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ABSTRACT

Over recent years, Evolutionary Algorithms (EA) have emerged as a practical approach for solving

hard optimization problems ubiquitously presented in real life. The inherent advantage of EA over other

types of numerical optimization methods lies in the fact that they require much less or no prior knowledge

of the objective function. Differential Evolution (DE) has emerged as a highly competitive and powerful

real parameter optimizer in the diverse community of evolutionary algorithms.

The study of this dissertation is focused on two main approaches. The first approach focuses on

studying and improving DE by creating its variants that aim at altering/adapting its control parameters and

mutation strategies during the course of the search. The performance of DE depends largely upon the

mutation strategy used, its control parameters namely the scale factor F , the crossover rate Cr, and the

population size NP , and is quite sensitive to their appropriate settings. A simple and effective technique

that alters F in stages, first through random perturbations and then through the application of an annealing

schedule, is proposed. After that, the impact and efficacy of adapting mutation strategies with or without

adapting the control parameters is investigated.

The second approach is concerned with the application side of DE which is used as an optimizer

either as the primary algorithm or as a surrogate to improve the performance of the overall system. The

focus area is video based vehicle classification. A DE based vehicle classification system is proposed. The

system in its essence, aims to classify a vehicle, based on the number of circles (axles) in an image using

Hough Transform which is a popular parameter based feature detection method. Differential Evolution (DE)

is coupled with Hough Transform to improve the overall accuracy of the classification system. DE is further

employed as an optimizer in an extension of the previous vehicle detector and classifier. This system has

a novel appearance based model utilizing pixel color information and is capable of classifying multi-lane

moving vehicles into seven different classes. Five different variants of DE on varied videos are tested, and a

performance profile of all the variants is provided.
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1. INTRODUCTION

Challenging real world optimization problems are ubiquitous in scientific and engineering domains.

Complexity of the problem notwithstanding, the problem’s objective function may also be non-continuous,

and non-differentiable adding to the overall difficulty and negotiability of the search space. Darwinian in-

spired evolutionary theories like social group behavior and foraging strategies, to name a few, have attracted

the attention of researchers for tackling hard and complex optimization problems. The outcome of this re-

search effort are nature inspired algorithms. These algorithms can be broadly classified into two categories:

evolutionary computing methods, and swarm intelligence algorithms, both of which employ their own set

of control parameters.

The underlying idea behind evolutionary algorithms is the iterative fitness improvement of a popu-

lation of individuals (solutions), through natural selection. An iteration generally involves, producing new

individuals through a series of mutations and recombinations, gradually removing lesser fit individuals from

the population and replacing them with newly generated individuals if their fitness proves to be better than

the individuals they were generated to replace [1].

The operation of swarm intelligence algorithms may be behaviorally characterized as a decentral-

ized swarm searching for optimal food sources (solutions) [2]. The direction of individual search is influ-

enced by the current location of the individual, its best location ever, and the location of the best individual

in the whole swarm.

The performance of both these classes of algorithms is quite sensitive to their respective control

parameters settings, good values of which are problem dependent. Unless the user has quite an experience

in parameter tuning, finding out the best parameter settings for a given problem through trial and error

may prove, at best, an arduous, and sometimes an infeasible task. A way out of this conundrum lies in an

arrangement that may alter or adapt these parameters during the course of the algorithm. Much attention has

been paid to this problem and many adaptive schemes have been proposed [3]-[8].

One of the main motivations of this work is to intensively investigate one of the popular evolutionary

algorithms namely Differential Evolution (DE), and propose mechanisms to alter-adapt its control param-

1



eters to improve its performance. This motivation stems from the fact that performance of DE is highly

dependent on its control parameters and setting up these parameters for a given problem is a non-trivial task.

The other part of this work focuses on the application side of DE. Lately evolutionary algorithms

have found applications in the image processing and object tracking domains. One of the sub-domains of

these problems is automatic vehicle classification. Vehicle classification is a difficult problem to tackle.

Categorizing vehicles comprehensively using a video is quite an arduous task given the variety of vehicles

and similarities between them at the same time. Different shapes and sizes within a single vehicle category

adds to the dilemma. On top of this we have drastically changing weather conditions, shadows, camera noise,

occlusions, etc., which make the task even more challenging. DE is employed as a parameter optimizer for

vehicle classification and real time object tracking tasks.

The following sections briefly describe the research conducted for this dissertation. Brief descrip-

tions of the background are presented in Sections 1.1-1.4. The motivation of the work is discussed in Section

1.5. The contributions of the work is listed in Section 1.6, and the structure of the dissertation is described

in Section 1.7.

1.1. Differential Evolution

Differential Evolution (DE) [9], proposed by Storn and Price in 1995, has emerged as a robust

real parameter optimizer in the field of evolutionary computation. The power and popularity of DE can

be gauged from the heightened research activity on the subject in the past decade. Numerous studies have

been conducted to ascertain DE’s efficacy on a broad range of problems ranging from benchmark to real life

scientific and engineering problems [10]. An year after its introduction, the power of DE was on display at

the First International Contest on Evolutionary Optimization in May 1996 [11], where it secured first place

among evolutionary algorithms. Since then, DE and its variants have performed exceedingly well in the

optimization contests such as The IEEE Congress on Evolutionary Computation and alike.

DE is simple and employs few control parameters namely scale factor (F ), crossover rate (Cr), and

population size (NP ). The performance of DE is very sensitive to the proper settings of these parameters

[1], [12], [13].

An unfavorable combination of these parameters can seriously degrade the algorithm’s efficacy. At

the same time, choosing effective control parameter settings can be quite cumbersome. A good combination
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of these parameters depends upon the problem at hand and requires a good amount of experience of the user.

The bottom-line is, “better and more informed values of control parameters yield better results for a given

problem.”

1.2. Adaptive Differential Evolution

Since it may be difficult and time consuming to generalize a set of control parameter values, there

is always a motivation to alter or adapt them during the course of the algorithm as defined by certain rules.

Intensive research activity has been reported in the area of finding good values of control parameters. In [1],

the authors grouped this change into three broad classes:

• Deterministic - the parameters are altered based on some user defined rules [9], [14].

• Adaptive - the parameters are allowed to adapt based on some feedback from the algorithm [15].

• Self-Adaptive - the parameters are encoded into the solution itself and they evolve as a part of the

general population [16], [17].

During the search process a particular combination of control parameters and mutation strategy may

prove more favorable than the others [18]. As a result, many partially [19]-[21] adaptive schemes that adapt

one or more control parameters, and fully adaptive schemes [22] that adapt mutation strategy and control

parameters, have been proposed in the past.

The efficacy of employing an adaptive mutation strategy module both in the presence and the ab-

sence of a control parameter adaptation scheme is investigated. Based on empirical results we create a pool

of mutation strategies. A memory based fully adaptive version of Differential Evolution, SA-SHADE, is

then proposed that adapts the control parameters to their appropriate values and chooses the best suited

mutation strategy from the pool.

1.3. Video Based Vehicle Classification

Automatic vehicle classification has emerged as a significantly important element in the myriad

web of traffic data collection and statistics. Regulations on road side construction for pertinent reasons, in-

creasing vehicle density, and cost of overlaying roads are some of the factors calling for ever more efficient

utilization of our existing transportation networks. A part of the solution to these pressures lies in vehicle

classification systems that compute the number and type of vehicles passing a particular street or highway.
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This information has an evident impact on the cost and efficiency of the transportation system; road thick-

ness decision being one of the many advantages this system has to offer. Many video based classification

systems have been proposed in the past with their own advantages and disadvantages. These systems can be

primarily distinguished by the type of sensors they use, most common of which are magnetic, laser, pressure,

single or multiple cameras, etc. Magnetic and laser sensors tend to have a higher classification accuracy but

at the same time have high equipment and installation costs, and are intrusive techniques. Computer vision

based vehicle classification systems are generally attributed with low cost and accuracy, and are an active

area of research. A video based vehicle classification system is proposed that determines the type of vehicle

based on the number of axles and distance between them. Hough Transform [23], a parameter based feature

detection method, is employed to detect the axles. The quality of the detected circles is sensitive to appro-

priate settings of these parameters. Since the process is time consuming and it may not be fruitful to adjust

these parameters manually every time, there is always a motivation to do a parameter search by attaching a

machine learning algorithm to discover an optimized set. This parameter search is done using DE.

1.4. A Differential Evolution Based Multiclass Vehicle Classifier for Urban Environments

This chapter rebuilds and further enhances the capabilities of video based vehicle classifier pro-

posed previously. Commercial vehicle classifiers bank upon sophisticated appearance models and employ a

multitude of tracking techniques for vehicle detection and classification [139]. The main idea behind vehicle

detection and tracking is to estimate the motion state of an object as accurately as possible given an image

sequence. A large body of research has been conducted on this topic as it finds important applications in

multitude of real life areas like video surveillance, human computer interaction, and traffic flow monitoring,

to name a few. Examples include a visual traffic flow monitoring system proposed in [25], pedestrian count-

ing system in [26], accident detection system in [27] etc. As a part of this dissertation, a DE based multi

lane vehicle detector and tracker with a novel appearance based model system is proposed.

1.5. Motivation and Problem Statement

Generally, an optimization process/algorithm, given a set of constraints, tries to find the best solution

among all feasible solutions for a given problem. In real life though, there remain a large number of problems

in class NP [28] for which finding the best solution is not possible in polynomial time, at least as of now.

In such cases, it is more plausible to find a good enough solution (sub-optimal) instead of spending a great
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deal of computational time to find the best solution. Moreover, optimization is not always about finding

the perfect solution. Sometimes, it is more about finding a good solution given a set of constraints or

environment. As the constraints change the solution also needs to change accordingly. This has many

parallels in the Evolutionary Process.

Evolution in a way is also an optimization process wherein the solution or adaptive behavior depends

upon the constraints posed by the environment of an organism. The behavior of an organism is optimized

and changes according to the environment. Since evolution has been able to produce organisms of high

perfection over a long period of time, there is always a big motivation behind application of evolutionary

principles in the optimization process to solve hard real world engineering problems. It was due to this

primary motivation that Evolutionary Algorithms (EA) came on the horizon of optimization.

Differential Evolution (DE) is a simple yet powerful evolutionary algorithm (EA) for global opti-

mization introduced by Price and Storn [9]. The main motivations of this research can be summarized as

follows.

• The DE algorithm has gradually become more popular among other EA’s, and has been used in many

practical cases, mainly because it has demonstrated good convergence properties, and is easy to un-

derstand [12]. Its success notwithstanding, DE has its own drawbacks. Its very high performance

sensitivity to its control parameter settings sometimes turns out to be more of a hindrance than an

asset. Improper settings of these parameters seriously degrades the DE’s performance and renders it

ineffective on the problem being solved. Moreover, determining good control parameter values for

every problem would either require repetitive trial & error or a good amount of user experience. These

approaches in most cases are either time consuming or infeasible. Allowing the control parameters to

alter/adapt themselves during the search process is, therefore, an important task. For this purpose, an

adaptive control parameter mechanism for control parameters are developed.

• DE’s ability to find a good solution, apart from its control parameters, is also dependent on the muta-

tion strategy it employs. A mutation strategy determines how the chosen vectors will be differentially

mutated to create a donor. Even in the presence of favorable control parameter settings, an unfavor-

able mutation strategy can seriously degrade the quality of the final solution. Allowing the mutation

strategy to adapt with the control parameters may help in alleviating this problem. For this purpose,
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adaptive mechanisms for mutation strategies are developed that are useful both in presence, and ab-

sence of adaptive control parameter mechanisms.

• On the application side, DE has been utilized in many real world domains for optimization. Video

based classification of vehicles is an important task in intelligent transportation systems. Categoriz-

ing vehicles comprehensively is quite an arduous task given the variety of vehicles and similarities

between them at the same time. Different shapes and sizes within a single vehicle category adds to

the dilemma. On top of this, drastically changing weather conditions, shadows, camera noise, occlu-

sions, etc., make the task even more challenging. A DE based vehicle classifier is proposed wherein

DE is used as an optimizer to improve the overall classification accuracy. DE acts as a accuracy

improvement sub system. The primary axle detection mechanism is the Hough Transform which af-

ter detection feeds the DE sub system. DE further validates the input and attempts to improve the

accuracy of the classification system.

• Due to variety and complexity of scenes, and external noise, vehicle detection on multilane traffic is a

challenging task. The performance of such a system is largely dependent upon the appearance model

and tracker it uses. A number of approaches have been proposed both for appearance models and

trackers. A bio-inspired multilane vehicle detection and classification system is proposed that uses

a novel pixel-to-pixel color cue comparison approach for appearance modeling and DE as a discrete

optimizer.

1.6. Contributions

This dissertation makes several contributions towards improving the convergence properties of dif-

ferential evolution and reducing its dependency on trial & error methods to select a good set of control

parameters.

On the application sides, a novel DE based vehicle classification system is proposed and later DE is

is applied as real time object tracker with gaussian mixture object models. The contributions are:

1. Differential Evolution with Dither and Annealed Scale Factor (DEDASF) was devised and applied

to twenty difficult benchmark functions. During the search process, the scale factor, F , was initially

randomized to sample diverse areas of the search landscape, and then allowed to be non-linearly an-
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nealed. This allows for random step sizes during initial exploratory stages of the search, and a gradual

step size reduction during the exploitative stages. The performance of DEDASF was compared with

state of the art algorithms proposed in the past. DEDASF proved to be highly competitive amongst

the algorithms compared.

2. A fully adaptive version of DE, Strategy Adaptive Success History Based Differential Evolution (SA-

SHADE) was proposed that is capable of adapting control parameters as well as the mutation strategy.

A pool of mutation strategies was created based on empirical evidence, and successful mutation strate-

gies were added to the success history. The mutation strategy to be applied in a given situation was

chosen from this success history. This significantly improved the performance of DE, and reduced

human intervention in setting up these parameters. SA-SHADE was compared with several state of

the art adaptive variants, and was shown to be superior to most and competitive to the remainder.

3. A novel DE based vehicle classification system is proposed that utilizes the axle count, their corre-

sponding distance from each other and other parameters of a vehicle to classify the type of vehicles.

Hough transform is used as a primary axle or circle detector, and DE is then subsequently used to

improve the classification accuracy. Hough transform is a parameter based method that requires the

parameters to be set before its operation. This requires human intervention. To alleviate this draw-

back, DE is used as an automatic parameter search method. The classification system is shown to

perform vastly superior in presence of DE as an optimizer when compared with the system that does

not employ DE and sets the parameters manually.

4. A DE based multilane vehicle detection, tracking and classification system is proposed wherein color

cues are utilized to model the appearance of the object. Multiple variants of DE are compared to

ascertain robust behavior. Extensive experimental results show that DE based object tracker is robust

and shows satisfactory performance for multilane vehicle detection in presence of noise, occlusion,

and target deformation.

1.7. Dissertation Overview

This dissertation is a paper-based version, where each chapter has been derived from the papers

published during the Ph.D. work. This is an overview of the remaining chapters of this dissertation.
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In Chapter 2, a adaptive version of DE, named Differential Evolution with Dither and Annealed

Scale Factor or DEDASF, is discussed. This chapter is derived from the publication:

• Deepak Dawar and Simone A. Ludwig, “Differential Evolution with Dither and Annealed Scale Fac-

tor.” IEEE Symposium on computational intelligence: 9-12 Dec. 2014.

In Chapter 3, a fully adaptive version of DE namely SA-SHADE is presented. This chapter is

derived from the submitted work:

• Deepak Dawar and Simone A. Ludwig, “Effect of Strategy Adaptation on Differential Evolution in

Presence and Absence of Parameter Adaptation: An Investigation.” Applied Soft Computing, Submit-

ted.

In Chapter 4, a novel DE based vehicle classification system is discussed. This chapter is derived

from the publication:

• Deepak Dawar and Simone A. Ludwig, “A Differential Evolution Based Axle Detector for Robust

Vehicle Classification.” IEEE Congress on Evolutionary Computation, May 25-28, 2015, Sendai,

Japan.

In Chapter 5, a DE based multilane vehicle detection, tracking and classification system is discussed.

This chapter is derived from the submitted work:

• Deepak Dawar and Simone A. Ludwig, “A Differential Evolution Based Multiclass Vehicle Classifier

for Urban Environments.” International Journal of Swarm Intelligence Research, Submitted.
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2. DIFFERENTIAL EVOLUTION WITH DITHER AND ANNEALED

SCALE FACTOR

Differential Evolution (DE) is a highly competitive and powerful real parameter optimizer in the

diverse community of evolutionary algorithms. The performance of DE depends largely upon its control

parameters and is quite sensitive to their appropriate settings. One of those parameters commonly known as

scale factor or F , controls the step size of the vector differentials during the search. During the exploration

stage of the search, large step sizes may prove more conducive while during the exploitation stage, smaller

step sizes might become favorable. This work proposes a simple and effective technique that alters F in

stages, first through random perturbations and then through the application of an annealing schedule. The

performance of the new variant on 20 benchmark functions of varying complexity is reported, and compared

with the classic DE algorithm (DE/Rand/1/bin), two other scale factor altering variants, and state of the art,

SaDE.

The rest of this chapter is structured as follows. Section 2.1 presents an introduction to the chapter.

In Section 2.2, related work is presented. Section 2.3 describes and explains the new algorithm with all its

features. In Section 2.4, results and their analysis are presented, and finally, conclusions and future work are

discussed in Section 2.5.

2.1. Introduction

Dither is a deterministic parameter control technique wherein F is allowed to take on random values

between a specific range represented by Flow and Fhigh. Combining dither with an annealing based cooling

schedule to alter F is proposed, and a two stage technique, DEDASF, is introduced based on this concept. In

the first stage, dither is applied and in the second stage, F is allowed to be reduced by a randomized factor.

Every stage runs for a fixed number of function evaluations, a count of which has to be set beforehand.

The idea is to scatter the population to diverse and favorable areas first and then reduce the step size to take

advantage of the notion that during early stages of exploration of the search space by DE, large step sizes may

prove beneficial for investigating the maximum area of the problem landscape, and when the exploitation

stage kicks in, small step sizes may become more advantageous. Though it is possible to alternate between
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exploration-exploitation during the course of the search, which may be beneficial for many landscapes, this

investigation is limited to a single stage exploration-exploitation model.

2.2. Related Work

There have been many attempts to improve the performance of DE by varying the scale factor during

the search process and multiple methods have been suggested to achieve this goal. One of them is Dither

[14]. It is a deterministic scheme of randomization of scale factor, F . Many different ways of randomizing

F are possible. For example in [29], F was randomized on a generational basis as:

Fdither = Fl + randG(0, 1)× (Fh − Fl) (2.1)

where Fl and Fh are the predefined lowest and highest values of F , respectively, and randG(0, 1) is a

uniformly distributed real number generated anew for every generation G. In [15], convergence of DE was

reported to have been improved while using dither, though the authors applied dither on an individual basis

rather than generational basis. Therefore, preliminary results make a good case for using this technique.

There is a similar technique proposed in [14] called Jitter wherein F is randomized for every dif-

ference of the parameters involved in the differential operation. The operation can be represented as:

Fjitter = F × (1 + γ × (randj [0, 1]− 0.5)) (2.2)

where it is imperative that γ be small. In [30], the author mixed both dither and jitter.

Apart from randomization schemes, another technique that appears to be useful while negotiating

the search space is step-size reduction. Step size may be considered as the distance between position of the

current vector and the newly generated vector, in a D dimensional space. In DE, the step size is controlled

by F . In [31], authors describe a step size reduction technique for their one point direct search algorithm.

The algorithm starts with a point x0 in a D dimensional space. The nearby space is explored and a new

point x1 is selected for evaluation. If x1 is found to be worse than x0, then the step size is assumed to have

been too large and is reduced by a certain factor. An obvious drawback of this scheme is that the technique

only contracts the step size and never expands it thereby increasing the chances of the solution getting stuck

in a local optimum.
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In [15], authors proposed a step size reduction scheme, DETVSF, wherein they reduced the step

size with every generation. Mathematically, this scheme is described as:

Fcurr = (Fmax − Fmin)× (Gmax −Gcurr)/Gmax (2.3)

where Fcurr is the current value of the scale factor, Fmax and Fmin are the predefined maximum and min-

imum values of the scale factor, respectively. Gcurr and Gmax are the current and maximum generation

number, respectively. This technique was reported to have improved the performance of DE in a statistically

meaningful way [15].

