
FOUNDATIONAL ALGORITHMS UNDERLYING HORIZONTAL

PROCESSING OF VERTICALLY STRUCTURED BIG DATA USING

PTREES

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Mohammad Kabir Hossain

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Computer Science

March 2016

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

FOUNDATIONAL ALGORITHMS UNDERLYING HORIZONTAL

PROCESSING OF VERTICALLY STRUCTURED BIG DATA USING

PTREES

By

Mohammad Kabir Hossain

The supervisory committee certifies that this dissertation complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. William Perrizo
Chair

Dr. Saeed Salem

Dr. Gregory Wettstein

Dr. Md Mukhlesur Rahman

Approved:

30 March 2016
Date

Dr. Brian M Slator
Department Chair

ABSTRACT

For Big Data, the time taken to process a data mining algorithm is a critical issue.

Many reliable algorithms are unusable in the big data environment due to the fact that

the processing takes an unacceptable amount of time. Therefore, increasing the speed of

processing is very important. To address the speed issue we use horizontal processing of

vertically structured data rather than the ubiquitous vertical (scan) processing of horizontal

(record) data. pTree technology represents and processes data differently from the traditional

horizontal data technologies. In pTree technology, the data is structured column-wise (into

bit slices) and the columns are processed horizontally (typically across a few to a few hundred

bit level columns), while in horizontal technologies, data is structured row-wise and those

rows are processed vertically. pTrees are lossless, compressed and data-mining ready data

structures. pTrees are lossless because the vertical bit-wise partitioning that is used in the

pTree technology guarantees that all information is retained completely. There is no loss of

information in converting horizontal data to this vertical format. pTrees are data-mining

ready because the fast, horizontal data mining processes involved can be done without the

need to reconstruct the original form of data. This technique has been exploited in various

domains and data mining algorithms, ranging from classification, clustering, association

rule mining, as well as other data mining algorithms. In this research work, we evaluate

and compare the speeds of various foundational algorithms required for using this pTree

technology in many data mining tasks.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. William Perrizo. His

guidance was invaluable in helping me finish this research work. His enthusiasm in and

profound knowledge of the discipline of computer science are a source of inspiration to me.

I am very grateful to my committee member Dr. Saeed Salem for his unfailing support

and advising enabling me to successfully overcome the challenges throughout my graduate

studies. I would like to express my gratitude to my other committee members, Dr. Gregory

Wettstein and Dr. Mukhlesur Rahman, for taking the time to help me to finish this work.

I would also like to thank my colleagues in the DataSURG group Arjun Roy, Arijit

Chatterjee, Damian Lamp and Maninder Sing for all the help they gave to me during my

research. Their assistance was crucial for my completion of this work.

Last but not the least, I would like to thank all my family members here in US and

in my home country Bangladesh. Without their support it would have been impossible for

me to finish. Specially I would like to acknowledge the support of my wife Fatema Shireen

who managed everything all by herself while I was busy in my lab. Thanks goes to my 7th

grader son Nabeel who time to time monitored my progress (well, within his capacity). Also

thanks to my 2 years and 9 months old daughter Nyla and my 8 months old son Najeef who

inspired me to finish this work.

iv

DEDICATION

To the memory of my father Md. Ruhul Amin, who sent me to achieve this success but is

only seeing this from heaven, and to my mother Jahanara Begum, who is continuously

praying for me to be successful in every aspect of my life.

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

DEDICATION. v

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF SYMBOLS . xiv

CHAPTER 1. INTRODUCTION AND RELATED WORK 1

1.1. Data mining . 2

1.1.1. Association rule mining . 2

1.1.2. Classification . 3

1.1.3. Clustering . 3

1.2. Technologies related to big data . 3

1.2.1. Cloud computing . 4

1.2.2. Internet of Things(IoT) . 4

1.2.3. Business intelligence (BI) . 4

1.2.4. Hadoop . 5

1.3. Vertical Data structure . 5

1.3.1. C-Store . 6

vi

1.3.2. Infobright . 6

1.3.3. InfiniDB . 6

1.3.4. MonetDB . 6

1.3.5. pTree . 7

1.4. Problem description . 7

1.5. Organization of this dissertation . 9

CHAPTER 2. BOOLEAN ALGEBRA AND ITS USE . 10

2.1. 2’s Complement and its use . 11

2.2. Subtraction Using 2’s complement . 12

2.3. Calculation of summation of two integers . 12

2.4. Subtraction of integers . 14

2.5. Multiplication of two integers . 15

2.6. Comparing two integers . 16

CHAPTER 3. REVIEW OF PTREE TECHNOLOGY . 18

3.1. Important definitions . 18

3.2. pTree representation of data set . 19

3.3. Operations on pTrees . 21

3.4. Advantage of pTree . 22

3.4.1. Space advantage of pTree . 22

3.4.2. Speed advantage of pTree . 23

vii

3.5. Steps for pTree processing . 24

CHAPTER 4. PTREE BASED ALGORITHMS . 26

4.1. Existing Algorithms . 26

4.2. 2’s complement . 26

4.3. Absolute value . 27

4.4. Addition . 29

4.5. Subtraction . 31

4.6. Multiplication . 33

4.7. Comparison . 36

4.8. L1 Distance . 37

4.9. Squared Euclidean Distance . 38

4.10. Dot production calculation . 40

4.11. Approximate calculation . 40

CHAPTER 5. EXPERIMENTAL DESIGN AND ANALYSIS 44

5.1. Formal design methodology . 44

5.1.1. Choice of input factors and responses . 44

5.2. Experiment Design . 47

5.2.1. Experiment 1: Comparing Addition . 48

5.2.2. Experiment 2: Comparing Subtraction . 48

5.2.3. Experiment 3: Comparing Multiplication 49

viii

5.2.4. Experiment 4: Calculate L1 distance . 50

5.2.5. Experiment 5: Calculate SED . 50

5.2.6. Experiment 6: Calculate Dot Product . 51

5.2.7. Experiment 7: Compare two pTree sets . 52

5.3. Analysis of the experimental results . 52

5.3.1. Result of experiment 1 . 54

5.3.2. Result of experiment 2 . 57

5.3.3. Result of experiment 3 . 59

5.3.4. Result of experiment 4 . 62

5.3.5. Result of experiment 5 . 64

5.3.6. Result of experiment 6 . 66

5.3.7. Result of experiment 7 . 68

5.4. Approximate multiplication calculation . 70

CHAPTER 6. SUMMARY AND CONCLUSION . 71

BIBLIOGRAPHY . 74

ix

LIST OF TABLES

Table Page

1. List of Algorithms with their assigned ID’s . 45

2. List of horizontal algorithms with their assigned ID’s . 46

3. Data size range with their assigned ID’s . 46

4. Data width range with their assigned ID’s . 47

5. Bit pattern of the constant with their assigned ID’s . 47

6. Partial Result of Experiment 1 . 48

7. Partial Result of Experiment 2 . 49

8. Partial Result of Experiment 3 . 49

9. Partial Result of Experiment 4 . 50

10. Partial Result of Experiment 5 . 51

11. Partial Result of Experiment 6 . 52

12. Partial Result of Experiment 7 . 53

13. Speed gain of pTree based Addition algorithm . 54

14. Speed gain of pTree based Subtraction algorithm . 58

15. Speed gain of pTree based Multiplication algorithm . 59

16. Speed gain of pTree based L1 Distance calculation algorithm 63

17. Speed gain of pTree based SED calculation algorithm . 65

18. Speed gain of pTree based Dot Product calculation algorithm 67

x

19. Speed gain of pTree based Comparison algorithm . 69

xi

LIST OF FIGURES

Figure Page

1. Truth Table for - (a) AND, (b) OR and (c) NOT operations. 10

2. Truth table of XOR operation . 11

3. Truth table of XNOR operation . 11

4. Truth table of adding two bits . 13

5. Truth table for subtracting two bits . 14

6. Truth table for comparing two bits . 16

7. Constructing pTree - (a) Data set (b) Grouping of bits (c) Final pTree P 19

8. pTree representation - (a) Data set of 3 attributes (b) Corresponding pTree sets. 20

9. Truth table showing different pTree operations. 22

10. Algorithm to compute 2’s complement of a pTree set . 27

11. Algorithm to compute absolute value of a pTree set . 28

12. Algorithm to add two pTree sets . 30

13. Algorithm to add a constant with a pTree set . 31

14. Algorithm to subtract a pTree set from another pTree set 32

15. Algorithm to subtract a constant from a pTree set . 33

16. Algorithm to multiply two pTree sets . 34

17. Algorithm to multiply a pTree set by a constant . 35

18. Algorithm to compare two pTree sets . 36

xii

19. Algorithm to calculate L1 distance . 38

20. Algorithm to calculate SED . 39

21. Algorithm to calculate dot product . 41

22. Result of experiment 1 from 4 to 16 bit width . 55

23. Result of experiment 1 from 20 to 32 bit. 56

24. Result of experiment 2 from 4 to 16 bit width . 57

25. Result of experiment 2 from 20 to 32 bit. 58

26. Result of experiment 3 from 4 to 16 bit width . 60

27. Result of experiment 3 from 20 to 32 bit. 61

28. Result of experiment 4 from 4 to 16 bit width . 62

29. Result of experiment 4 from 20 to 32 bit. 63

30. Result of experiment 5 from 4 to 16 bit width . 64

31. Result of experiment 5 from 20 to 32 bit. 65

32. Result of experiment 6 from 4 to 16 bit width . 66

33. Result of experiment 6 from 20 to 32 bit. 67

34. Result of experiment 7 from 4 to 16 bit width . 68

35. Result of experiment 7 from 20 to 32 bit. 69

xiii

LIST OF SYMBOLS

pTree .Predicate tree

LSP . Least significant pTree

MSP .Most significant pTree

L1D . L1 Distance

SED . Squared Euclidean Distance

DP .Dot product

xiv

CHAPTER 1. INTRODUCTION AND RELATED WORK

As a result of the advancement of digital technology enormous amount of data are

collected from different sources like satellites, customer checkout from super stores, stock

exchange, social media, images from video surveillance camera etc. The volume of data

often becomes very large ranging from hundreds of gigabyte to several terabytes[22, 21].

This type of large and complex data is known as “Big data”. In [16] big data is defined as

“Big data is data that exceeds the processing capacity of conventional database systems. The

data is too big, moves too fast, or does not fit the strictures of your database architectures.

To gain value from this data, you must choose an alternative way to process it.”

Big data is characterized by 3-V properties [17]. These are volume, variety and

velocity. Volume refers to the fact that the data set is enormous in size, measured in gigabytes

(GB), terabytes (TB), petabytes (PB), etc. Variety means the types of data. In addition,

difference sources will produce big data such as sensors, devices, social networks, the web,

mobile phones, etc. For example, data could be web logs, RFID sensor readings, unstructured

social networking data, streamed video and audio. Velocity means how frequently data is

generated and processed. Data may be generated in every millisecond, second, minute, hour,

day etc. Based on the application the data may be processed real-time or when needed.

For mining big data efficiently for the purpose of decision making or decision support,

there is a number of challenges related to it. Due to its characteristics some of the inherent

challenges in big data are capture, storage, search, processing and visualization [44]. Among

them the biggest challenge is fast processing of data with an acceptable degree of accuracy.

There are many algorithms that can process data accurately but when the volume of the

data grows, they fail to process the data fast enough for getting the processing result in a

reasonable amount of time. Thus the algorithms lack to be scalable in big data environment.

1

In our research we attempt to solve this problem using a data mining ready vertically

structured data representation known as predicate tree or pTree [20].

Predicate trees are constructed by vertically slicing the attributes of a data set and

then further slicing the attributes into their bits after the values are converted into binary.

Each bit slice is called raw pTree or level-0 pTree. On top of a level-0 pTree other level

pTrees can be built resulting multi-level pTrees. The basic operations performed on a pTree

are AND, OR, NOT operations which are essentially the bit-wise operations. Using these

bit wise operations other mathematical and relational operations are implemented which are

necessary for implementing different data mining algorithms[10, 11].

1.1. Data mining

In general data mining refers to discovering of useful hidden information within a

(often large) data set which are not readily available. We need to take help of some techniques

to find those information. In [43] data mining is defined as “Data mining is the process of

discovering insightful, interesting, and novel patterns, as well as descriptive, understandable,

and predictive models from large-scale data”. Among the techniques used for data mining

association rule mining, classification and clustering are most widely used.

