
TRACKING VEHICLES FROM MOBILE PHONE RECEIVED SIGNAL STRENGTH

SEQUENCES

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Charith Devinda Chitraranjan

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Computer Science

November 2015

Fargo, North Dakota



NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

TRACKING VEHICLES FROM MOBILE PHONE RECEIVED SIGNAL

STRENGTH SEQUENCES

By

Charith Devinda Chitraranjan

The supervisory committee certifies that this dissertation complies with North Dakota State Uni-

versity’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Anne Denton
Chair

Dr. Saeed Salem

Dr. Simone Ludwig

Dr. Amiy Varma

Approved:

11/10/2015

Date

Dr. Brian Slator
Department Chair



ABSTRACT

We address the problem of tracking vehicles from received signal strength (RSS) sequences

generated by mobile phones carried in them. Our main objectives are to provide travel-time es-

timates for selected roads and provide personal navigation assistance when GPS is unavailable or

undesirable. A mobile phone periodically measures the RSS levels from the associated cell tower

and several (six for GSM) strongest neighbor cell towers. Each such measurement is known as an

RSS fingerprint.

In Chapter 3, we propose local alignment of mobile phone RSS measurements to track

vehicles. We use local alignment instead of the traditionally used global alignment to allow for

vehicles changing roads. More specifically, we use local dynamic time warping to align the RSS

sequence of a phone, to a reference sequence that we had collected for the relevant road.

Due to fluctuations in RSS levels and other effects, even at the same location, the set

of cell towers reported in a fingerprint and their reported RSS levels vary over time. To model

these variations, in Chapter 4.1, we propose a complete observation model for RSS fingerprints

that specifies for each gird-location in the area of interest, the distribution of the probability of

observing any fingerprint at that location. We then use it with a Dynamic Bayesian Network to

track vehicles. Unlike traditional observation models, which model only the variation of the RSS

levels, we model the variation of the set of cells reported in fingerprints as well.

Accurate estimation of the parameters of either traditional or our complete observation

model requires recording fingerprints by driving on the roads of interest, which is tedious and

expensive. Therefore, to avoid such driving, we propose unsupervised learning in Chapter 5 to

estimate model parameters using RSS sequences of phone calls made by road-users.

Experiments with RSS data collected on five roads demonstrate that our proposed algo-

rithms produce lower errors than relevant existing methods. Furthermore, application of our algo-

rithms to real subscriber call traces produced travel-time estimates for a given road segment that

were, on average, within 13% - 14% of travel-times computed through license plate recognition.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor, Dr. Anne Denton,

for her valuable advise, continuous encouragement and providing me with an opportunity to be a

part of her research group. I thank her for the constructive criticism she has provided me over the

years without which, this thesis would have been a lot sloppier that it is today.

I would like to thank Dr. Saeed Salem, a member of my supervisory committee, for in-

troducing useful research tools and sharing his research ideas with me, which made my work a

lot easier. I thank Dr. Simone Ludwig and Dr. Amiy Varma for their valuable feedback and for

agreeing to serve as members of my supervisory committee.

I thank all my friends in Fargo for the pleasant companionship. I thank the staff of the

Computer Science Department at NDSU for helping me with various administrative tasks.

I would also like to extend my gratitude to all my teachers and university professors in

Sri Lanka who laid the foundation for my academic career. I thank the staff of the University of

Moratuwa for giving me time off from my teaching responsibilities and covering up for me while I

was away for my studies. I would like to thank members of my extended family and friends who

have supported me in numerous endeavors.

Last but certainly not least, I thank my parents, my wife and my brother for the extreme

breath and depth of the support they have provided me throughout my life.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Time series alignment approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Recursive Bayesian estimation approach . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. TRACKING VEHICLE TRAJECTORIES BY LOCAL DYNAMIC TIME WARPING
OF MOBILE PHONE SIGNAL STRENGTHS AND ITS POTENTIAL IN TRAVEL-
TIME ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Dynamic Time Warping Signal Strength Traces . . . . . . . . . . . . . . . . . . . . . 11

3.3. Local Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4. Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. COMPLETE OBSERVATION MODEL FOR VEHICLE TRACKING FROM MOBILE
PHONE RECEIVED SIGNAL STRENGTH TRACES . . . . . . . . . . . . . . . . . . . . 28

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2. Existing Observation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3. Complete Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4. Maximum Likelihood Learning of Model Parameters . . . . . . . . . . . . . . . . . . 36

4.5. Dynamic Bayesian Network and Viterbi Decoding for Tracking . . . . . . . . . . . . 39

4.5.1. Improving the Speed of Viterbi Decoding for Tracking . . . . . . . . . . . . . 41

4.6. Experimental Evaluation and Discussion of Results . . . . . . . . . . . . . . . . . . . 42

v



4.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. ESTIMATION OF MEAN RECEIVED SIGNAL STRENGTH LEVELS IN A MOBILE
COMMUNICATION NETWORK WITHOUT WAR-DRIVING FOR TRACKING VE-
HICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2. Estimation of Mean Received Signal Strength Levels . . . . . . . . . . . . . . . . . . 48

5.2.1. Expectation-Maximization (EM) Algorithm . . . . . . . . . . . . . . . . . . . 48

5.2.2. Prior Distribution of Mean Received Signal Strength Levels . . . . . . . . . . 51

5.2.3. Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3. Experimental Evaluation and Discussion of Results . . . . . . . . . . . . . . . . . . . 56

5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. NEAREST-NEIGHBOR ASSISTED BANDED VITERBI DECODING FOR TRACK-
ING VEHICLE TRAJECTORIES FROM MOBILE PHONE SIGNAL TRACES . . . . . 60

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2. Fast Nearest-Neighbor Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3. Banded Viterbi Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



LIST OF TABLES

Table Page

1.1. Comparison of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

vii



LIST OF FIGURES

Figure Page

1.1. Received signal strength fingerprint: Suppose the area of interest has been divided in
to grid-location (black dots) and a phone is at location si at time t. Then, for example,
fingerprint Rt in the figure reports signal strength levels -55dbm, -60dbm, -64dbm, -
70dbm, -75dbm and -50dbm as received from cells with IDs 413, 415, 401, 420, 412, and
535 respectively, at location si, at time t. Note that Rt does not include signal levels
from cells 418 and 536. As explained in Chapter 4, such omissions can happen in practice. 3

3.1. (a) Example of signal strength sequence considering only the signal strength from one
cell tower (e.g. serving cell) and their alignment using DTW. ‘k’represents the common
index used in Equation 3.2.1.
(b) Alignment of signal traces considering signal strengths from two cells C1 and C2
(e.g. serving cell and one of the neighboring cells). . . . . . . . . . . . . . . . . . . . . . 10

3.2. Path of a vehicle on a road network (bottom), and idealistic alignment of corresponding
signal traces (top) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3. Dynamic Time Warping path for the example in Figure 3.1 . . . . . . . . . . . . . . . . 14

3.4. Dynamic programming matrix for local alignment. The matrix is filled using Equa-
tions 3.3.2 and 3.3.3. The path is determined using Equation 3.3.4. . . . . . . . . . . . 17

3.5. Road segments in Sri Lanka, used for the experiments conducted in this sutdy. . . . . . 22

3.6. Cumulative distribution of position estimation error under different algorithms for fully
overlapping traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7. Cumulative distribution of speed estimation error under different algorithms for fully
overlapping traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8. Cumulative distribution of position estimation error under different algorithms for par-
tially overlapping traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9. Travel-time estimation performance of the algorithms. The values e, r and p next to
legend items are, average percentage error (Equation 3.4.1) and Pearson correlation
coefficient w.r.t actual travel-times, and the two-tailed p-value of the correlation respec-
tively, for each algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1. Variation of RSS levels and cell towers included in fingerprints collected at different
times (several hours apart), at some given location. For any fingerprint Rt (horizontal
axis) and cell c (depth axis) the height of the column represents the RSS level of cell c as
reported by Rt. A missing bar indicates that the cell is not reported by that fingerprint.
Please note that for convenience, cell IDs have been renumbered consecutively starting
from 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. Two slices of the DBN used for tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



4.3. Cumulative distribution of localization error. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4. Travel-time estimation performance of the algorithms. The values e, r and p next to
legend items are, average percentage error (Equation 3.4.1) and Pearson correlation
coefficient w.r.t actual travel-times, and the two-tailed p-value of the correlation respec-
tively, for each algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1. Dual slope propagation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2. Cumulative distribution of localization error. . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1. Values to compute in unrestricted Viterbi Decoding. . . . . . . . . . . . . . . . . . . . . 61

6.2. Initial sequence of grid-locations returned by the nearest-neighbor search. . . . . . . . . 62

6.3. Inequalities for a metric space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4. A band of constant width (w = ±2) around the initial alignment path returned by the
nearest-neighbor search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.5. Variable width band according to Equation 6.3.1, around the initial alignment path
returned by the nearest-neighbor search. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6. Percentage increase in mean localization error with respect to unrestricted Viterbi de-
coding, for different values of w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.7. Run time variation with different test sequence lengths, for roads with approximately
150 grid-locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.8. Run time variation with different test sequence lengths, for roads with approximately
500 grid-locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.9. Travel-time estimation with banded Viterbi decoding for different bandwidths (w). . . . 70

6.10. Running times of travel-time estimation with banded Viterbi decoding for different
bandwidths (w). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



LIST OF ABBREVIATIONS

DBN . . . . . . . . . . . . . . . . . Dynamic Bayesian Network

EM . . . . . . . . . . . . . . . . . . . Expectation Maximization

GPS . . . . . . . . . . . . . . . . . . Global Positioning System

GSM . . . . . . . . . . . . . . . . . Global System for Mobile Communications

HMM . . . . . . . . . . . . . . . . Hidden Markov Model

NMR . . . . . . . . . . . . . . . . . Network Monitoring Report

RSS . . . . . . . . . . . . . . . . . . Received Signal Strength

x



1. INTRODUCTION

In this work, we address the problem of tracking vehicles from received signal strength (RSS)

traces generated by mobile phones carried in them. Our objective is to provide travel time/speed

estimates for selected roads and assist in personal navigation when GPS is unavailable (e.g., urban

canyons) or undesirable to use (e.g., when battery life is critical). Other applications of such vehicle

tracking include location-based services such as mobile-based advertising and local weather or traffic

alerts [1].

With global mobile-cellular penetration approaching 100% [2], mobile phones have become

potential sensors to gather large amounts of useful data for vehicle tracking. Furthermore, the

required signal strength data can be collected under normal operations of the cellular network

without an additional overhead.

A mobile phone conforming to the standards of the Global System for Mobile Communica-

tions (GSM) is required to measure the strengths of the signals it receives from the associated cell

tower and the six strongest neighbor cell towers, commonly referred to as a received signal strength

fingerprint, twice every second. A fingerprint recorded at time t, denoted by Rt, is a set of ordered

pairs of the form (c, yct ), where yct is the strength of the signal received from the cell tower with the

identification code (cell ID) c, at time t. Figure 1.1 shows an example of a fingerprint. Additionally,

to help ensure uninterrupted communication, a phone in active mode is required to transmit the

aforementioned RSS fingerprints back to the network in messages referred to as network monitoring

reports (NMRs) [3].

Methods used for tracking vehicles using such RSS sequences can be classified under two

approaches. They are, time series alignment and recursive Bayesian estimation. In this work, as

discussed below, we address several problems with the existing methods under each approach, and

propose our solutions to them.

1.1. Time series alignment approach

This approach is based on aligning the RSS sequence from a mobile phone to a reference

RSS sequence that had been collected previously in a training phase. However, existing methods
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cannot handle vehicles changing roads as they use global sequence alignment. In Chapter 3, we

solve this problem by using local sequence alignment [4].

Furthermore, the current alignment-based methods use only the signal strength levels

of the strongest cell to perform the alignment, neglecting useful neighbor cell information. We

include neighbor cell signal strengths while performing the entire alignment.

1.2. Recursive Bayesian estimation approach

Examples of methods that follow this approach include, Kalman filtering [5], Dynamic

Bayesian Networks (DBNs), and Hidden Markov Models [6, 7, 8, 9]. A critical component of these

methods is the observation model, which models for each grid-location in the area of interest, the

probability distribution of the variation of RSS levels at that location. In GSM, each fingerprint

contains RSS levels from up to seven cell towers (associated + six strongest neighbors). However,

due to fluctuations in signal strength levels and other effects, even at the same location, the set of

cell towers included in fingerprints may not remain constant over time. Observation models used

in existing methods only model the variation of signal strength levels but not the variation of the

set of cell towers present in the fingerprint. We model both types of variations and propose a more

complete and improved observation model in Chapter 4.

Furthermore, accurate estimation of the parameters of the observation models of either

existing methods or the improved one that we propose, requires recording RSS readings by driving

on the roads of interest [6, 7, 8, 9]. This process, commonly referred to as war-driving, is both

tedious and expensive. The parameters can be estimated using radio propagation models, which is

easier and cheaper but less accurate. Therefore, in Chapter 5, we propose the use of unsupervised

learning with a dynamic Bayesian network (DBN) to learn model parameters without war-driving,

with the aid of signal strength traces of phone calls made by road-users.

All algorithms presented in Chapters 3, 4 and 5 operate in two phases; a training phase,

where several model parameters are estimated, and a tracking phase, where the tracking of vehi-

cles takes place. Table 1.1 shows a comparison between the algorithms presented in the different

Chapters with regard to the tracking and training phases.
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si

s1

 s2

Cell ID = 413

Cell ID = 415 Cell ID = 401

Cell ID = 420

Cell ID = 412
Cell ID = 535

Cell ID = 536
Cell ID = 418

R ={(413, -55), (415, -60), (401, -64), (420, -70), (412, -75), (535, -80)}t

Figure 1.1. Received signal strength fingerprint: Suppose the area of interest has been divided in to
grid-location (black dots) and a phone is at location si at time t. Then, for example, fingerprint Rt
in the figure reports signal strength levels -55dbm, -60dbm, -64dbm, -70dbm, -75dbm and -50dbm
as received from cells with IDs 413, 415, 401, 420, 412, and 535 respectively, at location si, at time
t. Note that Rt does not include signal levels from cells 418 and 536. As explained in Chapter 4,
such omissions can happen in practice.

In Chapter 6, we present a fast nearest-neighbor-based technique to reduce the execution

time of the algorithms in the preceding Chapters.

Since radio signals are affected by various forms of noise and obstructions as they propagate

through the environment, tracking vehicles from RSS measurements is more challenging than using

other types of sensors such as as loop detectors, cameras and Global Positioning System(GPS)-

based devices. However, loop detectors and cameras are expensive to install and maintain [10, 11].

GPS-based devices, although more precise, have less penetration among the public [10, 11, 12],

perform poorly in urban areas with high-rise buildings [8, 6], incur additional costs when data is

transmitted to a centralized system [11], and are also high in power consumption [12, 13, 6], which

may cause users to keep them turned off even if GPS is available on their mobile phone.
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Table 1.1. Comparison of algorithms

Chapter 3 Chapter 4 Chapter 5

Tracking

Pair-wise sequence
alignment: The signal
strength sequence of a
phone call is aligned
with a reference signal
sequence.

Sequence-to-model
alignment: The signal
strength sequence of a
phone call is aligned
with a model of signal
strength variation and
vehicular motion
(DBN).

Same as Chapter 4.

Training

Requires driving on the
road to collect a
reference trace.

Does not build a model
of signal strength
variation.

Requires driving on the
road several times to
collect training
fingerprints.

We use this data to
build a probabilistic
model of signal
strength variation. I.e.,
observation model of
the DBN.

Does not require
driving on the roads to
collect training data.

