
A SOFTWARE TOOL TO FACILITATE AUTOMATE CREATION OF VIRTUAL 

INSPECTION TEAMS AND INSPECTION PERFORMANCE EVALUATION 

A Paper 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

By 

Zhou Lu 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

Major Department:  

Computer Science 

 

 

April 2016 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
 A SOFTWARE TOOL TO FACILITATE AUTOMATE CREATION OF 

VIRTUAL INSPECTION TEAMS AND INSPECTION PERFORMANCE 

EVALUATION 

  

  

  By   

  
Zhou Lu 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Gursimran Walia 

 

  Chair  

  
Dr. Kendall Nygard 

 

  
Dr. Limin Zhang 

 

  
 

 

    

    

  Approved:  

   

  4/14/2016  Brian M. Slator   

 Date  Department Chair  

    

 



 

iii 

ABSTRACT 

Software inspection in the early phase of software development is proven to be an 

effective method to help developer to detect and fix defects in software requirement. It can 

improve the quality of software requirement, which affects the overall quality of the subsequent 

phases and hence, the final software product. In order to make inspection to be more effective, 

research focus on learning the factors that positively impact the performance of individual and 

team inspection is necessary. This paper presents a tool that can assist researchers to study the 

relationship between software inspectors’ LS preferences and their performance in detecting 

defects during the inspection of software artifact. Several statistical techniques were employed in 

this tool, to create and sort different size of inspection teams based on dissimilarity of LS 

preferences of inspectors. This tool can be used to study correlations between individual 

inspector’s LS strengths and their inspection team performance. 



 

iv 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my advisor Dr. Gursimran Singh Walia for 

his continued support throughout this paper. I appreciate his time, assistance and continuous 

guidance. I would also like to thank Dr. Kendall Nygard and Dr. Limin Zhang for being a part of 

my graduate supervisory committee. Thanks Anurag Goswami for his support and assistant for 

design of the tool. Special thanks to the faculty and staff of the Computer Science Department 

for their unconditional support throughout my master’s program.  

 



 

v 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF FIGURES ...................................................................................................................... vii 

1. INTRODUCTION ...................................................................................................................... 1 

2. BACKGROUND ........................................................................................................................ 6 

2.1. Inspection Process ................................................................................................................ 6 

2.2. Inspection Cost Model ......................................................................................................... 7 

2.2.1. Inspection Cost Components ......................................................................................... 7 

2.2.2. Kusumoto Cost Metric (Mk) ......................................................................................... 8 

2.3. Learning Styles ..................................................................................................................... 8 

2.3.1. Inspection Cost Components ......................................................................................... 8 

3. RESEARCH APPROACHES ................................................................................................... 11 

3.1. Principal Component Analysis (PCA) ............................................................................... 11 

3.2. Cluster Analysis (CA) ........................................................................................................ 12 

3.3. Discriminant Analysis (DA) ............................................................................................... 13 

4. APPLICATION OF RESEARCH TOOL ................................................................................. 15 

4.1. Generate Combination of Teams ........................................................................................ 15 

4.2. Create LS Data ................................................................................................................... 17 

4.3. Create Fault Data Matrix .................................................................................................... 18 

4.4. Create Cluster ..................................................................................................................... 21 

4.5. Generate Inspection Teams ................................................................................................ 23 

4.6. Generate Inspection Cost Data ........................................................................................... 25 

4.6.1. Fault Data .................................................................................................................... 27 

4.6.2. Cost Data ..................................................................................................................... 28 



 

vi 

5. CONCLUSION AND FUTURE IMPROVEMENTS .............................................................. 31 

REFERENCES ............................................................................................................................. 32 

 

  

 



 

vii 

LIST OF FIGURES 

Figure Page 

1. Team size and Number of Participants Entry ........................................................................... 16 

2. Combination Generator ............................................................................................................. 17 

3. LS Data Entry ........................................................................................................................... 18 

4. Number of Inspectors and Total Faults Counts Entry .............................................................. 19 

5. Fault Importance and Fault Types Entry .................................................................................. 20 

6. Fault Found by Inspector Entry ................................................................................................ 20 

7. Inspection Time Entry............................................................................................................... 21 

8. LS File Location Selection for Cluster Generation ................................................................... 22 

9. Cluster Formation ..................................................................................................................... 22 

10. Cluster Result .......................................................................................................................... 23 

11. Team Generation ..................................................................................................................... 25 

12. Inspection Cost Data Generation ............................................................................................ 26 

13. Inspection Cost Data Text File ............................................................................................... 27 

  

 



 

1 

1. INTRODUCTION 

In today’s competitive world, software systems are widely used to automate vary tasks by 

organizations to improve the efficiency of production. Delivering a software in a timely and 

quality fashion is a key factor to the successfulness of software organizations [1]. In order to 

improve the quality of software artifacts, various approaches, including informal walkthroughs 

[2, 3], formal checklist based inspections [4, 5], prototyping [6] and testing [7], was used by 

software industries to help developers and managers uncovering and fixing defects in software 

artifacts. Defects can be introduced into software artifacts at various stages of software 

development. However if a defect is left undetected, it will penetrate and will become harder to 

find and fix at later stages of development [9]. It is proven in several studies that rework cost of 

detecting and fixing defects introduced in software artifacts in the early stage of Software 

Development Lifecycle (SDLC) is significantly lower than in later stages [8, 9, 10]. As a result, 

leading software organizations focus their attention on developing methods to aid developers and 

managers in finding and fixing faults at the early stages of software development [11, 12].  

