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ABSTRACT 

Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. Although 

the incidence of listeriosis is lower than that of other foodborne diseases, it’s much higher 

mortality rate makes it a cause for serious concern. Listeria monocytogenes is a saprophyte in the 

environment but it can become pathogenic for humans and animals. It is well adapted for survival 

in soil, water, and livestock manure from where it can contaminate fruits and vegetables. Produce-

associated listeriosis outbreaks are frequently caused by contamination occurring in the pre-harvest 

environment, so there is a need for more effective control measures targeted at produce fields. The 

combination of epidemiological data and advanced computational tools, such as GIS and machine 

learning, have made it possible to develop models that predict L. monocytogenes prevalence across 

different landscapes. The predictive model can assist fresh-produce farmers in selecting the most 

effective controls to reduce contamination in the pre-harvest environment. 
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INTRODUCTION 

Diseases caused by foodborne pathogens have major economic and public health impact 

worldwide. Listeria monocytogenes is a ubiquitous environmental saprophyte (53, 71) that can 

cause foodborne disease (51, 53). Listeriosis, the disease caused by L. monocytogenes, can 

present as a mild flu-like illness, but systemic involvement in susceptible populations can have 

severe consequences, particularly for a pregnant woman and her developing fetuses (26). The 

high mortality (more than 25%) associated with listeriosis is what sets it apart from other 

foodborne pathogens (74). Outbreaks of foodborne listeriosis and frequent food recalls (9, 12, 

13) cause consumers to avoid consumption of affected foods. Recent outbreaks associated with 

fresh produce (9, 12, 13, 71, 72) are of particular concern because produce consumption is 

necessary for a healthy diet. Listeria monocytogenes persistence in food processing environments 

has been well documented, but comparatively little is known about persistence in pre-harvest 

environments, which are the major source of fresh produce contamination. Food producers and 

regulators in the US have taken a number of steps to eliminate Listeria from ready-to-eat (RTE) 

foods, but more is required to prevent contamination in the pre-harvest environment.  To develop 

effective controls, it is necessary to understand the areas where L. monocytogenes is most likely 

to be present in the pre-harvest environment (34, 71, 79). Recently, a computational approach, 

using GIS and machine learning, has been used to model L. monocytogenes persistence in farm 

environments (34, 71, 78, 80). This review paper discusses the determinants of L. monocytogenes 

persistence in pre-harvest environments that serve as inputs for predictive modeling, and it 

proposes an enhanced model to predict L. monocytogenes prevalence over larger areas. 
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EPIDEMIOLOGY AND PUBLIC HEALTH OF LISTERIA MONOCYTOGENES 

Listeriosis is the second leading cause of death due to foodborne illness in the USA, after 

nontyphoidal salmonellosis (66). It has an incubation period of up to 10 weeks (52), which 

complicates epidemiological investigations and limits the effectiveness of food recalls.  

Listeria monocytogenes can cause mild symptoms such as febrile gastroenteritis (6, 51), 

or more serious systemic illness with involvement of the gravid uterus and central nervous 

system (CNS) (42, 51). Establishment of L. monocytogenes in the CNS and uterus leads to the 

severe symptoms of meningitis and abortion/still birth, respectively (42, 51). A schematic 

diagram of the movement of L. monocytogenes in human body is presented in Figure 1. 

 

Figure 1. Schematic diagram showing the pathophysiology of listeriosis in humans (76) 

Those with impaired T-cell production are most at risk of developing invasive listeriosis 

(76). Immunocompetent individuals produce memory T-cells that direct the cell mediated 

immune response against L. monocytogenes (76). Pregnant women are susceptible to invasive 
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listeriosis due to reduced cell mediated immunity and the tropism of L. monocytogenes for the 

gravid uterus (51). In the US most cases of listeriosis have been reported in neonates and elderly 

people (11). The greater number of listeriosis cases in those aged 60 years and older can be 

explained by decreased immune function, reduced physical activity, and chronic diseases related 

to aging (38). 

