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ABSTRACT 

The United States has the world’s largest road network with over 4.1 million miles of 

roads supporting more than 260 million of registered automobiles including around 11 million of 

heavy trucks. Such a large road network challenges the road and traffic management systems 

such as condition assessment and traffic monitoring. To assess the road conditions and track the 

traffic, currently, multiple facilities are required simultaneously. For instance, vehicle-based 

image techniques are available for pavements’ mechanical behavior detection such as cracks, 

high-speed vehicle-based profilers are used upon request for the road ride quality evaluation, and 

inductive loops or strain sensors are deployed inside pavements for traffic data collection. 

Having multiple facilities and systems for the road conditions and traffic information monitoring 

raises the cost for the assessment and complicates the process. In this study, an integrated system 

is developed to simultaneously monitor the road condition and traffic using in-pavement strain-

based sensors, which will phenomenally simplify the road condition and traffic monitoring. To 

accomplish such a superior system, this dissertation designs an innovative integrated sensing 

system, installs the integrated system in Minnesota's Cold Weather Road Research Facility 

(MnROAD), monitors the early health conditions of the pavements and ride quality evaluation, 

investigates algorithms by using the developed system for traffic data collection especially 

weigh-in-motion measurements, and optimizes the system through optimal system design. The 

developed integrated system is promising to use one system for multiple purposes, which gains a 

considerable efficiency increase as well as a potential significant cost reduction for intelligent 

transportation system. 
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1. INTRODUCTION 

The United States has more than 4.1 million miles of roads, including the interstate 

highway system. These roads support more than 260 million of registered automobiles driving on 

them including around 11 million of heavy trucks [1]. With such a huge road network and such a 

vast automobile system, it is an extremely challenging task to monitor and maintain the superior 

condition of the roads and the smooth traffic on the roads. Currently, separate systems for 

pavement condition evaluations, roughness measurements, and traffic data collections such as 

weigh-in-motion collections exist. However, an integrated system which can simultaneously 

monitor the pavement conditions, roughness of the roads, and the weigh-in-motion of the passing 

vehicles is yet developed.   

1.1. Pavement Condition Monitoring  

Statistics published by the Federal Highway Administration indicates that maintenance 

and rehabilitation of highway pavements in the United States requires over $17 billion a year [1]. 

Conventional visual and manual pavement distress analysis approaches as shown in Figure 1 in 

which the inspectors traverse the roads and stop and measure the distress objects when they are 

found are very costly, time-consuming, dangerous, labor-intensive, tedious, and subjective. In 

additions, these approaches have high degree of variability, are unable to provide meaningful 

quantitative information, and almost always lead to inconsistencies in distress detail over space 

and across evaluations [2].  
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Figure 1. Manual pavement distress measurements [3]. 

 

 

Thus, to solve the challenges of the manual pavement condition assessment and evaluate 

the performance of pavement structures more accurately, consistently, and safely, in-pavement 

sensing technologies are necessary. Traditionally, electrical sensors such as electrical strain 

gauges and electromagnetic sensors are commonly applied for pavement condition evaluation. In 

recent decades, fiber optic sensors, due to their unique advantages of compactness, immunity to 

EMI and moisture, capability of quasi-distributed sensing, and long life cycle, generate 

numerous attentions for its applications in pavement condition monitoring as well. 

1.1.1. Electrical sensors  

Electrical sensors convert the change of a physical parameter to an electrical signal. For 

pavement condition monitoring, the transducer in electrical sensors converts the mechanical, 

thermal, or other form of energy in pavements such as strain, stress, and temperature to electrical 

energy. The application of electrical sensors in pavement monitoring can be traced back to the 

1960s [4].  

In early 1990s, Sebaaly et al. [5] tested various types of pavement instrumentation, 

including pressure cell, deflectometer, strain gauge, thermocouple, moisture sensor, and 
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transverse vehicle location sensor, for field evaluation under actual truck loading. In 1995, 

Sebaaly et al. [6] measured the tensile strains in flexible pavements using the Hall Effect sensors 

in an H-gage configuration. In 2001, commercial diaphragm-type stress cells were embedded in 

the subgrade of pavements to compare the performance of two instrumented pavement test 

sections under linear traffic simulator [7]. In 2005, Huff et al. [8] investigated piezoelectric axle 

sensors to obtain dynamic pavement deflection data. In 2011, Xue and Weaver [9] explored the 

effect of wide-base tire on pavement strain response based on the data collected from SPS-8 on 

Ohio-SHRP U.S. 23 Test Road in 1997. Recently, self-powered wireless sensor was also 

developed based on the integration of piezoelectric transduction with floating-gate injection, 

which is  capable of detecting strain and temperature simultaneously [10]. 

These electrical sensors, despite of the relatively low cost, have some significant 

limitations, indicating that they are unreliable for long-term pavement performance monitoring. 

