A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By
Mohamed Dit Mody Sylla

In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Major Department:
Statistics

May 2016

Fargo, North Dakota

North Dakota State University

Graduate School

Title

PREDICTION OF THE WORLD CUP SOCCER WINNER: USING TWO STATISTICAL METHODS

By
Mohamed Dit Mody Sylla

The Supervisory Committee certifies that this disquisition complies with North Dakota State University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Rhonda Magel
Chair
Dr. Abraham Ayebo
Dr. Ronald Degges

Approved:
$5 / 2 / 2016$
Date

Abstract

Soccer is considered the most popular sport on earth and applying statistical models to analyze small soccer data has been of a keen interest to modern researchers. Statistical modeling of soccer data also provides guidance and assistance to stakeholders. The goal of this paper is to establish a consistent statistical approach to help in the prediction of future World Cup championships. Ordinary least squares regression is used to develop models which predict goal margin of games and logistic regression is used to develop models which estimate the probability of a team winning the game. Discriminant Analysis was also used to determine which variables significantly influence individual game wins. The Fisher classification procedure allows for interpretability while providing a robust approach to classifying the 32 contestants of the 2014 World Cup using the previous data from 2006 and 2010 World Cup Championships.

ACKNOWLEDGEMENTS

First I am indubitably grateful to my Committee Chairman, Dr. Rhonda Magel, for her excellent guidance, caring, and patience; for providing me with an opportunity for completing this paper.

Although it is impossible to list everyone to whom I am indebted, several persons deserve special mention such as my mentor Dr. Abraham Ayebo, and Dr. Ron Degges for accepting to serve in this committee. Without all their kind assistance, continuous support, and insightful feedback, I would not achieve and accomplish what seems to be too far to reach in a lifetime.

Throughout the writing of this paper, I have had the love, full support and tenacity of my wife Fatoumata Diawara, my daughter Mariam Iman Sylla and my son Carter James. They are the love of my life, the rock that I can lean on and the ones who shares my best and worst moments. I greatly appreciate each one of them, for their compassionate encouragement throughout this tortuous journey. Without them, this proud and victorious episode would not have been achievable.

DEDICATION

I would like to dedicate this Master paper to my loving parents, brothers and sisters, and of course, my wife, daughter and my son. Thanks so much for their never-ending love, support, and spirit, during this tedious period.

TABLE OF CONTENTS

ABSTRACT iii
ACKNOWLEDGEMENTS iv
DEDICATION V
LIST OF TABLES ix
LIST OF FIGURES xi
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. LITERATURE REVIEW 3
CHAPTER 3. DESIGN OF STUDY 7
World Cup Format 7
Phase 1: Models Development 8
Phase 2: Models Validation. 11
Phase 3: Models Prediction 11
Fisher's Classification Procedure 12
CHAPTER 4. RESULTS 13
Phase 1: Models Development 13
Point model development for round robin stage (Round 1). 13
Goal margin model development for round robin stage (Round 1). 14
Goal margin model development for Round 2 or knock-out stage. 15
Logistic regression model development for Round 2 or knock-out stage. 16
Goal margin model development for Rounds 3-5 18
Logistic regression model development for Rounds 3-5. 18
Phase 2: Models Validation 20
Validation of the point model for round robin. 20
Validation of Goal Margin model for round robin 23
Validation of goal margin model for Round 2 or knock-out stage 25
Validation of logistic regression for Round 2. 27
Validation of goal margin model for Rounds 3-5. 29
Validation of logistic regression for Round 3-5. 31
Phase 3: Models Prediction 33
Actual prediction of the Point model (Round 1) 33
Actual prediction 2014 for the Goal Margin model 37
Actual prediction from Round 2 for the Goal Margin model for 2014 40
Actual 2014 prediction from Round 2 for Logistic Regression model 42
Actual 2014 prediction from the Goal Margin Rounds 3-5. 44
Actual 2014 prediction from logistic regression of Rounds 3-5. 46
Fisher's Classification Procedure. 48
CHAPTER 5. CONCLUSIONS 50
REFERENCES 52
APPENDIX A. LIST OF VARIABLES 53
APPENDIX B. SAS CODE 55
APPENDIX C. R CODE 58
APPENDIX D. SPPS CODE 60
APPENDIX E. 2006 DATA 61

LIST OF TABLES

Table Page
4.1. Linear Regression with a Stepwise Selection. 14
4.2. R-Square and Adjusted R-Square Values. 15
4.3. Parameter Estimate for Goal Margin Model. 15
4.4. Parameter Estimate for Goal Margin Model. 16
4.5. Parameter Estimate Values for Logistic Regression Round 2 17
4.6. Parameter Estimate Value for Goal Margin Model. 18
4.7. Parameter Estimate for Logistic Regression for Rounds 3-5. 19
4. 8. Result from Point Model Round Robin 2010. 20
4.9. Example for Point Model. 22
4.10. Overall Correct Prediction Table. 23
4.11. Result from the Goal Margin Model 24
4.12. Example of Two Goal Margin Models. 26
4.13. 2010 Results from the Goal Margin Model. 27
4.14. Example of Two Matches for Logistic Regression Round 2 28
4.15. 2010 Validation Results from the Logistic Regression. 29
4.16. Example of Two Matches for Goal Margin Model. 30
4.17. Validation from Goal Margin. 31
4.18. Example of Logistic Regression for Rounds 3-5. 32
4.19. Validation for Logistic Regression for Rounds 3-5 33
4.20. Example of Actual Prediction of Teams Who Qualify in Group A. 34
4.21. Example of Actual Prediction of Teams Who Did Not Qualify in Group A. 34
4.22. Example of Actual Prediction of Teams Who Qualified in Group F. 35
4.23. Example of Actual Prediction of Teams Who Did Not Qualify in Group F. 35
4.24. Results for Point Model 2014. 36
4.25. Example of a Goal Margin Model. 38
4.26. Example of a Goal Margin Model. 38
4.27. 2014 Results from Goal Margin Model Round Robin. 39
4.28. Examples of Two Matches for the Goal Margin Model. 41
4.29. 2014 Results from the Goal Margin Model 42
4.30. Example of Two Matches for Logistic Regression Round 2. 43
4.31. Actual Results from Logistic Regression Model. 44
4.32. Example of Two Matches for Goal Margin Rounds 3-5. 45
4.33. Results from Goal Margin Model Rounds 3-5 2014. 45
4.34. Prediction Examples of a Logistic Regression for Rounds 3-5. 46
4.35. Results from Logistic Regression. 47
4.36. Standardized Canonical Discriminant Function Coefficients 48
4.37. Fisher's Linear Discriminant Functions. 49
4.38. Cross-validation Classification Table 49

LIST OF FIGURES

Figure Page
4.1. ROC Curve for Logistic Regression of Round 2 17
4.2. ROC Curve for Logistic Regression of Rounds 3-5. 19

CHAPTER 1. INTRODUCTION

World Cup is the most widely viewed sport event in the world with an estimated of 715 million spectators, broadcasted to 204 countries around the globe [FIFA.com]. On June 12, 2014, the mind of soccer fanatics was geared towards Brazil not only dancing samba in the beach of Rio del Janeiro and Sao Paulo but also cheering for their teams. Paul, the octopus, was the only cephalopod that could predict a winner of the World Cup but unfortunately died in October 2010. However, in this paper we will try to replace Paul by statistical models.

The purpose of this paper is to predict the champion of the Brazil World Cup 2014. Before embarking on the details let us introduce the general format of the competition. Preliminary games are organized among the national teams of the countries of all seven continents and the best 32 teams are qualified for the World Cup. There is then a random drawing that puts the 32 teams into eight groups of four teams each. After each team has played a total of 3 games (Round Robin), the first two best teams with the maximum points in each group will make it to Round 16 (Knock out stage); followed by the quarter-final, semi-final and the final. The final game is played between the last two teams that have not been knocked out of the competition. During the Round Robin stage if there is a tie within a group the team with the greatest goal difference moves to Round 16. The point allocation during the Round Robin stage follows this format: 3 points for a win, 1 point for a draw and no points for a lost game.

This paper will focus on considering various variables that will help us predict the winner of the World Cup from the Round Robin until the Final Round. Models will be developed to estimate the number of points in the Round Robin and the goal margin for every game. Models will also be developed to estimate the probability of a particular team winning the game. These models were developed using information from the 2006 World Cup and validated using the 2010 World Cup. They will be used to predict results in the 2014 World Cup.

CHAPTER 2. LITERATURE REVIEW

Extensive research in forecasting soccer outcomes has been conducted using direct and indirect approaches. The direct approach uses regression methods such as logistic regression with Win/Draw/Lost treated as a dependent variables. This method has been favored by Koning (2000). The indirect forecasting approach originally proposed by Moroney (1956) and revisited by Karlis and Ntzoufras (2003) models the distributions of Goals Scored by each team. It assumes Goals Scored follows a bivariate Poisson model. The disadvantage of this model is that it underestimates the number of draws in a Round Robin tournament. In addition, the model allows only for positive correlation and if there is any negative correlation in the data, the model cannot handle it (Karlis \& Ntzoufras, 2003).

Despite this popular method of Moroney (1956), his method was followed 12 years later by a method proposed by Reep and Benjamin (1968). Reep and Benjamin (1968) also used an indirect forecasting approach but by fitting a Negative Binomial distribution to the number of Goal Scored (GS) by each team during soccer match instead of a Poisson model. Reep and Benjamin (1968) gathered data from 3,213 matches between 1953 and 1968. They found that 80% of Goals Scored occurred after a sequence of three passes or less, which leads to believe that shots into goals are triggered by the number of passes between players from the same team.

Furthermore, Croucher [1984] investigated the tiebreaker factor by introducing the ratio between Goal Scored (GS) and Goal Against (GA) into the analysis. To illustrate this difference between Goal Difference and the ratio of Goals Scored to Goals Against; consider the following example: Suppose Team A and Team B have the same number of points in the Round Robin tournament; Team A has a GS of 3 and GA of 1 which leads to a Goal difference of +2 and Team A has a ratio of 3 ; Team B in the same format has a GS of 6 and a GA of 3 which gives Team B a Goal Difference of +3 and Team B has a ratio of 2 . Under Goal difference Team B will win while under ratio format Team A will win since the ratio of Team A is greater than Team B. The use of Croucher's (1984) method stresses the urgency of scoring for a team in order to win a game and also helps a team to improve its standing during a tiebreaker.

Further studies have been tackled by McGarry and Schutz (1994) both of whom studied the behavior of the FIFA World Cup seeding structure in order to determine whether being in one group is more favorable than being in another group. To investigate whether the tournament is balanced or not, they gave a rating to each team in order to model their strength following a paired comparison model firstly introduced by the Bradley-Terry Model in 1952, between team i and j as follows:
$p(i$ beatsj $)=\frac{R_{i}}{R_{i}+R_{j}}$ Where R_{i} and R_{j} are the respective ratings score of team i and j where $\forall \mathrm{i} \neq \mathrm{j}$

Let us recall that eight teams in the drawing process are seeded according to FIFA top seven ranking teams and the host country is naturally placed on top of a group A; the remaining 24 teams are randomly drawn to fill the empty spot of each group. However, in the World Cup 1994, only 24 teams were participating in the championship in which teams were divided into six groups of four teams each and the first two best teams with the maximum points in each group will make it to Round 16, including the four best third teams in the Round Robin will also make it to Round 16.

McGarry and Schutz (1994) gave a rating score of 100 for the team in the first seed, the second seeds a score of 80 , the third seeds a score of 60 , and the final seeds a score of 40 , which respectively corresponds to first ranked teams A-1, B-1, C-1, D-1. The first ranked teams (A-1, B-1, C-1, D-1) played against possible opponents from the third ranked teams while the first ranked of group E and F were matched to play against second ranked teams for Round 2.

In their study, McGarry and Schutz (1994) established that group structure was biased, principally due to the seeding of the Round 16 since the first rank teams of group A, B, C, D were to played against the third ranked teams, whereas, group E and F were to play against second rank teams in the knock out stage with the assumption of first rank teams being stronger than third ranked teams.

They found that being in groups A and C were more beneficial for the rest of the World Cup than being in groups E and F (McGarry \& Schutz, 1994).

Magel and Melnykov (2014) studied factors that were significant in predicting the outcomes of European soccer games. They found that differences between goals scored and goals against based on K previous games of both teams were significant. The differences in cards received by both teams and their opponents based on K previous games were also significant.

This paper will extend the findings of Magel and Melnykov (2014) for European soccer games to the World Cup. The research will focus on considering Goals Scored, Goals Against, and number of cards received the last k games, as well as the winning probability prior to entering the competition in order to develop models to predict the results of the World Cup.

CHAPTER 3. DESIGN OF STUDY

The purpose of this research is to develop models to predict the champion of future World Cup matches. Our research will include three phases. In phase 1, models were developed based on samples obtained from the 2006 World Cup. In phase 2 , the models were tested using data from the 2010 World Cup. In phase 3, predictions were made for the 2014 World Cup.