We Learn the same
model of signal
strength variation as
in Chapter 4 but do so
using signal strength
sequences generated by
road-user phone calls
instead of fingerprints
collected by driving on
the road.
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2. LITERATURE REVIEW

Vehicle tracking from mobile phone signals fundamentally relies on estimating the position

(localization) of the phone. One of the most basic ways of localizing a phone is to estimate the

distance to three or more cell towers based on the strength of the signal as received from the respec-

tive towers and triangulate the location. This requires the use of some model for the propagation

of electromagnetic waves in the environment. However, its localization accuracy is limited by how

well this model fits the actual propagation environment and suffers from deviations caused by shad-

owing [14]. Other techniques such as Signal Time of Arrival (TOA), Observed Time Difference of

Arrival (OTDOA), and Enhanced Observed Time Differences (E-OTD) which are based on the

time a signal takes to reach the phone from a cell tower are also used to estimate the position of

the phone. These techniques, however, are affected by multipath propagation of signals [14].

Several approaches have been proposed to improve the accuracy of mobile phone localiza-

tion. Database correlation method (DCM) [15] is one such approach, which uses a collection of

signal strength readings and/or Timing values stored in a database. In this method, field mea-

surements are taken at each point on a predefined gird in the geographical area of interest and are

stored in a database. Each measurement, referred to as a fingerprint, includes the signal strength

levels from multiple cell towers in the neighborhood (typically, the serving cell and six neighboring

cells). Later, when the location of a mobile phone needs to be estimated, its fingerprint is com-

pared to those in the database to find the best match whose location is returned as the estimated

location. Further improvements on DCM are proposed in [16, 17]. Ferris et al. [18] used Gaussian

processes (GPs) to generate a likelihood model for signal strength levels to localize mobile devices.

This technique also relies on a set of training data points for calibration, but can work with a more

sparse grid of points compared to DCM. Experimental results in [18] show that GPs are better for

rural and suburban areas compared to DCM but not as good for urban areas.

The methods discussed so far are general localization algorithms not specific to tracking

moving phones/vehicles. However, algorithms can take advantages of typical dynamics of vehicular

movement for better tracking accuracy. In the rest of this Chapter we discuss methods specially

designed for tracking vehicles from RSS traces.
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Chandrasekaran et al. [12, 19] proposed two new algorithms to track the speed of a moving

vehicle by comparing the RSS trace generated by a mobile phone with a reference RSS trace that

had been collected previously in a training phase, and showed that they are better than DCM

for speed estimations. The first algorithm [12] computes the correlation between a test trace and

multiple copies of the reference trace stretched or compressed uniformly at constant factors, and

selects the copy which is most correlated with the test trace. The uniform scaling was a major

limitation in this method as the predicted speeds were limited to constant multiples of reference

speeds. This problem of uniform scaling was overcome in their second algorithm [19] where they

used dynamic time warping to allow non-uniform scaling along the time axis so that local variations

in speed could be better predicted. However, both of these methods ignored signal strengths from

neighboring cell towers in their correlation/alignment computations which as we demonstrate in

this work, reduced their accuracy when used to track the position of a moving vehicle. Further,

they were not able compare a subsequence of the test trace with the reference trace.

Several algorithms based on recursive Bayesian estimation have been proposed to track ve-

hicles from mobile phone RSS traces. HMM-based methods [6, 8] have the area of interest divided

into discrete points or grid-cells, which are treated as hidden states. The state transition matrix of

the HMM models the probabilities of transitioning from each grid-cell to each of the others. The

observation model of the HMM models the distribution of RSS readings at each grid-cell. Then

as in standard HMMs, a given sequence of RSS readings is mapped to the most likely sequence of

grid-cells. The specific algorithms all share the same fundamental concept, however, differ in the

way the transition and observation models are constructed. In [6], the transition probabilities are

defined using the reciprocal of the Manhattan distance between grid-cells. The observation prob-

abilities (emission scores) are defined using the Euclidean distance between observed and training

RSS fingerprints over the cell towers common to both fingerprints that is also weighted by the

number of common cell towers. [9] allows transition only among adjacent grid-cells and assumes

uniform transition probabilities. Their observation model computes the probability of an observed

fingerprint in a given grid-cell by using RSS histograms constructed with fingerprints collected in

that grid-cell during a training phase. In [8], the transition probabilities are constructed assum-

ing that the vehicle moves along the road with constant speed so that the transition probability

between two grid-cells is proportional to the distance between them. Their observation model is

6



similar to that of [9], however, they fit Gaussian distributions to the RSS histograms and use them

to compute the emission probabilities.

Kalman filtering is a classic tool used for tracking vehicles or other objects. Olama et al. [5]

used Kalman filtering to track the position and speed of a vehicle through a mobile network. Their

evaluation, however, is limited to simulated data.

Several attempts have been made to estimate traffic parameters such as density, travel-

time and speed using cellular network signaling information. To describe a few of them, the

STRIP(System for TRaffic Information and Positioning) [20] was carried out in France to estimate

travel-time/speed by using mobile phone signal strength data. Results from the project show that

Inter-city high way speeds were overestimated by 24-32% [21, 22]. Smith et al. [23] have used 160

phone calls to estimate traffic speed for 10-min intervals in the Washinton DC, USA area. They

were able to estimate traffic speeds with a mean error of 6-8 mph with some intervals having errors

greater than 20 mph [21, 24]. Maerivoet et al. [25] and Liu et al. [26] used call handover data

to estimate travel speed in Antwerp, Belgium and Minnesota, USA respectively. Handover data

provides less resolution compared to signal strength and hence, is suitable largely for free flow traffic

at high speeds only [21].

Most of the previous projects on traffic parameter estimation from cellular signaling data

have either used handovers or triangulation based on signal strength and/or signal timing measure-

ments. Use of techniques such as [6, 9, 19] and those presented in our work that are expected to

perform better than triangulation or DCM, has the potential to improve the estimation accuracy

of such projects. We would like to direct interested readers to [21] for a thorough review of cellular

network-based traffic estimation projects.
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3. TRACKING VEHICLE TRAJECTORIES BY LOCAL

DYNAMIC TIME WARPING OF MOBILE PHONE

SIGNAL STRENGTHS AND ITS POTENTIAL IN

TRAVEL-TIME ESTIMATION

3.1. Introduction

Time series alignment approach for vehicle tracking from mobile phone received signal

strength levels is based on comparing the signal strength sequence from a mobile phone with a

known reference signal strength sequence [12, 19]. A reference sequence is a signal strength sequence

recorded for a given road segment along with the geographical location (e.g. GPS coordinates)

at which each fingerprint was recorded. These methods rely on the observation that the signal

strength profile for a given geographical path stays adequately stable over time. Hence, as shown in

Figure 3.1, the signal strength sequence from a mobile phone (referred to as test sequence hereafter)

can be stretched or compressed along the time axis until it best matches the reference.

However, we have identified two main problems with the state of the art alignment-based

methods that reduce their effectiveness. The contributions of this paper, as listed below, are the

solutions we propose to overcome these problems.

We align multivariate time series: Typical network monitoring reports (NMRs) transmitted

by an active mobile phone include the received signal strength readings from the serving cell tower

and 6 neighboring cell towers. However, the current alignment-based methods use neighbor cell

signal strength only to determine the starting point of an alignment. Thereafter, only the signal

strength readings of the strongest cell1 are used to perform the actual alignment. Therefore, useful

neighbor cell information is neglected while performing the alignment.

As a solution to this, we use neighbor cell signal strength while performing the entire align-

ment. This makes the signal strength sequences multivariate time series where each sample point

is a vector of signal strength values instead of a scalar (Section 3.2). As an example, Figure 3.1(b)

shows the alignment of bivariate signal traces (Typical traces have 7 or more dimensions).

1This is not specifically mentioned in their publication. We verified it by contacting the authors.
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We use local sequence alignment to allow for vehicles that change roads: Current methods

use semi-global2 alignment and assume that a test sequence will align, over its entire length, with

some reference sequence. However, a vehicle can change roads resulting in a test signal sequence

that should not align entirely with any given reference sequence. Instead, as shown in Figure 3.2, a

test sequence involving a road change should partially align with the different reference sequences

for the roads traveled.

We developed local dynamic time warping (LDTW) to solve this problem by allowing par-

tial alignment of a test sequence to a reference sequence. In particular, we show how the distance

between signal vectors can be converted to a similarity score suitable for local alignment (Sec-

tion 3.3).

The algorithm presented in [19] is one of the top performing time series alignment-based

algorithms. The basic technique used in [19] is to align the derivative of the signal strength sequence

from a mobile phone with a reference sequence and estimate the path of the mobile phone as the

GPS coordinates of the series of aligned points on the reference sequence. The reference sequences

can be collected in a separate training phase or as part of drive tests usually done by mobile service

providers to evaluate their coverage. For example, let X = [x1, x2, ..., x10] and Y = [y1, y2, ..., y7]

be a reference and a test sequence respectively as shown in Figure 3.1 (a). Each sample point

xi ∈ X, yj ∈ Y represents the strength of the signal received from a given cell tower, at a given

instant in time. In this idealistic example, if Y is stretched and compressed w.r.t to X, along

the time axis as shown in Figure 3.1 (a), the match in signal strength levels between X and Y

is considered perfect. According to this alignment, the geographical path of Y is estimated as

[gps(x2), gps(x4), gps(x6), gps(x7), gps(x7), gps(x8), gps(x8)], where ∀xi ∈ X, gps(xi) are the GPS

coordinates corresponding to xi. Note that in [19], the derivatives of the signal traces are used to

perform the alignment. The basic idea, however, is the same as explained above. Further, in [19],

univariate time series representing the signal strength from a given cell is used. In our work, we

use signal strengths from multiple cells forming a multivariate time series. For example, if signal

strengths from two cell towers were used, the alignment would look similar to that in Figure 3.1

(b).

2Entire length of the test sequence is aligned to a subsequence of the reference trace
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Figure 3.1. (a) Example of signal strength sequence considering only the signal strength from one
cell tower (e.g. serving cell) and their alignment using DTW. ‘k’represents the common index used
in Equation 3.2.1.
(b) Alignment of signal traces considering signal strengths from two cells C1 and C2 (e.g. serving
cell and one of the neighboring cells).
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Path of a vehicle 
Road_1 
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Test trace
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Reference trace 
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Reference trace 
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Figure 3.2. Path of a vehicle on a road network (bottom), and idealistic alignment of corresponding
signal traces (top)

3.2. Dynamic Time Warping Signal Strength Traces

Dynamic Time Warping (DTW) is a popular technique for comparing series of values,

especially time series. Given a pair of time series, the basic idea behind DTW is to stretch or

compress them along the time axis so as to achieve minimum (maximum) distance (similarity)

between their values. To elaborate, let X = [x1, x2, ...xi, ...xM ] and Y = [y1, y2, ...yj , ...yN ] be

two time series. Sample points of X and Y are indexed by i ∈ {1, 2, ...,M} and j ∈ {1, 2, ..., N}

respectively. Let φx and φy be two functions (called warping functions) that map the indices i of

X and j of Y respectively, to a common axis indexed by k ∈ {1, 2, ..., T}, i.e.,

φx(k) = i

φy(k) = j,∀k ∈ {1, 2, ..., T}
(3.2.1)
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and satisfy the monotonicity constraint

φx(k + 1) ≥ φx(k), ∀k ∈ {1, 2, ..., T − 1}

φy(k + 1) ≥ φy(k)

Let φ aggregate φx and φy as,

φ(k) = (φx(k), φy(k)) (3.2.2)

Then the total distance between X and Y under the aggregate warping function φ, denoted by

D(X,Y, φ), is defined as,

D(X,Y, φ) =

T∑
k=1

d(xφx(k), yφy(k)), (3.2.3)

where d(x, y) is some function that can measure the distance between elements x and y, e.g.

Euclidean distance if x and y are vectors in an Euclidean space. The goal of DTW is to find the

warping function φ so as to minimize D(X,Y, φ), i.e., find φ∗ = arg minφD(X,Y, φ).

Figure 3.3 shows the minimum distance DTW alignment for the same example in Figure 3.1

described earlier. In this case the warping functions are as follows, and the distance, D(X,Y, φ∗) =

0.

φx(1) = 2, φx(2) = 4, φx(3) = 6,

φx(4) = 7, φx(5) = 7, φx(6) = 8, φx(7) = 8,

φy(k) = k, ∀k ∈ {1, 2, ..., 7}

In its most conventional form, DTW is performed to align two sequences over their entire

lengths (global alignment). However, in signal sequence applications, among others, the reference

sequence is longer than the test sequence. Therefore, a variant called semi-global subsequence

DTW is used, where the entire length of the test sequence is aligned to some subsequence of the

reference sequence [27, 28, 29]. The example we describe in Figure 3.3 also resembles subsequence

DTW. Please refer to [27, 30] for further details on DTW and its variants. In contrast, the local

alignment we propose in Section 3.3 allows a subsequence of the test sequence to be aligned to a

subsequence of the reference.
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With our fingerprint sequences, each xi ∈ X is a set of ordered pairs of the form

{(c0
x, r

0
x), (c1

x, r
1
x), ..., (c6

x, r
6
x)}, where ∀n ∈ {0, 1, ..., 6}, rnx is the strength of the signal from the

cell tower with ID cnx, as received by the device (phone) used to collect the reference trace X. Cell

IDs include the identification codes of the serving cell tower and 6 neighboring cell towers. Similarly

for the test sequence, each yj ∈ Y takes the form {(c0
y, r

0
y), (c

1
y, r

1
y), ..., (c

6
y, r

6
y)}.

The distance between two sample points xi and yj , i.e., d(xi, yj), is defined as the normalized

Euclidean distance using signal strength readings from cell towers which are present in either xi

or yj or both as shown below. Let Cu be the the union of cell IDs present in xi or yi, and let ~xi

and ~yi be signal strength vectors defined over Cu. Let β be a very low signal strength level used to

represent the strength of the signal from a cell tower that was not reported by the phone (may be

because it was out of range or 7 others were stronger). Then d(xi, yj), is defined as below.

Cu = {ci : (ci, r
i
x) ∈ xi or (ci, r

j
y) ∈ yi}

~xi = (r0
x, .., r

p
x, .., r

|Cu|
x ), where rpx =

 rqx , if (cp, r
q
x) ∈ xi

β , otherwise

~yi = (r0
y, .., r

p
y, .., r

|Cu|
y ), where rpy =

 rqy , if (cp, r
q
y) ∈ yj

β , otherwise

∀p : 0 ≤ p ≤ |Cu|

d(xi, yj) = Euclidean norm(~xi−~yi)
|Cu|

(3.2.4)

Note that in subsequent sections of this paper, whenever the phrase signal distance is used,

it refers to the normalized Euclidean distance defined above.

For any given pair of signal strength sequences X and Y , we define a distance ma-

trix DXY , where each element DXY [i, j] = d(xi, yj), and use it as input to perform subse-

quence DTW [27]. The result of subsequence DTW is the minimum distance warping path

φ(k) = (φx(k), φy(k)),∀k ∈ {1, ..., T}. Then, the geographical path of the test sequence Y , is

estimated to be [gps(xφx(k)), ..., gps(xφx(T ))].
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Figure 3.3. Dynamic Time Warping path for the example in Figure 3.1

3.3. Local Dynamic Time Warping

Reference sequences are typically collected for road segments of interest. However, for

instance, a vehicle can enter and leave a given road segment as shown in Figure 3.2. This will

result in a test sequence whose mid portion will align with the reference sequence for the road of

interest, but not the ends. There can be other types of road changes as well which will produce test

sequences where only certain subsequences will align with a given reference sequence. Semi-global

DTW described in the previous section will be unable to align this kind of traces as it tries to align

the entire length of the test sequence to some portion of the reference sequence. We propose local

DTW to handle such sequences. The idea behind local alignment is to align a subsequence(s) of

the test sequence to a subsequence(s) of the reference sequence.

Local sequence alignment is a well studied problem with regard to biological sequences

(DNA and proteins), and usually employs the famous Smith-Waterman algorithm [31].

