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ABSTRACT 

Managing excess soil water in agricultural fields in the Northern Great Plains through 

subsurface drainage increases the risk of sodification in high-risk soils. Leaching sodic soils with 

low electrical conductivity (EC) water, rainfall, may result in the swelling of soil, dispersion of 

clay particles and consequently the breakdown of soil structure leading to changes in physical 

and mechanical properties of soils (e.g., reduced infiltration, hard-setting and reduced 

trafficability). In this dissertation, the effectiveness of calcium amendments of gypsum and spent 

lime, a byproduct of the processing sugar beets, with water-management treatments of free 

drainage (FD) and no drainage (ND) on improving physical properties of the soil were examined. 

The first objective was to evaluate the effects of drainage and surface treatments on the 

penetration resistance (PR). The second objective was to use infiltration tests with a mini-disk 

tension infiltrometer and a Cornell sprinkle infiltrometer to investigate changes in hydraulic 

properties. Lastly, a drawbar dynamometer was used to measure draft on a chisel plow as it was 

pulled across the plots by a tractor equipped with an auto-guidance system and instrumentation 

interfaced with the controller area network of the tractor.  

The results show that the PR values of plots with gypsum application at high rate of 22.4 

Mg ha-1 (GH) were significantly higher than other surface amendments. GH increased the 

hydraulic conductivity of the soil matrix compared to spent lime application at rate of 22.4 Mg 

ha-1 (SL); however, the overall flow of water through the soil profile, including the soil matrix 

and the macropores, was not affected. Both GH and gypsum application at high rate of 11.2 Mg 

ha-1 (GL) lowered the drawbar power requirements compared to spent lime application. For 

many farmers, drainage enables early planting and the adding of ameliorants will safeguard 

against further sodification of their fields.  
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1. GENERAL INTRODUCTION 

1.1. Background 

The installation of tile drainage and tilling of long-term Conservation Reserve Program 

(CRP) and pasture or hay lands poses a risk of transforming saline-sodic soils to sodic conditions 

on the Northern Great Plains (NGP). Due to the high levels of soil water content during spring 

and fall seasons that have become common on the NGP as result of the recent wet cycle, land 

managers are turning to tile drainage to address this problem. In saline/sodic soils with a high 

water table under non-drained conditions, the leached solutes (nutrients and salts) move back to 

the surface layers of the soil with capillary water movement. However, tile drainage prevents this 

upward movement of nutrients and salts by lowering the phreatic zone. Yet, leaching sodic soils 

having low electrical conductivity (EC) may result in the dispersion of clay particles where these 

dispersed particles plug pores in the soil hampering water flow and therefore reducing the water 

infiltration and hydraulic conductivity (Sahin et al., 2011). 

The dispersion of particles and the breakdown of soil structure changes physical 

properties of the soil that pertain to tilth and thus increasing the risk of compaction, increasing 

the penetration resistance when dry, and conversely lowering penetration resistance when wet. 

Calcium based surface amendments have been used to ameliorate the effects of sodification in 

soils. In sodic soils, chemical amelioration with calcium based surface treatments may increase 

hydraulic conductivities (Ilyas et al., 1997) and therefore the efficiency of the tile drainage. 

Moreover, soil amendments have been shown to increase the Atterberg limits (plastic limit and 

liquid limit) of the soil, and therefore the moisture content range in which the soil can be worked 

without permanent damage (Aksakal et al., 2013). 
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Compaction of the soil leads to loss in crop productivity and other disastrous 

environmental concerns such as increase in soil erosion, runoff, and subsurface drainage 

difficulties (Materechera, 2009; Taghavifar & Mardani, 2014). As opposed to free drainage, 

controlled drainage, where inline flow control structures are used to manage the water table, 

offers a process where moisture in the soil is reduced in times of excess (spring and fall) and 

water is retained in soil during drier months (summer). Sodification can be reduced in controlled 

drainage systems where Ca2+ ions and other nutrients are recycled back by capillary water 

movement to natric layers. Therefore, sodification risks may be reduced by utilizing a controlled 

drainage system. Different cropping systems (crop rotation, cover crops, and deep rooting crops) 

have been employed in the management of sodic soils. Cropping systems coupled with surface 

amendments and drainage systems have been employed with varying success (Ilyas et al., 1997).  

1.2. Salt-affected soils 

The problem of salts in soils is widespread with over 930 million hectares worldwide 

(Szabolcs, 1989) and over 10 million hectares on the NGP (J. Brennan, personal communication, 

NRCS North Dakota, 2008). The distribution of salt affected soils is across many continents 

(Table 1), however, the intensity and the magnitude have been exacerbated by poor land use and 

water management practices (Qadir et al., 1998). 

Salt affected soils are grouped into saline, sodic, and saline-sodic on the basis of the total 

amount of salt content and the proportion of sodium present in the soil (Table 2). The 

exchangeable sodium percentage, sodium adsorption ratio, percent sodium, and EC are the basis 

for quantifying the salt content and proportion of the sodium on the soil exchange sites or the soil 

water solution. Salinization of a piece of land is caused by dissolved salts in the irrigation water 

or because of possible upward movement of salts through capillary action (Beltrán, 1999). The 
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majority of the salt affected soils occur in semi-arid and arid soils under irrigation where loss in 

soil quality as result of excess exchange of sodium leads to swelling, and dispersion of clay 

particles, therefore lowering the hydraulic conductivity (Bagarello et al., 2006).  

Table 1. Distribution of salt affected soils in the world (Squires, 2004) 

Continent Saline (Mha) Sodic (Mha) Total(Mha) 

Africa 122.9 86.7 209.6 

South Asia 82.2 1.8 84.0 

North & Central Asia 91.4 120.1 211.4 

Southeast Asia 20.0 - 20 

North America 69.4 59.8 129.2 

Mexico/central America 2.0 - 2.0 

Australasia 17.6 340 357.6 

Global total 411.7 617.9 1029.5 

 

Table 2. Classification of salt affected soils (U.S. Salinity Laboratory Staff, 1954).  

Normal Soils  Saline soils Sodic Soils  Saline-sodic soils 

EC < 4 dS m-1 EC> 4 dS m-1 EC< 4 dS m-1 EC >4 dS m-1 

SAR <13 SAR <13 SAR >13 SAR >13 

ESP < 15% ESP < 15% ESP >15% ESP >15% 
 EC = electrical conductivity; SAR=[Na+ ]/{([Ca 2+]+[Mg2+] )/2}1/2 concentration expressed in 

mmol L−1 , ESP= [(exchangeable Na +, cmolc kg-1)/(cation exchange capacity, cmolc kg-1)] x100 

 

1.3. Remediation of salt affected soils 

The conventional approach for remediating saline-sodic and sodic soils involves first 

applying a calcium based amendment followed by leaching (Qadir et al., 1998), whereas 

leaching good quality waters is sufficient for saline soils. The calcium ion replaces the sodium 

ion on the cation exchange sites. Sources of calcium include gypsum, calcium carbonate and 

calcium chloride; however, if a calcareous layer exists in the profile, then application of an acid 

can be used instead to release calcium ions. For calcareous saline-sodic soil, phytoremediation, 

which involves the growth of salt tolerant plant species with root systems that dissolve the 

indigenous calcium compounds to replace sodium ion on the exchange sites, can be employed. 
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Phytoremediation has been adopted on marginal land with several plant species (Qadir et al., 

2001). Singh et al. (2013) were able to reduce the exchangeable sodium percentage by 70% 

using plants Barbados nut or physic nut (Jatropha curcas) and Velvet mesquite (Prosopis 

Juliflora) in a period of six years. Improvements were reported in other physical properties (for 

example, water holding capacity, bulk density, electrical conductivity, organic carbon). 

Similarly, microbes have been used in conjunction with gypsum to remediate saline-sodic soils. 

The microbes accelerated the dissolution of the gypsum and increased the amount of exchange 

calcium ions in the soil (Sahin et al., 2011).  

Changes in the hydraulic conductivity were used to evualate improvements in physical 

properties of the saline-sodic soil. In poorly drained saline-sodic soils with a high water table, 

subsurface (tile) drainage improves the productivity of soil by lowering the water table. 

Lowering the water table improves the aerobic condition in the root zone which leads to 

increased productivity of the soil (Jia et al., 2012). Secondly tile drainage facilitates faster drying 

of the soil which leads to better trafficability of the soil.  

1.4. Soil penetration resistance 

Soil penetrability is a measure of the resistance ease or difficulty encountered by an 

object as it is driven in the soil ( Blake & Hartge, 1986). A penetrometer is any device that is 

designed to measure this resistance. The penetration resistance is used by several professions to 

gather information on the soil properties such as relative density, shear stress and bearing 

capacity. For agricultural production, penetration resistance relates to root growth, crop yield and 

other soil properties that are descriptive of tilth. There are various categorizations of 

penetrometers that include: cone penetrometers, flat-tipped penetrometers, static penetrometers, 

dynamic penetrometers, mechanical cone penetrometers and hand held penetrometers (Blake & 
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Hartge, 1986; Hillel, 1998). These categorizations are made depending on one or more 

characteristics of the penetrometer. The cone penetrometer (ASABE Standards, 2009) which 

reads penetration resistance as a cone index (the force per unit base area) is very popular. 

Physical and mechanical properties can be studied using penetrometers. For example, Silva et al., 

(2009) evaluated changes in the structure of a soil on a sugarcane field due to heavy machinery. 

In this study, the cone index was used to identify the hard pan from which soil samples were 

tested for Atterberg limits. Penetration resistance of a soil is affected by bulk density, soil 

moisture status, soil depth and its compaction cycles. Gao et al. (2012) used applied stress, 

density, matric potential, void ratio, air entry potential and soil structure, with the concept that 

penetration resistance is proportional to the shear modulus, to evaluate to the increase in 

penetration resistance with applied pressure, density, air entry potential and matric potential. For 

a wet soil, an increase in the penetration resistance followed drying. 

Soil compaction, which is the reduction in porosity of the soil, affects many process 

including reduction in saturated hydraulic conductivity and increase in runoff (Keller et al., 

2013). Little research has been focused the soil deformation process itself. Soil deformation, 

which is the response of a soil to an applied pressure, is dependent upon the soil stress, soil 

strength and how this stress is transmitted in the soil (Keller et al., 2013). The strength of tilled 

soil changes immensely with the amount of moisture in the soil, which in turn affects its 

trafficability. Bachmann et al. (2006) used penetration resistance (PR) and vane shear test (VS) 

to determine compaction state of the soil. A simplified approach was taken where the horizontal 

stress was equal to overburden stress from the specific weight of soil and the influence of vertical 

stress was constant. The results show a high correlation between the PR and VS values obtained 

from both methods. An increase in the compaction state of the soil shown by higher PR and VS 
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values was observed when the land-use was changed to pasture, and this compacted layer 

expanded to deeper the lower layers the longer the land was left under pasture. 

Soil compaction, which saline-sodic soils are susceptible to, can be described using 

Atterberg limits. Aksakal et al. (2013) used Atterberg limits together with compression curves 

derived from a consolidometer to evaluate if pre-consolidation pressure, which is the maximum 

pressure an unsaturated soil can take without compaction, had been exceeded. Atterberg limits, 

like penetration resistance, offer a good description of the mechanical properties of the soil. 

Furthermore, the effects of diatomite, which is a low density sedimentary rock made up 

predominantly of fossilized silica, have been evaluated as a soil conditioner using bulk density, 

Atterberg limits and other mechanical properties (Aksakal et al., 2013). The application of 

diatomite led to a reduction in bulk density and an increase in resistance to mechanical forces of 

the soil.  

1.5. Infiltration 

Saline-sodic soils often present challenges of water movement together with salts. 

Infiltration, which is the movement of water into the soil, is a complex process that involves 

distribution of water in the matrix by forces of cohesion and adhesion, displacement of air in the 

pore spaces, filling of the pores, and progression of the wetting front (Parhi et al., 2007). The 

theory of infiltration is based on the conservation of mass and Darcy’s law.  

Naturally occurring soils have permeabilities that vary with depth either as a result of 

surface crusting, which reduces the infiltration in the upper layer, or surface modification (e.g. 

tillage and use of cover crops), which enhances infiltration (Corradini et al., 2011). Surface 

sealing and crusting is a physical process resulting from raindrop impact on the soil surface, 

which leaves a hard layer. Another form of surface modification is the application of gypsum to 
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the soil surface. Gypsum application leads to aggregation of soil particles. Aggregation refers to 

the arrangement of soil particles into stable structures and this chemical process is facilitated by 

soil organic carbon, gypsum and ion exchangeable ions (Badorreck et al., 2013). Therefore, 

changes in infiltration as a result of surface amendments to saline-sodic soils can be evaluated 

using infiltration measurements. 

1.5.1. Water infiltration models  

Models used to estimate infiltration are generally classified as physically based models or 

semi-empirical or empirical models. Very little information can be garnered from empirical 

models (for example Horton, Philip and Kostiakov) despite their simplicity (Ma et al., 2010). 

The Philip (1957) equation was developed for ponded conditions and is given by  

𝑖(𝑡) =
1

2√𝑡
 𝑆 + 𝐾 (1) 

where i(t) is the infiltration rate (L T-1) at t, any given time (T); S is the sorptivity of the soil 

which is a measure of the rate at which water is drawn into an unsaturated soil (LT -1/2) and K is 

the hydraulic conductivity of the soil (L T-1). The Horton (1941) equation was developed to 

describe overland flow where the layers on top are saturated, with wetting front moving down 

the soil profile. The infiltration rate under these conditions is given by  

𝑖(𝑡) = 𝑖𝑐 + (𝑖𝑜 − 𝑖𝑐)𝑒𝛼𝑡  (2) 

where i(t) is the infiltration at a given time, 𝑖𝑜 is the initial infiltration rate, in 𝑖𝑐 is the final 

infiltration rate, 𝛼 is a constant based on the hydraulic conductivity. The Kostiakov (1932) 

equation estimates the instantaneous infiltration rate using time as a power function of two 

constants b and c (Bamutaze et al., 2010) and is given by 

𝑖(𝑡) = 𝑏𝑐𝑡𝛼−1 .   (3) 
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The second class of infiltration models is physically based models that substantially 

describe the infiltration process (Ma et al., 2010). In this class, the Richards’s equation and the 

Green Ampt model are the most common. The Richards equation is 

𝜕𝜃

𝜕𝑡
 = 

𝜕

𝜕𝑥
 [𝐾 (

𝜕ℎ

𝜕𝑥
+ 1)]- 𝑆𝑘 (4) 

where h is the soil water pressure head (L), 𝜃 (L3 L-3) is the volumetric water content, t is time, z 

is the vertical height, K is the unsaturated hydraulic conductivity, and 𝑆𝑘 is the sink term (L T-1). 