World Cup Format

The World Cup has five rounds of play. The first round has 32 teams placed in eight groups each having four members. Every team in the group plays each other once. Therefore, each team plays three games and there are six games played within each of the eight groups. A team is awarded 3 points for a win, 1 point for a tie and no points for a loss at the end of regulation time. The two teams from each group with the largest number of points made it into the second round with tied number of points being broken by the difference in total number of goals scored between the team and their opponents. Round 2 through 5 are knockout rounds in which the loosing team goes home and the winning team goes to the next round. The highest seven ranked teams based on FIFA ranking system including 2006 World Cup champion are placed on top of the eight groups; and then the remaining three teams of each group are randomly filled. The knockout Round 2 is seeded in the following fashion:

A winner of Group A plays against the second best team of Group B and the second best team of Group A plays against the winner of Group B; the precedent scheme is achieved up to Group G.

Phase 1: Models Development

Two models were developed for Round 1. The first model developed is a point model to predict the total number of points that a team will get in Round 1. Ordinary Least Squares regression with no intercept; using the stepwise selection procedure was used with and alpha value of entry equal to 0.25 and an alpha value of stay equal to 0.20 to determine which variables should be included in the model. The independent variables considered for inclusion in the model were:

- Average Goals Scored per game by a team before the 2006 World Cup
- Average Goals Scored against a team before the 2006 World Cup
- Average Cards given by a referee before the 2006 World Cup
- Winning probability of a team before the 2006 World Cup

The data were abstracted from the official FIFA web site of FIFA (www.fifa.com) for the period of August 18, 2004 through November 16, 2005 in which the preliminaries took place.

The second model developed for Round 1 was a model to predict the goal margin for each of the 48 games in Round 1. Ordinary Least squares regression with the intercept term set to zero was used to develop this model with the dependent variable being the goal margin. The
stepwise selection procedure with alpha entry equal to 0.25 and alpha stay equal to 0.20 was used to determine which independent variables to include in the model. The independent variables considered for inclusion in the model were:

- Differences in Average Goals Scored between two teams before the World Cup 2006.
- Differences in Average Goals Against between two teams before the World cup 2006.
- Differences in Average number of Cards given by a referee between two teams before the World Cup 2006.
- Differences in winning probability before the World Cup 2006

The estimated value of y from the goal margin model was rounded to the nearest integer. Two models were developed for Round 2, a goal margin model using Ordinary Least Squares regression and a Logistic Regression model estimating the probability that Team A would win. The intercept terms were set to zero for both models. Stepwise selection was again used in developing the models. Only data on teams playing in the second round of the 2006 World Cup was used. The following variables were considered for possible entry into the goal margin model:

- Differences in Average Goals Scored between two teams before World Cup 2006
- Difference in Average Goals Scored Against two teams before World Cup 2006
- Differences in Average disciplinary Cards given by a referee before World Cup 2006
- Difference in Average winning percentage between two teams before World Cup 2006
- Differences in Average Goals Scored during Round Robin of the World Cup 2006
- Differences in Average Goal Scored against during Round Robin of the World Cup 2006
- Difference in Average disciplinary cards given during Round Robin of the World Cup 2006
- Difference in Average Number of wins in the Round Robin World Cup 2006.

If the estimated probability was larger than 0.5 , we would predict that team A to win. If the estimated probability was less than 0.5 , we would predict Team A to lose.

Two models were developed for Rounds 3-5. These models were developed based on data from teams playing in the World Cup in Rounds 3-5 in 2006. A goal margin model and a logistic regression model were developed using the stepwise selection technique. The intercepts were set to zero for both models. The following variables, starting with the first game in the World Cup were considered for possible entry into goal margin:

- Difference in average Goals Scored between two teams up to this present round
- Difference in average Goals Scored against between two teams up to this present round
- Difference in average Cards received between two teams up to this present round The following variables were considered for entry into the Logistic Regression model:
- Difference in average Goals Scored between two teams up to this present round
- Difference in average Goals Scored against between two teams up to this present round
- Difference in average Cards received between two teams up to this present round

Phase 2: Models Validation

Phase 2 consisted of using the parameter estimates from the model, and applied a training data set of past 2010 World Cup preliminary stage to validate our models. The preliminary stage data was abstracted from the official website of FIFA (www.fifa.com) for the period of August 25, 2007 through November 18, 2009. After developing the two models in Round 2 by using past data of 2006 World Cup we then used the past data of 2010 World Cup Round 1 to validate both models. Finally, for Rounds 3-5 validation we used a training data set of teams playing preliminary round up to present round of the 2010 World Cup.

Phase 3: Models Prediction

Phase 3 was the actual prediction in which we used the 2014 World Cup preliminary stage data to determine the winners of Round 1; data was abstracted from the official FIFA website (www.fifa.com) from the period of June 15, 2011 through November 20, 2013. To predict for teams to advance to the next stage of Round 2, we used 2014 World Cup Round 1
data. Finally, we used data from preliminary round up to present round of 2014 World Cup to predict the champion of 2014 World Cup.

Fisher's Classification Procedure

Linear Discriminant Analysis was used to elucidate the difference between Teams who qualify and Teams who do not qualify for the knock-out stage of the 2006 and 2010 World Cups and also to identify which variables mostly contributed to the separations of successful and non-successful Teams. 2006 and 2010 World Cups data (Fifa.com) with the following variables were considered:

- Average Goals Scored during Round Robin of the World Cup 2006
- Average Goal Scored against during Round Robin of the World Cup 2006
- Average disciplinary cards given during Round Robin of the World Cup 2006
- Average Goals Scored during Round Robin of the World Cup 2010
- Average Goal Scored against during Round Robin of the World Cup 2010
- Average disciplinary cards given during Round Robin of the World Cup 2010

CHAPTER 4. RESULTS

Based on data collected from teams qualifying in the 2006 World Cup models were developed to predict future World Cup winners. In this chapter, the models developed are given and tested on 2010 World Cup data. Predictions for World Cup 2014 are made. Our results chapter will include three phases. In phase 1, models were developed based on samples obtained from the 2006 World Cup. In phase 2, the models were tested using data from the 2010 World Cup. In phase 3, predictions were made for the 2014 World Cup.

Phase 1: Models Development

Point model development for round robin stage (Round 1). Ordinary Linear Regression was used to develop a model to predict the 16 winners of the Round Robin based on estimated number of points obtained using Stepwise Selection; Table 4.1 shows our R output. All the variables considered for entry into the model were found to be significant at alpha equals to 0.05 and the intercept term was set to be zero. The variables included are Average Goals Scored per game by a team before 2006 World Cup (AvgGS_Game), the Average Goals Scored Against per game by a team before 2006 World Cup (AvgGA_Game), the Average disciplinary Cards received per game by a team before 2006 World Cup (Ave_Cards), the winning probability of a team before 2006 World Cup (WinP). The R-Square for our model was 0.92 and the adjusted RSquare was 0.91.

Table 4.1
Linear Regression with a Stepwise Selection

Variable	Parameter Estimate	Standard Error	t value	P-value
AvgGS_Game	3.5105	0.4065	8.635	$2.21 \mathrm{e}-09$
AvgGA_Game	-2.0834	0.3323	-6.270	$8.87 \mathrm{e}-07$
Ave_Cards	0.4582	0.2193	2.090	0.0459
WinP	2.41011	1.1652	2.061	0.0487

Average Goal Against (AvgGA_Game) has a negative value which makes sense; in soccer game conceding goals usually work against a team.

The coefficient associated with winning probability has a positive effect (Win probability) which also makes sense. Teams have a better chance of winning if they do play a lot of game ahead of time. Average Goal Scored (AvgGS_Game) has a positive effect which is crucial for a team to secure a qualification into the next stage. Average disciplinary Cards have a small positive effect showing that to secure a win; Teams need to also strategize around the defense.

Goal margin model development for round robin stage (Round 1). This model was elucidated with 48 games, which consisted of the total number of games in a Round Robin. The stepwise selection option with a select entry of 0.25 and select stay of 0.20 was used which yields a subset of significant independent variables namely: Differences in Average Goal Scored between two teams before World Cup 2006 (AveGFdiff) and Differences in Average Goal Scored
between two teams before World Cup 2006 (AveGAdiff). Our R-square for this model was 0.63. From the model, it also appeared that the defense is slightly more important than the offense at winning the game. The absolute value of the parameter estimate for the average goals against is greater than the absolute value of the parameter for the Average goals scored. The P value for the Average goals against is also lower than the P -value for the Average goals scored. SAS output below showed our parameter estimates and associated p-values.

Table 4.2
R-Square and Adjusted R-Square Values

Root MSE	1.18553	R-Square	0.6334
Dependent Mean	0.39583	Adj R-Sq.	0.5861
Coeff Var	299.50142		

Table 4.3

Parameter Estimate for Goal Margin Model

	Parameter Estimate	Standard Error	Type II SS	\boldsymbol{P}-value
AveGFdiff	0.71843	0.21098	16.29654	0.0014
AveGAdiff	-0.83187	0.15773	39.09298	$<.0001$

Goal margin model development for Round 2 or knock-out stage. Round 2 or Round 16 is a knock-out stage. A new Goal Margin model was used to predict the score of the eight
games played in this round using data from the 2006 Past World Cup
(http://www.fifa.com/worldcup/archive/germany2006/matches). We found that three variables were significant: Difference in Average Goals Scored during Round Robin of 2006 World Cup (ADiffGF), Difference in Average Goals Scored against during Round Robin of 2006 World Cup (ADiffGA), Difference in Average disciplinary Cards given during Round Robin of 2006 World Cup (ADiffCards). Below is the R output and it is noted that the adjusted R-square had a value of 0.67 .

Table 4.4
Parameter Estimate for Goal Margin Model

Variable	Parameter Estimate	Standard Error	t value	P-value
ADiffGF	2.0226	0.5352	3.7979	0.012
ADiffGA	-0.9351	0.6899	-1.6781	0.133
ADiffCards	-1.1514	0.7818	-1.9852	0.105

Logistic regression model development for Round 2 or knock-out stage. We used the past data of 2006 World Cup (fifa.com) to develop a logistic regression to predict which teams are going to move to the Round 3. Out of possible predictors variables given in Chapter 3 only three were significant ($\alpha=0.20$) : Difference in average Goals Scored between two teams during Round 1 (AdiffGF); Difference in average Goals Scored against between two teams during Round 1 (AdiffGA); and Difference in average Cards received between two teams during

Round 1 (AdiffGA). Hosmer-Lemeshow was used to assess the goodness of fit, where the null Hypothesis indicates that our current model fits well and the alternative hypothesis indicates the model does not fit well. The output displays a P-value of 0.544 meaning that we do no reject the null hypothesis and we concluded that the model is a good fit.

Table 4.5
Parameter Estimate Values for Logistic Regression Round 2

Variable	Parameter Estimate	Standard Error	Z value	P-value
ADiffGF	1.2135	0.9667	1.255	0.2093
ADiffGA	-2.5469	1.0284	-2.477	0.0133
ADiffCards	-0.6724	0.3374	-1.993	0.0463

Figure 4.1. ROC Curve for Logistic Regression of Round 2. Area under the curve $=0.78$

Goal margin model development for Rounds 3-5. One Goal Margin model was
developed for Rounds 3-5. Past World Cup 2006 (fifa.com) data were used to develop a model. Again the stepwise technique was used with a select entry of 0.25 and select stay of 0.20 ; the significant variables found were: Difference in average Goals Scored between two teams up to this Round (AdiffGF) and Difference in average Goals Scored against between two teams up to this Round (AdiffGA) (Chapter 3). Our adjusted R-square value was 0.62.

Table 4.6
Parameter Estimate Value for Goal Margin Model

Variable	Parameter Estimate	Standard Error	t-value	\boldsymbol{P}-value
ADiffGF	1.0067	0.2642	3.81	0.000329
ADiffGA	-0.7044	0.1845	-3.818	0.000318

Logistic regression model development for Rounds 3-5. A Logistic regression was developed to predict the probability of a team winning the World Cup. We used past data of World Cup 2006 to build our model. After using the stepwise selection technique with a select entry of 0.25 and select stay of 0.20 , we found the following variables significant: Difference in average Goals Scored between two teams up to this Round (AdiffGF), Difference in average Goals Scored against between two teams up to this Round (AdiffGA), and Difference in average

Cards received between two teams up to this Round (AdiffCards). Hosmer-Lemeshow was used to assess the goodness of fit, where the null Hypothesis indicates that our current model fits well and the alternative hypothesis indicates the model does not fit well. The output displays a P-value of 0.29 meaning that we do no reject the null hypothesis and we concluded that the model is a good fit.

Table 4.7
Parameter Estimate for Logistic Regression for Rounds 3-5

| Variable | Parameter
 Estimate | Standard
 Error | Z value |
| :--- | :---: | :---: | :---: | :---: |

Fiqure 4.2. ROC Curve for Logistic Regression of Rounds 3-5. Area under the curve $=0.8$

Phase 2: Models Validation

Validation of the point model for round robin. We used the 32 teams that qualified for World Cup 2010 to test the point model. These teams were divided into groups of four. Table 4.8 represents the results from our point model. The predicted number of points each team would get is given along with whether or not we predicted them to qualify along with whether or not they actually qualified for the next round.