Given two sequences X = [x1, x2, ...xi, ...xM ] and Y = [y1, y2, ...yj , ...yN ], the goal of local

alignment is to find the best alignment between a subsequence of X and a subsequence of Y . To ex-

plain more precisely, let Xsxex = [xsx , ..., xex ], and Ysyey = [ysy , ..., yey ] be contiguous subsequences

of X and Y respectively, with 1 ≤ sx ≤ ex ≤ M and 1 ≤ sy ≤ ey ≤ N . Then, the optimal local

alignment between X and Y refers to the values of sx, ex, sy, ey and the warping function φ that

minimize, D(Xsxex , Ysyey , φ). (D is defined as in Equation 3.2.3).
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If a suitable similarity function s(xi, yj) is defined to measure the similarity between ele-

ments xi and yj , Equation 3.2.3 can be re-written as,

S(X,Y, φ) =

T∑
k=1

s(xφx(k), yφy(k)) (3.3.1)

Now, the optimal local alignment between X and Y refers to the values of sx, ex, sy, ey and the

warping function φ that maximize, S(Xsxex , Ysyey , φ).

With a combination of dynamic time warping and the Smith-Waterman algorithm, local

alignment of general time series can be attempted as follows.

Let V be a matrix (called the dynamic programming matrix) as shown in Figure 3.4, where

each entry V (i, j) is recursively defined as below.

Initialization: for 0 ≤ i ≤M and 0 ≤ j ≤ N

V (i, 0) = 0, V (0, j) = 0 (3.3.2)

Recurrence: for 1 ≤ i ≤M and 1 ≤ j ≤ N ,

V (i, j) = Max



V (i, j − 1) + s(xi, yj) (i)

V (i− 1, j − 1) + s(xi, yj) (ii)

V (i− 1, j) + s(xi, yj) (iii)

0 (iv)

(3.3.3)

Matrix V can be computed iteratively, each row (column) at a time starting with the first row

(column). Another matrix T , with elements defined as below, is used to record, for each cell (i, j)

in V, whether the cell (i, j − 1), (i− 1, j − 1) or (i− 1, j) was used to derive V (i, j), i.e., which one

of the options i through iv in Equation 3.3.3 was used to assign the value for V (i, j).

Trace-back: for 1 ≤ i ≤M and 1 ≤ j ≤ N ,

T (i, j) = arg max
(u,v)∈{(i,j−1),(i−1,j−1),(i−1,j)}

V (u, v) (3.3.4)

In Figure 3.4, the three arrows pointing out of cell (i, j) show the different options (i− iii)

available for the calculation of V (i, j). If none of these options gives a positive value, a zero will
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be written in the cell, using option (iv). In this example, we assume the diagonal option (solid

arrow) provided the highest value for V (i, j), hence, T (i, j) = (i− 1, j − 1) for this instance. Note

that Equation 3.3.3 resembles the symmetric step pattern used in DTW. However, it can easily be

modified to account for other step patterns.

The above equations make sure that V (i, j) is the score of the optimal local alignment

between prefixes [x1, ..., xi] and [y1, ..., yj ]. Let (i∗, j∗) = arg max(i,j) V (i, j). Then, V (i∗, j∗) is the

score of the optimal local alignment between X and Y . At each matrix cell (i, j), the previous cell

that was used to compute V (i, j) is recorded in T (i, j). The optimal local alignment between X

and Y is found by using the entries in T to trace the path back from the (i∗, j∗)th cell until a cell

with value 0 is reached. In Figure 3.4, assume that cell (i + 1, j + 1) contains the highest value

V (i∗, j∗), and that V (i−3, j−2) = 0. Then, assuming that the trace-back from (i∗, j∗) is as shown

by solid arrows, the optimal local alignment between X and Y is given by,

yj−2 yj−1 yj−1 yj yj yj+1

xi−3 xi−2 xi−1 xi xi+1 xi+1

.

Signal strength sequences by default, offer distance measures that have to be converted to

similarities before Equation 3.3.3 can be applied. In bioinformatics, substitution matrices such as

BLOSUM [32] or PAM [33] define the similarity scores for protein sequences, such that s(a, b) would

be positive if a and b are two amino acids similar to each other in terms of their physiochemical

properties, or negative if a and b are different. The magnitude of s(a, b) will be proportional to the

degree of similarity/dissimilarity between a and b.

Filling a value V (i, j) in the dynamic programming matrix corresponds to extending some

alignment by adding the pair of characters (xi, yj) to it. This may increase or decrease the total

score V (i, j) of the growing alignment depending on the sign of s(xi, yj). Should the score drop

below 0, the alignment is not extended any further and a new alignment may be started. This

corresponds to option iv in Equation 3.3.3. This works fine for biological sequences because the

substitution matrices used to compute s(a, b) are defined such that a score of 0 means the alignment
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Figure 3.4. Dynamic programming matrix for local alignment. The matrix is filled using Equa-
tions 3.3.2 and 3.3.3. The path is determined using Equation 3.3.4.

is no better than a random alignment and therefore, makes good sense not to extend it any further.

However, such similarity functions are not readily available for general time series.

To perform local alignment between signal strength sequences, we would ideally want to

have a similarity function s(xi, yj) with the following properties.

1. s(xi, yj) should be a decreasing function of the actual geographical distance between xi and

yj . The geographical distance between two sample points xi and yj , denoted by dgeo(xi, yj),

is computed as the distance between GPS coordinates gps(xi) and gps(yj).

2. For some geographical distance threshold dthgeo (say 100m),

s(xi, yj)

 > 0 , if dgeo(xi, yj) < dthgeo

≤ 0 , otherwise

This will ensure that aligning geographically close points will cause the alignment score to

increase and promote extension of the alignment, and that erroneously aligning geographically
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distant points will cause the alignment score to decrease and the extension of the alignment

to cease.

Relying on the expected positive correlation between dgeo(xi, yj) and the normalized Eu-

clidean distance d(xi, yj) in the signal space [15],

s(xi, yj) = C − d(xi, yj),

where C is some constant
(3.3.5)

usually satisfies property 1 for most pairs xi, yj . However, this does not readily satisfy property 2,

unless a suitable value is chosen for C.

If a set of multiple reference (training) sequences, Ref = {X1, X2, ..., XP } is available for

a given road segment of interest, we can estimate C using Algorithm 1 as follows. For all distinct

ordered pairs Xu, Xv of reference traces, we take a random contiguous subsequence Y of Xv and

align it to Xu (lines 3-6) using subsequence DTW as described in section 3.2. Then, the optimal

alignment found in the previous step (line 6) is shifted to the left or right by a geographical distance

dthgeo and the DTW distance is recomputed (line 7). We treat the normalized DTW distance of

an optimal alignment as an example for the signal distance between two sample points that are

supposed to be aligned (positive example), and save it in the set of labeled distance tuples (LD)

with class-label +1 (line 8). On the other hand, we treat the normalized DTW distance of a shifted

alignment as an example for the signal distance between two sample points that are not supposed

to be aligned (negative example), and save it in the set of labeled distance tuples with class-label

−1 (line 9). A shifted alignment approximately simulates the situation when a vehicle moves into

a different road and starts to deviate from the road segment of interest. This process repeats

for a specified number of iterations (i lim) for each distinct ordered pair Xu, Xv ∈ Ref , and all

normalized DTW distances are saved in the set LD along with their respective class-labels. The

reason for taking random subsequences of Xv is because otherwise, the alignments will be between

pairs of full length reference sequences which does not represent the true situation when the system

is in operation where relatively shorter length test sequences are aligned to a reference trace.

With the above setup, we formulate the problem of estimating C as the problem of esti-

mating the best hyperplane (in this case a value in the 1-D space) for separating the positive and
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negative classes of signal distances in LD. We do this by minimizing the loss function under the

logistic model (line 12).

Algorithm 1 Estimating C with Multiple reference traces

1: Ref = {X1, X2, ..., XP } . Set of reference traces
2: LD = { } . Set of labeled DTW distances
3: for Xu, Xv ∈ Ref, u 6= v do
4: for i = 1 to i lim do
5: Y ← random subsequence of Xv

6: norm dtw dist = D(Xu,Y,φ∗)
len(φ∗) . See note below

7: norm shifted dtw dist = D(Xu,Y,φs)
len(φs)

8: LD ← LD ∪ (+1, norm dtw dist)
9: LD ← LD ∪ (−1, norm shifted dtw dist)

10: end for
11: end for
12:

C ← arg min
b

 ∑
(l,d)∈LD

log(1 + exp(−l(b− d)))


Note: len(φ∗) and len(φs) are the lengths of the optimal and shifted alignments respectively.

In our experiments, we estimated C using just two reference traces. However, in case

collecting even two reference sequences is inconvenient, we propose the following procedure to

estimate C from multiple test sequences. Let Test set = Y1, Y2, ..., YQ be a collection of signal

traces obtained from mobile phones connected to cell towers in a geographical area of interest.

Note that we do not have GPS coordinates for these sequences which makes it difficult to know,

with very high reliability, whether they belong to the road segment of interest or not. Nevertheless,

they are predicted to be on the road segment of interest based on their handover sequence [34].

We then estimate C using the same procedure as in Algorithm 1 by replacing the set of reference

sequences with the set of test sequences, Test set. However, for a given pair (Yu, Yv) of test traces,

Yv is used as it is without taking random subsequences because these sequences are representative

of real test sequences.

3.4. Experimental Evaluation and Discussion

We evaluated the performance of our proposed algorithms and comparison algorithms using

signal strength data we collected by driving on selected road segments as well as real call traces

collected for us by a mobile network service provider.
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The signal strength traces we collected were recorded on five different road segments (Fig-

ure 3.5) using two smart phones running Android OS. For each selected road segment, we drove

multiple trips along the road under natural traffic conditions and recorded signal strength readings

at a sampling interval of one second. GPS coordinates of the phone were also recorded at the same

sampling rate (for use with reference traces and for evaluation purposes).

Let Z = {z1, ..., zN} be the collection of signal strength sequences for a given road segment.

In our evaluation, we took each ordered pair (zr, zq) ∈ Z × Z, where r 6= q, and treat zr and zq as

reference and test sequences respectively. We then break zq into a number of random subsequences

z1
q , . . . , z

m
q , . . . , z

M
q (M ≈ 30), and align each subsequence zmq to the reference tr.

The reason for breaking the test sequence zq into random subsequences is that the sequences

that we have collected are longer than traces of calls made by typical phone users. Therefore,

aligning the test sequence as it is does not entirely represent the true situation when actual call

traces are aligned as they tend to be shorter. In fact, analysis of the call trace dataset provided

to us by the mobile network provider indicated that call duration is approximately exponentially

distributed with a mean of 110 seconds. Therefore, we generated random subsequences according

to the said distribution. Furthermore, it allows us to do a better evaluation with the available data

as this is similar to bootstrapping.

Alignments were performed using our proposed algorithms and comparison algorithms ab-

breviated and listed below.

• N LDTW: Local Dynamic Time Warping as described in section 3.3.

• N DTW: Subsequence Dynamic Time Warping as described in section 3.2.

• S DDTW: Derivative Dynamic Time Warping using only the serving cells signal strengths.

• NN Loc: Nearest neighbor-based localization where each point on the test trace is assigned to

the nearest point on the reference trace based on the received signal strength fingerprint [15,

35].

For each sample point xi of some test subsequence zmq , let aligned(xi) be the sample point

of zr to which xi is aligned. Then the position estimation error of xi, denoted by pos error(xi), is
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defined as,

pos error(xi) = dgeo(xi, aligned(xi)).

i.e., the geographical distance between the GPS coordinates of xi and aligned(xi).

Figure 3.6 shows the cumulative distribution of the position estimation error for all sample

points, on all random subsequences of all test traces tq, in all ordered pairs (zr, zq) ∈ Z × Z, for

all three road segments. Results indicate that both N LDTW and N DTW are able to estimate

the position with a lower error compared to S DDTW and NN Loc. The reason why N LDTW

and N DTW perform equally well is because these sequences overlap with each other over their

entire lengths, hence global or local alignment does not make a difference (Results for partially

overlapping traces are presented later in this section). The figure also shows that NN Loc performs

better than S DDTW which is unexpected because the results presented in [19] suggest otherwise.

However, S DDTW [19] was originally proposed for speed tracking, not position tracking. There-

fore, we investigated the speed estimation error for the same experiments and present the results

in Figure 3.7.

We see that N LDTW and N DTW perform well in both position and speed estimation.

S DDTW performs just as well as N LDTW and N DTW and better than NN Loc in terms of

speed estimation confirming the results published in [19], but performs worse than the other three

algorithms in terms of position estimation. This indicates that S DDTW produces comparatively

large position errors but the error is fairly consistent (the estimated trace is mostly just translated

along the road) keeping the speed calculation minimally affected by the position error. On the

other hand, NN Loc can erroneously estimate the position of some sample points such that their

actual order is altered (Note that this doesn’t happen with any of the alignment-based methods).

This exaggerates the effect of position error on the speed calculation.

To evaluate the performance of the different algorithms when the test trace is not supposed

to align entirely with the reference trace, we performed experiments similar to those explained

above but allowed test traces involving other roads near the intersections with the road of interest.

However, if a randomly selected test trace happened to be entirely within the road segment of

interest, we select a random point yi on the test trace, locate the corresponding point xj on the

reference trace, and remove the portion of the reference trace to the left (right) of xj if yi is
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Figure 3.5. Road segments in Sri Lanka, used for the experiments conducted in this sutdy.

closer to the left (right) end of the test trace. Note that this trimming of the reference trace is

only for that particular alignment and the full reference trace will be considered accordingly for

subsequent alignments. Removal of a portion of the reference trace means a part of the test trace

either at the left or the right end would ideally have no reference to align to. Figure 3.8 shows

the cumulative distribution of position estimation error for these experiments. The figure shows

that our local dynamic time warping algorithm N LDTW outperforms all comparison algorithms.

This is expected because N LDTW was developed specifically to handle such partially overlapping

traces. Not surprisingly, the global alignment methods perform poorly because they try to align

the entire length of the test trace while it is not possible to do so. It is also evident that NN Loc

performs better than the global alignment methods, because it estimates the position (localization)

of each sample point independently of others so that unlike in the global alignment methods, the

localization of sample points that are supposed to align to the reference trace are not affected by

the localization of sample points that are not supposed to align.
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Figure 3.6. Cumulative distribution of position estimation error under different algorithms for fully
overlapping traces.

To evaluate the performance of the algorithms on how they can be used to estimate average

travel-time on a selected road segment, we collaborated with a mobile network service provider to

collect a dataset of call traces made by their mobile subscribers (subscriber identification informa-

tion was removed). The signal strength traces of calls made by users connected to a selected set of

towers in the vicinity of the road segment were saved by the service provider. This included over

1300 calls which we selected as relevant for our road segment based on handover sequence [34].

During the same period of time, we recorded vehicle registration numbers and time stamps at the

two ends of the road segment, and computed vehicle travel-times to be used as ground truth.

We had previously collected a reference trace for the road segment and aligned the call

traces to it. Because only a few calls had lasted the full length of the road segment from start to

finish, we divided the road segment into approximately 100m subsegments and computed average

travel-time for each of them. Travel-time for a given vehicle (as estimated from a call trace) for a

given subsegment is the difference in time when it first enters the subsegment and then leaves it. We
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Figure 3.7. Cumulative distribution of speed estimation error under different algorithms for fully
overlapping traces.

computed estimates for 10 minute periods. The average travel-time for a given 100m subsegment,

for a given 10 minute interval, is the travel-time averaged over all vehicles that traveled through

that subsegment within the given time interval. The average travel-time for the entire road segment

for a given 10 minute interval is the sum of average travel-times for all subsegments within the given

time interval.

Figure 3.9 shows how the estimated average travel-times compare with the actual average

travel-times computed through manual number plate recognition. To summarize the error, we

define average percentage error (avg pct error) for travel-time estimation as shown below,

avg pct error =

∑
all time intervals i

|est avg tti−act avg tti|
act avg tti

No. of time intervals
(3.4.1)

where est avg tti and act avg tti are the estimated and actual average travel-times for the road

during the ith time interval.
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Figure 3.8. Cumulative distribution of position estimation error under different algorithms for
partially overlapping traces.