Requirements phase is the first and critical stage of software development, which 

involved many stockholders including both technical (developers, designers, testers) and non-

technical (managers, end-users, sponsors). The major software artifact produced in this phase is 

Software Requirements Specification (SRS), where customer’s needs for developing the 

software are recorded using Natural Language (NL) in text base document. As a mean of 

communications among stakeholders, SRS helps in establishing a common understanding of 

problem and solution space for a software product. However, due to the inherit nature of NL, 

various problems, such as complexity, ambiguity, vagueness, and imprecision in information, 

can arise when requirements are written in NL [13-15]. It is widely recognized that the cost of 



 

2 

fixing defects in released software can be as much as 80 times more than that of fixing them at 

the requirements stage. So it is essential to detect and fix faults in SRS in the requirements stage. 

Due to the importance of correcting faults in SRS, many different approaches has been 

developed for detecting NL requirement faults, including NL to State transitions [16, 17], 

checklist based inspections [4], scenario based reading [18], ad hoc inspections [19]. Among 

these approaches, software inspections are widely accepted as the most effective technique. 

Software inspection process involves a group of skilled inspectors to review and uncover defects 

in a software artifact. Fagan inspection is a proven inspection process developed by Michael 

Fagan at IBM in the 1970s [2].  It generally includes the following steps: 1) appointing a 

moderator to organize inspection; 2) selecting inspectors to form an inspection panel; 3) having a 

kick-off meeting to introduce the objective of the inspection 4) individual review to find faults; 

5) team meeting to consolidate faults; 6) moderator follow-up with author to repair.  The output 

of this process is a list of faults presented in the artifact that can be fixed by the artifacts’ author 

to avoid costly rework at the later stages [2, 20, 21].  

Although every phase of the inspection process is important, Fagan [2] put more 

emphasis on an individual preparation phase rather than team meeting phase. The evidence 

shows that the performance of inspectors during the individual review significantly impacts 

overall inspection performance rather than the team meeting review [24]. To improve the 

effectiveness of individual inspection, research tried to understand the factors that could 

positively impact the performance of individual inspection. Intuitively, individual factors (e.g., 

educational background; the level of technical degree) are considered to be correlated to 

individual inspection effectiveness more possibly. A lot of studies focusing on these factors were 

conduct by researchers to evaluate the effect of educational background and level of technical 



 

3 

degree of inspectors on their inspection effectiveness [22, 23]. Contrary to the expectations, 

empirical studies at major software organizations show that, inspectors with same technique and 

educational background varies significantly in inspection effectiveness. The result also shows 

that software engineers with a non-technical degree found significantly more requirement faults 

as compared to the technical degree holders [22]. As opposed to their technical expertise and 

level of education, it is possible that inspector’s performance of uncovering defects in a software 

artifact is affected by some other psychological factors. So it is possible that the inspector’s 

ability to find defects in a requirements document are affected by their individual strengths and 

preferences in the ways they comprehend and process information – i.e., their individual learning 

styles (LS).  

Over the years, it has been proven by many cognitive psychology studies [25] that 

individuals have varying Learning Style (LS) preferences and strengths (i.e., individuals vary in 

the way they perceive and process information). For example, some people prefer to learn new 

things in small logical order; some are more comfortable learning in large jumps. Psychology 

research relating to LS also prove that individual can achieve a better and faster result in 

perceiving and process information when it is presented in their preferred LS [26, 27]. Many 

learning style models (such as The Myers-Briggs Type Indicator (MBTI), Kolb's Learning Style 

Model, and the Felder-Silverman Learning Style Model (FSLSM)) are developed and 

empirically evaluated by psychologists to assist the assessment of individual’s LS. As software 

requirement is written in NL, inspectors should vary in the way they perceive and process 

information in SRS.  

Although the concept of using cognitive-based approaches in software engineering 

domain is relatively new, it has been practiced in some researches. Previous research in software 



 

4 

engineering has applied MBTI (a cognitive-based approach that measures psychological 

preference of individuals) into the process of creating heterogeneous inspection teams to 

maximize disparity between team members. They conclude that team with maximizing cognitive 

style dissimilarity will perform better than the inspection teams constructed with similar 

cognitive style [29]. There is another study that tries to use cognitive-based approach to migrate 

the communication problem among the stakeholders during distribute requirements elicitation. In 

their study, the researchers applied LS model of stakeholders into the process of selecting the 

requirements elicitation stakeholders. The results proved that learning preference of non-

technical stakeholders also should be considered in order to get more suitable requirements 

elicitation method.  

Based on above studies, it is highly possible that using inspector’s Learning Styles (LS) 

to generate heterogeneous inspection teams can increase team performance by detecting more 

unique faults (i.e. less fault overlap) during the inspection. There is a need to analyze the impact 

of LS’s of inspectors on team performance of inspection. So to simplify and smooth the analysis 

process, an easy to operate tool need to be developed. 