Table 4.8

Result from Point Model Round Robin 2010

$\stackrel{n}{\text { E }}$					$\begin{aligned} & \text { 崩 } \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & \mathbb{\top} \\ & \mathbb{\gtrless} \end{aligned}$		$\stackrel{\text { 을 }}{3}$
Group A								
South Africa	4.36	4	N	N	1	1	1.66	0.9
Mexico	6.64	4	N	Y	1.8	1.2	3	0.6
Uruguay	6.56	7	Y	Y	1.55	1.11	4.33	0.6
France	6.96	1	Y	N	1.8	0.9	2.33	0.6
Group B								
Argentina	6.15	9	Y	Y	1.27	1.11	4	0.9
Nigeria	6.01	1	N	N	1.5	0.66	2	0.5
Korea Republic	6.35	4	N	Y	1.5	0.5	2	0.5
Greece	7.14	3	Y	N	2	1	1.66	0.6
Group C								
England	14.08	5	Y	Y	3.4	0.6	2.667	0.9
USA	9.22	5	Y	Y	1.9	1.3	8.33	0.6
Algeria	10.21	1	N	N	1.5	0.66	10.33	0.66
Slovenia	10.2	4	Y	N	2.2	1	6.27	0.7
Group D								
Germany	11.69	6	Y	Y	2.6	0.5	3.66	0.8
Australia	8.23	4	N	N	1.5	0.125	3.36	0.7
Serbia	8.73	3	N	N	2.2	0.8	3.2	0.5
Ghana	8.72	4	Y	Y	1.5	0.5	6.66	0.6

Group E

Table 4.8 Result from Point Model Round Robin 2010 (Continued)

					$\begin{aligned} & \text { 亗 } \\ & \text { 『 } \end{aligned}$	$\begin{aligned} & \mathbb{\nwarrow} \\ & \mathbb{\gtrless} \end{aligned}$		$\stackrel{\text { ² }}{3}$
Netherlands	10.24	9	Y	Y	2.125	0.25	3	0.8
Denmark	8.16	3	N	N	1.6	0.5	4.66	0.6
Japan	6.6	6	N	Y	1.375	0.75	4.66	0.5
Cameroon	8.77	0	Y	N	1.5	0.33	6	0.6
Group F								
Italy	9.6	2	N	N	1.8	0.7	6.66	0.7
Paraguay	8.68	5	N	Y	1.33	0.833	8.33	0.8
New Zealand	10.51	3	Y	N	2.33	0.833	4.66	0.8
Slovakia	9.77	3	Y	Y	2	1	6.33	0.8
Group G								
Brazil	9.26	7	Y	Y	1.83	0.61	6.33	0.5
Korea DPR	6.31	0	N	N	0.875	0.625	8.33	0.3
Ivory Coast	6.76	4	N	N	1.16	0.66	4.66	0.8
Portugal	8.12	5	Y	Y	1.7	0.5	4.33	0.5
Group H								
Spain	12.94	6	Y	Y	2.8	0.5	4.33	0.9
Switzerland	8.54	4	N	N	1.8	0.8	5.33	0.6
Honduras	7.33	1	N	N	0.7	1.1	13	0.5
Chile	8.67	6	Y	Y	2	1	5	0.6

The validation process of our test data allowed us to have an overall correct prediction of 71.8 \% accuracy (Table 4.9). In fact in World Cup 2010 in group G, Brazil was in the same group stage as Portugal, Korea DPR, Ivory Coast; and our model predicted 9.26 points for Brazil and 8.12 points for Portugal.

The results from the model are given as follows:

Table 4.9
Example for Point Model

Teams in Group G	Average Number of Goals	Average Number of Goals Against	Average Cards	Win Probability
Brazil	1.83	0.61	6.33	0.5
Portugal Korea	1.7	0.5	4.33	0.5
DPR lvory Coast	0.875	0.625	8.33	0.3

- Predicted number of point (Brazil) $=3.5105 \times\left(A V _G F=1.83\right)-2.0834^{*}\left(A V _G A=0.61\right)$ $+0.4582 x($ AV_CARDS $=6.33)+2.4011 \times($ Winp $=0.5)=9.26$
- Predicted number of points (Portugal) $=3.5105 x\left(A V _G F=1.7\right)-2.0834 x\left(A V _G A=0.5\right)$ $+0.4582 x($ AV_CARDS $=4.33)+2.4011 x($ Winp $=0.5)=\mathbf{8 . 1 2}$
- Predicted number of point $s($ Korea $D P R)=3.5105 \times\left(A V _G F=0.875\right)-2.0834 *$
$\left(A V _G A=0.625\right)+0.4582 x($ AV_CARDS $=8.33)+2.4011 x($ Winp $=0.3)=6.31$
- Predicted number of points (Ivory Coast) $=3.5105 \times\left(A V _G F=1.16\right)-2.0834^{*}$
$\left(A V _G A=0.66\right)+0.4582 x\left(A V _C A R D S=4.66\right)+2.4011 x($ Winp $=0.8)=6.76$
In group G, Our model predicted both Brazil and Portugal to qualify with respectively 9 and 8 points and both teams did actually qualify with Brazil receiving 7 points and Portugal receiving 5 points. Two others Teams in the same Group: Korea DPR and Ivory Coast did not qualify because our model predicted both teams to have 6 points each. Table 4.10 below gives
the number of teams that we predicted to qualify who qualified and the number of teams we predicted to do not qualify.

Table 4.10

Overall Correct Prediction Table

		Actually Qualified			Total
		No	Yes		
Predicted to Qualified	Yes	Yes	5	12	17
		$\%$	29.40%	70.60%	
	No	No	11	4	15
		$\%$	$\mathbf{7 3 . 3 0 \%}$	26.70%	
Total		N	16	16	32

Validation of Goal Margin model for round robin. Preliminary data of the past data of the World Cup 2010 were used to validate the Goal Margin model for the Round Robin stage. The Goal Margin model estimates the difference in number of goals between two contesting teams in a game. This is done in the order number of goals for Team A minus number of goals for Team B. When the Goal Margin estimate value is positive, the prediction is Team A will win. If it is negative Team B is predicted to win. The order of Teams does not change the outcomes of the estimate; if the estimated Goal margin of Team A-team B is 1 then the estimated Goal Margin of Team B-A is -1. The Intercept of the Goal margin model was set zero.

The 2010 World Cup results (fifa.com/worldcup/archive/southafrica2010/matches/ preliminaries) were used to validate this model. We were able to predict 28 games out of 39
games right (71%); If our model gave us a value between -0.05 and +0.05 we predicted a draw.

Table 4.11 below shows our 2010 validation results.

Table 4.11

Result from the Goal Margin Model

Group A					
South Africa vs Mexico	-0.8	-0.2	-0.41	Mexico	Draw
Uruguay vs France	-0.25	0.21	-0.35	France	Draw
South Africa vs Uruguay	-0.55	-0.1	-0.3	Uruguay	Uruguay
France vs Mexico	0	-0.3	0.25	France	Mexico
Mexico vs Uruguay	0.25	-0.1	0.25	Mexico	Uruguay
France vs South Africa	0.8	-0.1	0.66	France	South Africa
Group B					
Nigeria vs Argentina	0.23	-0.5	0.54	Nigeria	Argentina
Korea Republic vs Greece	-0.5	-0.5	0.06	Korea Republic	Korea Republic
Nigeria vs Greece	-0.5	-0.3	-0.08	Greece	Greece
Korea Republic vs Argentina	0.23	-0.6	0.67	Korea Republic	Argentina
Korea Republic vs Nigeria	0	-0.2	0.13	Korea Republic	Draw
Argentina vs Greece	0.73	0.11	0.43	Argentina	Argentina
Group C					
England vs USA	1.5	-0.7	1.66	England	Draw
Algeria vs Slovenia	-0.7	-0.3	-0.22	Slovenia	Slovenia
Slovenia vs USA	0.3	0.3	-0.03	Draw	Draw
England vs Algeria	1.9	-0.1	1.41	England	Draw
Slovenia vs England	-1.2	0.4	-1.19	England	England
USA vs Algeria	0.4	0.7	-0.29	Algeria	USA
Group D					
Germany vs Australia	1.1	-0.4	1.1	Germany	Germany
Serbia vs Ghana	0.7	0.3	0.25	Serbia	Ghana
Germany vs Serbia	0.4	-0.3	0.54	Germany	Serbia
Ghana vs Australia	0	0.38	-0.31	Australia	Draw
Ghana vs Germany	-1.1	0	-0.79	Germany	Germany
Australia vs Serbia	-1.1	-0.7	-0.23	Serbia	Australia
Group E					
Netherlands vs Denmark	0.525	-0.3	0.59	Netherlands	Netherlands
Japan vs Cameroon	-0.125	-1.3	1.02	Japan	Japan
Netherlands vs Japan	0.75	-1.7	1.92	Netherlands	Netherlands
Cameroon vs Denmark	-0.17	-0.2	0.02	Draw	Denmark

Table 4.11. Result from the Goal Margin Model (Continued)

Denmark vs Japan	0.225	-0.2	0.35	Denmark	Japan
Cameroon vs Netherlands	-0.71	0.08	-0.58	Netherlands	Netherlands
Group F					
Italy vs Paraguay	0.47	-1.3	1.44	Italy	Draw
New Zealand vs Slovakia	-1	-0.1	-0.62	Slovakia	Draw
Slovakia vs Paraguay	0.33	0.17	0.1	Slovakia	Paraguay
Italy vs New Zealand	-0.53	0	-0.38	New Zealand	Draw
Slovakia vs Italy	0.2	0.3	-0.11	Italy	Slovakia
Paraguay vs New Zealand	-1	0	-0.72	New Zealand	Draw
Group G					
Ivory Coast vs Portugal	-0.54	0.16	-0.52	Portugal	Draw
Brazil vs Korea DPR	0.99	-0	0.72	Brazil	Brazil
Brazil vs Ivory Coast	0.67	-0.1	0.52	Brazil	Brazil
Portugal vs Korea DPR	0.825	-0.1	0.7	Portugal	Portugal
Portugal vs Brazil	-0.13	-0.1	0	Draw	Brazil
Korea DPR vs Ivory Coast	-0.285	-0	-0.18	Ivory coast	Ivory Coast
Group H					
Honduras vs Chile	-1.3	1	-1.77	Chile	Chile
Spain vs Switzerland	1	-0.3	0.97	Spain	Switzerland
Chile vs Switzerland	0.2	-1.8	1.64	Chile	Switzerland
Spain vs Honduras	2.1	-0.6	2.01	Spain	Spain
Chile vs Spain	-0.8	0.5	-0.99	Spain	Spain
Switzerland vs Honduras	1.1	-0.3	1.04	Switzerland	Draw

Validation of goal margin model for Round $\mathbf{2}$ or knock-out stage. World Cup 2010 past data (http://www.fifa.com/worldcup/archive/southafrica2010/matches) was used to validate the model. In order to illustrate the table below we picked two games: Uruguay against South Korea and Germany against England.

Table 4.12

Example of Two Goal Margin Models

Teams 2010	Difference in Average Goal Scored	Difference in Average Goal Against	Difference in Average Cards
Uruguay vs South Korea	-0.33	-0.67	-2
Germany vs England	0.99	0	-0.9

- Goal Margin estimate (Uruguay vs South Korea) $=2.0226$ X(AdiffGF=-0.33)-
$1.1514 X$ (AdiffC $=-2$)-0.9351X(AdiffGA $=-0.67$) $=2.26 \approx 2$ (Uruguay)
- Goal Margin estimate (Germany vs England) $=2.0226$ X(AdiffGF=0.99)- 1.1514

$$
\text { X(AdiffC=-0.9)- } 0.9351 X(\text { AdiffGA=0) }=3.03 \approx 3 \text { (Germany) }
$$

The Goal Margin model estimates number of goals scored by Team A minus number of goals scored by Team B. When the Goal Margin estimate is positive it is predicted Team A wins. When Goal Margin estimate is negative, it is predicted team B wins. Our model predicted that Uruguay will win by 2 goals. Uruguay did win, but won with a difference of 1 goal. The second game involving Germany vs England our model predicted that Germany will win by 3 goals and in fact Germany won by 3 goals in 2010 World Cup versus England. Out of eight games our model correctly predicted six of teams which would win the game. In this case, the correct prediction percentage was 75%.