We also computed the Pearson correlation coefficient w.r.t actual travel-times and its two-

tailed statistical significance. As shown in Figure 3.9, N LDTW has the lowest average percentage

error of 14%, highest correlation coefficient of 0.76 and shows a significant correlation (at the 5%

level) with actual travel-times with a p-value of 0.02. N DTW and S DDTW achieve average

percentage errors of 19% and 23% respectively, but do not show significant correlation with actual

travel-times.

On the other hand, NN Loc (not shown in Figure 3.9) has performed poorly with an average

percentage error of about 400%. We are unable to pinpoint the exact cause of this as we do not have

GPS readings for these subscriber call traces. However, a possible reason, as mentioned before, is

that NN Loc can alter the proper geographical ordering of sample points exagerating the effect of

localiation error on the travel-time computation. In fact, our investigation revealed that in 35%

of cases, a vehicles estimated entry time to a 100m road subsegment was later than its exit time
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Figure 3.9. Travel-time estimation performance of the algorithms. The values e, r and p next to
legend items are, average percentage error (Equation 3.4.1) and Pearson correlation coefficient w.r.t
actual travel-times, and the two-tailed p-value of the correlation respectively, for each algorithm.

which indicates an incorrect ordering of sample points. Although we omited these negative time

differences, they cause time overestimations for the adjacent subsegments.

3.5. Conclusions and Future Work

In this work, we developed a local dynamic time warping algorithm for tracking vehicles

from mobile phone signal strength sequences, including those vehicles that make road changes. Our

algorithm makes good use of all the available measurement data as we include neighbor cell signal

strengths in the computation of the alignments. Our experiments on collected signal strength se-

quences as well as real-world subscriber call traces demonstrated better performance of our proposed

algorithms (N LDTW and N DTW) compared to existing algorithms (S DDTW and NN Loc). In

particular, the local DTW algorithm N LDTW performed better than its global/subsequence DTW

counterparts.

Our experiments on subscriber call trace data show that mobile phone signal traces can be

used to successfully estimate average travel-time for a given road segment. However, our evaluation
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was limited by the rather short duration for which call trace data was made available to us. As

future work, we plan to further collaborate with a mobile service provider to acquire a larger dataset

covering several days.
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4. COMPLETE OBSERVATION MODEL FOR VEHICLE

TRACKING FROM MOBILE PHONE RECEIVED

SIGNAL STRENGTH TRACES

4.1. Introduction

Various disturbances in the radio propagation environment such as those caused by the

movement of vehicles/pedestrians and changes in atmospheric conditions cause fluctuations in re-

ceived signal strength levels. As mentioned in Chapter 1, a GSM fingerprint measured by a phone

includes the strengths of the signals it receives from the associated cell tower and the six strongest

neighbor cell towers. However, as signal strength levels fluctuate over time, the phone may associate

with a different cell tower and/or the towers that act as the six strongest neighbors may change.

Furthermore, even if a cell has a sufficiently high signal strength, if the phone cannot correctly de-

code the signal from that cell, for instance, due to low signal to noise ratio, it will not be included

in the fingerprint [36, 37, 3]. Therefore, as shown in Figure 4.1 using real measurements, even for

the same location, the set of cells included in a fingerprint may change when measured at different

times.

A key component of the Bayesian estimation method for vehicle tracking from mobile

phone RSS levels is the observation model, which models for each grid-location (Figure 1.1)

in the area of interest, the probability distribution of fingerprints observed at that location.

Let Rt = {(ct,1, y
ct,1
t ), (ct,2, y

ct,2
t ), . . . , (ct,Lt , y

ct,Lt
t )} be a GSM fingerprint, where for each r with

1 ≤ r ≤ Lt ≤ 7, y
ct,r
t is the strength of the signal received from the cell tower with identification

code ct,r, at time t. To account for all the variability mentioned in the previous paragraph, the

probability of observing a fingerprint Rt at a given location si, denoted by P (Rt|si), should account

for two components of variation, i.e., the variation of the set of cells included in the fingerprint and

the fluctuations in signal strength levels. However, as evident in Section 4.2, existing methods do

not model the former component.

The contribution of this work is that we propose an observation model that models the

variation of the set of cells included in the fingerprint in addition to the fluctuations in their
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Figure 4.1. Variation of RSS levels and cell towers included in fingerprints collected at different
times (several hours apart), at some given location. For any fingerprint Rt (horizontal axis) and
cell c (depth axis) the height of the column represents the RSS level of cell c as reported by Rt.
A missing bar indicates that the cell is not reported by that fingerprint. Please note that for
convenience, cell IDs have been renumbered consecutively starting from 1.

signal strength levels. To achieve this, we define P (Rt|si) as the probability of the set of cells

{ct,1, . . . , ct,Lt} being present in a fingerprint observed at location si and their received signal

strength levels being y
ct,1
t , . . . , y

ct,Lt
t respectively. We show how maximum likelihood learning can be

used to estimate the parameters of the probability distribution of P (Rt|si) for each predefined grid

location si. Subsequently, we use the proposed observation model with a dynamic Bayesian network

for tracking vehicles. Furthermore, we apply the proposed algorithm to estimate travel-times for a

road segment.

The organization of this Chapter is as follows. In Section 4.2 we discuss the observation

models used in existing work. In Section 4.3 we provide the details of the complete observation

model that we propose. The procedure for learning the parameters of the proposed model is de-

scribed in Section 4.4. We describe the experimental evaluation of our proposed method comparing
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it to some of the existing ones, and discuss the results in Section 5.3. The concluding remarks of

the Chapter are given in Section 4.7.

4.2. Existing Observation Models

Probabilistic methods model received signal strength levels as random variables. Let f csi(y)

be the probability mass function for the received signal strength levels from cell c at some location

si. Then, assuming independence between cell towers, it is typical to define the probability P (Rt|si)

of observing the fingerprint Rt at location si as [7, 8, 16],

P (Rt|si) =
∏
c∈Ct

f csi(y
c
t ), (4.2.1)

where Ct = {ct,1, . . . , ct,Lt} is the set of cells present in fingerprint Rt.

Equation 4.2.1 forms the observation model used in CellSense [7], and the probability mass

functions f csi are estimated using histograms constructed with signal strength measurements taken

during a training phase that involves war-driving. For mathematical convenience and as a good fit to

empirical data, many authors model signal strength levels as Gaussian random variables [8, 16, 18].

Therefore,

f csi(y) = N(µcsi , σ
c
si) =

1

σcsi
√

2π
exp

(
−(
y − µcsi√

2σcsi
)2

)
, (4.2.2)

and

P (Rt|si) =
∏
c∈Ct

1

σcsi
√

2π
exp

(
−(
yct − µcsi√

2σcsi
)2

)
, (4.2.3)

where µcsi is the mean signal strength at location si from cell c, and σcsi is the standard deviation

of the corresponding signal strength.

The observation model used in [16] is formed using Equation 4.2.3, and its authors use

radio wave propagation tools to predict µcsi . Furthermore, the standard deviation of signal strength

levels σcsi is assumed to be the same, say σ, at any location and for any cell, which is a reasonable

assumption used in other works as well [18, 6].

In [8], Equation 4.2.3 is slightly modified as it considers only those cell towers present in the

observed fingerprint for which µcsi has been successfully estimated during the training phase. Fur-
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thermore, the logarithm of P (Rt|si) is used as it is computationally convenient, and is normalized

with respect to the number of cell towers considered in the computation.

ln (P (Rt|si)) =
1

|Ct ∩ Csi |
∑

c∈Ct∩Csi

ln

(
1

σcsi
√

2π
exp

(
−(
yct − µcsi√

2σcsi
)2

))

= − 1

|Ct ∩ Csi |
∑

c∈Ct∩Csi

[
(
yct − µcsi√

2σcsi
)2 + ln(σcsi

√
2π)

]
,

(4.2.4)

where Csi is the set of cell towers for which mean signal strength levels have been successfully

estimated at location si.

CTrack [6] is another HMM-based vehicle tracking algorithm. In [6], unlike the other

methods discussed so far, the fingerprints collected during the training phase are not used to

construct a histogram nor fitted to a Gaussian distribution. Instead, a score called the emission

score that is proportional to the likelihood of an observed fingerprint Rt being generated from

location si, denoted by E(Rt, si), is computed by comparing Rt to each of the training fingerprints

for location si as follows. As defined below, let Ep(Rt, Ri,j) be the pairwise emission score between

an observed fingerprint Rt and the jth training fingerprint for the location si.

Ep(Rt, Ri,j) = |Ct ∩ Ci,j |λm + dmax −
1

|Ct ∩ Ci,j |

√ ∑
c∈Ct∩Ci,j

(yct − yci,j)2, (4.2.5)

where Ct and Ci,j are the set of cell towers present in Rt and Ri,j respectively, λm is a weighting

parameter empirically set to 3, and dmax = 32. Then, the emission score

E(Rt, si) = arg max
j
{Ep(Rt, Ri,j)}. (4.2.6)

This emission score resembles Equation 4.2.4 because, if σcsi are assumed to be the same

at all locations for all the cells, then, ln (P (Rt|si)) is proportional to the last term (Euclidean

distance) in Equation 4.2.5. However, it must be noted that Ep(Rt, Ri,j) has an additional term

that is proportional to the number of cell towers shared between the observed and the training

fingerprints.
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All of the observation models mentioned above, address the variation of received signal

strength levels from the cells towers present in the fingerprint, but ignore the variation of the set

of cell towers itself.

4.3. Complete Observation Model

In this Section, we propose an observation model for GSM received signal strength finger-

prints that addresses the variation of the set of reported cell towers in addition to the variation of

signal strength levels.

Let C = {1, 2, . . . , c, . . . , L} be the set of cell IDs of the cell towers in the area of interest

(actual IDs renumbered from 1 to L for convenience). Let Rt be the content of the fingerprint

reported at time t, as shown below.

Rt = {(ct,1, y
ct,1
t ), . . . , (ct,r, y

ct,r
t ), . . . , (ct,Lt , y

ct,Lt
t )} (4.3.1)

where each ct,r ∈ C is a cell ID, and y
ct,r
t is the received signal strength from cell ct,r at time t.

Then, Ct = {ct,1, . . . , ct,r, . . . , ct,Lt} is the set of Cell IDs present in Rt, and Y Ct
t =

[y
ct,1
t , . . . , y

ct,r
t , . . . , y

ct,Lt
t ] is the vector of signal strength levels reported by Rt.

Let S = {s1, s2, . . . , si, . . . , sN} be a set of discrete locations (grid-locations) in the area of

interest as in Figure 1.1. Let st be the location of the measuring device (phone) at time t, and

let P (Rt|st = si) be the probability of observing the content of a fingerprint Rt given the phone

reporting it was at location si at time t. Then, P (Rt|st = si) is the probability of the cell IDs in

Ct being present in a fingerprint and their RSS values being Y Ct
t , given that the fingerprint was

generated from location si. We define this formally as follows.

For any Cu ∈ C, let Y Cu
i = [y

cu,1
i , . . . , y

cu,h
i , . . . , y

cu,Lu
i ] be a random vector, where

∀cu,h ∈ Cu, y
cu,h
i is the random variable representing the instantaneous signal strength from cell

cu,h as received at location si. Let Ci ⊂ C be the random variable (random set) that repre-

sents the set of Cell IDs present in a fingerprint generated by a phone at location si. Then

Y Ci
i = [y

ci,1
i , . . . , y

ci,h
i , . . . , y

ci,Li
i ] is the random vector, where ∀ci,h ∈ Ci, random variable y

ci,h
i

represents the instantaneous signal strength from cell ci,h as received at location si. Then,

P (Rt|st = si) = P (Ct, Y
Ct
t |st = si) = P (Ci = Ct, Y

Ci
i = Y Ct

t ). (4.3.2)
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We re-write P (Rt|st = si) as,

P (Rt|st = si) = P (Ci = Ct|Y Ci
i = Y Ct

t ).P (Y Ci
i = Y Ct

t ). (4.3.3)

For a GSM network, a fingerprint includes the received signal strength levels of up to 7

strongest cell towers (associated cell + up to 6 strongest neighbors) with received signal strength

levels above some minimum detectable threshold τ . However, due to low signal to noise ratio

and/or other reasons, a phone may fail to decode the signal from a cell even if it is within range

and among the strongest 7, in which case it will not be included in the fingerprint. Therefore, the

cells reported will be the associated cell and the 6 strongest neighbors that the phone has been able

to decode successfully. Let W c
i , be the event that the phone has been able to successfully decode

cell c at location si.

With this setup, we compute P (Ci = Ct|Y Ci
i = Y Ct

t ) of Equation 4.3.3 as follows.

Case 1: |Ct| = 7

If signal strength readings from exactly 7 cell towers are present in the fingerprint, it means that

each of the cells present in the fingerprint has a signal strength greater than the minimum detectable

threshold τ and the phone has successfully decoded the signal from it, and each of the other cells

either has a signal strength lower than the weakest reported cell and/or the phone has failed to

decode the signal from it. Therefore, given Y Ci
i = Y Ct

t , the following statement is true.

Ci = Ct ⇔ [∀c ∈ Ct, yci > τ ∩W c
i ] ∩ [∀d ∈ C − Ct, ydi < min(Y Ct

t ) ∪ ¬W d
i ],

where min(Y Ct
t ) = min ∀c∈Ct{yct}. Furthermore, since Y Ci

i = Y Ct
t , yci = yct for each c ∈ Ct.

Therefore,

P (Ci = Ct|Y Ci
i = Y Ct

t )

= P ([∀c ∈ Ct, yct > τ ∩W c
i ] ∩ [∀d ∈ C − Ct, ydi < min(Y Ct

t ) ∪ ¬W d
i ]).

(4.3.4)
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As in most existing work [8, 16, 18, 6, 7], we assume that the signal strengths from individual

cells are independent of each other. Furthermore, we assume that the events W c
i are independent

of each other as well. Then,

P (Ci =Ct|Y Ci
i = Y Ct

t )

=
∏
∀c∈Ct

P (yct > τ ∩W c
i )

∏
∀d∈C−Ct

P (ydi < min(Y Ct
t ) ∪ ¬W d

i )

=
∏
∀c∈Ct

P (W c
i |yct > τ)P (yct > τ)

∏
∀d∈C−Ct

[1− P (ydi > min(Y Ct
t ) ∩W d

i )]

=
∏
∀c∈Ct

P (W c
i |yct > τ)P (yct > τ)

∏
∀d∈C−Ct

[1− P (W d
i |ydi > min(Y Ct

t ))P (ydi > min(Y Ct
t ))]

(4.3.5)

Since Y Ct
t contains actual readings from a fingerprint, yct > τ, ∀c ∈ Ct and P (yct > τ) = 1,∀c ∈ Ct.

Therefore,

P (Ci = Ct|Y Ci
i = Y Ct

t )

=
∏
∀c∈Ct

P (W c
i |yct > τ)

∏
∀d∈C−Ct

[1− P (W d
i |ydi > min(Y Ct

t ))P (ydi > min(Y Ct
t ))]

(4.3.6)

We make the simplifying assumption that a phone’s ability to decode the signal from a cell is

independent of RSS given that RSS> τ . Therefore, we define wdi = P (W d
i |ydi > τ) = P (W d

i |ydi >

min(yct )). Then,

P (Ci = Ct|Y Ci
i = Y Ct

t ) =
∏
∀c∈Ct

wci
∏

∀d∈C−Ct

[1− wdi P (ydi > min(Y Ct
t ))]. (4.3.7)

As mentioned before in Section 4.2, we model the received signal strength level from cell

c ∈ C, at location si, denoted by yci , as a Gaussian random variable with mean µci and standard

deviation σ. Therefore,

P (yci < y) =
1

σ
√

2π

∫ y

−∞
exp(−(

y − µci√
2σ

)2)dy

P (yci = y) =
1

σ
√

2π
exp(−(

y − µci√
2σ

)2)

(4.3.8)
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Therefore,

P (Rt|st = si)

= P (Ci = Ct|Y Ci
i = Y Ct

t ).P (Y Ci
i = Y Ct

t )

=
∏
∀c∈Ct

wci
exp(−(

yct−µci√
2σ

)2)

σ
√

2π

∏
∀d∈C−Ct

1− wdi
∫ ∞
min(Y

Ct
t )

exp(−(
y−µdi√

2σ
)2)

σ
√

2π
dy

 .
(4.3.9)

Case 2: |Ct| < 7

If signal strength readings from less that 7 cell towers are present in the fingerprint, it means

that each of the cells present in the fingerprint has a signal strength greater than the minimum

detectable threshold τ and the phone has successfully decoded the signal from it, and each of the

other cells either has a signal strength lower than τ and/or the phone has failed to decode the

signal from it. Therefore, given Y Ci
i = Y Ct

t , the following statement is true.