Compiling listeriosis cases from 2009 to 2013 (12) and categorizing them by month 

shows that the number of cases increases in June and reaches a peak in August (Figure 2). This 

summer peak, which is consistent across different years, could be due to a number of factors, 

including increased environmental temperature, increased outdoor activities, and increased 

production and consumption of fresh produce. 

 

Figure 2. Seasonal variation in reported listeriosis cases from 2009 to 2013. The highest 

number of listeriosis cases is reported in August (12) 
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OUTBREAKS OF LISTERIOSIS IN THE US 

Clinical cases of listeriosis have been reported worldwide (10, 50, 64). The number of 

reported cases is higher in developed than developing countries, which may be explained by 

better surveillance and healthcare (15, 55). Listeriosis outbreaks are frequently associated with 

the consumption of fresh produce, unpasteurized milk and its products, and ready-to-eat meats 

(52). 

The first recognized outbreak of listeriosis in the US was in 1983 with 49 clinical cases 

and 14 deaths (8, 24). Pasteurized milk was identified as the cause of the outbreak, which was 

surprising because standard pasteurization has been shown to kill L. monocytogenes (7, 20). The 

fact that there have been no subsequent outbreaks associated with pasteurized milk suggests that 

pasteurization is indeed an effective method to inactivate L. monocytogenes in milk. The Centers 

for Disease Control and prevention has reported 24 confirmed major outbreaks of listeriosis 

between 1998 and 2008 (8). A major outbreak in 2011, associated with cantaloupe produced in 

Colorado, had 147 registered clinical cases and a fatality rate of 22 % (52, 9). Eighty six percent 

of cases were in people greater than 60 years old (41).   

The association of L. monocytogenes with fresh produce has motivated researchers to 

identify and mitigate sources of contamination in the pre-harvest produce production 

environment. The remainder of this paper will focus on L. monocytogenes in the pre-harvest 

environment and discuss novel computational approaches to model the likelihood that L. 

monocytogenes will be prevalent in different produce production fields. 
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PERSISTENCE OF LISTERIA MONOCYTOGENES IN SOIL 

The reported prevalence of L. monocytogenes in soil varies from 0.4 to 91.6% (Table 1). 

When prevalence data are categorized by land use pattern, the prevalence in soil from livestock 

farms (mean of 29.7% and a range of 3.0 to 50.0%) is greater than that in all other soil types. 

This can be explained by the relatively high prevalence of L. monocytogenes in livestock and the 

application of fecal waste to land either directly from the animal or as fertilizer. In one study, 

Jiang et al. reported that 35.4% of cattle in a herd were shedding L. monocytogenes in feces (36), 

while other studies have reported 20.0 – 29.5% prevalence in cattle (57, 75). The prevalence in 

pigs (16.0 – 46.6%) is similar to that in cattle, and pig slurry is frequently spread onto pastures 

(5, 75). The reported prevalence in sheep is in the range 10.7 – 50.0% (57, 82). The presence of 

L. monocytogenes in the environment of livestock facilities can result in contamination of 

adjacent areas that are not used for livestock production (72). Surface water, in particular, can 

rapidly transport L. monocytogenes across the landscape and, via irrigation, to crops and produce 

(79). 

The reported prevalence of L. monocytogenes in soil from produce fields ranges from 7.1 

to 91.6 % (Table 1). The high end of this range, which was reported in a study conducted in the 

early 1970s (35), should be interpreted with caution because the study was conducted while the 

taxonomic classification of L. monocytogenes was still in flux and therefore non-monocytogenes 

species could have been included. Excluding this outlier, the mean prevalence of L. 

monocytogenes in produce fields is 9.7%, and the range is 7.1 – 17.2%.  
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Table 1. Prevalence of Listeria monocytogenes in different soils 

Country  

Prevalence (%) 

Reference 

Produce field Livestock farm Forest Urban 

USA 91.6 - - 85.7 (35)* 

Germany 17.2 - 23.1 - (77) 