The step size reduction by a constant factor may well be juxtaposed with the concept of the metal-

lurgical technique of annealing, which is the process of treating a metal by first heating it above its critical

temperature and then cooling it at a certain rate.

The work in this chapter is motivated by the encouraging results reported in [15] and [29], which

clearly insinuate the use of dither and step size reduction techniques. Though the individual results of

these schemes are promising, a closer look might reveal some shortcomings of the individual use of these

techniques. Dither offers randomized step sizes throughout the search process. During the initial phase

of the search, this may prove useful but during the later phase, when focus shifts to a particular area of

landscape, arbitrary and occasional large step sizes may prove detrimental to convergence. Thus, dither may

be avoided during the later part of the search. During the exploration stage of the search, large step sizes

are advantageous, while during the exploitation stage, small values prove more effective. While step size

reduction techniques make a lot of sense, solely contracting step size run the risk of getting stuck in local

minimum if there is not enough diversity in the population.

With these points in mind we decided to hybridize these techniques to take advantage of their indi-

vidual strengths. Our hybrid is stage based. Dither is applied in the first and step size reduction in the second

stage. This sequence of stages proves more conducive and effective, as we shall present in the results, than

employing the dither or step size reduction technique alone.

2.3. DEDASF

This work proposes DEDASF, Differential Evolution with Dither and Annealed Scale Factor, an

algorithm that applies dither and annealing to the scale factor, F . DEDASF is summarized in Algorithm 1.
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Algorithm 1 PSEUDO-CODE FOR DEDASF

1. Set values of NP, Cr

2. Set Dither range Fl, Fh. Set no. of generations, Gd, for which dither would be applied

3. Set Annealing constants F0, αl, αh

4. Initialize a population of NP individuals P = [X1, X2, ...XNP ] where every ith individual is a D
dimensional vector represented as Xi

j=[xi1, xi2 ... xiD].

5. While stopping criteria is not met do

6. For every target vector Xtarget in P do

7. Select three vectors Xr1 , Xr2 , Xr3 where r1, r2, and r3 are three mutually exclusive indices and
different from the index of target vector

8. Produce a donor vector through mutation as
Xdonor = Xr1 + F × (Xr2 −Xr3) where F is calculated as:

F =

{
Fl + rand(0, 1]× (Fh − Fl) if Gc ≤ Gd

αGc−Gd × F0 otherwise

9. Produce a trial vector, Xtrial = (xtrial1 , . . . , xtrialD ), through crossover as:

xtrialj =

{
xdonorj if randj(0, 1] ≤ Cr or j = jrand
xtargetj otherwise.

10. Select either the target vector or the trial vector based on their fitness values as:

Xsurvivor
G+1 =

{
Xtrial

G if F (Xtrial
G ) ≤ F (Xtarget

G )

Xtarget
G otherwise.

11. end For

12. end While

12



The algorithm makes changes to F in two stages. The duration of the first stage is a pre-specified

number of generations or function evaluations (FEs). In the first stage, dither is applied to F within a pre-

specified range. For our experiments we chose the range [0.1,0.9] to promote a multitude of step sizes that

would help sample different and wide areas of the search landscape. Also, loss of diversity is a known

problem in DE and dither may help improve it as argued in [32].

After the first stage, when the population has scattered sufficiently to seemingly favorable areas of

the landscape, F is allowed to cool slowly and the cooling rate is controlled by the randomized factor α.

During the exploration stage a high value of F is advantageous, while during the exploitation stage small

values of F are desirable. Thus, while in general it is difficult to specify the step size for different stages of

the search, this scheme may help the search make a smooth transition from the exploration to the exploitation

stage. The two stages of this scheme can be outlined as:

Fc =


Fl + rand(0, 1]× (Fh − Fl) if Gc < Gd

αGc−Gd × F0 otherwise

(2.4)

where Fc is the current value of scale factor, Fl and Fh, the predefined lowest and highest values of scale

factor. Gc is the current generation, and Gd is the number of generations allotted to the dither stage.

F0 is the value at which the reduction of scale factor starts or critical temperature in metallurgical

terms. After an empirical study, we fixed F0 at 0.7 as this value should not be too high or too low for the

search would have progressed towards favorable regions by the time the annealing stage kicks in. Keeping

F0 high would slow down the convergence and a low value might result in a failure to explore prospective

areas. In Equation 2.4, α represents the cooling rate, a value which is randomized between αl and αh.
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After an empirical study, a part of which is explained in the Results section, the values of αl and αh

were fixed at 0.995 and 0.998, respectively, and α calculated as:

α = rand(0, 1]× (αh − αl) (2.5)

where rand(0, 1] is a uniformly distributed random number between 0 and 1.
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Figure 2.1. Variation in scale factor with number of generations executed for DE, DEWD, DETVSF, and
DEDASF.
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2.4. Experimentation and Results

2.4.1. Benchmark Functions

Experiments were performed on 20 benchmark functions of varying properties and geometric ori-

entations. The first five functions (f1 to f5) are unimodal, the next fifteen (f6 to f20) are multimodal. Due to

paucity of space in this chapter, the details about the test functions are difficult to provide here, but a detailed

insight into the functions can be found in [33].

2.4.2. DEDASF vs Other Methods

Algorithm comparison is performed in two ways. First we compare DEDASF with other determin-

istic parameter control techniques to determine its rank. A comparative performance test of DEDASF is

performed with: (a) Classic DE, (b) DETVSF, as proposed in [15], and (c) DEWD, classic DE with dither

as proposed in [14]. DETVSF and DEWD were described in Section III. Three of the compared algorithms

namely DEDASF, DETVSF, and DEWD alter F as the search progresses, while in DE, F is kept constant.

For these compared algorithms, the variation in F with the number of generations is presented in Fig 2.1.

After the initial comparative evaluations, DEDASF is then compared with Self Adaptive Differential

Evolution algorithm, SaDE [34], to contrast the performance of with our deterministic parameter control

method with the adaptive one.

2.4.3. Control Parameter Set Up

A large body of research on control parameter settings is available, which while not being able to

provide a panacea for the control parameter setting problem, provides suitable guidelines for their use.

Authors in [13] suggest that the population size NP be between 3D to 8D, where D is the dimen-

sionality of the problem. Using their guidelines coupled with our own experience, we fixed NP to be seven

times the problem dimensionality. Storn and Price in [14] suggest that Cr be either between [0.0,0.2] or

[0.9,1]. The reason for such division is that separable functions are solved quite well at low values of Cr,

and non-separable at high values. However, to maintain uniformity, we fixedCr at 0.9. Another good reason

for this choice is to increase the diversity and minimize the orthogonal movements of vectors. A high value

of Cr is also recommended in [35].

DEDASF, DTVSF, DEWD alter the scale factor with their own mechanisms. The scale factor for

classic DE is fixed at 0.5 as suggested in [35].
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According to the guidelines laid down in [33], the maximum number of function evaluations (MaxFEs)

has been restricted to 104 times the dimensionality of the problem, every benchmark function is evaluated 51

times, and evaluation is terminated once MaxFEs is reached or the difference between the global optimum

and current best reaches a value of 10−8.

2.4.4. Results

Table 2.1 reports the performance of the deterministic parameter control algorithms namely DEDASF,

DETVSF, DEWD, and the classic DE, at problem dimensionality 10, 30, and 50, respectively.

With a mere glance at the Table 2.1, it can be inferred that none of the algorithms perform signifi-

cantly better than its competitors at problem dimensionality 10 where DEDASF and DE score two wins each,

DETVSF eight, and DEWD four wins. Table 2.1 also revels that at problem dimensionality 30, DEDASF

wins 10 times, DETVSF 3 times, and DEWD wins 4 times while classic DE does not record any win. At

50D, DEDASF scores 12 wins, DETVSF 3, and DEWD 4, while DE again scores no wins. To decipher the

statistical difference between the algorithms, we compare them with the Friedman test and later on with the

Hochberg post-hoc procedure.

The Friedman test [36], is a multiple comparisons procedure that aims to detect significant per-

formance differences between the compared algorithms. It calculates the relative ranks of the algorithms

through an average ranking procedure and computes the Friedman statistic, which is further used to calcu-

late the p value.

Table 2.2 presents the relative ranks, and Table 2.3 reports the Friedman statistic and p values

obtained by the algorithms at problem dimensionality 10, 30, and 50, respectively.

It is observed that the Friedman test did not detect a significant difference between the algorithms

at problem dimensionality 10. DETVSF emerges as the best ranked algorithm, but the difference is not

statistically significant when compared to other algorithms either at 0.05 or 0.1 level of significance.

At problem dimensionality 30 and 50, however, the Friedman test reports a significant difference

between the algorithms. The difference is significant at the 0.05 level of significance, as clearly shown in

Table 2.3, and DEDASF clearly emerges as the best ranked algorithm.

The Friedman test is capable of detecting significant differences between algorithms, but is unable

to perform comparisons between some of the algorithms, for example, when a particular control algorithm
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Table 2.1. Performance of DEDASF, DETVSF, DEWD, and DE at 10D, 30D, and 50D, respectively. Re-
ported values are the averages of 51 independent runs for each function. Error values reaching within 10−8

of the global optimum of the function are reported as 0.00+E00.

10D
Function DEDASF DETVSF DEWD DE

1 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00
2 2.63E+03±6.38E+03 1.31E-02±5.73E-02 7.81E+02±1.97E+03 2.01E+01±9.04E+01
3 4.21E+00±1.38E+01 1.95E-01±2.10E-01 1.74E+00±6.15E+00 2.25E-02±6.32E-02
4 4.03E+01±9.05E+01 2.62E-04±9.37E-04 1.96E+00±5.94E+00 3.56E-02±1.70E-01
5 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00
6 0.00E+00±3.65E-08 2.00E-01±1.70E-01 2.48E+00±0.00E+00 2.97E-04±1.06E-03
7 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00
8 2.05E+01±5.54E-02 2.05E+01±5.09E-02 2.05E+01±6.00E-02 2.05E+01±5.13E-02
9 3.00E-02±6.14E-01 1.80E-01±3.29E-01 9.72E-02±3.22E-01 1.92E-05±9.05E-05
10 4.63E-02±2.06E-01 8.77E-02±6.31E-02 4.35E-02±3.27E-02 7.13E-02±4.88E-02
11 8.95E-01±5.51E-01 9.12E-01±1.16E+00 7.06E-01±7.66E-01 6.46E+00±5.48E+00
12 6.15E+00±3.95E+00 7.03E+00±2.84E+00 5.52E+00±2.66E+00 1.67E+01±8.40E+00
13 9.32E+00±2.09E-01 8.66E+00±3.74E+00 1.16E+01±5.34E+00 1.46E+01±8.26E+00
14 5.65E+01±3.41E-01 1.75E+01±1.10E+01 1.92E+02±1.63E+02 9.21E+02±2.69E+02
15 2.42E+02±3.09E-02 1.59E+02±9.27E+01 1.05E+03±3.05E+02 1.38E+03±1.08E+02
16 1.11E+00±7.47E-01 1.04E+00±1.67E-01 1.08E+00±2.14E-01 1.04E+00±1.80E-01
17 1.15E+01±2.64E+00 1.16E+01±7.99E-01 2.38E+01±5.03E+00 2.52E+01±3.27E+00
18 2.21E+01±4.44E+00 1.90E+01±2.03E+00 3.27E+01±6.32E+00 3.46E+01±4.80E+00
19 5.69E-01±5.98E+01 5.38E-01±7.21E-02 5.57E-01±1.25E-01 5.38E-01±1.69E-01
20 2.27E+00±2.13E+02 1.65E+00±4.57E-01 1.07E+00±5.52E-01 2.61E+00±2.00E-01

30D
Function DEDASF DETVSF DEWD DE

1 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00
2 1.09E+06±4.17E+05 1.53E+06±5.52E+05 9.38E+05±4.61E+05 3.91E+06±1.11E+06
3 2.41E+06±2.97E+06 2.49E+06±2.80E+06 4.80E+06±3.14E+06 7.90E+06±5.01E+06
4 9.76E+03±2.23E+03 1.44E+04±2.96E+03 4.64E+03±1.44E+03 3.03E+04±5.69E+03
5 2.87E-06±4.72E-06 2.32E-06±9.25E-06 0.00E+00±0.00E+00 1.01E-05±2.84E-06
6 9.48E+01±2.01E+01 2.93E+00±2.29E-01 1.40E+01±2.86E+01 8.17E+01±9.88E+00
7 2.87E-02±1.42E-01 5.33E-01±6.29E-01 3.79E-01±8.72E-01 3.08E+00±1.57E+00
8 2.10E+01±4.87E-02 2.10E+01±4.80E-02 2.10E+01±3.38E-02 2.10E+01±4.32E-02
9 3.79E+00±2.48E+00 6.39E+00±2.00E+00 1.42E+00±1.33E+00 3.75E+01±1.19E+00
10 7.66E-02±9.02E-02 2.10E-01±2.88E-01 2.86E-02±1.36E-02 8.07E-01±2.03E-01
11 5.69E+00±2.17E+00 3.84E+00±1.56E+00 6.16E+01±1.61E+01 1.82E+02±1.09E+01
12 3.14E+01±6.82E+00 2.84E+01±7.25E+00 1.38E+02±3.63E+01 1.98E+02±1.15E+01
13 5.50E+01±1.85E+01 5.57E+01±1.57E+01 1.56E+02±2.37E+01 1.97E+02±8.63E+00
14 1.90E+02±1.09E+02 6.80E+02±1.76E+02 6.56E+03±3.11E+02 7.08E+03±2.50E+02
15 3.91E+03±1.02E+03 5.84E+03±3.79E+02 7.10E+03±2.14E+02 7.33E+03±2.33E+02
16 2.43E+00±2.97E-01 2.54E+00±3.10E-01 2.47E+00±2.45E-01 2.46E+00±2.56E-01
17 4.06E+01±3.20E+00 4.89E+01±4.05E+00 1.86E+02±8.03E+00 2.16E+02±8.35E+00
18 1.43E+02±2.17E+01 1.82E+02±8.98E+00 2.01E+02±1.07E+01 2.27E+02±1.07E+01
19 1.26E+00±2.16E-01 1.86E+00±1.16E-01 2.01E+00±3.35E-01 1.90E+00±4.75E-01
20 1.09E+01±8.08E-01 1.20E+01±2.81E-01 1.18E+01±2.99E-01 1.33E+01±1.41E-01

50D
Function DEDASF DETVSF DEWD DE

1 8.72E-07±2.38E-06 1.18E-06±3.87E-06 0.00E+00±0.00E+00 1.64E+00±3.90E-01
2 7.55E+06±2.06E+06 1.08E+07±3.04E+06 1.56E+07±3.29E+06 1.11E+08±1.86E+07
3 1.31E+07±2.71E+07 2.94E+07±2.79E+07 2.76E+07±3.11E+07 8.97E+07±2.74E+07
4 5.00E+04±7.41E+03 7.02E+04±7.01E+03 9.82E+04±9.46E+03 1.25E+05±8.85E+03
5 3.88E-03±4.51E-03 1.29E-03±2.48E-03 2.41E-06±1.56E-06 7.96E-01±1.34E-01
6 1.20E+02±1.11E+01 1.68E+02±2.60E+01 1.31E+02±3.17E+01 1.55E+02±1.37E+01
7 7.46E+00±1.95E+00 4.40E+00±1.93E+00 8.62E+00±3.42E+00 8.53E+01±1.00E+01
8 2.11E+01±3.84E-02 2.11E+01±3.06E-02 2.11E+01±2.78E-02 2.11E+01±4.67E-02
9 1.33E+01±4.77E+00 2.16E+01±4.03E+00 1.52E+01±1.42E+01 7.02E+01±1.68E+00
10 4.13E+00±1.21E+00 6.06E+00±2.08E+00 1.03E+00±1.54E-01 6.88E+01±1.31E+01
11 8.13E+00±2.69E+00 8.10E+00±2.73E+00 2.12E+02±2.39E+01 3.91E+02±1.55E+01
12 6.80E+01±1.32E+01 1.18E+02±4.22E+01 3.38E+02±1.25E+01 4.12E+02±1.91E+01
13 1.33E+02±2.68E+01 1.89E+02±4.96E+01 3.49E+02±1.56E+01 4.18E+02±1.38E+01
14 4.74E+02±2.17E+02 3.01E+03±4.77E+02 1.31E+04±4.01E+02 1.33E+04±2.71E+02
15 1.27E+04±6.77E+02 1.35E+04±4.29E+02 1.36E+04±4.03E+02 1.34E+04±4.13E+02
16 3.31E+00±2.58E-01 3.42E+00±2.65E-01 3.26E+00±3.92E-01 3.29E+00±2.10E-01
17 8.20E+01±9.57E+00 1.07E+02±8.20E+00 3.71E+02±1.49E+01 4.44E+02±1.58E+01
18 3.62E+02±1.29E+01 3.81E+02±1.13E+01 3.97E+02±1.49E+01 4.58E+02±1.48E+01
19 2.56E+00±3.72E-01 2.70E+00±3.52E-01 2.65E+00±4.55E-01 1.47E+01±1.89E+00
20 2.25E+01±9.87E-01 2.16E+01±8.75E-01 2.18E+01±2.51E-01 2.50E+01±2.14E-01
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Table 2.2. Relative Ranks obtained by DEDASF, DETVSF, DEWD, and DE at 10D, 30D, and 50D.

Algorithm Rank-10D Rank-30D Rank-50D

DEDASF 2.475 1.625 1.6
DETVSF 2.075 2.325 2.375

DEWD 2.575 2.325 2.35

DE 2.875 3.725 3.675

Table 2.3. Friedman statistic (distributed according to chi-square with 3 degrees of freedom) and p value
computed by Friedman Test at 10D, 30D, and 50D.

Dimension Friedman Statistic p Value

10 3.93 0.269123

30 27.93 0.000004
50 26.745 0.000007

is to be compared with other algorithms. To do this, a family of hypotheses must be defined and then a

post-hoc analysis should be conducted to find a p value indicating rejection or acceptance of the family of

hypotheses. To compute this p value, we performed a post-hoc analysis using the Hochberg procedure [37].

Tables 2.5 and 2.6 present the unadjusted and adjusted p values obtained by the Hochberg post-hoc

procedure at problem dimensionality 30 and 50, respectively. The Hochberg post-hoc procedure was not

applied to the Friedman test results obtained at 10D as there was not any significant difference reported

between the compared algorithms. The Hochberg post-hoc test suggests that DEDASF is significant at the

0.1 level of significance for problem dimensionality 30 and 50.

It can be inferred from Figure 2.2 that DEDASF is not relatively effective at lower dimensions but

its performance improves as the dimensionality of the problem increases, though more research needs to be

conducted to firmly confirm this observation.

Another aspect of the results that demands attention is the effect of the cooling rate of DEDASF

on the search process. It is found that some of the benchmark functions respond well to a slow cooling

rate, while others lend themselves well to a quick rate of cooling. There are a few test functions that

respond to cooling rates in an arbitrary manner. Hence, after extensive experimentation with several cooling

rates, we concluded that a single cooling rate would not be suitable for all the test functions. Through this

experimentation we found the approximate range between which the cooling rate is effective, which we
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Figure 2.2. Adjusted p values obtained by Hochberg procedure for DEDASF at problem dimentionality 10,
30, and 50. DEDASF is significant at the 0.1 level of significance at problem dimensionality 30 and 50.
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Figure 2.3. Comparison of slope of DEDASF and DETVSF at different cooling rates.
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denote as αlow(0.995) and αhigh(0.998), the highest and lowest cooling rate, respectively. The higher the

value of α, the lower the cooling rate.