Richards’s equation (1931) represents the transient state for movement of water in unsaturated 

soils. It was derived by applying continuity (conservation of mass) to Darcy’s law. The Green-

Ampt (1911) equation is 

𝑖 = 𝐾𝑠 (1 +
𝐻𝑜 + 𝑆𝑓

𝑍𝑓
)    (5) 

where i is the infiltration rate, Ks is the hydraulic conductivity of the upper saturated soil column, 

Zf is the depth of the wetting front, 𝑆𝑓 suction pressure on the wetting front, and Ho is the ponding 

depth. Infiltration in the saturated part of the soil profile is driven by the ponding depth; while at 

the wetting front, the infiltration is driven by suction pressure of the unsaturated soil.  

1.5.2. Disc infiltrometer 

From the infiltration models, several designs of infiltrometers have been developed. One 

class is the disc infiltrometer. The infiltrometer is made of a graduated water reservoir on a disc 

base and an air bubble tower (Latorre et al., 2013). To insure that the base of the infiltrometer is 

in contact with the soil surface, a contact layer usually made of sand is employed. However, 

researchers must consider that adding this layer of sand might influence the natural process of 

infiltration. The use of disc infiltrometers has grown in popularity among researchers because of 

the relative ease of its application in the field and the number of soil-water properties that are 
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estimated by the tool. These include the hydraulic conductivity, sorptivity, the size of macro and 

meso pores which are vital to soil and hydrological sciences. A number of these soil properties 

can derived from infiltration curves of the disc infiltrometer (Moret-Fernández & González-

Cebollada, 2009). The soil hydraulic properties are based on transient water conditions and not 

steady state; this reduces time and water constraints in infiltration determination. The soil 

hydraulic properties are calculated from cumulative infiltration curves in the classical design and 

infiltration rate curves in newer designs with micro-flow meters and pressure transducers (Moret-

Fernández, Latorre, & González-Cebollada, 2012).  

1.5.3. Ponded infiltrometers  

A second class of tools for measuring infiltration is the ponded infiltrometer. A constant 

pressure head ring infiltrometer has been used to measure saturated soil hydraulic conductivity, 

Ks, (Bagarello et al, 2009) where a metal ring is inserted at a shallow depth, and the hydraulic 

pressured head is maintained at a constant inside the ring. Single ring pressure infiltrometers can 

be set up at one ponding depth, two ponding depths and multiple ponding depths, where each 

depth influences the rational analysis of data and estimation of key parameters in evaluation of 

hydraulic conductivity (Elrick et al, 1990). A single ring infiltrometer yields an infiltration rate 

that is a combination of both lateral and vertical flow of water in the soil. An increase in the ring 

diameter to at least 0.15 m (Chowdary et al., 2006) results in a consistent reading. To check the 

lateral component of infiltration, a double ring infiltrometer design has been developed and 

deployed although its effectiveness is unclear. For example, (Chowdary et al., 2006) evaluated 

several configurations for diameters in both double ring and single infiltrometers and concluded 

that lateral movement could not be eliminated but managed. They stated that in single ring 

infiltrometers at an insertion depth of 0.07 m and ring diameter of 0.3 m, the infiltration process 
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is a function of ponding height, saturated hydraulic conductivity and initial moisture content 

(Chowdary et al., 2006). 

1.5.4. Rain simulators 

Another class of infiltration measuring tools is rain simulators. Rainfall simulators are 

categorized either as non-pressured (drop forming) (Aksoy et al., 2012) or pressured (nozzle 

spraying). The drop forming rainfall simulators produce energy fluxes that are smaller than 

natural rainfall events while the pressured rainfall simulators produce terminal velocities and 

intensities higher than natural rainfall (Abudi et al., 2012). In comparison to the disc 

infiltrometers and ponded ring infiltrometers, rain simulators enable the reproduction of 

intensities, raindrop sizes and energies similar to natural rainfall events. Other advantages of this 

tool include: the quick collection of data at constant conditions over the area of interest, a 

relatively cheap cost, and the ability to be move the rainfall simulator from one location to 

another (Abudi et al., 2012). Rainfall simulators have been applied to investigate the role of 

antecedent rainfall, soil cover, and microtopography on crust formation and resultant infiltration 

of fields (Battany & Grismer, 2000; Freebairn & Gupta, 1990). One of the greatest areas of 

application for both pressurized and drop forming rainfall simulators is in erosion and runoff 

studies (Guerrant et al., 1990; Wierda & Veen, 1992).  

1.5.5. Cornell sprinkler infiltrometer 

The benefits of the rainfall simulators and ring infiltrometer have been harnessed in the 

Cornell sprinkler Infiltrometer (Ogden et al., 1997). The Cornell sprinkler infiltrometer is a 

fusion of a rain simulator and single ring infiltrometer. The droplet size from the rain simulator is 

constant within the range of hydraulic pressures experienced in the unit. Characteristic of all 

drop forming simulators, the Cornell sprinkler has a narrow range of intensities with limited 
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choice for size of rain drops. Therefore, the Cornell sprinkler wets the soil in a manner similar to 

a natural rainfall, moderates contributions of macro pore flow prevalent with ponded 

infiltrometers, and maintains the influence of soil surface roughness on infiltration (Ogden et al., 

1997). The Cornell sprinkler infiltrometer is a low cost, highly portable tool with the ability to 

generate a range of rain fall intensities. It consists of a 241-mm (9.5-inch) diameter ring on 

which a portable rain simulator is placed.  

1.5.6. Field infiltration studies 

The hydraulic conductivity of saline-sodic soils has been extensively investigated under 

laboratory conditions using air dried, sieved and repacked soil cores (Bagarello et al., 2006). 

Under these conditions, the soil is often saturated and chemically in equilibrium with the sodic 

water, which rarely occurs under field conditions (Bagarello et al., 2006). In order to obtain flow 

regimes that are comparable to infiltration of fields under natural rainfall events, hydraulic 

conductivity can be estimated using single ring infiltrometers (Bagarello et al., 2006), where the 

antecedent moisture content and soil structure are maintained. To compare the infiltration of 

different soils using ring infiltrometers, care must be taken to ensure that depth penetration into 

the soil and ponding head of the infiltrometers are maintained constant (Chowdary et al., 2006). 

1.6. Objectives of research 

This project evaluated effectiveness of calcium based surface amendments under 

drainage and non-drainage conditions on improving hydraulic and mechanical soil properties. 

The project developed guidelines and recommendations for removing excess water, improving 

trafficability and workability, and reducing the drawbar power requirements of sodic-saline soils. 

The research project focused on the quantifying the effects of surface treatments on the soil 

hydraulic properties of fields with different water management strategies (free drainage and no 
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drainage). Physical properties of the soil that pertain to soil strength under different surface 

treatments were analyzed.  

1.6.1. Specific objectives of research 

Penetration resistance (PR) of the soil and drawbar forces on a tractor pulling a chisel 

plow were measured to compare changes soil physical properties, for example compaction and 

trafficability of the soil. Surface infiltration using a Cornell sprinkler infiltrometer and a tension 

infiltrometer were used to compare changes in the hydraulic properties under various surface 

treatments.  

1.7. Organization of dissertation 

This dissertation is comprised of six chapters which are: a general abstract, general 

introduction, three manuscripts that are under review for publication in suitable scientific 

journals, and a general conclusion. The general abstract provides a brief summary of findings of 

each of the three papers. The general introduction provides an overview of the problem 

statement, the objective of the research and how this study relates to other research work in 

sodium affected soils. The general introduction also introduces the distribution of salt affected 

soils both regional and international, sodic soil characterization, and their effects on the physical 

properties of soil, and land use. A detailed literature review is provided in each chapter. The first 

paper uses penetration resistance to investigate the effects of drainage and calcium surface 

amendments on trafficability of sodic soils. The second paper assesses the effects of gypsum and 

sugar beet spent lime application on hydraulic properties of subsurface drained sodic soils. The 

third paper presents the effects of calcium amendments on the drawbar power of subsurface 

drained sodic soils. The general conclusion presents the findings from the research studies. 

References are listed at the end of each chapter except for the general conclusion. 
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2. EFFECTS OF CALCIUM BASED SURFACE AMENDMENTS ON THE 

PENETRATION RESISTANCE OF SUBSURFACE DRAINED SODIC SOILS1 

2.1. Abstract 

In Northern Great Plains saline/sodic and sodic soils, subsurface drainage can 

inadvertently result in clay particle dispersion if the surface soils are leached with rainwater. 

Under these conditions, penetration resistance (PR) in wet soil can be used to examine the 

effectiveness of free drainage (FD) vs. no drainage (ND) treatments and surface amendments 

consisting of a high rate of gypsum (GH), a low rate of gypsum (GL), spent lime (SL, a 

byproduct from the processing of sugarbeets), and no amendments [or check plots (CK)] on 

improving soil trafficability. The PR and soil moisture contents were determined from 0 to 45 cm 

depth for sodic soil plots near Wyndmere, North Dakota, during June 2015. The effects of 

drainage and surface amendments on the PR were evaluated using analysis of variance, with 

gravimetric moisture content incorporated as a covariate. Significant differences were considered 

at P<0.05. The mean PR values of ND (450 and 936 kPa) and FD (428 and 917 kPa) for the 0- to 

15-cm and the 15- to 30-cm layers, respectively, were not significantly different. The PR value 

for the surface 15 cm for GH was higher (485 kPa) than for the other surface amendments. In the 

15- to 30-cm layer, the PR for GH (1050 kPa) was significantly higher than for GL (954 kPa) 

                                                 

 

1 The material in this chapter was co-authored by Anthony Wamono and D.D. Steele, Z. Lin, 

T.M. DeSutter, X. Jia and D. Clay and was approved on 17 May 2016 for publication in the Trans 

ASABE Journal as manuscript number NRES-11689-2015. Anthony Wamono had primary 

responsibility for collecting data in the field, analyzing the data collected, interpreting the results, 

and developing the conclusions that are advanced here. Anthony Wamono also drafted and revised 

all versions of this chapter. Co-authors served as technical and editorial consultants in the 

development of the manuscript represented by this chapter. 
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which was in turn higher than for SL (866 kPa) and CK (839 kPa). Benefits from the combined 

effects of drainage and surface amendments were more evident in the 15- to 30-cm layer than in 

the 0- to 15-cm layer. In the 0- to 15-cm layer, the NDGH (498 kPa) had PR means similar to all 

other treatments, except it was higher than for FDSL (384 kPa). In the 15- to 30-cm layer, the 

FDGL (1007 kPa) had similar means to FDGH (1074 kPa) and NDGH (1027 kPa) which showed 

that drainage coupled with a lower gypsum rate achieved the similar results as the higher rate of 

gypsum application. 

2.2. Introduction 

Regionally and internationally, salt-affected soils are a serious and growing problem, and 

it is estimated that high salt concentrations impact productivity on over 10 million hectares of 

land in the Northern Great Plains (J. Brennan, personal communication, NRCS North Dakota, 

2008) and over 930 million hectares worldwide (Szabolcs, 1989). Farmers and engineers are 

struggling with the management of these soils. One of the most critical periods occurs in the 

spring when the soils are wet and farmers are attempting to cultivate and plant the fields. 

Trafficability, the ability of the soil to support vehicle traffic, is dependent on the soil strength, 

which is the ability of the soil to withstand stress without undergoing failure. Soil trafficability 

and strength are also influenced by texture, organic matter, vegetation, moisture content, and soil 

structure (Daigle et al., 2005). The potential damage to soil structure and compaction of soils 

when worked beyond their bearing capacity coupled with increased equipment costs pose a risk 

to drained sodic soils. A soil’s drainage status impacts the infiltration rate, moisture profile, the 

amount of saturation and consequently its load bearing capacity (Müller et al., 1990). The 

permeability of the soil and a shallow water table, if one exists, will impact the ability of the soil 

to support heavy agricultural machinery (Daigle et al., 2005). Lowering the water table through 



 

19 

subsurface drainage (flexible perforated plastic pipes that collect and move excess water to a 

sump or any other drainage feature) has been used to improve soil trafficability. However, 

subsurface drainage by itself in sodic soils may be insufficient and may actually may make 

trafficability worse.  

The application of calcium-based amendments, such as gypsum, to sodic soils, increases 

the flocculation of dispersed aggregates and thus increases macro-porosity (Ilyas et al., 1997), 

which in turn improves soil structure and load bearing capacity. Replacement of Na with Ca on 

the soil’s exchange complex also reduces the water holding capacity of the soil because charged 

Na+ ions prefer to be hydrated while the Ca2+ ions prefer to be bound to the clay particles (He et 

al., 2015). Reduction in the water holding capacity and flocculation of dispersed soil aggregates 

should lead to better trafficability in sodic soils treated with Ca. Gypsum application in the 

reclamation of sodic soils has widely been reported with success in deep, poorly drained soils 

(Sansom et al., 1998; Wheaton et al., 2008). However, Tirado-Corbalá et al. (2013) reported 

reduced drainage due to clogging of pores with secondary carbonates after gypsum application in 

moderately drained non-sodic soils. Other management practices have also been employed for 

the remediation of sodic soils. In hydrological regimes characterized by upward movements of 

water, crops with deep roots and high transpiration rates decrease the upward movement of salts 

(Sansom et al., 1998). The use of crop residue or mulch in semi-arid areas maintains soil 

moisture that facilitates the dissolution of gypsum (Tejedor et al., 2003). CaCO3, in forms of 

ground limestone or by-product lime from processing sugarbeets (spent lime), has been found to 

be a suitable amendment for sodic soil with low pH (Abro et al., 1988). 