USA - - - 0.7 (49) 

Spain - 8.3 - - (27) 

Canada 8.3 30.8 - - (19) 

USA - 30.0 - - (57) 

Ireland - 3.0 - - (25) 

USA 7.1 - 0.4 10.7 (65) 

France - 32.5 - - (44) 

USA 9.7 50.0 - 20.0 (71) 

USA  16.0 - - - (79) 

USA 7.9 - - - (80) 

 

*Data reported in this reference should be used cautiously, because this study was conducted 

before current taxonomic system of Listeria species. 

Although soil can be a natural reservoir of L. monocytogenes, the application of livestock 

manure to produce fields can increase its prevalence. Manure must be treated appropriately to 

kill L. monocytogenes and other potential pathogens before it is used as fertilizer in produce 

fields. Listeria monocytogenes survived for 43 days in manure-amended soil under laboratory 

conditions (36), and 128 days in fecal waste applied to land (33). In contrast, L. monocytogenes 

survived for just 21 days in composted manure (75). A 4 log reduction was obtained when 

manure was composted and dried for 6 days and treated with ammonia (32); however,  these data 
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must be interpreted with caution because bacteria can remain viable but non-culturable in 

composted manure (21, 75). Also, farmers do not always observe good agriculture practice 

(GAP) for manure storage, instead applying fresh or improperly composted manure to the 

produce fields (29, 54, 67-69). When surveyed, California cattle farmers reported that liquid 

manure from cattle was used without treatment in periodic and seasonal fertilization of pasture 

land and produce fields to supply adequate nitrogen (54). The vast majority of farms (95.9%) 

used flushing and collection in tanks or ponds, and only 4.1% of the dairy farms identified 

composting as a management technique for solid manure (54). Listeria monocytogenes survived 

for 90 days in stored slurry, and it survived for more than 32 days when the slurry was applied to 

land (56). 

Temperature, pH, moisture, and competing microbes can affect L. monocytogenes 

persistence in soil (45, 53). Listeria monocytogenes can grow at temperatures ranging from 1.1 to 

45°C (37, 53). In a study conducted in nutrient-rich growth media, L. monocytogenes grew best 

at 30°C followed by 25°C and 8°C (53). By contrast, numbers declined slowly at each of these 

temperatures in soil  (53), although persistence was greater at 8°C (14 days) than 25°C (7 days) 

or 30°C (7 days) (53). This is consistent with studies showing that L. monocytogenes is more 

likely to be isolated from soil when the temperature is few degrees Celsius below the average for 

that time and location (34, 71), and that prevalence is higher in winter-spring than summer (34, 

71). Overall, production of fresh produce in the US decreases during the winter months, but 

California, Colorado, and Florida also produce winter vegetables (31). 

Although a neutral pH is most favorable for L. monocytogenes survival in soil, it can 

survive for more than 84 days at a pH between 5.5 and 8.0 (45). When the pH is less than 5.5, 

survival decreases significantly compared to higher pH soils (45, 53, 77). Enhanced persistence 



8 
 

of L. monocytogenes at a neutral or close to neutral pH has consequences for produce production 

because the pH of agricultural soils is generally maintained within this range to decrease the 

toxicity and enhance the absorption of micronutrients by plants  (43). 

High moisture also favors the persistence of L. monocytogenes in soil (53, 71, 81). 

Listeria monocytogenes survived almost 180 days in clay type soil and 300 days in fertile soil 

with the moisture level maintained at 7% and 17%, respectively, but survival was less than 60 

days when moisture was allowed to evaporate from these soils (81). Other studies have found 

detection of L. monocytogenes in soil to be positively correlated with a rainfall event 2 to 3 days 

before sample collection (34, 79). Rainfall and irrigation of the produce fields increases moisture 

levels, which could favor L. monocytogenes survival. 