This paper presents an easy operating GUI based tool to facilitate automatic generation of 

heterogeneous virtual inspection teams. By taking the LS preferences of the individual inspector, 

the tool can generate teams consisting of inspectors of dissimilar to similar LS’s using statistical 

techniques. It can be used to analyze the impact of LS’s of inspectors on team performance of 

inspection by following these steps: 1) creating virtual inspection teams by taking individual LS 

data for different team sizes; 2) sorting all virtual teams for each team size from most dissimilar 

to most similar in terms of the LS’s of individual inspectors; 3) combining inspection data with 



 

5 

virtual teams data to evaluate team performances by applying different cost models. In addition, 

Software managers can use these results to plan and manage inspections in their organizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 

2. BACKGROUND 

Some background terms used in research approaches and tool will be described and 

explained. Section 2.1 introduced major steps of inspection. Section 2.2 inspection cost model 

which are used to create high performance inspection team. Section 2.3 described the concept of 

Learning Styles and Learning Styles Model used to measure individual’s learning preference.  

2.1. Inspection Process  

Fagan inspection is a structured inspection process developed by Michael Fagan at IBM 

in the 1970s [2].  It is widely used and is empirically validated [2, 33, 34] for early detection and 

elimination of fault in software artifacts. Many variations [35, 36] of Fagan’s original inspection 

concept were introduced based on different parts of the inspection process they emphasize on 

(e.g., variation that emphasis more on the individual preparation phase than the team meeting 

phase). Before inspections, a moderator will be appointed to organize the inspection and selects a 

team of inspectors. Next, a kick off meeting will be held to introduce inspectors some 

background and the purpose of the inspection. The inspection materials will be distributed 

among team members during the meeting. After the meeting, every inspector reads the document 

to detect and log faults in a fault form individually. Once individual inspection is completed, 

moderator will schedule another meeting for inspectors and author to discuss and verify the 

inspection result to create a master list of faults. After that, the moderator will send the fault list 

to the author and follow with author to fix these faults. 



 

7 

2.2. Inspection Cost Model 

2.2.1. Inspection Cost Components 

To evaluate the benefits of software inspection, inspection cost model [37] was 

developed to illustrate how much cost is saved if a fault is detected during inspections as 

compared to software testing. It has following components:  

 Cr – cost spent on an inspection (the sum of the total time taken to perform the inspection 

process in terms of man hours). 

 Dtotal – total number of faults present in the software product before the inspection. 

 Dr – number of unique faults detected during the inspection by all inspectors. 

 ct– average cost to detect a fault in testing. 

 Ct – testing cost: cost to detect remaining faults in testing if these fault wasn’t detected 

during inspection. If a fault is left to detect in testing, the cost is usually much more 

expensive than the cost to detect it in inspection. The testing cost can be measured as the 

product of total number of faults remaining after inspection (Dtotal – Dr) and the average 

cost to detect a fault during testing (ct). This is, Ct= (Dtotal – Dr) * ct 

 ∆Ct – testing cost saved during the testing if spending cost Cr during inspection, which is 

calculated as the product of the total number of unique faults found during the inspection 

by all inspectors (Dr) and the average cost to detect a fault in testing (ct). That is, ∆Ct = 

Dr * ct 

 Cvt – virtual testing cost, that is total testing cost if no inspections are performed. It is 

calculated as addition of testing cost (Ct) and the testing cost saved by inspection (∆Ct). 

That is, Cvt= Ct+∆Ct. 

 



 

8 

2.2.2. Kusumoto Cost Metric (Mk) 

Kusumoto et al. [37] proposed a metric for evaluating the cost effectiveness of the 

inspection in terms of reduction of cost to detect and remove all defects from software product. 

Mk is a ratio of the saving costs to detect and remove all faults using inspections in a project 

(∆Ct-Cr) to the virtual testing cost if no inspection is executed (Ct+∆Ct), derived as:  

𝑀𝑘 =
(∆Ct − Cr) 

(Ct + ∆Ct)
 

The advantage of the model proposed by Kusumoto is that it normalizes the inspection 

saving cost by using the potential fault cost (ie. virtual testing cost). So it can be compared across 

different inspections and projects. This advantage makes Mk to be very appropriate for research 

purpose. Mk can also be used as a measurement of cost-effectiveness as it can be interpreted as 

the percentage of fault rework savings due to inspections. In this tool, Mk is used to evaluate the 

cost effectiveness of inspection teams generated and sorted based on the LS’s of the inspectors 

(i.e. dissimilar, similar and no preference). 

2.3. Learning Styles 

2.3.1. Inspection Cost Components 

The concept of LS’s and the LS measurement instrument was firstly introduced by Kolb 

[38]. Over the years there are different variations of LS models [27, 38-43] developed by many 

educational psychologists. Among these LS models, the Felder Silverman Learning Style Model 

(FSLSM) is recognized as the most advanced and widely used model to capture most important 

LS preferences among individuals [25, 44, 45]. The FSLSM model used the instrument called 

Index of Learning Styles (ILS) to measure LS of an individual [44, 46], which classified 

individuals based their characteristic strength and preferences for the way they “perceive” and 

“process” information across four LS dimensions. Among these four dimensions, two 



 

9 

dimensions (i.e., Sensing/Intuitive; and Visual/Verbal) are related to information perceiving and 

the other two dimensions (i.e. Active/Reflective and Sequential/Global) are related to 

information processing. Following is the description of four dimensions:  

a. Active/ Reflective: Active people tend to understand information by trying it out. 