Table 4.13

2010 Results from the Goal Margin Model

	$\begin{aligned} & \mathbb{1} \\ & \stackrel{0}{0} \end{aligned}$	∞ 							
Uruguay vs South Korea	2	1	1	2.26	Uruguay	Uruguay	-0.33	-0.67	-2
United States vs Ghana	1	2	-1	0.94	United States	Ghana	0.67	0.02	0.34
Nethelands vs Slovania	2	1	1	1.38	Netherlands	Netherlands	0.33	-1.165	0.33
Brazil vs Chile	3	0	3	1.6	Brazil	Brazil	0.66	-0.49	0.17
Argentina vs Mexico	3	1	2	2.91	Argentina	Argentina	1.33	-1.0833	0.69
Germany vs England	4	1	3	3.04	Germany	Germany	0.99	0	-0.9
Paraguay vs Japan	5	3	2	0.3	Paraguay	Paraguay	0.33	0.8	-0.327
Spain vs Portugal	1	0	1	-3.01	Portugal	Spain	-1	0.247	0.66

Validation of logistic regression for Round 2. In order to test our above model, we used data from 2010 World Cup (fifa.com) by estimating our probability of a team advancing to the next stage. If the estimated probability of a given team winning the game was more than 0.5 our model had the team advancing to the next round. To illustrate the validation process, we will consider the 2010 World Cup game between Uruguay and South Korea. The equation we developed for estimating the probability that a given team will win the Soccer game is given below and also Data from this game is given in Table 4.14

- $p($ win $)=\frac{1}{1+e^{-\hat{y}}}$ where $\hat{\mathrm{y}}=1.2135 \times$ AdiffGF- $2.5469 \times$ AdiffGA- 0.6724^{*} AdiffCards

Table 4.14
Example of Two Matches for Logistic Regression Round 2

Teams 2010	Difference in Average Goal Scored	Difference in Average Goal Against	Difference in Average Cards
Uruguay vs South Korea	-0.33	-0.67	-2

- P (Uruguay $)=\frac{1}{1+\exp (-1.235 x-0.33+2.5469 x-0.67+0.6724 x-2)}=0.93$

1

- $P($ South Korea $)=\square=0.06$
$1+\exp (-1.235 \times 0.33+2.5469 \times 0.67+0.6724 x-$
Uruguay did win the game.

Since the estimated probability that Uruguay will win the game is greater than 0.5 , our model is predicting Uruguay to be the winner and Uruguay did win the game. All of the results for this round are given in Table 4.15.

Table 4.15
2010 Validation Results from the Logistic Regression

			$\begin{aligned} & \text { 苞 } \\ & \text { 花 } \end{aligned}$				
Uruguay vs South Korea	-2	-0.67	-0.33	0.93	0.06	Uruguay	Uruguay
United States vs Ghana	0.34	0.02	0.67	0.63	0.37	United States	Ghana
Nethelands vs Slovania	0.33	-1.165	0.33	0.96	0.04	Netherlands	Netherlands
Brazil vs Chile	0.17	-0.49	0.66	0.87	0.13	Brazil	Brazil
Argentina vs Mexico	0.69	1.0833	1.33	0.98	0.01	Argentina	Argentina
Germany vs England	-0.9	0	0.99	0.86	0.14	Germany	Germany
Paraguay vs Japan	-0.327	0.8	0.33	0.19	0.8	Japan	Paraguay
Spain vs Portugal	0.66	0.247	-1	0.09	0.91	Portugal	Spain

Our model correctly predicted 5 out of 8 games for an overall 63% correct prediction rate.
Validation of goal margin model for Rounds 3-5. We used the past data of the World

Cup 2010 (fifa.com) to validate our Goal Margin model for Rounds 3-5. We correctly predicted 5
out of 7 games for a 71% correct prediction rate. Table 4.16 gives values of the significant variables needed for the equation for two games. One game is between Uruguay and Ghana and another game is between Argentina and Germany.

Table 4.16.
Example of Two Matches for Goal Margin Model

$\begin{aligned} & \text { Teams A- } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Teams B- } \\ & 2010 \end{aligned}$	Average Goal For Team A	Average Goal For Team B	Difference Average GF	Average Goal Against A	Average Goal Against B	Difference Average GA	Estimated Goal Margin	Predicted Team to win
Uruguay	Ghana	1.5	1	0.5	0.25	0.75	-0.5	0.85555	Uruguay
Argentina	Germany	2.5	2.75	-0.25	0.5	0.5	0	-0.251675	Germany

- Estimated Goal Margin (Uruguay vs Ghana) $=1.0067 x($ AdiffGF=0.5)-0.7044x
(AdiffGA $=-0.5$) $=0.86$ (Uruguay)
- Estimated Goal Margin (Argentina vs Germany) $=1.0067 x$ (AdiffGF=-0.25)-0.7044x (AdiffGA=0)=-0.25 (Germany)

Table 4.17.

Validation from Goal Margin

		$\begin{aligned} & \text { 苞 } \\ & \text { 范 } \end{aligned}$						
3	Uruguay vs Ghana	0.5	-0.5	-0.5	0.8	0.2	Uruguay	Uruguay
3	Netherlands vs Brazil	0.25	0	-1	0.65	0.35	Netherlands	Netherlands
3	Argentina vs Germany	-0.25	0	-2.25	0.67	0.33	Argentina	Germany
3	Paraguay vs Spain	-0.5	0.5	0.25	0.21	0.78	Spain	Spain
4	Uruguay vs Netherlands	-0.75	0.25	0.5	0.23	0.73	Netherlands	Netherlands
4	Germany vs Spain	1.5	0	3	0.49	0.51	Spain	Spain
5	Netherlands vs Spain	1	0	0.25	0.66	0.33	Netherlands	Spain

Validation of logistic regression for Round 3-5. We used past data of 2010 World Cup data up to present Round in order to validate our model. Table 4.19 gives the values of the variables found to be significant in the model for estimating the probability of a team winning the game; if the estimated probability of a given team winning the game was more than 0.5 our model had the team advancing to the next round. To illustrate the validation process, we will consider the 2010 World Cup game between Netherlands and Brazil. The equation we developed for estimating the probability that a given team will win the Soccer game is given
below and also Data from this game is given in Table 4.18. We correctly predicted 5 out of 7 games for 71 \% correct prediction rate (Table 4.19).

Table 4.18.

Example of Logistic Regression for Rounds 3-5

$\begin{aligned} & \text { 毋 } \\ & \text { O } \\ & 0 \\ & \text { © } \end{aligned}$				$$						
3	Netherlands vs Brazil	2.25	2	0.25	0.25	0.25	0	3.5	4.5	-1

1
$P($ Brazil $)=\frac{1+\exp (-0.7813 x-0.25+1.5953 \times 0+0.406 \times 1)}{}=0.35$

The Netherlands did win the game

Table 4.19

Validation for Logistic Regression for Rounds 3-5

$\begin{aligned} & \text { n } \\ & \text { C } \\ & 0 \\ & \text { ¢ } \end{aligned}$		$\begin{aligned} & \text { 苞 } \\ & \text { 苞 } \end{aligned}$				$\begin{aligned} & \text { Estimated probability } \\ & \text { of Winning Team B } \end{aligned}$		
3	Uruguay vs Ghana	0.5	-0.5	-0.5	0.8	0.2	Uruguay	Uruguay
3	Netherlands vs Brazil	0.25	0	-1	0.65	0.35	Netherlands	Netherlands
3	Argentina vs Germany	-0.25	0	-2.25	0.67	0.33	Argentina	Germany
3	Paraguay vs Spain	-0.5	0.5	0.25	0.21	0.78	Spain	Spain
4	Uruguay vs Netherlands	-0.75	0.25	0.5	0.23	0.73	Netherlands	Netherlands
4	Germany vs Spain	1.5	0	3	0.49	0.51	Spain	Spain
5	Netherlands vs Spain	1	0	0.25	0.66	0.33	Netherlands	Spain

Phase 3: Models Prediction

Actual prediction of the Point model (Round 1). We predicted the number of points per groups during the 2014 Brazil World Cup Round Robin. In Group A of the 2014 World Cup our model predicted that Brazil and Mexico will qualify with respectively 12 and 10 points while Cameroon and Croatia will not qualify with respectively 6 and 4 points.

Table 4.20
Example of Actual Prediction of Teams Who Qualify in Group A

Teams	Average Number of Goals	Average Number of Goals Against	Average Cards	Win Probability
Brazil	3	0.4	1.6	0.9
Mexico	2.5	0.66	2	0.66

- Predicted number of point $s($ Brazil $)=3.5105 x\left(A V _G F=3\right)-2.0834 x\left(A V _G A=0.4\right)$
$+0.4582 x($ AV_CARDS $=1.6)+2.41011 x($ Win Probability $=0.9)=12.60$
- Predicted number of points (Mexico) $=3.5105 x\left(A V _G F=2.5\right)-2.0834 x\left(A V _G A=0.66\right)+$ $0.4582 \times($ AV_CARDS $=2)+2.41011 \times($ Win Probability $=0.66)=\mathbf{1 0 . 7 2}$

Table 4.21

Example of Actual Prediction of Teams Who Did Not Qualify in Group A

Teams	Average Number of Goals	Average Number of Goals Against	Average Cards	Win Probability
Croatia	1.2	0.9	2.6	0.5
Cameroon	1.33	0.5	2.16	0.66

- Predicted number of points (Croatia) $=3.5105 x\left(A V _G F=1.2\right)-2.0834 x$
$\left(A V _G A=0.90\right)+0.4582 x\left(A V _C A R D S=2.6\right)+2.41011 x($ Win Probability=$=0.5)=4.73$
- Predicted number of points (Cameroon) = 3.5105*(AV_GF=1.33)- 2.0834x
$($ AV_GA $=0.5)+0.4582 \times($ AV_CARDS $=2.16)+2.41011^{*}($ Win Probability $=0.66)=6.20$

In group F, we predicted that Argentina and Bosnia-Herzegovina to advance to the next stage while Iran and Nigeria were predicted to do not advance to the next stage. Table 4.22 and Table 4.23 illustrate the example.

Table 4.22

Example of Actual Prediction of Teams Who Qualified in Group F

Teams 2	Average Number of Goals	Average Number of Goals Against	Average Cards	Win Probability
Argentina	2.18	0.93	1.973	0.56
Bosnia-	3	0.6	0.9	0.8
Herzegovina				

- Predicted number of points(Argentina) $=3.5105 x\left(A V _G F=2.18\right)-2.0834 x$
$\left(A V_{-} G A=0.93\right)+0.4582 x\left(A V_{-} C A R D S=1.973\right)+2.41011 x($ Win Probability $=0.56)=7.96$
- Predicted number of points (Bosnia-Herzegovina) $=3.5105^{*}\left(A V _G F=3\right)-2.0834 x$
$($ AV_GA=0.6)+ $0.4582 \times($ AV_CARDS $=0.9)+2.41011 *($ Win Probability $=0.8)=\mathbf{1 1 . 6 2}$

Table 4.23

Example of Actual Prediction of Teams Who Did Not Qualify in Group F

Team	Average Number of Goals	Average Number of Goals Against	Average Cards	Win Probability
Iran	1	0.25	0.33	0.625
Nigeria	1.16	0.5	1.5	0.5

- \quad Predicted number of point (Iran) $=3.5105 x\left(A V _G F=1\right)-2.0834 x\left(A V _G A=0.25\right)$ $+0.4582 x($ AV_CARDS $=0.33)+2.41011 x($ Win Probability $=0.625)=4.64$
- \quad Predicted number of point $($ Nigeria $)=3.5105^{*}\left(A V _G F=1.16\right)-2.0834 x\left(A V _G A=0.5\right)+$ $0.4582 \times($ AV_CARDS $=1.5)+2.41011 *($ Win Probability $=0.5)=4.92$

Table 4.24

Results for Point Model 2014

					$\begin{aligned} & \text { 崩 } \\ & \gtrless \end{aligned}$	$\begin{aligned} & \mathbb{\top} \\ & \mathbb{~} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\alpha}{\alpha} \\ & \underset{ভ}{\gtrless} \end{aligned}$	$\stackrel{\text { 을 }}{3}$
Group A								
Brazil	12.6	7	Y	Y	3	0.4	1.6	0.9
Croatia	4.73	3	N	N	1.2	0.9	2.6	0.5
Mexico	10.73	7	Y	Y	2.5	0.66	2	1
Cameroon	6.21	0	N	N	1.33	0.5	2.16	0.66
Group B								
Spain	7.54	3	Y	N	1.75	0.375	0.8	0.75
Netherlands	13.89	9	Y	Y	3.4	0.5	1.8	0.9
Chile	5.45	6	N	Y	1.81	1.56	2.18	0.56
Australia	5.87	0	N	N	1.5	0.875	3.33	0.375
Group C								
Colombia	10.16	9	Y	Y	2.5	0.83	3.33	0.66
Greece	8.09	4	Y	Y	2	0.625	1.5	0.7
Ivory Coast	6.63	3	N	N	1.68	0.81	2.33	0.56
Japan	8.09	1	N	N	2	0.625	1.5	0.7
Group D								
Uruguay	4.46	6	N	Y	1.56	1.56	2.62	0.43
Costa Rica	6.85	7	Y	Y	1.3	0.7	5.53	0.5
England	12.14	1	Y	N	3.1	0.4	1.4	0.6
Italy	6.84	3	N	N	1.9	0.9	1.3	0.6
Group E								
Switzerland	7.32	6	Y	Y	1.7	0.6	2	0.7
Ecuador	4.34	4	N	N	1.25	1	2.1875	0.43
France	7.39	7	Y	Y	1.875	0.75	1.7	0.66
Honduras	4.7	0	N	N	1.3	1.2	3.66	0.4
Group F								
Argentina	7.97	9	Y	Y	2.18	0.93	1.973	0.56
Bosnia	11.62	3	Y	N	3	0.6	0.9	0.8
Iran	4.65	1	N	N	1	0.25	0.33	0.625

Table 4.24 Results for Point Model 2014 (Continued)

					$\begin{aligned} & \text { 崩 } \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & \mathbb{\nwarrow} \\ & \mathbb{\gtrless} \end{aligned}$		$\stackrel{\text { 을 }}{3}$
Nigeria	4.92	4	N	Y	1.16	0.5	1.5	0.5
Group G								
Germany	13.46	7	Y	Y	3.6	1	1.6	0.9
Portugal	7.51	4	N	N	2	0.9	2	0.6
Ghana	12.57	1	Y	N	3	0.5	2.33	0.833
USA	7.81	4	N	Y	1.83	0.83	4.167	0.5
Group H								
Belgium	7.96	9	N	Y	1.8	0.4	1.2	0.8
Algeria	9.31	4	Y	Y	2.16	0.66	2.4	0.83
Russia	8.17	2	Y	N	2	0.5	1.1	0.7
Korea Rep.	6.53	1	N	N	1.625	0.875	3.16	0.5

The prediction of our point model allowed us to have an overall correct prediction of 22 games out of 32 or 70\% (Table 4.24).