Ci = Ct ⇔ [∀c ∈ Ct, yci > τ ∩W c
i ] ∩ [∀d ∈ C − Ct, ydi < τ ∪ ¬W d

i ].

Therefore,

P (Rt|st = si)

= P (Ci = Ct|Y Ci
i = Y Ct

t ).P (Y Ci
i = Y Ct

t )

=
∏
∀c∈Ct

wci
exp(−(

yct−µci√
2σ

)2)

σ
√

2π

∏
∀d∈C−Ct

1− wdi
∫ ∞
τ

exp(−(
y−µdi√

2σ
)2)

σ
√

2π
dy

 .
(4.3.10)

Combining Equations 4.3.9 and 4.3.10 corresponding to Cases 1 and 2 respectively, we

obtain,

P (Rt|st = si)

= P (Ci = Ct|Y Ci
i = Y Ct

t ).P (Y Ci
i = Y Ct

t )

=
∏
∀c∈Ct

wci
exp(−(

yct−µci√
2σ

)2)

σ
√

2π

∏
∀d∈C−Ct

1− wdi
∫ ∞
ymint

exp(−(
y−µdi√

2σ
)2)

σ
√

2π
dy

 ,
(4.3.11)
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where,

ymint =

 min c∈C{yct} , if |Ct| = 7

τ , otherwise
.

4.4. Maximum Likelihood Learning of Model Parameters

The mean signal strength levels µci and probabilities of successful decoding wci , for each cell

c ∈ C, at each location si in the area of interest, are parameters of the observation model that need

to be learned. We use maximum likelihood learning to estimate these parameters from training

fingerprints gathered through war-driving.

Let Θ be a set of parameters to be estimated from observed training data Z. Then,

maximum likelihood learning attempts to find the set of parameters Θ∗ that maximizes the posterior

probability P (Θ|Z). I.e,

Θ∗ = arg max
Θ

{P (Θ|Z)}

= arg max
Θ

{logP (Θ|Z)}

= arg max
Θ

{
log

(
P (|Θ).P(Θ)

P (Z)

)}
= arg max

Θ
{log (P (Z|Θ).P(Θ))}

= arg max
Θ

{logP (Z|Θ) + logP(Θ)} .

(4.4.1)

In the absence of additional information about the prior probability of the parameters P (Θ),

we assume it is uniformly distributed and ignore it in the optimization procedure. Therefore,

Θ∗ = arg max
Θ

{logP(Z|Θ)} . (4.4.2)

In our case, the set of parameters Θ over which we attempt to optimize P (Θ|Z), are the

means µci and the probabilities successful decoding wci . Therefore,

Θ = {µc
i ,w

c
i : 1 ≤ i ≤ N, ∀c ∈ C}.
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Suppose for each location si ∈ S, a collection of fingerprints Ri = {Ri,1, . . . , Ri,t, . . . , Ri,Ti},

where Ri,t is the tth fingerprint at si, has been recorded by driving along the road. Then Z =

{R1, . . . ,Ri, . . . ,RN} and,

logP (Z|Θ) = logP(R1, . . . ,RN|µc
i ,w

c
i ; 1 ≤ i ≤ N, ∀c ∈ C). (4.4.3)

All fingerprints Ri,t are independent of each other, and given µci , w
c
i , each Ri,t is conditionally

independent of µcj , w
c
j for any j 6= i. Therefore,

logP (Z|Θ) =
∑
si∈S

Ti∑
t=1

logP (Ri,t|µci , wci ;∀c ∈ C)

=
∑
si∈S

Ti∑
t=1

logP (Ri,t|st = si).

(4.4.4)

Using Equation 4.3.11,

logP (Z|Θ) =
∑
si∈S

Ti∑
t=1

logP (Ri,t|st = si)

=
∑
si∈S

Ti∑
t=1

∑
c∈Ci,t

(
−(yci,t − µci )2

2σ2

)
+
∑
si∈S

Ti∑
t=1

∑
c∈Ci,t

ln(wci )

+
∑
si∈S

Ti∑
t=1

∑
d∈C−Ci,t

ln

1− wdi
∫ ∞
ymini,t

exp(−(
y−µdi√

2σ
)2)

σ
√

2π
dy

 ,

(4.4.5)

where Ci,t is the set of cell IDs present in Ri,t, y
c
i,t is the received signal strength level from cell c

at location si as reported in Ri,t, and

ymini,t =

 min c∈C{yci,t} , if |Ci,t| = 7

τ , otherwise
.

It is not possible to maximize logP (Z|Θ) in Equation 4.4.5, analytically. Therefore, we use

the truncated Newton method to maximize it numerically (actually, minimize -logP (Z|Θ)). This

numerical optimization requires the partial derivatives of the objective function logP (Z|Θ), and

initial guesses for µci and wci .
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The partial derivatives of logP (Z|Θ) are as follows.

∀c ∈ C, si ∈ S,

∂logP (Z|Θ)

∂µci
=

Ti∑
t=1

(yci,t − µci )
σ

gi,t(c)−
Ti∑
t=1

wci
∂
∂µci

(∫∞
ymini,t

exp(−(
y−µci√

2σ
)2)

σ
√

2π
dy

)

1− wci
∫∞
ymini,t

exp(−(
y−µc

i√
2σ

)2)

σ
√

2π
dy

[1− gi,t(c)],

(4.4.6)

where,

gi,t(c) =

 1 , if c ∈ Ci,t

0 , otherwise
.

Using Leibniz’s rule for differentiation under the integral sign,

∂

∂µci

∫ ∞
ymini,t

exp(−(
y−µci√

2σ
)2)

σ
√

2π
dy

 =

∫ ∞
ymini,t

∂

∂µci

exp(−(
y−µci√

2σ
)2)

σ
√

2π

 dy

=

∫ ∞
ymini,t

2(y − µci )
2σ2

(
exp(−(

y−µci
σ )2)

σ
√

2π

)
dy

=
1

σ
√

2π

[
−exp

(
−
(
y − µci√

2σ

)2
)]∞

ymini,t

=
1

σ
√

2π
exp

−(ymini,t − µci√
2σ

)2
 .

(4.4.7)

Substituting this result in Equation 4.4.8,

∀c ∈ C, si ∈ S,

∂logP (Z|Θ)

∂µci
=

Ti∑
t=1

(yci,t − µci )
σ

gi,t(c)−
Ti∑
t=1

wci
1

σ
√

2π
exp

(
−
(
ymini,t −µci√

2σ

)2
)

1− wci
∫∞
ymini,t

exp(−(
y−µc

i√
2σ

)2)

σ
√

2π
dy

[1− gi,t(c)].
(4.4.8)
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The partial derivatives of logP (Z|Θ) with respect to wci are as follows.

∀c ∈ C, si ∈ S,

∂logP (Z|Θ)

∂wci
=

1

wci

Ti∑
t=1

gi,t(c)−
Ti∑
t=1

∫∞
ymini,t

exp(−(
y−µci√

2σ
)2)

σ
√

2π
dy

1− wci
∫∞
ymini,t

exp(−(
y−µc

i√
2σ

)2)

σ
√

2π
dy

[1− gi,t(c)].
(4.4.9)

The Newton method used for optimization needs an initial estimate for the parameters to

start from. We compute the initial estimate for the mean µci , denoted by init µci , as simply the

mean of all received signal strength levels from cell c at location si measured during the training

phase. I.e.,

init µci = average{yci,t : t = 1, . . . , Ti} =
1

Ti

Ti∑
t=1

yci,t. (4.4.10)

Initial estimate for wci , denoted by init wci , is computed as the value of wci that makes

∂logP (Z|Θ)
∂wci

= 0, at µci = init µci . This too cannot be computed analytically. Therefore, we compute

it numerically using the bisection method in the interval wci ∈ (0, 1).

4.5. Dynamic Bayesian Network and Viterbi Decoding for Tracking

We use a Dynamic Bayesian Network (DBN) to track vehicles from a series of GSM received

signal strength fingerprints. The states of the DBN are the locations S = {s1, s2, . . . , si, . . . , sN}

and a set of discrete velocities V = {v1, v2, . . . , vj , . . . , vM}. At any given time t, a vehicle may

be at some location st ∈ S and move with velocity vt ∈ V . Figure 4.2 shows two slices of the

DBN at time indices t − 1 and t. To track a vehicle, we use Viterbi decoding to map a series

of fingerprints (observations) R1, R2, . . . , Rt, . . . , RT to the most probable sequence of locations

s∗1, s
∗
2, . . . , s

∗
t , . . . , s

∗
T ,and velocities v∗1, v

∗
2, . . . , v

∗
t , . . . , v

∗
T with each s∗t ∈ S and v∗t ∈ V .

The state transition probabilities of the DBN are as follows.

P (st = si|st−1 = sp, vt−1 = vq) =
1

σd
√

2π
exp

(
−
(
d(si, sp)− (sp + vq∆t)

σd
√

2

)2
)
, (4.5.1)
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st-1 st

vt-1
vt

Rt-1 Rt

Figure 4.2. Two slices of the DBN used for tracking.

where d(si, sp) is the physical distance along a road between locations si and sp, ∆t is the time

difference between the two slices t and t− 1, and σd is the standard deviation of location. And,

P (vt = vj |vt−1 = vq) =
1

σv
√

2π
exp

(
−
(
vj − vq
σv
√

2

)2
)
. (4.5.2)

Initial distribution of grid-locations is uniform and is defined as below.

π(s1 = si) =
1

N
(4.5.3)

The initial distribution of velocities is assumed to be normally distributed around some mean

velocity v̄ with standard deviation σv1 , and is defined as below.

π(v1 = vj) =
1

σv1
√

2π
exp

(
−
(
vj − v̄
σv1
√

2

)2
)
. (4.5.4)

The observation model of the DBN defines for each si ∈ S and vj ∈ V , the probability

P (Rt|st = si, vt = vj) of observing a fingerprint Rt given the phone generating it is at location si

and moving at a velocity of vj . We assume that a fingerprint is not significantly affected by the

velocity of the vehicle. Therefore, P (Rt|st = si, vt = vj) = P (Rt|st = si), and this as defined by

Equation 4.3.11 with its parameters learned as explained in Section 4.4.
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We perform Viterbi decoding, recursively, with the aid of two variables α and ψ as follows.

Initialization: for t = 1,

α(i, j, t) = P (Rt|st = si)π(s1 = si)π(v1 = vj). (4.5.5)

Recursion: for 2 ≤ t ≤ T,

α(i, j, t) = max
p∈[1,N ],q∈[1,M ]

{α(p, q, t− 1)P (st = si|st−1 = sp, vt−1 = vq).

P (vt = vj |vt−1 = vq)P (Rt|st = si)}

ψ(i, j, t) = (p∗, q∗) = arg max
p∈[1,N ],q∈[1,M ]

{α(p, q, t− 1)P (st = si|st−1 = sp, vt−1 = vq).

P (vt = vj |vt−1 = vq)P (Rt|st = si)}

(4.5.6)

The entries in ψ are used to trace back the most probable sequence of states

(s∗1, v
∗
1), (s∗2, v

∗
2), . . . , (s∗t , v

∗
t ), . . . , (s

∗
T , v

∗
T ), starting from (s∗T , v

∗
T ) to (s∗1, v

∗
1) as follows.

(s∗T , v
∗
T ) = (sa, vb), where (a, b) = arg max

i∈[1,N ],j∈[1,M ]
{α(i, j, T )},

and for T − 1 ≥ t ≥ 1,

(s∗t , v
∗
t ) = ψ(p, q, t+ 1), where p, q are such that (sp, vq) = (s∗t+1, v

∗
t+1)

(4.5.7)

4.5.1. Improving the Speed of Viterbi Decoding for Tracking

Viterbi decoding described above involves computing α(i, j, t), ∀i ∈ [1, N ], ∀j ∈ [1,M ], t ∈

[1, T ], where N is the number of grid-locations in the area of interest and M is the number of discrete

velocities a vehicle may move at. This amounts to computing N ×M × T α values. Furthermore,

according to Equation 4.5.6, computing each α(i, j, t) involves N ×M computations. Therefore, its

total time complexity is O(N2M2T ), which is computationally intensive. However, we can use the

constraints associated with vehicular motion to reduce this time complexity as follows.

We assume that the velocity is always positive, meaning that the vehicle does not reverse

its direction of motion (we construct a separate DBN for each direction for two-way roads). With
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this setup, in the computation of each α(i, j, t), we only need to consider the grid-locations at or

before si, along a given direction on the given road.

Furthermore, as the velocity transitions are modeled using a Gaussian distribution as shown

in Equation 4.5.2, it is very unlikely that a velocity change of more than two standard deviations

(2σv) from the current velocity will occur. Therefore, in the computation of each α(i, j, t), only

those velocities within 2σv of vj are considered. Studies conducted in [38, 39] suggest that maximum

acceleration of a passenger vehicle is about 3.5ms−2. Therefore, we set σv = 3.5ms−2 for one second

time steps.

A similar argument can be applied to the movement (transitions) between grid-locations

as well. Let vmax be the maximum velocity at which a typical passenger vehicle will move. Then

according to Equation 4.5.1, for any grid-location si, a transition from any other grid-location sp

to si is very unlikely if d(si, sp)− vmax∆t > 2σd, where ∆t is the time step.

Let Ni = {p ∈ [1, i] : (d(si, sp) − vmax∆t) ≤ 2σd} be the indices of grid-locations in the

vicinity of si and Mj = {q ∈ [1,M ] : |vq − vj | ≤ 2σv} be the indices of velocities in the vicinity of

vj . Then, we re-write Equation 4.5.6 as follows.

α(i, j, t) = max
p∈Ni,q∈Mj

{α(p, q, t− 1)P (st = si|st−1 = sp, vt−1 = vq).

P (vt = vj |vt−1 = vq)P (Rt|st = si)}

ψ(i, j, t) = (p∗, q∗) = arg max
p∈Ni,q∈Mj

{α(p, q, t− 1)P (st = si|st−1 = sp, vt−1 = vq).

P (vt = vj |vt−1 = vq)P (Rt|st = si)}

(4.5.8)

Since |Ni| << N and |Mj | << M , recursion with Equation 4.5.8 is faster than exploring the entire

state space as in Equation 4.5.6.

4.6. Experimental Evaluation and Discussion of Results

We evaluated the performance of our proposed algorithm and comparison algorithms using

signal strength data we collected by driving on selected road segments as well as real call traces

collected for us by a mobile network service provider.

We collected signal strength fingerprints on five (three urban and two suburban) different

roads to evaluate the performance of our DBN-based tracking algorithm with the proposed com-
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plete observation model. We drove several trips along each road and collected a set of fingerprint

sequences Z = {Z1, . . . , Za, . . . , ZA}, where each Za = Ra,1, . . . , Ra,t, . . . , Ra,Ta is the sequence of

fingerprints collected in the ath trip, with each Ra,t being a signal strength fingerprint. Each finger-

print Ra,t has associated with it, a time stamp and GPS coordinates of the location xa,t at which

it was generated. The GPS coordinates of xa,t are used to assign each training fingerprint to its

nearest grid-location in S during the training phase, and used as ground truth for evaluation during

the tracking phase.