1.1.1. Association rule mining

Association rule mining (ARM) is a method that finds the interesting relations

between variables in a large data set [32]. Each rule has two parts antecedent and consequence

where a set of variables in the antecedent implies the another set of variables in the

consequence with a confidence level showing how strong the rule is. In [6] customers’ buying

patterns of different product in a super store based on strong rules are shown. Interstingness

of a rule is measured by two parameters namely support and confidence. Support of a rule

indicates the proportion in the database which contains the variables in the antecedent part

2

and confidence of a rule is the proportion that contains the variables in the antecedent part

which also contains the variables in the consequence part. Usually we look after high support

and high confidence rules as they are considered as strong rule but in some application such

as outlier detection we also look for low support but high confidence rule [30].

1.1.2. Classification

Classification predicts the class of an unclassified data sample [23]. Classification is

also known as supervised learning because of the fact that there is training data set with

known class label available to predict the class label of data sample of unknown class label.

Based on the use of this training label there may be two types of classifier [41]. One of them

is known as model based classifier which builds a classification model using the training data

set. It then uses this model to classify unknown samples. Other type of classifier is known

as lazy classifier which does not build any model ahead of time rather it takes into account

the whole training set to classify an unknown sample.

1.1.3. Clustering

Clustering is a technique to group similar types of data together into clusters [24].

Clustering is also known as unsupervised learning because there is no class label associated

with the data samples. The process of clustering tries to increase the similarity between the

data points within a cluster and decrease the similarity between the clusters [40].

1.2. Technologies related to big data

There are many very useful and fundamental technologies that are closely related to

and widely used in big data [13]. In this section we are discussing some of them such as

cloud computing, Internet of Things (IoT), Business Intelligence (BI) and Hadoop.

3

1.2.1. Cloud computing

Big data and cloud computing are closely related to each other. Computation

intensive operations of cloud computing is done on big data and big data stresses the

storage of a cloud system. Big data takes the advantage of huge computing and storage

resources of cloud computing which are managed under concentrated management. Thus

it provides big data applications necessary computing capacity. The development of cloud

computing provides solutions for the storage and processing of big data. On the other hand,

the emergence of big data also accelerates the development of cloud computing [18].

1.2.2. Internet of Things(IoT)

In IoT a huge amount of networking sensors are embedded into various equipments

and machines [27]. These sensors that are deployed in real world collect data of different

kinds like environmental data, geographical data, astronomical data, and logistic data thus

generating bid data. This big data has different characteristics compared with general big

data because of the different types of data collected. The most classical characteristics

include heterogeneity, variety, unstructured feature, noise, and high redundancy. Successful

implementation of IoT relies on effective integration of big data and cloud computing. The

widespread deployment of IoT will also bring many cities into the big data era.

1.2.3. Business intelligence (BI)

Business intelligence is a collection of decision support technologies designed to report,

analyze, and present data [12]. These technologies are often used to read data that have

been previously stored in a data warehouse or data mart. They enable knowledge workers

such as executives, managers, and analysts to make better and faster decisions.

4

1.2.4. Hadoop

Hadoop is an open source software framework for processing huge data sets on a

distributed system [15]. Its development was inspired by Googles MapReduce and Google

File System. It was originally developed at Yahoo! and is now managed as a project of the

Apache Software Foundation.

1.3. Vertical Data structure

In data mining algorithms it is very often assumed that the data being structured as a

relational table in a database or a data cube in a data warehouse [19] where data are stored

horizontally meaning row by row. This kind of horizontally structured records and scan-

based data processing is known to be ineffective for mining big data as horizontal methods

of data mining do not scale with a very large dataset [37].

Over the years, there has been a slow but increasing focus on the vertical database

(also known as column-oriented database) management systems (DBMSs). Vertical DBMSs

are different from the traditional ones in the way data is stored and accessed. This type

of databases store the data column-wise. This allows vertical DBMSs to have extensive

usage in various data warehouse applications because of their better performance in terms of

read I/O in comparison to the conventional DBMSs. This is primarily due to the fact that

vertical DBMSs only retrieve the columns defined in the query rather than the entire row

as in case of traditional DBMSs [37].Consider a student table containing attributes name,

age, gender and grade. In a traditional database, the student table is stored row-wise, one

student record followed by another. In a vertical database, the table is vertically sliced,

i.e., each attribute is stored in a separate individual file. In this section, we discuss few

major open-source and column-oriented Database Management Systems, namely, C-Store,

Infobright, InfiniDB, MonetDB and pTree.

5

1.3.1. C-Store

C-Store was a collaborative research project at MIT which has now been developed

and commercially called as Vertica. It brought lot of novel and interesting features to

the column-oriented architecture such as efficient packing of objects, use of overlapping

projections to store the data, query optimizer and executor based on columns, etc. [39].

1.3.2. Infobright

Infobright is a database and warehouse system available in commerical as well as free

community edition. The key idea that sets this system aside from other vertical systems is the

use of Knowledge Grid - a small metadata layer in place of the regular indexes. Knowledge

Grid consisting of Knowledge Nodes are much smaller in size in comparison to the regular

indexes and thus allow much faster as well as inmemory processing. The main functionality

of Knowledge Nodes is to describe chunks of compressed data also called the Data Packs

[38].

1.3.3. InfiniDB

InfiniDB is an efficient, multi-threaded analytic database system based on column-

oriented storage architecture. Similar to Infobright, InfiniDB is available in two versions -

Community Edition available free under GPL Licence and the commerical Enterprise Edition

(scaled up version). InfiniDB is equipped with a comprehensive list of features [1]. InfiniDB

uses an automated mix of vertical and horizontal partitioning. While the vertical partitioning

allows faster processing by bringing only selected columns in the memory, a logical horizontal

partitioning helps in reducing overall I/Os in horizontal and vertical direction.

1.3.4. MonetDB

MonetDB is one of the most mature columnoriented database system. Developed

by Centrum Wiskunde and Informatica, Netherlands, MonetDB has purely been a research

6

project since its inception in 1995 [7]. Over the years, it has developed signifi- cantly in

different aspects of database management system and currently hosts a family of products

such as XQuery [9, 7], MonetDB-GIS [7, 8], etc.

1.3.5. pTree

pTrees are lossless because the vertical bit-wise partitioning that is used in the

pTree technology guarantees that all information is retained completely. There is no loss

of information in converting horizontal data to this vertical format. pTree vertical data

structures have been exploited in various domains and data mining algorithms, ranging from

classification [4, 5, 25], clustering [31, 42], association rule mining [33, 34], to outlier analysis

[35] as well as other data mining algorithms. pTree technology is patented in the United

States by NDSU. Treeminer Inc.[2] has licensed the pTree patents while Dr. William Perrizos

DataSURG group is further developing the technology, including better algorithms for pTree

processing and processing on multi-core CPUs, GP-GPUs and FPGAs.

1.4. Problem description

The main challenge of this research work is to perform different mathematical

operations over vertically structured large data set using pTrees in order to overcome

challenges of Big Data processing. We know one of the biggest issue of Big Data processing

is that it is often impossible to finish the processing job in reasonable amount of time due to

its size. Many efficient data mining algorithms fail to scale due to the size of the data set.

Our focus in this research to provide a solution to execute basic mathematical

operations in a way that the size of the data does not influence the performance of the

algorithms designed for these operations. In order to achieve this, all the algorithms we

designed will perform various logical operations across the pTrees which are used to represent

the data set. The algorithms must not loop through the bits of the pTrees.

7

Over the years many different types of operations are implemented using pTrees. In

[14] different types of aggregate functions are implemented using the basic operations. They

include Sum, Average, Max, Min, Median/Rank, Top-k etc. In [31], the summation of square

distances are calculated using pTrees. Although these work have significant contribution to

the pTree based vertical data mining techniques, some of them are not true vertical processing

as they need to scan the data point horizontally one-by-one and take the decision regarding

that data point.

In this research work focused on development and implementation of some foun-

dational operations that will be performed on vertically structured data sets which are

represented in pTrees. We developed the following mathematical operations:

• Addition: We developed two addition algorithms. The first algorithm adds two

attributes of a data set represented in pTrees while the other algorithm adds a constant

value with an attribute of a data set.

• Subtraction: Like addition we developed two subtraction algorithms. One algorithm

subtract an attribute from another and other subtract a constant value from an

attribute.

• Multiplication: Multiplication algorithm has two variation as well. One of them

multiply two attributes and the other multiply an attribute by a constant value.

We then use these algorithms to efficiently calculate three important measurements

used in different data mining techniques. They are:

• L1 Distance

• Squared Euclidean Distance

8

• Dot Product

We also developed an algorithm to compare two attributes of a data set to show if

the values of one attribute is greater than or equeal to or less than the corresponding value

of another attribute.

We then compared the efficiency of the algorithms with the horizontal processing of

the same operation.

1.5. Organization of this dissertation

In chapter 2 we discuss the Boolean algebra and how it is used to implement different

mathematical operations. We also define 2’s complement and describe its use in representing

negative integers. In chapter 3 we review the pTree technology in detail. We discuss some

basic definitions of pTree technology, show the construction of pTree and pTree set, explain

the advantages of pTree and discuss the steps to follow for a pTree processing. In chapter 4 we

discuss the existing pTree based algorithms. Then we show our newly developed algorithms

to perform different mathematical operations. Next in chapter 5 we discussed experimental

design to design experiments to prove the better performance of our algorithms. Later in

this chapter we analyzed the results of our experiments. Then we finished this dissertation

by our concluding remarks and future research direction in chapter 6.

9

CHAPTER 2. BOOLEAN ALGEBRA AND ITS USE

Boolean algebra was introduced by George Bool in 1854 for systematic treatment

of logic [28]. It is defined on a set of two elements B = {0, 1}, with rules of two binary

operators AND and OR and a unary operator NOT as shown in the following truth table.

The AND operator produces 1 if and only if both the operands are 1, otherwise the result

is 0. On the other hand the OR operator produces 0 if and only if both of its operands are

0, otherwise the result is 1. The NOT operation just flips the value from 0 to 1 or from 1

to 0.

X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1

(a)

X Y X ORY
0 0 0
0 1 1
1 0 1
1 1 1

(b)

X NOT (X)
0 1
1 0

(c)

Fig. 1. Truth Table for - (a) AND, (b) OR and (c) NOT operations.

Operations showed in figure 1 are the basic Boolean operations but we can derive some

other complex operations using these operations. Of them the one we are most interested is

the XOR (Exclusive OR) operation which is defined as:

XXOR Y = XAND NOT (Y)ORNOT (X)AND Y

What it is basically doing is when both the operands are same it produces 0, otherwise

produces 1. Figure 2 shows the behavior of XOR operation:

Another complex operation is XNOR operation which is defined as:

XXNOR Y = XAND YORNOT (X)AND NOT (Y)

10

X Y X XORY
0 0 0
0 1 1
1 0 1
1 1 0

Fig. 2. Truth table of XOR operation

This operation, also known as equivalence operation, produces 1 when both the operands

are same (both are either 0 or 1) and produces 0 when both of its operands are different. So

this operation is used to compare the equality of two bits. Figure 3 shows the behavior of

XNOR operation:

X Y X XNORY
0 0 1
0 1 0
1 0 0
1 1 1

Fig. 3. Truth table of XNOR operation

2.1. 2’s Complement and its use

In binary number system complement is used to compute the negative equivalent of

an integer. There are two types of complement in binary number system. They are two’s

complement and 1’s complement. Here we are defining them.

Definition 1 (2’s Complement). Assume a binary number N of n bits. 2’s complement of

N is defined as: 2n −N

Definition 2 (1’s Complement). Assume a binary number N of n bits. 1’s complement of

N is defined as: 2n −N − 1

Lemma 1. For any binary number of N,

2’s complement of N = 1’s complement of N + 1

11

Proof: Assume N has n bits. So according to the definition 1, 2’s complement of N = 2n−N

= 2n −N − 1 + 1 = 1’s complement of N + 1 [using definition 2]

Lemma 2. Complement of the complement of a number gives the original number

Proof: Assume a binary number N of n bits. Assume its 2’s complement of N is M which

will also be a n-bit number. So according to definition 1, M = 2n−N . Now, 2’s complement

of M = 2n −M = 2n − (2n −N) = N, hence proved.