Survival of L. monocytogenes is greater in sterile than non-sterile soil, suggesting that it 

doesn’t compete well with other soil microflora (45, 53). However, competing microflora 

appears to have less effect on L. monocytogenes survival at a pH <5.5 (45). 

Only two studies have reported on the prevalence of L. monocytogenes in forest soil 

(Table 1). While the sources of L. monocytogenes in forest soil have not been studied, wildlife 

are likely to be a more significant source than livestock. Few studies have examined the 

prevalence of L. monocytogenes in wildlife. Weis and Seeliger detected L. monocytogenes in 

15.7% of fecal samples from deer (77). A study on L. monocytogenes prevalence in trapped and 

hunted wild animals (deer, otter, raccoon and moose) reported a prevalence of 8.3% (47). Fenlon 

reported a prevalence of 7.8 % in the feces of rooks and gulls from Scotland (23). While these 

studies clearly show that wildlife shed L. monocytogenes in their feces, there is insufficient 

information to support the conclusion that wild animals are a major source of contamination in 

produce fields. 
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LISTERIA MONOCYTOGENES IN WATER 

Listeria monocytogenes has been isolated in ground water and surface water (Table 2), 

with an average prevalence of 24.8% (range: 4.0 – 63.0%) which is similar to the prevalence in 

soil (P > 0.05). The prevalence appears to be significantly higher (P< 0.05) in water from North 

America (38.7%) than Europe (11.7%). 

Runoff from livestock fields is the major source of microbial contamination of surface 

water (70, 83). In one study, 62% of freshwater tributaries impacted by livestock were positive 

for L. monocytogenes (16). By contrast, in rivers not impacted by livestock, the prevalence of L. 

monocytogenes was only 5.9 % (2). Industrial and urban wastewater and feces of wild animals 

are the other sources of contamination of water with L. monocytogenes. About 60% of treated 

water samples from urban wastewater treatment plant in France were positive for L. 

monocytogenes (1, 59). Therefore, pumping treated wastewater into rivers can result in L. 

monocytogenes contamination, and this contamination can be transmitted to produce fields 

during irrigation. In one study, the prevalence of L. monocytogenes in a produce field was greater 

after irrigation (12%) than after rainfall (6%) (80).   

Few data are available on the prevalence of L. monocytogenes in ground water and 

marine water environments. In Belgium, a 5.0% prevalence was reported in ground water (75) 

and in Finland, it appeared to be 3.3% (40). Marine water has been found to have a prevalence 

ranging from 7 to 33% (16, 73). Listeria monocytogenes has been reported in marine animals 

such as fish, shrimp, and oysters, indicating that marine water is also contaminated. 

The relative contribution of persistence and recontamination on L. monocytogenes 

prevalence in water is not known. Water used for irrigation must be considered as a source of L. 

monocytogenes in the produce field.  
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Table 2. Prevalence of Listeria monocytogenes in water 

Type of water Country Identification method Prevalence (%) Reference 

Surface Netherlands Enrichment & culture 21 (18) 

Surface Italy Enrichment & culture 5 (46) 

Fresh and low 

salinity 
USA, CA 

Enrichment, culture, & 

biochemical confirmation 
62 (16) 

Ground Belgium Enrichment & culture  5 (75) 

Surface Italy Enrichment & culture  43 (4) 

Ground Finland 
Enrichment, culture, & 

biochemical confirmation 
3.3 (40) 

Marine Australia Enrichment & culture 6.6 (73) 

Surface (near 

sheep farm) 
Spain 

Enrichment, culture, & 

DNA hybridization 
7.8 (27) 

Surface Greece Enrichment & culture 5.9 (2) 

Surface (fish 

farm) 
Denmark 

Enrichment, culture, & 

RAPD typing 
16 (30) 

Surface Canada 

Enrichment, culture, 

biochemical confirmation 

& PCR 

10 (48) 

Surface Canada 

Enrichment, culture, 

biochemical confirmation 

& PCR 

19 (83) 