A division of test functions based on their response to cooling rates is shown in Table 2.4, where

Type I represents the functions that show good results with slow cooling rates (high α), Type II represents

the functions that show good results with fast cooling rates (low α), and functions in Type III do not follow

a specific pattern.

Table 2.4. Division of benchmark functions based on their response to cooling rates.

Type I Type II Type III

2 11 1

3 12 8

4 13 16

5 14 19

6 15 -

7 17 -

9 18 -

10 20 -

Figure 2.3 shows the slope of DEDASF with different values of α as compared to DETVSF. Since a

single cooling rate would not yield good results for all the test functions, we decided to randomize it between

the range αhigh and αlow. Randomization indeed proved useful and resulted in significant performance

improvements at problem dimensionality 30 and 50 as is clear from Tables 2.5 and 2.6.

Table 2.5. Adjusted p-values-30D.

Algorithm unadjusted p pHochberg

DE 0 0.000001
DETVSF 0.086411 0.086411
DEWD 0.086411 0.086411

We also conducted a one-on-one comparison between the algorithms that reduce the scale factor

during the course of execution, i.e., DEDASF and DETVSF since comparing multiple algorithms may run
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Table 2.6. Adjusted p-values-50D.

Algorithm unadjusted p pHochberg

DE 0 0.000001
DETVSF 0.057649 0.066193
DEWD 0.066193 0.066193

the risk of accumulating the Family Wise Error Rate (FWER), even when it is controlled. We used the well

known Wilcoxon test for the comparison. The result is reported in Figure 2.4.
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Figure 2.4. Exact p values obtained by Wilcoxon test for DEDASF when compared to DETVSF, at prob-
lem dimensionality 10, 30, and 50. DEDASF is significant at the 0.05 level of significance at problem
dimensionality 30 and 50.

It is clear from Figure 2.4 that again there is no significant difference between DEDASF and

DETVSF at problem dimensionality 10. But at problem dimensionality 30 and 50, DEDASF is statisti-

cally significant compared to DETVSF at the significance level 0.05. Also, the performance of DEDASF

improves as the problem dimensionality increases, which was also the case during the comparison of multi-

ple algorithms.

To contrast the performance of DEDASF with SaDE (results sourced from [38]), we first performed

the sign test, and then the Wilcoxon test. The reason for choosing a double test measure is the fact that

while sign test being very crude and insensitive, provides a general idea about the performance difference,

and Wilcoxon test provides a more sensitive overall performance report. Table 2.7 indicates that DEDASF

is competitive at problem dimensionality 10 and 30 but does not perform well at 50 dimensions. Part of the
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Table 2.7. Performance of DEDASF when compared to SaDE.

Dimensions Wins Loses p Val (Sign Test) p Val (Wilcoxon)

10 8 12 0.50 0.42

30 9 11 0.82 0.73

50 7 13 0.26 0.21

reason for less than convincing performance of DEDASF at 50 dimensions may be attributed to the lack of

adaptive capabilities of DEFASF.

2.5. Summary

This work presents DEDASF, a variation of the classic DE algorithm wherein the scale factor, F ,

is altered first with dither and then reduced at a certain rate. We report the performance of DEDASF at

three different problem dimensionalities, 10, 30 and 50, on the twenty benchmark functions. We compare

DEDASF with DETVSF (another algorithm that reduces F with time with a constant factor), DEWD (an

algorithm that randomizes F ), the classic DE, and SaDE.

We conduct a post-hoc analysis using the Hochberg procedure to determine the best performing

deterministic parameter control algorithm. The results indicate that though there is no significant difference

between the compared algorithms at problem dimensionality 10, DEDASF is significant at significance

level 0.1 at problem dimensionality 30 and 50. Also, DEDASF is significant at significance level 0.05 when

only scale factor reduction algorithms, namely DEDASF and DETVSF, are compared. DEDASF also fairs

well at problem dimensionality 10 and 30 when compared with SaDE but is outperformed by SaDE at 50

dimensions, though the difference is not significant. Moreover, an interesting finding from this work is

the observation that different functions respond differently to various cooling rates. Future work includes

testing the scheme at higher dimensions and on a variety of test problems, and performing further analysis

to contrast the behavior of the functions when subjected to different step sizes.
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3. EFFECT OF STRATEGY ADAPTATION ON DIFFERENTIAL

EVOLUTION IN PRESENCE AND ABSENCE OF PARAMETER

ADAPTATION: AN INVESTIGATION

Differential Evolution (DE) is a simple, yet highly competitive real parameter optimizer in the fam-

ily of evolutionary algorithms. A significant contribution of its robust performance is attributed to its control

parameters, and mutation strategy employed, proper settings of which, generally lead to good solutions.

Finding the best parameters for a given problem through the trial and error method is time consuming, and

sometimes impractical. This calls for the development of adaptive parameter control mechanisms. In this

work, we investigate the impact and efficacy of adapting mutation strategies with or without adapting the

control parameters, and report the plausibility of this scheme. Backed with empirical evidence from this and

previous works, first a case is build for strategy adaptation in the presence as well as in the absence of param-

eter adaptation. Afterwards, a new mutation strategy, and an adaptive variant SA-SHADE is proposed which

is based on a recently proposed self-adaptive memory based variant of Differential evolution, SHADE. The

performance of SA-SHADE on 28 benchmark functions of varying complexity is reported, and compared

with the classic DE algorithm (DE/Rand/1/bin), and other state-of-the-art adaptive DE variants including

CoDE, EPSDE, JADE, and SHADE itself. The results show that adaptation of mutation strategy improves

the performance of DE in both presence, and absence of control parameter adaptation, and should thus be

employed frequently.

The rest of this paper is structured as follows. Section 3.1 presents an introduction to the chapter.

In Section 3.2, related work is presented. Section 3.3 presents the empirical results for building a case for

strategy adaptation irrespective of parameter adaptation. In Section 3.4, SA-SHADE is described with all

its features and then compared with state-of-the-art adaptive DE variants. Section 3.5 concludes this paper.

3.1. Introduction

Challenging real world optimization problems are ubiquitous in scientific, and engineering domains.

Complexity of the problem notwithstanding, its objective function may also be non-continuous, and non-

differentiable adding to the overall difficulty, and negotiability of the search space. Researchers have been
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looking towards Darwinian inspired evolutionary theories like social group behavior, and foraging strate-

gies, to name a few, for tackling hard, and complex optimization problems. Nature inspired algorithms are

the outcomes of such research activity. These algorithms can be broadly classified into two categories: evo-

lutionary computing methods, and swarm intelligence algorithms, both of which employ their own set of

control parameters.

The underlying idea behind evolutionary algorithms is the iterative fitness improvement of a popu-

lation of individuals (solutions), through natural selection. An iteration generally involves, producing new

individuals through a series of mutations and recombinations, gradually removing lesser fit individuals from

the population, and replacing them with newly generated individuals if their fitness proves to be better than

the individuals they were generated to replace [1]. The operation of swarm intelligence algorithms may

be behaviorally characterized as a decentralized swarm searching for optimal food sources (solutions) [2].

The direction of individual search is influenced by the current location of the individual, its best location

ever, and the location of the best individual in the whole swarm. The performance of both these classes of

algorithms is quite sensitive to their respective control parameter settings, good values of which are problem

dependent. Unless the user has quite an experience in parameter tuning, finding the best parameter settings

for a given problem through trial and error may prove, at best, an arduous, and sometimes an infeasible

task. A way out of this conundrum lies in an arrangement that may alter or adapt these parameters during

the course of the algorithm. Much attention has been paid to this problem and many adaptive schemes have

been proposed in the past [3]-[8].

Lately, Differential Evolution (DE) [9], an evolutionary algorithm, has established itself as a robust

real parameter optimizer. Intensive research activity on the subject in the past decade speaks volumes of its

power and popularity. DE has been rigorously evaluated on a broad range of benchmark problems, and has

been extensively applied to real life scientific and engineering problems [10]. It also secured first position

in the First International Contest on Evolutionary Optimization in May 1996 [11].

DE is simple and operates with only a few control parameters namely scale factor (F ), crossover

rate (Cr), and population size (NP ). The performance of DE, as with any evolutionary algorithm, is quite

sensitive to the appropriate settings of these parameters as reported in [1], [12], [13]. A good setting can

improve both the convergence speed, and the quality of the solution. Conversely, a poorly chosen setting
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of these parameters can seriously deteriorate the algorithm’s efficacy. Given the importance the parameter

setting carries, choosing effective control parameter values, at the same time, can be quite a tedious task.

Generally, an effective combination of these parameters depends upon the problem being tackled,

and necessitates a good amount of user experience. It would not be inappropriate to remark that the more

informed values of these control parameters are, the better the results. While the role of good parameter

settings in DE’s performance may be unequivocal, there is no single accepted scheme to ascertain their

universally applicable or effective values.

As a result, a good deal of research effort has been spent to devise and further improve the alter/adapt

schemes to automatically find good, and acceptable values of these control parameters.

The efficacy of employing an adaptive mutation strategy module both in presence and absence of

a control parameter adaptation scheme is investigated in this work. Based on empirical results obtained

through this investigation on 28 benchmark functions, a pool of successful mutation strategies is created.

Then a memory based fully adaptive version of Differential Evolution, SA-SHADE, is proposed that adapts

the control parameters to their appropriate values and chooses the best suited mutation strategy from the

pool.

3.2. Related Work

It is an established notion that the performance of DE depends greatly on the mutation strategy

employed, and the corresponding control parameters [12]. As the complexity of the problem increases, this

dependence becomes even more profound [13]. A good choice of mutation strategy and control parameters

can lead to better results, and at the same time, an unfavorable choice may seriously degrade DE’s per-

formance [14], [20], [40]. Choosing a good mutation strategy and associated control parameters is not an

easy task and requires quite a bit of user experience. A good amount of research has been conducted in the

area of determining good values of the control parameters. Authors in [41] suggested that good values of

F lie between 0.4 and 0.95. For Cr, they ascribed the range (0,0.2) for separable functions and (0.9,1) for

non-separable functions. On the other side of the spectrum, the authors in [13] suggested good value of F

to be 0.6 and Cr ranging between [0.3,0.9]. As can be seen, these suggestions differ, and sometimes, are

conflicting at best. This situation naturally calls for adaptive mechanisms that would require little or no user

intervention in setting up the control parameters while optimizing with DE.
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Much work has been reported on this problem of automating mutation strategy and control parame-

ters [18], [42], [43], [44]. A fuzzy adaptive differential evolution with fuzzy logic controllers was presented

in [42] where F and Cr are adapted based on the relative fitness values and individuals of subsequent gener-

ations. Authors developed linguistic fuzzy sets to encode knowledge by taking into consideration the noise

and non-linearity of the objective function. Qin et al. [34] proposed a memory based self adaptive differ-

ential evolution (SaDE) algorithm. They adapted the mutation strategy depending upon its success history.

The mutation strategy is chosen from a pool and successful strategies and Cr values are recorded. The sub-

sequent mutation strategy is selected probabilistically based on its ability to produce successful trials. The

scale factor, F , is not adapted and instead randomly sampled from the normal distribution (0.5,0.3). The

idea was to employ exploration (large F values) and exploitation (small F values) throughout the search

process. The successful values of the crossover rate, Cr, on the other hand, are stored in a memory bank,

and new values of Cr are generated from the normal distribution N (Crm,0.1), where Crm is the median

Cr value in the memory bank m. A small value of standard deviation 0.1 was chosen to guarantee that most

of the Cr values generated by N (Crm,0.1) are between [0,1], even when Crm is close to 0 or 1.

In the self-adaptive scheme, jDE, proposed by Brest et al. [17], F and Cr are encoded directly into

the individuals so that individuals with better values of these parameters are more likely to survive, thus

automatically retaining good parameter values, increasing the length of the vector. Two new parameters τ1

and τ2 are introduced to control the values of F and Cr as

F i
G+1 =


Fl + randl × Fu with probability τ1

F i
G otherwise

(3.1)

CriG+1 =


rand2 with probability τ2

CriG otherwise

(3.2)

where Fl and Fu are the lower and upper limits of F restricted to the range [0,1]. The authors

used τ1=τ2=0.1 with Fl=0.1 and Fu=0.9. Thus, essentially F (0.1,0.9) and CR (0,1) are restricted to their

respective ranges. It should be noted that this scheme has four extra parameters to be set namely Fl, Fh, τ1,
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and τ2, which might pose a problem in itself. The authors, in this case, opined to have used only a single

setting for them and kept them constant throughout the search.

A fitness based adaptation of F was proposed in [45]. Cr was fixed at 0.5. The mechanism com-

prised of two evolving populations. After every generation, F was updated as

F =


max(lmin, 1− fmax

fmin
) if fmax

fmin
< 1

max(lmin, 1− fmin

fmax
) otherwise

(3.3)

where fmin and fmax are the generational minimum and maximum objective function values obtained by

the individuals over the populations and lmin is the lower bound on F .

In [32], authors proposed a scheme wherein F was reduced linearly with an increase in the number

of function evaluations. The idea was to use high values of F during the exploration stage and small

values during the exploitation state in the later part of the search. Dawar et al. in [46] proposed a similar

technique with the difference that they used random perturbation of F in the initial stages of the search, and

reduced F non-linearly afterwards. Both of the above approaches demonstrated favorable performance over

conventional DE.

Authors in [19] proposed another adaptive version of DE named SDE, in which F and population

size NP were adapted but Cr was sampled from a normal distribution N(0.5,0.15). SDE was reported

to have outperformed other basic versions of DE described in [9]. On similar lines, DESAP (Differential

evolution with self adaptive population size) was proposed by Teo [47] in which the population size, NP

was adapted alongside F and Cr. Population size reduction has also been reported to have a favorable effect

on the performance of DE as argued in [48]. Authors of the same work reported an improvement in both

efficiency and robustness of DE when NP is gradually reduced.

Another novel adaptive mechanism proposed in [22] uses three different pools of values, one for

each mutation strategy, F , and Cr, respectively. The F pool contained the values in the range [0.4,0.9]

with an increment of 0.1, and the CR pool had values in the range [0.1,0.9] with 0.1 increments. The

mutation strategy pool contained three strategies namely rand/1/bin, best/2/bin, and current-to-rand/1/bin.

Initially every individual is randomly assigned a set of [F , Cr, Ms] and during the search successful sets
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are carried forward to the next generation while unsuccessful sets are re-initialized. The parameter Ms in

the set denotes a mutation strategy.

In [49], the authors presented an adaptive scheme and also proposed a new mutation strategy current-

to-pbest/1. The scheme also included a diversity maintenance mechanism by keeping an optional external

archive of unsuccessful parents that were unable to move to the next generation owing to their worse fitness.

The mutation strategy current-to-pbest/1 that the authors employed is different from the basic current-to-

pbest/1 strategy in the sense that the individual pbest can be selected from a user controlled set of top

individuals instead of representing just the top individual. The search mechanism of current-to-pbest/1

is quite greedy in nature and experimentally, it has been shown that this greediness often leads to poor

performance on multimodal functions [50]. In other words, the greediness of this basic mutation strategy

can be controlled to some extent in the new version. The donor from current-to-pbest/1 is obtained as

Di,G = Xi,G + Fi × (Xpbest,G −Xi,G) + Fi × (Xr1,G −Xr2,G) (3.4)

where the individual xpbest,G is randomly selected from the top NP × n (n ∈ [0, 1]) members in the G-th

generation. Here, n may be regarded as the greediness control operator. The authors adopted a memory

based control parameter adaptation scheme. F and Cr were drawn from a normal N (µF ,0.1) and a cauchy

C (µCr,0.1) distribution respectively where µF and µCr are the respective mean values of the distributions.

At the beginning of the search, µF and µCr are initialized to 0.5 and adapted thereafter as

µCr = (1− c)µCr + c.A(SCr) (3.5)

µF = (1− c)µF + c.L(SF ) (3.6)

where c is the learning rate which was suggested to be set to 0.1. SF and SCr are the success-

ful values stored in the memory during the generation. A and L are the arithmetic and Lehmer means,

respectively.

Several extensions to JADE have been proposed. Authors in [51] propose a restart strategy for

JADE and also suggest replacing the arithmetic mean in Equation 3.5 by a weighted mean, where higher
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weights are assigned to Cr values that achieve a higher fitness difference. A co-evolutionary extension to

JADE was proposed in [52]. In [53], authors adaptively select the mutation strategy to be applied among

current-to-pbest/1 with/without the external archive, and rand-to-pbest/1 with/without the external archive.

JADE has also been successfully applied to combinatorial and multi-objective optimization problems [54],

[55].

In another memory based parameter adaptation scheme called success history based adaptive DE

(SHADE) [56], authors improve upon the robustness of JADE. They argue that the continuous mean update

mechanism used in JADE may allow unfavorable values of F and CR to impact their mean value thereby

allowing the possibility of a degraded search performance. They maintain a historical memory of means as

MF , and MCr which are the successful values of means calculated from SF and SCr. In essence, SHADE

maintains a pool of successful pairwise means in contrast with JADE, which works with a single pair of

means. In case an unfavorable set of µF and µCr are recorded, its impact would be far less profound as

there may be other successful and favorable means in the pool to offset this disadvantage. SHADE was

shown to have outperformed JADE in [57].

Apart from F and Cr, adaptation of population size NP has also received much attention. The

population size significantly impacts the convergence rate of any evolutionary algorithm, with DE being no

exception. A smaller value of population size, NP , tends to favor exploitation and the solution converges

faster while always breaming with the possibility of getting stuck in a local minima. Large population sizes

favor exploration of the landscape thereby slowing down the convergence rate. Many population resizing

methods have been proposed that have shown to be effective in improving the performance of evolutionary

algorithms [48], [58], [59], [60], [61]. These methods of population size methods are essentially determin-

istic instead of adaptive, as they increase or decrease the population size based on some predefined rules.

One of such techniques named Linear Population Size Reduction (LPSR) was incorporated by au-

thors in [62] to enhance the performance of SHADE. Authors in [63] proposed jDEdynNP, a self adaptive

version of DE, in which F and Cr are self adapted and a population size reduction technique is used. Pop-

ulation size adaptation has not been investigated in this work.
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3.3. Experimentation And Results

To gauge the impact of strategy adaptation with and without adapting F and Cr, five basic mutation

strategies are evaluated on 28 benchmark functions listed in [33] at problem dimensionality 10, 30, and 50,

results of which are tabulated in Tables 3.1, 3.2, and 3.3, respectively, and are discussed in the next section.

3.3.1. Relative performance of basic strategies

Initially experiments were performed with five basic mutation strategies described below.

1. DE/rand/1/

Xi = Xr1 + F × (Xr2 −Xr3) (3.7)

2. DE/rand/2/

Xi = Xr1 + F × (Xr2 −Xr3) + F × (Xr4 −Xr5) (3.8)

3. DE/best/2/

Xi = Xbest + F × (Xr1 −Xr2) + F × (Xr3 −Xr4) (3.9)

4. DE/current-To-best/

Xi = Xtarget + F × (Xbest −Xtarget) + F × (Xr1 −Xr2) (3.10)

5. DE/rand-to-best/

Xi = Xr1 + F × (Xbest −Xr2) + F × (Xr3 −Xr4) (3.11)

The first experiment led to a generally accepted result that different mutation strategies perform differently

on different problems. Table 3.4 summarizes the relative performance of the basic mutation strategies as the

ranks obtained by applying Friedman test [36] at problem dimensionality 10, 30, and 50.