For each road, we use one of the fingerprint sequences Zq = Rq,1, . . . , Rq,t, . . . , Rq,Tq ∈ Z

as the test sequence from which the vehicle is tracked, and the remaining sequences as training

data to estimate model parameters. The fingerprint sequences we have collected are longer than

those generated during typical phone calls. Analysis of the mobile subscriber call trace dataset we

received from the mobile service provider revealed that the duration of user calls are approximately

exponentially distributed with mean 110 seconds. Therefore, to better resemble the real situation

of a passive, network side tracking application, we break Zq into random sub-sequences of the form

Zq[e, f ] = Rq,e, . . . , Rq,f , where e and f are random indices with 1 ≤ e < f ≤ Tq such that the

sequence length f − e is distributed according to the aforementioned distribution, and use these

sub-sequences for tracking.

For each Zq[e, f ], we use Viterbi decoding to find the most probable state sequence

(sq,e, vq,e), . . . , (sq,t, vq,t), . . . , (sq,f , vq,f ), where sq,t and vq,t are the location and velocity for Rq,t

respectively, as predicted by Viterbi decoding. Then, for each Rq,t, the localization error is defined

as the distance between the true location xq,t and the predicted location sq,t.

Figures 4.3 (a) and 4.3(b) show the cumulative distribution of the localization error for the

three urban roads and the two suburban roads respectively. Vehicle tracking with our proposed

DBN with the complete observation model (DBN Cmp Obs MRT ) achieves a mean localization

error that is %37 and %42 less than tracking with a DBN with the same structure and transition

model but with the traditional observation model defined in Equation 4.2.4 (DBN Trad Obs MRT ),

for the urban and suburban roads respectively. DBN Cmp Obs MRT also outperforms the dynamic

time warping-based algorithm (DTW 1RT ) and HMM-based algorithm CTrack [6]. However, it

must be noted that DTW 1RT was trained using only one training sequence as it is designed to use

only a single reference trace. Furthermore, the published version of CTrack uses accelerometer and
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orientation sensor readings to acquire vehicle movement and turn hints, which are used to improve

its tracking accuracy. Our implementation of CTrack did not use such sensor readings as they are

not available in many tracking applications, which may have reduced its accuracy.

We used the same subscriber call trace dataset that was mentioned in Chapter 3, to evaluate

the performance of the different algorithms in terms of estimating travel-times for a road segment.

The experiment and the data analysis were carried out in the same way described in Section 3.4.

Figure 4.4 shows the results of travel-time estimation. It is evident that DBN Cmp Obs MRT is

the best performing algorithm with a percentage error of 13% and a Pearson correlation coefficient

of 0.93 with respect to actual travel-times. Further, the correlation is significant with a p-value

of 0.0003. Results also indicate that DBN Trad Obs MRT demostrates better correlation with

actual travel-times than DTW 1RT with Pearson correaltion coefficients of 0.87 and 0.76 respec-

tively, and p-values of 0.002 and 0.02 respectively. However, DTW 1RT has produced tracel-time

estimates closer to the actual-values, especially for time slots with low actual travel-times, than

DBN Trad Obs MRT, which is indicated by their percentage errors of 14% and 39% respectively.

4.7. Conclusions

In this Chapter, we presented a complete observation model to represent the distribution of

GSM received signal strength fingerprints and demonstrated how it is used with a dynamic Bayesian

network to track vehicles from mobile phone signal traces. Our observation model accounts for the

variation of cell towers present in fingerprints in addition to the variation of received signal strength

levels. Our experiments on five different roads demonstrate the improvements in localization accu-

racy achieved by using the proposed observation model compared to existing methods.

Furthermore, our experiment using real mobile subscriber call traces indicate that the pro-

posed DBN-based tracking algorithm with the complete observation model can be used to estimate

travel-times for road segments, with reasonable accuracy, using mobile phone signal strength data.
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Key:
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proposed in this work.
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model as the DBN above but with the traditional observation model as defined in Equation 4.2.4 and used in [8].
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Figure 4.3. Cumulative distribution of localization error.
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5. ESTIMATION OF MEAN RECEIVED SIGNAL

STRENGTH LEVELS IN A MOBILE COMMUNICATION

NETWORK WITHOUT WAR-DRIVING FOR TRACKING

VEHICLES

5.1. Introduction

The vehicle tracking algorithms mentioned previously in this thesis and many other accurate

methods presented in literature involve a supervised training phase that requires measured RSS

fingerprints along with the locations at which they were measured. This training phase is needed

for estimating various model parameters and/or calibration purposes. The required training data is

typically acquired by measuring and recording fingerprints by driving on roads of interest (usually

referred to as war-driving), which is both tedious and expensive. In this Chapter, we propose a

method that can make use of fingerprint sequences generated by user phone calls to estimate the

relevant model parameters in an unsupervised manner that requires no war-driving.

As mentioned in Chapter 4, the Bayesian estimation method for vehicle tracking from

received signal strength (RSS) fingerprints involves an observation model that is used to compute

the probability of observing an RSS fingerprint Rt at each grid-location si, denoted by P (Rt|si).

Computation of P (Rt|si) using the observation model that we proposed (Equation 4.3.11) or those

proposed in Literature (Equations 4.2.3 and 4.2.4 [8, 16, 18]) requires mean RSS levels at each

grid-location, from each cell in the area of interest, i.e., µcsi ,∀si ∈ S, ∀c ∈ C.

Traditionally, these mean RSS levels are estimated in a supervised learning phase using

training fingerprints that have been recorded and assigned to grid-locations through war-driving.

An alternative is to use radio propagation models to predict the aforementioned mean RSS lev-

els [16]. However, the actual propagation of electromagnetic waves in a given environment may

differ from the propagation model, which tends to diminish the accuracy of the predictions.

In this work, we propose the use of RSS fingerprints generated through phone calls made

by road users to estimate the aforementioned mean RSS levels. This corresponds to unsupervised

learning, where we treat the mean RSS levels as parameters of the observation model of a Dynamic
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Bayesian Network (DBN) and estimate them through Viterbi learning using fingerprints generated

by user calls as the training data. The same procedure also estimates the probabilities of successfully

decoding the signal from each cell tower at each grid-location. The DBN mentioned here is the

same as that in Section 4.5. Initial values for the mean RSS levels are predicted using a simple dual

slope propagation model. Therefore, no war-driving is required. In the tracking phase, standard

Viterbi decoding is used on the DBN with the estimated parameters to find the most probable

sequence of grid-locations traversed by the vehicle.

5.2. Estimation of Mean Received Signal Strength Levels

5.2.1. Expectation-Maximization (EM) Algorithm

Since the mean RSS levels (µci ’s) and the probabilities of successful decoding (wci ’s) at

each grid-location are parameters of the observation model of the dynamic Bayesian network used

for tracking in Chapter 4, we can use the Expectation-Maximization algorithm to estimate them.

The Expectation-Maximization (EM) algorithm is widely used to estimate model parameters in

the presence of latent/hidden variables as is the case with dynamic Bayesian networks. However,

for improved efficiency, we actually use Viterbi learning (Maximization-Maximization), which is a

faster and easier to implement approximation to the EM algorithm.

In this Section, we first briefly describe the EM algorithm. Then, we describe how we apply

it specifically to estimate the mean RSS levels, along with the Viterbi approximation.

Given a set of hidden states J, observed data Z, and a set of parameters Θ, EM tries to

maximize the posterior probability P (Θ|Z) of the parameters given the observed data. The optimal

set of parameters Θ∗ can be expressed as follows after marginalizing over the entire space of hidden

states J n .

Θ∗ = arg max
Θ

∑
J∈Jn

P (Θ,J|Z)

= arg max
Θ

log

(∑
J∈Jn

P (Θ,J,Z)/P(Z)

)

= arg max
Θ

log

(∑
J∈Jn

P (Θ,J,Z)

) (5.2.1)
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The EM algorithm finds a local maximum for Θ∗ by alternating between the following steps

iteratively.

Expectation step: Compute

P (J|Z,Θk) (5.2.2)

Maximization step: Compute

Θk+1 = arg max
Θ

[Qk(Θ) + logP(Θ)], (5.2.3)

where Θk are the parameter values at the start of the kth iteration (initialized to some values before

the first iteration), Θk+1 are the new values for the parameters, P (Θ) is the prior distribution of

the parameters, and Qk(Θ), as defined below, is the expectation of logP (J,Z|Θ) with respect to

P (J|Z,Θk).

Qk(Θ) =
∑
J∈Jn

P (J|Z,Θk)logP(J,Z|Θ)

=
∑
J∈Jn

P (J|Z,Θk)[logP(Z|J,Θ) + logP(J|Θ)]

(5.2.4)

We refer interested readers to [40] for further details of the Expectation-Maximization algorithm.

With our DBN, the set of parameters Θ include the mean RSS levels and the probabilities

of successful decoding. I.e., Θ = {µc
i ,w

c
i ;∀c ∈ C,∀si ∈ S}. The hidden sates are the set of

grid-locations S = {s1, s2, . . . sN} and the set of velocities V = {v1, v2, . . . vM}. Therefore, each

J = j1, j2, . . . , jt, . . . , jT is a vector of hidden states such that each jt = (st, vt) ∈ S × V . The

observation Z = z1, z2, . . . , zt, . . . , zT is a time series, where zt is the observation (a fingerprint) at

time t. Therefore,

Qk(Θ) =
∑

J∈JT

P (J|Z,Θk)[logP(Z|J,Θ) + logP(J|Θ)]

=
∑

J∈JT

T∑
t=1

P (J|Z,Θk)[logP(zt|jt,Θ) + logP(jt|jt−1,Θ)]

=

T∑
t=1

∑
J∈JT

P (J|Z,Θk)logP(zt|jt,Θ) +

T∑
t=1

∑
J∈JT

P(J|Z,Θk)logP(jt|jt−1,Θ)

(5.2.5)
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The second term in Equation 5.2.5 involves the state transition probabilities, which we do

not attempt to optimize in this work. Therefore, we focus on the first term and define Qkobs, which

represents the observation model as,

Qkobs(Θ) =
T∑
t=1

∑
J∈JT

P (J|Z,Θk)logP(zt|jt,Θ)

=
T∑
t=1

∑
si∈S

∑
vj∈V

∑
J∈JT

P (J|Z,Θk)logP(zt|jt,Θ)δ(st = si)δ(vt = vj)

=

T∑
t=1

∑
si∈S

∑
vj∈V

P (st = si, vt = vj |Z,Θk)logP(zt|st = si,Θ).

(5.2.6)

Suppose we have a collection Z = {Z1,Z2, . . . ,Za, . . . ,ZA} of independent observation sequences,

available for learning the parameters, where each Za = Ra,1, . . . , Ra,t, . . . , Ra,Ta is a sequence of

fingerprints generated by a phone with Ra,t being the fingerprint generated at time t in the ath

sequence. Let sa,t be the location at which Ra,t was generated and va,t be the velocity of the

relevant vehicle at time t. Then,

Qkobs(Θ)

=

A∑
a=1

Ta∑
t=1

∑
si∈S

∑
vj∈V

P (sa,t = si, va,t = vj |Za,Θk)logP(Ra,t|sa,t = si,Θ)

=

A∑
a=1

Ta∑
t=1

∑
si∈S

∑
vj∈V

fa,t(si, vj)logP (Ra,t|sa,t = si,Θ),

where fa,t(si, vj) = P (sa,t = si, va,t = vj |Za,Θk)

(5.2.7)
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Using Equations 4.3.9 and 4.3.10,

Qkobs(Θ) =

A∑
a=1

Ta∑
t=1

∑
si∈S

∑
vj∈V

∑
c∈Ca,t

fa,t(si, vj)

(
−(yca,t − µci )2

2σ2

)

+

A∑
a=1

Ta∑
t=1

∑
si∈S

∑
vj∈V

∑
c∈Ca,t

fa,t(si, vj)ln(wci )

+

A∑
a=1

Ta∑
t=1

∑
si∈S

∑
vj∈V

∑
d∈C−Ca,t

fa,t(si, vj)ln

1− wdi
∫ ∞
ymina,t

exp(−(
y−µdi√

2σ
)2)

σ
√

2π
dy


−

A∑
a=1

Ta∑
t=1

∑
si∈S

∑
vj∈V

∑
c∈Ca,t

fa,t(si, vj)ln(σ
√

2π),

(5.2.8)

where Ca,t is the set of Cell IDs present in Ra,t, y
c
a,t is the RSS from cell c ∈ Ca,t as reported in

Ra,t, and

ymina,t =

 minc∈C{yca,t} , if |Ca,t| = 7

τ , otherwise
.

Our goal in the maximization step of the EM algorithm is to maximize [Qkobs(Θ) + lnP(Θ)]

over Θ, with Qkobs(Θ) as defined by Equation 4.3.11. In the next Section we describe the derivation

of the prior distribution of parameters P (Θ).

5.2.2. Prior Distribution of Mean Received Signal Strength Levels

In this Section we derive the prior distribution of the parameters P (Θ), where Θ includes

the mean received signal strength level from cell c at grid-location si, µ
c
i and the probability of

successfully decoding the signal from cell c at grid-location si, w
c
i , for each c ∈ C and si ∈ S.

The mean received signal strength level from cell c at grid-location si, µ
c
i can be predicted

using a suitable propagation model for electromagnetic waves. Let λci be the predicted value for

µci . Then, using the dual slope propagation model [41], we can define λci as follows.

λci =

 Tx(c)− L1 − 10n1log10(d(si, c)) , if d(si, c) ≤ rb

Tx(c)− L1 − 10n1log10(rb)− 10n2log10(d(si, c)/rb) , otherwise
, (5.2.9)
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Figure 5.1. Dual slope propagation model.

where Tx(c) is the transmit power level of cell c, d(si, c) is the line of sight distance from the

transmitting antenna of cell c to grid-location si, L1 is the loss of power at 1m away from the

transmit antenna, n1 and n2 are unit less constants referred to as path loss exponents, and rb is a

constant distance referred to as the breakpoint distance. Furthermore, note that all signal strength

levels are in dbm. As the name dual slope implies, Equation 5.2.9 has two different slopes n1 and

n2 for distances r ≤ rb and r > rb respectively as shown in Figure 5.1. However, to avoid the sharp

transition at d(si, c) = rb, the following equation is commonly used.

λcsi = Tx(c)− L1 − 10n1log10(d(si, c))− 10(n2 − n1)log10(1 + d(si, c)/rb) (5.2.10)

Therefore, we also use Equation 5.2.10 to define λcsi for all si ∈ S and c ∈ C. We used typical

values n1 = 2, n2 = 4, and rb = 200m. L1 was theoretically computed to be 32db as the free space

path loss at 1m away from the antenna, for the 900MHz GSM carrier frequency [42].

However, due to shadowing caused by buildings and other obstructions, actual mean sig-

nal strength level µci may deviate from the mean predicted by the above model. This variation,

called log-normal shadowing, is modeled by adding a zero mean Gaussian random variable X with

standard deviation σs to the predicted mean as shown below.

µci (dBm) = λci (dBm) +X. (5.2.11)
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Therefore, each µci is a normally distributed random variable with mean λci and standard deviation

σs. Typical values for the standard deviation of shadow fading σs range from 6-10 dB in cities [43].

Equation 5.2.11 defines the prior distribution of each µci , individually. Then, we need to

derive the joint distribution of µci , ∀c ∈ C and si ∈ S. We assume that signals from different cell

towers are independent of each other. Therefore µci and µdi are uncorrelated for any two cells

c, d ∈ C such that c 6= d. However, for any two grid-locations si and sj that are sufficiently close

to each other, there is correlation between µci and µcj .

For any two grid-locations si and sj separated by physical distance d(si, sj), it follows from

Gudmundsons model [44] that the covariance between µci and µcj is given by,

cov(µci , µ
c
j) = σ2

s .exp

(
−d(si, sj)

dcor
ln2

)
, (5.2.12)

where dcor is a constant known as the decorrelation distance. Typically for a vehicular environment,

dcor = 20m [44].