For example, these sensors have shown high susceptibility to electromagnetic interference (EMI) 

and relatively short life cycles. Furthermore, corrections are needed due to temperature 

variations, and lead wires/connections are easily degraded by high humidity in the pavement 

environment. 

1.1.2. Optical fiber sensors  

To overcome the shortcomings of the electrical sensors, advanced fiber optic sensing 

technologies have been developing rapidly. Among various fiber optic sensors, the optical fiber 

Bragg grating (FBG) sensor, which is the most common engineering-applied fiber optic sensor, 

has been investigated widely for structural health monitoring of various infrastructures [11-14]. 

Because of its distributed sensing capabilities, light weight, immunity to electromagnetic 

interference, strong survival ability, and high accuracy and sensitivity [15, 16], FBG sensor is a 
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potential candidate for long-term pavement performance evaluation. The bare FBG sensors for 

pavement monitoring has been investigated by Wang and Tang [17] in 2005 using a pair of fiber 

gratings for simultaneous measurement of strains and temperatures within pavements.  

However, a bare FBG sensor, which is made of glass, is very easily damaged during the 

harsh pavement construction process [18]. Glass fiber reinforced polymer (GFRP) material, on 

the other hand, has proven to be a strong material for civil applications and has been used to 

package and protect FBG sensors to improve their ruggedness [19, 20]. The innovation of GFRP-

FBG sensor enables potentials for a reliable fiber optic sensor for long-term pavement condition 

monitoring.   

1.1.3. Pavement research facilities  

To promote the developments of various instrumentation techniques for pavement 

monitoring purpose and pavement material studies, the U. S. transportation departments and 

agencies set up pavement research facilities (test roads) in some of the states. The foremost was 

the AASHO Road Test conducted in Ottowa, Illinois from 1958 to 1960 [21]. The National 

Center for Asphalt Technology (NCAT) at Auburn University established test tracks in Opelika, 

AL since 1986. In 2004, eight sections of the NCAT test tracks were fully instrumented to 

measure in situ pavement responses under load [21]. In Minnesota, the Cold Weather Road 

Research Facility in Minnesota (MnROAD) of Minnesota Department of Transportation 

(MnDOT) was heavily instrumented with 40 test cells. Based on the monitored data from 

MnROAD facility, Lukanen developed mechanistically based load equivalency factors (LEF) in 

2005 for pavement design [22]. In Virginia, Smart Road facility in Blacksburg of Virginia was 

also instrumented its twelve sections for pavement related studies [23]. In 2006, Loulizi et al. 

[24] used one of the instrumented sections of the Virginia Smart Road to compare the difference 
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between theoretical and experimental stresses and strains measured in situ of a flexible pavement 

section. 

Although instrumented road sections have extensive values for self-monitoring, due to 

the potential high cost associated with the instrumented road sections, they are mostly limited to 

research facilities. Further efforts are still in needs to extend the instrumentations to real-time 

traffic roads. 

1.2. Road Roughness Condition Monitoring 

As an alternative to instrumentations in pavements, for a more mobile road condition 

assessment for maintenance resource allocation, roughness obtained through inertial road 

profiling method as shown in Figure 2 has been long used as one of the major criteria as a global 

measure of roadway serviceability.  

 

 

Figure 2. Standard road profiling for roughness measurements [25]. 

 

 

The ASTM E867 standard defines roughness as “the deviation of a surface from a true 

planar surface with characteristic dimensions that affect vehicle dynamics and ride quality” [26]. 

Pavement roughness adversely affects vehicle wear, ride quality, and transportation safety [27-
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30]. The higher dynamic axle loading from roughness accelerates pavement deterioration [31]. 

Rough roads can also increase fuel consumption by as much as 4-5 percent [32].  

1.2.1. Roughness index 

Researchers proposed many different roughness statistics to describe the severity of 

pavement roughness including the international roughness index (IRI) and the power spectral 

density (PSD) method. However, the IRI is the most commonly used index for roughness 

evaluation [33]. The IRI computation relies on a mathematical model called a quarter-car model. 

This model simulates the response of a serially coupled damped mass-spring system to estimate 

the vertical motions of equivalent wheel-assembly masses. The IRI is the accumulated absolute 

rate difference between the simulated sprung- and unsprung mass motions per unit of distance 

travelled.  

Another important characterization of roughness is the power spectral density (PSD). It is 

a mathematical representation of the spatial wavelength composition of road profiles rather than 

a summary index of roughness [34]. Researchers found that most pavement profiles such as road 

and runway surfaces have very similar PSD shapes. This observation has led to the use of 

coefficients that fit exponential functions to the PSD shapes as alternative summaries of 

roughness.  