It is clear that Rand/1 is relatively the most consistent strategy across problem dimensionality. The

next question one might ask - “Is the performance of Rand/1 statistically significant?”. The experimental

results pertaining to this question are shown in Table 3.5 which contains the p-values (for α = 0.05) obtained

by applying the Hochberg post hoc method [37] over the results of Table 3.1, 3.2, 3.3, respectively.
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Table 3.1. Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 10. Reported values
are the averages of 51 independent runs for each function. Error values reaching within 10−8 of the global
optimum of the function are reported as 0.00+E00.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 3.54E+00 3.40E-06 3.36E+04 9.03E+02
3 5.21E-01 5.23E+03 1.38E-01 1.30E+06 2.76E+05
4 0.00E+00 1.87E-02 2.26E-08 2.33E+02 3.04E+01
5 0.00E+00 0.00E+00 0.00E+00 6.33E-01 3.25E-04
6 4.50E-03 1.64E-06 0.00E+00 6.37E+00 7.66E+00
7 4.80E-04 1.29E+00 7.71E-02 5.07E-02 7.39E-05
8 2.04E+01 2.04E+01 2.04E+01 2.04E+01 2.04E+01
9 1.93E-01 6.75E+00 4.88E+00 8.65E-01 5.57E-01
10 3.60E-01 5.39E-01 5.47E-01 5.16E-03 1.07E-02
11 1.73E+01 2.49E+01 2.22E+01 2.03E+00 8.24E+00
12 2.59E+01 3.23E+01 3.21E+01 1.02E+01 1.54E+01
13 2.59E+01 3.14E+01 2.96E+01 1.01E+01 1.70E+01
14 1.02E+03 1.28E+03 1.24E+03 7.88E+02 1.01E+03
15 1.25E+03 1.36E+03 1.37E+03 1.04E+03 1.16E+03
16 9.99E-01 1.14E+00 1.15E+00 9.48E-01 9.69E-01
17 3.07E+01 3.99E+01 3.54E+01 1.76E+01 1.80E+01
18 3.58E+01 4.60E+01 4.19E+01 2.56E+01 2.46E+01
19 1.84E+00 2.62E+00 2.45E+00 1.41E+00 1.64E+00
20 2.54E+00 2.95E+00 2.65E+00 1.95E+00 2.09E+00
21 3.72E+02 3.05E+02 3.81E+02 4.00E+02 4.00E+02
22 9.47E+02 1.44E+03 1.29E+03 3.39E+02 9.11E+02
23 1.16E+03 1.39E+03 1.33E+03 5.83E+02 9.39E+02
24 1.98E+02 2.05E+02 2.05E+02 2.01E+02 2.01E+02
25 2.00E+02 2.00E+02 2.02E+02 2.00E+02 2.00E+02
26 1.26E+02 1.39E+02 1.46E+02 1.23E+02 1.18E+02
27 3.00E+02 3.07E+02 3.00E+02 3.05E+02 3.00E+02
28 2.52E+02 2.90E+02 2.52E+02 3.00E+02 3.00E+02
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Table 3.2. Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 30D. Reported values
are the averages of 51 independent runs for each function. Error values reaching within 10−8 of the global
optimum of the function are reported as 0.00+E00.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 2.40E-01 0.00E+00 1.18E+02 5.95E+02
2 5.09E+05 3.72E+07 1.41E+06 4.21E+06 3.16E+06
3 2.29E-02 1.71E+09 5.26E+04 1.97E+09 1.91E+09
4 9.98E+02 3.54E+04 7.30E+03 4.56E+03 2.63E+03
5 0.00E+00 5.06E-01 4.83E-10 2.43E+02 4.21E+02
6 9.21E+00 1.80E+01 6.26E+00 1.04E+02 1.08E+02
7 1.00E-01 5.82E+01 9.91E+00 1.79E+01 1.15E+01
8 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.09E+01
9 2.25E+01 3.89E+01 3.84E+01 8.68E+00 1.04E+01
10 5.40E-03 2.55E+01 1.39E-04 5.80E+01 9.98E+01
11 1.23E+02 2.10E+02 1.87E+02 2.06E+01 8.89E+01
12 1.77E+02 2.26E+02 1.98E+02 7.71E+01 1.60E+02
13 1.72E+02 2.28E+02 1.98E+02 1.37E+02 1.66E+02
14 6.25E+03 6.81E+03 6.85E+03 6.22E+03 6.43E+03
15 7.12E+03 7.31E+03 7.22E+03 6.57E+03 6.84E+03
16 2.49E+00 2.45E+00 2.57E+00 2.48E+00 2.51E+00
17 1.83E+02 2.69E+02 2.23E+02 1.59E+02 1.67E+02
18 2.12E+02 2.83E+02 2.31E+02 1.78E+02 1.86E+02
19 1.50E+01 2.04E+01 1.73E+01 3.44E+01 3.43E+01
20 1.21E+01 1.27E+01 1.26E+01 1.21E+01 1.24E+01
21 2.91E+02 3.12E+02 3.10E+02 6.69E+02 6.67E+02
22 6.45E+03 6.95E+03 6.90E+03 4.52E+03 5.89E+03
23 7.14E+03 7.23E+03 7.08E+03 6.10E+03 6.68E+03
24 2.00E+02 2.70E+02 2.06E+02 2.17E+02 2.21E+02
25 2.39E+02 2.82E+02 2.51E+02 2.47E+02 2.45E+02
26 2.00E+02 2.03E+02 2.00E+02 2.00E+02 2.11E+02
27 3.37E+02 1.17E+03 5.93E+02 5.13E+02 4.64E+02
28 3.00E+02 3.25E+02 3.00E+02 3.25E+02 9.93E+02
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Table 3.3. Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 50D. Reported values
are the averages of 51 independent runs for each function. Error values reaching within 10−8 of the global
optimum of the function are reported as 0.00+E00.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 7.13E+01 0.00E+00 1.44E+03 3.55E+03
2 2.70E+06 2.30E+08 2.23E+07 1.76E+07 1.07E+07
3 3.36E+05 3.15E+10 3.90E+06 8.89E+09 1.07E+10
4 2.10E+04 7.38E+04 4.32E+04 4.50E+03 3.47E+03
5 0.00E+00 1.84E+01 8.11E-09 5.56E+02 9.32E+02
6 4.34E+01 6.04E+01 4.34E+01 2.17E+02 2.54E+02
7 1.03E+00 1.24E+02 2.03E+01 2.86E+01 2.98E+01
8 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01
9 7.04E+01 7.23E+01 7.23E+01 2.36E+01 2.39E+01
10 4.06E-02 4.63E+02 1.42E-02 3.08E+02 4.17E+02
11 2.16E+02 4.32E+02 3.65E+02 6.69E+01 8.27E+01
12 3.61E+02 4.77E+02 3.86E+02 7.87E+01 2.34E+02
13 3.51E+02 4.79E+02 3.83E+02 3.14E+02 3.68E+02
14 1.13E+04 1.30E+04 1.30E+04 1.21E+04 1.26E+04
15 1.39E+04 1.39E+04 1.39E+04 1.31E+04 1.35E+04
16 3.33E+00 3.17E+00 3.32E+00 3.31E+00 3.36E+00
17 3.30E+02 5.45E+02 4.19E+02 3.48E+02 3.81E+02
18 4.01E+02 5.60E+02 4.43E+02 3.75E+02 3.97E+02
19 2.97E+01 4.93E+01 3.36E+01 4.54E+02 1.34E+03
20 2.21E+01 2.27E+01 2.24E+01 2.06E+01 2.07E+01
21 4.06E+02 4.31E+02 2.74E+02 2.06E+03 2.30E+03
22 1.08E+04 1.34E+04 1.32E+04 3.88E+03 1.19E+04
23 1.37E+04 1.39E+04 1.39E+04 1.23E+04 1.30E+04
24 2.07E+02 3.61E+02 2.14E+02 2.60E+02 2.68E+02
25 2.78E+02 3.81E+02 3.13E+02 3.31E+02 3.31E+02
26 2.45E+02 3.45E+02 3.76E+02 3.15E+02 2.90E+02
27 5.71E+02 2.04E+03 1.22E+03 8.96E+02 9.57E+02
28 4.00E+02 4.59E+02 4.00E+02 1.26E+03 1.53E+03
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Table 3.4. Relative ranks obtained by Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 10D, 30D,
and 50D respectively.

Strategy Rank-10D Rank-30D Rank-50D

Rand/1 2.46 2.01 2.00
Rand/2 3.97 4.14 4.23

Best/2 3.5 3.08 3.08

RandToBest 2.5 2.58 2.41

CurrToBest 2.57 3.16 3.26

Table 3.5. p values obtained using Hochberg procedure by mutation strategies Rand/2, Best/2, RandToBest
and CurrToBest when compared to Rand/1 at 10D, 30D, and 50D respectively at α level 0.05.

Strategy pHoc-10D pHoc-30D pHoc-50D

Rand/2 0.001 0.000 0.000

Best/2 0.042 0.020 0.019

RandToBest 0.932 0.176 0.331
CurrToBest 0.932 0.022 0.008

The results in Table 3.5 show that Rand/1 significantly outperforms Rand/2 and Best/2 at every

problem dimensionality. At 10 dimensions there is not much of a performance difference between Rand/1,

RandToBest, and CurrToBest. At 30 dimensions though, Rand/1 significantly outperforms CurrToBest, and

RandToBest remains the only competitive strategy against Rand/1, and this observation is repeated at 50

dimensions.

The first inference that can be drawn from these results is that for the given number of function

evaluations and in the absence of control parameter adaptation, Rand/1 remains the most competitive strat-

egy across problem dimensionality, and the relative competitiveness of Rand/1 against Rand/2, Best/2, and

CurrToBest improves with an increase in problem dimensionality.

The performance of Best2 relative to CurrToBest improves as problem dimensionality increases as it

is ranked 3 at 50 dimensions as compared to 4 at 30 dimensions. Rand2 turns out to be the worst performing

strategy at every problem dimensionality.

To ascertain the relative competitiveness of RandToBest and CurrToBest at 30D and 50D, the

Wilcoxon test was performed, and the results are presented in Table 3.6.
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Table 3.6. Results obtained by the Wilcoxon test for strategy Rand2Best against CurrToBest

Problem Dimensionality Asymptotic P-value

30 0.070897

50 0.001324

Table 3.6 shows that Rand2Best turns out to be a better performing strategy, significantly outper-

forming CurrToBest at 50 (α=0.05) and 30 (α=0.01) dimensions.

3.3.2. A case for strategy adaptation irrespective of parameter adaptation

Looking at the above results, one may surmise that Rand1 is relatively the most robust strategy, and

can be used with confidence while optimizing with DE. This observation, however, requires greater scrutiny.

Table 3.7 shows the number of wins scored by all the mutation strategies at 10, 30, and 50 dimensions.

Functions on which multiple strategies score equally are not counted as wins.

Table 3.7. Number of wins scored, out of 28, by all mutation strategies at 10, 30, and 50 dimensions,
respectively.

Dimensions Rand1 Rand2 Best2 RandToBest CurrToBest

10 5 2 1 10 5

30 10 1 2 10 0

50 11 1 2 9 2

Cumulative results presented in Tables 3.5 and 3.7 coupled with works reported in [18], [34] are

indicative that no single strategy has the ability to perform relatively better on all the problems. This is

evidence that calls for automating the selection of mutation strategies during the course of the search.

It must be noted that several works in the past [50], [64], [65] have evaluated multiple variants of

DE on various real life and benchmark functions, and have arrived at seemingly contrasting results, possibly

due to varying test subjects and problems. For example, authors in [64] reported that DE/Best/* variants

perform much better than DE/Rand/* variants on the problem of optimal design of shell-and-heat tube ex-

changers. This of-course is the opposite of what is reported in this work. On similar lines, authors in [65]

report superior performance of DE/Rand/1/bin.
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All in all, to circumvent these contrasting claims, it would be prudent to let the mutation strategy

adapt during the search operation. Strategy adaptive variants proposed in the past [18], [34], [66], [67], [68],

have reported favorable results.

3.3.3. Impact of mutation strategy on adaptive control parameter models

To ascertain the importance of mutation strategy employed while using adaptive control parameters

(F and Cr) models, experiments were performed on the same test suite, but this time a control parameter

adaptive model proposed in [56] was used. The choice of this model was based on the superior performance

this demonstrated over other adaptive models as is evident from the work in [56]. After making this choice,

the following questions were asked.

1. What impact does a mutation strategy has on the search direction when the control parameters are

adapted?

2. Is the impact profound enough to necessitate automated strategy selection?

To answer the first question the adaptive model was tested with multiple mutation strategies at

problem dimensionality 10, 30, and 50, the results of which are presented in Tables 3.8, 3.9, and 3.10,

respectively. Table 3.11 and 3.12 show the ranks and p values obtained by the Friedman and Hochberg test

respectively, for the tested mutation strategies at problem dimensionality 10, 30, and 50, respectively.

It is worth noting that SHADE used CurrentTopBest as the mutation strategy that used an external

archive of inferior solutions, and draws the pbest vector from the top x% individuals in the population.

Results from Tables 3.11 and 3.12 show that when a control parameter adaptation model is used, the strategy

used in SHADE is ranked at the top of the strategies tested, and proves vastly superior to Rand1, Rand2, and

Best2 at every problem dimensionality. It, however, is not significant when compared to CurrentToBest and

RandToBest as is clear from the p values shown in Table 3.12.

There are two important inferences that can be drawn from these results.

• With or without a given parameter adaptation model, the choice of mutation strategy plays an impor-

tant role in determining the quality of solutions.

• RandToBest and CurrentToBest tend to perform relatively better that Rand1, which according to the

results tabulated earlier, was the most robust strategy in absence of parameter adaptation.
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Table 3.8. Performance of Rand/1, Rand/2, Best/2, RandToBest, CurrentToBest, and SHADE at 10D when
employed with adaptive control parameter model used in SHADE. Reported values are the averages of 51
independent runs for each function. Error values reaching within 10−8 of the global optimum of the function
are reported as 0.00+E00.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 2.30E+01 1.39E+04 2.08E-05 6.11E-01 3.13E-01 1.27E-01
4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 8.88E+00 8.41E+00 9.81E+00 9.35E+00 8.41E+00 7.89E+00
7 3.18E-01 9.09E-01 1.16E-04 2.60E-05 4.26E-02 3.26E-03
8 2.04E+01 2.04E+01 2.04E+01 2.03E+01 2.03E+01 2.04E+01
9 4.16E+00 4.81E+00 4.01E+00 3.64E+00 3.48E+00 3.39E+00
10 4.74E-02 6.42E-02 6.42E-02 1.70E-02 1.02E-02 1.20E-02
11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 8.48E+00 1.05E+01 9.00E+00 5.27E+00 3.55E+00 3.14E+00
13 1.20E+01 1.31E+01 1.50E+01 7.48E+00 4.98E+00 3.77E+00
14 0.00E+00 2.73E-02 2.83E-04 5.95E-03 0.00E+00 4.90E-03
15 7.21E+02 7.19E+02 7.01E+02 6.27E+02 4.57E+02 4.21E+02
16 1.01E+00 1.16E+00 1.05E+00 8.92E-01 4.99E-01 7.08E-01
17 1.01E+01 1.00E+01 1.01E+01 1.01E+01 1.01E+01 1.01E+01
18 2.29E+01 2.17E+01 1.88E+01 1.78E+01 1.77E+01 1.69E+01
19 4.11E-01 4.66E-01 4.30E-01 3.65E-01 3.32E-01 3.44E-01
20 2.54E+00 2.80E+00 2.32E+00 2.24E+00 2.38E+00 2.16E+00
21 4.00E+02 3.53E+02 3.81E+02 4.00E+02 4.00E+02 4.00E+02
22 1.70E+01 5.86E+01 3.80E+01 5.58E+00 1.06E+01 4.84E+00
23 7.71E+02 8.13E+02 6.94E+02 5.98E+02 5.42E+02 4.61E+02
24 2.06E+02 1.98E+02 2.06E+02 2.00E+02 1.93E+02 1.93E+02
25 2.01E+02 2.00E+02 2.03E+02 2.00E+02 2.00E+02 2.00E+02
26 1.12E+02 1.22E+02 1.24E+02 1.07E+02 1.05E+02 1.33E+02
27 3.00E+02 3.30E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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Table 3.9. Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest at 30D when employed
with adaptive control parameter model used in SHADE. Reported values are the averages of 51 independent
runs for each function. Error values reaching within 10−8 of the global optimum of the function are reported
as 0.00+E00.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.89E+06 1.72E+07 1.11E+07 3.78E+04 1.77E+04 9.00E+03
3 4.36E+06 7.06E+07 5.89E+05 1.37E+05 1.31E+05 4.02E+01
4 2.55E+04 2.25E+04 1.61E+04 2.45E+03 1.64E-01 1.92E-04
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 1.42E+01 1.49E+01 1.23E+01 1.47E+01 8.42E+00 5.96E-01
7 2.43E+01 3.59E+01 5.09E+00 1.97E+00 3.18E+00 4.60E+00
8 2.09E+01 2.10E+01 2.09E+01 2.06E+01 2.06E+01 2.07E+01
9 2.79E+01 2.81E+01 2.80E+01 2.74E+01 2.74E+01 2.75E+01
10 1.23E+00 1.00E+01 8.69E-02 1.72E-01 1.07E-01 7.69E-02
11 0.00E+00 0.00E+00 3.79E-01 0.00E+00 0.00E+00 0.00E+00
12 6.28E+01 6.13E+01 4.54E+01 2.52E+01 2.44E+01 2.30E+01
13 9.42E+01 9.67E+01 8.57E+01 5.47E+01 5.20E+01 5.03E+01
14 1.09E-02 3.60E+00 1.55E+00 2.08E-02 8.92E-03 3.18E-02
15 4.72E+03 4.96E+03 4.57E+03 4.38E+03 3.22E+03 3.22E+03
16 1.43E+00 1.96E+00 1.61E+00 6.09E-01 9.22E-01 9.13E-01
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 1.11E+02 1.42E+02 8.99E+01 6.89E+01 7.36E+01 7.25E+01
19 1.79E+00 1.92E+00 1.80E+00 1.52E+00 1.38E+00 1.36E+00
20 1.17E+01 1.19E+01 1.10E+01 1.04E+01 1.07E+01 1.05E+01
21 2.48E+02 2.74E+02 2.81E+02 2.95E+02 2.97E+02 3.09E+02
22 8.19E+01 2.07E+02 1.52E+02 1.08E+02 9.79E+01 9.81E+01
23 4.83E+03 5.16E+03 4.44E+03 4.57E+03 3.74E+03 3.51E+03
24 2.38E+02 2.66E+02 2.28E+02 2.02E+02 2.05E+02 2.05E+02
25 2.84E+02 2.87E+02 2.85E+02 2.69E+02 2.82E+02 2.59E+02
26 2.06E+02 2.01E+02 2.01E+02 2.15E+02 2.02E+02 2.02E+02
27 9.85E+02 1.01E+03 9.62E+02 3.26E+02 4.60E+02 3.88E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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Table 3.10. Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest at 50D when employed
with adaptive control parameter model used in SHADE. Reported values are the averages of 51 independent
runs for each function. Error values reaching within 10−8 of the global optimum of the function are reported
as 0.00+E00.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 3.13E+07 4.93E+07 2.71E+07 1.79E+05 8.70E+04 2.66E+04
3 5.14E+08 2.87E+09 2.85E+06 2.67E+06 6.84E+05 8.80E+05
4 6.14E+04 6.13E+04 3.02E+04 1.24E+04 5.21E-01 1.61E-03
5 0.00E+00 0.00E+00 0.00E+00 6.92E-09 0.00E+00 0.00E+00
6 4.35E+01 4.35E+01 4.34E+01 4.38E+01 4.36E+01 4.28E+01
7 6.15E+01 8.33E+01 2.43E+01 1.62E+01 2.58E+01 2.33E+01
8 2.11E+01 2.11E+01 2.11E+01 2.09E+01 2.08E+01 2.09E+01
9 5.57E+01 5.63E+01 5.52E+01 5.47E+01 5.56E+01 5.54E+01
10 1.27E+01 5.63E+01 1.71E-01 2.50E-01 1.28E-01 7.37E-02
11 0.00E+00 4.74E-02 4.03E+00 0.00E+00 0.00E+00 0.00E+00
12 1.24E+02 1.48E+02 8.25E+01 6.46E+01 6.09E+01 5.86E+01
13 2.03E+02 2.07E+02 1.53E+02 1.40E+02 1.50E+02 1.45E+02
14 8.33E-03 1.76E+01 1.25E+01 3.69E-02 1.61E-02 3.45E-02
15 9.22E+03 9.03E+03 9.22E+03 8.79E+03 7.04E+03 6.82E+03
16 2.04E+00 2.12E+00 1.81E+00 1.42E+00 1.22E+00 1.28E+00
17 5.08E+01 5.08E+01 5.08E+01 5.08E+01 5.08E+01 5.08E+01
18 2.33E+02 2.64E+02 1.49E+02 1.16E+02 1.33E+02 1.37E+02
19 3.26E+00 3.59E+00 3.24E+00 2.77E+00 2.74E+00 2.64E+00
20 2.11E+01 2.14E+01 2.07E+01 1.92E+01 1.97E+01 1.93E+01
21 4.94E+02 3.57E+02 5.54E+02 8.15E+02 9.66E+02 8.45E+02
22 3.28E+01 2.35E+02 9.92E+01 1.24E+01 1.50E+01 1.33E+01
23 9.79E+03 1.04E+04 9.28E+03 8.58E+03 8.07E+03 7.63E+03
24 3.22E+02 3.40E+02 2.93E+02 2.21E+02 2.30E+02 2.34E+02
25 3.72E+02 3.74E+02 3.71E+02 3.54E+02 3.74E+02 3.40E+02
26 2.70E+02 2.28E+02 3.07E+02 3.08E+02 2.06E+02 2.58E+02
27 1.67E+03 1.71E+03 1.65E+03 6.99E+02 9.57E+02 9.36E+02
28 4.00E+02 4.00E+02 5.42E+02 4.00E+02 4.00E+02 4.58E+02
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Table 3.11. Relative ranks obtained by Rand/1, Rand/2, Best/2, RandToBest, CurrToBest, and SHADE at
10D, 30D, and 50D.