2.2. Subtraction Using 2’s complement

Assume two n-bit binary numbers M and N . When we add 2’s complement of N

with M , mathematically we get the result of M −N in the following way:

M + 2’s complement of N

= M + 2n −N [using definition 1]

= 2n + (M −N)

Thus (M + 2’s complement of N) gives us (M −N) plus 2n which is the (n+1)th bit

also known as the carry bit of this addition operation. So if M ≥ N , (M + 2’s complement

of N) gives the M −N after discarding the carry. If M < N , (M + 2’s complement of N) =

2n − (N −M) = 2’s complement of (N −M). That is, (M + 2’s complement of N) has no

carry in this case. It also indicates that the result of (M −N) is negative and is represented

in the 2’s complement form. So taking 2’s complement of (M + 2’s complement of N) will

give the absolute value of the (M −N) using lemma 2.

2.3. Calculation of summation of two integers

The algorithm presented in this paper utilizes the procedures of adding two numbers

represented in binary bits starting from adding two single bit numbers then expanding the

process to add two arbitrary n-bit numbers. When adding two single bit numbers (assume

a and b) the possible result we shall get is a two bit number where the least significant bit

12

is the sum (s) and most significant bit is the carry (c).

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Fig. 4. Truth table of adding two bits

The following bit wise operations compute the value of s and c from a and b

s = aXOR b

c = aAND b

Now assume we have two n-bit numbers A and B which are represented in binary as

follows:

A = an−1an−2 . . . a1a0

B = bn−1bn−2 . . . b1b0

To add two number of n-bit each, the algorithm starts from least significant bit (which

is bit 0) and proceed to left to the more significant bits and ends at the most significant bit

(which is bit n-1). At any step i of these steps the algorithm adds three bits ai (the ith bit

of A), bi (the i
th bit of B) and ci (the carry produced as a result of similar operation in step

(i-1) except for i=0 where c=0). Following operations are executed in step i:

Assume when adding ai and bi we get sum s1 and carry c1. So

13

s1 = aiXOR bi

c1 = aiAND bi

Now we need to add s1 with c and we will get final sum si and we will get another

carry c2 as follows:

si = s1XOR ci

c2 = s1AND ci

The final carry will be the OR between c1 and c2. So our final equations to get sum

and carry will be:

si = aiXOR biXOR ci

ci+1 = (aiAND bi)OR (aiXOR bi)AND ci

2.4. Subtraction of integers

As shown in section 2.3 we showed how we can add two integers. We can extend this

idea to calculate subtraction of two integers directly. Similar to the figure 4 we can construct

truth table to subtract two bits. Figure 5 shows the truth table to subtract two bits where

bit b is subtracted from a to produce sum s and borrow r.

a b r s
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

Fig. 5. Truth table for subtracting two bits

14

The following operations compute the value of s and r from a and b

s = aXOR b

r = NOT (a)AND b

Finally to subtract an integer B from A to get S we need to follow these equations:

si = aiXOR biXOR ri

ri+1 = (NOT (ai)AND bi)OR (NOT (ai)XOR bi)AND ri

The sign of the result depends on the bit Sn. If Sn is 0 the result is positive and Sn is 1 then

the result is negative. In that case the result is in 2’s complement form and we would need

to take complement again to get the absolute value of the result.

2.5. Multiplication of two integers

When we multiply two bits a and b the result p is 1 when both bits are 1. If any of

the bits is 0 or both of them are 0 the result is 0. That is exactly same as AND operation

between a and b. Notice that there is no carry in multiplying two bits.

p = aAND b

In order to multiply an integer A by B first we multiply each bit ai of A ∀i by the

LSB of B i.e. b0. Then we store them in S as:

si = aiAND b0∀i

15

Then we multiply each bit ai of A ∀i by the next bit of B i.e. b1 and add them with S after

shifting 1 bit position. And this way continue to the MSB of B. Then we get the final result

of A ∗B in S.

2.6. Comparing two integers

If we compare two bits a and b there are three possible results namely a = b or a > b

or a < b. Figure 6 shows the truth table of these results which are denoted by EQ, GT and

LT respectively. Following equations generates these results.

a b EQ GT LT
0 0 1 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

Fig. 6. Truth table for comparing two bits

EQ = aXNOR b

GT = aAND NOT (b)

LT = NOT (a)AND b

Assume two n-bit numbers A and B which are represented in binary as follows:

A = an−1an−2 . . . a1a0

B = bn−1bn−2 . . . b1b0

Here A will be equal to B if the following condition is satisfied:

an−1 = bn−1 and an−2 = bn−2 and · · · and a1 = b1 and a0 = b0

16

A will be greater than B if the following conditions are met:

an−1 > bn−1

Or, an−1 = bn−1 and an−2 > bn−2

...

Or, an−1 = bn−1 and an−2 = bn−2 and · · · and a1 = b1 and a0 > b0

And for A to be less than B the conditions are:

an−1 < bn−1

Or, an−1 = bn−1 and an−2 < bn−2

...

Or, an−1 = bn−1 and an−2 = bn−2 and · · · and a1 = b1 and a0 < b0

Alternatively if we already compute EQ and GT then LT can be computed as

LT = NOT (GTOREQ)

We can use the equation of EQ,GT and LT to implement these conditions.

17

CHAPTER 3. REVIEW OF PTREE TECHNOLOGY

The predicate tree or pTree is a vertical data technology which records the truth

value of a given predicate on a given data set. For each value of the data set it stores 1 if

the given predicate is true and stores 0 if the predicate is false. Thus with these 1’s and 0’s

we get a bit vector which forms the leaf of the tree. Then we group the bits of the leaf with

a fixed number of bits. Then we apply some predicate to every group and represent them

by 1 or 0 (based on the truth value of the predicate) as the parent node of that group. Then

we group the bits of all the bits of the parent nodes same way to form upper level parent

nodes. This process continues until we form a single bit root node. Then we examine the

tree to see if all the bits in a group is all 1’s (called pure-1 node) or all 0’s (called pure-0

node). In that case we remove all its child nodes. Consider the example in figure 7 (a)

where temperature of a city is recorded for 8 days and a predicate P chosen as “the weather

is freezing” (i.e. below 32). So for first four data value P is true, for next one it is false and

so on. Thus we get a bit vector “1110100” which becomes the leaf of the pTree as shown in

figure 7 (b). Figure 7 (b) shows the grouping of the leaf nodes with two bits and generation

of the parent nodes. Figure 7 (c) shows the final pTree.

3.1. Important definitions

Definition 3 (Level-0 pTree). In the process of creating a pTree, the bit slice that is created

by representing the truth value of a predicate by 1 or 0 is known as level-0 pTree. Number

of bits (0 or 1) in a level-0 pTree is known as the length of pTree.

A level-0 pTree is sometime mentioned by only pTree. The root of pTree in figure 7

(b) is an example of a level-0 pTree.

18

Temp P

25 1
20 1
15 1
28 1
35 0
30 1
37 0
40 0
(a)

11 11 01 00

1 1 0 0

1 0

0

(b)

0

0

0 0

0

1

1

(c)

Fig. 7. Constructing pTree - (a) Data set (b) Grouping of bits (c) Final pTree P .

Definition 4 (Muli-Level pTree). When the bit slice of a level-0 pTree is grouped together

with a fixed number of bits and the branches of the tree is formed then this pTree is called

Multi-Level pTree. The fixed number of bits is called the stride of the pTree.

Multi-level pTree can be used to compress a large data size. But much of the time

compressing into a tree is unnecessary because the uncompressed bit arrays can be processed

very quickly.

Definition 5 (pTree set). A pTree set P of size N is a collection of N pTrees where each

pTree in the collection is accessed by P [i] where 0 ≤ i ≤ (N − 1). Number of pTrees in a

pTree set is known as the size of the pTree set.

In figure 8 (b) P1, P2 and P3 are example three of pTree sets. Size of each pTree set

is 3.

3.2. pTree representation of data set

The task of generating pTree typically starts by converting a relational table of

horizontal records to a set of vertical bit vectors by decomposing each attribute in the table

into separate bit slices. If an attribute has numeric value we convert the data into binary

19

then we consider the predicates to be “20 position is 1”, “21 position is 1”, “22 position is

1” and so on. Then each bit position of the binary value generates one bit slice. But if an

attribute has categorical value then first we need to create a bitmap for the attribute and

then generate bit vectors for each category. Such vertical partitioning guarantees that the

information is not lost.

Consider a data set D with n attributes as D = (A1, A2, . . . , An). In order to represent

it by pTree we will require a set of n pTree sets as {P1, P2, . . . , Pn} such that attribute Ai will

be represented by pTree set Pi. Suppose each value of Ai is prepresented by an N -bit binary

number ai,N−1, ai,N−2 . . . , ai,j , . . . , ai,0. Then pTree Pi[j] will represent the bit slice of ai,j .

Pi[0] pTree which represent the Least significant bit slice of Ai is called the lest significant

pTree (LSP in short) of pTree set Pi. Similarly Pi[N − 1] is known as the most significant

pTree or MSP. Figure 8 shows the representation of data set into pTree. In this figure we

see that the dataset had three attributes. So we need three pTree sets to represent them.

Looking at the value of the attribute we see that we need 3-bit numbers to convert them to

binary.

A1 A2 A3

5 3 4
3 1 6
2 5 2
6 7 0
7 4 5
4 5 3
6 2 6
4 1 2

(a)

P1 P2 P3

P1[2] P1[1] P1[0] P2[2] P2[1] P2[0] P3[2] P3[1] P3[0]
1 0 1 0 1 1 1 0 0
0 1 1 0 0 1 1 1 0
0 1 0 1 0 1 0 1 0
1 1 0 1 1 1 0 0 0
1 1 1 1 0 0 1 0 1
1 0 0 1 0 1 0 1 1
1 1 0 0 1 0 1 1 0
1 0 0 0 0 1 0 1 0

(b)

Fig. 8. pTree representation - (a) Data set of 3 attributes (b) Corresponding pTree sets.

20

3.3. Operations on pTrees

Any Boolean operation discussed in section 2 can be applied on pTrees. Suppose p

and q are two level-0 pTrees of length L. Assume a binary operator OPb that we apply on

these two pTrees. Then p OPb q is calculated as p[i] OPb q[i] ∀i|i ∋ (0 : L− 1) where p[i]

and q[i] are the ith bit of p and q pTrees. Similarly if OPu is a unary operator then OPu(p)

is calculated as OPu(p[i]).

So we can have the following binary operations on pTrees:

• AND

• OR

• XOR

• XNOR

And the following unary operation:

• NOT

Suppose p = 10110110 and q = 11010010 then the figure 9 shows the results of

different pTree operations.

21

p q pAND q pOR q pXOR q pXNOR q NOT (p) NOT (q)
1 1 1 1 0 1 0 0
0 1 0 1 1 0 1 0
1 0 0 1 1 0 0 1
1 1 1 1 0 1 0 0
0 0 0 0 0 1 1 1
1 0 0 1 1 0 0 1
1 1 1 1 0 1 0 0
0 0 0 0 0 1 1 1

Fig. 9. Truth table showing different pTree operations.

Another important operation on pTree is 1Count operation which returns the number

of 1 in a 0-level pTree. So for the above example:

1Count(p) = 5

3.4. Advantage of pTree

As we mentioned before pTree is a data mining ready data structure which represent

the data in a loss less manner. In addition to that when data is loaded into the memory it

takes less or equal amount of space. When implementing different algorithm using pTree it

requires less time. In this section we will show how pTree can be used to get space saving

and speed gain.

3.4.1. Space advantage of pTree

Assume a dataset S consisting of N rows and n columns containing value of m bits.

So if we convert the dataset into pTrees we will get mn pTrees where the length of each tree

will be N bits.

In traditional approach, let the size of the dataset be Strad. The size of each value

will be =
⌈

m
8

⌉

bytes and size of each column =
⌈

m
8

⌉

N bytes which gives us the size of the

22

whole dataset, Strad =
⌈

m
8

⌉

nN bytes.

In pTree approach, let the size of the size of the dataset be SpTree. Size of each pTree

will be
⌈

N
8

⌉

bytes. So the size of the whole dataset, SpTree = mn
⌈

N
8

⌉

bytes.

In a large dataset where N >> 8, we can assume N = 8×L. We get Strad = 8
⌈

m
8

⌉

nL

bytes and SpTree = mnL bytes.

Now if 1 < m < 8 then
⌈

m
8

⌉

= 1. Therefore, we get SpTree =
m
8
Strad. However when

m = 8 we get SpTree = Strad

Now if 9 < m < 16 then
⌈

m
8

⌉

= 2 and we get SpTree =
m
16
Strad. And when m = 16 we

get SpTree = Strad.