Evaluation of surface amendments and management practices on soil trafficability can be 

realized through analysis of changes in a soil’s mechanical properties. Earl (1997) lists a range of 
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properties, for example shear stress, bulk density and plastic limit, that predict the mechanical 

state of the soil. Other properties like moisture content and unsaturated hydraulic conductivity 

could be used as input data for models that estimate soil trafficability and workability. A number 

of models to simulate optimal conditions for trafficability based on moisture content have been 

suggested (Earl, 1997; Wösten & Bouma, 1985); however, the resolution of these models has 

been on the scale of months and seasons rather than days. Moreover, these moisture-based 

models require a comprehensive knowledge of the soil water characteristic curve and consistency 

limits (Aksakal et al. 2013a; Kandel et al., 2013; Mueller et al., 2003). 

Mechanical soil properties pertaining soil trafficability can be reliably estimated by cone 

penetrometers, which measure the penetration resistance (ASABE Standards, 2009). Penetration 

resistance (PR) is a representative quantity of the forces encountered by a metal object as it is 

driven through the soil. The forces include metal to soil friction, internal cohesion of the soil, and 

shear stress (Hillel, 1998). Penetrometers are simple, cost effective, and user friendly and can be 

used to rapidly take field measurements (Weaich et al., 1992). Bachmann et al.(2006) found 

penetrometer results comparable to vane shear data while studying stress that represents soil 

strength in pastures in Chile. Motavalli et al. (2003) used cone penetrometers to detect the 

presence of clay pans and evaluate the effects of surface applied poultry litter on PR in clay pans.  

The objective of this study was to determine the impact of calcium-based surface 

amendments on a sodic soil's mechanical properties for plots with and without subsurface 

drainage.  



 

21 

2.3. Materials and methods 

2.3.1. Site selection and characterization 

The experimental site (97.25 W, 46.2 N and elevation ~326 m ) was located near 

Wyndmere in Richland County, North Dakota, on a predominantly Exline soil (Fine, smectitic, 

frigid Leptic Natrudolls) with some Stirum-Arveson complex (Stirum: Coarse-loamy, mixed, 

superactive, frigid Typic Natraquolls; Arveson: Coarse-loamy mixed, superactive, frigid Typic 

Calciaquolls) on the easternmost edge of the plots. This site has natric characteristics and had 

been under pasture/hay production for more than 30 years prior to initiation of this study’s field 

research in 2013. Corn (Zea mays) was grown on the field in 2013, 2014, and 2015. The site has 

a drainage class of somewhat poorly drained with depth of the restrictive feature [saturated 

hydraulic conductivity (Ksat) less than 0.025 cm hr-1] between 12.5 to 30 cm (NRCS, 2014). 

While flooding is uncommon, surface ponding and a high water table in the spring are common. 

Subsurface drainage was installed in December 2012 at a depth of approximately 1.2 m (4 ft), a 

spacing of 24.4 m (80 ft), and a drainage coefficient of 9.5 mm d-1 (3/8 in. d-1). The 2015 rainfall 

totals, averaged from onsite duplicate manual rain gauges, were 196 mm in May and 77 mm in 

June. Penetration resistance measurements were sampled on 11, 23, and 24 June 2015, twenty-

five months after the surface amendments (discussed below) were applied. 

2.3.2. Experimental design 

A completely randomized design using a split plot arrangement was employed with three 

replicates in the whole plots (drainage treatments) and surface amendments serving as the split 

plots (see The whole plots were 24.4 m by 107 m (80 ft by 350 ft) and the split plots were 24.4 m 

by 21.3 m (80 ft by 70 ft). The drainage treatments consisting of no subsurface drainage (ND), 

free drainage (FD) and controlled drainage (CD) were tested with overlying surface amendments 
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of 22.4 Mg ha-1 (10 t ac-1) of gypsum (GH, defined as the high gypsum rate), 11.2 Mg ha-1 (5 t 

ac-1) of gypsum (GL, defined as the low gypsum rate), 22.4 Mg ha-1 (10 t ac-1) sugarbeet spent 

lime (SL), cover crops (CC) and check (CK) plots receiving no surface amendment.  

 

Figure 1. Field-plot layout of the Wyndmere site in Richland County, North Dakota. The surface 

amendments designated in the legend are: GH, gypsum at high rate [22.4 Mg ha-1 (10 t ac-1)]; 

GL, gypsum at low rate [11.2 Mg ha-1 (5 t ac-1)]; SL, sugarbeet spent lime [22.4 Mg ha-1 (10 t ac-

1)]; and CK, check plots receiving no surface amendment. The drainage treatments are: FD (free 

drainage) and ND (no drainage). 

 

Corn was planted at site, which leaves no time after harvest for growing cover crops, 

therefore CC was treated as CK plots. Manual flow control structures (Inline Water Level 

Control Structures™, Agri Drain Corporation, Adair, Iowa, USA) were installed to manage the 

depth of the water table in the CD plots while in the FD plots, water flowed out of the plots with 

no restriction. No flow management was done in the CD during 2015 due to low flow volumes 
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and the CD treatment was essentially operated as FD; therefore, the CD and FD treatments were 

combined and labeled FD.  

The three calcium surface amendments (i.e., GH, GL, and SL) were applied on 14 and 15 

May 2013. Pellets of gypsum (Calcium Products Inc., Ames, IA USA) were applied using a 

machine spreader wagon pulled by a tractor and by hand using shovels to deliver gypsum at 

desired rates for GH plots. Known quantities of spent lime powder and gypsum were spread 

manually using shovels to deliver the desired application rate for SL and GL plots, respectively. 

A field cultivator was used in May 2013 on all plots to incorporate the surface amendments to a 

depth of 10 cm immediately after their application and prior to planting. The post-spreading 

tillage, the farmer’s annual tillage each fall, and freeze-thaw cycles over the two years after 

application was expected to have alleviated the compaction from wheel traffic and helped to 

spread the hand-applied spent lime and gypsum for the GL. We avoided penetrometer sampling 

at all locations where wheel traffic was evident.  

2.3.3. Penetrometer 

The cone index (CI), which is a pressure measurement, was taken against depth in all 

plots using a hand driven cone penetrometer (Field Scout SC 900®, soil compaction meter, 

Spectrum Technologies, Inc., Plainfield, Illinois, USA) with data logging capabilities 

synchronized with a GPS unit for spatial coordinates. The penetrometer had an inbuilt ultrasonic 

sensor at its base which measures the depth of penetration. The penetrometer was pushed into 

ground at a uniform rate of approximately 30 mm s-1 (ASABE Standards, 2009). A cone size 

diameter of 12.7 mm was used to take readings at 2.5 cm depth intervals from 0 to 45 cm. The 

penetrometer had depth and pressure resolutions of 2.5 cm and 35 kPa, respectively, accuracies 

of 1.25 cm and 103 kPa, and ranges of 0 to 45 cm and 0 to 7000 kPa, respectively, with a 
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maximum speed 182 cm min-1. To ensure that PR measurements were not influenced by 

neighboring drainage treatments or surface amendments, only an inner 1.2 m by 9.1 m (4 ft by 30 

ft) sampling area was monitored (see shaded area in Figure 2). 

Pre-sampling surveys of the plots were done on a smaller area equivalent to the 

experimental split plot where 30 PR measurements were taken (Figure 2). From the pre-sampling 

survey, the minimum number of PR measurements n was determined as 10 using an accuracy of 

10% and with a Student's t-test confidence interval of 90 % (Hillel, 1980; ASABE Standards, 

2009). That is, n=10 penetration profiles were taken per split plot in subsequent measurements.  

2.3.4. Soil sampling and moisture content measurement  

Gravimetric moisture contents were determined on soil samples collected from 0- to 15-

cm, 15- to 30-cm, and 30- to 45-cm (0 to 6, 6 to 12, 12 to 18 inches) depths in each experimental 

plot where PR profiles were measured. A soil probe (Brown moisture probe, AMS Inc., 

American Falls, Idaho, USA) which had a modified auger tip to trap the soil and its depth 

marked at depth increments noted above, was used to retrieve soil samples for moisture 

determination. The probe was pushed into the soil vertically by hand to the desired depth and 

augured. Soil samples trapped in the auger at each depth were placed in sealed containers to 

prevent moisture loss. Samples were returned to the laboratory for determination of gravimetric 

moisture content by oven drying at 106 oC for a minimum of 24 hours (Dane & Topp, 2002). 

Soil samples for chemical analysis were collected in 15 cm increments using a Giddings 

soil probe of 6 cm diameter (Blake & Hartge, 1986) and analyzed in the laboratory for K, Na, 

Ca, and Mg for the calculation of the SAR using saturated paste extracts for the 2012 samples 

(Bower et al., 1952) and percent sodium (%Na) for the 2015 samples and converted to SAR 

using SAR = 1.04 x (%Na)  0.35 (DeSutter et al., 2015). 
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Figure 2. Layout and dimensions of the penetrometer sampling area in a split plot. 

 

 

2.3.5. Statistical analysis 

A general analysis of the penetration resistance profiles is presented in qualitative terms 

and then followed by a detailed statistical analysis. The results are presented in three major 

categories (i.e., drainage treatments, surface amendments, and the combined effects of drainage 

and surface amendments). In each category, analysis of results was done for the 0- to 15-cm 

layer and the 15- to 30-cm layer separately, while the 30- to 45-cm layer was not considered 

because changes in the mechanical properties in lower layers are considered a result of annually 

cumulative compaction and might be ameliorated immediately by special tillage treatments like 

sub soiling (Jorajuria & Draghi, 1997). The effects of drainage type and surface amendment on 
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PR were analyzed using a two-way factorial in a split plot design where the whole plot factor 

was the drainage type and the split plot (or subplot) factor was surface amendment in completely 

randomized design (Figure 1). The mean PR values for the CK treatment were obtained from 18 

split plots (9 CK and 9 CC plots). Since soil moisture content has been reported to be inversely 

correlated with PR (Müller et al., 1990; Vaz et al., 2011), the gravimetric moisture content was 

included in a generalized linear model as a covariate. The PR means presented in the results 

sections were adjusted for the effects of soil water content. The statistical model for the analysis 

of variance of PR and Tukey tests for means comparisons were implemented using PROC 

MIXED in SAS 9.4 (SAS Institute Inc., 2014) and considered to be significant at P<0.05.  

2.4. Results and discussion 

The SAR values estimated from soil samples from 18 plots with surface treatments (9 GH 

plots and 9 CK plots) taken before and after application of the surface amendments are 

summarized in Table 3. 

Table 3. Soil sodium adsorption ratios, averaged over surface amendments for layers 0 to 15 cm 

and 15 to 30 cm. 

Depth 

(cm) 
Year 

Check Plots 

(No Ca Amendments) 

Gypsum High Rate Plots 

(22.42 Mg ha-1) 

  Sodium Adsorption Ratios 

0-15 
2012 5.39a* 2.48a 

2015 1.62a 0.75b 

    

15-30 
2012 5.88a 3.92a 

2015 2.13a 2.03a 

*Means within the same column for each depth with the same letter are not statistically different 

at P=0.05 using the Student’s t-test between 2012 and 2015. 

 

 There was a general reduction in the SAR of the plots in 2015 compared to 2012. 

Changes in the soil’s chemical composition are expected to occur as salts move with leaching, 

capillary rise, and with the upward or downward movement of the water table. This may explain 
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the differences in the SAR between the two years. However, only in the 0-15 cm layer of the GH 

plots was the reduction significant. This decrease in SAR in gypsum plots is attributed to Ca 

added through gypsum and also to a decrease in Na which was substituted with Ca and leached 

to the lower parts of the soil profile. Changes in soil chemical properties can reduce or promote 

dispersion and swelling which can then influence field capacity moisture content and thus 

penetration resistance and trafficability (He et al., 2015).  

2.4.1. Drainage treatments 

The effect of moisture content on the PR values was significant in 0- to 15-cm layer 

(P=0.0001) and not significant for the 15- to 30-cm layer (P=0.367). For means that were 

adjusted for the effects of soil water content, the mean PR for the ND plots (450 kPa) was not 

significantly different from the mean PR for the FD plots (428 kPa) in the 0- to 15-cm layer. 

Similarly, there were no significant differences in the adjusted mean PR values for the ND plots 

(936 kPa) and the FD plots (917 kPa) for the 15- to 30-cm layer. The effects of subsurface 

drainage on increasing the PR values of soil has been reported to increase with time (Müller et 

al., 1990) as lower water tables produce improvement in soil structure and development of 

macropores. However, even with good soil structure, the trafficability of a soil is greatly reduced 

when its moisture state is close to the point of saturation.  

2.4.2. Surface amendments 

The mean PR values without adjustment for soil water content for each 2.5 cm depth 

interval for the surface amendments are shown in Figure 3.The GH plots had mean PR values 

that were generally higher than other treatments. Overall, the PR profiles had lower values in the 

top layers and higher values at the deeper parts of the soil profile.  
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Figure 3. Mean values of penetration resistance (kPa) of all plots for various surface amendments 

at the Wyndmere site. These mean values were not adjusted for soil water content. The 

treatments designated in the legend are: gypsum at high rate (GH) [22.4 Mg ha-1], gypsum at low 

rate (GL) [11.2 Mg ha-1], sugarbeet spent lime (SL) [22.4 Mg ha-1] and check plots receiving no 

surface amendment (CK). 

 

The increase in PR values with depth is a result of the increasing weight on the soil with 

depth that leads to increased bulk density (Jonard et al., 2013). Also, this increase in bulk density 

may be attributed to clay accumulation which is characteristic of soil genesis in areas with natric 

conditions. The lower PR means in the 0- to 15-cm layer are also reflective of the effects of 

tillage. The loosening up of soil layers due to tillage reduces the soil’s bulk density and 

temporarily lowers the penetration resistance. However, traffic from heavy equipment can lead to 

higher PR values for soils under tillage. The mean PR values for each split plot are shown in 

Figure 4 for the 0- to 15-cm layer and Figure 5 for the 15- to 30-cm layer; the mean PR values 

were not adjusted for the effects of moisture in these figures. The adjusted means for the surface 

amendments are summarized in Table 4 for the 0- to 15-cm and the 15- to 30-cm layers. The PR 
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of the GH plots were significantly higher than other surface treatments in the 0- to 15-cm layer, 

while in 15- to 30-cm layers, the PR values of the gypsum amendments were higher than for the 

CK plots. The use of spent lime resulted in PR values that were similar to CK plots. 