Strategy Rank-10D Rank-30D Rank-50D

Rand/1 4.17 4.16 4.30

Rand/2 4.50 5.19 5.00

Best/2 4.05 4.03 4.00

RandToBest 3.16 2.82 2.71

CurrToBest 2.57 2.46 2.71

SHADE 2.53 2.32 2.26

Table 3.12. p values obtained using Hochberg procedure by Rand1/1, Rand/2, Best/2, RandToBest, and
CurrToBest when compared with SHADE at 10D, 30D, and 50D at α level 0.05.

Strategy pHoc-10D pHoc-30D pHoc-50D

Rand/1 0.004 0.000 0.000

Rand/2 0.000 0.000 0.000

Best/2 0.000 0.000 0.019

RandToBest 0.422 0.317 0.371
CurrToBest 0.943 0.775 0.371

Table 3.13 shows the number of wins scored by each strategy and provides some insights into

investigating the plausibility of automated strategy selection vis-a-vis control parameter adaptation.

Table 3.13. Number of wins scored, out of 28, by all mutation strategies and SHADE at 10, 30, and 50
dimensions, respectively.

D Rand1 Rand2 Best2 RandToBest CurrToBest SHADE

10 0 2 0 2 5 7

30 2 0 0 6 3 11

50 1 1 0 7 4 8

As is clear from the results in Table 3.12 and 3.13, even though the strategy used in SHADE is

highest ranked, there is a possibility of further improving SHADE by automating the selection of mutation

strategy as the cumulative wins scored by all strategies at every problem dimensionality is greater than the

wins recorded by SHADE.
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3.4. SA-SHADE Algorithm

3.4.1. SA-SHADE and its characteristic differences compared to SHADE

Motivated by the results presented in the previous section, we investigated the benefits of plugging

a strategy adaptation in the original SHADE algorithm.

SA-SHADE, a memory based adaptive version of Differential Evolution is proposed wherein F ,

Cr, and mutation strategy are adapted during the search process. The basis of this chapter is the SHADE

algorithm [56], which adapts F and Cr but uses a fixed mutation strategy which is current-to-pbest/1 with

an optional external archive that was originally used in [49].

SA-SHADE and SHADE differ on three aspects.

• SA-SHADE adapts the mutation strategy during the search process, while SHADE uses a single

mutation strategy throughout the search process.

• SA-SHADE uses the mode of successful mutation strategies to update its memory, which is slightly

different from the way F and Cr are adapted in SHADE.

• The learned memory of successful strategies in SA-SHADE is wiped out after a certain number of

function evaluations which is determined by the reset rate R. In SHADE on the other hand, such reset

is not performed for updating the memory of successful F and Cr values.

The operation of SA-SHADE is described as follows. First, the mutation strategies to be included in

the pool P are selected. Then an integer vectorMMs, the memory containing successful mutation strategies,

is initialized, length of which is user controlled, with randomly selected mutation strategies from the pool,

P . All of the mutation strategies in P are included in MMs at least once. Then, every vector is allowed to

randomly choose a mutation strategy from the memory MMs. For every successful individual, just like F

andCr, we record, in another integer vector SMs, the successful mutation strategies over a generation. Then,

the most successful strategy of the generation, given by the mode of SMs, is stored in the memoryMMs.

This operation is repeated until a number of function evaluations are reached after which the memory MMs

is re-initialized. This resetting of the memory is done to disallow any probabilistic bias created by the system

towards a particular mutation strategy, and we show that this indeed proves useful. At the same time, it can

be argued that the same reset scheme can be applied to F and Cr but our experiments show that this proves
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Algorithm 2 PSEUDO-CODE FOR SA-SHADE
1: Set generation number, G=0
2: Set memory size M , reset rate R=0.2, counter k=1, and initialize external archive A = ∅
3: Initialize the mutation strategy pool PMs

4: Initialize a population of NP individuals P = [X1, X2, ...XNP ] where every ith individual is a D
dimensional vector represented as Xj

i =[x1i , x2i ... xDi ] where 1 ≤ j ≤ D. Restrict xji to its minimum
and maximum bounds as xji,min and xji,max

5: Set all values in memory MCr,MF to 0.5 and randomly initialize MMs with mutation strategies from
the pool PMs

6: while stopping criteria is not met do
7: SCr = ∅ SF = ∅; SMs = ∅;
8: for every target vector Xi in P do
9: Select a random integer r from [1,M ]

10: Draw F from a cauchy distribution as C(MF,r, 0.1)
11: Draw Cr from a normal distribution as N(MCr,r, 0.1)
12: Choose a mutation strategy from MMs,r

13: Produce a trial vector V G
i , using the control parameters generated and the strategy selected above

14: Select either the target vector or the trial vector based on their fitness values as:

XG+1
i =

{
V G
i if f(V G

i ) ≤ f(XG
i )

XG
i otherwise

15: //update external archive A
16: if (f(V G

i ) ≤ f(XG
i )) then

17: Add XG
i to external archive A

18: end if
19: end for
20: //check for mutation memory reset
21: if G = k × (R×Gmax) then
22: Randomly initialize MMs with mutation strategies from the pool PMs

23: end if
24: Increase the generation count G to G+ 1
25: Increase the counter k to k + 1
26: end while
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counterproductive in most of the cases. Hence, this work has steered clear of using this reset method on F

and Cr. SA-SHADE is summarized in Algorithm 2.

3.4.2. Choice of mutation strategies used in SA-SHADE

As proven in Section III-B, the choice of mutation strategy has a significant impact on the solution

quality. A good mutation strategy is problem dependent, i.e., for the one which is successful on one land-

scape may prove adverse on others. There are some characteristics associated with every mutation strategy

that may justify its use or otherwise. For example, double difference vector strategies like DE/rand/2/bin

and DE/best/2/bin exhibit better diversity than DE/rand/1/bin and DE/best/1/bin [13], [15], [39], [40], mak-

ing them more suitable on landscapes riddled with local minima. Strategies that use the best individual

to generate mutant like DE/best/1/bin and DE/rand-to-best/1/bin tend to be greedy and score well on uni-

modal problems but their performance worsens on difficult and highly multimodal problems. A rotationally

invariant strategy, DE/current-to-rand/1/, tends to do better on rotated problems [69]. The scheme DE/target-

to-best/1/bin with neighborhood search proposed in [70], provides a good balance between exploration and

exploitation.

Our pool PMs was obviously designed to contain the mutation strategies with diverse capabilities.

The following strategies were chosen for the listed reasons.

1. DE/rand/1/: Most widely used, less greedy but robust.

2. DE/rand/2/: Even though it has a poor record of achieving good solutions, it has the ability to improve

the diversity of population as it is capable of generating more trial vectors due to presence of two

difference vectors [9], [13].

3. DE/best/2/: Greedy but also has the ability of diversity improvement as it utilizes two different vectors

[9], [13].

4. DE/current-To-pbestWithArchive/: Proposed in [49] and used in [56] which is the basis of SA-

SHADE.

5. DE/current-rand-to-pbest/: A new mutation strategy that we experimented with, that uses the target

vector as the base vector, a difference of one of the top 20% of best vectors and a randomly chosen
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vector, and another difference vector of two randomly chosen vectors. It has proven to be unstable

sometimes but has the capability to negotiate local minima.

Xi = Xtarget + F × (Xpbest −Xr1) + F × (Xr2 −Xr3) (3.12)

This works incorporates a memory based adaptation mechanism into SA-SHADE on similar lines

as the memory based adaptation of F and Cr. SHADE does not adapt the mutation strategy but only F and

Cr.

3.4.3. Results

The comparative results of SA-SHADE with other variants at 30 dimensions are shown in Table

3.14. Table 3.15 lists the rank and p values obtained by SA-SHADE. It is clear that SA-SHADE is the top

ranked algorithm among all the algorithms compared. SA-SHADE is proven to be statistically significant

compared to AD-Rand/1 (α = 0.05), AD-Rand2 (α = 0.05), AD-Best2 (α = 0.05), AD-RandToBest (α

= 0.05), and AD-CurrToBest (α = 0.1) while being highly competitive compared to SHADE. The prefix

AD denotes that the algorithm uses the adaptive control parameter mechanism. While in previous results,

SHADE was not found to be better than Ad-RandToBest and AD-CurrToBest at any significance level,

SA-SHADE improves upon SHADE and shows superior results.

Table 3.17 shows the relative performance of SHADE with recently proposed state-of-the-art adap-

tive DE mechanisms. It is clear that SHADE, apart from EPSDE, is not statistically significant when com-

pared to other algorithms when compared at α = 0.05 or 0.1. SA-SHADE, with the results listed in Table

3.18, improves over SHADE and shows statistically significant performance against EPSDE, CoDE, and

dynNP-jDE while being highly competitive against JADE and SHADE.

The superior performance of SA-SHADE can be attributed to the strategy adaptation module as

the underlying control parameter adaptation mechanism remains the same as SHADE. Determining the

contribution of memory reset used in strategy adaptation is a matter of further investigation.

3.5. Summary

In this chapter, the plausibility of integrating a strategy adaptation mechanism with a parameter

adaptation mechanism is investigated. Given fixed control parameter settings, it is demonstrated, on a test

suite of 28 benchmark functions, that no single mutation strategy performs significantly better than all other
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Table 3.14. Performance of parameter adaptive Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest
against SHADE, and SA-SHADE at 30D. Reported values are the averages of 51 independent runs for each
function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE SA-SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.89E+06 1.72E+07 1.11E+07 3.78E+04 1.77E+04 9.00E+03 8.15E+03
3 4.36E+06 7.06E+07 5.89E+05 1.37E+05 1.31E+05 4.02E+01 1.19E+05
4 2.55E+04 2.25E+04 1.61E+04 2.45E+03 1.64E-01 1.92E-04 3.10E-02
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 1.42E+01 1.49E+01 1.23E+01 1.47E+01 8.42E+00 5.96E-01 0.00E+00
7 2.43E+01 3.59E+01 5.09E+00 1.97E+00 3.18E+00 4.60E+00 3.06E+00
8 2.09E+01 2.10E+01 2.09E+01 2.06E+01 2.06E+01 2.07E+01 2.07E+01
9 2.79E+01 2.81E+01 2.80E+01 2.74E+01 2.74E+01 2.75E+01 2.69E+01
10 1.23E+00 1.00E+01 8.69E-02 1.72E-01 1.07E-01 7.69E-02 6.13E-02
11 0.00E+00 0.00E+00 3.79E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 6.28E+01 6.13E+01 4.54E+01 2.52E+01 2.44E+01 2.30E+01 1.82E+01
13 9.42E+01 9.67E+01 8.57E+01 5.47E+01 5.20E+01 5.03E+01 3.84E+01
14 1.09E-02 3.60E+00 1.55E+00 2.08E-02 8.92E-03 3.18E-02 6.34E-01
15 4.72E+03 4.96E+03 4.57E+03 4.38E+03 3.22E+03 3.22E+03 3.24E+03
16 1.43E+00 1.96E+00 1.61E+00 6.09E-01 9.22E-01 9.13E-01 1.01E+00
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 1.11E+02 1.42E+02 8.99E+01 6.89E+01 7.36E+01 7.25E+01 7.17E+01
19 1.79E+00 1.92E+00 1.80E+00 1.52E+00 1.38E+00 1.36E+00 1.33E+00
20 1.17E+01 1.19E+01 1.10E+01 1.04E+01 1.07E+01 1.05E+01 1.03E+01
21 2.48E+02 2.74E+02 2.81E+02 2.95E+02 2.97E+02 3.09E+02 2.81E+02
22 8.19E+01 2.07E+02 1.52E+02 1.08E+02 9.79E+01 9.81E+01 9.75E+01
23 4.83E+03 5.16E+03 4.44E+03 4.57E+03 3.74E+03 3.51E+03 3.58E+03
24 2.38E+02 2.66E+02 2.28E+02 2.02E+02 2.05E+02 2.05E+02 2.01E+02
25 2.84E+02 2.87E+02 2.85E+02 2.69E+02 2.82E+02 2.59E+02 2.80E+02
26 2.06E+02 2.01E+02 2.01E+02 2.15E+02 2.00E+02 2.02E+02 2.00E+02
27 9.85E+02 1.01E+03 9.62E+02 3.26E+02 4.60E+02 3.88E+02 4.11E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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Table 3.15. Relative ranks obtained by Rand/1, Rand/2, Best/2, RandToBest, CurrToBest, SHADE, and
SA-SHADE at 30D.

Strategy Rank pHoc

AD-Rand/1 4.17 0.00

AD-Rand/2 4.50 0.00

AD-Best/2 4.05 0.00

AD-RandToBest 3.16 0.03

AD-CurrToBest 2.57 0.06

SHADE 2.53 0.26

SASHADE 2.28 -

mutation strategies. Then, it is shown that similar results are observed in the presence of control param-

eter adaption. This built the case of automating the mutation strategies with or without control parameter

adaptation. After that, a strategy adaptation mechanism is incorporated into a well known history based

parameter adaptation mechanism, SHADE. The enhanced version SA-SHADE is then compared with other

well known adaptive mechanisms and the superior results obtained by SA-SHADE are shown. SA-SHADE

performs significantly better than well known adaptive variants, i.e., CoDE, EPSDE, and dynNP-jDE and

is highly competitive compared to SHADE, and JADE. SHADE, though being superior, was not found to

be statistically significantly different when compared with CoDE and dynNP-jDE. Thus, SA-SHADE im-

proves upon SHADE in this regard. Another important conclusion that can be drawn from the results is that

strategy adaptation is a useful mechanism both in presence and absence of control parameter adaptation, and

we propose that it should be used while optimizing with DE.

Future work includes investigating the impact of different adaptive strategies on multiple classes of

benchmark functions and classifying strengths and weaknesses of each mechanism accordingly. Further to

that, the utility of a population size adaptation mechanism into SA-SHADE is also proposed as future work.

46



Table 3.16. Relative performance of SA-SHADE against state-of-the-art adaptive variants of DE at 30D.
Reported values are the averages of 51 independent runs for each function. Error values reaching within
10−8 of the global optimum of the function are reported as 0.00+E00.

F SA-SHADE SHADE CoDE EPSDE JADE dynNP-jDE
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 8.15E+03 9.00E+03 9.78E+04 1.37E+06 7.67E+03 9.52E+04
F3 1.19E+05 4.02E+01 1.08E+06 1.75E+08 4.71E+05 1.71E+06
F4 3.10E-02 1.92E-04 8.18E-02 8.08E+03 6.09E+03 4.76E+01
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 5.96E-01 4.16E+00 9.27E+00 2.07E+00 1.19E+01
F7 3.06E+00 4.60E+00 9.32E+00 5.88E+01 3.16E+00 2.62E+00
F8 2.07E+01 2.07E+01 2.08E+01 2.09E+01 2.09E+01 2.10E+01
F9 2.69E+01 2.75E+01 1.45E+01 3.50E+01 2.65E+01 2.20E+01
F10 6.13E-02 7.69E-02 2.71E-02 1.02E-01 4.04E-02 3.63E-02
F11 0.00E+00 0.00E+00 0.00E+00 1.95E-02 0.00E+00 0.00E+00
F12 1.82E+01 2.30E+01 3.98E+01 4.94E+01 2.29E+01 4.07E+01
F13 3.84E+01 5.03E+01 8.04E+01 7.68E+01 4.67E+01 7.10E+01
F14 6.34E-02 3.18E-02 3.60E+00 3.99E-01 2.86E-02 9.39E-03
F15 3.24E+03 3.22E+03 3.36E+03 6.75E+03 3.24E+03 4.39E+03
F16 1.01E+00 9.13E-01 3.38E-01 2.48E+00 1.84E+00 2.32E+00
F17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
F18 7.17E+01 7.25E+01 6.69E+01 1.37E+02 7.76E+01 1.35E+02
F19 1.33E+00 1.36E+00 1.61E+00 1.84E+00 1.44E+00 1.27E+00
F20 1.03E+01 1.05E+01 1.06E+01 1.30E+01 1.04E+01 1.13E+01
F21 2.81E+02 3.09E+02 3.02E+02 3.05E+02 3.04E+02 2.94E+02
F22 9.75E+01 9.81E+01 1.17E+02 3.09E+02 9.39E+01 1.03E+02
F23 3.58E+03 3.51E+03 3.56E+03 6.74E+03 3.36E+03 4.36E+03
F24 2.01E+02 2.05E+02 2.21E+02 2.91E+02 2.17E+02 2.04E+02
F25 2.80E+02 2.59E+02 2.57E+02 2.99E+02 2.74E+02 2.55E+02
F26 2.00E+02 2.02E+02 2.18E+02 3.56E+02 2.15E+02 2.00E+02
F27 4.11E+02 3.88E+02 6.20E+02 1.21E+03 6.70E+02 3.90E+02
F28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
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Table 3.17. Relative ranks and p values obtained by SHADE against CoDE, EPSDE, JADE, and dynNP-jDE
at 30D.

Algorithm Rank-10D p value

SHADE 2.30 –

CoDE 2.91 0.15
JADE 2.50 0.64

dynNP-jDE 2.76 0.27
EPSDE 4.51 0.00

Table 3.18. Relative ranks and p values obtained by SA-SHADE against SHADE, JADE, dynNP-jDE,
CoDE, and EPSDE at 30D.

Algorithm Rank-10D p value

SA-SHADE 2.46 –

SHADE 2.92 0.35
JADE 3.14 0.15

dynNP-jDE 3.41 0.05

CoDE 3.60 0.02

EPSDE 5.44 0.00
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4. A DIFFERENTIAL EVOLUTION BASED AXLE DETECTOR FOR

ROBUST VEHICLE CLASSIFICATION

Video based vehicle classification is gaining huge grounds due to its low cost and satisfactory accu-

racy. This paper presents a robust vehicle classification system. The system in its essence, aims to classify

a vehicle based on the number of circles (axles) in an image using Hough Transform which is a popular

parameter based feature detection method. The system consists of four modules whereby the output of one

module feeds the next in line. We test our system on single lane highway and street traffic. When the in-

formation about the problem at hand (changing weather conditions, camera calibration parameters etc.) is

limited or is dynamic, determining the Hough Transform set-up parameters manually becomes time consum-

ing, challenging, and may often lead to false detections. This calls for finding the appropriate parameter-set

dynamically according to the situation, which inherently is a global optimization problem. Differential Evo-

lution has emerged as a simple and efficient global optimizer, and we couple it with Hough Transform to

improve the overall accuracy of the classification system. Five different variants of DE are tested on varied

videos, and a performance profile of all the variants is provided. The results demonstrate that employing DE

indeed improves the system’s classification accuracy (at the expense of extra compute cycles) making the

system more reliable and robust.