So we conclude that SpTree < Strad and SpTree = Strad if m is a multiple of 8.

3.4.2. Speed advantage of pTree

Assume that a logical operation (AND, OR, NOT, XOR) between two machine words

(of size W) of memory takes Tlog units of time. When we do such a logical operations on

two pTrees of length N we actually do it on L pairs of machine words where L =
⌈

N
W

⌉

.

So the logical operation on two pTrees takes LTlog unit of times. Assume an arithmetic

operation (addition, subtraction, multiplication etc.) between two bytes of memory takes

Tarith units of time. Suppose we will do such an arithmetic operation on two columns of our

previously described data set, S. For simplicity assume each value in the dataset takes 1

byte of memory. So each column has N bytes memory and the arithmetic operation will take

Ttrad = NTarith units of time. Suppose to get the same arithmetic operation using pTree we

need to perform g number of logical operation on different pTrees. So the process will take

TpTree = gLTlog unit of time. For simplicity consider that N is multiple of W, so we can

write

TpTree

Ttrad

=
g

W

Tlog

Tarith

23

Lets call the factor
Tlog

Tarith
= α. In old processors bit-wise logical operation would run faster

than arithmetic operation like addition, multiplication, etc. resulting the factor α less than

1. However in modern day processors the arithmetic operations are optimized in such a level

that they run as fast as bit-wise operations resulting the factor α close to 1 [3]. Again W

represent the number of bits in a machine word which the computers can handle at a time

which is expected to be a large number comparing with g. As a result as long as g < W the

TpTree will be less than Ttrad giving the speed gain of pTree based algorithm processing over

traditional processing of the same algorithm.

3.5. Steps for pTree processing

To obtain a pTree based solution to a data mining problem we might need to go

through the following steps.

1. First thing we need to do is to convert the data set into pTree sets. This is a one time

process and we then use the pTree sets again and again. If the data set is in traditional

form i.e. in horizontal form, with one single scan of the data set we can convert the

entire data set into pTree sets. Sometimes it may be possible to get the data directly

in pTree form when it is being captured by hardware devices if we have the required

hardware support. For example when taking image data using camera different color

bands might be converted into pTrees directly from the device. It is also recommended

that we calculate all the one count of the pTrees and store them along with the pTrees.

Also it is proved to be beneficial if we calculate the complement of each pTree and

store them so that we would use them when we would need them.

2. Next step would be to implement a pTree version of the desired algorithm. In next

chapter we will discuss many basic algorithms that we can use to convert any algorithm

into its pTree version

24

3. At the end of the step 2, we will get our data mining task producing some results. The

result might be in pTree or in a pTree set. In that case we might need to translate the

result into a more presentable form.

25

CHAPTER 4. PTREE BASED ALGORITHMS

As we mentioned in section 3.5 we need to implement pTree version of a data mining

algorithm in order to perform our desired data mining task, we need the basic algorithms

designed to perform using pTrees. In this section we will discuss various types of algorithms

that are already available and that we have developed in this research work. All these

algorithms will use the operations mentioned in section 3.3.

4.1. Existing Algorithms

Over the years many basic algorithms have been developed using pTree such as those

found in [14]. The idea behind pTree processing is that it will always do operation on entire

pTrees and will never loop within a pTree. Here we describe some of them very briefly.

• Sum/Mean: Using this algorithm we can find the summation of an attribute of a data

set represented by a pTree set. Then we can find the mean value of that attribute.

• Square Sum/Variance: We can also find the summation of the squared value of the

attribute and then we can calculate the variance.

• Median/Rank-k: We can also find the Rank-k value of an attribute and then find the

median.

• Max/Min: We find the maximum value and minimum value of an attribute.

4.2. 2’s complement

From section 2.1 we know that 2’s complement is used to represent the negative

equivalent of an integer. Also lemma 1 shows that we can calculate 2’s complement of a

binary number by adding 1 with 1’s complement. We can derive an easy way to calculate

1’s complement of a binary number from definition 1. We know 2n − 1 is represented by n

26

1’s. Then if we subtract any binary number N from it, the result is just the flip of the bits.

That is, the 1’s become 0’s and 0’s become 1’s as 1-1=0 and 1-0=1. And according to the

definition it the 1’s complement of N . The algorithm in figure 10 will exploit this idea to

convert an integer into its 2’s complement.

Algorithm 1: Compute 2’s complement of a pTree set

Input:
pTree Set S of N pTrees
Output:
pTree Set S in its 2’s complement
Variables:
pTree c, t

integer i

ComppTreeSet(S):
1. c← 1
2. foreach i in (0 : N − 1) do
3. t← NOT (s[i])
4. s[i]← tXOR c

5. c← tAND c

6. endfor

Fig. 10. Algorithm to compute 2’s complement of a pTree set

In line 2 we run a loop to start from the LSP to MSP of pTree set S. Each time the

loop is run line 3 makes the 1’s complement of s[i]. Then line 4 and 5 add c with s[i]. As c

is initialized to 1, line 4 and 5 is basically adding 1 with the 1’s complement of s[i] and thus

getting the 2’s complement of S.

4.3. Absolute value

When we subtract an integer from another the result can be positive or negative

depending on the value of the integers. We discussed in section 2.4 the negative results are

27

shown in 2’s complement form. In order to get the value of a negative result we need to get

the absolute value of that negative result. This is done by using the lemma 2 discussed in

section 2.1. Algorithm in figure 11 first examine the right most pTree of the input pTree set

which is considered as sign pTree. When the value of that pTree is 0 the number represented

in row of pTree set is positive and otherwise negative. When it is a positive value nothing is

done as there is no difference in terms of value between the absolute value and the number

itself. However when it is 1 it indicates that the number is negative and then number is

complemented to get the absolute value.

Algorithm 2: Compute the absolute value of a pTree set

Input:
pTree Set A of N+1 pTrees
Output:
pTree Set S of N pTrees
Variables:
pTree c, t

integer i

AbspTreeSet(A,S):
1. c← a[N]
2. foreach i in (0 : N − 1) do
3. t← a[i]XOR a[N]
4. s[i]← tXOR c

5. c← tAND c

6. endfor

Fig. 11. Algorithm to compute absolute value of a pTree set

In this algorithm we uses a special property of XOR operation. If we observe the

behavior of XOR operation shown in figure 2, we see when the operand Y is 0 the value

28

of XXOR Y is X but when Y is 1 the value of XXOR Y is NOT (X). Now in line 1 we

assign a[N] to c which can be either 0 or 1. In line 3 we are doing XOR between a[i] and

a[N]. So if a[N] is 1 we get the 1’s complement of a[i]. If a[N] is 0 then there is no change

in a[i]. Then line 4 and 5 is adding c with a[i]. So basically based on signed pTree we are

getting 1’complement of A and adding 1 with it to get the 2’s complement of A in S or we

are not changing A and adding 0 and thus S is simply equal to A. This is how the algorithm

is calculating the absolute value of A.

4.4. Addition

In addition we add two operands and store the result in a third variable. We have

two possibilities here, we may add two pTree sets and store the result in another pTree set

or we may add a constant value with a pTree set and store the result in another pTree set.

In both cases we will exploit the idea discussed in section 2.3. Figure 12 shows the addition

of two pTree sets while 13 shows addition of a constant with a pTree set.

In both algorithms we consider unequal pTree set size or bit width by a condition

like N > M . The summation is stored in the pTree set S which has N + 1 pTrees. Line

2 demonstrate the looping through LSP to MSP of pTree set A which is the largest pTree

set in size. While adding two pTree sets we deals with two pTree sets to calculate sum and

carry (line 4 and 5) up to M th pTree. For the rest of the pTrees we add only the carry c (in

line 7 and 8). Finally the carry c is assigned to S[N] in line 11. To add a constant with a

pTree set we go through the similar steps except that we do not have a second pTree set,

rather we have a constant value consists of 1 and 0. So we check if the constant bit is 1 or

0 and accordingly we adjust the calculation of sum and carry.

29

Algorithm 3: Computing the addition of two pTree sets

Input:
pTree Set A of N pTrees
pTree Set B of M pTrees

where N > M

Output:
pTree Set S of N+1 pTrees
Variables:
pTree c

integer i

AddpTreeSet(A,B, S):
1. c← 0
2. foreach i in (0 : N − 1) do
3. if i > M

4. S[i]← A[i]XORB[i]XOR c

5. c← (A[i]AND B[i])OR (A[i]XORB[i])AND c

6. else
7. S[i]← A[i]XOR c

8. c← A[i]AND c

9. endif
10. endfor
11. S[N]← c

Fig. 12. Algorithm to add two pTree sets

30

Algorithm 4: Computing the addition of a pTree set with a constant

Input:
pTree Set A of N pTrees
integer V of M bits

where N > M

Output:
pTree Set S of N+1 pTrees
Variables:
pTree c

integer i

AddpTreeSet(A, V, S):
1. c← 0
2. foreach i in (0 : N − 1) do
3. if i > M And V [i] = 1
4. S[i]← NOT (A[i])XOR c

5. c← A[i]OR c

6. else
7. S[i]← A[i]XOR c

8. c← A[i]AND c

9. endif
10. endfor
11. S[N]← c

Fig. 13. Algorithm to add a constant with a pTree set

4.5. Subtraction

Subtraction is very much similar to addition with few differences in the equation

used. Section 2.4 discussed the equations that are used in the algorithms in figure 14 and

15. Figure 14 shows the subtraction of one pTree set from another pTree set while figure 15

shows the subtraction of a constant from a pTree set.

Both the versions of subtraction work as their similar addition algorithms. In both

algorithms we consider unequal pTree set size or bit width by a condition like N > M . The

31

subtraction result is stored in the pTree set S which has N + 1 pTrees. The result will be a

signed integer in 2’s complement form. That is the S[N] pTree is a sign pTree (similar to a

sign bit in a signed integer). A 0 value in this pTree indicates the row in that S is a positive

integer and a 1 indicate the same as a negative integer.

Algorithm 5: Subtraction of a pTree set from another pTree set

Input:
pTree Set A of N pTrees
pTree Set B of M pTrees, where N > M

Output:
pTree Set S of N+1 pTrees
Variables:
pTree c

integer i

SubpTreeSet(A,B, S):
1. c← 0
2. foreach i in (0 : N − 1) do
3. if i > M

4. S[i]← NOT (A[i])XORB[i]XOR c

5. c← (NOT (A[i])AND B[i])OR (NOT (A[i])XORB[i])AND c

6. else
7. S[i]← NOT (A[i])XOR c

8. c← NOT (A[i])AND c

9. endif
10. endfor
11. S[N]← c

Fig. 14. Algorithm to subtract a pTree set from another pTree set

32

Algorithm 6: Subtraction of a constant from a pTree set

Input:
pTree Set A of N pTrees
integer V of M bits, where N > M

Output:
pTree Set S of N+1 pTrees
Variables:
pTree c

integer i

SubpTreeSet(A, V, S):
1. c← 0
2. foreach i in (0 : N − 1) do
3. if i > M And V [i] = 1
4. S[i]← A[i]XOR c

5. c← NOT (A[i])OR c

6. else
7. S[i]← NOT (A[i])XOR c

8. c← NOT (A[i])AND c

9. endif
10. endfor
11. S[N]← c

Fig. 15. Algorithm to subtract a constant from a pTree set

4.6. Multiplication

Like addition and subtraction we can multiply a pTree set by another pTree set or

by a constant. The algorithms use the procedure discussed in section 2.5. Figure 16 shows

the algorithm to multiply a pTree set another pTree set and figure 17 shows the algorithm

to multiply a pTree set by a constant.

In the first multiplication algorithm (figure 16) we multiply pTree set A of size N by

pTree set B of size M and the result is stored in pTree set S of size M + N . In line 1 the

algorithm loops through all the pTrees of B from LSP to MSP. In each iteration it loops

33

Algorithm 7: Computing the multiplication of two pTree sets

Input:
pTree Set A of N pTrees
pTree Set B of M pTrees
Output:
pTree Set S of M+N pTrees
Variables:
pTree c, p, q

integer i, j

MultiplypTreeSet(A,B, S):
1. foreach j in (0 : M − 1) do
2. c← 0
3. foreach i in (j : N + j − 1) do
4. p← A[i− j]AND B[j]
5. q ← S[i]
6. S[i]← pXOR qXOR c

7. c← (pAND q)OR (pXOR q)AND c

8. endfor
9. S[N + j]← c

10. endfor

Fig. 16. Algorithm to multiply two pTree sets

through the pTrees of A (as in line 3), multiply the pTrees of A by the a single pTree of B

namely B[j] (line 4). Then add this product with S (line 5, 6 and 7). In next iteration the

algorithm multiply each pTree of A by the next pTree of B. Then it adds this product with

S but shifting one place to the left. The shifting is done by the assignment of variable i in

loop in line 3.

