The result

set will be

sorted in

ascending

order

according to

the date of

the article.

Pass

33

Table 6: Black Box Test Cases for Functionalities (continued)

S.No Test Case Preconditions Steps Expected

Result

Test

Result

3 Filter By

Year

User has to be

signed in to

NDSU Scholar

 Input search query

 Input year range to

be searched

 Submit the query

The result

set will only

display those

articles that

are in the

year range

inputted by

the user.

Pass

4 Search for

articles

User has to be

signed in to

NDSU Scholar

 Input search query

A dynamic

result set

pertaining to

the input

query will be

displayed to

the user.

Pass

34

Table 6: Black Box Test Cases for Functionalities (continued)

S.No Test Case Preconditions Steps Expected

Result

Test

Result

5 Check for

duplicates

User has to be

signed in to

NDSU Scholar

 Input search query

 Check for the search

query result set in

the database

 Check if any

duplicates exist

 If yes, then check if

the duplicate entry is

shown to user

A result set

consisting of

only unique

entries will

be displayed

to the user.

Pass

6 Browser

Compatibility

User has to be

signed in to

NDSU Scholar

 Run NDSU Scholar

on Google Chrome,

Mozilla Firefox,

Internet Explorer

and Microsoft Edge

NDSU

Scholar

should

display the

search

interface and

the results

correctly.

Pass

35

Table 6: Black Box Test Cases for Functionalities (continued)

S.No Test Case Preconditions Steps Expected

Result

Test

Result

7 Check for

stop words

User has to be

signed in to

NDSU Scholar

 Input search query

consisting of only

stop words

No result set

will be

displayed to

the user.

Pass

8 Check for

format of

user

credentials

NDSU Scholar

should be running

on the browser

 Input user

credentials with

special characters to

NDSU Scholar

 Input incorrect user

credentials to NDSU

Scholar

NDSU

Scholar

should raise

an error

stating that

incorrect

credentials

have been

provided.

Pass

5.2. Unit Tests

 This section discusses the unit tests performed on the Structures_BibTeX class which is

the core class that handles the parsing of the BibTeX link that is acquired via the admin

interface. The critical functions of this class are the parse and _parseEntry functions that

perform the task of parsing the data array that comes in from the BibTeX link. The parse

function performs the initial task of splitting the huge data array and then it sends each parsed

entry to the _parseEntry function which then further splits each part into its corresponding

bibliographical information such as author name, abstract, volume, number of pages etc.

36

 Unit tests were performed on these two functions by including a test script that I created

to test the inner logic of these functions and check if correct data is being returned by this class.

This step is very essential as we are inserting the parsed data from this class into the database

that I have created.

 Figures 16 and 17 explain some parts of the code where the critical testing of the

application is being performed:

Figure 16: Loading .bib file- Unit Test

 The above code abstract shows the basic loading of the .bib file which consists of the

initial data gathered from the BibTeX link. For this test script, I manually inserted data into the

file according to my own testing strategy. Once the file is read, the parse function is called which

then parses the contents of the file into corresponding bibliographical information.

37

Figure 17: Object creation and parsing data- Unit Test

 Figure 17 shows how an object of Structures_BibTeX class was created that got parsed

data array from the two functions mentioned above. I have used regular expressions throughout

my program to test if correct data is being returned from the parse function. After performing a

38

variety of tests, I was able to get correct and concise data. The last step included inserting this

retrieved data into the database.

5.3. Comparison to Google Scholar and Microsoft Academic Search

 Google Scholar and Microsoft Academic Search are two major search engines that are

frequently used by students to search for articles relevant to their research problem. NDSU

Scholar aims at achieving the same desired functionality to help students out with their research

problem. The database size of Google Scholar and Microsoft Academic Search are considerably

huge as compared to NDSU Scholar. We are only concerned with the database size of computer

science articles stored in each search engine. Figure 18 shows the proportion of documents

gathered by Google Scholar and Microsoft Academic Search:

Figure 18: Proportion of documents gathered by Google Scholar and Microsoft Academic

Search according to disciplines [11]

 As we can see from Figure 18, Google Scholar has more proportion of documents than

Microsoft Academic Search in the field of computer science which implies that Google Scholar

39

gives better search results for computer science articles. The number of citations stored by each

search engine is shown in Figure 19 below:

Figure 19: Proportion of citations gathered by Google Scholar and Microsoft Academic

Search according to disciplines [11]

 NDSU Scholar database size is smaller as compared to these two search engines because

the implementation is still in the preliminary stages. My application only provides basic

functionality for searching, sorting and filtering articles . The database only consists of articles

from the field of computer science. The core information of my application consists of the parsed

data that we got from the BibTeX links. The current size of NDSU Scholar database is 123793

documents and 123792 citations with the possibility of expanding the database.