The rest of this chapter is structured as follows. Section 4.1 presents an introduction to the chapter.

Section 4.2 describes the related work. Section 4.3 outlines and explains the proposed classification system

with all its features. In Section 4.4, results and their analysis are presented, and Section 4.5 concludes the

chapter.

4.1. Introduction

Automatic vehicle classification has emerged as a significantly important element in the myriad

web of traffic data collection and statistics. Regulations on road side construction for pertinent reasons,

increasing vehicle density, and cost of overlaying roads are some of the factors calling for ever more efficient

utilization of our existing transportation networks. A part of the solution to these pressures lies in vehicle

classification systems that compute the number and type of vehicles passing a particular street or highway.
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This information has an evident impact on the cost and efficiency of the transportation system; road thickness

decision being one of the many advantages this system has to offer. Many video based classification systems

have been proposed in the past with their own advantages and disadvantages. These systems can be primarily

distinguished by the type of sensors they use, most common of which are magnetic, laser, pressure, single

or multiple cameras, etc. Magnetic and laser sensors tend to have a higher classification accuracy but at the

same time have high equipment and installation costs, and are intrusive techniques. Computer vision based

vehicle classification systems are generally attributed with low cost and accuracy, and are an active area of

research. We propose a video based vehicle classification system that determines the type of vehicle based

on the number of axles and distance between them. We use Hough Transform, a parameter based feature

detection method, to detect the axles. The quality of the detected circles is sensitive to appropriate settings of

these parameters. Since the process is time consuming and it may not be fruitful to adjust these parameters

manually every time, there is always a motivation to do a parameter search by attaching a machine learning

algorithm to discover an optimized set.

We employ DE as the real parameter optimizer to find the best suited parameters for accurate circle

detection, which is a crucial part of our vehicle classification system. We show that the use of DE, apart

from removing the need for setting Hough Transform parameters manually, also has the added advantage

of improving the accuracy of the axle detection module, thereby improving the robustness of the overall

classification system. On the other side, the process of finding the optimal Hough Transform parameters

does add an extra computational cost making it a obvious case of trade-off between speed and accuracy.

The focus of this work is to propose a new system of classifying vehicles, and investigate the utility

of DE to improve its classification accuracy. Due to limited space, this work keeps the former part succinct

and describes the later in detail. To the best of our knowledge, no axle based vehicle classification system

in the current form has been proposed before.

4.2. Related Work

Vehicle classification is a difficult problem to tackle. Categorizing vehicles comprehensively is

quite an arduous task given the variety of vehicles and similarities between them at the same time. Different

shapes and sizes within a single vehicle category adds to the dilemma. On top of this we have drastically

changing weather conditions, shadows, camera noise, occlusions, etc., which make the task even more
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challenging. Many attempts have been made to solve this classification problem using real time (online)

and recorded (offline) video. In [72], the authors describe a vehicle tracking and classification system that

could classify moving objects as humans or vehicles without classifying vehicles into further subcategories.

A parameterized three dimensional model for vehicle classification was presented in [140]. The model was

based on the shape of a common sedan, the assumption being that in regular traffic conditions, cars are

more likely to be encountered than trucks or other vehicles. In [74] and [75], the authors developed three

dimensional models for various vehicles like sedans, wagons, etc., and then compared the projections of

these models with features of the detected object in the image. This model was parameterized and improved

in [76]. In their award winning paper [114], the authors proposed a video based detection and classification

system that modeled vehicles as rectangular patches with dynamic behavior. They used vehicle dimensions,

i.e. length and height, to classify vehicles into two categories: cars and non-cars. Camera orientation

played a big role in determining the height of the vehicle in this case. For example, the vehicle’s height was

computed as a combination of width and height as it was not possible to separate the two using only the

vehicle boundaries and camera parameters.

Vehicle detection, which is an indispensable part of the classification system, has been generally

approached through background subtraction models. In [78]-[80], the authors used background subtraction

models for the vehicle detection task. An approximated background is subtracted from the current frame

to extract the foreground object, and the background is updated over time. The important challenge for the

background subtraction scheme, apart from being relatively computationally expensive, is the determination

of the background, which may change with changing environmental conditions, and which may affect the

heuristic thresholding that the scheme utilizes.

Lately, for vehicle counting and to circumvent the problems associated with background subtraction

models to some extent, time-spatial image generation models have been proposed [81]-[83]. These models

aim to detect a moving object that crosses a virtual line on the video frame. For the moving objects that pass

this virtual line, a time-spatial image is generated and a count of the vehicles is approximated by the number

of blobs detected in that image.

Feature based techniques [72], [114] are quite popular for classifying the detected objects. These

methods make use of direct or indirect geometric and statistical features extracted from the pertinent frame
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which is usually constructed using background subtraction models discussed above. The larger the number

of features used for classification, the smaller the misclassification error, but at the same time the higher

the computational load. The classification performance of these models highly depend upon the chosen

background model and its adaptation through the thresholding measure used. Moreover, the performance

may start to degrade if the data statistics of the dynamically updated background inches closer to the detected

objects.

This work proposes an axle based vehicle classification system. The main emphasis of this work is

to investigate the feasibility of using axles to classify vehicles. Identifying axles in an image is essentially

a circle detection problem. Circle detection holds high significance in image analysis as is evident from its

vast applications in the manufacturing goods industry, military, etc. [71]. This problem has been tackled

with different approaches most common of which are:

• Deterministic - Hough Transform based methods [23].

• Geometric Hashing and template matching [84], [85].

• Stochastic - Simulated annealing [86], Genetic Algorithms (GA) [87], etc.

The listed methods have shown important results with some limitations. For example, template matching

has shown much promise [88], but it struggles to deal with pose invariance generated from complex models.

Hough Transform based methods are the most common and popularly used [89], but are relatively compu-

tationally expensive. A number of methods have been proposed to overcome this shortcoming [90]-[92].

A GA based circle detector was presented in [93], which could detect multiple circles on real images, but

failed to detect the ones with less than perfect configurations. The authors in [94] proposed an optimization

method as an automatic circle detector, which was a combination of DE and simulated annealing. It could

detect only one circle on synthetic images and also had the drawback of converging to sub-optimal solutions.

After weighing the pros and cons of all these methods we choose Hough Transform for our inves-

tigation. The main reasons for this choice, apart from its good success rate and popularity, was its relative

ease of use, simple setup, and open availability of relevant APIs for testing.

The choice of Hough Transform as the circle detection method brings another challenge to the front.

It is a parameterized method that works on thresholds. The quality and number of detected circles depend
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largely upon the parameter thresholds, which may vary given changing intensities, illumination of pixels

and other relevant features of the image. Manual settings of these parameters could prove difficult as these

settings will have to be adjusted for different scenarios of traffic. To solve this problem, we use DE as the

parameter optimizer and attach it to the circle detection method. We describe the details in the next section.

4.3. The Proposed System

We present a video based vehicle classification system that categorizes vehicles based upon the

number of axles and distance between them. As already mentioned, the focus of this work is to propose

the idea of a different way of vehicle classification and test Differential Evolution’s utility as a parameter

optimizer in the process. The process essentially entails extracting relevant frames from a given video

sequence, detecting axles as circles, computing distance between the farthest axles, and then classifying the

detected vehicles. The proposed system, for now, works for a single traffic lane with the camera mounted

on the sideways that captures the side view of the moving vehicle. A black-box description of the system is

represented by Figure 4.1.

Figure 4.1. Modular overview of the axle count based vehicle classification system.

4.3.1. Video Pre-processor

The video pre-processor is an optional sub-system. The main utility of this module is to reduce

the video size (frame size) from the recorded/captured resolution to the one set by the user. The higher

the resolution of the video, the greater is the computational cost. A low resolution video, however, will

be detrimental in achieving good detection accuracy. So the frame resolution should be kept within an

acceptable range.
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4.3.2. Frame Isolator

This module is responsible for locating the important frames within the captured video, i.e. the

frames that contain the potential vehicles in them. This module assumes fairly high importance in the sense

that the more potential frames this module misses to isolate from the video, the less the number it sends

to the next module for axle detection thereby reducing the overall accuracy of the system. The important

frames are extracted using the background subtraction model with the background being learned and updated

dynamically. Background subtraction is a relatively popular technique for frame differencing. The idea is

simple. The image data of the two frames isolated at different times is compared and the difference is

converted into a useful metric. The resultant metric is then evaluated against a threshold. There are many

popular methods for representing image data in terms of metrics. We use the histogram representation of

image data. We compare the histograms of the current background and current frame, and then apply the

Chi-Square metric [95], to compare the similarity of the frames. The Chi-Square metric is calculated as:

D(HB, HC) =
∑
I

(HB(I)−HC(I))2

HB(I)
(4.1)

where I is the pixel intensity, HB and HC are the histograms for the background and current frames,

respectively, and D is the resultant Chi-Square score. A low value of this score represents a better match

and vice-versa. Another well-known metric that we experimented with in conjunction with Chi-Square

metric is the Bhattacharyya distance [96]. Using a combination of these two metrics added robustness to

this module, but at the same time slowed down the frame isolation process to some extent. Thus, for now,

we employ only the Chi-Square metric to make a decision of either discarding or sending the current frame

to the next module. The data statistics of the frames, and in some cases their difference or both, are fed to a

model which returns a float value. If this value is above a certain threshold, a significant difference between

the frames has been detected, and the current frame is sent to the axle detector and counter module, which is

described in the next section. Details of this and the next module are kept succinct due to paucity of space.

4.3.3. Axle Detector and Counter with DE optimizer

This module is responsible for counting the number of vehicles in a given frame, their axles and

distance between the axles. Hough Transform is used to detect the circles. Being a parameter based detection

method, Hough Transform requires that the user provides some information about the circles that need to
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be detected. For example, the edge detector component requires a threshold to be set for the quality of

edges detected. The higher this threshold, the fewer the number of circles that are detected. The important

parameters for Hough Circle detection are:

• Accumulator threshold

• Edge detection threshold

• Inverse ratio of resolution

• Minimum distance between detected centers

• Minimum radius of detected circles

• Maximum radius of detected circles

4.3.4. DE optimizer

This section is the primary focus of the work presented in this chapter. All the parameters mentioned

in the previous section are integers. These parameters can be tuned manually for a given scenario but

the same set may show less than satisfactory performance on other test subjects. Thus, there is always a

motivation to automate the process, and for that reason we employ DE to perform the parameter search. This,

of course will require more compute cycles but would, at the same, improve the accuracy and robustness

of the system as a whole. We test 5 DE variants to gauge their ability to perform this task effectively, and

suggest the one which performs the best in terms of number of function evaluations used.

DE, being a real parameter optimizer, has to be modified to work with integer values. This essen-

tially makes the task a combinatorial optimization problem. Truncating the real values to integer values

seems a straight forward solution to this problem, but it has shown to be characteristically unstable in some

cases [97]. Many novel approaches have been proposed to make DE perform the combinatorial optimization

tasks and have yielded good results [98]-[99]. We utilize the approach suggested in [99] to convert integer

values to float values and vise-versa, keeping all other properties of the DE variants unchanged.

After a potential frame is selected from the video, it is sent to the axle detection module. In real

world applications, in general, apart from the distance between the camera and the road, other calibration

parameters are usually known to the designer. This may help in determining a region of interest of the
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image where the vehicles are most likely to be detected. It would be computationally prudent to perform

the detection and analysis on this region instead of the whole frame. As this work is primarily focused on

testing the axle detection and counting approach (examining DE’s effectiveness at the same time), we have

steered clear of having to specify the calibration parameters of the camera and the captured scene. Instead,

we have used video sequences where the distance between camera and the road is not fixed. This approach,

though being relatively computationally expensive, tests the robustness of the system, and DE in particular

by expanding its search space.

The fitness function for DE to optimize is kept simple. There is a cost associated with circles which

are detected but are not aligned horizontally within a certain threshold. This addition of cost is based on the

assumption that all the axles of the vehicle are likely to be horizontally aligned. The special case of raised

axles is not considered here. Another cost is added if the radii of the detected circles differ more than a

certain set threshold. This again is based on the assumption that all the axles of a vehicle are more likely to

be of the same radius. There is a minimum distance between the centers that is specified and a cost is added

if some circles are found to be closer than that distance. This is done to discourage DE from finding circles

which are very close to each other. In mathematical form our model is represented as:

f(x) = (CM )2 × (g(x) + h(x) + r(x)) (4.2)

where

g(x) = (
1

CA + ε
+ (CT − CA)) (4.3)

h(x) = (
1

CR + ε
+ (CT − CR)) (4.4)

r(x) = (
1

CD + ε
+ (CT − CF )) (4.5)

and

CM - maximum number of axles/circles to be detected in a frame; in our case we have fixed it to 10

CT - total number of circles detected in a frame
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CA - number of horizontally aligned circles detected

CR - number of detected circles having almost same radius

CD - number of circles having their centroids satisfactorily distant from each other

ε - a very small number to avoid divide by zero error

There can certainly be many more sophisticated ways to improve this model but for our purposes

we have kept it simple.

S. No. Vehicle Vehicle Class

1
Passenger Vehi-
cle

2 Truck Type I

3 Truck Type II

4 Truck Type III

5 Truck Type IV

6 Truck Type V

7 Truck Type VI
8 Truck Type VII

Figure 4.2. Vehicle outlines and their associated classes.

4.3.5. Classifier

Classifying vehicles based on the number of axles and distance between them does away with the

need to compute other attributes of the vehicle like height, width, area, solidity, etc. Computing these

additional features may improve the classification accuracy but not without increasing the computational

cost. Also, the length of a vehicle can be fairly approximated as the distance between the farthest axles.

Our approach also does away with the need for employing a specialized classification algorithm, for now,

as there are only two features involved. We use a simple Decision Tree classifier. In the future if the need

arises, we might consider using a more sophisticated classifier. The current decision classes that we have

experimented on, are shown in Figure 4.2. It should be noted that for this scheme to be fruitful, the distance
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between the camera and the road need to be fixed beforehand which should be considered a part of the

camera calibration process. We, however, have experimented with varying distances as already mentioned

and for the reasons stated in the previous section.

Table 4.1. A comparison of five variants of DE in detecting the number axles and their centers in 18 frames
isolated from multiple video sequences. The values presented indicate the best/minimum value obtained by
the variant along with a binary number (successful detection is represented as 1 and 0 otherwise).

Vehicle
No.

No.
of
Axles

Manual
Setting

DE/Best/1/ DE/Rand/1/ DE/RandToBest/1/ DE/Best/2/ DE/Rand/2/

1 2 1 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

2 2 1 52.00 (1) 52.00 (1) 36.33 (0) 52.00 (1) 36.33 (0)

3 2 1 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

4 2 1 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

5 2 1 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

6 2 1 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

7 2 1 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

8 4 1 36.33 (0) 29.00 (1) 29.00 (1) 29.00 (1) 29.00 (1)

9 5 1 29.00 (0) 25.00 (1) 25.00 (1) 25.00 (1) 25.00 (1)

10 5 0 25.00 (1) 29.00 (0) 29.00 (0) 29.00 (0) 36.33 (0)

11 2 0 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

12 2 1 52.00 (1) 52.00 (1) 52.00 (1) 154.00 (0) 154.00 (0)

13 2 0 52.00 (1) 52.00 (1) 154.00 (0) 154.00 (0) 203.00 (1)

14 2 0 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

15 2 0 154.00 (0) 203.00 (0) 52.00 (0) 52.00 (1) 52.00 (1)

16 2 0 136.33 (0) 52.00 (1) 52.00 (1) 154.00 (0) 152.00 (0)

17 2 0 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1) 52.00 (1)

18 2 0 152.00 (0) 203.00 (0) 154.00 (0) 52.00 (1) 203.00 (0)

– Wins 10 13 15 13 14 13

– Loses 8 5 3 5 4 5

–
Suc.
Rate
(%)

55 72 83 72 77 72
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Table 4.2. Wins, Loses, and Success Rate of multiple NP-FEs combinations for DE/Rand/1/bin tested on 18
vehicular frames isolated from multiple video sequences.

Vehicle
No.

10-
10

10-
20

10-
30

10-
40

20-
20

20-
30

20-
40

20-
50

30-
30

30-
40

30-
50

30-
60

40-
40

40-
50

40-
60

40-
70

50-
50

50-
60

50-
70

50-
80

60-
60

60-
70

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
9 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
11 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
12 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1
16 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Wins 11 12 12 12 12 13 13 13 12 12 13 13 12 12 14 15 13 13 16 16 15 14
Loses 7 6 6 6 6 5 5 5 6 6 5 5 6 6 6 3 5 5 2 2 3 4
Suc.
Rate
(%)

61 66 66 66 66 72 72 72 66 66 72 72 66 66 77 83 72 72 88 88 72 77

4.4. Experimentation and Results

The performance of the system with and without the DE optimizer is presented. The videos captured

were of single lane highways and streets. The traffic flow was chosen to be moderate. Table 4.1 presents the

performance of five variants of DE on 18 test frames isolated from multiple video sequences, which are the

outputs of the frame isolator module. The respective column value includes the best value achieved by the

DE variant alongside a binary number which is shown as 1 if the DE variant was able to find the equivalent

number of axles with the same centroids in the frame, i.e., excluding the false positives. The binary number

is substituted as 0 otherwise. The results of a superior manually tuned parameter setting is also presented.

We fixed the crossover rate (Cr) to 0.9 and scaling factor (F ) to 0.5 as suggested in [35]. The maximum

59



20 40 60 80 100 120 140 160 180 200
10

11

12

13

14

15

16

17

18

N
o.

 o
f w

in
s

Function Evaluations

Improvement in success rate with an increase in NP

 

 
Np − 10
NP − 20
Np − 30
NP − 40
Np − 50
NP − 60
Np − 70

Figure 4.3. Performance of DE/Rand1/bin using multiple population sizes with increasing function evalua-
tions.

function evaluations was set to 300.

It is clear that DE/Rand/1/bin emerges as the best strategy among the DE variants. To improve upon

the accuracy and speed of detection, we further experimented with multiple population sizes to see if that

actually impacts the system’s performance. The motivation is to investigate if a lower value of the population

size NP, and for that matter fewer function evaluations, produces the same results as shown in Table 4.1,

or would a higher NP produce better results. NP cannot be too high so as to exacerbate the performance

making the system untenable. At the same time, it cannot be too low as this might seriously degrade the

accuracy. In essence, this problem presents the classical accuracy versus speed dilemma and we try to find

the critical and harmonious set of parameters that lead to acceptable performance on this particular problem.

The results are enumerated in Table 5.2.

We tested multiple NP-FEs combinations leading to a generally expected result, i.e., performance

improves with an increase in NP and subsequent increase in FEs. Table 5.2 also points out an interesting

observation, i.e., an increase in the number of solutions after a certain number does not necessarily lead

to an improvement in performance of DE. This phenomenon has also been corroborated by some recent

publications [35], [100], though, their domain was real parameter optimization on benchmark functions.

This result insinuates that there is a critical value of NP after which an increase in the number of solutions
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Table 4.3. Effect of increasing NP and function evaluations on success rate. Saturation point is reported at
50-70 combination.

Population Size (NP) Success Rate % Saturation FEs
10 66 60
20 72 40
30 72 50
40 83 70
50 88 70
60 88 100
70 88 90

does not necessarily lead to an improved performance.