Furthermore, they prefer to learn by working in groups where they can discuss about the 

learned material; Reflective people prefer to think things through and understand things 

before acting. Regarding communication, they prefer to work alone or maybe in a small 

group together with one good friend.  

b. Sensing/Intuitive: Sensing people prefer to deal with information that is concrete and 

practical. They are oriented towards details, facts, and figures and dislike complications 

and surprises. They like solving problems by well-established methods and proven 

procedure. Furthermore, sensing learners are considered to be more realistic and 

practical and like to relate the learned material to the real world; Intuitive people often 

prefer to take in information that is abstract, original, and oriented towards theory. They 

like innovation and dislike repetition.  Intuitive learners do not like work that involves a 

lot of memorization and routine calculations. 

c. Visual/ Verbal: Visual people prefer visual presentations of material (such as pictures, 

diagrams, flow charts, time lines, films, and demonstrations). They prefer visually 

presented information; Verbal people get more out of words, and written and spoken 

explanations. They prefer verbally presented information  

d. Sequential/ Global: Sequential people prefer linear thinking and learn something in 

small incremental steps. They tend to work with information in an organized and 

systematic way; Global people prefer to understand information in almost random 



 

10 

manner without seeing connection. Their think usually appear in a scattered and 

disorganized way that is hard to understand, but they can offer have a creative and 

correct solution in the end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 

3. RESEARCH APPROACHES 

This section present several statistical techniques utilized by the software tool to generate 

virtual inspection using the LS’s of inspectors, including Principal Component Analysis (PCA), 

Cluster Analysis (CA) and Discriminant Analysis (DA). PCA is used to eliminate any correlation 

of data by creating PC’s based on LS data. CA uses the uncorrelated LS data generated by PCA 

to form clusters that include individuals with similar LS preferences. DA uses the results from 

PCA and CA to evaluate and improve the classification of CA, and to determine the dissimilarity 

of individuals LS preferences within one cluster. 

3.1. Principal Component Analysis (PCA) 

PCA is a statistical technique that is used to convert a set of observations of possibly 

correlated variables into set of values of uncorrelated variables called principal components 

(PCs) [47]. In FSLSM, each LS dimension is clarified into two categories (sensing/intuitive, 

visual/verbal, active/reflective and sequential/global) and they are negatively correlated. When a 

score in one category increases, the score in the other decreases. The dependency between two 

categories in each LS dimension may have effect on the result of grouping inspectors based 

similarity of LS preference in CA. So the software tool will apply PCA to remove dependency 

between two categories in each LS dimension. PCA transforms the original correlated LS 

variables into a new set of equal number of uncorrelated variables [47, 48]. Each PC is 

independent to other PC’s and accounts for certain variance between the categories in each LS 

dimension; and between the dimensions, which reveals different properties of the original data.  

The PCA starts to account maximum possible variance with the first PC and keep trying 

to account maximum possible variance that could not be explained by the last PC using the next 

PC until it can explain 100% variance of original data. Finally, it takes all possible number of 



 

12 

PC’s to explain 100% variance of original data. However, sometimes it is possible that the 100% 

variance coverage require less than total possible number of PC’s [49]. The end result of PCA 

(PC’s) is always listed in descending order with their respective variance. The total variation 

covered in the original data increases as the numbers of PCs are increasing. As the number of 

PC’s increases, the amount of variance described in original data decreases. After the last PC, the 

variance that is not covered in the original data is close to zero. 

3.2. Cluster Analysis (CA) 

CA is a statistical technique to form clusters (groups) with the objects that are relatively 

homogeneous within themselves and heterogeneous between other objects [47]. It is used in the 

tool to form group of individual inspectors based on their LS preferences, so inspectors will have 

high similarity of LS’s within one cluster and high dissimilarity of LS’s between different 

clusters [50].  

There are broadly two types of clustering techniques - Hierarchical and None- 

Hierarchical (also called Partitional). Hierarchical clustering is a type of CA which create a 

hierarchical decomposition of the set of objects using some criterion. Hierarchical clustering 

could be future implemented in two approaches: the first one is a bottom up approach (also 

called Agglomerative). It starts with each observation in its own cluster, then find the best pair to 

merge into a new cluster. This process is repeated until all clusters are fused together. The 

second one is a top down approach (also called Divisive). It starts with all the observations in a 

single cluster and divide the cluster into two dissimilar groups. Then it will recursively operate 

on both sides until there are as many subgroups as observations. None-Hierarchical clustering is 

a type of clustering that construct various partitions and then evaluate and place each object into 

one of the clusters. The k-means clustering is non-hierarchical CA used in the tool to group 



 

13 

objects. It is implemented by minimizing the sum of squares of distances between objects and 

their corresponding cluster centroid. In k-means [51], the algorithm firstly chooses k (k is 

defined by user) initial centroids at random. Then each object is assigned to the nearest centroid. 

After that, all the centroids are re-calculated and reset by using the mean distance of their 

associate objects. In last step, the algorithm will reassign objects to the new closest centroid. This 

process is repeated until there are no more changes in cluster [52].  

3.3. Discriminant Analysis (DA) 

DA is a statistical method used in the tool to sort individuals in a cluster based on their 

similarity to its cluster. By using DA, the tool is able to maximize the LS variations across 

different clusters, and minimize the LS variations within each cluster [47, 53]. 

While CA explained the dissimilarity among different clusters, there is a lack of 

assessment of dissimilarity of objects within the same cluster. DA is able to sort the teams 

ranging from most dissimilar LS to teams with most similar LS preferences and strengths. DA 

use Group Membership (GM) to measure the dissimilarities among individual LSs within the 

same cluster. The dissimilarities between each individual LS’s within the same cluster could be 

evaluated by comparing the GM values of individuals. The higher GM value an individual LS’s 

get, the higher similarity of it has. Therefore, DA delivers GM values to rank individuals in a 

cluster based on their similarity to the cluster.  