Table 4. Mean penetration resistance measured in June 2015 for surface amendments applied in 

May 2013.  

Depth 

(cm) 
Symbol Surface amendments 

Mean Penetration 

Resistance* (kPa) 

Standard error 

(kPa) 

0 to 15 

GH Gypsum High, 22.4 Mg/ha 485a 15 

GL Gypsum Low, 11.2 Mg/ha 430b 10 

CK Check 426b 5 

SL Spent Lime, 22.4 Mg/ha 420b 14 

     

15 to 30 

GH Gypsum High, 22.4 Mg/ha 1050a 14 

GL Gypsum Low, 11.2 Mg/ha 954b 14 

SL Spent Lime, 22.4 Mg/ha 866c 14 

CK Check 839c 10 

*Surface amendment means with the same letter are not statistically different at P=0.05 using the 

Tukey test for comparison of means for each depth. Penetration resistance values were adjusted 

for soil water content.  

 

Gypsum application in sodic soils has been shown to result in lower PR values when the 

soil is dry, e.g., a reduction in surface crusts was noted by Mitchell et al. (2000). Hardsetting, 

often associated with problems of root elongation and hard plow layer, has been managed in Na-

smectictic clays soils by Ca-treatment (Greene et al., 2002). Buckley & Wolkowski (2014) 

observed reductions in bulk density in deeper parts of the soil profile (30 to 60 cm) after 

application of gypsum, however, only minimal effects were observed in the PR of the same soil. 

Ellington (1986) saw significant reductions in penetration resistances of acidic soils treated with 

gypsum in the lower layers of a soil profile containing a hard pan. Ellington (1986) observed that 

gypsum application helped lower the PR values of a soil after it was cultivated, unlike one with 

no gypsum where the PR values returned to pre-cultivation levels. 
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Figure 4. Mean values of penetration resistance (kPa) of all plots for various surface amendments 

for the 0- to 15-cm layer at the Wyndmere site. The treatments are: gypsum at high rate (GH) at 

22.4 Mg ha-1, gypsum at low rate (GL) 11.2 Mg ha-1, sugarbeet spent lime (SL) at 22.4 Mg ha-1, 

and check plots receiving no surface amendment (CK). The drainage treatments in the legend are 

free drainage (FD) and no drainage (ND).  

 

Because of the weak structure as result of dispersion of clay particles, sodic soils are soft 

and unable to support traffic without deformation when wet. In these conditions, gypsum 

application may result in higher PR values as our results show, which improves trafficability. In 

addition to improvement in soil structure, for sodic soils with shrink-swell characteristics, the 

reduction of Na by substitution with Ca also reduces the water holding capacity leading to lower 

moisture contents. He et al. (2015) observed increased field capacity moisture contents in high 

Na soil samples compared to soils with low Na samples. By reducing the Na in the soil with Ca-

substitution, a reduction in soil’s affinity for moisture is expected. Given that lower moisture 
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content corresponds to higher soil strength (Vaz et al., 2011), this also explains why the GH plots 

had higher PR values. On the other hand, the limited solubility of the spent lime explains why 

the Ca in the SL plots did not produce similar results. 

    

 

Figure 5. Mean values of penetration resistance (kPa) of all plots for various surface amendments 

from 15- to 30-cm layer at the Wyndmere site. The treatments are: gypsum at high rate (GH) 

22.4 Mg ha-1, gypsum at low rate (GL) of 11.2 Mg ha-1, sugarbeet spent lime (SL) at 22.4 Mg ha-
1 and check plots receiving no surface amendment (CK). The drainage treatments in the legend 

are free drainage (FD) and no drainage (ND). 

 

2.4.3. Combined effects of drainage and surface amendments 

Statistical analysis of the combined effects of drainage and surface amendments for the 

top two layers (0 to 15 cm and 15 to 30 cm) is presented in this section. The combined effects 

between drainage and surface amendments are denoted using drainage and surface amendment 
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acronyms, e.g., FDGH represents the combined effect of free drainage (FD) and high rate of 

gypsum application (GH) at 22.42 Mg ha-1 (10 t ac-1). The adjusted PR means for combined 

effects of drainage and surface amendments in the 0- to 15-cm layer and the 15- to 30-cm layer 

are shown in Table 5. 

Table 5. Mean penetration resistance measured in June 2015 for the combined effects of drainage 

installed Dec 2012 and surface amendments applied in May 2013. 

Depth 

(cm) 
Drainage and Surface treatment Combinations 

Mean Penetration 

Resistance* (kPa) 

Standard 

error (kPa) 

0 to 15 

NDGH No drainage, Gypsum at 22.4 Mg/ha 498a 23 

FDGH Free drainage, Gypsum at 22.4 Mg/ha 471a 18 

NDSL No drainage, Spent lime at 22.4 Mg/ha 457ab 23 

NDGL No drainage, Gypsum at 11.2 Mg/ha 433ab 23 

FDCK Free drainage, Check 432ab 12 

FDGL Free drainage, Gypsum at 11.2 Mg/ha 426ab 16 

NDCK No drainage, Check 420ab 16 

FDSL Free drainage, Spent lime at 22.4 Mg/ha 384b 16 

     

     

15 to 30 

FDGH Free drainage, Gypsum at 22.4 Mg/ha 1074a 16 

NDGH No drainage, Gypsum at 22.4 Mg/ha 1027a 23 

FDGL Free drainage, Gypsum at 11.2 Mg/ha 1007a 16 

NDSL No drainage, Spent lime at 22.4 Mg/ha 921b 22 

NDGL No drainage, Gypsum at 11.2 Mg/ha 901b 22 

NDCK No drainage, Check 898b 16 

FDSL Free drainage, Spent lime at 22.4 Mg/ha 811c 16 

FDCK Free drainage, Check 779c 11 

*Drainage and surface amendments combination means with the same letter are not statistically 

different at P=0.05 using the Tukey tests for comparison of means at each depth. Penetration 

resistance values were adjusted for soil water content.  

 

The PR means of the 0- to 15-cm layer present an important part for analysis of effects of 

surface amendments and drainage treatments on trafficability and workability of agricultural 

soils, especially those with high composition of silt and clay separates. The mean PR values of 

the NDGH and the FDGH plots were significantly higher than that of the FDSL plots. The 
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remaining treatments were not significantly different from each other. The lower 15- to-30 cm 

layer is important for trafficability when predominant soil textures are clay or loams (Rab et al., 

2005) and also for analyzing the impact of soil mechanical properties on root growth as PR 

values higher than 2500 kPa impede root growth (Gao et al., 2012; Whalley et al., 2007). 

In the 15- to 30-cm layer, the PR means of FDGH, NDGH, and FDGL plots were 

significantly higher than all other treatments but were not different from each other. The 

availability of leached Ca from the top layer in addition to that in the applied gypsum may be 

responsible for higher PR means in FDGH. The higher concentration of Ca in the GH leads to 

more flocculation of dispersed soil aggregates. Aggregation of dispersed soil particles improves 

the soil structure; soils with better structure have a higher soil strength and hence higher load 

bearing capacity compared to those with weak soil structure especially when wet (Carter, 1990).  

Lebert & Horn (1991) explain that an increase in bulk density corresponds to an increase 

of strength when the influence of soil structure is ignored, for example, in non-structured soils or 

weakly-aggregated soil. However, soil strength becomes more dependent on shear parameters, 

for example, internal angle of friction and cohesion when the soil is better structured. Therefore, 

improvement in structure will increase the PR even when there is a reduction in bulk density in 

wet sodic soils. Where less Ca was applied, as was the case for FDGL, drainage appears to have 

complemented the Ca application and resulted in PR means that were similar to plots with high 

rates of Ca application. Drainage facilitates the leaching of Na from the exchange sites on soil 

particles and provides the Ca from upper layers of the soil profile. The results of our study agree 

with Cochrane & Aylmore (1991) who noted an improvement in aggregate stability using the 

modulus of rapture for soils treated with gypsum as a surface amendment. We attribute this 

improvement in strength to an improvement in soil structure. Better-structured soil because of 
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aggregation has higher porosity and more micro and macro pores compared to dispersed soils 

with a poor structure. This improvement in aggregation and structure also aids drainage. In the 

15- to 30-cm layer, the NDSL, NDGL, and NDCK plots had means that were significantly lower 

than FDGH, NDGH and FDGL plots but had PR means that were significantly higher than FDSL 

and FDCK plots. Because the PR values for the NDSL, NDGL, and NDCK plots were not 

statistically different from one another, we infer that for conditions of no drainage, there was no 

benefit in the application of spent lime or gypsum at the low rate on increasing the PR for the 15-

to-30 cm layer. However, when the sodic soil at this site is drained, no amendment (FDCK) or 

spent lime (FDSL) result in the lowest PR values.  

Challenges in trafficability have been reported by Muller et al. (1990) in soils where the 

topsoil was dry and firm but lower layers were below the critical penetration resistance of 300 

kPa. For this study, a threshold value of 300 kPa was assumed to represent the penetration 

resistance above which trafficability on agricultural soil is possible (Müller et al., 1990). In 

contrast, Bueno et al. (2006) observed an estimate of 1000 kPa for the PR as the threshold value 

for workability of the soil. The lower layer plays an equally important role in assessing the 

trafficability of agricultural soils. Furthermore, the impacts of subsoil compaction because of 

heavy machinery are likely to show in this 15- to 30-cm layer. Compaction of subsoil drives up 

the cost of tillage operations in both time and energy and may lower crop yields. However, it is 

important to note that PR from penetrometers often overestimates the force encountered by the 

roots up to a factor of three times due to higher friction encountered by the metal compared to 

the roots (Whalley et al., 2007). 
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2.5. Conclusions  

Twenty-five months after surface amendment application and 30 months after drainage 

installation, the drainage treatments were not significantly different from each other in either 

layer. Across both drainage treatments, the PR means for GH plots were significantly higher than 

all other surface amendments in the 0- to 15-cm layer. In the 15-to 30-cm layer, PR values for 

GH plots were significantly higher than all other surface amendments and the PR means of 

gypsum amendments (GH and GL) were both significantly higher than SL and CK.  

For the combined effects of drainage and surface amendments in the 15- to 30-cm layer, 

FDGH, NDGH, and FDGL had PR means that were significantly higher than NDSL, NDGL and 

NDCK. Here, drainage complements the lower rate of gypsum in the FDGL plots to produce 

results similar to higher gypsum rate in FDGH plots. For undrained plots in the 15- to 30-cm 

layer, the low rates of gypsum or spent lime (NDGL and NDSL, respectively) do not appear 

beneficial because their PR means were statistically similar to those for NDCK. PR means for 

the FDSL and FDCK plots were significantly lower than for the NDSL, NDGL and NDCK plots 

in the 15- to 30-cm layer, which showed that draining the plots without amendments (FDCK) or 

with spent lime (FDSL) yielded PR means that were smaller than no land modification (NDCK).  
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3. EFFECTS OF GYPSUM AND SUGAR BEET SPENT LIME APPLICATION ON 

HYDRAULIC PROPERTIES OF SUBSURFACE DRAINED SODIC SOILS2 

3.1. Abstract 

In poorly drained sodic soils, application of calcium amendments to the soil surface has 

been reported to improve soil hydraulic conductivity. This study was carried out to determine the 

benefits of calcium amendments in the mitigation of sodification risks such as dispersion and 

swelling when subsurface drainage is installed in high risk soils. The effects of gypsum and spent 

lime (a CaCO3 byproduct from sugarbeet processing) with drainage treatments of free drainage 

(FD) and no drainage (ND), on improving the hydraulic properties of the soil were evaluated 

near Wyndmere, North Dakota. Infiltration tests were carried out using a mini disk tension 

infiltrometer and a Cornell sprinkle infiltrometer to investigate the impact of drainage (the whole 

plot factor) and calcium surface treatments (the spilt-plot factor) in a completely randomized 

design. The surface treatments were 22.4 Mg ha-1 of gypsum (GH), 22.4 Mg ha-1 sugar beet spent 

lime (SL) and check plots receiving no surface treatment (CK). Soil samples for moisture content 

determination were also collected. The mean unsaturated hydraulic conductivity at 2 cm tension 

[K(ψ=-2 cm)] for the ND and FD plots as measured by the mini disk tension infiltrometer were 48.3 

and 37.6 cm day-1, respectively, while the infiltration rates as measured by the Cornell sprinkle 

                                                 

 

2 The material in this chapter was co-authored by Anthony Wamono and D.D. Steele, Z. Lin, 

T.M. DeSutter, X. Jia and D. Clay and will undergo further revision for possible publication 

consideration in the Trans ASABE Journal as manuscript number NRES-11596-2015. Anthony 

Wamono had primary responsibility for collecting data in the field and the primary developer of 

the conclusions that are advanced here. Anthony Wamono also drafted and revised all versions of 

this chapter. Co-authors served as proofreader and checked the math in the statistical analysis 

conducted by Anthony. 



 

41 

infiltrometer were 55.4 and 61.2 cm day-1 for the ND and FD plots, respectively. For the surface 

treatments, the mean K(ψ=-2 cm) as measured by the mini disk tension infiltrometer were 52.5, 42.6 

and 33.9 cm day-1 for the GH, CK and SL plots, respectively. The mean K(ψ=-2 cm) in the GH plots 

was significantly higher than that in the SL plots. The mean infiltration rates as measured by the 

Cornell infiltrometer were 66.8, 55.7, 52.3 cm day-1 for the CK, SL, GH plots, respectively. Our 

results indicate that GH application increased the hydraulic conductivity of the soil matrix 

compared to SL; however, the overall flow through the soil profile, including the soil matrix and 

the macropores, were not affected 14 months after application of the surface treatments. 

3.2. Introduction 

The installation of subsurface (tile) drainage and tilling of soils having sodium in their 

parent materials and within the profile may increase the risk of sodification in salt-affected soils 

on the Northern Great Plains (NGP) of the USA. Due to the high levels of moisture during spring 

and fall seasons that have become common on the NGP as a result of a regional wet cycle, land 

managers are turning to tile drainage to address this problem of excess water (Jia et al., 2012). 