Figure 4.3 summarizes the results presented in Table 5.2. We performed the parameter search with

population size ranging between 10 and 70 with an increment of 10. Figure 4.3 shows that the success rate of

a population size improves with an increase in function evaluations. This is an expected outcome. But after

a point, increasing the population size does not improve the success rate. On similar lines, an increase in

function evaluations does not offer an added advantage after a certain limit as the success rate saturates. We

found that the best set of control parameters that lead to the highest accuracy (88%) among the combinations

compared is: F=0.5, Cr=0.9, NP=50 with 70 FEs. Increasing NP above this value does not yield better

results. Figure 4.4 visually depicts the results obtained for manual settings (left aligned in the sub-figures)

as compared to DE/Rand/1/bin optimized set (right aligned in the sub-figures) discovered. Due to space

constraints, only 16 of total frames are presented. Axles detected by both methods are represented by red

circles.

It is imperative to note that manually setting circle detection parameters can be tedious and depends

upon the scenario at hand. At the same time it is quick. Our results show that manually setting the parameters

leads to a low success rate (55%) if the weather conditions and other factor are changed. At the same time,

attaching an DE optimizer to the circle detection system can slow down the detection process but yields

a much higher success rate (88%). The system of classification that we propose, therefore, may be suited

more for off-line detection and classification of vehicles where the video is pre-processed to some extent to

reduce its size etc.
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4.5. Summary

This work presents an axle count based vehicle classifier. Our system consists of four modules

namely video preprocessor, frame isolator, axle detector, and classifier. The output of one module feeds the

other in the same sequence. We used the background subtraction technique in our frame isolator module

to extract pertinent frames from a video sequence. Axle detection is performed with Hough Transform,

which is a well-known feature detection method in the image analysis domain. Hough Transform for circle

detection works on parameters that are dependent on the image data and type of problem that is being

addressed. Manually setting these parameters can be tricky, tedious, and often produces less than satisfactory

results (as shown in this chapter) if the weather conditions and related circumstances change. We therefore

use a combinatorial version of Differential Evolution to optimize the parameter set.

This approach yields much higher accuracy as shown by the results we achieved. We initially tested

five different variants of DE, and concluded that DE/Rand/1/bin is most suitable for this task reaching a

steady success rate of 83% while excluding the false positives. We further investigated the plausibility of

DE/Rand/1/bin to further its accuracy and speed. For this we tested this variant with multiple population

sizes (NP) - FEs combinations. We found that F=0.5, Cr=0.9, and NP=50 with 70 FEs yields an accuracy

of around 88%, and increasing NP further does not yield any better results. Our current system is designed

to be used as an offline vehicle classifier.

To make the system perform as an online classifier, a few changes need to be made. For example, by

careful camera calibration, it is possible to specify a region of interest in the test frame where the probability

of finding the axles is quite high given various assumptions about inclination of the road. This will reduce

the computing load considerably. If there is enough information available about the scene, it is possible to

initialize DE with good values to begin with. These and other modifications are planned as future work.

In addition, future work includes developing the system further by employing a parallel version of DE to

increase its overall speed to make it work online, and extending it to classify multiple lane traffic.
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Frame 1 Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

Frame 7 Frame 8

Frame 9 Frame 10

Frame 11 Frame 12

Frame 13 Frame 14

Figure 4.4. Results obtained through manual settings (left aligned) of Hough Transform parameters vs the
best settings obtained for DE/Rand/1/bin (right aligned).
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5. A DIFFERENTIAL EVOLUTION BASED MULTICLASS VEHICLE

CLASSIFIER FOR URBAN ENVIRONMENTS

Video analytics is emerging as a high potential area supplementing intelligent transportation sys-

tems (ITSs) with wide ranging applications from traffic flow analysis to surveillance. Object detection and

classification, as a sub part of a video analytical system, could potentially help transportation agencies to

analyze and respond to traffic incidents in real time, plan for possible future cascading events, or use the

classification data to design better roads. This work presents a specialized vehicle classification system for

urban environments. The system is targeted at the analysis of vehicles, especially trucks, in urban two lane

traffic, to empower local transportation agencies to decide on the road width and thickness. A hybrid ap-

pearance model specifically designed for speedy foreground extraction in the given context is presented. A

simple motion cue based tracking algorithm is used, and this work stays clear of using probabilistic trackers.

The main thrust is on the accurate classification of the detected objects using an evolutionary algorithm.

The classifier is backed by a differential evolution (DE) based discrete parameter optimizer. It is shown

that, though employing DE proves expensive in terms of computational cycles, it measurably improves the

accuracy of the classification system. The system was tested on multiple real video footage during var-

ied weather conditions from a camera mounted in urban areas, achieving a peak classification accuracy of

approximately 90%.

The rest of this chapter is structured as follows. Section 5.1 presents an introduction to the chapter.

Section 5.2 describes the related work. In Section 5.3 describes and explains the proposed system with all

its features. In Section 5.4, results and their analysis are presented, and Section 5.5 concludes the chapter.

5.1. Introduction

Vehicle detection and classification is currently a hot focus area in the myriad web of intelligent

transportation systems (ITSs) with immense potential for traffic flow control, security, and surveillance to

name a few. ITSs are embracing data driven techniques [101] wherein the data related to traffic density,

incidents, etc. are relayed back to users of the traffic systems thereby empowering them to make real-time

decisions about routes thereby promoting efficiency. Road side regulations, increasing density of vehicles
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on roads, and costs of overlaying the roads are some of the supplementary and rather critical reasons calling

for ever more efficient utilization of our transportation networks. Robust vehicle classification systems that

are able to compute the number and type of vehicles plying on a particular road or highway, provide a part

of the solution.

Various vehicle detection and classification systems such as digital wave radars [102], amplitude

modulated laser radars [103], lidars [104], magnetometers [105] etc., have been proposed and some have

been in continual use commercially with their inherent advantages and disadvantages. These systems can be

broadly classified depending upon the type of sensors they use or on the basis of their installation vis a vis

intrusive and non-intrusive. Most commonly used systems, use one or a combination of laser, piezoelectric,

microwave, or video cameras. For example, inductive loop detectors are one of the most accurate and widely

used systems for vehicle detection. But due to their intrusive nature, high equipment and installation costs,

they are not often being applied [106].

Video based vehicle classification have recently emerged as a low cost alternative to conventional

intrusive systems primarily owing to their low cost, non-intrusive nature of installation, and operation. For

example, there have been extensive use of video based vehicle detection systems in surveillance [107], [108],

[109]. Other benefits include [110]:

• Freedom from extensive sawing residue and extensive cleaning after installation and continual main-

tenance.

• Installation can be done year round.

• No need for road closure for installation and maintenance thereby reducing the impact on traffic flow.

• Ease of operation.

• Provides rich data through which additional information and context can be approximated.

• Vison based systems integrate well with other object detection systems.

Their advantages notwithstanding, video based detection and classification systems have their own

challenges, and pose many difficulties for researchers. Some of them may be categorized as [107]:
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• Occlusion: Vehicles and other objects on roads can block each other in the camera view leading to a

false count.

• Rapid illumination changes: Weather changes may range from periods of very high brightness to very

low intensities posing a problem for detection algorithms.

• Vehicle edge/contour deformation: Due to various continual changes in scene, the vehicle may not be

detected with a perfect boundary leading to mis-classifications.

• Multiplicity of vehicle types: There are highly varied types of vehicles around ranging from a mid-

sized sedan to transport trucks with different lengths, heights, and axles in between. Extracting indi-

vidual features and correctly classifying vehicles becomes a challenge in this scenario. Add to that,

pedestrian, bicycles and other objects, the problem becomes even more difficult.

There are other barrages of problems that specific stages of the classification systems try to solve, and will

be discussed later in this work.

A novel DE based vehicle detector and classifier (DEVEC) capable of classifying vehicles on high-

way and urban areas is presented. DEVEC has a conventional vehicle detection architecture with the differ-

ence that an evolutionary algorithm (DE) is used for classification of vehicles using multiple cues including

the axle count. Hough Transform, a parameter based feature detection method is employed to detect the

vehicle axles. The quality of the detected circles is sensitive to appropriate settings of these parameters.

Since the process is time consuming, it is not viable to adjust these parameters manually every time, thus,

there is always a motivation to do a parameter search by attaching a machine learning algorithm to discover

an optimized set.

DE is modified and used as a discrete parameter optimizer to find the best suited parameters for

accurate axle detection, which is a crucial part of this vehicle classification system. The use of DE, apart

from removing the need for setting Hough Transform parameters manually, also has the added advantage

of improving the accuracy of the axle detection module, thereby improving the robustness of the overall

classification system. On the other side, the process of finding the optimal Hough Transform parameters

does add an extra computational cost making leading to the trade-off between speed and accuracy.
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The motivation of this work is three-fold:

• As a proof of concept, this works classifies vehicles primarily based on the number of axles and

distance between by mounting the camera sideways instead of a lamppost where the camera is con-

ventionally mounted on the top.

• Assessing the utility of including axle count as a feature for classification aids in discrimination of

trucks having similar geometric features but have distinct axle count.

• To maximize the model function representing the scene under consideration, an evolutionary algo-

rithm namely Differential Evolution (DE) is attached .

To the best of my knowledge, no other vehicle detection and classification algorithm makes use of

an evolutionary algorithm detecting axles for vehicle classification.

5.2. Related Work

A typical video based vehicle detection system is shown in Fig 5.1. First a review of different

techniques proposed to tackle problems associated with each stage is provided.

Figure 5.1. A typical vehicle detection system

5.2.1. Vehicle Detection

Detection is the primary step towards analysis of videos in an intelligent transportation system. The

robustness of this step is quite critical as it feeds the higher sub systems like vehicle tracking and classifica-

tion. The vehicle detection problem, in particular, has been approached through many different ways, and

multiple methods have been proposed to achieve detection. These methods can be broadly classified into

two classes: motion based and appearance based [107].

Motion based detection methods aim to extract the vehicle information based on a comparison of

present the pixel state with an assumed stationary (background) state of the system. The easiest way to
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perform motion based detection is frame differencing [111], [112], [113] wherein the pixel wise thresholded

difference is calculated between two consecutive frames furnishing the output in terms of motion pixels, or

what is generally referred to as the foreground. Although simple, this technique needs supplementation with

other methods for dynamic motion and use of more information apart from just the difference of pixel is

desirable.

Background subtraction is another common motion based segmentation technique and one of the

more widely used [114]. This method tries to build a background model of the scene based on the ac-

cumulated information. This background is then compared with the current video frame giving the motion

information. In its simplest form, called as the background averaging method [115], a background is built by

averaging the pixel attributes of some n previous frames. This may not be suitable for highly dynamic traffic

scenes where the background changes too rapidly. There are other methods of background construction that

do not assume a fixed background beforehand. For example, background was constructed assuming a single

Gaussian distribution in [116], [117]. Every pixel is either classified as background or foreground based on

its distribution. This model may be perceived as an equivalent to computation of a dynamic threshold [117].

The advantages of this method are improved robustness and reduced memory requirement.

Gaussian mixture models (GMM) were introduced by [118], and since then have been used quite

liberally to model the background scene [119], [120], [121], [122], [123], [124]. Each pixel is modeled

as a mixture of two or more Gaussians, with each distribution being estimated as either background or

foreground. The advantage of modeling the scene as GMM lies in the fact that it can handle multi-model

background distributions. A sudden change in illumination affects the performance considerably [125].

Other motion segmentation based techniques include median filter [126], [127], kernel density estimation

[128], kalman filtering [129], [130] and optical flow [131], [132].

Appearance based detectors, in contrast with motion based detectors, use appearance features like

color, texture, shape, etc., to extract the object of interest, in this case vehicles from the image or video

directly. Coded descriptors based on features are utilized to model the appearance of vehicles. Local edge

operators have been used in [133], [134].
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Recently, more sophisticated and robust feature descriptors have been proposed in the form of Scale In-

variant Feature Transform (SIFT) [135], Histogram of oriented gradients (HOG) [136], Speeded up Robust

Features (SURF) [137], and Haar-like features [138], to name a few. A detailed explanation of these and

more such techniques can be found in the recent survey paper [139].

5.2.2. Vehicle Tracking

Vehicle tracking is essentially a state prediction and data association problem. The idea is to rec-

ognize the vehicle in subsequent frames, locate its position, and ultimately obtain its trajectory. Vehicle

tracking is sometimes merged with the detection task but may also be performed separately. There are many

methods available in this literature that cater to this task and these methods can be broadly classified into

three categories: model based, region based, and feature based tracking.

Model based methods presume a predetermined 2-D or 3-D vehicle appearance model matching

the presumed model with regions of motion in the sequence [131]. A multi view 3-D model that builds a

3-D model based on 2-D geometrical information, was constructed using edge features by [140]. Other 3-D

modeling techniques were proposed in [141] and [142].

Region based tracing on the other hand, aims to detect a vehicle’s silhouette contained within a

geometric shape represented by multiple features lie area, length, width, centroid, etc. The vehicle may

be represented in terms of a feature vector with continuous updation. This vector is tracked through shape

matching or data association in subsequent frames. To track highway vehicles, a graph based matching

approach was used in [115]. The information such as length and height of the convex hull was used in [142]

to track the vehicles while in [117], centroid and velocity information was used.

Feature based tracking is based on the combined use of simple features like edges with feature

descriptors like SIFT, SURF, HOG, etc. For example, region based tracking was combined with SIFT in

[143]. Main advantages of feature based tracking is its ability to perform well in crowded areas but the

challenge lies in choosing effective features.

5.2.3. Vehicle Classification

Classification requires vehicles to be associated with a particular class. This has been achieved

in the literature either by using shape features (height, aspect ratio, etc.) or appearance of the vehicle.
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The number of features used has a direct impact on the number of discriminant classes, and nature of the

classifier needed.

Authors in [144] classify vehicles into car, SUV, and minibus by making use of the curve informa-

tion associated with 3-D ridges. Their classifier achieved an accuracy of 88%. A similar 3-D model based

classifier was constructed in [145] capable of discrimination between car, bus, van, and motorcycles with

a classification accuracy of approximately 96%. Based on the contour information a classifier based on a

combination a voting algorithm and Euclidian distance was proposed in [146] achieving a classification rate

of 93%.

Appearance based classifiers use information based on gradients, corners, etc. In [147], a 2-D LDA

technique was employed capable of classifying 25 vehicle types with an accuracy of approximately 91%.

5.3. Proposed Approach: Differential Evolution Based Vehicle Classifier (DEVEC)

This work presents a Differential Evolution based vehicle classifier (DEVEC) primarily designed

for urban two lane traffic but may be extended for multi lanes with a few modifications. A black box view

of DEVEC is presented in Fig 5.2. A detailed description of the individual stages is presented below.

Figure 5.2. A typical vehicle detection system

5.3.1. Video Preprocessor

This is an optional sub-system. The main utility of this module is to reduce the video size (frame

size) from the recorded/captured resolution to the one set by the user. The higher the resolution of the video,

the greater is the computational cost. A low resolution video, however, will be detrimental in achieving good

detection accuracy. Thus, the frame resolution should be kept within an acceptable range. Another optional

sub-feature of this module to automatically identify the road in consideration thereby extracting the region
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of interest (ROI) containing the potential vehicles. The subsequent steps operate on ROI extracted from the

video frames.

5.3.2. Vehicle Detector

This component constitutes the backbone of the whole system. The reason for this claim is because

correct vehicle classification is as good as vehicle detection. Vehicle detection, in this system, primarily

consists of two basic steps: background construction/modeling and detection.

In motion based segmentation and detection models, as in ours, a robust background plays a vital

role in appropriate detection, as the motion pixels are extracted from the scene by subtracting it with the

modeled background. There are many different background models for vehicle detection available in lit-

erature based on different techniques. [148], [149], [150] used single Gaussian to model the background

while recently authors in [151] used a mixture of Gaussians. A consolidated review of such research was

presented in a recent survey paper [139].

A pixel-to-pixel based adaptive background construction model is proposed. Without assuming any

distribution information about the background, this model compares the color RGB information of every

pixel in the background with the current scene, and calculates a three dimensional Chi-Square metric. This

metric is then compared with a threshold, which is determined adaptively and is continuously updated. This

process is described in Algorithm 1.

To calculate the initial threshold T, n training frames are required. For every two subsequent frames

I and I-1 in the training set, the Chi-Square distances of R, G, and B components are calculated as:

RT = ΣN
(RI −RI−1)

2

RI
(5.1)

GT = ΣN
(GI −GI−1)

2

GI
(5.2)

BT = ΣN
(BI −BI−1)

2

BI
(5.3)
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Algorithm 3 DEVEC ADAPTIVE BACKGROUND CONSTRUCTION

1: Choose initial n training frames
2: Initialize distance vector V, with size n
3: Initialize threshold T as 0
4: for every frame i till n-1 frames do
5: Compute mean M, and standard deviation SD, for RGB components of frame i
6: Update vector V as V[i] = M + SD
7: end for
8: Compute T as:
9: T = mean(V) + standarddev(V)

10: Update frame n as current background Bcurrent
11: Update frame n as previous background Bprev
12: while video has frames do
13: for very pixel p in frame I and background Bcurrent do
14: Compute Chi-Square distance CS
15: if C thenS ≥ T
16: Classify p as foreground
17: else
18: Classify p as background
19: end if
20: end for
21: Update foreground pixel locations in Bcurrent from Bprev
22: if no vehicle detected for 3 consecutive frames then
23: Recalculate T and update current frame as Bcurrent
24: end if
25: end while

Since this investigation presumes no information about the background color, all the differences are equally

weighted to calculate the gradient of pixel differences G as:

G = wR ×RT + wG ×GT + wB ×BT (5.4)

with wR = wG = wB = 0.33. Based on the assumptions of scene color, different weights may be

assigned to different color components but this work presumes no such information.

After the initial gradient threshold G is determined, a new background is adaptively constructed.

Figure 5.3 presents the adaptive determination of G for the first 72 frames of a particular video sequence.

A gradient threshold G is then determined for every subsequent frame. Every current frame I is compared

with the previous frame I-1 pixel by pixel, and differences between RGB components for every pixel p are
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calculated as:

RGBdiff (p) = wR × (RI −RI−1) + wG × (GI −GI−1) + wB × (BI −BI−1) (5.5)

If RGBdiff (p) for a pixel p exceeds the pixel gradient G, p is classified as a foreground pixel else

it is considered as a background pixel. In the current form every pixel difference is compared with G, and

a decision is made about the pixel’s class. Another version of this model can be constructed in which every

pixel’s own gradient can be calculated and stored but this would require extra computation and storage. For

the purposes of this investigation the current form will suffice.

Figure 5.3. Change of gradient threshold during adaptive threshold calculation and updation

A previous background is maintained in the memory, which provides the pixels to current back-

ground under construction at locations where foreground pixels are detected. In this way the current back-

ground is updated continuously, and describes the current scene robustly. Figure 5.3 depicts this process of

adaptive background construction while classifying the vehicles as foreground and background.

The pixel gradient threshold G is updated after xupdate number of frames, which is a user defined

number. As a word of caution, xupdate should be under acceptable limits, as a low value of xupdate would
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mean very high frequency of threshold calculation and updation that may degrade the performance of the

system.

After the background construction, the next step is to detect vehicles from the scene using motion

segmentation. Background subtraction is used to identify motion pixels as contours. With motion pixels,

undesired noise is most certainly always detected. A simple noise suppressor algorithm is used to remove

the unwanted noise, which increases the cost marginally in terms of computation cycles but has a desirable

impact on system’s fidelity. After that a bounding box is fit around the detected contours.

In essence the bounding box creation is a hypothesis generation step. A dual hypothesis verification

process with soft and hard matches is employed. As an initial soft match, this bounding box is matched with

a basic car/truck template. If this criteria is satisfied, this patch is sent to a DE enabled axle detector for a hard

match. A soft match is defined as a positive if only the basic feature matching threshold requirements are

met which in this case are length, breadth, and contour area. A hard match involves determining the number

of axles in the vehicle, and minimizing a vehicle model fitness function using DE. This two-step process

improves robustness of the detection module though at the expense of extra compute cycles. Algorithm 2

depicts this detection process. During the detection and tracking process, due to dynamic change in scene

and vehicle characteristics, there is always a possibility that the vehicle being tracked appear shape-wise

deformed in subsequent frames or it may split up into different parts. For example, a single vehicle may

split up into two unrelated and distinct parts, or a sub area, capable of being identified as a new vehicle, or

is formed inside the tracked vehicle itself etc. This algorithm is capable of resolving such anomalies, and

boost accurate detection.