 Once I was successfully able to insert the data into the database, my next step included

writing test SQL scripts to search for queries from the table that I created using the parsing

process. In order to compare NDSU Scholar with Google Scholar and Microsoft Academic

40

Search, I ran 14 different queries on different functionalities and compared my results to Google

Scholar and Microsoft Academic Search. My sole motive for this was to evaluate the result set

and functionalities of NDSU Scholar and compare them with Google Scholar and Microsoft

Academic Search. Since NDSU Scholar only returns articles relevant to the field of computer

science, I was able to compare the result set and the results are summarized in Table 7:

Table 7: Comparison of NDSU Scholar with Google Scholar and Microsoft Academic

Search

S.No Task NDSU Scholar Google Scholar Microsoft

Academic

Search

1 Sort By Date   

2 Sort By Year   

3 Filter By

Category

(computer

science)

  

4 Filter By Year   

5 Filter By Year

and Sort by Date

  

6 Search By

Author

  

7 Search By Title   

41

Table 7: Comparison of NDSU Scholar with Google Scholar and Microsoft Academic

Search (continued)

S.No Task NDSU Scholar Google Scholar Microsoft

Academic

Search

8 Search By

Keywords

  

9 Search By

Citations

  

10 Search By Link   

11 Removal of

duplicate records

  

12 User Sign In

Required

  

13 Result Set

Accuracy

(keyword:

software testing)

100% 75% 100%

14 Stop word

checking

  

 As we can see from above, NDSU Scholar gives fairly good results and also provides

with most of the functionalities similar to Google Scholar and Microsoft Academic Search. My

application also returns relevant articles to a search query similar to the result of Google Scholar

and Microsoft Academic Search.

42

6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

 Developing a search engine is a very challenging task because of the complexity of the

data available on the internet and how to incorporate this data into a fully functioning application

that returns concise results based on a user input. There are other services provided by various

organizations that let you search for articles from their database but it is very difficult to reverse

engineer such applications because of lack of documentation of their implementation. Google

offers its own custom search engine API (discussed in Chapter 2) that lets a user incorporate this

API into their code. But that is still not what I was trying to achieve in this research, therefore I

had to create my own search interface and design a process to fill this database with correct

bibliographical information.

 NDSU Scholar is a dynamic search engine that searches for articles relevant to a research

problem in the field of computer science. I was successfully able to create a user friendly GUI

for searching computer science articles with maximum accuracy to the user query. The GUI is

compatible on most modern web browsers (Firefox, Chrome, Internet Explorer) with easy

navigation for better usability for the user. After a detailed comparison with Google Scholar and

Microsoft Academic Search, it was concluded that NDSU Scholar resembles closely to Google

Scholar GUI. The output of search results are formatted for easy readability (Title of the Paper,

Author Names, Link to the paper, Year and Number of pages) for the users and is paginated

to provide the users with relevant results based on different filters and sorting choices or options.

 The entire search engine was designed from scratch that included the database. The entire

process is very efficient in returning the result set to the user. The database utilizes FULL TEXT

index columns to perform faster searches. The parser of NDSU Scholar uses defensive

43

programming technique which ensures that all aspects of error handling and exceptions are

covered. This provides concrete and concise data for the database which in turn gives better

results to the user. The GUI provides flexibility for the administrator to input a BibTeX link and

parse the required data out to the database.

6.2. Future Work

 NDSU Scholar is currently running on localhost and hence future work for the

application would be deploying it on NDSU servers. The deployment has to be successfully done

in order to make the application live for real time users who can then search for articles. We need

to get the required approvals for this step from the NDSU CS-Department. Once we get

approvals, we need a PHP server and MySQL database server in order to deploy NDSU Scholar.