Actual prediction 2014 for the Goal Margin model. After validation of our Goal Margin model above; we used the model to predict the winner of each of the 48 games during the Round Robin stage for the 2014 World Cup. Table 4.27 below illustrates the predicted results of 2014 Round Robin stage. We were able to predict 28 games out of 37 games right (76\%) by omitting 11 draws out of 48 games. In order to illustrate how the Goal Margin model works, we estimated the goal margin for the game between Spain and the Netherlands (Group B) and for the game between Germany and Portugal (Group G) as follows:

Table 4.25

Example of a Goal Margin Model

Teams	Difference in Average Goal For	Difference in Average Goal Against
Spain vs Netherlands	-1.65	-0.125

- Estimate Goal Margin (Spain vs Netherlands) $=0.711843 \times($ AveGFdiff $=-1.65)$ 0.83187^{*} (AveGAdiff=-0.125) $=-1.08$ so we predicted Netherlands to win by 1 goal

Table 4.26
Example of a Goal Margin Model

Teams	Difference in Average Goal For	Difference in Average Goal Against
Germany vs Portugal	1.6	0.09

- Estimate Goal Margin (Germany vs Portugal) $=0.711843 x$ (AveGFdiff $=1.6$)-0.83187x $($ AveGAdiff $=0.090)=1.07$ so we predicted Germany to win by 1 goal .

Table 4.27

2014 Results from Goal Margin Model Round Robin

Group A					
Brazil vs Croatia	1.8	-0.5	1.71	Brazil	Brazil
Mexico vs Cameroon	1.17	0.16	0.71	Mexico	Mexico
Brazil vs Mexico	0.5	-0.4	0.69	Brazil	Draw
Cameroon vs Croatia	0.13	-0.4	0.43	Cameroon	Croatia
Cameroon vs Brazil	-1.7	0.1	-1.3	Brazil	Brazil
Croatia vs Mexico	-1.3	0.24	-1.13	Mexico	Mexico
Group B					
Chile vs Australia	0.31	0.685	-0.35	Australia	Chile
Spain vs Netherland	-1.65	-0.125	-1.08	Netherlands	Netherland
Australia vs Netherland	-1.9	0.375	-1.68	Netherlands	Netherland
Spain vs Chile	-0.06	-1.185	0.94	Spain	Chile
Australia vs Spain	-0.25	0.5	-0.6	Spain	Spain
Netherland vs Chile	1.59	-1.56	2.44	Netherlands	Netherland
Group C					
Colombia vs Greece	0.5	0.205	0.19	Colombia	Colombia
Japan vs Ivory Coast	0.32	-0.185	0.38	Japan	Ivory Coast
Ivory Coast vs Colombia	-0.82	-0.02	-0.57	Colombia	Colombia
Japan vs Greece	0	0	0	Draw	Draw
Colombia vs Japan	0.5	0.205	0.19	Colombia	Colombia
Greece vs Ivory Coast	0.32	-0.185	0.38	Greece	Greece
Group D					
Uruguay vs Costa Rica	0.26	0.86	-0.53	Costa Rica	Costa Rica
England vs Italy	1.2	-0.6	1.36	Italy	Italy
Italy vs Costa Rica	0.6	0.2	0.26	Italy	Costa Rica
Uruguay vs England	-1.54	1.16	-2.07	England	Uruguay
Costa Rica vs England	-1.8	0.3	-1.54	England	Draw
Italy vs Costa Rica	0.6	0.2	0.26	Italy	Costa Rica
Group E					
Switzerland vs Ecuador	0.45	-0.4	0.66	Switzerland	Switzerland
France vs Honduras	0.625	0.25	0.24	France	France
Honduras vs Ecuador	0.05	0.2	-0.13	Ecuador	Ecuador

Table 4.27. 2014 Results from Goal Margin Model Round Robin (Continued)

Switzerland vs France	-0.175	-0.15	0	Draw	France
Honduras vs Switzerland	-0.4	0.6	-0.79	Switzerland	Switzerland
Ecuador vs France	-0.625	0.25	-0.66	France	Draw
Group F					
Argentina vs Bosnia Herzegovina	-0.82	0.33	-0.86	Bosnia Herzegovina	Argentina
Iran vs Nigeria	-0.16	-0.2	0.05	Draw	Draw
Argentina vs Iran	1.18	0.68	0.28	Argentina	Argentina
Nigeria vs Bosnia Herzegovina	-0.84	-0.1	-0.52	Bosnia Herzegovina	Nigeria
Nigeria vs Argentina	1.02	-0.473	1.13	Nigeria	Argentina
Bosnia Herzegovina vs Iran	2	0.35	1.15	Bosnia Herzegovina	Bosnia Herzegovina
Group G					
Germany vs Portugal	1.6	0.09	1.07	Germany	Germany
Ghana vs USA	1.17	-0.33	1.12	Ghana	USA
Germany vs Ghana	0.6	0.5	0.02	Draw	Draw
USA vs Portugal	-0.17	0.33	-0.4	Portugal	Draw
Portugal vs Ghana	-1	0.4	-1.05	Ghana	Ghana
USA vs Germany	-1.77	-0.17	-1.13	Germany	Germany
Group H					
Belgium vs Algeria	-0.36	-0.26	-0.04	Draw	Belgium
Russia vs Korea Republic	0.375	-0.375	0.58	Russia	Draw
Korea vs Algeria	-0.535	1.2	-1.38	Algeria	Algeria
Belgium vs Russia	-0.2	-0.1	-0.06	Russia	Belgium
Algeria vs Russia	0.16	0.16	-0.02	Draw	Draw
Korea vs Belgium	-0.175	0.475	-0.52	Belgium	Belgium

Actual prediction from Round $\mathbf{2}$ for the Goal Margin model for 2014. We used the teams that we predicted to advance to Round 2 by the Round Robin point model. We then used
the Round 2 model to predict the 8 teams advancing to Round 3 . In order to illustrate we picked two matches: Netherlands vs Mexico and Germany vs Algeria:

Table 4.28

Examples of Two Matches for the Goal Margin Model

Team 2014 Round $\mathbf{2}$ Results	Difference in Average Goal Scored	Difference in Average Cards	Difference in Average Goal Against
Netherlands vs Mexico Germany vs Russia	2	0.67	0.5

- Estimate Goal margin (Netherlands vs Mexico) $=2.0226 x$ (AdiffGF $=2$) -1.1514 x (AdiffCards=0.67)-0.9351x(AdiffGA=0.5) = $\mathbf{2 . 8 1}$ (Netherlands)
- Estimate Goal margin (Germany vs Russia) $=2.0226 x$ (AdiffGF $=0.95$) $-1.1514 x$ (AdiffCards=-1.7)-0.9351x(AdiffGA=-0.5) = 4.35 (Germany)

The table below shows full result of the prediction of the round 16 .

Table 4.29

2014 Results from the Goal Margin Model

Team 2014 Round 2 Results	AdiffGF	AdiffCards	AdiffGA	Estimate Goal Margin	Predicted Team to win	Actual Results
Brazil vs Spain	1	-1.67	1	3.01	Brazil	Brazil
Netherlands vs Mexico	2	0.67	0.5	2.81	Netherlands	Netherlands
Colombia vs Costa Rica	0	1.34	2	-3.41	Costa Rica	Costa Rica
England vs Greece	0	-0.67	-2.3	2.92	England	X
France vs Argentina	0.33	-0.33	1.67	-0.51	Argentina	Argentina
Bosnia vs Switzerland	-1	0.67	-1.4	-1.48	Switzerland	X
Germany vs Russia	0.95	-1.7	-0.5	4.35	Germany	Germany
Ghana vs Algeria	1.1	-1.9	1	3.48	Ghana	X

Out of eight games our Round 2 Goal Margin model correctly predicted five of the teams which would win the game. In this case, the correct prediction percentage is 63%.

Actual 2014 prediction from Round $\mathbf{2}$ for Logistic Regression model. Point model was used to predict the 16 teams making it to Round 2 . We used the model above to predict the 8 winning teams of this round. For our analysis we considered the significant independent variables given in the model: Difference in average Goals Scored between two teams during Round 1 (AdiffGF), Difference in average Goals Scored against between two teams during

Round 1 (AdiffGA), and Difference in average Cards received between two teams during Round 1(AdiffGA) of the past World Cup 2010 (Chapter 3).

Using the model above we predicted which teams are going to advance to the next stage; again if the estimated probability is greater than 0.5 we are predicting that the team will go to the next stage; otherwise, the team will go home. To illustrate the prediction process for this round, we selected a game between Mexico and Netherlands which had been.

Table 4.30

Example of Two Matches for Logistic Regression Round 2

Team 2014 Round 2	Average Goal For	Average Cards	Average Goal Against
Netherlands	4.33	1	1
Mexico	2.33	0.33	0.5
Difference in Averages between Netherlands and Mexico Difference in Averages between Mexico and Netherlands			

$P($ Netherlands $)=\frac{1}{1+\exp (-1.235 \times 2+2.5469 \times 0.5+0.6724 \times 0.67)}=0.67$
$P($ Netherlands $)=\frac{1}{1+\exp (-1.235 x-2+2.5469 x-0.5+0.6724 x-0.67}=0.33$

The Netherlands did actually win.

Table 4.31
Actual Results from Logistic Regression Model

$\begin{aligned} & \text { Team A vs B } \\ & 2014 \end{aligned}$	AdiffGf	AdiffCards	AdiffGA	Estimated Probability of Winning Team A	Estimated Probability of Team B	Predicted to Advanced	Actual Results
Brazil vs Spain	1	-1.67	1	0.448	0.552	Spain	x
Netherlands vs Mexico	2	0.67	0.5	0.669	0.331	Netherlands	Netherlands
Colombia vs Costa Rica	0	1.34	2	0.002	0.998	Costa Rica	Costa Rica
England vs Japan	0	-0.67	-2.3	0.998	0.002	England	x
France vs Argentina	0.33	-0.33	1.67	0.026	0.974	Argentina	Argentina
Bosnia vs Switzerland	-1	0.67	-1.4	0.87	0.13	Bosnia	x
Germany vs Russia	0.95	-1.7	-0.5	0.97	0.03	Germany	Germany
Ghana vs Algeria	1.1	-1.9	1	0.52	0.47	Ghana	X

Our model correctly predicted 4 out of 8 games.
Actual 2014 prediction from the Goal Margin Rounds 3-5. We used the point model to predict teams making to Round 2 and then the Round 2 Goal margin to predict teams making it to Round 3. The Rounds 3-5 Goal margin model was then applied for three rounds to predict the winner. In Round 3, our model predicted Netherlands, Argentina, Germany and Brazil to
advance．In Round 4，our model predicted Netherlands and Germany to advance．Our model predicted Germany to then be the winner．Results are compiled in a table below in a following fashion：

Table 4.32

Example of Two Matches for Goal Margin Rounds 3－5

					$\begin{aligned} & \text { 耑 } \\ & \text { 足 } \\ & \hline \end{aligned}$						
3	Netherlands	Costa Rica	3	1.25	1.75	1	0.5	0.5	1.41	Netherlands	Netherlands
3	Argentina	Ghana	1.75	1.1	0.65	0.75	0.95	－0．2	0.8	Argentina	Argentina

－Estimated Goal Margin（Netherlands vs Costa Rica）＝1．0067x（AdiffGF＝1．75）－

$$
0.7044 x(\text { AdiffGA=0.5 })=1.41
$$

－Estimated Goal Margin（Argentina vs Ghana）$=1.0067 x$（AdiffGF $=0.65$ ）－0．7044x

$$
\text { (AdiffGA=-0.2) = } 0.80
$$

Table 4.33

Results from Goal Margin Model Rounds 3－5 2014

					$\begin{aligned} & \text { 苞 } \\ & \text { 集 } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { O } \\ & \text { 萑 } \\ & \hline 1 \end{aligned}$			
3	Netherlands	3	Costa Rica	1.25	1.75	1	0.5	0.5	1.41	Netherlands	Netherlands
3	Argentina	1.75	Ghana	1.1	0.65	0.75	0.95	－0．2	0.8	Argentina	Argentina
3	Germany	3.25	Switzerland	1.75	1.5	0.75	1.5	－0．75	2.04	Germany	Germany
3	Brazil	2	England	0.5	1.5	0.75	1	－0．25	1.69	Brazil	Brazil
4	Netherlands	3	Argentina	1.75	1.25	1	0.75	0.25	1.08	Netherlands	Argentina
4	Germany	3.25	Brazil	2	1.25	0.75	0.75	0	1.26	Germany	Germany
5	Germany	3.25	Netherlands	3	0.25	0.75	0.75	0	0.25	Germany	Germany

Our Goal Margin model for Round 3－5 predicted 6 out of 7 games for an overall 86\％ prediction rate．

Actual 2014 prediction from logistic regression of Rounds 3－5．We used the Round 2 Goal Margin model to predict teams that are making it to Round 3．The Rounds 3－5 Logistic Regression model will be applied for the 3 rounds to predict the winner；again if the estimated probability is greater than 0.5 we are predicting that the team will go to the next stage．In Round 3，our model predicted Netherlands，Argentina，Germany and Brazil to advance．In Round 4，our model predicted Netherlands and Germany to play the final Round 5 and also Germany to be the winner of the World Cup 2014．To illustrate we picked two teams in Round 4， Germany and Brazil．The Logistic equation below was used to compute a probability of winning．

$$
p(\text { win })=\frac{1}{1+e^{-\hat{y}}} \text { Where, } \hat{Y}=0.7813^{*} \text { AdiffGF-1.5953*AdiffGA-0.4062*AdiffCards }
$$

Table 4.34

Prediction Examples of a Logistic Regression for Rounds 3－5

$\begin{aligned} & \text { n } \\ & \stackrel{c}{c} \\ & 0 \\ & \text { ¢ } \end{aligned}$				$\begin{aligned} & \text { 苞 } \\ & \text { 鹤 } \end{aligned}$						
4	Germany vs Brazil	3.25	2	1.25	0.67	0.67	0	4.33	4.82	－0．49

－$P($ Germany $)=$
1

$$
1+\exp (-0.7813 \times 1.25+1.5953 \times 0+0.406 x-0.49)
$$

- $P($ Brazil $)=$

$$
1+\exp (-0.7813 x-1.25+1.5953 x 0+0.406 \times 0.49)
$$

Germany did win the game.