Algorithm 4 VEHICLE DETECTION PROCESS IN DEVEC
1: while video has frames do
2: Perform background subtraction
3: Extract foreground pixels
4: Clean the background with a noise suppressor
5: Find contours in the cleaned background
6: Fit bounding boxes around contours
7: Soft match the boxes with a basic vehicle template
8: if soft match successful then
9: Send the object for a DE enabled axle detector

10: end if
11: end while
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5.3.3. Classification

After the soft detection of the vehicle that only checks for a minimum contour area, length and

breadth of the bounding box, the relevant region is extracted from the current color frame, and sent to the

DE based vehicle classifier module. The main emphasis of using this novel module is to investigate the

feasibility of using axles to classify vehicles. Identifying axles in an image is essentially a circle detection

problem. Circle detection holds high significance in image analysis as is evident from its vast applications

in the manufacturing goods industry, military, etc. [71]. The approach used here is similar to the used in

Chapter 4.

After weighing the pros and cons of the methods used for circle detection Hough Transform is

chosen for the investigation. The main reason for this choice, apart from its good success rate and popularity,

was its relative ease of use, simple setup, and open availability of relevant APIs for testing. The choice of

Hough Transform as the circle detection method brings another challenge to the front. It is a parameterized

method that works on thresholds. The quality and number of detected circles depend largely upon the

parameter thresholds, which may vary given changing intensities, illumination of pixels, and other relevant

features of the image. Manual settings of these parameters could prove difficult as these settings will have

to be adjusted for different scenarios of traffic. To solve this problem, this work uses DE as the parameter

optimizer, and attach it to the circle detection method.

5.3.4. DE Optimizer

DE, being a real parameter optimizer, has to be modified to work with integer values. The ap-

proach suggested in [97] to convert integer values to float values and vise-versa is utilized, keeping all other

properties of the DE variants unchanged.

In real world applications, in general, apart from the distance between the camera and the road,

other calibration parameters are usually known to the designer. This may help in determining a region of

interest of the image where the vehicles are most likely to be detected. It would be computationally prudent

to perform the detection and analysis on this region instead of the whole frame. As this work is primarily

focused on testing the axle detection, and counting approach (examining DE’s effectiveness at the same

time), this work has steered clear of having to specify the calibration parameters of the camera and the

captured scene. Instead, we have used video sequences where the distance between camera and the road
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is not fixed. This approach, though being relatively computationally expensive, tests the robustness of the

system, and DE in particular by expanding its search space.

The fitness function for DE to optimize is kept simple. There is a cost associated with circles, which

are detected but are not aligned horizontally within a certain threshold. This addition of cost is based on the

assumption that all the axles of the vehicle are likely to be horizontally aligned. The special case of raised

axles is not considered here. Another cost is added if the radii of the detected circles differ more than a

certain set threshold. This again is based on the assumption that all the axles of a vehicle are more likely to

be of the same radius. There is a minimum distance between the centers that is specified and a cost is added

if some circles are found to be closer than that distance. This is done to discourage DE from finding circles

that are very close to each other. Chapter 4 can be referred for the mathematical formulation of the model.

There certainly can be many more sophisticated ways to improve this model but for work’s pur-

pose it is kept it simple. Another reason for keeping the fitness function quick to compute is to make the

classification process time efficient.

Classifying vehicles based on the number of axles, and distance between them does away with the

need to compute other attributes of the vehicle like area, solidity, depth, etc. Computing these additional

features may improve the classification accuracy but not without increasing the computational cost. Also,

the length of a vehicle can be fairly approximated as the distance between the farthest axles.

The current approach also does away with the need for employing a specialized classification algo-

rithm as there are only few features involved. A simple Decision Tree classifier is used. The current decision

classes that are the target of this experiment are shown in Figure 5.7. As is clear from the figure, employing

axle count information is crucial, in fact necessary to correctly distinguish between Truck Type I and II,

Truck Type III and IV, Truck Type VI and VII, as they have similar geometric features but different axle

counts.

5.3.5. Tracking

After the vehicles are detected, tracking is performed on them to ascertain their positions in the

next frame. In other words, the trajectory of the vehicle during the course of its existence in the video is

determined through tracking.
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This is an important operation if the correct count of the vehicles is to be obtained. If the vehicles

are not tracked properly, the re-detection of the same vehicle in the next frame may be surmised as a new

vehicle, which in turn would result in over-counting.

Detection and tracking are performed separately where first vehicles are detected in every frame,

and then this detected vehicle data is associated with data from the previous frame, and then the vehicle’s

location and features are updated iteratively. This technique takes advantage of the fact that any detected

vehicle is not likely to be present in only one frame. This method is an example of region based tracking

mechanism [152], [153] where the vehicle contour is detected and fitted inside a rectangular box. This

box and contour, in the current system, is characterized by edges, contour area, and box coordinates. Data

association and template matching is then performed to track the vehicles in consecutive frames to track

them. A local memory containing the features, and other relevant data is maintained for every vehicle that

is detected. The features are updated during tracking as the vehicle moves from frame to frame. This way

the vehicle appearance in the memory stays in sync with the current state of the vehicle. This continuous

updation is vital since the vehicle appearance is prone to edge, and area deformation while in motion.

5.4. Experimentation and Results

In this section, the performance of DEVEC is presented when tested on multiple real time , primar-

ily urban two lane traffic scenarios. Apart from evaluating the system for its speed, correct vehicle count,

and classification accuracy, the major thrust of the evaluation is on the performance of Differential Evolu-

tion (DE) as an optimizer applied to this scenario. Moreover, given the current setting and to gauge the

performance of DE, the system was tested with and without the DE optimizer.

As discussed in the previous section, the main utilization of DE is to find and locate the number

of correct axles of the vehicle by minimizing a fitness function. The information on the number of axles,

distance between the farthest axles supplemented with height, width, and contour area of the vehicle was

used to classify the vehicle in one of the listed classes. The system was initially tested with manual settings

of hough transform parameters and then with five popular variants of DE, on vehicles isolated from multiple

video sequences.

The videos were recorded on a two lane road, and the traffic flow was chosen to be moderate. Table

5.1 presents the first set of results comparing the system’s classification performance with and without the
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DE optimizer. It lists the performance on 20 different vehicles isolated from a single video sequence with

the number of axles in each vehicle. A single fine-tuned manual setting of hough parameters was used all

along the tested videos. The number 1 denotes the correct identification of number of axles by the system

using the manual settings, and a 0 means that the system failed to identify the correct number of axles with

the given parameters leading to a misclassification.

It is important to mention that after a vehicle is detected, the rectangular region around it is extracted,

and may be examined either by a pre-determined circle detector or the DE optimizer module. This extracted

vehicle region from the frame may measure as less as 40×30 pixels. This presents a peculiar problem when

it comes to detecting circles in such a confined image space. To maintain the practicality of the context

and achieve good circle detection, hough parameter thresholds are highly relaxed. This has the effect of

detecting many more circles and in cases a lot of false positives are generated. It is this challenge that DE is

supposed to overcome with correct circle detection, and remove unwanted circles by minimizing the fitness

function.

As for DE, it was allowed to search the space for optimal hough parameters thereby minimizing

the energy/fitness function. For all the five variants, the fitness function value obtained is listed in the

corresponding columns. If the DE variant was able to identify the correct number of axles, it is signified

with a 1 alongside the fitness value, and 0 otherwise. As for the control parameter settings of DE, this work

fixes the crossover rate (Cr) to 0.9 and scaling factor (F) to 0.5, and population size (NP) to 50 as suggested

in [35]. The maximum number of function evaluations was set to 200.

The results show that DE/Rand/1/Bin strategy emerges as the best DE strategy among the ones

tested, reaching an accuracy of approximately 90% in all video sequences tested. All the five different

variants tested in this paper have their own distinct characteristics with which they affect the generation of

new solutions and impact the overall search process. For example, DE/Best/1/Bin tries to search around the

best solution achieved so far thereby moving towards the solution very quickly and in many cases converg-

ing prematurely. This strategy losses diversity of the population quite fast as compared to other variants.

DE/Rand/2/Bin, on the other hand is known to create diverse solutions due to the presence of two differential

vectors. This diversity, many a times, leads to very slow convergence. All in all, no single strategy is perfect

for all problems, and their success is partially dependent on the nature of problem they intend to solve. In
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this case, DE/Rand/1/Bin proves to be a better strategy, primarily due to its balanced and simple approach

towards the search process. It is also relatively slow but manages to maintain good diversity of solutions

throughout the search process.

Apart from the mutation strategy and as is true with any evolutionary algorithm, the control param-

eter settings play an important part in the performance of DE. Conducting a large scale control parameter

analysis for this scenario is out of the scope of this work. This work nevertheless experimented with multiple

population sizes to see if that actually impacts the system’s performance. The motivation is to investigate if

a lower value of the population size NP, and for that matter fewer function evaluations, produces the same

results as shown in Table 4.1, or would a higher NP produce better results. NP cannot be too high so as to

exacerbate the performance making the system untenable. At the same time, it cannot be too low as this

might seriously degrade the accuracy. In essence, this problem presents the classical accuracy versus speed

dilemma and this work tries to find the critical and harmonious set of parameters that lead to acceptable

performance on this particular problem. The results are enumerated in Table 5.2.

An optimal parameter search was performed with population size ranging between 10 and 80 with

increments of 10. It is shown that the success rate of a population size improves with an increase in function

evaluations. But after a certain point, increasing the population size does not improve the success rate. On

similar lines, an increase in function evaluations does not offer an added advantage after a certain limit as the

success rate saturates. It is observed that the best set of control parameters that lead to the highest accuracy

(90%), among the combinations compared, is: F=0.5, Cr=0.9, NP=40 with 60 FEs. Increasing NP above

this value does not yield better results. If this critical point can be deduced theoretically, it may be used as

an effective indicator of the extra computational budget that the DE optimizer module may consume in the

system.

Figure 5.8, visually depicts a part of the results obtained for manual settings (left aligned in the

sub-figures) as compared to DE/Rand/1/bin optimized set (right aligned in the sub-figures) discovered, for 9

different vehicles sourced from multiple video sequences. Axles detected by both methods are represented

by solid white circles.

Table 5.3 and 5.4 summarize the cumulative results of the DEVEC as a confusion matrix. The

system was tested on three videos of approximate duration of 10 minutes each. This by no means is an
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Table 5.1. A comparison of five variants of DE in detecting the number axles and their centers in 20 frames
isolated from multiple video sequences. The values presented indicate the best/minimum value obtained by
the variant along with a binary number (successful detection is represented as 1 and 0 otherwise).

Vehicle No. No. of Axles Manual Setting DE/Best/1/bin DE/Rand/1/bin DE/RandToBest/1/bin DE/Best/2/bin DE/Rand/2/bin

1 2 0 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1)

2 2 1 52.00(1) 52.00(1) 36.33(0) 52.00(1) 52.00(1)

3 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 36.33(0)

4 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1)

5 5 0 36.33(0) 25.00(1) 25.00(1) 36.33(0) 29.00(0)

6 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1)

7 2 0 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1)

8 4 0 36.33(0) 36.33(0) 29.00(1) 29.00(1) 29.00(1)

9 2 1 52.00(1) 52.00(1) 36.33(0) 52.00(1) 36.33(0)

10 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1)

11 5 0 36.33(0) 25.00(1) 25.00(1) 25.00(1) 29.00(0)

12 2 0 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1)

13 2 1 154.00(0) 203.00(0) 52.00(1) 154.00(0) 154.00(0)

14 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1)

15 4 0 36.33(0) 29.00(1) 36.33(0) 29.00(1) 29.00(1)

16 5 1 36.33(0) 25.00(1) 25.00(1) 36.33(0) 29.00(1)

17 4 0 36.33(0) 29.00(1) 36.33(0) 29.00(1) 29.00(1)

18 2 1 52.00(1) 52.00(1) 36.33(0) 36.33(0) 52.00(1)

19 2 1 52.00(1) 52.00(1) 36.33(0) 52.00(1) 52.00(1)

20 2 0 52.00(1) 52.00(1) 36.33(0) 36.33(0) 52.00(1)

- Wins 10 13 18 13 15 14

- Suc. Rate(%) 50 65 90 65 75 70

exhaustive test for this system but as a proof of concept the sample size is assumed to be good enough.

In total, the video sequences contained about 302 vehicles to be classified into seven classes. It must be

recorded that, since the feature set is small (length, width, contour area, axles), the classification performance

is less a test of the decision tree classifier, and more of a test of correct feature detection.

DEVEC shows excellent performance while detecting the passenger vehicles achieving a precision

of 0.90 for this class of vehicles. The precision for truck types I, II, III, and IV is also decent with all classes

having a value above 0.80. The system however shows a less than satisfactory performance on large trucks

having five or more axles. One reason as to why DEVEC does not accurately distinguishes between these

two classes is the immense edge discrepancies on and along the close axles of these trucks, which prohibits

them from being detected. As a consequence, being of the same height, and width, truck type VI is classified

as truck type V. Another reason of low precision and recall might be the limited number of truck type V, and

VI samples present in the corresponding videos.
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Table 5.2. Effect of increasing NP and function evaluations on success rate. Saturation point is reported at
40-60 combination.

Population Size (NP) Success Rate % Saturation FEs
10 70 60
20 75 50
30 85 50
40 90 60
50 90 70
60 90 70
70 90 85
80 90 90

Table 5.3. Confusion matrix for cumulative vehicle count across three video sequences. PV stands for
passenger vehicle.

- PV/Truck Type 0 Truck Type I Truck Type II Truck Type III Truck Type IV Truck Type V Truck Type VI

PV/ Truck Type 0 134 5 0 0 0 0 0

Truck Type I 14 60 3 0 0 0 0

Truck Type II 0 8 31 2 0 0 0

Truck Type III 0 0 4 23 2 0 0

Truck Type IV 0 0 0 5 18 0 0

Truck Type V 0 0 0 0 2 9 2

Truck Type VI 0 0 0 0 0 3 6

On a manual inspection of the test video sequences, a total of 326 vehicles were counted. DEVEC

was able to detect 302 vehicles achieving a decent detection accuracy of 92%. One reason for misdetection

of vehicles was the almost similar color configuration of the background and the passing vehicle, though

this was a rare observation. In some circumstances, vehicles that moved very slowly, became a part of the

background itself thereby generating no motion pixels through the background subtraction method. One

method of improving the detection further would be use more scene cues for background construction that

just the color information.

5.5. Summary

This work presents DEVEC, an axle count based vehicle classifier capable of detecting and classi-

fying vehicles on a two lane urban environment. This work uses an adaptive threshold updation technique to

compare two subsequent frames, and then employ background subtraction method to extract motion pixels

from a video sequence. Axle information is utilized to perform classification of vehicles. Axle detection is
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Table 5.4. Confusion matrix for individual classes.

Vehicle Type Precision Recall
PV/Truck Type 0 0.90 0.96

Truck Type I 0.82 0.77
Truck Type II 0.81 0.75
Truck Type III 0.82 0.79
Truck Type IV 0.81 0.78
Truck Type V 0.75 0.69
Truck Type VI 0.75 0.66

performed with Hough Transform, a parameterized feature detection method. The working parameters set

of Hough Transform is dependent on the image data, and type of problem being addressed. With changing

weather conditions and scene outlook, manually setting these parameters is tedious, and as shown in this

work often produces less than satisfactory results. To circumvent this problem, a combinatorial version of

Differential Evolution was used to optimize the parameter set yielding much higher accuracy as shown by

the results this work achieved. Five different variants of DE were tested initially, and it was observed that

DE/Rand/1/bin is most suitable for this task reaching a steady success rate of 90% while excluding the false

positives. To further improve the speed and accuracy of the system, DE/Rand/1/bin was further investigated.

For this, this variant was tested with multiple population sizes (NP) – FEs combinations. It is observed that

F=0.5, Cr=0.9, andNP=40 with 60 FEs yields an accuracy of around 90%, and increasing NP further does

not yield any better results. Due to speed considerations, as of now, this current system is suited to be used

as an offline vehicle classifier. To make the system perform as an online classifier, I will in the future work,

consider making some changes. For example, by careful camera calibration, it is possible to specify a region

of interest in the test frame where the probability of finding the axles is quite high given various assump-

tions about inclination of the road. This will reduce the computing load considerably. If there is enough

information available about the scene, it is possible to initialize DE with good values to begin with. These

and other modifications are planned as future work. Moreover, background construction that uses most of

the compute cycle need to be refined further, like using a Gaussian mixture model type pixel classification

instead of per-pixel comparison to classify, to speed up the process.

In addition, the novel DEVEC presents some advantages as well as challenges. For example, it does

away the need for a shadow removal module, as the camera is mounted sideways. This camera view also
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restricts the field of view. Occlusion has been handled successfully in moderate traffic. The speed of the

system remains an issue as the frame processing rate currently achieved stands at 13 fps on average. This is

not yet suitable for online classification. Future work, in this regard, includes developing an improved and

speedy background construction algorithm to improve the frame rate. A parallel version of DE may also be

investigated to identify the axles quickly.
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Figure 5.4. A step by step description of adaptive background construction
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Figure 5.5. Vehicle detection process

Figure 5.6. Axle detection using DE
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Figure 5.7. Vehicle outlines and their associated classes. Axle count information is necessary to distinguish
between Truck Type I and II, Truck Type III and IV, and Truck Type V and VI
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Figure 5.8. Results obtained through manual settings (third column) of Hough Transform parameters vs the
best settings obtained for DE/Rand/1/bin (fourth column)
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6. CONCLUSION

This study was set out to explore the suitability of Differential Evolution (DE), a control parameter

dependent evolutionary algorithm, to be applied as a real and discrete parameter optimizer on hard bench-

mark optimization problems, and real life scenarios primarily vehicle detection and classification. The study

has also sought to improve the classic DE algorithm comparing a modified DE variant with state-of-the-art

evolutionary algorithms to judge its overall applicability and robustness. Adding to the general literature on

DE, this study sought to answer the following research questions:

• What is the impact of linear and non-linear scale factor reduction on the performance of DE?

• What is the impact of adaptation of mutation strategy on the performance of DE both in presence and

absence of control parameter adaptation?

• What is the suitability of DE in parameter based vehicle detection and classification systems as a real

or discrete parameter optimizer?

The main empirical observations, results and findings are specific to the chapters and were summa-

rized separately. A unified summary of the findings is the following. It is observed that scale factor reduction

has a significant impact on the performance of DE. A statistical study conducted on twenty benchmark prob-

lems suggests that a combination of Dither and non-linear scale factor reduction significantly outperforms

the classical DE algorithm and this technique stands competitive when compared with the state-of-the-art

algorithm SaDE.

It is also reported that the adaptation of mutation strategy is a highly useful mechanism to enhance

the performance of DE. This mechanism is useful regardless of the presence of control parameter adaptation.

This study therefore, after exhaustive experimentation on 28 benchmark problems and statistical comparison

with the state-of-the-art algorithms, conclude that strategy adaptation should be used liberally when applying

DE to hard optimization problems.

As for the last question this work set out to answer, it was found that DE is particularly useful for

vehicle classification systems that would want to make use of number of axles as a cue for robust vehicle
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classification. It is observed that the classic DE algorithm, in some cases, is able to achieve an average

accuracy improvement of 30%-40% over a manually initialized and parameterized vehicle classification

system. This observation, of course, is then restricted to axle based vehicle classification systems.

From the future work’s perspective, the scope and scale of this study is extensive, and may be

expanded upon broadly. To integrate DE into commercial vehicle classifiers, which tend to be online, more

experimentation is required particularly to improve its speed and accuracy. The results and conclusions

obtained on scale factor alterations and strategy adaptation may be used to create a variant of DE that may

match the requirements of a robust online axle based vehicle classifier.
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