DA also serves as a method to assess the adequacy of CA result (clusters information of 

each individual that is generated by CA) [54].  There is evidence from various literatures to show 

that the DA classification can help remove the misclassification that often plagues the CA output 

[53, 55]. To assess the adequacy of CA result, DA uses GM value of each individual and cluster 

combination (generated by CA). Then, DA considers the highest GM value of each individual 



 

14 

and cluster combination; and assigns the individual into a cluster for which that individual has 

maximum GM value. In that way, DA classifies all the individuals into known clusters (that were 

generated by CA). Even there is very little chance of DA classification to be different from the 

classification result from CA, the CA classification is replaced with DA classification when the 

DA classification is different from CA classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

4. APPLICATION OF RESEARCH TOOL 

This section presents an automated tool that automates the formation of team 

development based on varying LS preferences, and maps it to the defect data of individual 

inspectors belonging to an inspection team to generate inspection cost data. Base on inspection 

data, the tool is able to generate inspection teams of equal strength. 

4.1. Generate Combination of Teams 

This function is to generate all possible combinations of teams for a given team size and a 

given number of participates, then user can save the result into a txt file. It lists all possible 

groups without repetition. Given ‘n’ individual inspectors, and an inspection team size of ‘r’, all 

possible combinations (teams) can be obtained using the equation 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑛!

(𝑛 − 𝑟)! 𝑟!
 

For example, user wants to generate inspection teams of 4 inspectors from a pool of 32 

inspectors and save the result into a txt file in desktop (as shown in Figure 1). After user click 

save button, the result of combination of teams will be saved into the output location. (as shown 

in Figure 2). 



 

16 

 

Figure 1. Team size and Number of Participants Entry 



 

17 

 

 

Figure 2. Combination Generator 

 

4.2. Create LS Data 

This function allows user to enter learning style data into a table and save it into a txt file. 

Users need to enter all eight learning styles data along with inspector’s ID (as shown in Figure 

3). Also, user can edit a learning style data file by opening the txt file. 



 

18 

 

Figure 3. LS Data Entry 

 

4.3. Create Fault Data Matrix 

This function allows user to create a fault data matrix and save it into a txt file by using 

this function. Before generating the matrix, user has to enter the number of inspectors and total 

faults counts (as shown in Figure 4). In very first two columns, user can enter fault importance 

(either 1,2,3,4) and fault type (either G,AI,II,MI,MF,MP,ME,WS,O,EF) for each fault count (as 

shown in Figure 5). In the rest columns, user can enter the faults found of each inspector by 

replace '0' by '1' where fault is found in that fault count (as shown in Figure 6). Also, user needs 

to enter time each inspector used in inspection in last attribute of each column (as shown in 

Figure 7). After completed the fault data matrix, user can save it into a txt file. The fault data will 

be used to evaluate the total & redundant number of faults found by group of inspectors. 



 

19 

Researchers can fetch the advantage of faults data to study the team performance while 

uncovering defects in a software artifact. 

 

Figure 4. Number of Inspectors and Total Faults Counts Entry 

 



 

20 

 

Figure 5. Fault Importance and Fault Types Entry 

 

 

Figure 6. Fault Found by Inspector Entry 



 

21 

 

 

Figure 7. Inspection Time Entry 

 

4.4. Create Cluster 

This function allows user to create cluster for each inspector based on LS preferences. To 

create cluster, user needs to select a Learning Style file as an input file (as shown in Figure 8). 

Then user can select LS dimensions in Cluster Formation (as shown in Figure 9), selected 

dimensions will be used to classify each inspector into different clusters.  By clicking the 

‘Continue’ button, the application will show the result in a new window. Cluster Result window 

(as shown in Figure 10) shows a list of inspector identifiers and their corresponding clusters. 

Each cluster stands for one LS combination, which is displayed under Cluster Lable. User can 

save the result into a txt file by clicking ‘Browser’ button to select an output location and then 

clicking ‘Save’ button to save the file. 

 



 

22 

 

Figure 8. LS File Location Selection for Cluster Generation 

 

 

Figure 9. Cluster Formation 



 

23 

 

 

Figure 10. Cluster Result 

 

4.5. Generate Inspection Teams 

This function is to generate an inspection teams with a given size. Firstly, user needs to 

select a Learning Style file as an input file. After that, user clicks ‘Continue’ button to go to 

Team Generation window (as shown in Figure 15). To generate teams, user has to enter the size 

of inspection team and number of inspectors same to the number of inspector in LS file. Then 

user can select clustering method either in Fast Clustering or Ward Clustering and generate team 

with Group Membership or NO Group Membership. After selecting output location by clicking 

‘Browse’ button, user can click ‘Save’ button to save the team data into a txt file.  



 

24 

Ward Clustering: The Ward Clustering performs hierarchical clustering of observations 

by using agglomerative methods applied to coordinate data or distance data. 

Fast Clustering: The Fast Clustering is an effective clustering method using K- mean 

algorithm. In Fast Clustering, a set of points called cluster seeds is selected as a first guess of the 

means of the clusters. Each observation is reassigned to the nearest seed to form temporary 

clusters. The seeds are then replaced by the means of the temporary clusters, and the process is 

repeated until no further changes occur in the clusters.  The advantage of Fast Clustering is that it 

can handle large amount of data in an efficient way. It is recommended to use for team 

generation in this tool. 