In the second algorithm (figure 17) it uses the same technique as the first algorithm

with one exception that now it is multiplying a pTree set A by a value V where bits of V

might be 1 or 0. So the algorithm checks if V is 1 or 0 in line 3. If it is 0 then nothing is

done (only shifts the S) as A[i]× 0 = 0. When it is 1 then the algorithm needs to add only

34

Algorithm 8: Computing the multiplication of a pTree set by a constant

Input:
pTree Set A of N pTrees
integer V of M bits
Output:
pTree Set S of M+N pTrees
Variables:
pTree c, q

integer i, j

MultiplypTreeSet(A, V, S):
1. foreach j in (0 : M − 1) do
2. c← 0
3. if V [j] = 1
4. foreach i in (j : N + j − 1) do
5. q ← S[i]
6. S[i]← A[i− j]XOR qXOR c

7. c← (A[i− j]AND q)OR (A[i− j]XOR q)AND c

8. endfor
9. endif
10. S[N + j]← c

11. endfor

Fig. 17. Algorithm to multiply a pTree set by a constant

pTree of A as A[i]× 1 = A[i]. So line 5, 6 and 7 are modified accordingly.

35

4.7. Comparison

Section 2.6 shows the basic equations of comparing two integers. Using these

equations we can compare two pTree sets as shown in the algorithm in firgure 18.

This algorithm compare two pTree sets A and B each of them has N pTrees. It

begins with initializing three pTrees gt, eq and lt. Here gt is used to show which values in

A is greater than B. Similarly eq to show equality and lt for less than comparison. In line

4 and 5 it uses the equations of section 2.6. In line 5 the algorithm uses XNOR operation

to find where A and B are equal. It is due to the fact that when two operands are equal

then XNOR gives us 1 and otherwise 0 as shown in the truth table in figure 3. Finally line

7 calculate the value of lt from gt and eq.

Algorithm 9: Compare two pTree sets

Input:
pTree Set A of N pTrees
pTree Set B of N pTrees
Output:
pTree eq,gt,lt

Variables:
integer i

ComparepTreeSet(A,B, eq, gt, lt):
1. gt← 0
2. eq ← 1
3. foreach i in (N − 1 : 0) do
4. gt← gtOR a[i]AND NOT (b[i])AND eq

5. eq ← (a[i]XNOR b[i])AND eq

6. endfor
7. lt← NOT (gtOR eq)

Fig. 18. Algorithm to compare two pTree sets

36

4.8. L1 Distance

Assume two data point X and Y in n dimensional space where X = (x1, x2, . . . , xn)

and Y = (y1, y2, . . . , yn). L1 distance between two data point is defined as:

dL1
=

n
∑

i=1

|xi − yi| (4.1)

Suppose a data set S has n attributes. An attribute Ai is represented by a pTree set Pi

containing N pTrees. That is S = {P1, P2, . . . , Pn}. Assume we need to find the L1 distance

of all the points of the data set from a fixed point C = (c1, c2, . . . , cn). Suppose the distance

will be calculated in pTree set D. This will be done by the following steps for all the values

of i from 1 to n.

Step 1: Subtract ci from pTree set Pi using the algorithm in figure 15. Assume the

resultant pTree set is Ri.

Step 2: Get the absolute value pTree of Ri using the algorithm in figure 11. Assume the

absolute values are stored in pTree set Si

Step 3: Add Si with pTree set D using the algorithm in figure 12

Algorithm in figure 19 shows these steps.

37

Algorithm 10: Calculate the L1 distance

Input:
Data Set S of n pTrees sets {P1, P2, . . . , Pn} where each Pi contains N pTrees
A fixed point C = (c1, c2, . . . , cn) where each ci is an N -bit value
Output:
pTree set D contains (N + n) pTrees
Variables:
integer i

L1Distance(S, C,D):
1. foreach i in (1 : n) do
2. SubpTreeSet(Pi, ci, Ri)
3. AbspTreeSet(Ri, Si)
4. AddpTreeSet(D,Si, D)
5. endfor

Fig. 19. Algorithm to calculate L1 distance

4.9. Squared Euclidean Distance

Euclidean distance (also known as L2 distance) between two data point X and Y in

n dimensional space where X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) is defined as:

dL2
=

√

√

√

√

n
∑

i=1

(xi − yi)2 (4.2)

Square Euclidean Distance (SED) is the square of L2 distance. So we can write:

SED =
n

∑

i=1

(xi − yi)
2 (4.3)

Using the same data set S and a fixed point C = (c1, c2, . . . , cn) as discussed in section 4.8

we can find the SED of the data points in S from C by the following steps for all the values

38

of i from 1 to n.

Step 1: Subtract ci from pTree set Pi using the algorithm in figure 15. Assume the

resultant pTree set is Ri.

Step 2: Get the absolute value pTree of Ri using the algorithm in figure 11. Assume the

absolute value pTree is Ti

Step 3: Get the squared value of Ti by multiplying it with itself using the algorithm in

figure 16. Assume the absolute value pTree is Si

Step 4: Add Si with pTree set D using the algorithm in figure 12

Algorithm in figure 20 shows these steps.

Algorithm 11: Calculate the SED

Input:
Data Set S of n pTrees sets {P1, P2, . . . , Pn} where each Pi contains N pTrees
A fixed point C = (c1, c2, . . . , cn) where each ci is an N -bit value
Output:
pTree set D contains (2N + n) pTrees
Variables:
integer i

SED(S, C,D):
1. foreach i in (1 : n) do
2. SubpTreeSet(Pi, ci, Ri)
3. AbspTreeSet(Ri, Ti)
4. MultiplypTreeSet(Ti, Ti, Si)
5. AddpTreeSet(D,Si, D)
6. endfor

Fig. 20. Algorithm to calculate SED

39

4.10. Dot production calculation

For various data mining algorithm we often need to find the dot product of a set of

points with a unit vector to find the shadow lengths of the points along the direction of that

unit vector. Assume the data set S as mentioned in section 4.8 represented by n pTree sets

{P1, P2, . . . , Pn}. Consider a direction vector D = (D1, D2, . . . , Dn). We are interested to

find the Dot product DP as

DP = S • D

DP =
n

∑

i=1

Pi ∗Di (4.4)

We can calculate DP by following the steps for i from 1 to n

Step 1: Get the product of Pi and Di using the algorithm in figure 16. Assume the absolute

value pTree is Si

Step 2: Add Si with pTree set DP using the algorithm in figure 12

Algorithm in figure 21 shows how to calculate dot product:

4.11. Approximate calculation

We know in big data processing it is very vital to be able to finish its processing in

reasonable time. That is why speed gain is very important. In section 3.4.2 we saw that the

speed gain of pTree processing depends number of basic pTree operations performed. Now

if the values in a data set are very large then each value would take a large number of bits

which will make the size of the pTree set large. This large size of pTree set will cause a large

number of pTree operations to perform that would eventually limit the speed gain in pTree

processing. To overcome this situation we can perform some operations in approximation

where an absolute accuracy is not necessary. For example, in FAUST algorithm [36] we find

the dot product of the data values with a unit vector and find the range of the values of that

40

Algorithm 12: Calculate the dot product

Input:
Data Set S of n pTrees sets {P1, P2, . . . , Pn} where each Pi contains N pTrees
A direction vector D = (D1, D2, . . . , Dn) where each Di is an N -bit value
Output:
pTree set DP contains (2N + n) pTrees
Variables:
integer i

DotProduct(S,S, DP):
1. foreach i in (1 : n) do
2. MultiplypTreeSet(Pi, Di, Si)
3. AddpTreeSet(DP,Si, DP)
4. endfor

Fig. 21. Algorithm to calculate dot product

dot product. In this case we might not need to find the exact dot product values rather we

can approximately calculate the dot products.

One approach to approximately perform different operations is to take a small number

of most significant bits of both the operands and make the rest of the bits either 0 or 1. So

in pTree set a small number of most significant pTrees will take part in the operations and

rest of the pTrees will be considered either 0 or 1. Here we explain how it will work. As we

know multiplication operation involve more pTree operations than addition or subtraction

operation this approximation is more siginificant in case of multiplication. So we will explain

how it will work for multiplication.

Suppose we have two integers A and B. We divide A into Ax and Ay where Ax is

the number formed by taking most significant x bits and Ay is the number formed by taking

41

least significant y bits. Similarly we divide B into Bx and By. So we can write

A = 2yAx + Ay (4.5)

and

B = 2yBx + By (4.6)

Now we may consider both Ay and By consist of all 0 bits which will make

A = 2yAx (4.7)

and

B = 2yBx (4.8)

So

A× B = 22yAxBx (4.9)

Now consider Ay consists of all 1 bits and By consist of all 0 bits. For y number of 1’s in

Ay makes it 2y − 1 and we discard -1 from here for simplicity and that makes approximate

value of

A = 2y(Ax + 1) (4.10)

So

A×B = 22y(AxBx + Bx) (4.11)

Now consider both Ay and By consist of all 1 bits. That gives us the approximate value of

A = 2y(Ax + 1) (4.12)

42

and

B = 2y(Bx + 1) (4.13)

So

A×B = 22y(AxBx + Ax + Bx + 1) (4.14)

In pTree processing we consider A and B to be pTree sets. So Ax and Bx are pTree

sets taking the most significant x pTrees from A and B respectively. Then to implement the

equations 4.9, 4.11 and 4.14 we need to multiply AxBx by using algorithm to in figure 16.

Then we need to shift this result 2y place left to implement 4.9. For equation 4.11 we need

to add Bx with AxBx using the addition algorithm in figure 12 and then shift the result 2y

place left. For equation 4.14 first we need to calculate Ax+Bx+1. To do that we can modify

the addition algorithm to add two pTree sets with an initial carry 1. So in the algorithm we

just need to assign c to 1 in line 1. Then we need to add this result with AxBx and finally

shift the result 2y place left.

43

CHAPTER 5. EXPERIMENTAL DESIGN AND ANALYSIS

In order to prove the effectiveness of our methods over traditional horizontal methods

we ran a series of experiment. In this chapter we describe the experimental framework that

we used to analyze our methods. First we propose a comprehensive experimental framework

based on formal design methodology. Then based on those frameworks the experiments are

carried out. Next we compare the results in a conclusive manner.

5.1. Formal design methodology

In formal design, an experiment is a test or series of tests where we purposefully

change the input variables of a process or a system so that we can see the changes in the

output responses and also be able to identify the reason for the changes that we observed

[26, 29]. In this section we introduce some experimental design terminologies before we

describe our experimental design scheme.

In the experimental design area, the input parameters and different assumptions

about the system are called factors. The output performance measurements are called

responses. An experiment is carried out in order to determine which factors affect a response.

Then the important factors are identified that lead to the best possible response.

5.1.1. Choice of input factors and responses

We used factorial design strategy [29] to design our experiments. In factorial design

strategy, experiments are run at various values and level of the factors to study theirs effects

on the responses. As a result we are able to form a confidence interval for an expected

response at each factor level. If the factors are quantitative we may use a graph showing the

response as a function of factor levels.

Our purpose here is to explore the performance of our proposed algorithms to perform

the mathematical operations using vertical data structure of pTrees on Big data. We have

44

algorithms that perform basic mathematical operations such as addition, subtraction and

multiplication. Each of them are of two categories. The algorithms doing these operations

on two pTree sets as input are in category one. It includes the algorithm in figures 12, 14

and 16. Second category of algorithms are those that required one pTree set and a constant

value such as in figures 13, 15 and 17. We also have algorithms that perform some data

mining tasks using the basic mathematical algorithms. They are discussed in figures 19, 20

and 21. Then we have another algorithm that compare two pTree sets as shown in figure 18.

Each of these algorithms are compared with their horizontal versions.

The table 1 shows all the algorithm that are considered in our experimental design

and assign an ID to each of them.