Our Logistic Regression model for Round 3-5 predicted 6 out of 7 games for an overall 86\% prediction rate.

Table 4.35

Results from Logistic Regression

			$\begin{aligned} & \mathbb{4} \\ & \substack{\mathbf{U} \\ \hline \mathbf{Z} \\ \hline} \end{aligned}$					
3	Netherlands vs Costa Rica	1.75	0.5	-0.34	0.67	0.33	Netherlands	Netherlands
3	Argentina vs Ghana	0.65	-0.2	-1.03	0.78	0.22	Argentina	Argentina
3	Germany vs Switzerland	1.5	-0.75	-1.29	0.95	0.05	Germany	Germany
3	Brazil vs England	1.5	-0.25	0.2	0.82	0.18	Brazil	Brazil
4	Netherlands vs Argentina	1.25	0.25	0.06	0.63	0.37	Netherlands	Argentina
4	Germany vs Brazil	1.25	0	-0.49	0.76	0.24	Germany	Germany
5	Germany vs Netherlands	0.5	0	-0.95	0.68	0.32	Germany	Germany

Fisher's Classification Procedure

We considered the 2006 and the 2010 World cup Round 1 data (www.fifa.com). The following variables were used: Average Goals Scored by a Team (AGF), Average Goals against (AGA) and the Average Cards (ACARDS). The homogeneity of the within group of the population covariance was tested and satisfied with Box 'M test. The variables Average Goals Scored by a Team (AGF), and Average Goals against (AGA) were found to be the most important factors contributing to the separations of the two groups; and also the absolute value of standardized canonical discriminant functions coefficients (Table 4.36) for AGF is slightly greater than the absolute value of the AGA which lead us to believe that for a Team to advance to the knock-out stage needs to score more goals while maintaining a strong defense (Table 4.37). A classification analysis using a cross validation technique correctly grouped qualifies Teams or not qualifies Teams 81.3 \% of the time when considering AGF and AGA. Furthermore, only 22\% of the Teams were classified to advance but did not while 14% were classified as not making it but actually made to the next stage (Table 4.38).

Table 4.36

Standardized Canonical Discriminant Function Coefficients

	Variables	Function
Average Goal For (AGF)	0.806	
Average Goal Against (AGA)	-0.638	

Table 4.37

Fisher's Linear Discriminant Functions

Variable	Did not Qualify	Qualify
Average Goal For (AGF)	3.37	1.894
Average Goal Against (AGA)	-4.203	-7.105

Table 4.38
Cross-validation Classification Table

Qualify to the Knock-out stage	Did not Qualify	Qualify	Total
Did not Qualify	28	4	32
Qualify	8	24	32
Total	36	28	64
Error Rate	0.22	0.14	0.187
Prior Probabilities	0.5	0.5	

CHAPTER 5. CONCLUSIONS

The purpose of this paper was to establish a statistical approach to predicting the winner of the World Cup 2014 and future World Cups. In our model development process we have noticed that Goals scored, Goals against and the Average yellow and red cards received were usually significant.

Looking further into the results one can see that a successful team needs to have the ability of scoring goals and being able to maintain a good defense. It appears that defense may be slightly more important than offense at winning a game in the World Cup. The absolute value of the estimated coefficient associated with goals against is a little larger than the estimated coefficient associated with Goals for in the Goal margin model for Round 1 and also for the Logistic Regression model for Rounds 3-5. A further look into the results have shown that the Fisher linear function discriminates Teams that qualify to Round 2 by having as much as twice a stronger defense than Teams who did not qualify; which is leading us to believe that defense is a key performance indicator for a team to advance to the next stage.

A high winning probability for a team during the preliminary leads a higher chance of a team doing good during the Round Robin and also a team who has a large winning probability in Round Robin will more likely outperform on Round 2; it is often said that ball possession percentage and shot in target are good performance indicators for a winning team; however some teams such as Brazil, Netherlands fit into this category but did not guarantee a World Cup
win lately. In today's abundance of data Soccer research; we need to focus more into objectives variables which trigger off a win of a game.

In our prediction process, The Goal Margin Model outperformed the Logistic Regression Model in Round 2 while maintaining the same prediction rate in Rounds 3-5; it is also important to note that the Point Model for Round 1 did slightly better than the Goal Margin Model. Overall, our developed models did well at predicting for 2014 World Cup than the validation process of 2010 World Cup.

Although Logistic Regression and Point Model seem to be a better performer models in predicting the winner of the World Cup, the Goal Margin model plays an important role in determining the exact prediction score of a soccer match which can be helpful for bookmakers to set bets because Goal Margin has the advantage of predicting the number of Goals in a Soccer matches.

The use of this paper goes somewhat beyond the prediction aspects; it's also contains a strategical utility for coaches, In fact Soccer coaches need to establish a systematic defense tactics to prevent opposing team to develop an offensive game which consists of developing a sequence of three passes and more after the ball has crosses the center point according to Reep and Benjamin (1968).

In our prediction model, 2014 Brazil World Cup winner will be Germany; Germany will win the final versus Netherlands by 1 goal difference.

REFERENCES

Bradley, R. A., \& Terry, M. E. (1952). Rank analysis of incomplete block designs I: The method of paired comparisons. Biometrika, 39, 324-345.

Croucher, J. S. (1984). The effect of changing competition in the English football league. Teaching Statistics, 6, 39-42.

Karlis, D., \& Ntzoufras, J. (2003). Analysis of sports data using bivariate poisson models. The Statistician, 52, 381-393.

Koning, R. H. (2000). Balance in competition in Dutch soccer. Journal of the Royal Statistical Society: Series D (The Statistician), 49, 419-431. doi: 10.1111/1467-9884.00244

Magel, R., \& Melnykov, Y. (2014, June). Examining influential factors and predicting outcomes in European soccer games. International Journal of Sports Science, 4(3), 91-96.

McGAarry, T., \& Schutz, R. W. (1994). Analysis of the 1986 and 1994 World Cup Soccer tournament. In ASA Proceedings from the 1994 Joint Statistical Meeting in Toronto, Statistics in Sports, pp. 61-65.

Moroney, M. J. (1956). Facts from figures ($3^{\text {rd }}$ ed.). London: Penguin.
Reep, C., \& Benjamin, B. (1968). Skill and chance in association football. Journal of the Royal Statistical Society, 134, 581-585.

The Official Website of the FIFA World Cup ${ }^{\text {TM }}$-FIFA.com. Retrieved March 7, 2014, from http://www.fifa.com.

APPENDIX A. LIST OF VARIABLES

Goal Against
Goal For
Penalty Goal
Matches Played
Cards
Average difference goals scored before World Cup
Average difference goals against before World Cup
Average difference cards before World Cup
Difference total goal scored round 1
Difference total goal against round 1
Difference total cards round 1
Number of game wins in 2006
Average goal scored
Average goal scored against
Average cards
Winning percentage
Total goal scored Round 1
Total goal scored against Round 1
Total goal scored Round 2

Total goal scored against Round 2

Total goal scored Round 3
Total goal scored against Round 3
Difference Cards Round 1

Difference Cards Round 2
Difference Cards Round 3

APPENDIX B. SAS CODE

```
proc import datafile="F:\Master_Paper_Data\First_Round_2006_Wc.csv"
    out=firstround2006
    dbms=csv
    replace;
    getnames=yes;
run;
proc print data =firstround2006;
    Title 'read dataset 2006';
run;
data round2006;
set firstround2006;
if Qualified = 'yes' then Qualified = 1;
if qualified = 'no' then Qualified = 0;
proc print data = round2006;
run;
proc logistic data= round2006 descending;
title 'Predicting wins using logistic regression';
    model Qualified = AvgGF_Game AvgGA_Game Ave_Cards WinP Number_win_2006 /
    selection = stepwise noint
    ctable pprob = (0 to 1 by 0.1)
    lackfit
    risklimits;
run;
proc logistic data=round2006 descending outest=betas covout plots=all;
title 'new year eve';
model Qualified = AvgGF_Game AvgGA_Game Ave_Cards WinP Number_win_2006 /
selection=stepwise details lackfit scale=none noint
rsquare;
output out=pred p=phat lower=lcl upper=ucl
predprob=(individual crossvalidate);
```

```
run;
proc import datafile="F:\Master_Paper_Data\Round_3_WC2006.csv"
    out=round3_2006
    dbms=csv
    replace;
    getnames=yes;
run;
proc print data = round3_2006;
    Title 'round 3 2006';
run;
proc reg data = round3_2006; ;
model Y = AdiffGF AdiffGA AdiffCard winA_B Difftotascore number_of__wins
DifftotalGoalScore DifftotalGoalAgainst difcard
/ NOINT cp selection=stepwise ;
run;
proc import datafile="F:\Master_Paper_Data\Quarter_final_wc_2006_LR.csv"
    out=quarterfinal2006
    dbms=csv
    replace;
    getnames=yes;
run;
proc print data =quarterfinal2006;
    Title 'read dataset 2006';
run;
data QF2006;
set quarterfinal2006;
if Qualified = 'yes' then Qualified = 1;
if qualified = 'no' then Qualified = 0;
proc print data = QF2006;
run;
proc logistic data=QF2006 descending outest=betas covout plots=all;
title 'Quarter Final';
```

model Qualified = Goal_Scored GoalS_Against Cards WinP Number_win_2006 /
selection=stepwise slentry=0.25 slstay=0.20 details lackfit scale=none noint rsquare;
output out=pred $p=p h a t$ lower=|cl upper=ucl predprob=(individual crossvalidate);
run;

APPENDIX C. R CODE

```
mydata = read.csv("F:/Master_Paper_Data/Point_spread_2006.new.csv") \# read csv file
pointmodel= Im(mydata\$points ~
mydata\$AvgGoalScored+mydata\$AvgGoalagainst+mydata\$AvgCards+mydata\$Winning_Probab
ility-1)
\# Assessing Outliers
outlierTest(pointmodel)
summary(pointmodel)
plot(pointmodel)
par(mfrow=2)
mydata = read.csv("F:/Master_Paper_Data/Point_spread_2006.new.csv") \# read csv file
mydata2 = read.csv("F:/Master_Paper_Data/goalmargin2006.csv") \# read csv file
head(mydata2)
pointmodel \(2=\operatorname{lm}\) (mydata \(2 \$ Y \sim\)
mydata2\$AveGFdiff+mydata2\$AveGAdiff+mydata2\$AveCards+mydata2\$winndiff-1)
summary(pointmodel2)
par(mfrow=2)
Round2_LR_WC_2006 <- read.csv
("C:/Users/W703534/Desktop/Master_Paper_Data/MSPAPERSAVED/Round2_LR_WC_2006.csv
")
mylogit <- glm(Qualified ~ AdiffGF + AdiffGA + AdiffCards , data = mydata, family = "binomial")
summary(mylogit)
Irtest(mylogit)
Round2_LR_WC_2006 <-
read.csv("C:/Users/W703534/Desktop/Master_Paper_Data/MSPAPERSAVED/Round2_LR_WC_
2006.csv")
head(Round2_LR_WC_2006)
mydata=Round2_LR_WC_2006
mylogit <- glm(Qualified ~ AdiffGF + AdiffGA + AdiffCards -1, data = mydata, family = "binomial")
summary(mylogit)
Irtest(mylogit)
library(ResourceSelection)
```

hoslem.test(mydata\$Qualified, fitted(mylogit2))
R35MODEL2<-Im(R3_5_GM\$Goal_Margin ~
R3_5_GM\$DIFFTOTALGF+R3_5_GM\$DIFFTOTALGA+R3_5_GM\$DIFFTOTALCARDS-1)
\#\#\#\#\#\#\#
LR_3_5 <- read.csv("F:/LR_3_5.csv")
View(LR_3_5)
mydata2=LR_3_5
mylogit2 <- glm(Qualified ~ AdiffGF + AdiffGA + AdiffCards , data $=$ mydata2, family = "binomial")
summary(mylogit2)
hoslem.test(mydata2\$Qualified, fitted(mylogit2))
auc(mydata2\$Qualified,mydata2\$AdiffGF)
auc(mydata2\$Qualified,mydata2\$AdiffGA)

APPENDIX D. SPPS CODE

DATASET ACTIVATE DataSet1.
DISCRIMINANT /GROUPS=Q(0 1)/VARIABLES=AGF AGA ACARDS /ANALYSIS
ALL/METHOD=WILKS /FIN=3.84/FOUT=2.71/PRIORS EQUAL /HISTORY /STATISTICS=BOXM COEFF TABLE CROSSVALID
/CLASSIFY=NONMISSING POOLED.