Following this model, we define an N × N covariance matrix K with elements K[i, j] as

defined below.

K[i, j] = σ2
s .exp

(
−d(si, sj)

dcor
ln2

)
. (5.2.13)

Since K is a covariance matrix, there exists a multivariate Gaussian distribution with K as its

covariance matrix. Furthermore, as explained earlier, µc1, . . . , µ
c
N are individually Gaussian random

variables with means λc1, . . . , λ
c
N respectively. Therefore, we model the prior joint distribution of

~µc = [µc1, . . . , µ
c
N ] as a multivariate Gaussian with mean vector ~λc = [λc1, . . . , λ

c
N ] and covariance

matrix K, and its probability density function is as shown below.

pdf( ~µc) =
exp

(
−1

2( ~µc − ~λc)K
−1( ~µc − ~λc)

T
)

(2π)n/2
√
det(K)

(5.2.14)

Therefore,

lnP (Θ) =− 1

2
( ~µc − ~λc)K

−1( ~µc − ~λc)
T − ln

(
(2π)n/2

√
det(K)

)
(5.2.15)
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In this absence of further information, we assume that for each cell c ∈ C and for each

grid-location si ∈ S, the probability of successfully decoding the signal from cell c at location si,

wci is independently and uniformly distributed over the interval [0, 1]. Hence wci are ignored in the

optimization of P (Θ).

5.2.3. Optimization Procedure

We estimate the mean signal strength levels µci and the probabilities of successful decoding

wci as their values that maximize [Qkobs(Θ)+lnP(Θ)] in the maximization step of the EM algorithm.

However, in our case, there is no closed form solution for the values of µci ’s and wci ’s that maximize

[Qkobs(Θ) + lnP(Θ)], hence, the optimization cannot be done analytically. Therefore, we use the

Truncated Newton method to numerically minimize −[Qkobs + lnP (Θ)]. Starting from some initial

values for the variables of interest, the Truncated Newton method uses the partial derivatives of

the expression to be minimized to iteratively move along directions that decrease the required

expression.

The partial derivatives of [Qkobs(Θ) + lnP(Θ)] with respect to the means µci are as follows.

∀c ∈ C, si ∈ S,

∂[Qkobs + lnP (Θ)]

∂µci
=

A∑
a=1

Ta∑
t=1

(yca,t − µci )
σ

ga,t(c)
∑
vj∈V

fa,t(si, vj)

−
A∑
a=1

Ta∑
t=1

wci
∂
∂µci

(∫∞
ymina,t

exp(−(
y−µci√

2σ
)2)

σ
√

2π
dy

)

1− wci
∫∞
ymina,t

exp(−(
y−µc

i√
2σ

)2)

σ
√

2π
dy

[1− ga,t(c)]
∑
vj∈V

fa,t(si, vj)

−K−1[i, :]( ~µc − ~λc)
T

(5.2.16)

where,

ga,t(c) =

 1 , if c ∈ Ca,t

0 , otherwise
,

and K−1[i, :] is the ith row of K−1. Note that this follows from the symmetry of K−1, which makes

it possible to derive ∂lnP (Θ)/∂µc
i = −K−1[i, :].
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Using Leibniz’s rule for differentiation under the integral sign,

∂

∂µci

∫ ∞
ymina,t

exp(−(
y−µci√

2σ
)2)

σ
√

2π
dy

 =

∫ ∞
ymina,t

∂

∂µci

exp(−(
y−µci√

2σ
)2)

σ
√

2π

 dy

=

∫ ∞
ymina,t

2(y − µci )
2σ2

(
exp(−(

y−µci
σ )2)

σ
√

2π

)
dy

=
1

σ
√

2π

[
−exp

(
−
(
y − µci√

2σ

)2
)]∞

ymina,t

=
1

σ
√

2π
exp

−(ymina,t − µci√
2σ

)2
 .

(5.2.17)

Therefore,

∀c ∈ C, si ∈ S,

∂[Qkobs + lnP (Θ)]

∂µci
=

A∑
a=1

Ta∑
t=1

(yca,t − µci )
σ

gt(c)
∑
vj∈V

fa,t(si, vj)

−
A∑
a=1

Ta∑
t=1

wci
1

σ
√

2π
exp

(
−
(
ymina,t −µci√

2σ

)2
)

1− wci
∫∞
ymina,t

exp(−(
y−µc

i√
2σ

)2)

σ
√

2π
dy

[1− gt(c)]
∑
vj∈V

fa,t(si, vj)

−K−1[i, :]( ~µc − ~λc)
T .

(5.2.18)

Partial derivatives with respect to wci are as follows,

∀c ∈ C, si ∈ S,

∂[Qkobs + lnP (Θ)]

∂wci
=

1

wci

A∑
a=1

Ta∑
t=1

ga,t(c)
∑
vj∈V

fa,t(si, vj)

−
A∑
a=1

Ta∑
t=1

∫∞
ymina,t

exp(−(
y−µci√

2σ
)2)

σ
√

2π
dy

1− wci
∫∞
ymina,t

exp(−(
y−µc

i√
2σ

)2)

σ
√

2π
dy

[1− ga,t(c)]
∑
vj∈V

fa,t(si, vj).

(5.2.19)

When applied to a Dynamic Bayesian Network, the expectation step of the EM algorithm is

carried out using the Forward-Backward algorithm, which can be difficult to implement due floating

point underflow. Therefore, we use Viterbi learning, also known as Maximization-Maximization as
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a more efficient and convenient approximation to the EM algorithm. With Viterbi learning, the

expectation step of the EM algorithm is replaced with a maximization step, which is computed

using viterbi decoding. In the kth iteration of Viterbi learning, for each observation sequence

Za = Ra,1, . . . , Ra,t, . . . , Ra,Ta , Viterbi decoding with current parameter values is used to find the

most probable state sequence (sa,1, va,1), . . . , (sa,t, va,t), . . . , (sa,Ta , va,Ta). Then, fa,t(si, vj) defined

in Equation 5.2.7, is redefined as,

fa,t(si, vj) =

 1 , if sa,t = si and va,t = vj

0 , otherwise
. (5.2.20)

All equations that follow Equation 5.2.7 are used as they are along with the above redefi-

nition of fa,t(si, vj).

Once the estimation of the mean signal strength levels and the probabilities of successful

decoding is complete, we use Viterbi decoding as in Section 4.5 to track vehicles.

5.3. Experimental Evaluation and Discussion of Results

We conducted experiments to compare the vehicle tracking performance of the proposed

DBN-based algorithm under three different modes of parameter estimation. They are, model pa-

rameters estimated through supervised maximum likelihood estimation as in Chapter 4, model pa-

rameters predicted solely using the dual slope propagation model, and model parameters estimated

through unsupervised Viterbi learning as proposed in this Chapter. Additionally, we compare with

the DBN-based algorithm that uses the traditional observation model as well.

Ideally, we would have used the call trace dataset that was used in the previous Chapters to

conduct these experiments. However, due to security reasons, the operator was unable to provide us

with the locations of their cell towers involved with the data. As the tower locations are required

to predict initial RSS levels, we were unable to use this dataset in our experiments. Therefore,

we used the data that we collected by driving on the roads. This data corresponds to a different

operator who provided us with the cell tower locations but was unable to provide real user call

traces. To simulate user call traces and unsupervised learning, we ignored the location information

(GPS coordinates) of the collected data.
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Our data includes signal strength fingerprints on five (three urban and two suburban)

different roads. We drove several trips along each road and collected a set of fingerprint sequences

Z = {Z1, . . . , Za, . . . , ZA}, where each Za = Ra,1, . . . , Ra,t, . . . , Ra,Ta is the sequence of fingerprints

collected in the ath trip, with each Ra,t being a signal strength fingerprint. Each fingerprint Ra,t has

associated with it, a time stamp and GPS coordinates of the location xa,t at which it was generated.

Our algorithm operates in two phases; the unsupervised learning phase, where the parameters of

the DBN are estimated from user call traces, and the tracking phase, where the vehicles are tracked.

The GPS coordinates of xa,t are used only as ground truth for evaluation during the tracking phase.

For each road, we use one of the fingerprint sequences Zq = Rq,1, . . . , Rq,t, . . . , Rq,Tq ∈ Z

as the test trace from which the vehicle is tracked, and the remaining traces (ignoring the GPS

coordinates ) as training data analogous to user call traces to estimate model parameters through

Viterbi learning. The fingerprint traces we have collected are longer than those generated during

typical phone calls. Analysis of a mobile subscriber call trace dataset revealed that the duration

of user calls are approximately exponentially distributed with mean 110 seconds. Therefore, to

better resemble the real situation of a passive, network side tracking application, we break Zq into

random sub-sequences of the form Zq[e, f ] = Rq,e, . . . , Rq,f , where e and f are random indices with

1 ≤ e < f ≤ Tq such that the sequence length f − e is distributed according to the aforementioned

distribution, and use these sub-sequences for tracking.

In the tracking phase, for each Zq[e, f ], we use Viterbi decoding to find the most probable

state sequence (sq,e, vq,e), . . . , (sq,t, vq,t), . . . , (sq,f , vq,f ), where sq,t and vq,t are the location and

velocity for Rq,t respectively, as predicted by Viterbi decoding. Then, for each Rq,t, the localization

error is defined as the distance between the true location xq,t and the predicted location sq,t.

Figures 5.2(a) and 5.2(b) show the cumulative distribution of the localization error for the

urban and suburban roads respectively. These figures show that DBN-based vehicle tracking with

model parameters (mean signal strength levels and the probabilities of successful decoding) esti-

mated with the aid of user call traces through Viterbi learning (DBN CmpObs VitLrn) reduces the

mean localization error compared to DBN-based vehicle tracking with mean signal strength levels

predicted using the dual slope propagation model (DBN TradObs NoLrn) by 46% and 40% for

urban and suburban roads respectively. Note that DBN CmpObs VitLrn uses the complete obser-
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vation model proposed in Chapter 4 while DBN TradObs NoLrn uses the traditional observation

model given in Equation 4.2.3.

Furthermore, for urban roads, the mean localization error of DBN CmpObs VitLrn is within

25% of that of DBN TradObs MRT, which is the DBN-based algorithm that uses the traditional

observation model defined in Equation 4.2.4 that is trained using fingerprints collected by driving

on the road. For suburban roads, DBN CmpObs VitLrn performs better than DBN TradObs MRT

with a 36% lower mean localization error. The mean localization error of DBN CmpObs VitLrn for

suburban roads is within 12% of that of DBN Cmp Obs MRT, which s the DBN-based algorithm

with the complete observation model that is trained using fingerprints collected by driving on the

road. However, for urban roads, the mean localization error of DBN CmpObs VitLrn is 98% higher

than that of DBN Cmp Obs MRT.

5.4. Conclusions

In this Chapter, we presented a Dynamic Bayesian Network-based tracking algorithm with

its parameters estimated through unsupervised learning to track vehicles from mobile phone signal

strength levels. The presented algorithm is unsupervised as it does not involve a training phase

that requires signal strength measurements pre-assigned to grid-locations in the area of interest.

Our experimental results indicate that it is possible to use call traces made by road users

to estimate mean signal strength levels in an unsupervised manner, and that it achieves better per-

formance compared to using mean signal strength levels predicted by a simple propagation model.

Furthermore, it is evident that for suburban roads, mean localization error of vehicle tracking with

unsupervised-learning is within 12% of that of tracking with the best supervised-learning algorithm.

However, for urban roads, mean localization error of vehicle tracking with unsupervised-learning is

98% higher than that of tracking with the best supervised learning algorithm. A possible reason

for unsupervised learning performing almost as well as supervised learning for suburban roads but

not for urban roads is that the suburban roads used in this study were mostly surrounded by short

buildings and only a few trees, where as the urban roads were surrounded by many tall buildings,

possibly obstructing the paths of signal propagation. Therefore, the received signal strength levels

predicted by the propagation model can be more accurate for the suburban roads than for the

urban roads. Since these predicted signal levels are used as initial values in Viterbi learning, more

accurate predictions lead to better learning.

58



0 100 200 300 400
Localization Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

CDF of Localization Error
Urban Roads

DBN_CmpObs_VitLrn: mean= 95, P67 = 119, P95 = 218

DBN_TradObs_NoLrn: mean= 175, P67 = 187, P95 = 528

DBN_CmpObs_MRT: mean= 48, P67 = 54, P95 = 143

DBN_TradObs_MRT: mean= 76, P67 = 78, P95 = 225

(a) Urban roads

0 100 200 300 400
Localization Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

CDF of Localization Error
Sub-urban Roads

DBN_CmpObs_VitLrn: mean= 69, P67 = 83, P95 = 184

DBN_TradObs_NoLrn: mean= 116, P67 = 134, P95 = 318

DBN_CmpObs_MRT: mean= 62, P67 = 65, P95 = 182

DBN_TradObs_MRT: mean= 108, P67 = 90, P95 = 417

(b) Sub-urban roads

Key:
DBN CmpObs VitLrn - Dynamic Bayesian Network (DBN)-based algorithm with model parameters estimated
using Viterbi learning as proposed in this Chapter.
DBN TradObs NoLrn - Dynamic Bayesian Network (DBN)-based algorithm using mean signal strength levels as
predicted by the dual slope model.
DBN Cmp Obs MRT - Dynamic Bayesian Network (DBN)-based algorithm with the complete observation model
proposed in Chapter 4, which uses training data labeled with GPS coordinates.
DBN Trad Obs MRT - Dynamic Bayesian Network (DBN)-based algorithm that uses the same state transition
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Figure 5.2. Cumulative distribution of localization error.
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6. NEAREST-NEIGHBOR ASSISTED BANDED VITERBI

DECODING FOR TRACKING VEHICLE TRAJECTORIES

FROM MOBILE PHONE SIGNAL TRACES

6.1. Introduction

The time complexity of the Dynamic Bayesian Network(DBN)-based and dynamic time

warping(DTW)-based tracking algorithms presented in the previous Chapters are not encouraging

for applications such as traffic estimation, which require processing of a large number of signal

strength sequences in real time. The time complexity of DTW is O(TN), where T and N are the

lengths of the two sequences (in our case, test and reference sequences) being aligned. The time

complexity of Viterbi decoding as applied to our proposed DBN is O(N2M2T ), where N and M are

the number of grid-locations and discrete velocities respectively. Using the constraints associated

with vehicular movement, as discussed in Section 4.5.1, time complexity of viterbi decoding can

be reduced to O(KNMT ), where K is some constant much less than NM . However, this is still

worse than quadratic complexity and therefore, is not desirable.

In this Chapter, we present an algorithm that uses fast nearest-neighbor search to further

restrict the number of grid-locations considered in the computation of Viterbi decoding in Sec-

tion 4.5.1. As introduced in Chapter 4.1, let S = {s1, s2, . . . , si, . . . , sN} be a set of grid-locations

in the area of interest, V = {v1, v2, . . . , vM} be a set of discrete velocities a vehicle may move at,

and Z = R1, R2, . . . , Rt, . . . RT be a test signal strength sequence, where each Rt is a signal strength

fingerprint. Recall from Equation 4.5.8 that α(i, j, t) needs to be computed for each time t, for

each grid-location si ∈ S, and for each velocity vj ∈ V . This can be visualized as filling values

of the cells in a cube as shown in Figure 6.1(a). In this work, we attempt to restrict the number

of grid-locations but not the velocities. Therefore, we will consider, for each velocity vj , the grid

location-time plane, which amounts to computing the cells of a matrix as shown in Figure 6.1(b).

Our experiments in Chapter 3 indicate that even though nearest-neighbor based localization

is not as accurate as sequence alignment-based or DBN-based methods, it is still reasonably accurate

for a rather simple algorithm. Therefore, we use nearest-neighbor search to determine for each
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Figure 6.1. Values to compute in unrestricted Viterbi Decoding.

fingerprint Rt in the test sequence, the closest grid-location in S based on Euclidean distance

between signal strength levels (defined in Section 6.2), which yields an initial sequence of grid-

locations that the vehicle may have traversed. Figure 6.2 shows an example of such an initial

sequence of grid-locations. In an attempt to correct any errors in this initial path, we then perform

Viterbi decoding restricted to a band of grid-locations around this initial sequence as explained in

Section 6.3.