Group Membership or NO Group Membership: By selecting Group Membership, the tool 

will apply Discriminant Analysis to the team generation. So the virtual inspection will be sort 

ranging from most dissimilar LS to teams with most similar LS preferences. 

Random Selection Team: By enable this function, the tool is able to generate a number of 

virtual inspection team specified by user randomly.  It can save user a lot of time rather than 

generating all teams if they only need a small number of teams for research and other purposes. 



 

25 

 

Figure 11. Team Generation 

 

4.6. Generate Inspection Cost Data 

This function allows user to generate inspection cost data. To generate data, user needs to 

select team data file (created in the function 5) and fault data file (created in the function 3) as 

input files. After that, user can select location of output and check what kind of inspection data 

will be included in the output files (as shown in Figure 12). By clicking ‘Save’ button, a txt file 

of inspection cost data will be generated in the location user selected (as shown in Figure 13). 



 

26 

  

Figure 12. Inspection Cost Data Generation 



 

27 

 

Figure 13. Inspection Cost Data Text File 

 

4.6.1. Fault Data 

Fault data include Team member, Unique Faults, Redundant Faults, Fault Type, Fault 

Importance, Time Taken and Efficiency. Each option is described as below: 

 Team member: By selecting ‘Team member’, inspectors IDs which are in the same 

virtual team will be included in the inspection data file. 



 

28 

 Unique Faults: By selecting ‘Unique Faults’, the number of total unique defeats found by 

each virtual team will be calculated and included in the inspection data file. 

 Redundant Faults: By selecting ‘Redundant Faults’, the number of redundant defeats 

found by each virtual team will be calculated and included in the inspection data file. 

 Fault Type: By selecting ‘Fault Type’, the number of defeats of each fault type found by 

each virtual team will be calculated and included in the inspection data file. 

 Fault Importance: By selecting ‘Fault Importance’, the number of defeats in each fault 

importance level found by each virtual team will be calculated and included in the 

inspection data file. 

 Time Taken: By selecting ‘Time Taken’, average time taken by each inspector in a 

virtual team will be calculated and included in the inspection data file. 

 Efficiency: By selecting ‘Efficiency’, the efficiency of each virtual team will be 

calculated and included in the inspection data file. Given ‘m’ total unique faults found by 

the team, and ‘t’ total time taken in minutes by the team, the Efficiency will be calculated 

using the equation: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = m
𝑡

60
 

4.6.2. Cost Data 

By using the inspection cost model mentioned in Section 3, inspection cost data can be 

generated by selecting following options: Cost of Inspection, Average Cost to Detect a Fault, 

Cost of Testing, Testing Cost Saved by Review, Virtual Testing Cost, Kusumoto Metric. Each 

option is described below: 

 Cost of Inspection: By selecting ‘Cost of Inspection’, average time spent by each inspector 

in inspection will be calculated and included in the cost data file. Given ‘t’ total time spent 



 

29 

by all inspector in inspection, and ‘n’ number of all inspector, the Cost of Inspection will 

be calculated using following equation:  

Cr  =
𝑡

𝑛
 

 Average Cost to Detect a Fault: By selecting ‘Average Cost to Detect a Fault’, average 

time spent to detect a fault in testing will be calculated and included in the cost data file. 

Given ‘t’ total time spent by all inspector in inspection, and ‘Dr’ number of unique faults 

detected found during the inspection by all inspectors, the result will be calculated using 

the equation:  

ct =
t

Dr
∗ 6 

 Cost of Testing: By selecting ‘Cost of Testing’, cost to detect remaining faults in testing 

will be calculated and included in the inspection data file. Given ‘Dtotal’ total number of 

faults present in the software product before the inspection, Cost of Testing is calculated 

by using the equation:  

Ct = (Dtotal −  Dr) ∗  ct 

 Testing Cost Saved by Review: By selecting ‘Testing Cost Saved by Review’, testing cost 

saved by detecting faults in review will be calculated and included in the cost data file. 

Testing Cost Saved by Review is calculated by using the equation:  

∆Ct =  Dr   ∗  ct 

 Virtual Testing Cost: By selecting ‘Virtual Testing Cost’, virtual testing cost will be 

calculated and included in the cost data file. Virtual testing cost is the cost to detect all 

unique faults in testing, if no inspection is executed. It is calculated by using the equation: 

Cvt= Ct+∆Ct 



 

30 

 Kusumoto Metric: By selecting ‘Kusumoto Metric’, Mk will be calculated and included in 

the inspection data file. Mk server as a measurement of the cost effectiveness of 

inspection. It is calculated by using the equation:  

𝑀𝑘 =
(∆Ct − Cr) 

(Ct + ∆Ct)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 

5. CONCLUSION AND FUTURE IMPROVEMENTS 

This paper presents a software tool that help researchers to study the impact of 

inspectors’ LS preferences on the inspection performance during the software artifact inspection. 

To achieve this goal, the tool helps to sort inspection teams with inspectors ranging from most 

similar to most dissimilar LS. Then, this tool allows researchers to map defect data to each 

inspector and calculate unique number of faults found by inspection team of varying sizes. After 

that, researchers can evaluate the inspection performance of teams with varying size and 

dissimilarity by comparing the amount of unique fault found by each team. In addition, this tool 

is able to provide data to facilitate project managers to select the software inspectors with larger 

potential of uncovering defects. Furthermore, this tool could be used to create diverse software 

development teams which could improve collaboration and overall quality of development. 