The opening up of lands with low productivity indexes was driven by increasing 

commodity prices (Hellerstein & Malcolm, 2011) and has brought idle marginal lands often 

affected by sodium into agricultural production (He et al., 2015). Tile drainage of sodium 

affected soils can lead to selective leaching of the more soluble higher charge ions; this causes 

the sorption and desorption of sodium ions due to the changes in the cationic strength of the soil 

solution. Sorption and desorption of sodium, coupled with a decrease in the ionic strength of the 

soil solution, often induces slaking, swelling and dispersion of clay particles (Bagarello et al., 

2006; He et al., 2015).The dispersed particles plug the pores while the swelling reduces the size 

of the pores in the soil, both resulting in reduced hydraulic conductivities (He et al., 2015; So & 
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Aylmore, 1993). These reductions in hydraulic conductivities could lower the efficiencies of 

subsurface drainage systems or render them totally ineffective. High levels of sodium in clayey 

soils also can lead to formation of a virtually impermeable surface crust that hinders water 

infiltration and seedling emergence (Agassi et al., 1985; Bagarello et al., 2006) 

To minimize the risk of sodification in reclamation of salt affected marginal lands for 

agriculture, a proactive approach is required. In dispersed soils, aggregation and arrangement of 

soil particles into stable structures is facilitated by Ca2+ ions (Badorreck et al., 2013; Sahin et al., 

2011). A combination of chemical surface amendments, cropping arrangements and water 

management strategies can be employed, geared at increasing the rate of replacement of the Na+ 

ions with Ca2+ ions at soil exchange sites or maintaining a high electrical conductivity (EC) for 

the soil water. Gypsum has been used to improve the hydraulic and physical properties in sodic 

soils or in irrigation water with high exchangeable sodium (Ellington, 1986; Hamza & Anderson, 

2002) . The changes in soil water relationships for soils due to chemical and management 

practices can be exhibited in the hydraulic properties of the soil such as hydraulic conductivity 

and sorptivity.  

Infiltration in agricultural fields is affected by several factors including the permeability 

of the soil, the presence of surface crusts, or surface modification (Corradini et al., 2011; Wang et 

al., 2014). Infiltration in the field also depends on many other factors including the presence of 

root channels, inter-aggregate pores, worm holes, and drainage history as well as management 

practices (Beven & Germann, 1982; Suarez et al., 2008). Sorptivity, which is a representative 

quantity of the soil capacity for capillary uptake and release of water, is dependent on the pore 

size distribution in the soil medium (Philip, 1957). Sorptivity is affected by the intrinsic 

properties of the soil (e.g. soil texture, soil structure, macro-pores and moisture content). The 
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response of sodic soils to calcium amendments has been extensively investigated using 

laboratory studies focusing on changes in saturated hydraulic conductivity, Ksat (Callaghan et al, 

2014; Reading et al., 2012a; So & Aylmore, 1993). Field studies of Ksat preserves the soil’s 

antecedent moisture content and soil structure and are a better representation of changes in soil’s 

hydraulic properties than laboratory experiments (Bagarello et al., 2006). Field drainage tests 

evaluating the hydraulic conductivity involve the whole soil profile and often take longer than 

infiltration tests that evaluate only a short depth of the profile. Prasad et al. (2010) compared the 

Van Genuchten parameters from both drainage and infiltration tests and concluded that 

infiltration tests can be used with confidence to estimate drainage of a soil profile. In this study, 

field infiltration tests were carried out to determine the short-term benefits of calcium 

amendments on hydraulic properties of subsurface drained sodic soils.  

3.3. Materials and methods  

3.3.1. Experiment site 

The experimental site was located near Wyndmere in Richland County, North Dakota 

(97 15.45’ W, 46 16.89’ N and elevation 326 m). The site has a sodium affected soil with a 

drainage class of “somewhat poorly drained” located on a predominately Exline soil (Fine, 

smectitic, frigid Leptic Natrudolls) with some Stirum-Arveson complex (Stirum: Coarse-loamy, 

mixed, superactive, frigid Typic Natraquolls; Arveson: Coarse-loamy mixed, superactive, frigid 

Typic Calciaquolls). The site was under pasture/hay land for over 30 years prior to 

commencement of this field research in the 2013 growing season when it was planted with corn. 

Corn was also grown in 2014. In the fall of 2012, subsurface tile drainage was installed at a 

spacing of 24.4 m and a depth of 1.2 m, with a design drainage coefficient of 9.5 mm d-1. Each 

experimental unit or plot was 24.4 m wide by 21.3 m long, with one drain line per plot. Plots 
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designated as "free drainage" (FD) for this study had tile lines installed while plots designated as 

"no drainage" (ND) had no lines installed; the FD and ND plots were compared as drainage 

treatments. Surface treatments consisted of 22.4 Mg ha-1 of gypsum (GH, defined as the high 

gypsum rate), 22.4 Mg ha-1 sugar beet spent lime (SL), which is a CaCO3 by-product from the 

sugar beet processing industry, and check (CK) plots receiving no surface treatment. Following 

the application of the calcium amendments in May 2013, a field cultivator was used to 

incorporate the amendments to a depth of 10 cm before the crop was planted by the farmer-

cooperator. 

Infiltration tests were carried out using a mini disk tension infiltrometer (Mini Disk 

infiltrometer, Decagon Devices, Pullman, WA, USA) from 25 to 29 July 2014 and a Cornell 

sprinkle infiltrometer (Ogden et al., 1997) from 13 to 19 August 2014. The infiltration tests were 

used to investigate the impact of both drainage (the whole plot factor) and surface (the spilt-plot 

factor) treatments on hydraulic properties of the soil. In each plot where infiltration 

measurements were made, one sample was taken for the Cornell sprinkle infiltrometer while 

three samples were taken for the mini disk tension infiltrometer. This resulted in a total of 17 

infiltration tests (8 for the ND plots and 9 for the FD plots) using the Cornell sprinkle 

infiltrometer. Three samples were run for the mini disk tension infiltrometer that resulted in 51 

infiltration tests. Deionized water with an EC of 9.12 μS m-1 and a pH 6.5 was used to run the 

infiltration tests. This was chosen to mimic rainfall and to minimize the effects that different 

water chemistry would have on soil water relationships in sodic soil at the site. 

Statistical analysis was done using a two-way factorial in a split plot design with three 

replicates, where the whole plot and split plot factors were drainage and surface treatments, 

respectively, in a completely randomized design. Wet field conditions in the spring of 2014 
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prevented the crop from being planted in some plots and as a result, one of the ND plots with SL 

was not used for statistical analyses. Soil moisture on a gravimetric basis was sampled from 0 to 

15 cm depth in each plot where infiltration was measured and was included in a generalized 

linear model as a covariate. The statistical model for the analysis of variance and Tukey tests for 

comparison of means were implemented using PROC GLM in SAS 9.4 (SAS Institute Inc., 

2014) and differences in means were considered to be significant at P<0.05. 

3.3.2. Mini disk tension infiltrometer 

Mini disk tension infiltrometers (Decagon Devices, 2014a) filled with deionized water 

and set at a suction head of -0.2 kPa (-2.0 cm) were used to measure the unsaturated water flow 

into the soil. These infiltrometers consist of a stainless steel porous disk which does not allow 

water to leak in open air, a lower chamber which contains the volume of water that infiltrates 

into the soil and an upper bubble chamber filled with water which controls suction. The 

infiltrometers were carefully placed on the soil surface avoiding areas with cracks, depressions, 

clods or plant residue. The infiltration rates were calculated with the help of a spreadsheet 

available from Decagon Devices (2014b) which is based on (Zhang, 1997) by fitting the 

parameters C1 and C2 of the Phillip equation 

𝐼 =  𝐶1  𝑡  + 𝐶2  √𝑡 (6) 

where I is the cumulative infiltration (cm), t is time (min), the slope of the curve C1 is a function 

of the hydraulic conductivity k (cm min-1), and C2 is a function of sorptivity (cm min-1/2). The 

hydraulic conductivity is calculated as 

𝑘 =
𝐶1  

𝐴
 (7) 

where A (cm min-1) is obtained from  
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𝐴 =  
11.65(𝑛0.1 − 1)  𝑒[2.92(𝑛−1.9)𝛼ℎ]  

(𝛼𝑟𝑑)0.91
  

  𝑛 ≥ 1.9. (8) 

in which h (cm) is a given suction, rd (cm) is the radius of the disk, and α and n are Van 

Genuchten parameters based on the soil type (Decagon Devices, 2014a). For suctions from -0.05 

to -0.6 kPa (-0.5 cm to -6 cm of water ), a disk radius of 2.25 cm and the Van Genuchten 

parameters α and n for the twelve texture classes (Carsel & Parrish, 1988), the hydraulic 

conductivity can be obtained from the Decagon spreadsheet (Decagon Devices, 2014b).  

3.3.3. Cornell sprinkle infiltrometer 

The Cornell sprinkle infiltrometer, which measures infiltration rates into soil, consists of 

a rainfall simulator and a single infiltration ring (Ogden et al., 1997). The bottom of the air entry 

tube was set 2.0 cm from the bottom of the graduated scale on the sprinkle cylinder; this was 

equivalent to a head of 2.0 cm. The infiltrometer ring was typically placed in between the corn 

rows avoiding the mid row fertilizer disk opening. We chose reasonably flat, level ground and 

avoided cracks, wheel tracks or artificial disturbances in the soil. Surface residue, such as leaves 

or corn stalks from the previous year, were gently removed. The ring was driven into the ground 

to a depth of 7.5 cm until the lower edge of the outflow hole was level with the ground surface 

(van Es & Schindelbeck, no date). This was done using a hammer, a square piece of wood at 

least 30 cm length to buffer blows from the hammer, and a spirit level. 

The height of the water level in the cylinder of the Cornell sprinkle infiltrometer at the 

start of each experiment (Hs) was measured. A stopwatch was started at the time of removing the 

stopper on the air-entry tube. When runoff started to flow out of the tube, the time was recorded 

as time to runoff (Tro). The water volume (Vw) collected in the outflow beaker was measured 

periodically by taking the weight using a balance with a precision of 0.1 g with time interval t 
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(min) in which it was collected under the assumption of unity density for water. Care was taken 

to avoid spills during volume measurement. The initial volumes were weighed at intervals of 30 

seconds for the first 3 to 9 minutes, then the interval was increased to 3 minutes. After 30 

minutes of running the experiment, the interval for collecting volumes was further increased to 5 

minutes until the experiment had run for 60 min. When an infiltration test was run and no runoff 

was observed, the experiment was repeated at a new location within the same plot with a much 

higher application rate achieved by raising the head to between 4 cm to 5 cm.  

At the end of the experiment, the final water level (Hf) was recorded together with the time T 

(min) at which it was taken. The application rate R (cm min-1) was determined by  

𝑅 =  
𝐻s  − 𝐻f  

𝑇
 (9) 

The runoff rate, Ro (cm min-1) is based on the relationship  

𝑅𝑜 =  
V w 

(457.3 ×  𝑡𝑖)
 (10) 

where Vw is the volume (cm3) collected in time ti (min) and 457.3 is the area (cm2) of the ring. 

The infiltration rate It (cm min-1) for a given time interval was determined as the difference 

between the application rate and runoff rate for that time interval, 

𝐼𝑡  =  𝑅 − 𝑅𝑜 
(11) 

where It (cm min-1) is the infiltration rate, R (cm min-1) is the application rate and Ro (cm min-1) 

is the runoff rate. For the Cornell sprinkle infiltrometer, the final infiltration rate was calculated 

by taking the average of infiltration rate for the final 20 min of the experiment. The sorptivity in 

the Cornell sprinkle infiltrometer is given by 

𝑆 =  (2𝑇𝑟𝑜)0.5   × R (12) 

where 𝑆 (cm min-1/2) is sorptivity and Tro (min) is time to runoff (Ogden et al., 1997). 
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3.4. Results and discussion 

A comparison of infiltration rates plotted against time for the Cornell sprinkle 

infiltrometer for all the treatments is shown in Figure 6. Most of the infiltration rates follow a 

general exponential decay curve where the initial infiltration is very high due to sorptivity but 

decreases to a constant value similar to the hydraulic conductivity. There were exceptions, such 

as the FDGH plots where there is an initial decline in infiltration followed by a rise. The increase 

in infiltration can be attributed to dissolving of the surface seal thus increasing the infiltration 

rate.  

3.4.1. Drainage treatments 

The mean unsaturated hydraulic conductivity at 2 cm tension [K(ψ=-2 cm)] values from the 

minidisk tension infiltrometers were 48.4 and 37.6 cm day-1 for the ND and FD plots, 

respectively, and these values were not significantly different from each other. The mean final 

infiltration rates from the Cornell sprinkle infiltrometer were 55.4 and 61.2 cm day-1 for the ND 

and FD plots, respectively, and these values were not significantly different from each other. 

Smettem et al. (1991) observed that over 50% of the infiltration may be transmitted in the 

macropores bypassing the matrix. Using infiltration tests, Abid & Lal (2009) measured 

significant differences in infiltration rates between drained and undrained plots under no-till and 

tilled plots in Columbus, Ohio. Higher infiltration rates in drained soil were attributed to 

aggregation of particles leading to better soil structure and pore size distribution. However, 

tillage of soil breaks up the connectivity of these pores and may eliminate the benefits of 

drainage in the plow layer. This may explain the higher variability in the infiltration rates from 

the Cornell sprinkle infiltrometer (see Figure 6). 
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Figure 6. Cornell sprinkle infiltration rates plotted against time. The plots were free drainage and 

high rate of gypsum (FDGH); no drainage and high rate of gypsum (NDGH); free drainage and 

spent lime (FDSL); no drainage and spent lime (NDSL); free drainage and check (FDCK) and no 

drainage and check (NDCK). The application rate for GH and SL was 22.4 Mg ha-1. 
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While the hydraulic conductivity of the matrix of sodic soils may be reduced due to 

leaching the soil with a low electrical conductivity water; in the field, other physical factors such 

as the clay content or clay mineralogy may be more of a determining factor (Callaghan et al., 

2014).  