APPENDIX E. 2006 DATA

Preliminary

Team	GF	GA	PEN		GFA	MP	Wins	Draws	Lost		Yellows	TwoYC_R	Red		Year	AveGoalF	AveGoalA	AveCa	winp	ywins	ydraws
Algeria	8	15		1	0.8	10	1		5	4	14	0		1	2006	0.80	1.50	5.00	0.10	3.00	5.00
Cameroon	18	10		2	1.8	10	6		3	1	13	0		0	2006	1.80	1.00	4.33	0.60	18.00	3.00
Cote D'ivoire	20	7		2	2	10	7		1	2	12	1		0	2006	2.00	0.70	4.33	0.70	21.00	1.00
Ghana	17	4		1	1	10	6		3	1	12	1		0	2006	1.70	0.40	4.33	0.60	18.00	3.00
Nigeria	20	7		1	2	10	6		3	1	13	0		0	2006	2.00	0.70	4.33	0.60	18.00	3.00
Australia	21	3		1	1.3	5	4		1	0	9	1		0	2006	4.20	0.60	3.33	0.80	12.00	1.00
Iran	7	3		0	0.7	6	4		1	1	8	0		0	2006	1.17	0.50	2.67	0.67	12.00	1.00
Korea Republic	6	4		0	1	6	- 4		2	0	9	0		0	2006	1.00	0.67	3.00	0.67	12.00	2.00
Japan	9	4		0	0.7	6	5		0	1	7	0		0	2006	1.50	0.67	2.33	0.83	15.00	0.00
Belgium	16	11		2	1.6	10	3		3	4	9	0		1	2006	1.60	1.10	3.33	0.30	9.00	3.00
Croatia	21	5		3	0.7	10	7		3	0	7	2		0	2006	2.10	0.50	3.00	0.70	21.00	3.00
France	14	2		2	1.3	10	5		5	0	16	0		1	2006	1.40	0.20	5.67	0.50	15.00	5.00
Greece	15	9		1	1.3	12	6		3	3	8	0		0	2006	1.25	0.75	2.67	0.50	18.00	3.00
Netherlands	27	3		0	0.8	12	10		2	0	12	2		0	2006	2.25	0.25	4.67	0.83	30.00	2.00
Russia	23	12		1	1.91	12	6		5	1	9	0		1	2006	1.92	1.00	3.33	0.50	18.00	5.00
Switzerland	14	5		0	1	10	5		5	0	12	0		0	2006	1.40	0.50	4.00	0.50	15.00	5.00
Bosnia and Herze	12	9		1	1.2	10	4		4	2	10	0		0	2006	1.20	0.90	3.33	0.40	12.00	4.00
England	17	5		0	1.2	10	8		1	1	9	0		1	2006	1.70	0.50	3.33	0.80	24.00	1.00
Germany	0	0		0	0	0	0		0	0	0	0		0	2006	0.00	0.00	0.00	0.00	0.00	0.00
Italy	17	8		1	1.2	10	7		2	1	13	0		2	2006	1.70	0.80	5.00	0.70	21.00	2.00
Portugal	35	5		2	1	12	9		3	0	20	2		0	2006	2.92	0.42	7.33	0.75	27.00	3.00
Spain	16	1		3	2.3	10	6		4	0	6	0		0	2006	1.60	0.10	2.00	0.60	18.00	4.00
Costa Rica	15	14		0	1	10	5		1	4	8	0		0	2006	1.50	1.40	2.67	0.50	15.00	1.00
Mexico	27	1		0	1.3	6	6		0	0	10	1		0	2006	4.50	0.17	3.67	1.00	18.00	0.00
Honduras	15	8		1	1.5	10	7		1	2	12	1		0	2006	1.50	0.80	4.33	0.70	21.00	1.00
USA	16	6		0	0.7	10	7		1	2	13	1		1	2006	1.60	0.60	5.00	0.70	21.00	1.00
Argentina	29	17		0	0	18	10		4	4	12	0		1	2006	1.61	0.94	4.33	0.56	30.00	4.00
Chile	18	22		1	1	18	5		7	6	12	0		0	2006	1.00	1.22	4.00	0.28	15.00	7.00
Ecuador	18	8		0	1.3	18	8		4	6	9	0		0	2006	1.00	0.44	3.00	0.44	24.00	4.00
Colombia	24	16		1	1.33	18	6		6	6	10	0		0	2006	1.33	0.89	3.33	0.33	18.00	6.00
Uruguay	23	28		1	1.2	18	6		7	5	8	1		0	2006	1.28	1.56	3.00	0.33	18.00	7.00
Brazil	35	17		0	2	18	9		7	2	11	0		0	2006	1.94	0.94	3.67	0.50	27.00	7.00

$\begin{aligned} & \text { E゙ } \\ & \text { ©̃ } \end{aligned}$							$\frac{\text { 을 }}{3}$
Germany vs Costa Rica	2	1	-2.1	0	1	0	1
Poland vs Ecuador	-2	-0.6	0.3	2.2	0.66	0.33	0.33
Germany vs Poland	1	1.3	-0.4	-3	1	0.33	0.67
Ecuador vs Costa Rica	3	0.3	-2	-0.3	0.66	0	0.66
Costa Rica vs Poland	-1	0.3	1.7	0.6	0.33	0	0.33
Ecuador vs Germany	-3	-0.7	-0.46	0.5	1	0.66	0.34
England vs Paraguay	1	0.5	0.4	0.56	0.66	0.33	0.33
Trinidad vs Sweden	0	-3	0.63	0.75	0.33	0	0.33
England vs Trinida	2	1.2	-0.93	-2	0.66	0	0.66
Sweden vs Paraguay	0	0.1	0.3	-0.66	0.33	0.33	0
Sweden vs England	0	-0.4	0.6	1.25	0.495	0	0.495
Paraguay Vs Trinida	2	0.7	-0.63	-0.34	0.33	0.33	0
Argentina vs Ivory Coast	1	0.5	-1.4	-1.95	0.66	0.33	0.33
Serbia and Montenegro vs Netherlands	-1	-0.1	2.8	3	0.66	0.66	0
Argentina vs Serbia and Montenegro	6	1.5	-2.7	-3.28	0.66	0	0.66
Netherlands vs Ivory Coast	1	-0.9	-1.5	-1.67	0.66	0.66	0
Netherlands vs Argentina	0	-1.4	-0.1	0.28	0.66	0	0.66
Ivory Coast vs Serbia and Montenegro	1	1	-1.3	-1.33	0.33	0.33	0
Mexico vs Iran	2	0.6	-0.7	0.33	0.33	0	0.33
Angola vs portugal	-1	-0.7	0	-1.67	1	0	1
Mexico vs Angola	0	1	0.6	1.244	0.33	0	0.33
Portugal vs Iran	2	0.3	-1.3	0.34	1	0	1
Portugal vs Mexico	1	-0.3	-0.6	0	1	0.33	0.67
Iran vs Angola	0	0.37	1.34	0.244	0	0	0
Italy vs Ghana	2	0.7	-1.2	-0.3	0.66	0.66	0
USA vs Czech Republic	-3	-0.3	0.7	-1.93	0	0	0
Italy vs USA	0	1	-1.7	0.9	0.66	0	0.66
Czech Republic vs Ghana	-2	0	-0.2	0.73	0.66	0.33	0.33
Czech Republic vs Italy	-2	-0.7	1	1.73	0.66	0.33	0.33
Ghana vs USA	1	0.3	-0.5	1.2	0.66	0	0.66
Brazil vs Croatia	1	1.3	-0.6	-0.09	1	0	1
Australia vs Japan	2	0.6	-0.8	0.6333	0.33	0	0.33
Brazil vs Australia	2	0.7	-1.1	-1.19	1	0.33	0.67

							$\frac{2}{3}$
Japan vs Croatia	0	0	1.3	0.4667	0	0	0
Japan vs Brazil	-3	-1.3	1.9	1.0559	1	0	1
Croatia Vs Australia	0	-0.6	-0.5	-1.1	0.33	0	0.33
France vs Switzerland	0	0.3	0.4	0.5	0.495	0.33	0.165
Korea Republic vs Togo	1	1.2	0	-1.5	0.33	0	0.33
France vs Korea Republic	0	-0.2	-1.6	0.2	0.33	0.33	0
Togo vs Switzerland	-2	-0.7	2	1.8	0.66	0	0.66
Togo vs France	-2	-1	1.6	0	0.33	0	0.33
Switzerland vs Korea Republic	2	-0.5	-2	1.2	0.66	0.33	0.33
Spain Vs Ukraine	4	1.3	-0.4	-2	1	0.66	0.34
Tunisia vs Saudi Arabia	0	0.3	-0.3	2.67	0	0	0
Spain vs Tunisia	2	1.3	-1	-3.4	1	0	1
Saudi Arabia vs Ukraine	-1	-0.3	0.9	-1.27	0.66	0	0.66
Saudi Arabia vs Spain	-1	-1.6	1.3	0.73	1	0	1
Ukraine vs Tunisia	1	0	-0.6	-1.4	0.66	0	0.66
Team	AveGoalF		AveGoalA	AveCa	winp	ptwins	ptdraws
Algeria	0.80		1.50	5.00	0.10	3.00	5.00
Cameroon	1.80		1.00	4.33	0.60	18.00	3.00
Ivory Coast	2.00		0.70	4.33	0.70	21.00	1.00
Ghana	1.70		0.40	4.33	0.60	18.00	3.00
Nigeria	2.00		0.70	4.33	0.60	18.00	3.00
Australia	4.20		0.60	3.33	0.80	12.00	1.00
Iran	1.17		0.50	2.67	0.67	12.00	1.00
Korea Republic	1.00		0.67	3.00	0.67	12.00	2.00
Japan	1.50		0.67	2.33	0.83	15.00	0.00
Belgium	1.60		1.10	3.33	0.30	9.00	3.00
Croatia	2.10		0.50	3.00	0.70	21.00	3.00
France	1.40		0.20	5.67	0.50	15.00	5.00
Greece	1.25		0.75	2.67	0.50	18.00	3.00
Netherlands	2.25		0.25	4.67	0.83	30.00	2.00

$\begin{aligned} & \text { E゙ } \\ & \text { ©̃ } \end{aligned}$		$\begin{aligned} & \text { 志 } \\ & \text { U } \\ & \text { Ü } \\ & \frac{1}{4} \end{aligned}$					$\frac{0}{3}$
Russia	1.92		1.00	3.33	0.50	18.00	5.00
Switzerland	1.40		0.50	4.00	0.50	15.00	5.00
Bosnia and Herzegovina	1.20		0.90	3.33	0.40	12.00	4.00
England	1.70		0.50	3.33	0.80	24.00	1.00
Italy	1.70		0.80	5.00	0.70	21.00	2.00
Portugal	2.92		0.42	7.33	0.75	27.00	3.00
Spain	1.60		0.10	2.00	0.60	18.00	4.00
Costa Rica	1.50		1.40	2.67	0.50	15.00	1.00
Mexico	4.50		0.17	3.67	1.00	18.00	0.00
Honduras	1.50		0.80	4.33	0.70	21.00	1.00
USA	1.60		0.60	5.00	0.70	21.00	1.00
Argentina	1.61		0.94	4.33	0.56	30.00	4.00
Chile	1.00		1.22	4.00	0.28	15.00	7.00
Ecuador	1.00		0.44	3.00	0.44	24.00	4.00
Colombia	1.33		0.89	3.33	0.33	18.00	6.00
Uruguay	1.28		1.56	3.00	0.33	18.00	7.00
Brazil	1.94		0.94	3.67	0.50	27.00	7.00