Surface USA, NY Enrichment & culture 27.5 (71) 

Surface (used 

for irrigation) 
USA, NY 

Enrichment, culture, PCR 

& sequencing 
63.5 (80) 

Surface (used 

for irrigation) 
USA, NY 

Enrichment, culture, PCR 

& sequencing 
11.1 (79) 

Surface (used 

for irrigation) 
USA, NY 

Enrichment, culture, PCR 

& sequencing 
53.1 (79) 
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GIS ASSISTED LANDSCAPE EPIDEMIOLOGY FOR THE PREVALENCE 

PREDICTION OF LISTERIA MONOCYTOGENES 

Landscape epidemiology is an emerging discipline that seeks to predict pathogen 

prevalence in the environment by understanding how pathogen dynamics is affected by host and 

vector availability and by edaphic (soil moisture, available water in soil, soil pH and type of 

soil), topographic, and meteorological (temperature and precipitation) variables (14, 22, 39, 58, 

61, 71). GIS is a major tool in landscape epidemiology, as has been demonstrated in studies on 

viruses (17, 60, 84) and foodborne pathogens (34, 65, 71, 80). 

Strawn et al. (71) used GIS to study the landscape epidemiology of foodborne pathogens, 

including L. monocytogenes, on produce farms in New York state. Using a rule-based prevalence 

prediction model, they categorized a single produce field into areas with high or low predicted L. 

monocytogenes prevalence. This model was recently validated for water and pasture rule with the 

likelihood of isolating the L. monocytogenes were significantly higher in high predicted 

prevalence area than low predicted prevalence area (78). 

Building on the success of this farm-scale prevalence prediction model, I propose that it 

can be expanded to cover a larger area, such as a county within a state, and, eventually, an entire 

state or region. Increasing the scale would require modifications to model parameters and the use 

of the extrapolation function in ArcGIS to predict prevalence at unobserved points or areas using 

observed or known data. 

In landscape epidemiology, machine learning, which uses a basic decision tree method, 

has replaced statistical techniques such as linear regression to better model complex relationships 

between a pathogen and multiple environmental variables (3, 14, 84). Machine learning is a 
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branch of computer science that uses artificial intelligence and pattern recognition to build a 

knowledge-based system by inductive inference from examples (63). 

The proposed model would use seven variables to predict L. monocytogenes prevalence 

in a county: 1) livestock density, 2) average annual precipitation, 3) source of irrigation water, 4) 

air temperature 5), soil moisture, 6) soil pH, and 7) incidence of L. monocytogenes in soil. 

Variables 1-7of the model will be constant for each county. Variables 4–7 of the model will vary 

among samples collected. Guided by these variables and data on the presence/absence of L. 

monocytogenes in soil samples, machine learning will generate a decision tree that predicts the 

prevalence of L. monocytogenes in an area. An outline of the predictive model for L. 

monocytogenes is given in Figure 3.  

 

Figure 3. Simplified flow chart to model the prevalence prediction of Listeria 

monocytogenes in the produce field. 
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Variables of the model 

Livestock can contribute to L. monocytogenes prevalence in the produce field in three 

ways: application of livestock manure as fertilizer, contamination of irrigation water through 

runoff from livestock facilities, and contamination of produce fields by direct runoff from 

livestock from the adjacent facilities. The model assumes that L. monocytogenes prevalence in 

produce fields will be correlated with livestock density. Rather than calculating the impact of 

livestock density for each sample location, the initial model will use the average livestock 

density for the county. More refined spatial density data can be incorporated into the model to 

increase its sophistication.  

Precipitation increases the moisture level in the soil, which enhances L. monocytogenes 

persistence. Heavy precipitation also can increase overland transport of bacteria from adjacent 

livestock operations to produce fields. All else being equal, soil from counties with higher 

average annual precipitation are expected to have higher prevalence of L. monocytogenes. 