Table 1. List of Algorithms with their assigned ID’s

Algorithm Name Assigned ID

Algorithm to add two pTree sets Add P
Algorithm to add a constant with a pTree set Add C

Algorithm to subtract two pTree sets Sub P
Algorithm to subtract a constant from a pTree set Sub C

Algorithm to multiply two pTree sets Mul P
Algorithm to multiply a pTree set by a constant Mul C

Algorithm to compare two pTree sets Com P
Algorithm to calculate L1 distance L1D P

Algorithm to calculate SED SED P
Algorithm to calculate dot product DP P

These algorithms will be compared with their horizontal versions as listed in the table

2.

In our experiment design we use the following design factors: data size, bit width, bit

pattern and different types algorithms. Next we fix the range of the factors. As for the data

size we use 10 different data sizes as shown in table 3. Each data size is assigned a unique

45

Table 2. List of horizontal algorithms with their assigned ID’s

Algorithm Name Assigned ID

Horizontal addition algorithm Add H
Horizontal subtraction algorithm Sub H

Horizontal multiplication algorithm Mul H
Horizontal algorithm to compare two attributes Com H

Horizontal L1 distance algorithm L1D H
Horizontal SED algorithm SED H

Horizontal dot product algorithm DP H

ID. Each data value can be of a different bit width. We vary this factor as shown in table 4.

Table 3. Data size range with their assigned ID’s

Data Size Size ID

0.5× 109 S1
1.0× 109 S2
1.5× 109 S3
2.0× 109 S4
2.5× 109 S5
3.0× 109 S6
3.5× 109 S7
4.0× 109 S8
4.5× 109 S9
5.0× 109 S10

We also assigned an ID to each bit width. Our third factor is the bit pattern used to

form constant values. While dealing with constant value our algorithm differently based on

the bit value of the constant. In another word, for 1’s and 0’s in the binary representation of

the constant the algorithms run differently. So there may be an impact in the performance of

the algorithm based on number of 1’s and 0’s. Therefore, we selected three patterns to form

the constant as shown in table 5. We then generate all possible combination of the design

factors and run our experiments for each of the combination. Each of this run is called a

46

Table 4. Data width range with their assigned ID’s

Bit width Width ID

4 bits B1
8 bits B2
12 bits B3
16 bits B4
20 bits B5
24 bits B6
28 bits B7
32 bits B8

Table 5. Bit pattern of the constant with their assigned ID’s

Pattern Pattern ID

Best pattern with only one 1 Best
Worst pattern with all 1 Worst

Average pattern with equal numbers of 1’s and 0’s Average

design point [35].

As for output responses in our experiments we consider two responses. They are

run time and scalability to data size. We measure run time in millisecond. We investigate

scalability by observing the run time for different data size.

5.2. Experiment Design

In this section we will discuss the experiment we designed to compare different

algorithm in our design factor. We run these algorithms for each data size S1 through

S10 and for each bit width B1 through B8. For the data we used is of uniform distribution

and we generate them using C++ library function to generate pseudo random numbers.

For each experiment we are showing a partial result in a table. The detail results will be

discussed in section 5.3 the analysis section.

47

5.2.1. Experiment 1: Comparing Addition

The algorithms involved in this experiment are Add P, Add C and Add H. For

algorithm Add C we use three bit patterns Best, Worst and Average. So we have 5 different

algorithms (Add P, Add C with Best, Add C with Worst, Add C with Average and Add H)

to execute for 10 data sizes and 8 bit widths. That gives us total of 400 design points. Each

design point is executed 10 times and their execution time is measured in milliseconds and

average execution time is calculated. Table 6 shows the partial result of the experiment that

involved average execution time of these algorithms for data size S1 through S10 with data

width B2.

Table 6. Partial Result of Experiment 1

Size Width Add P Add C Best Add C Average Add C Worst Add H

S1 B2 84.54 61.94 62.94 64.00 1308.78
S2 B2 197.34 137.80 139.70 149.92 2572.44
S3 B2 336.62 222.64 224.32 226.96 3723.72
S4 B2 486.20 331.12 331.88 330.56 4931.70
S5 B2 598.28 432.42 436.64 438.24 6148.54
S6 B2 695.76 519.64 520.16 521.08 7352.84
S7 B2 821.86 604.24 618.80 628.90 8566.42
S8 B2 960.06 693.24 701.42 714.02 9778.54
S9 B2 1078.04 781.64 801.74 802.54 10986.30
S10 B2 1166.00 866.22 891.66 894.10 12212.70

5.2.2. Experiment 2: Comparing Subtraction

This experiment is designed exactly as experiment shown in subsection 5.2.1 except

we use Sub P, Sub C and Sub H instead of Add P, Add C and Add H. So we have 400 design

points for this experiment also. Likewise we execute each design point 10 times and calculate

their average in millisecond. Table 7 shows the partial result of the experiment that involved

average execution time of these algorithms for data size S1 through S10 with data width B2.

48

Table 7. Partial Result of Experiment 2

Size Width Sub P Sub C Best Sub C Average Sub C Worst Sub H

S1 B2 89.78 61.42 62.38 65.12 1301.36
S2 B2 207.88 133.38 134.98 135.16 2512.10
S3 B2 346.64 221.80 222.20 222.80 3717.74
S4 B2 474.66 326.20 326.38 328.76 4927.00
S5 B2 647.38 420.82 424.10 427.22 6141.54
S6 B2 701.80 512.20 515.52 520.88 7351.54
S7 B2 805.22 594.16 600.64 603.98 8555.10
S8 B2 963.24 682.90 683.36 693.34 9769.84
S9 B2 1101.16 773.60 774.90 778.10 10965.50
S10 B2 1156.10 855.58 857.28 865.76 12178.00

5.2.3. Experiment 3: Comparing Multiplication

In this experiment use Mul P, Mul C and Mul H algorithm. Like previous two

experiments in subsection 5.2.1 and 5.2.2 we have 400 design points and we execute each

design point 10 times and calculate their average in millisecond. Table 8 shows the partial

result of the experiment that involved average execution time of these algorithms for data

size S1 through S10 with data width B2.

Table 8. Partial Result of Experiment 3

Size Width Mul P Mul C Best Mul C Average Mul C Worst Mul H

S1 B2 462.00 21.50 259.00 446.50 1427.50
S2 B2 978.00 44.00 563.50 975.00 2485.00
S3 B2 1580.50 69.50 857.50 1484.50 3623.00
S4 B2 2141.50 99.00 1156.50 1973.00 4861.00
S5 B2 2803.50 131.50 1458.50 2513.50 6039.00
S6 B2 3456.50 170.50 1815.50 3092.00 7302.00
S7 B2 4026.00 222.50 2167.50 3765.50 8448.00
S8 B2 4771.50 267.50 2563.50 4500.50 9630.00
S9 B2 5340.00 314.50 2944.50 5169.00 10788.50
S10 B2 6045.00 346.00 3323.50 5917.50 11974.50

49

5.2.4. Experiment 4: Calculate L1 distance

In this experiment we calculate the L1 distance of a set of points from a random point.

We assume the points to be three dimensional points. That is there are three attributes in

the data set. This data set is presented by three pTree sets. Then using the algorithm

L1D P as shown in figure 19 we calculate the L1 distance. Then we calculate the same L1

distance using horizontal algorithm L1D H. We run these algorithms for each data size S1

through S10 and for each bit width B1 through B8. Thus we get 160 design points which we

run 10 times each and get their average. Table 9 shows the partial result of the experiment

that involved average execution time of these algorithms for data size S1 through S10 with

data width B2.

Table 9. Partial Result of Experiment 4

Size Width L1D P L1D H

S1 B2 470.00 6437.50
S2 B2 1045.00 12457.50
S3 B2 1702.00 18571.50
S4 B2 2342.50 24800.50
S5 B2 2939.50 31031.50
S6 B2 3659.50 37011.00
S7 B2 4025.00 43172.00
S8 B2 4664.00 49486.50
S9 B2 5315.00 55574.00
S10 B2 5924.50 61811.50

5.2.5. Experiment 5: Calculate SED

In this experiment we calculate the squared Euclidean distance (SED) of a set of points

from a random point. As we assumed in section 5.2.4 the points are three dimensional points

so we have three attributes in the data set which is represented by three pTree sets. Then

using the algorithm SED P as shown in figure 20 we calculate SED. Then we calculate the

50

same SED using horizontal algorithm SED H. We run these algorithms for each data size S1

through S10 and for each bit width B1 through B8. Thus we get 160 design points which we

run 10 times each and get their average. Table 10 shows the partial result of the experiment

that involved average execution time of these algorithms for data size S1 through S10 with

data width B2.

Table 10. Partial Result of Experiment 5

Size Width SED P SED H

S1 B2 1960.00 13737.50
S2 B2 4328.00 27500.00
S3 B2 6908.50 41280.50
S4 B2 9321.50 54985.50
S5 B2 11766.50 68709.00
S6 B2 14303.50 82463.00
S7 B2 16922.00 96086.50
S8 B2 19579.50 109776.00
S9 B2 22825.00 123635.00
S10 B2 25416.50 137452.00

5.2.6. Experiment 6: Calculate Dot Product

In this experiment we calculate the dot product (DP) of a set of points on a unit

vector. The unit vector is chosen randomly. As we assumed in section 5.2.4 and 5.2.5 the

points are three dimensional points so we have three attributes in the data set which is

represented by three pTree sets. Then using the algorithm DP P as shown in figure 21 we

calculate DP. Then we calculate the same DP using horizontal algorithm DP H. We run

these algorithms for each data size S1 through S10 and for each bit width B1 through B8.

Thus we get 160 design points which we run 10 times each and get their average. Table

11 shows the partial result of the experiment that involved average execution time of these

algorithms for data size S1 through S10 with data width B2.

51

Table 11. Partial Result of Experiment 6

Size Width DP P DP H

S1 B2 560.50 2734.00
S2 B2 1261.50 5453.50
S3 B2 2048.00 8293.50
S4 B2 2771.50 10920.50
S5 B2 3509.50 13733.50
S6 B2 4266.00 16307.00
S7 B2 5006.00 19072.50
S8 B2 6001.00 21744.50
S9 B2 6584.00 24414.00
S10 B2 7390.00 27318.00

5.2.7. Experiment 7: Compare two pTree sets

In this experiment we compare two attributes of a data set. The data set is represented

in pTree sets and we use the algorithm Com P (in figure 18)to compare them. Then we

compare the attributes using horizontal algorithm Com H. We run these algorithms for each

data size S1 through S10 and for each bit width B1 through B8. Thus we get 160 design

points which we run 10 times each and get their average. Table 12 shows the partial result

of the experiment that involved average execution time of these algorithms for data size S1

through S10 with data width B2.

5.3. Analysis of the experimental results

In this section we will analyze the results of the seven experiments described from

section 5.2.1 through 5.2.7. For each of the experiment we represent the results in histograms.

For each of the bit width from B1 to B8 we have one histogram. Each histogram shows

the size of the data set in x-axis and the response time for each algorithm involving the

experiment in y-axis. Then for each experiment we will also show the speed gain (or speed

loss) of pTree processing over horizontal processing for each bit width. To measure the speed

52

Table 12. Partial Result of Experiment 7

Size Width Com P Com H

S1 B2 52.00 2471.00
S2 B2 111.50 4759.50
S3 B2 171.50 7015.50
S4 B2 240.50 9226.00
S5 B2 303.50 11531.50
S6 B2 380.50 13841.50
S7 B2 469.00 16091.50
S8 B2 539.00 18325.50
S9 B2 620.50 20682.00
S10 B2 691.50 23034.00

gain we use the following formula

SpeedGain = (1−
TP

TH

)

Where TP is the time taken by algorithm of pTree processing and TH is the time taken

by algorithm of horizontal processing. For example, a speed gain of 80% means a pTree

processing would be 80 time units faster than a horizontal processing that takes 100 time

units. That is, a pTree processing would take 20 time units whereas the horizontal processing

takes 100 time units. A negative value of speed gain actually refers a speed loss in which

an algorithm doing pTree processing would take more time than horizontal processing. For

example, a speed gain of -10% means a pTree processing would take 110 time units whereas

the horizontal processing takes 100 time units. One interesting point to note here is that

we did not show the speed gain for different data size because speed gain remains constant

regardless the data size.

53

5.3.1. Result of experiment 1

The figure 22 and 23 show the results of experiment 1. From these figures we see

that as the data size is increasing execution times of all the algorithms are also increasing

linearly. But the slope for algorithm ADD H is steeper than other algorithm. This proves

that the pTree based algorithms will always take less time than horizontal algorithm. In

table 13 we showed speed gain we have of addition operation for different bit widths. We get

maximum speed gain for data width of 4 bits. As the data width increases the speed gain

begins to decrease. This confirms our discussion in section 3.4.2 where we showed that speed

gain depends on the number of pTree operations we have to perform and number of pTree

operation increases as the data width increases. This table also shows that pTree algorithm

involving one pTree execute faster than algorithm involving two pTrees.