 To make the searching faster and relevant to a user, the concept of cache can be

introduced to the database side which would include a cache table that would consist of the

username and their 20 most recent searches. Since we are capturing each user that logs in to the

system, we can build this table and then store that first 20 searches based on a count that will be

incremented on every search. In this way, the program can be designed to retrieve the result set

based on this table for the most recent search queries.

 Other changes to the application can be incorporating JavaScript for the search interface

to give suggestions to users as they type their search query. Some basic GUI changes can be

made to the search interface in order to enhance the outlook and style of the elements placed.

The authentication portion of the application can be removed and be replaced with NDSU-CAS

to authenticate NDSU students, faculty and staff in more efficient manner.

 Currently, the system does not check for the link that is already parsed in the system. This

probes a problem to the database because any duplicate links parsed can add duplicate data to the

44

database table which can decrease the accuracy of the search results. Therefore this functionality

needs to be incorporated in the administrator end for future work.

 The administrator has the ability to input one link at a time to parse the data to the

database. Another future work will include automating this parsing process so that instead of the

administrator manually importing data, a dynamic web crawler can parse the entire links on a

particular webpage.

 The current parsed data is taken from BibTeX format which is a limitation to the

database because the parser can only process data if the format is correct. Another future work

will include additions of different formats such as amsref, LaTeX which will increase the size of

the database and therefore return more results to the user.

45

7. REFERENCES

1 Jones, S., Johnson‐yale, C., Pérez, F.S., and Schuler, J.: ‘The internet landscape in

college’, Yearbook of the National Society for the Study of Education, 2007, 106, (2), pp.

39-51

2 Griffiths, J.R., and Brophy, P.: ‘Student searching behavior and the Web: Use of

academic resources and Google’, 2005,

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.8640

3 Interactive, H.: ‘How academic librarians can influence students' web-based information

choices: OCLC white paper on the information habits of college students’ (OCLC, 2002.

2002)

4 Brabazon, T.: ‘The Google effect: Googling, blogging, wikis and the flattening of

expertise’, Libri, 2006, 56, (3), pp. 157-167

5 Lorence, D., and Abraham, J.: ‘Comparative analysis of medical web search using

generalized vs. niche technologies’, Journal of medical systems, 2006, 30, (3), pp. 211-

219

6 Winder, D.: ‘Online tools: Blogs and wikis’, Information World Review, 2006, 229, pp.

28-31

7 Orduña-Malea, E., Ayllón, J.M., Martín-Martín, A., and López-Cózar, E.D.: ‘About the

size of Google Scholar: playing the numbers’, arXiv preprint arXiv:1407.6239, 2014

8 Khabsa, M., and Giles, C.L.: ‘The number of scholarly documents on the public web’,

2014, journals.plos.org/plosone/article?id=10.1371/journal.pone.0093949

46

9 Orduna-Malea, E., Ayllon, J.M., Martin-Martin, A., and Lopez-Cozar, E.D.: ‘Empirical

evidences in citation-based search engines: is Microsoft Academic Search dead?’, arXiv

preprint arXiv:1404.7045, 2014

10 Beebe, N.: ‘The authors collaboration network in computational geometry was produced

from the BibTeX bibliography available at http://www. math. utah. edu/~

beebe/bibliographies. html’, The network data is available at http://vlado. fmf. uni-lj.

si/pub/networks/data/collab/geom. htm, 2002

11 Ortega, J.L., and Aguillo, I.F.: ‘Microsoft academic search and Google scholar citations:

Comparative analysis of author profiles’, Journal of the Association for Information

Science and Technology, 2014, 65, (6), pp. 1149-1156

47

8. BIBLIOGRAPHY

 http://www.math.utah.edu/~beebe/bibliographies.html

 https://cse.google.com/cse/

 http://www.coderanch.com/t/100567/patterns/UML-Sequence-Diagram-database

 http://www.uic.edu/classes/bhis/bhis510/lim3/orgknow.htm

 http://www.BibTeX .org/

 http://websearch.about.com/od/enginesanddirectories/tp/custom-search-engines.htm

 http://pear.php.net/

http://www.coderanch.com/t/100567/patterns/UML-Sequence-Diagram-database
http://www.uic.edu/classes/bhis/bhis510/lim3/orgknow.htm
http://www.bibtex.org/