However, in its traditional form, nearest-neighbor search itself has quadratic time complexity

O(NT ) when applied to find an initial sequence of grid-locations, which is not desirable. Data

structures such as kd-trees [45], R-trees [46] and PAT-tress [47] improve the efficiency of nearest-

neighbor search for moderate dimensions (up to 12). In our case, the dimensionality of the signal

strength sequences will be the number of cells in the area of interest, which can typically be more

than 20 over a short road segment of 2-3 km, in urban areas. Therefore, as described in Section 6.2,

we propose a fast nearest-neighbor search algorithm for high dimensional signal sequences that uses

the properties of a metric space to avoid having to search the entire space of grid-locations.

6.2. Fast Nearest-Neighbor Search

In this Section we describe a fast nearest-neighbor search algorithm to locate for any given

fingerprint Rt, the nearest grid-location in S. The term nearest, as defined below, is based on
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Figure 6.2. Initial sequence of grid-locations returned by the nearest-neighbor search.

Euclidean signal distance between a given test fingerprint Rt and any grid-location in si ∈ S,

denoted by d(Rt, si).

Let C be the set of IDs of all cell towers in the area of interest, Ct be the set of cells present

in fingerprint Rt, y
c
t be the signal strength level from cell c as reported in Rt, µ

c
i be the mean

signal strength level from cell c at location si, Ci be the set of cell towers for which µci has been

estimated successfully at location si, and β be a small value used to represent signal levels of cells

not reported in Rt or cells for which mean signal strength level is unavailable.

d(Rt, si) =

√ ∑
∀c∈Ct∩Ci

(yct − µci )2 +
∑

∀c∈Ci∩¬Ct

(β − µci )2 +
∑

∀c∈¬Ci∩Ct

(yct − β)2. (6.2.1)

We search for the nearest-neighbor of a given test fingerprint Rt by starting with an initial

guess sa (How to make a good guess is explained later in this Section). We avoid having to search

the entire set of grid-locations by using the neighbor lists of the grid-locations, which we create

in a separate pre-processing phase. For each grid-location si in the area of interest, its neighbor

list list[si] contains the signal distances from si to all other grid-locations, and it is sorted in the

ascending order. Using these neighbor lists, the inequality shown in Equation 6.2.2c, and the initial

guess sa, we restrict our search to a subset of the grid-locations in the area of interest.
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Figure 6.3. Inequalities for a metric space.

Since the Euclidean distance between signal levels d(.) is a metric, the triangle inequalities

shown in Equations 6.2.2a and 6.2.2b hold between any three points sa, sb, and Rt (Figure 6.3

for two-dimensional points). As mentioned before, let Rt be the test point for which we need to

find the nearest-neighbor, sa be the initial guess, and sb be any other point on the reference trace.

Then, the distance d(sb, Rt), between sb and Rt, has a lower bound as shown in Equation 6.2.2b,

which is a direct derivation from the triangle inequalities. This inequality is shown graphically in

Figure 6.3 for a two-dimensional space.

d(sb, Rt) + d(sa, sb) ≥ d(sa, Rt)

d(sb, Rt) ≥ d(sa, Rt)− d(sa, sb)

(6.2.2a)

d(sb, Rt) + d(sa, Rt) ≥ d(sa, sb)

d(sb, Rt) ≥ d(sa, sb)− d(sa, Rt)

(6.2.2b)

From Equations 6.2.2a and 6.2.2b,

d(sb, Rt) ≥ |d(sa, sb)− d(sa, Rt)| (6.2.2c)
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Algorithm 2 outlines our approach. First, we locate the index ipt before which the value

d(sa, Rt) can be inserted in list[sa] (line 4). Then, we search the grid-locations in list[sa] to the

right of ipt (lines 7-17), and update the current best nearest neighbor and its distance (lines 9-11).

Note that the grid-locations in list[sa] are sorted in the ascending order of distance to sa. Hence,

list[sa] has a different index than the original set S. Therefore, at line 8, a function is used to

retrieve the original grid-location index of the item at list index u. The distance value list[sa][u]

at the uth index of the list increases monotonically as u increases from (ipt + 1) to N , and so

does |d(sa, Rt)− list[sa][u]| because d(sa, Rt) is constant for this search. We stop searching in this

direction as soon as |d(sa, Rt)− list[sa][u]| becomes greater than the current best nearest-neighbors

distance (lines 14, 15) because according to Equation 6.2.2b, no grid-location in the list further to

the right can be any closer to yi.

Searching list[sa] to the left of ipt works in a similar manner (lines 18-28). The distance

value list[sa][u] at the uth index of the list decreases monotonically as u decreases from ipt to 0,

which again causes an increase in |d(sa, Rt)− list[sa][u]|. Just as before, we stop the search as soon

as |d(sa, Rt)− list[sa][u]| becomes greater than the current best nearest-neighbors distance. At the

end of this algorithm, the true nearest-neighbor of Rt would be found.

Making a good initial guess sa for the nearest-neighbor of Rt is important to achieve early

termination of search with the above algorithm. Fortunately, it is not difficult with our signal

sequences because, if sc is the true nearest-neighbor of Rt−1 then, the nearest-neighbor of Rt is

expected to be close in geographical space to sc. Therefore, we search a few (3 in our experiments)

grid points to the left and right of sc and choose the closest to Rt as the initial guess. Of course,

to find the nearest-neighbor of the first test fingerprint R1, the whole set of grid-locations will have

to be searched.

6.3. Banded Viterbi Decoding

The nearest-neighbor search will assign each fingerprint Rt in the test sequence, some grid-

location si ∈ S. This form an initial sequence of grid-locations that may look like the one shown

in Figure 6.2. Note that in Figure 6.2, test fingerprints R7 and R8 are assigned to grid-locations s8

and s6 respectively. Since s1, s2, . . . , sN are ordered as they appear along a road, s6 comes before

s8. Therefore, this suggests a sudden reversal of the direction of motion of the vehicle, which is
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Algorithm 2 Nearest-Neighbor search

1: Input: Rt . Test fingerprint for which NN is needed
2: Input: sa . Initial guess for the NN
3: Input: list[sa] . Sorted list of neighbor distances of sa
4: ipt ← insertion index(d(sa, Rt), list[sa])
5: current best NN dist← d(sa, Rt)
6: current best NN index← a
7: for u = (ipt + 1) to M do
8: v ← index of(list[sa][u])
9: if d(sv, Rt) < current best NN dist then

10: current best NN dist← d(sv, Rt)
11: current best NN index← v
12: end if
13: Lower Bound = |d(sa, Rt)− list[sa][u]|
14: if Lower Bound ≥ current best NN dist then
15: break
16: end if
17: end for
18: for u = ipt to 0 do
19: v ← index of(list[sa][u])
20: if d(sv, Rt) < current best NN dist then
21: current best NN dist← d(sv, Rt)
22: current best NN index← v
23: end if
24: Lower Bound = |d(sa, Rt)− list[sa][u]|
25: if Lower Bound ≥ current best NN dist then
26: break
27: end if
28: end for
29: return current best NN index

highly unlikely. However, this kind of assignments are possible with a nearest-neighbor-based path,

and should be corrected later.

We attempt to correct the assignment errors that may have been introduced in the nearest-

neighbor search, by performing Viterbi decoding around the initial path. However, note that during

Viterbi decoding, we use the same observation model as in Equation 4.3.11, not the Euclidean

distance. First, let w be the width of a band around the initial path as shown in Figure 6.5.

Performing Viterbi decoding within this band (shaded area in Figure 6.5) will correct any violations

of the direction of motion and is expected to produce a better sequence of grid-locations for the

vehicle. However, at a point such as (s12, s10), the path will become discontinuous as there is

discontinuity in the band. To overcome such problems, at each test fingerprint Rt ∈ Z, we widen
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Figure 6.4. A band of constant width (w = ±2) around the initial alignment path returned by the
nearest-neighbor search.

the band as needed based on the nearest-neighbors of test fingerprints adjacent to Rt. As shown

below, we define the interval Bt as the band at each test fingerprint Rt.

Let NN(Rt) be the index of the nearest-neighbor of Rt

∀ 0 ≤ j ≤ N

B+
t = max

t−w≤k≤t+w
{NN(Rt)}

B−t = min
t−w≤k≤t+w

{NN(Rt)}

Bt = [min{NN(Rt)− w,B−t },max{NN(Rt) + w,B+
t }]

(6.3.1)

With this computation of the band, the bandwidth becomes wider in areas where the nearest

neighbors of test fingerprints near Rt are more spread out over grid-locations. Therefore, it reduces

discontinuities in the band.

6.4. Experimental Evaluation

We evaluated the performance of our proposed algorithm with the same signal strength

sequences used in Chapter 4 and experiments performed in the same manner. Figure 6.6 shows

the variation of the percentage increase in the mean localization error with respect to unrestricted

Viterbi decoding for different values of the bandwidth parameter (w). As expected, results indicate
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Figure 6.5. Variable width band according to Equation 6.3.1, around the initial alignment path
returned by the nearest-neighbor search.

that the mean localization error decreases with w, where it becomes within 68% (37m) and 43%

(23m) of that of unrestricted Viterbi decoding at w = 10 and w = 15 respectively.

Figures 6.7 and 6.8 show the run times of the algorithm for varying input sequence lengths.

For a constant number of grid-locations, the run times of banded as well as unrestricted Viterbi

decoding vary linearly with input sequence length. However, banded Viterbi decoding has a gradient

that is less than that of the unrestricted version, and the difference of the gradients increases

with the number of grid-location in the area. For areas with approximately 150 grid-locations

(Figure 6.7), banded Viterbi with w = 15 and w = 10 perform about 3 and 4 times faster than

unrestricted Viterbi decoding respectively. As shown in Figure 6.8, for areas with approximately

500 grid-locations, the speed up is about 5 and 7 fold, for w = 15 and w = 10 respectively.

Figures 6.9 and 6.10 show the results of travel-time estimation for a given road segment

using banded Viterbi decoding. Figure 6.9 (a) indicate that for w = 10, 15 or 20, the percentage

error in estimated travel-times with respect to actual ones remains close to that of the unrestricted

version of the Viterbi algorithm. However, as shown in Figure 6.9 (b), the Pearson correlation

between estimated and actual travel-times increase from 0.78 to 0.92 as w increases from 10 to

unrestricted width. Figure 6.10 shows, as expected, the increase in run-times as w increases.
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Figure 6.6. Percentage increase in mean localization error with respect to unrestricted Viterbi
decoding, for different values of w .

6.5. Conclusions

In this Chapter, we presented a technique to speed up Viterbi decoding for tracking ap-

plications. Our technique is based on a fast nearest neighbor search to find an initial sequence

of grid-locations for the path of the vehicle and then perform Viterbi decoding restricted to grid-

locations close to this initial sequence. Our experiments revealed that moderate improvements in

speed can be achieved with about a 50% increase in localization error with respect to unrestricted

Viterbi decoding. Furthermore, the gain in speed is more prominent for areas with a larger number

of grid-locations.
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Figure 6.7. Run time variation with different test sequence lengths, for roads with approximately
150 grid-locations.
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Figure 6.8. Run time variation with different test sequence lengths, for roads with approximately
500 grid-locations.
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Figure 6.9. Travel-time estimation with banded Viterbi decoding for different bandwidths (w).
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7. CONCLUSIONS

In this thesis, we presented algorithms for tracking vehicles from signal strength measure-

ments of mobile phones carried in them. In Chapter 3, we presented an algorithm that uses Dynamic

Time Warping (DTW) to align the sequence of signal strength fingerprints from a mobile phone

to a previously collected reference fingerprint sequence, and estimate the sequence of locations for

the phone as those of the aligned reference fingerprints. Unlike other algorithms that are based on

sequence alignment, our proposed algorithm is able to handle vehicles that change roads as it uses

local sequence alignment as opposed to global alignment.

In Chapters 4 and 5, we presented algorithms based on a Dynamic Bayesian Network

(DBN) that addressed two problems associated with the current state-of-the-art algorithms. First,

we proposed a complete observational model for GSM received signal strength fingerprints that take

into account the variation of the cell towers present in a fingerprint in addition to the variation

of their signal strength levels. Then, we presented an unsupervised learning strategy to estimate

the parameters of the said DBN that provides better estimates for the parameters than predicting

them with a simple propagation model. Furthermore, our strategy is a reasonable alternative to

the tedious and expensive parameter estimation based on supervised learning that requires signal

strength measurements collected by driving on the roads.

We evaluated the performance our proposed algorithms and comparison algorithms using

signal strength data that we collected by driving on several roads as well as real subscriber call

trace data provided to us by a network service provider. Data collected by us was used to evaluate

the localization/tracking accuracy of the different algorithms, while subscriber call trace data was

used to evaluate the effectiveness of the algorithms in estimating average travel-times for a road

segment.

Our results indicate that for the signal strength data that we collected, our local DTW-

based algorithm outperforms the other sequence alignment-based algorithms and the simple nearest-

neighbor-based method in terms of the localization error. For suburban roads, the DTW-based

algorithm performs almost as good as the DBN-based algorithm with the traditional observation

model, where as for urban roads, the said DBN-based algorithm has a lower localization error than
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the DTW-based algorithm. However, it must be noted that DTW-based algorithms are trained

using data from only a single drive on the relevant road where as DBN-based algorithms in Chapter 4

are trained using data from multiple drives. Our proposed DBN-based algorithm with the complete

observation model has the lowest localization error for both urban as well as suburban roads.

Furthermore, we demonstrated that is possible to use Viterbi learning on our DBN-based

algorithm with the complete observation model, to estimate mean received signal strength levels at

predefined grid-locations with the aid of subscriber call traces. Our experimental results show that

it achieves better localization accuracy than what is possible with mean received signal strength

levels predicted using a simple propagation model.

The results of the experiment with the real subscriber call trace dataset indicate that

using our proposed algorithms, it is possible to estimate travel-times for a road segment, with

reasonable accuracy, from signal strength data of phone calls. DBN-based algorithm with the

complete observation model has the lowest percentage error with respect to actual travel-times and

has the highest correlation with actual travel-times. DBN-based algorithm with the traditional

observation model shows better correlation with actual travel-times than the local DTW-based

algorithm, however it has a much greater percentage error than the DTW-based algorithm. Further,

as with signal strength data that we collected, the local DTW-based algorithm produces better

travel-time estimates than the other alignment-based methods and the simple nearest-neighbor-

based method.

In Chapter 6, we presented a technique to speed up Viterbi decoding for tracking applica-

tions, and showed that it achieves moderate improvements in speed while maintaining reasonable

accuracy compared to complete, unrestricted Viterbi decoding.

In summary, our experiments show that our proposed DBN-based algorithm with the com-

plete observation model performs better than all other comparison algorithms. Furthermore, the

local DTW algorithm, given that it achieves the described results despite being trained using less

data, can be more useful than the DBN-based algorithm with the traditional observation model,

for applications where data from only a single drive is available.

Overall, we conclude that our proposed algorithms can be used as an alternative means

of personal navigation if GPS is unavailable or undesirable. Our DBN-based algorithm with the

complete observation model(DBN Cmp Obs MRT ) demonstrated the least localization error of
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54m, averaged over all roads used in the experiments. Furthermore, our proposed local dynamic

time warping (N LDTW ) algorithm and the DBN-based algorithm with the complete observation

model(DBN Cmp Obs MRT ) can be used to provide travel-time estimates with reasonable accu-

racy. N LDTW and DBN Cmp Obs MRT achieved percentage errors of 14% and 13% respectively,

with respect to actual travel-times. However, our evaluation was limited by the rather short dura-

tion for which call trace data was made available to us. We recommend further experiments with

a larger dataset covering several days in order to draw stronger conclusions.
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