In the future, this software tool is anticipate to be running on client- server basis. So user 

can just download and run light weight client application without installing heavy SAS engine. 

Also, generation of inspection teams (of particular size from given number of inspectors) of 

equal strength using their LS as an input is also a required future work for this tool. 



 

32 

REFERENCES 

1. Nalbant, S., & Nalbant, S. (2012). An evaluation of the reinspection decision policies for 

software code inspections. Retrieved April 11, 2016, from 

http://etd.lib.metu.edu.tr/upload/12605827/index.pdf 

2. Fagan, M. E. (1986). Advances in software inspections. Software Engineering IEEE 

Transactions on, 12(7), 744-751. 

3. Pressman, R. S. (1982). Software engineering: A practitioner's approach. New York: 

McGraw-Hill. 

4. Parnas, D., & Lawford, M. (2003). The role of inspection in software quality assurance. 

IEEE Transactions on Software Engineering IIEEE Trans. Software Eng., 29(8), 674-

676. 

5. Laitenberger, O. (2002). A Survey Of Software Inspection Technologies. Handbook of 

Software Engineering and Knowledge Engineering Volume II: Emerging Technologies In 

2 Volumes, 517-555. Retrieved April 11, 2016, from 

http://programmingresearch.com/content/misc/a-survey-of-sw-inspection-technologies-

Laitenberger.pdf 

6. Subramanian, G. H., Jiang, J. J., & Klein, G. (2007). Software quality and IS project 

performance improvements from software development process maturity and IS 

implementation strategies. Journal of Systems and Software, 80(4), 616-627.  

7. Tian, J. (2005). Software quality engineering: Testing, quality assurance, and 

quantifiable improvement. Hoboken, NJ: Wiley. 



 

33 

8. Freimut, B., Briand, L., & Vollei, F. (2005). Determining inspection cost-effectiveness by 

combining project data and expert opinion. IEEE Transactions on Software Engineering 

IIEEE Trans. Software Eng., 31(12), 1074-1092.  

9. Briand, L., Freimut, B., & Vollei, F. (n.d.). Assessing the cost-effectiveness of 

inspections by combining project data and expert opinion. Proceedings 11th 

International Symposium on Software Reliability Engineering. ISSRE 2000.  

10. Perry, W. E. (2006). Effective Methods for Software Testing: Includes Complete 

Guidelines, Checklists, and Templates. New York: Wiley.  

11. Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., & Wong, M. 

(1992). Orthogonal defect classification-a concept for in-process measurements. IEEE 

Transactions on Software Engineering IIEEE Trans. Software Eng., 18(11), 943-956.  

12. Leszak, M., Perry, D. E., & Stoll, D. (2000). A case study in root cause defect analysis. 

Proceedings of the 22nd International Conference on Software Engineering - ICSE '00.  

13. Berry, D. M., & Kamsties, E. (2004). Ambiguity in Requirements Specification. 

Perspectives on Software Requirements. Springer US.  

14. Berry, D. M. (2007). Ambiguity in Natural Language Requirements Documents. 

Innovations for Requirement Analysis. From Stakeholders’ Needs to Formal Designs. 

Springer Berlin Heidelberg. 

15. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., & Ruggieri, S. (2000). Achieving quality 

in natural language requirements. Proceedings of the Eleventh International Software 

Quality Week S Francisco Ca Software Research Institute.  



 

34 

16. Aceituna, D., Do, H., Walia, G. S., & Lee, S. W. (2011). Evaluating the use of model-

based requirements verification method: A feasibility study. Empirical Requirements 

Engineering (EmpiRE), 2011 First International Workshop on (pp.13 - 20).  

17. Aceituna, D., Walia, G., Do, H., & Lee, S. W. (2013). Model-based requirements 

verification method: conclusions from two controlled experiments. Information & 

Software Technology, 56(3), 321-334.  

18. Shull, F., Rus, I., & Basili, V. (2000). How perspective-based reading can improve 

requirements inspections. Computer, 33(7)(7), 73-79.  

19. Porter, A. A., Votta, L. G., & Basili, V. R. (1995). Comparing detection methods for 

software requirements inspections: a replicated experiment. IEEE Transactions on 

Software Engineering, 21(6), 563-575.  

20. Fagan, M. E. (1999). Design and code inspections to reduce errors in program 

development. IBM Systems Journal, 38(2.3), 258-287.  

21. Ackerman, A. F., Buchwald, L. S., & Lewski, F. H. (1989). Software inspections: an 

effective verification process. Software IEEE, 6(3), 31-36. 

22. Carver, J. (2004). The impact of background and experience on software inspections. 

Empirical Software Engineering, 9(3), 259-262. 

23. Carver, J. C., Nagappan, N., & Page, A. (2009). The impact of educational background 

on the effectiveness of requirements inspections: an empirical study. IEEE Transactions 

on Software Engineering, 34(6), 800-812. 

24. Porter, A. A., Siy, H., Mockus, A., & Votta, L. G. (2001). Understanding the sources of 

variation in software inspections. ACM Transactions on Software Engineering & 

Methodology, 7, 41--79.  



 

35 

25. Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering. 