Table 13. Speed gain of pTree based Addition algorithm

Bit Width ADD P ADD C Best ADD C Average ADD C Worst

4 95% 96% 96% 96%
8 90% 93% 93% 93%
12 86% 90% 90% 90%
16 81% 86% 86% 86%
20 77% 83% 83% 83%
24 71% 80% 80% 80%
28 68% 76% 76% 76%
32 66% 74% 74% 74%

54

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 4 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 4 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 8 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 8 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 12 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 12 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 16 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 16 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

Fig. 22. Result of experiment 1 from 4 to 16 bit width

55

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 20 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 20 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 24 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 24 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 28 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 28 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 32 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

Time comparison of addition algorithm involving 32 bit data

pTrees
BestVal
AvgVal

WrstVal
Horz

Fig. 23. Result of experiment 1 from 20 to 32 bit.

56

5.3.2. Result of experiment 2

The figure 24 and 25 shows the result of experiment 2. Table 14 shows the speed

gain of pTree based subtraction algorithms over the horizontal processing. These results are

much like the result of addition operation because addition and subtraction has the same

number of pTree operations and each operation is similar to the operation of addition.

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of subtraction algorithm involving 4 bit data

Sub_P
Sub_C Best

Sub_C Average
Sub_C Worst

Sub_H

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of subtraction algorithm involving 4 bit data

Sub_P
Sub_C Best

Sub_C Average
Sub_C Worst

Sub_H

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of subtraction algorithm involving 8 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of subtraction algorithm involving 8 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of subtraction algorithm involving 12 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of subtraction algorithm involving 12 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of subtraction algorithm involving 16 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of subtraction algorithm involving 16 bit data

Sub_P
Sub_C

Best
Sub_C

Average

Fig. 24. Result of experiment 2 from 4 to 16 bit width

57

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of subtraction algorithm involving 20 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of subtraction algorithm involving 20 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of subtraction algorithm involving 24 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of subtraction algorithm involving 24 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of subtraction algorithm involving 28 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of subtraction algorithm involving 28 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of subtraction algorithm involving 32 bit data

Sub_P
Sub_C

Best
Sub_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of subtraction algorithm involving 32 bit data

Sub_P
Sub_C

Best
Sub_C

Average

Fig. 25. Result of experiment 2 from 20 to 32 bit.

Table 14. Speed gain of pTree based Subtraction algorithm

Bit Width SUB P SUB C Best SUB C Average SUB C Worst

4 95% 96% 96% 96%
8 91% 93% 93% 93%
12 86% 90% 90% 90%
16 81% 86% 86% 86%
20 77% 83% 83% 83%
24 71% 79% 79% 80%
28 68% 76% 76% 76%
32 66% 75% 75% 74%

58

5.3.3. Result of experiment 3

The figure 26 and 27 shows the result of experiment 3. Table 15 shows the speed gain

of pTree based multiplication algorithms. As we can see bit width of up to 12 pTree based all

algorithms have positive speed gain. For bit width of 4 and 8 pTree processing is quite faster

than horizontal processing. Bit width of 12 has positive gain but not quite as good as 4 and 8.

But for bit width of 16 multiplication involving two pTree sets and multiplication of a pTree

set with worst combination of constant have negative speed gain. That is in these two cases

horizontal processing would be faster. pTree processing with best combination of constant

always performs faster than horizontal processing. (Bit widths beyond 20 are not shown in

the table because of negative speed gain). Our experimental results on multiplication shows

that multiplication becomes an expensive operation when dealing with large bit width. But

in many cases we may use approximate calculation of multiplication discussed in section 4.11

to make it faster.

Table 15. Speed gain of pTree based Multiplication algorithm

Bit Width MUL P MUL C Best MUL C Average MUL C Worst

4 91% 99% 95% 93%
8 68% 98% 82% 68%
12 24% 97% 58% 22%
16 -29% 96% 30% -31%
20 -113% 95% -14% -117%

59

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of multiplication algorithm involving 4 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of multiplication algorithm involving 4 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

 20000

 25000

 30000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of multiplication algorithm involving 8 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

 20000

 25000

 30000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of multiplication algorithm involving 8 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

 20000

 25000

 30000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of multiplication algorithm involving 12 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

 20000

 25000

 30000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of multiplication algorithm involving 12 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of multiplication algorithm involving 16 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of multiplication algorithm involving 16 bit data

Mul_P
Mul_C

Best
Mul_C

Average

Fig. 26. Result of experiment 3 from 4 to 16 bit width

60

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of multiplication algorithm involving 20 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of multiplication algorithm involving 20 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 15000

 30000

 45000

 60000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of multiplication algorithm involving 24 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 15000

 30000

 45000

 60000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of multiplication algorithm involving 24 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 25000

 50000

 75000

 100000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of multiplication algorithm involving 28 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 25000

 50000

 75000

 100000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of multiplication algorithm involving 28 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 35000

 70000

 105000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of multiplication algorithm involving 32 bit data

Mul_P
Mul_C

Best
Mul_C

Average

 0

 35000

 70000

 105000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of multiplication algorithm involving 32 bit data

Mul_P
Mul_C

Best
Mul_C

Average

Fig. 27. Result of experiment 3 from 20 to 32 bit.

61

5.3.4. Result of experiment 4

The figure 28 and 29 shows the result of experiment 4. Table 16 shows the speed

gain of L1 Distance calculation algorithm. The table shows that for all the bit widths the

pTree processing has significant speed gain over horizontal algorithm. Maximum speed gain

of 95% is seen for bit width of 4 and minimum of 63% is seen for bit width of 32.

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of L1D algorithm involving 4 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of L1D algorithm involving 4 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of L1D algorithm involving 8 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of L1D algorithm involving 8 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of L1D algorithm involving 12 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of L1D algorithm involving 12 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of L1D algorithm involving 16 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of L1D algorithm involving 16 bit data

L1D_P
L1D_H

Fig. 28. Result of experiment 4 from 4 to 16 bit width

62

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of L1D algorithm involving 20 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of L1D algorithm involving 20 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of L1D algorithm involving 24 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of L1D algorithm involving 24 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of L1D algorithm involving 28 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of L1D algorithm involving 28 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of L1D algorithm involving 32 bit data

L1D_P
L1D_H

 0

 25000

 50000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of L1D algorithm involving 32 bit data

L1D_P
L1D_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of DP algorithm involving 4 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of DP algorithm involving 4 bit data

DP_P
DP_H

Fig. 29. Result of experiment 4 from 20 to 32 bit.

Table 16. Speed gain of pTree based L1 Distance calculation algorithm

Bit Width L1D P

4 95%
8 90%
12 85%
16 80%
20 75%
24 71%
28 66%
32 63%

63

5.3.5. Result of experiment 5

The figure 30 and 31 shows the result of experiment 5. Table 17 shows the speed gain

of SED calculation algorithm. As we can see from the table we get a 96% of speed gain over

horizontal processing for bit width of 4. We get 24% of speed gain for bit width of 20. But

after that we get negative speed gain of 5% for bit width of 24. So we can say up to bit

width of 24 pTree processing is faster than horizontal processing.

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of SED algorithm involving 4 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of SED algorithm involving 4 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of SED algorithm involving 8 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of SED algorithm involving 8 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of SED algorithm involving 12 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of SED algorithm involving 12 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of SED algorithm involving 16 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of SED algorithm involving 16 bit data

SED_P
SED_H

Fig. 30. Result of experiment 5 from 4 to 16 bit width

64

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of SED algorithm involving 20 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of SED algorithm involving 20 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of SED algorithm involving 24 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of SED algorithm involving 24 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

 250000

 300000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of SED algorithm involving 28 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

 250000

 300000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of SED algorithm involving 28 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

 250000

 300000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of SED algorithm involving 32 bit data

SED_P
SED_H

 0

 50000

 100000

 150000

 200000

 250000

 300000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of SED algorithm involving 32 bit data

SED_P
SED_H

Fig. 31. Result of experiment 5 from 20 to 32 bit.

Table 17. Speed gain of pTree based SED calculation algorithm

Bit Width SED P

4 96%
8 86%
12 71%
16 50%
20 24%
24 -05%

65

5.3.6. Result of experiment 6

The figure 32 and 33 shows the result of experiment 6. Table 18 shows the speed gain

of dot product calculation algorithm. As we can see from the table we get a 92% of speed

gain over horizontal processing for bit width of 4. We get 14% of speed gain for bit width of

20. But after that we get negative speed gain of 15% for bit width of 24. So we can say up

to bit width of 24 pTree processing is faster than horizontal processing.

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of DP algorithm involving 4 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of DP algorithm involving 4 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of DP algorithm involving 8 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of DP algorithm involving 8 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of DP algorithm involving 12 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of DP algorithm involving 12 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of DP algorithm involving 16 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of DP algorithm involving 16 bit data

DP_P
DP_H

Fig. 32. Result of experiment 6 from 4 to 16 bit width

66

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of DP algorithm involving 20 bit data

DP_P
DP_H

 0

 12000

 24000

 36000

 48000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of DP algorithm involving 20 bit data

DP_P
DP_H

 0

 15000

 30000

 45000

 60000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of DP algorithm involving 24 bit data

DP_P
DP_H

 0

 15000

 30000

 45000

 60000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of DP algorithm involving 24 bit data

DP_P
DP_H

 0

 15000

 30000

 45000

 60000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of DP algorithm involving 28 bit data

DP_P
DP_H

 0

 15000

 30000

 45000

 60000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of DP algorithm involving 28 bit data

DP_P
DP_H

 0

 15000

 30000

 45000

 60000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of DP algorithm involving 32 bit data

DP_P
DP_H

 0

 15000

 30000

 45000

 60000

 75000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of DP algorithm involving 32 bit data

DP_P
DP_H

Fig. 33. Result of experiment 6 from 20 to 32 bit.

Table 18. Speed gain of pTree based Dot Product calculation algorithm

Bit Width DP P

4 92%
8 79%
12 63%
16 41%
20 14%
24 -15%

67

5.3.7. Result of experiment 7

The figure 34 and 35 shows the result of experiment 7. Table 19 shows the speed gain

of Comparison algorithm that compares two pTree set which is equivalent to compare two

attributes of a data set. The table shows that for all the bit widths the pTree processing has

significant speed gain over horizontal algorithm. Maximum speed gain of 99% is seen for bit

width of 4 and minimum of 92% is seen for bit width of 32.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of Comparing algorithm involving 4 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of Comparing algorithm involving 4 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of Comparing algorithm involving 8 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of Comparing algorithm involving 8 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of Comparing algorithm involving 12 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of Comparing algorithm involving 12 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of Comparing algorithm involving 16 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of Comparing algorithm involving 16 bit data

Com_P
Com_H

Fig. 34. Result of experiment 7 from 4 to 16 bit width

68

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of Comparing algorithm involving 20 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

a) Time comparison of Comparing algorithm involving 20 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of Comparing algorithm involving 24 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

b) Time comparison of Comparing algorithm involving 24 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of Comparing algorithm involving 28 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

c) Time comparison of Comparing algorithm involving 28 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of Comparing algorithm involving 32 bit data

Com_P
Com_H

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
im

e
ta

ke
n

in
 m

ill
i s

ec
on

ds

Size of data set in billion

d) Time comparison of Comparing algorithm involving 32 bit data

Com_P
Com_H

Fig. 35. Result of experiment 7 from 20 to 32 bit.

Table 19. Speed gain of pTree based Comparison algorithm

Bit Width Com P

4 99%
8 98%
12 97%
16 96%
20 95%
24 94%
28 93%
32 92%

69

5.4. Approximate multiplication calculation

As we discussed in section 4.11, we can approximately calculate the multiplication of

two pTree sets to make it faster by sacrificing some of the accuracy. In some data mining

algorithms such trade off does not impact much, specially when we need the results only to

compare each other and take a decision. For example, if we need to compute SED to find

the distances of the data points from the centroids to figure out which classes or clusters

each point belongs to, we do not need to find the exact distances rather an approximation

can serve the purpose. Another fact is that for data values of large bit width, much of the

information would be carried out by the higher order bits of the data points and lower order

bits will give us more minute details which might not be very significant for making the

decision. In this section we will see an example how we can compute multiplication faster

using approximation.