The mean sorptivity value from the minidisk tension infiltrometer of the ND plots (193 

cm day-1/2) and that of the FD plots (150 cm day-1/2) were not significantly different from each 

other. Similarly, the mean sorptivity values from Cornell sprinkle infiltrometer calculated from 

equation 12 were 165 and 80.3 cm day-1/2 for the ND plots and the FD plots, respectively, and 

were not significantly different from each other.  

3.4.2. Surface treatments 

For the surface treatments, the highest mean K(ψ=-2 cm) value from the mini disk 

infiltrometer was 52.5 cm day-1 for the GH plots, 42.6 cm day-1 for the CK plots and 33.9 cm 

day-1 for the SL plots. For the mini disk tension infiltrometer, the mean K(ψ=-2 cm) for the GH plots 

was significantly higher than that from the SL plots, but the CK plots did not differ significantly 

from either the GH or the SL plots. The final infiltration rates from the Cornell sprinkle 

infiltrometer were 66.8, 55.7 and 52.3 cm day-1 for the CK, SL and GH plots, respectively. 

Similarly, the mean sorptivity values from the minidisk tension infiltrometer was 205, 162 and 

147 cm day-1/2 for the GH, CK and SL plots, respectively. The mean sorptivity values from the 

Cornell sprinkle infiltrometer were 144.7, 120.6, 102.1 cm day-1/2 for the CK, SL and GH plots, 

respectively. There were no statistically significant differences in the final infiltration rates and 

sorptivity from the Cornell sprinkle infiltrometer.  

For the Cornell sprinkle infiltrometer tests, the soil profile near the surface is fully is 

saturated. The flow in macropores is dominant and often impacted by preferential flow (Beven & 
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Germann, 1982; Schwen et al., 2011). The mini disk tension infiltrometer, on the other hand, 

measured the infiltration rates near saturation (under a tension of 2 cm) where transmission of 

water in pores greater 1.5 mm was eliminated (Smettem, 1992; Smettem et al., 1991). Therefore, 

bypasses of the soil matrix by water flow in cracks and fissures was minimized and infiltration 

rates measured by the mini disk tension infiltrometer are more representative of conductivity of 

the soil matrix. Improvement in the hydraulic conductivity shown by the higher K(ψ=-2 cm) for the 

GH plots compared to the SL plots agrees with many researchers who have shown improvements 

of hydraulic conductivity after gypsum application (Ilyas et al., 1997; Sansom et al., 1998). 

Although spent lime is a waste stream from the sugar beet industry in the Red River 

Valley and may thus be available at a lower cost compared with gypsum, our study indicates 

gypsum is a better material for improving the soil hydraulic conductivity near the soil surface. 

Table 6. Mean unsaturated hydraulic conductivities at 2-cm tension and sorptivity for the 

combined effects of drainage and surface treatments for the mini-disk infiltrometer.  

Drainage and Surface Treatment Combinations Hydraulic 

Conductivity at 2-cm 

Tension* (cm day-1) 

Sorptivity* 

(cm day-1/2) 

NDGH No drainage, Gypsum at 22.4Mg/ha 57.8a (6.8) † 226 a (27.5)† 

NDCK No drainage and check 48.6 ab (7.6) † 190 a (30.7)† 

FDGH Free drainage, Gypsum at 22.4Mg/ha 47.2 ab (7.4) † 184 a (29.0)† 

NDSL No drainage, Spent lime at 22.4Mg/ha 38.7 ab (9.1) † 163 a (36.4)† 

FDCK Free drainage and check 36.6 ab (6.7) † 134 a (27.2)† 

FDSL Free drainage, Spent lime at 22.4Mg/ha 29.0 b (6.7)† 131 a (27.1)† 

* In each column, drainage and surface amendment combination means with the same letter are 

not statistically different at P=0.05 using the Tukey test for mean comparison. 

† The values in parentheses represent the standard error. 

 

Mean K(ψ=-2 cm and sorptivity values for drainage and surface treatment combinations are 

summarized in Table 6 for the minidisk infiltrometer. The results show that only the mean K(ψ=-2 

cm) values for the NDGH plots were significantly higher than the FDSL plots. The remaining 
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mean K(ψ=-2 cm) values for the combined effects of drainage and surface treatments were not 

significantly different from each other.  

Mean final infiltration rates and sorptivity values for drainage and surface treatment 

combinations are summarized in Table 7 for the Cornell sprinkle infiltrometer. The mean 

sorptivity for the combined effect of the drainage and surface treatments were not significantly 

different from each other, for either the Cornell sprinkle infiltrometer. The application of gypsum 

and spent lime is likely to alter the sodium adsorption ratio (SAR) of the soil. Gypsum contains 

CaSO4 while spent lime is predominantly a CaCO3 compound with other minerals such as 

impurities from the sugar juice. There was a weak correlation (r = -0.36) between the infiltration 

rates from the Cornell sprinkle infiltrometer with SAR values (data not shown) from the same 

plots. Our results agree with Suarez et al (2008), who observed that increases in SAR reduced 

infiltration in loam soils but not in clay soils where the clay in the soil increased the variability in 

the infiltration rates. The clay contents (12% to 22%) at our site may have increased variability in 

infiltration rates, and masking the effects of the amendments despite the changes in the SAR 

values. In contrast to gypsum, spent lime is less soluble in soils with high pH. This may explain 

why our site, with average pH 8.1 as measured in the tile drain effluents, had lower mean K(ψ=-2 

cm) on the SL plots compared to GH because precipitated CaCO3 from the spent lime may have 

clogged the soil pores (Tirado-Corbalá et al., 2013). Detrimental effects of lime application on 

infiltration were also reported by Roth & Pavan (1991) who observed surface sealing with 

CaCO3, however, these negative effects were short-lived and water infiltration into soil increased 

in the long term with lime application. 

Our sorptivity values were variable for both drainage and surface treatments and no 

statistically significant relations were observed. These results agree with Sepaskhah et al. (2005) 
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who reported variability in sorptivity for smaller plots (5 m x 5 m). Although sorptivity will 

impact the infiltration capacity of the soil, especially at the beginning of rainfall, and is a good 

indicator of the changes in porosity and pore size distribution, the effectiveness of the tile 

drainage will depend more on the final infiltration rate. In remediation of smectitic sodic soils, 

high sorptivity may indicate the presence of both macro-pores from aggregation and large cracks 

from shrink-swell processes while low sorptivity may also indicate the presence of surface crusts 

and reduction in the cracks from shrink-swell properties.  

Table 7. Mean final infiltration rates and sorptivity for the combined effects of drainage and 

surface treatments for the Cornell sprinkle infiltrometer. 

Drainage and Surface Treatment Combinations Final Infiltration 

Rate* (cm day-1) 

Sorptivity * 

(cm day-1/2) 

FDCK Free drainage and check 86.6 a (13.8) † 281 a (74.8)† 

NDSL No drainage, Spent lime at 22.4Mg/ha 59.8 a (13.9) † 137a (75.0)† 

NDGH No drainage, Gypsum at 22.4Mg/ha 59.4 a (13.8) † 95.1a (74.9)† 

FDSL Free drainage, Spent lime at 22.4Mg/ha 51.6 a (14.2) † 103a (76.8)† 

NDCK No drainage and check 47.1 a (13.9) † 8.50a (75.1)† 

FDGH Free drainage, Spent lime at 22.4Mg/ha 45.3 a (14.1) † 109 a (76.4) † 

* In each column, drainage and surface amendment combination means with the same letter are 

not statistically different at P=0.05 using the Tukey test for mean comparison. 

† The values in parentheses represent the standard error. 

 

3.5. Conclusions  

At 14 months after the application of the surface amendments, gypsum at a high rate 

significantly increased the hydraulic conductivity at 2 cm tension through the matrix of a sodic 

soil compared to spent lime for tests conducted using the mini disk tension infiltrometer. In 

contrast, hydraulic conductivity at 2 cm tension for a high rate of gypsum application was not 

significantly higher than that for check plots where no amendments were applied. The final 

infiltration of water into the soil surface, including the matrix flow and flow through larger 

macro-pores, evaluated using Cornell sprinkle infiltrometer, was not affected by the surface 
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treatments. The sorptivity of the soil was not affected by both the drainage treatments or surface 

treatments measured using either the mini disk tension infiltrometer or the Cornell sprinkle 

infiltrometer. There was no evidence that tile drainage of this sodic soil affected its final 

infiltration rates or hydraulic conductivities at 2 cm tension. 
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4. GYPSUM LOWERS DRAWBAR POWER IN NORTHERN GREAT PLAINS 

SUBSURFACE DRAINED SODIC SOILS3 

4.1. Abstract 

Northern U.S. Great Plains’ saline/sodic soils often have very low yields due to poor 

germination, become exceptionally hard when crop evapotranspiration dries out the soil, and can 

be a sediment source following rainfall events. Subsurface drainage can result in the conversion 

of saline/sodic soils to sodic (sodium-affected) soils. Calcium-based surface amendments may 

help preserve or improve soil structure, thereby improving drainage and trafficability. The 

objective of this study was to measure chisel plow draft in a sodic soil near Wyndmere, North 

Dakota, to determine whether selected subsurface drainage practices and calcium-based surface 

amendments affected tillage power requirements. Field plots were set up in a completely random 

design with a split-plot arrangement in which whole plots consisted of free-outflow subsurface 

drainage (FD) (installed Dec 2012) and no subsurface drainage (ND); split plots consisted of 

calcium-based surface amendment treatments (applied May 2013) of 11.2 and 22.4 Mg ha-1 

gypsum (GL for gypsum low and GH for gypsum high), 22.4 Mg ha-1 spent lime (SL, a 

byproduct of the sugar beet processing industry), and check plots (CK) with no surface 

                                                 

 

3 The material in this chapter was co-authored by Anthony Wamono and D.D. Steele, Z. Lin, 

T.M. DeSutter, X. Jia and D. Clay and is under review in the Trans ASABE Journal as manuscript 

number NRES-11689-201. Anthony Wamono participated in the field data collection effort and 

had primary responsibility for analyzing the data collected, interpreting the results, and developing 

the conclusions that are advanced here. Dr. Steele wrote the section related to the methods and 

materials used by CNH Industrial. Anthony Wamono drafted and revised all versions of this 

chapter. Co-authors served as technical and editorial consultants in the development of the 

manuscript represented by this chapter. 

 



 

59 

amendments. A drawbar dynamometer measured draft on a chisel plow (Nov 2014) as it was 

pulled across the plots by a tractor equipped with an auto-guidance system and instrumentation 

interfaced with the controller area network of the tractor. No significant differences were 

observed in the mean drawbar power (Pd) of drainage treatments, 53.6 kW for the FD plots and 

53.4 kW for the ND plots. Compared with CK (Pd=54.8 kW), gypsum lowered the mean Pd (50.4 

kW for GH and 51.2 kW for GL) while spent lime increased the mean Pd (57.6 kW). The mean 

Pd for GL was not significantly different from that for GH. For the combined effects of drainage 

and surface treatments, the mean Pd value of NDGH plots (48.9 kW) was significantly lower 

than mean Pd values (51.7, 51.8, and 53.1 kW) of FDGL, FDGH, and FDCK plots, respectively, 

which shows that drainage could have reduced the soil moisture content and hence decreased the 

activity of the Ca. At 23 months after installation of subsurface drainage, the mean Pd value (53.1 

kW) of the FDCK plots was significantly lower than the mean Pd value (56.4 kW) of the NDCK 

plots, indicating that tile drainage lowered drawbar power compared to no tile drainage when no 

amendments were applied. For low productivity soils, the use of NDGH provided the lowest 

drawbar power requirement, which may be a less costly solution compared with drainage 

coupled with gypsum application 

4.2. Introduction 

Managing salt-affected soils is a serious and growing problem for farmers and engineers; 

it is estimated that more than 930 million hectares worldwide (Szabolcs, 1989) and over 10 

million hectares on the Northern Great Plains (NGP) of the USA (J. Brennan, personal 

communication, NRCS North Dakota, 2008) are salt-affected. The recent increased commodity 

price cycle led to expansion of subsurface drainage on the NGP which resulted in subsurface 

drainage of sodium affected soils that are interspersed with high productivity soils (He et al., 
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2015; Hellerstein & Malcolm, 2011). Subsurface drainage reduces excess moisture in wet soils 

in spring when farmers are struggling to cultivate and plant the fields. However, subsurface 

drainage of sodium (Na) affected soils may increase clay dispersion and swelling as a result of 

increased percolation and selective leaching of high charge ions (He et al., 2015; He, DeSutter, 

& Clay, 2013; Qadir et al., 2001; Sumner, 1993). Dispersion of sodium affected soils may result 

in hardsetting as well as reduced soil trafficability and hydraulic conductivity of the soil (Earl, 

1997; Hopkins et al., 2012; Reading et al., 2012; So & Aylmore, 1993). The use of hardsetting 

term is founded on the consequences of the soils forming a hard structureless mass upon drying 

and only cultivatable upon wetting (Mullins et al, 1990). Kyei-Baffour (2004) reported that 

increased sodicity levels followed by leaching increased soil shear strength. Hardsetting sodium 

affected soils are difficult to till, leading to higher fuel consumption and increased wear and tear 

of tillage implements. 

In crop production, a significant portion of energy consumption is used for tillage, i.e., 

power developed at the wheels or tracks of the tractor and transmitted through the drawbar to 

pull implements through the ground or over the crop (ASABE Standards, 2006). Drawbar power, 

which is a product of draft and speed of travel, is affected by soil strength, soil moisture content, 

depth of tillage and the geometry of the tool (e.g., tine or disk), the tractor setup and farming 

practice (Harrigan & Rotz, 1995; Kocher et al., 2011; Upadhyaya et al., 1984). Soil strength is 

dependent on other soil properties such as texture, bulk density, organic matter and the moisture 

state (Harrigan & Rotz, 1995; Kocher et al., 2011). Carter (1990) noted that soil strength 

decreased with increased soil water content, where increased filled pore space decreased the 

frictional component of the shear strength; conversely, increased matric potential increased the 

frictional component of the shear strength. Effects of increased sodicity on aggregate stability 
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has been reported to lead to less stable aggregates, however, soil aggregates remained stable in 

non-sodic soils (Bronick & Lal, 2005). Macro-porosity, which is linked to aggregates in the soil 

and to bulk density, has been reported to account for 66% of the shear strength in fine sand 

dominant soils (Carter, 1990). Barzegal et. al (1994) also reported reduced tensile strength in soil 

samples with larger aggregates and increasing porosity. Lowering the drawbar power 

requirements in sodium affected soils can result in monetary savings for farmers due to less fuel 

consumption (Schaefer et al., 1989). 