Areas with lower temperature are expected to have higher prevalence of L. 

monocytogenes than areas with higher temperature (see section on persistence of Listeria 

monocytogenes in soil). To mitigate the seasonal differences in the temperature even within the 

same county, the model will use the average annual temperature, in degrees Fahrenheit, of the 

county. This information would be obtained from the nearest climatological center. 

The greater prevalence of L. monocytogenes in surface water than ground water results in 

a greater likelihood of L. monocytogenes contamination in produce fields irrigated with surface 

water (see section on Listeria monocytogenes in water). However, data on L. monocytogenes 

prevalence in ground water are limited and more studies are needed to improve the predictive 

value of irrigation water source in the model. 



14 
 

Listeria monocytogenes prevalence increases with the increasing moisture level in the 

soil (see section on persistence of Listeria monocytogenes in soil). Collected soil samples will be 

stored in a sealed container upon collection to prevent the evaporation of the moisture. 

Listeria monocytogenes prevalence is expected to be higher in soil with at slightly acidic 

pH than in soil with a neutral or basic pH (see section on persistence of Listeria monocytogenes 

in soil). 

Incidence of L. monocytogenes in the soil samples is another variable and its presence or 

absence is dependent upon all other six variables.  

Wildlife is also likely to contribute to L. monocytogenes prevalence in produce fields, but 

current data are insufficient for wildlife to be included as a variable in this model. 

Sample collection 

Model generation using machine learning requires between 400 and 2000 data sets (14, 

71, 84). The proposed model will use more than 2000 data sets to train the machine and generate 

the model. To increase the variation in the variables and reliability of the model, counties from a 

state will be selected such that there will be wide variations in the values of the independent 

variables. For example, in North Dakota, counties can be selected from western, central, and 

eastern parts of the state because of differences in the average annual precipitation (28, 62). At 

least 200 soil samples will be collected from the produce fields of each selected counties. 

Samples collected will be evaluated for the presence or absence of L. monocytogenes using 

standard assays (71). Data previously obtained will be used to generate the model. 

Model generation and validation 

Data sets from the determinants listed above in the collected samples will be aggregated 

in a table. Presence or absence of L. monocytogenes will be the dependent variable and other 
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environmental factors will be independent variables. Training data will be used to develop the 

algorithm, train the machine, and generate a decision tree. Once the decision tree is generated, 

ArcGIS will be used to map the prediction of L. monocytogenes prevalence in several areas in 

the test counties based on the decision tree output. Predicted values in sampled (observed) areas 

of the county can be extrapolated to the remaining (unobserved) areas using the extrapolation 

function in ArcGIS. In this way, the extrapolation function in ArcGIS allows us to predict the 

prevalence of L. monocytogenes in the entire county. Counties can be selected to validate the 

model but care should be taken to exclude the counties used to generate the model. Soil samples 

from produce fields of the test counties will be collected using standard technique (71). Mean 

error values associated with predicted values will be used to indicate the accuracy of the model. 

Mean error is the mean absolute difference between the actual values and predicted values. 

Smaller mean error values would indicate less error and therefore a stronger model. Correlation 

coefficient can be calculated between L. monocytogenes prevalence and values for each 

independent variable. Increasing the weighting on the most highly correlated variable can be 

used to refine the model. 
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CONCLUSION 

The proposed county-scale model to predict L. monocytogenes prevalence in produce 

fields is expected to inform the development of more targeted and effective controls. For 

example, if a producer knows that they are likely to have a higher prevalence of L. 

monocytogenes, they can modify irrigation practices. Because the scale of this model is 

considerably greater than previously reported, it requires the novel use of the extrapolation 

function in ArcGIS. Also, to make the model feasible in the short term, some model variables 

(livestock density, air temperature, and precipitation) are averaged for each county. In the longer 

term, the model can be refined to improve accuracy and resolution by incorporating more 

detailed geospatial data. For example, more refined model iterations could use more localized 

livestock data, including proximity to produce fields. The model can also be progressively 

expanded to eventually cover an entire state or multiple states. 
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