Game	AGFTEAMA	AGFTEAMB	ADGF	AGATEAMA	AGATEAMB	DAGA	ACTEAMA	ACTEAMB	ADIFFCARDS	Qualified
Germany vs Costa Rica	2	1.00	1.00	0.85	3.00	-2.15	1.71	2.67	-0.95	1
Poland vs Ecuador	0.67	1.25	-0.58	1.00	1.00	0.00	3.33	2.25	1.08	0
Germany vs Poland	2	2.00	0.00	1.33	1.33	0.00	1.71	3.33	-1.62	- 1
Ecuador vs Costa Rica	1.25	1.00	0.25	3.00	3.00	0.00	2.25	2.67	-0.42	1
Costa Rica vs Poland	1	0.67	0.33	3.00	1.00	2.00	2.67	3.33	-0.67	\bigcirc
Ecuador vs Germany	1.25	2.00	-0.75	1.00	0.85	0.15	2.25	1.71	0.54	0
England vs Paraguay	1.2	0.67	0.53	0.40	0.40	0.00	2.00	2.67	-0.67	\square
Trinidad vs Sweden	0	0.75	-0.75	1.33	1.00	0.33	3.33	2.50	0.83	0
England vs Trinida	1.2	0.00	1.20	0.40	1.33	-0.93	2.00	3.33	-1.33	- 1
Sweden vs Paraguay	0.75	0.67	0.08	1.00	0.67	0.33	2.50	2.67	-0.17	0
Sweden vs England	0.75	1.20	-0.45	1.00	1.33	-0.33	2.50	2.00	0.50	0
Paraguay Vs Trinida	0.67	0.00	0.67	0.66	1.33	-0.67	2.67	3.33	-0.67	$\square 1$
Argentina vs Ivory Coast	2.2	1.67	0.53	0.60	2.00	-1.40	2.60	3.00	-0.40	1
Serbia and Montenegro vs Netherlands	0.67	0.75	-0.08	3.33	0.50	2.83	4.00	4.00	0.00	0
Argentina vs Serbia and Montenegro	2.2	0.67	1.53	0.60	3.33	-2.73	2.40	4.00	-1.60	1
Netherlands vs Ivory Coast	0.75	1.67	-0.92	0.50	2.00	-1.50	3.00	3.00	0.00	1
Netherlands vs Argentina	0.75	2.20	-1.45	0.50	0.60	-0.10	3.00	2.40	0.60	0
Ivory Coast vs Serbia and Montenegro	1.67	0.67	1.00	2.00	3.33	-1.33	3.00	4.00	-1.00	1
Mexico vs Iran	1.25	0.67	0.58	1.25	2.00	-0.75	3.00	2.67	0.33	1
Angola vs portugal	0.33	1.00	-0.67	0.66	0.71	-0.05	3.67	1.14	2.52	0
Mexico vs Angola	1.25	0.33	0.92	1.25	0.67	0.58	3.00	3.67	-0.67	0
Portugal vs Iran	1	0.67	0.33	0.70	2.00	-1.30	3.43	2.67	0.76	1
Portugal vs Mexico	1	1.25	-0.25	0.70	1.25	-0.55	3.43	3.00	0.43	- 1
Iran vs Angola	0.67	0.33	0.34	2.00	0.67	1.33	2.67	3.33	-0.67	0
Italy vs Ghana	1.71	1.00	0.71	0.28	1.50	-1.22	1.57	4.50	-2.93	- 1
USA vs Czech Republic	0.67	1.00	-0.33	2.00	1.33	0.67	1.67	2.33	-0.67	0
Italy vs USA	1.71	0.67	1.04	0.28	2.00	-1.72	1.57	1.67	-0.10	0
Czech Republic vs Ghana	1	1.00	0.00	1.33	1.50	-0.17	2.33	4.50	-2.17	0
Czech Republic vs Italy	1	1.71	-0.71	1.33	0.29	1.04	2.33	1.57	0.76	0
Ghana vs USA	1	1.00	0.00	1.50	2.00	-0.50	4.50	1.33	3.17	- 1
Brazil vs Croatia	2	0.67	1.33	0.40	1.00	-0.60	2.20	3.67	-1.47	1
Australia vs Japan	1.25	0.67	0.58	1.50	2.33	-0.83	2.75	2.33	0.42	- 1
Brazil vs Australia	2	1.00	1.00	0.40	1.50	-1.10	2.20	2.75	-0.55	1
Japan vs Croatia	0.67	0.67	0.00	2.33	1.00	1.33	2.33	3.67	-1.33	0
Japan vs Brazil	0.67	2.00	-1.33	2.33	0.40	1.93	2.33	2.20	0.13	0
Croatia Vs Australia	0.67	1.00	-0.33	1.00	1.50	-0.50	3.67	2.75	0.92	0
France vs Switzerland	1.29	1.00	0.29	0.40	0.00	0.40	2.29	3.00	-0.71	0
Korea Republic vs Togo	1	0.33	0.67	1.33	2.00	-0.67	3.00	3.33	-0.33	\square
France vs Korea Republic	1.29	1.00	0.29	0.40	1.33	-0.93	2.29	3.00	-0.71	0
Togo vs Switzerland	0.33	1.00	-0.67	2.00	0.00	2.00	3.33	3.00	0.33	0
Togo vs France	0.33	1.29	-0.96	2.00	0.42	1.58	3.33	2.29	1.05	0
Switzerland vs Korea Republic	1	1.00	0.00	0.00	1.33	-1.33	3.00	3.00	0.00	\square
Spain Vs Ukraine	2.25	1.00	1.25	1.00	1.40	-0.40	1.50	2.60	-1.10	1
Tunisia vs Saudi Arabia	1	0.67	0.33	2.00	2.33	-0.33	4.67	1.67	3.00	0
Spain vs Tunisia	2.25	1.00	1.25	1.00	2.00	-1.00	1.50	4.67	-3.17	- 1
Saudi Arabia vs Ukraine	0.67	1.00	-0.33	2.33	1.40	0.93	1.67	2.40	-0.73	0
Saudi Arabia vs Spain	0.67	2.25	-1.58	2.33	1.00	1.33	1.67	1.50	0.17	0
Ukraine vs Tunisia	1	1.00	0.00	1.40	2.00	-0.60	2.40	4.67	-2.27	- 1
Germany vs Sweeden	2	0.75	1.25	0.85	1.00	-0.15	1.71	3.00	-1.29	- 1
Argentina vs Mexico	2.2	1.25	0.95	0.60	1.25	-0.65	2.40	3.00	-0.60	- 1
England vs Ecuador	1.2	1.25	-0.05	0.40	1.00	-0.60	1.80	2.25	-0.45	- 1
Portugal vs Netherlands	1	0.67	0.33	0.71	0.50	0.21	1.43	4.00	-2.57	$\square 1$
Italy vs Australia	2.2	1.25	0.95	0.28	1.50	-1.22	1.57	2.75	-1.18	- 1
Switzerland vs Ukraine	1	1.00	0.00	0.00	1.40	-1.40	3.00	2.40	0.60	0
Brazil vs Ghana	2	1.00	1.00	0.40	1.50	-1.10	2.20	4.25	-2.05	\square
Spain vs France	2.25	1.29	0.96	1.00	0.43	0.57	1.50	2.29	-0.79	0
Germany vs Argentina	2	2.20	-0.20	0.85	0.60	0.25	1.71	2.40	-0.69	1
Italy vs Ukraine	1.71	1.00	0.71	0.28	1.40	-1.12	1.57	2.40	-0.83	- 1
England vs Portugal	1.2	1.20	0.00	0.40	0.71	-0.31	1.80	3.43	-1.63	0
Brazil vs France	2	1.29	0.71	0.40	0.43	-0.03	2.20	2.29	-0.09	0
Germany vs Italy	2	1.71	0.29	0.85	0.29	0.56	1.71	1.57	0.14	0
Portugal vs France	1	1.29	-0.29	0.71	0.43	0.28	3.43	2.29	1.14	0
Italy vs France	1.71	1.29	0.42	0.28	0.42	-0.14	1.57	2.29	-0.71	1

Teams 2006	Qualified	AdiffGF	AdiffGA	AdiffCards
Germany vs Sweden	1	1.66	0	0.2
Argentina vs Mexico	1	1.33	-0.67	0.04
England vs Ecuador	1	0.33	-0.34	-0.425
Portugal vs netherlands	1	0.33	0	0.16
Swiss vs Ukraine	0	-0.33	-1.33	0.2
Australia vs Italy	0	-0.36	1.33	-0.18
Ghana vs Brazil	0	-1	0	0.54
France vs Spain	0	-1.66	0	0.1
Germany vs Costa Rica	1	-2.1	-2.1	0
Poland vs Ecuador	0	0.3	0.3	2.2
Germany vs Poland	1	-0.4	-0.4	-3
Ecuador vs Costa Rica	1	-2	-2	-0.3
Costa Rica vs Poland	0	1.7	1.7	0.6
Ecuador vs Germany	0	-0.46	-0.46	0.5
England vs Paraguay	1	0.4	0.4	0.56
Trinidad vs Sweden	0	0.63	0.63	0.75
England vs Trinidad	1	-0.93	-0.93	-2
Sweden vs Paraguay	0	0.3	0.3	-0.66
Sweden vs England	0	0.6	0.6	1.25
Paraguay Vs Trinidad	1	-0.63	-0.63	-0.34
Argentina vs Ivory Coast	1	-1.4	-1.4	-1.95
Serbia and Montenegro vs				
Netherlands	0	2.8	2.8	3
Argentina vs Serbia and				
Montenegro	1	-2.7	-2.7	-3.28
Netherlands vs Cote d'Ivoire	1	-1.5	-1.5	-1.67
Netherlands vs Argentina	0	-0.1	-0.1	0.28
Cote d'ivoire vs Serbia and		-1.3	-1.3	-1.33
Montenegro	1	-0.7	-0.7	0.33
Mexico vs Iran	0	0	-1.67	
Angola vs portugal	0	0.6	0.6	1.244
Mexico vs Angola	1	-1.3	-1.3	0.34
Portugal vs Iran	-0.6	-0.6	0	
Portugal vs Mexico	1	1.34	0.244	
Iran vs Angola	0	-1.2	-0.3	
Italy vs Ghana	0.7	0.7	-1.93	
USA vs Czech Republic	-1.7	0.9		
Italy vs USA	0			

Teams 2006	Qualified	AdiffGF	AdiffGA	AdiffCards
Czech Republic vs Ghana	0	-0.2	-0.2	0.73
Czech Republic vs Italy	0	1	1	1.73
Ghana vs USA	1	-0.5	-0.5	1.2
Brazil vs Croatia	1	-0.6	-0.6	-0.09
Australia vs Japan	1	-0.8	-0.8	0.6333
Brazil vs Australia	1	-1.1	-1.1	-1.19
Japan vs Croatia	0	1.3	1.3	0.4667
Japan vs Brazil	0	1.9	1.9	1.0559
Croatia Vs Australia	0	-0.5	-0.5	-1.1
France vs Switzerland	0	0.4	0.4	0.5
Korea Republic vs Togo	1	0	0	-1.5
France vs Korea Republic	0	-1.6	-1.6	0.2
Togo vs Switzerland	0	2	2	1.8
Togo vs France	0	1.6	1.6	0
Switzerland vs Korea Republic	1	-2	-2	1.2
Spain Vs Ukraine	1	-0.4	-0.4	-2
Tunisia vs Saudi Arabia	0	-0.3	-0.3	2.67
Spain vs Tunisia	1	-1	-1	-3.4
Saudi Arabia vs Ukraine	0	0.9	0.9	-1.27
Saudi Arabia vs Spain	0	1.3	1.3	0.73
Ukraine vs Tunisia	1	-0.6	-0.6	-1.4

Teams	AvgGoalScored	AvgGoalagainst	AvgCards	Winning_Probability	points
Germany	2	0.9	1.71	1	9
Poland	0.7	1.3	3.66	0.8	3
Ecuador	1.3	1	2.25	0.44	6
Costa Rica	1	3	2.66	0.5	0
England	1.2	0.4	2	0.8	7
Trinidad	0	1.33	3.66	0.66	1
Sweden	0.8	0.7	2.75	0.8	5
Paraguay	0.7	0.2	2.66	0.44	3
Argentina	2.2	0.6	2.66	0.55	7
Serbia and	0.7	3.3	4.66	0.6	0
Montenegro	0.8	0.5	4.5	0.83	7
Netherlands		2	3.33	0.7	3
Cote	1.7	0.7	4	0.6	2
d'ivoire	0.3		68		
Angola					

Teams	AvgGoalScored	AvgGoalagainst	AvgCards	Winning_Probability	points
Mexico	1.3	1.3	3.25	1	4
Portugal	1	0.7	3.71	0.75	9
Iran	0.7	2	2.66	0.83	1
Italy	1.7	0.3	1.85	0.7	7
USA	0.7	2	2.33	0.6	1
Czech	1	1.3	3	0.75	3
Republic	1	1.5	4.75	0.6	6
Ghana	2	0.4	2.2	0.5	9
Brazil	1.3	1.5	3	0.8	4
Australia	0.7	2.3	2.33	1	1
Japan	0.7	1	4.33	0.7	2
Croatia	1.3	0.4	2.43	0.5	5
France	1.5	2	3	0.5	4
Korea	0.3	2	3.66	0.7	0
Republic	1	0	3	0.4	7
Togo	2.3	1	1.5	0.5	9
Switzerland	1	1.4	2.6	0.58	6
Spain	1	2	5	0.6	1
Ukraine	0.7	2.3	1.66	1	1
Tunisia					4
Saudi Arabia					