The deleterious effects of Na ions in Na-affected soils can be remediated by replacement 

of calcium (Ca) ions on the soil’s exchange sites (Ilyas et al., 1997). Application of Ca-surface 

amendments, such as gypsum or spent lime, a by-product from the sugar beet industry, are 

expected to improve physical and hydraulic characteristics of the soil (Cochrane & Aylmore, 

1991; So & Aylmore, 1993). Dose et al. (2015) reported that Ca amendments impact soil 

microbial diversity and He et al. (2013) suggested Ca helps build soil aggregate stability. 

Schaefer et al. (1989) observed a reduction in the draft requirement for tillage on a sodium-

affected silt loam (Beotia series, Mollisols) in South Dakota after it was treated with gypsum 

(source unspecified), which reduced its exchangeable sodium percentage. 

Mathematical models have been developed to estimate the draft and drawbar power for 

various soil types and implements. Godwin et al. (2007) developed a force prediction model 

based on the soil characteristics, however, the model needs many parameters for its adoption. 

Ucgul et al.(2014) used three-dimensional discrete element modelling of tillage in a cohesionless 

soil to optimize draft force prediction. The performance of the Ucgul et al.(2014) model was 

greatly improved in a sandy loam when adhesion forces were incorporated (Ucgul et al., 2015). 
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Models are very adept for optimizing tillage implement design under different conditions; 

however, repeatable results are difficult to obtain (Grisso et al., 1996). 

The changes in soil physical properties such as soil strength that affect trafficability can 

reliably be estimated with cone penetrometers, however, the cone index from penetrometers is 

not a good predictor of draft and drawbar power (Arvidsson et al., 2004). Draft is closely related 

to soil cohesion and will vary with the type of implement used (Arvidsson et al., 2004). Al-Kheer 

et al. (2011) observed that soil cohesion had the largest effect on draft (both vertical and 

horizontal forces) compared with other tillage parameters. Using an instrumented tractor, 

Wiedemann & Cross (1994) measured the drawbar power needs for chain-diking implements. 

Doppler radar was used to measure the ground speed while the draft was measured by clevis pin 

load cells. The advancement in computer and electronic systems integrated with global 

positioning systems (GPS) on the tractor has made it possible to measure more accurately several 

performance metrics pertaining to tractor-implement interaction under field conditions (Yahya et 

al., 2009). Relationships between fuel consumption and drawbar power have been developed for 

tractors with various tillage implements under different conditions (Grisso et al., 2004), which 

may provide insight into the changes in soil strength as a result of the amendments. 

Measurements of draft provide a key data set that will help us understand the physical 

response of the soil to the drainage practices and Ca amendments. An important advantage of 

draft measurements is that they represent a much larger area in each plot compared with other 

measurements such as penetration resistance where very few points are sampled in the field. 

Moreover, draft and vehicle speed can be used to calculate drawbar power (Larsen, 1966), 

thereby providing a farmer-friendly means of comparing and contrasting various drainage and 

surface treatments.  
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In addition to the improvement in hydraulic properties of Na-affected soils treated with 

Ca amendments, the potential saving in fuel consumption as a result of reduced drawbar 

requirements due to Ca-amendments provides another incentive to farmers. The objective of this 

study was to determine the effects of Ca-based surface amendments and subsurface drainage 

conditions on the drawbar power requirements for a sodium-affected soil. 

4.3. Materials and methods 

The field site was located near Wyndmere, North Dakota (97.26 W, 46.28 N and 

elevation 323 m) and the soil was Exline loam (Fine, smectitic, frigid Leptic Natrudolls) with 

some inclusions of Stirum-Arveson complex (Stirum: Coarse-loamy, mixed, superactive, frigid 

Typic Natraquolls; Arveson: Coarse-loamy mixed, superactive, frigid Typic Calciaquolls). At the 

site, visible “puddling” of soil indicates that surface structure was not defined and led to field 

observed hardsetting .These are low productivity soils with a crop productivity index of 25 and 

SAR values as high as 20 (NRCS, 2015). For 1991 through 2015, May through October 

precipitation and Penman evapotranspiration averaged 416 and 882 mm, respectively, at the 

Wyndmere station of the North Dakota Agricultural Weather Network (NDAWN; North Dakota 

Agricultural Weather Network Center, 2016). A phreatic surface may occur at 0.3 m or less from 

the soil surface is common (Baker and Paulson, 1967).The mean and the range for selected 

chemical properties across the surface treatments are summarized in Table 8. He et al. (2015) 

reported a cation exchange capacity of 12.0 cmol kg-1 for the soils at the site.   

 A completely randomized design with split-plots was used, where drainage treatments 

were the whole plots and split plots consisted of surface applications of Ca-amendments (Figure 

7). Each drainage treatment, 24.4 m wide (east-west) and 107 m long (north-south), was overlaid 

with five surface treatment plots, each of which was 24.4 m wide (east-west) by 21.3 m long 
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(north-south). The drainage treatments were no drainage (ND), controlled drainage (CD) with 

control structures (Agri-Drain inline water level control structures, Adair, Iowa, USA), and free-

outflow drainage (FD). During 2014 the CD plots had little or no outflow and thus behaved as 

FD plots; the CD and FD plots were combined and labeled FD in for this study. The north-south 

subsurface drains, installed in December 2012, were spaced at 24.4 m with a depth of 

approximately 1.2 m and a drainage coefficient of 9.5 mm d-1.  

Table 8. Percent sodium (%Na), electrical conductivity (EC), and pH averaged over surface 

amendments for layers 0 to 15 cm and 15 to 60 cm sampled October 2014. 

Depth 

(cm) 

Surface 

Amendment* 
%Na EC1-1†  pH 1-1 

  Mean Range Mean Range Mean Range 

0-15 

Check 2.8 9.0 0.4 0.7 4.2 0.3 8.3 8.8 6.9 

Gypsum High 1.3 3.3 0.3 1.9 2.1 1.7 7.8 7.9 7.5 

Gypsum Low 2.3 9.1 0.4 1.5 1.8 1.1 7.8 8.3 7.7 

Spent Lime 2.1 7.5 0.9 0.5 0.7 0.4 8.3 8.9 7.7 

        

15-60 

Check 3.39 12 0.4 0.6 1.2 0.3 8.8 9.6 6.6 

Gypsum High 2.82 6.7 0.3 1.2 6.5 0.6 8.5 9.5 7.8 

Gypsum Low 5.91 35 0.4 0.9 1.5.6 8.7 9.6 8.0 

Spent Lime 3.52 120.5 0.6 2.30.3 8.7 9.3 7.6 

*The surface amendments designated in the legend are: gypsum at high rate (22.4 Mg ha-1), 

gypsum at low rate (11.2 Mg ha-1), sugar beet spent lime (22.4 Mg ha-1), and check plots 

receiving no surface amendment.  

† The 1-1 footnote indicates a 1:1 soil: water extract. 

 

It is important to recognize the differences in Ca sources used as surface amendments in 

this project: gypsum is CaSO4∙2H2O, while spent lime is CaCO3.The gypsum used in this study 

was mined (Calcium Products, Inc., Ames, Iowa) and the spent lime was obtained locally and is 

a low cost by-product of processing sugar beets (DeSutter & Godsey, 2010). The gypsum and 

spent lime surface treatments were applied on 14 and 15 May 2013. The application rates 

consisted of high (22.4 Mg ha-1) and low (11.2 Mg ha-1) rates of gypsum (designated GH and 
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GL, respectively), a high rate of spent lime (22.4 Mg ha-1; designated SL) and check plots (CK) 

with no amendment. 

 

Figure 7. Drawbar power measurements across the surface amendments and drainage treatments 

plots near Wyndmere, North Dakota. The surface amendments designated in the legend are: 

gypsum at high rate (GH, 22.4 Mg ha-1), gypsum at low rate (GL, 11.2 Mg ha-1), sugar beet spent 

lime (SL, 22.4 Mg ha-1), and check plots receiving no surface amendment (CK). The drainage 

treatments are: FD (free drainage) and ND (no drainage). 

 

This site was under pasture/hay production for over 30 years prior to commencement of 

this field research in the 2013 growing season. Corn (Zea mays) was grown on the field in 2013 

and 2014. Due to wet field conditions in the spring, some plots were not planted in 2014 (see 

Figure 1). The corn was harvested on 25 Oct 2014 and the combine was equipped with a stalk 

chopper, which minimized the interference of crop residue with the tillage experiment. The 
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corners of all plots were flagged after the corn harvest and prior to the tillage experiment with 

real-time kinematic geographic positioning system (RTK-GPS) surveying equipment. 

In an effort to provide covariate measurements to account for soil moisture and crop 

effects on the draft measurements, soil samples were taken in each plot on 6 Nov 2014. Soil 

samples were taken at two locations within each plot from the top 15 cm of the profile for 

gravimetric moisture content determination (Dane & Topp, 2002).  

Draft was measured on 7 Nov 2014 with a drawbar dynamometer placed between a 

tractor and a chisel plow (Figure 8). The dynamometer consisted of a hydraulic cylinder 

[approximately 60 cm pin-to-pin length] equipped with a pressure transducer [Model Z, DR 

range (34,470 kPa) Honeywell Sensing and Control, Golden Valley, Minnesota]. Hydraulic hose 

extensions [approximately 1.8 m long] were used to accommodate the additional length of the 

dynamometer, i.e., to avoid damage and constrictions when turning. The dynamometer was 

calibrated (r2 = 0.999) by lifting dead weights [0.1 to 66.9 kN] on an overhead crane at the CNH 

Industrial Engineering Test Center in Fargo, North Dakota, prior to the field experiment. 

Pressure measurements were read by a four-channel AD-Scan MiniModules classic signal 

conditioning module (CSM Products, Inc., Crystal Lake, Illinois), which was interfaced with a 

CANalyzer software tool (Vector Informatik GmbH, Stuttgart, Germany) and the controller area 

network bus on the tractor. The resolution of the pull meter and data logging system was 4.9 N, 

ascertained by finding the closest two points in a data file from the field testing (L. Salfer, CNH 

Industrial, 2014 personal correspondence). 

The tractor was a Case IH Steiger Series RowtracTM 470 (CNH Industrial, Burr Ridge, 

Illinois, USA) equipped with 45.7-cm wide tracks. The chisel plow was an International model 

55 with the outer wings removed, leaving a working width of 3.81 m, (Figure 8). Although the 
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tractor could have pulled a much wider chisel plow, a small chisel plow was used to allow 

multiple passes per plot. The chisel plow had 13 shanks with curved, flat-faced points each 39.4 

cm long (along the curve) by 5 cm wide. A tillage depth of 15 cm was used to match the 

estimated depth of Ca incorporation. The depth control hydraulic cylinder and the hitch of the 

chisel plow were adjusted by making trial tillage runs until the depths of the chisel points at the 

four corners of the plow averaged 15.7 cm below the soil surface, with a standard deviation of 

1.9 cm. Cylinder stroke control segments (shaft collars) were used to maintain this working 

depth on the depth control hydraulic cylinder throughout the tillage experiment. A tillage depth 

of 15 cm was targeted geographic position of the tractor was logged via an RTX-GPS system 

interfaced with an Advanced Farming System Pro 700 Auto Guidance System (CNH Industrial, 

Burr Ridge, Illinois, USA). The maximum accuracy (best or smallest distance) of RTX GPS 

systems in this arrangement is 3.8 cm (M. Hawkins, CNH Industrial, 2014 personal 

correspondence).  

The tractor was driven over the top of the flags on the north border of the plots to 

establish a baseline, then parallel lines were propagated one-third (7.10 m) of the north-south 

dimension of the plots to generate parallel travel lines in each of the plots. The experiment was 

conducted by lowering the chisel plow into the soil and pulling it along the interior two paths 

through each plot. Each 220-m run through the field consisted of pulling the chisel plow through 

nine plots along east-west travel lines. Two equally-spaced, non-overlapping runs were made 

over each plot, one in each direction. Borders 3.05 m long on each end of each plot were flagged 

to identify transition zones between adjacent plots with differing treatments. 
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Figure 8. Tractor, pull meter, and chisel plow used to measure draft during tillage at an 

experimental field site near Wyndmere, North Dakota. The insert shows the pull meter used to 

measure draft on the chisel plow. 

 

The geographic position of the chisel shanks was logged using a 10.9-m GPS offset from 

the front axle of the tractor to the center of rotation of the lift linkage on the chisel plow. Position 

data were taken at approximately 1 Hz, which yielded approximately 13 draft measurements per 

plot, per pass, at the target travel speed of 1.34 m s-1 on the 18.3-m long working area within 

each plot. The data logger sampled draft at approximately 140 Hz and average draft values for 

each 1-Hz interval were synchronized with the time stamps on the position data. Geographic 

information system software (ArcMap version 10.2, ESRI, Redlands, CA) was used to assign the 

GPS positions of the chisel shanks and the corresponding draft, speed, and other parameters from 

the data logging system to individual field plots after buffering inward 3.05 m from each plot 

border. 
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The average values of draft, speed, drawbar power, and other measurements from each 

plot were obtained. Drawbar power across the plots was compared and contrasted using analysis 

of variance techniques. The cropped and uncropped plots were analyzed separately using a two-

way factorial in completely randomized design with split plot. The whole plot factor was the 

drainage type and the split plot (or subplot) factor was surface amendment. We report results for 

only the cropped plots. The gravimetric moisture content was included in a generalized linear 

model as a covariate. The statistical model and Tukey tests for means comparisons were 

implemented using PROC GLM in SAS 9.4 (SAS Institute Inc., 2014) and considered to be 

significant at P<0.05. Pairwise comparisons were made into tabular form using an application by 

(Dallal, 2015). 