Journal of Engineering Education, 78(7), 674-681. 

26. Allert, J. (2004). Learning Style and Factors Contributing to Success in an Introductory 

Computer Science Course. Advanced Learning Technologies, 2004. Proceedings. IEEE 

International Conference on (pp.385-389). IEEE.  

27. Charkins, R. J., O'Toole, D. M., & Wetzel, J. N. (2014). Linking teacher and student 

learning styles with student achievement and attitudes. Journal of Economic Education, 

16(16), 111-120.  

28. Rutherfoord, R. H. (2001). Using personality inventories to help form teams for software 

engineering class projects. ACM Sigcse Bulletin, 33(3), 73-76. 

29. Miller, J., & Yin, Z. (2004). A cognitive-based mechanism for constructing software 

inspection teams. IEEE Transactions on Software Engineering, 30(30), 811-825.  

30. Myers, I. B., Mccaulley, M. H., & Most, R. (1998). Manual: A Guide to the Development 

and Use of the Myers-Briggs Type Indicator. Consulting Psychologists Press. 

31. Montgomery, S. M. (1995). Addressing diverse learning styles through the use of 

multimedia. Frontiers in Education Conference, 1995. Proceedings (Vol.1, pp.3a2.13-

3a2.21 vol.1).  

32. Aranda, G. N., Vizcaino, A., Cechich, A., & Piattini, M. (2005). A cognitive-based 

approach to improve distributed requirements elicitation processes. Cognitive 

Informatics, 2005. (ICCI 2005). Fourth IEEE Conference on (pp.322-330). IEEE. 

33. Doolan, E. P. (1992). Experience with fagan's inspection method. Software Practice & 

Experience, 22(2), 173-182. 



 

36 

34. Russell, G. W. (1991). Experience with inspection in ultralarge-scale development. IEEE 

Software, 8(1), 25-31.  

35. Martin, J., & Tsai, W. T. (1990). N-fold inspection: a requirements analysis technique. 

Communications of the ACM, 33(2), 225-232. 

36. Parnas, D. L., & Weiss, D. M. (2001). Active design reviews: Principles and practices. 

Software fundamentals. Addison-Wesley Longman Publishing Co. Inc. 

37. Kusumoto, S., Matsumoto, K., Kikuno, T., & Torii, K. (1992). A new metric for cost-

effectiveness of software reviews. Ieice Transactions on Information & Systems, (5), 674-

680. 

38. Kolb, David. (1984). Experiential Learning: Experience As the Source of Learning and 

Development. 

39. Kane, M. (1984). Cognitive Styles of Thinking and Learning. Part One. Academic 

therapy, 19(5), 527-536. 

40. Peggy Friedman, & Robert Alley. (2010). Learning/teaching styles: applying the 

principles. Theory Into Practice, 23(1), 77-81.  

41. Mccarthy, B. (1987). The 4mat system: teaching to learning styles with right/left mode 

techniques. Excel.  

42. Myers, B. I., Mccaulley, M., Quenk, N., & Hammer. (2010). A guide to the development 

and use of the myers-briggs type indicator, 3rd edn, Consulting Psychologist.  

43. Busato, V. V., Prins, F. J., Elshout, J. J., & Hamaker, C. (1998). The relation between 

learning styles, the big five personality traits and achievement motivation in higher 

education. Personality & Individual Differences, 26(98), 129–140. 



 

37 

44. Felder, R., & Spurlin, J. (2005). Applications, reliability, and validity of index of learning 

styles. Int Journal of Engineering Education, 21(1), 103-112. 

45. Felder, R.M. (2010). Are learning styles invalid?(Hint: No!). On-Course Newsletter,1-7. 

46. Felder, R. M., & Soloman, B. A. (1999). Index of learning styles. Raleigh. 

47. Anderson, T.W. (1958). An introduction to multivariate statistical analysis. New York: 

Wiley. 

48. Torbick, N., & Becker, B. (2009). Evaluating principal components analysis for 

identifying optimal bands using wetland hyperspectral measurements from the Great 

Lakes, USA. Remote Sensing, 1(3), 408-417.  

49. Jolliffe, I. T. (2010). Principal component analysis. Springer Berlin, 87(100), 41-64.  

50. Steinbach, M., Ertöz, L., & Kumar, V. (2004). The Challenges of Clustering High 

Dimensional Data. New Directions in Statistical Physics. Springer Berlin Heidelberg. 

51. Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: a k-means clustering 

algorithm. Applied Statistics, 28(1), 100-108. 

52. Mackay, D. J. C. (2003). InformationTheory, Inference, and Learning Algorithms. 

53. Tatsuoka, M. M., & Tiedeman, D. V. (1954). Chapter IV: discriminant analysis. Review 

of Educational Research, 24(5), 402-420. 

54. Galbraith, J. K., & Lu, J. (1999). Cluster and discriminant analysis on time-series as a 

research tool. Ssrn Electronic Journal.  

55. Klecka, W. R. (2005). Discriminant Analysis. SPSS: Statistical Package for the Social 

Sciences. 

56. Mandala, N. R., Walia, G. S., Carver, J. C., & Nagappan, N. (2012). Application of 

Kusumoto cost-metric to evaluate the cost effectiveness of software inspections. ACM-



 

38 

IEEE International Symposium on Empirical Software Engineering and Measurement 

(Vol.7304, pp.221-230). IEEE Computer Society. 

 