Assume we have to multiply two attributes A and B each has data value of 32 bits and

5 billion in size. From our experiment we saw horizontal processing of such multiplication

will take 19395 ms time. Now let us divide the attributes in higher order 8 bits (Ax and Bx)

and lower order 24 bits (Ay and By). So using the equation of 4.9 we can compute the AxBx

by multiplying two pTree sets of size 8. From our experiment we know this will take 6045

ms time. So in this approximation we can get 68% speed gain.

If we use the equation 4.11 we will need to add Bx with AxBx which is a pTree set of

size 16. So this addition will take 2303 ms. So this approximation will take 8348 ms which

is a 57% speed gain.

For the equation 4.14 we will need to add Ax+Bx+1 with AxBx. Now Ax+Bx+1 is

an addition of pTree sets of size 8 that takes 1166 ms. So total time will be 9514 ms giving

us 51% speed gain.

70

CHAPTER 6. SUMMARY AND CONCLUSION

In this dissertation we have successfully implemented few very important mathemat-

ical operations to be executed in pTrees. These operations are vital in any algorithm in data

mining. We have also shown in our experiments that these operations are scalable in big data

environment. As the data size increases the performance of the operations remain steady.

We have also studied their performance regarding the bit width of the data value. We found

that for small bit width between 4 to 12, all the operations perform significantly well in

comparison with the traditional horizontal processing of these operations. The operations

perform moderately well for bit width between 12 to 20. For large bit width between 20 to

32, we found that not all the operations perform better than horizontal processing. Next we

are summarizing our findings in brief.

• Addition and Subtraction: Addition and subtraction operations perform the same way.

They perform extremely fast for data value of small bit width with more than 90%

speed gain. For large bit width they also perform significantly faster with speed gain

of more than 66%. Addition (or subtraction) of a constant with (or from) a pTree set

is faster than that of two pTree sets. Different combinations of constant (best, worst

and average) perform the same way for these two operations.

• Multiplication: Multiplication operation involves a lot of basic pTree operations. For

small bit width of data value we see a significant speed gain of 68% to 91% speed gain.

As the number of bit width (i.e., size of pTree set) increases, number of basic pTree

operation increases very much resulting the operation taking more time. So for large

bit width pTree processing of multiplication becomes slower than horizontal processing.

Again multiplying a pTree set with a constant performs faster than multiplying two

71

pTree sets. As for different combination of constant, best combination always performs

better than any other combinations. In fact this is faster than horizontal processing

for all bit width with speed gain over 95%. We also see that average constant always

performs faster than worst constant combination.

• Comparison: Comparing two pTree sets using pTree processing is always faster than

using horizontal processing for all bit width of the data value. We have seen more than

92% speed gain for this operation.

• L1 distance calculation: Computing the L1 distance mainly requires addition, sub-

traction operations. There is no multiplication operation involve here. So the pTree

processing of this calculation works faster than horizontal processing for all bit width.

For small bit width we see more than 90% speed gain whereas for large bit width it is

more than 63%.

• SED and DP calculation: Squared Euclidean Distance and Dot product calculation

involve multiplication along with addition and subtraction operations. So with the

increase of bit width their performance using pTree processing drop as in the case of

multiplication. However for small bit width their performance is significantly faster

than horizontal processing.

We also showed in section 5.4 that multiplication can be performed approximately

for large bit width. Thus we can get faster processing of pTree based calculation sacrificing

some of accuracy.

In this dissertation we have a comprehensive study of some new algorithms to

perform some very important mathematical operations. Our study includes the background

knowledge that are required for complete understanding of the algorithms, the detail

72

description of the steps in the algorithms, detail performance study, etc. Our study shows

that the performance of the operations are independent of the data size and are limited by

bit width of the data value. However for practical purpose this limitation can be ignored

because of the fact that we do not need a large bit width most of the cases and in many

cases we can do approximation in our operations and get a reasonable accuracy. This makes

our operations a good way for processing big data.

73

BIBLIOGRAPHY

[1] Calpont infinidb concepts guide. URL http://www.calpont.com/phocadownload/

documentation/2.0.0/CalpontInfiniDBConceptsGuide 20-1.pdf.

[2] Treeminer inc., the vertical data mining company. URL http://www.treeminer.com.

[3] Cmicrotek low-power design blog, August 2015. URL http://http://cmicrotek.com/

wordpress 159256135/.

[4] T. Abidin and William Perrizo. Smart-tv: A fast and scalable nearest neighbor

based classifier for data mining. In Proceedings of the 21st Association of Computing

Machinery Symposium on Applied Computing, SAC-06, Dijon, France, April 23-27 2006.

[5] T. Abidin, A. Dong, H. Li, and William Perrizo. Efficient image classification on

vertically decomposed data. In IEEE International Conference on Multimedia Databases

and Data Management, MDDM-06, Atlanta, Georgia, April 8 2006.

[6] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between

sets of items in large databases. ACM SIGMOD Record, 22(2):207–216, 1993.

[7] P. Boncz and M. Kersten. Monet: An impressionist sketch of an advanced database

system. In Basque International Workshop on Information Technology, San Sebastian,

Spain, July 1995.

[8] P. Boncz, W. Quak, and M. Kersten. Monet and its geographical extensions: A novel

approach to high-performance gis processing. In International Conference on Extending

Database Technology, volume 1057, 1996.

74

[9] P. Boncz, T. Grust, M. Keulen, S. Manegold, J. Rittinger, and J. Teubner. Mon-

etdb/xquery: A fast xquery processor powered by a relational engine. ACM SIGMOD,

pages 479–490, 2006.

[10] Arijit Chatterjee, Mohammad K Hossain, Arjun Roy, and William Perrizo. Relational

association rule mining in market basket using the rolodex model with p-tree. In Proceed-

ings at the ISCA 27th International Conference on Computers and Their Applications,

CATA-2012, Las Vegas, Nevada, USA, March 12-14 2012.

[11] Arijit Chatterjee, Arjun Roy, Mohammad K Hossain, and William Perrizo. Multi-hop

closure theorem in rolodex model using ptrees. In Proceedings of Software Engineering

and Data Engineering, SEDE-2012, Los Angeles, California, USA, June 2012.

[12] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. An overview of business

intelligence technology. Communications of the ACM, 54(8):88–98, 2011.

[13] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks and

Applications, 19(2):171–209, 2014.

[14] Yue Cui. Aggregate function computation and iceberg querying in vertical databases.

M.S. Thesis, Department of Computer Science, NDSU, June 2005. URL http://www.

cs.ndsu.nodak.edu/∼perrizo/saturday/Yue cui master paper.doc.

[15] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient big data processing in hadoop

mapreduce. Proceedings of the VLDB Endowment, 5(12):2014–2015, 2012.

[16] Edd Dumbill. Making sense of big data. Big Data, 1(1):1–2, 2013.

75

[17] Chris Eaton, Dirk Deroos, Tom Deutsch, George Lapis, and Paul Zikopoulos. Under-

standing big data, April 2012. URL http://public.dhe.ibm.com/common/ssi/ecm/en/

iml14296usen/IML14296USEN.pdf.

[18] Hanan Elazhary. Cloud computing for big data. Technical report, MAGNT Research

Report, 2014.

[19] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan

Kaufmann series in data management systems. Elsevier, 2012. ISBN 9789380931913.

[20] Mohammad K Hossain and William Perrizo. Algorithm for shifting images stored

in peano mask trees. International Journal of Electrical, Electronics and Computer

Systems (IJEECS), 1(1):2221–7258, March 2011.

[21] Mohammad K Hossain, Arijit Chatterjee, Arjun Roy, and William Perrizo. Calculating

the squared euclidean distance for vertical data represented in ptrees. In Proceedings

of Software Engineering and Data Engineering, SEDE-2012, Los Angeles, California,

USA, June 2012.

[22] Mohammad K Hossain, Arjun Roy, Arijit Chatterjee, and William Perrizo. Algorithms

to calculate the manhattan (l1) distance for vertical data represented in ptrees. In

Proceedings of the 2012 ISCA 27th International Conference on Computers and Their

Applications (CATA-2012), CATA-2012, Las Vegas, Nevada, USA, March 2012.

[23] Mohammad Kabir Hossain, Rajibul Alam, Abu Ahmed Sayeem Reaz, and William

Perrizo. Bayesian classification for spatial data using p-tree. In Multitopic Conference,

2004. Proceedings of INMIC 2004. 8th International, pages 321–327. IEEE, 2004.

76

[24] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review.

ACM computing surveys (CSUR), 31(3):264–323, 1999.

[25] M. Khan, Q. Ding, and William Perrizo. K-nearest neighbor classification on spatial

data stream using ptrees. In Proceedings of the Pacific-Asia Conference on Knowledge

Discovery and Data Mining, PAKDD 02, pages 517–528, Taipei, Taiwan, May 2002.

[26] A.M. Law andW.D. Kelton. Simulation modeling and analysis. McGraw-Hill series in in-

dustrial engineering and management science. McGraw-Hill, 2000. ISBN 9780070592926.

[27] Steve Lohr. The age of big data. New York Times, 11, 2012.

[28] M.M. Mano. Digital Design. Prentice Hall international editions. Prentice Hall, 2002.

ISBN 9781888325171.

[29] D.C. Montgomery. Design and analysis of experiments. Wiley, 1976. ISBN

9780471614210.

[30] Kazuyo Narita and Hiroyuki Kitagawa. Outlier detection for transaction databases

using association rules. In Web-Age Information Management, 2008. WAIM’08. The

Ninth International Conference on, pages 373–380. IEEE, 2008.

[31] A. Perera, T. Abidin, M. Serazi, G. Hamer, and William Perrizo. Vertical set squared

distance based clustering without prior knowledge of k. In International Conference

on Intelligent and Adaptive Systems and Software Engineering, IASSE-05, pages 72–77,

Toronto, Canada, July 2005.

[32] Gregory Piateski and William Frawley. Knowledge discovery in databases. MIT press,

1991.

77

[33] I. Rahal, D. Ren, and William Perrizo. A scalable vertical model for mining association

rules. Journal of Information and Knowledge Management (JIKM), 3(4):317–329, 2004.

[34] I. Rahal, M. Serazi, A. Perera, Q. Ding, F. Pan, D. Ren, W. Wu, and William Perrizo.

Datamime. In Association of Computing Machinery, Management of Data, ACM

SIGMOD 04, Paris, France, June 2004.

[35] D. Ren, B. Wang, and William Perrizo. Rdf: A density-based outlier detection

method using vertical data representation. In Proceedings of the 4th IEEE International

Conference on Data Mining, ICDM-04, pages 503–506, November 2004.

[36] Arjun Roy, Arijit Chatterjee, Mohammad K Hossain, and William Perrizo. Fast

attribute-based table clustering using predicate-trees: A vertical data mining approach.

Journal of Computational Methods in Science and Engineering, 12(1):139–146, 2012.

[37] Arjun Roy, Mohammad K Hossain, Arijit Chatterjee, and William Perrizo. Column-

oriented database systems : A comparison study. In Proceedings at the ISCA 27th

International Conference on Computers and Their Applications, CATA-2012, Las Vegas,

Nevada, USA, March 2012.

[38] D. Slezak, J. Wroblewski, V. Eastwood, and P. Synak. Brighthouse: An analytic data

warehouse for ad-hoc queries. VLDB, pages 1337–1345, 2008.

[39] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,

A. Lin, S. Mad-den, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and Stan Zdonik. C-store:

A column oriented dbms. VLDB, pages 553–564, 2005.

[40] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity measures

78

on web-page clustering. In Workshop on Artificial Intelligence for Web Search (AAAI

2000), pages 58–64, 2000.

[41] Adriano Veloso, Wagner Meira, and Mohammed J Zaki. Lazy associative classification.

In Data Mining, 2006. ICDM’06. Sixth International Conference on, pages 645–654.

IEEE, 2006.

[42] E. Wang, I. Rahal, and William Perrizo. Davyd: an iterative density-based approach

for clusters with varying densities. International Journal of Computers and Their

Applications (IJCTA), 17(1):1–14, 2010.

[43] Mohammed J Zaki and Wagner Meira Jr. Data mining and analysis: fundamental

concepts and algorithms. Cambridge University Press, 2014.

[44] Arkady Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. Sensing as a service

and big data. arXiv preprint arXiv:1301.0159, 2013.

79