4.4. Results and discussion  

The drawbar power (Pd) and average speed for one of the tractor runs (the southernmost 

row of plots) is shown in Figure 9. The average speed across the field was maintained constant 

(1.34 m s-1; see Figure 9), slip averaged approximately 0.3% when the chisel plow was engaged 

in the soil (data not shown), and the variations in drawbar power were attributed to the difference 

in draft experienced as the chisel plow was pulled across the field. Naderloo et al. (2009) 

observed that draft and forward speed have a relationship that varies from linear to quadratic, 

therefore maintaining a constant speed was paramount in reducing the impact of speed variations 

on draft, and hence drawbar power. The Pd values varied from 23 kW (blue) to 80 kW (red) as 

shown in Figure 7. The Pd of the uncropped plots were generally lower than cropped plots 

irrespective of the drainage treatments or surface amendments that had been applied (Figure 7).  

The differences in Pd values between the cropped and unplanted plots could be attributed 

to the effects of seasonal evapotranspiration. An analysis of the gravimetric water contents of the 
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cropped and uncropped plots showed that the mean soil water content was significantly higher (P 

= 0.014) in the non-cropped plots (15.8%) than in cropped plots (14.3%). The cropped plots were 

drier because transpiration from the corn crop during the season provided an additional process 

to remove soil water compared with the uncropped plots where soil water was lost through 

evaporation only. Klocke et al. (1985) observed that evaporation constituted approximately 30% 

of seasonal ET on fine sandy and loamy sandy soils in Nebraska. 
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Figure 9. Drawbar power from pull meter draft and average speed, speed, and switch voltage 

measurement during tillage of the southernmost row of plots at the experimental field site near 

Wyndmere, North Dakota.  

 

The mean soil water content across the cropped plots was 14.3% with a range from 

11.4% to 18.6% and standard deviation of 1.73%. The mean gravimetric soil water content was 

not statistically significant across the different surface amendments. However, the influence of 

soil water content as a covariate was statistically significant (P < 0.0001) and means presented 

were adjusted for the influence of soil water content. 
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Drawbar power averaged 53.6 kW for the FD plots and 53.4 kW for the ND plots and 

these values were not significantly different from each other. The similarities in drawbar power 

may be attributed to fact that the Pd values for the FD and ND plots were attributed to 

equilibration of the soil water contents near the soil surface during the latter part of the growing 

season in which ET typically exceeds rainfall (Figure 10). An additional 7 mm of rain was 

measured at the experimental site for 1 through 7 Nov 2014, but this was assumed to have 

negligible effect on the draft measurements; soil moisture contents were not statistically different 

(P=0.95) for the cropped ND and FD plots.  

The changes in the moisture regime as a result of drainage are expected to be more 

pronounced in spring when near saturation conditions in the soil profile prevail. The effects of 

subsurface drainage in the short term affect the moisture regime in the soil profile and the 

difference in drawbar power requirements would be predominantly a result of the difference in 

the soil moisture content. Raper & Sharma (2004) also observed no significant differences in 

draft forces for a range of soil moisture contents with the exception of higher values in the very 

dry soil. Subsurface drainage in a high water table environment such as the site in this study 

(Baker and Paulson, 1967) may reduce the capillary rise of soil water to the root zone in addition 

to draining the gravitational water. The long-term effects of subsurface drainage on soil structure 

studied on non-sodic soils include the development of larger pores (Müller et al., 1990); but 

these changes in structure develop first in the lower layers of the soil profile and more time is 

needed to see the contribution of drainage.  



 

72 

Month

May June July August September October

E
T

 o
r 

R
a

in
fa

ll,
 m

m
 

0

50

100

150

200

250

 ET 1991-2015 

 Rain 1991-2015 

 ET 2014 

 Rain 2014 

 

Figure 10. Monthly averages of Penman evapotranspiration and rainfall measured at the 

Wyndmere station of the North Dakota Agricultural Weather Network for the years 1991 through 

2015.  

 

The surface amendments had significant effects on the mean Pd requirements as shown in 

Table 9. Compared with no surface amendments, gypsum significantly lowered Pd while spent 

lime significantly increased Pd. The Pd values for GL plots were not significantly different from 

those for GH plots. The mechanisms behind the lower draft or reduced soil strength in sodic soils 

treated with gypsum have been documented (Cochrane & Aylmore, 1991; Sumner, 1993). The 

thickness of the diffuse double layer, which affect dispersion and swelling, are inversely related 

to the valency and ion strength (Essington, 2015; He et al., 2015). Gypsum amendments improve 

the physical properties of the soil by replacing Na with Ca at the exchange sites; Ca fosters 

flocculation of aggregates as opposed to Na which leads to dispersion (Choudhary et al., 2011; 

Emami et al., 2014). Barzegar et al. (1994) found that larger aggregates and increasing porosity 

corresponded to decreasing tensile strength. The reduction in tensile strength as a result of larger 
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aggregates was attributed to fewer contact points, which decreased the friction component of the 

shear strength (Rahman Barzegar et al., 1994). 

Table 9. Mean drawbar power for the surface treatments 

Symbol Surface amendments  Drawbar power* 

(kW) 

Standard error 

(kW) 

GH Gypsum at 22.4 Mg ha-1 50.4a 0.39 

GL Gypsum at 11.2 Mg ha-1 51.2a 0.52 

CK Check 54.8b 0.36 

SL Spent lime at 22.4 Mg ha-1 57.6c 0.53 

* Means with the same letter are not statistically different at P=0.05. 

Emami et al. (2014) observed a reduction in water dispersible clay from 92.6% to 20.8% 

after gypsum powder application at rate of 10 Mg ha-1 in a sodic loam with initial exchangeable 

sodium percent 35.4 and pH 9.1. Whereas gypsum and spent lime both contain Ca2+ ions which 

facilitate flocculation of dispersed particles thereby reducing the bulk density, improvement in 

soil aggregates with CaCO3 use have been reported in low pH soils (Scott et al., 2003). An 

increase in the amount of fine aggregates (<2 mm), and the water stable aggregates (>100 μm) 

has also been observed with lime appplication in acidic soils (Chan et al., 2007).The higher mean 

Pd values for SL at the Wyndmere site could be attributed to the high pH which limits the 

solubility of the CaCO3.  

CaCO3 has been reported to facilitate bridging across soil particles which reduces 

swelling and increases soil stability (Emerson, 1983; He et al., 2015; Richards, 1954; Rimmer & 

Greenland, 1976) but also increases the shear strength and stiffness of the soil (Cheng et al., 

2013). The bridging effect may help explain why the SL plots had higher Pd requirements 

compared with gypsum and check plots. CaCO3 may help with trafficability when soils are wet 

and soft, but it may be counterproductive because it does not reduce Pd requirements once the 

soil dries out, such as during the relatively dry conditions when the draft measurements were 
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made on 7 Nov 2014. Sodium in the soil increases the water holding capacity (He et al., 2013); 

gypsum-soluble salt interactions reduce the ability of the soil to hold water unlike spent lime due 

to its limited solubility. Whereas a higher moisture content may reduce the chisel plow's metal-

to-soil friction (Carter, 1990), a higher moisture content may also increase the ability of the soil 

to adhere to the implement thereby increasing the draft and drawbar power (Raper & Sharma, 

2004). 

There were also significant differences in Pd requirements for the combined effects of 

drainage and surface treatments as shown in Table 10. The mean Pd value of NDGH plots was 

significantly lower than mean Pd values of FDGL, FDGH, and FDCK plots, which suggests that 

drainage could have reduced the soil moisture content and hence limited the contact time for the 

soluble Ca to interact with soil and facilitate flocculation of the dispersed particles. Bornstein & 

Hedstrom (1982) observed that drier conditions developed more rapidly in the soil profile of 

subsurface drained silt loam following spring melt compared one without subsurface drainage. 

Table 10. Mean drawbar power (kW) for combined effects of drainage and surface amendments  

Symbol Drainage and Surface treatment 

Combinations 

Drawbar power* 

(kW) 

Standard error 

(kW) 

NDGH No drainage, Gypsum at 22.4 Mg ha-1 48.9a 0.62 

NDGL No drainage, Gypsum at 11.2 Mg ha-1 50.7ab 0.87 

FDGL Free drainage, Gypsum at 11.2 Mg ha-1 51.7b 0.58 

FDGH Free drainage, Gypsum at 22.4 Mg ha-1 51.8b 0.48 

FDCK Free drainage, Check 53.1b 0.39 

NDCK No drainage, Check 56.4c 0.61 

NDSL No drainage, Spent lime at 22.4 Mg ha-1 57.4c 0.75 

FDSL Free drainage, Spent lime at 22.4 Mg ha-1 57.9c 0.75 

* Means with the same letter are not statistically different at P=0.05. 

Although NDGH resulted in the lowest drawbar power requirement, its adaptation is 

unlikely due to the fact that drainage reduces soil moisture and enables trafficability and early 



 

75 

planting in the spring. Measurement of draft, slip, and trafficability in the spring would be 

helpful to further explore this topic.  

The mean Pd value of the FDCK plots was significantly lower than the mean Pd value of 

the NDCK plots which showed that where no amendments were applied there was benefit of tile 

drainage compared to no tile. While evaluating the effects of conservation tillage and no till on 

drained and undrained soil in Ohio, Abid & Lal (2009) observed that drainage lowered the 

tensile strength of aggregates.  

In our study, under conditions of no drainage, gypsum amendments significantly 

decreased Pd values. For plots with the SL surface treatment, mean Pd values did not differ for 

drained plots compared to undrained plots. The application of spent lime on drained and 

undrained plots offered no reduction in drawbar power requirement in comparison to the check 

plots with no treatments. Although an increase in the drawbar power was observed with a high 

rate of spent lime application on the soils in this study, spent lime has been reported to control 

Aphanomyces cochlioides, a pathogen that causes root-rotting in sugar beets in the Red River 

Valley, across a range of application rates (Windels, 2007).  

The increases in drawbar power need to be weighed against the benefits for spent lime 

application especially for beet farmers. The Pd values may decrease proportionally with 

decreases in application rates of spent lime. An economic analysis is recommended to investigate 

cost-benefit ratio for applying the amendments and energy saved from reduce Pd requirements 

for tillage, as well as other supporting management implications such as trafficability, drainage 

of water from the field, and disease prevention. While the absolute changes in Pd are small in this 

study, in part due to the small width of the chisel plow employed, future comparisons should 

probably be carried out on a percentage basis. Thus, for example, GH saved about 8% on power 
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compared with CK (Table 9), while NDGH saved about 13% on power compared with NDCK 

(Table 10). 

4.5. Conclusions 

There were no differences in the drawbar requirements between drained and undrained 

plots carried out in the fall 2014, which was 18 months after the application of the surface 

amendments and 23 months after installation of tile drainage. However, results could be different 

if the tillage experiment was done in the spring instead of the fall. The application of gypsum at 

both high and low rates reduced the drawbar power requirements of a sodic soil whereas spent 

lime application increased the drawbar power requirements compared to plots with no 

amendments. The 22.4 Mg ha-1 gypsum rate with no drainage had the lowest mean drawbar 

power value, which was significantly lower than all the other combined drainage and surface 

amendments except 11.2 Mg ha-1 gypsum rate with no drainage. Under drained conditions, 

gypsum application did not reduce drawbar power requirements compared to no amendments 

while spent lime increased the drawbar power requirements compared to no amendments. Under 

undrained conditions, both rates of gypsum application had lower drawbar power values 

compared to no surface amendments, while spent lime application did not decrease drawbar 

power requirements compared with no surface amendments. Our results indicate spent lime did 

not lower the drawbar power values under either drained and undrained conditions.  
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5. GENERAL CONCLUSIONS 

The experiments showed that gypsum application increased the penetration resistance of 

the soil during the wet conditions, improved the movement of the water through the soil matrix 

and reduced the drawbar power requirements comparison to spent lime.  

The penetration resistance (PR) values were significantly higher in the plots with gypsum 

compared to the check plots and those with spent lime; higher PR values indicate better 

trafficability in the spring where higher soil water contents exist. It would be important to 

investigate the effects of both drainage and surface amendments on the hardsetting properties of 

the soil using a penetrometer. This should be done late in the summer when the soil is dry and 

using a penetrometer capable of handling higher PR values than the hand held penetrometer used 

in this study. The penetration resistance measurements could be expanded to cover a larger 

section of the plots although this may involve more personnel and time.  

The improvement in infiltration was limited to the soil matrix with water at 2 cm tension. 

The final infiltration including the matrix flow and flow through macro-pores, evaluated using 

Cornell sprinkle infiltrometer, was not affected by the surface treatments. There were no 

significant differences in the drainage treatments (undrained and drained plots), however, the 

effects of the drainage were evident in the combined effects of drainage and surface 

amendments, where drainage was observed to augment the impact of surface amendments. In 

situ hydraulic properties determined by both the Cornell sprinkler infiltrometer and the mini-disk 

tension infiltrometer were highly variable; to maintain a confidence interval of 95% for 

comparison between surface and drainage treatments, the number of samples taken needs to be 

greatly increased for each plot. It is also important to explore using a normal sized tension 
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infiltrometer instead of the mini disk tension infiltrometer although time saved with the mini disk 

tension infiltrometer use will be sacrificed. 

The drawbar power measurements were carried out in the fall when the soil was fairly 

dry using a tractor that was oversized compared with the chisel plow’s requirement. The 

contribution to power loss through slip is worth investigating using a more closely matched 

tractor to the chisel plow power requirements. Furthermore, it’s important to investigate the 

drawbar power requirements in the spring when near saturation conditions exist and when a good 

number of the farmers do some tillage operations.  

An economic analysis of the cost-benefit of ameliorant and cultivation energy is 

recommended. This may necessitate collecting data over multiple growing seasons. Lowering 

draft as a result of gypsum application is an added incentive which also needs to be captured in a 

cost-benefit analysis and the present study provides a useful starting point for such analyses.  

Although application of spent lime did not reduce the drawbar power nor improve water flow 

through the soil matrix, the protective value of spent line applications for deterring pathogen 

growth while growing sugarbeets needs to be considered when making management decisions. 

The increase in Pd values after spent lime application needs to be accounted for as an 

additional cost and weighed against its benefits. Even though spent lime may increase drawbar 

power, it may have a net positive effect if its protective disease-prevention value outweighs the 

increased fuel costs especially if lower application rates are adopted.  

For many farmers, drainage enables early planting and the adding of ameliorants will safeguard 

against further sodification of their fields.  

 

 