Less frequently used methods also exist. These include the profile index method which is 

the root-mean square of a band-pass filtered road profile [35], the ride number method which is a 

transformation of the elevation profile per the ASTM E-1489 standard [36], and the root mean 

square of vertical acceleration approach which is a statistic method based on the rate of the grade 

change of the longitudinal profile [37]. 
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1.2.2. Roughness measurement methods 

The methods for roughness measurements fall into three major classes [38]. Class I uses 

the traditional longitudinal surveys by rod and level or by some other laborsaving apparatus that 

requires walking along the test path. The Class II techniques measure the road profile with 

various types of profilometers such as the Chloe-type rolling straightedge [38]. Class III is an 

indirect measuring method described as a response-type road roughness meters (RTRRM) that 

most highway agencies used until the mid-1980s or as an inertial road profilers that began in the 

1960s [39]. The RTRRM devices measure the response of the vehicle to the road profile using 

transducers to accumulate the vertical movement of the axle with respect to the vehicle’s body. 

This method directly reflected the users’ ride quality experience. However, variations in 

suspension characteristics and speed result in measurement inconsistencies. Such approaches 

also do not provide a sample of the pavement longitudinal profile for spectral analysis. 

The inertial road profiling methods use instrumented vehicles to collect road roughness 

data [40]. Inertial profilers collect pavement condition data at highway speeds and record 

sufficient data to evaluate the spectral content of the pavement profile. This benefit has led to a 

substantial increase of countries adopting the method. The principal components of a high-speed 

profiler include laser-based height sensors, accelerometers and an accurate distance measuring 

system. The height sensors record the distance from the base of the vehicle to the pavement 

surface. Accelerometers above the height sensors record the vertical acceleration of the sensor to 

correct for reference plane bounces. In theory, double integration of the vertical acceleration 

signal would recover the vertical displacement of the vehicle. Practically, however, noise and 

initial conditions tend to create additional issues that limit their use in urban and local roads 

where the profiling vehicle must travel at low speeds and accommodate stop-and-go conditions 
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[41]. Nevertheless, in more ideal settings such as freeways, the inertial profiler equipment 

produces a longitudinal profile of the pavement from the two height measurements. In addition 

to the profilers, recently, some other more cost-effective approaches have been investigated to 

collect the acceleration data for roughness measurement using connected vehicles through 

vehicle-integrated inertial and geospatial position sensors as well [27, 28]. 

According to NCHRP Report 334 [42], most transportation agencies now collect 

pavement roughness data using the automated systems mentioned above, especially the inertial 

profilers, for at least part of their paved roadway network. The inertial road profiling method for 

roughness measurements requires specially trained technicians and facilities including laser-

based height sensors, accelerometers and an accurate distance measuring system, which possess 

high cost for its use. The literature has very little information about the cost of using such inertial 

profilers. One study reported pavement profile data collection and analysis costs in the range of 

$2.23 - $10.00/mile with an average cost of $6.12/mile [43]. In general, the relatively high 

expense and labor requirements of existing approaches prevent agencies from monitoring large 

portions of their roadway network more often than once annually. Thus, they often make 

maintenance and rehabilitation decisions based on outdated roughness data. In addition, 

infrequent roughness measurements preclude the identification of dangerous distress symptoms 

such as frost heaves that appear and disappear between annual monitoring cycles. These 

situations result in roadway safety gaps that increase liability.  

1.3. Weigh-In-Motion 

Sustained economic development has led to a large increase in roadway transportation. 

Traffic loads play a critical role in the performance and deterioration of pavements. Hence, the 

weight of heavy vehicles has been a critical factor in the design and maintenance of roads. The 
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American Association of State Highway and Transportation Officials (AASHTO) pavement 

design guide uses the concept of equivalent single axle load (ESAL) to account for the 

accumulation of traffic load [44]. In 2005 the National Cooperative Highway Research Program 

(NCHRP) of the Transportation Research Board (TRB) proposed the load spectra to describe the 

traffic load [45]. All of these methods rely on the availability of practical real-time solutions to 

measure the volume and weight of vehicles traversing specific road segments. 

1.3.1. Static weight scales 

The traditional practice of measuring vehicle weight is to install static weight scales in 

weight stations alongside the roadways. The heavy vehicles are directed to stop on the static 

weight scale in a weight station. The static scales typically achieve accuracies of 1% to 5%. 

Weight stations are required in most highway systems for weight control of the roads and bridges 

in the road system.  

The static scales, although high accuracy, have several limitations such as diminishing 

roadway capacity by interrupting traffic flows, and the process of stopping and measuring 

creating a throughput bottleneck. Consequently, traffic enforcement officers will allow 

potentially overweight vehicles to bypass the weight station when the queue extends to the main 

line. Hence, weigh-in-motion (WIM) systems became a popular alternative to the static scale.  

1.3.2. Weigh-in-motion technology 

A WIM system consist of a device that measures the dynamic axle weight of a moving 

vehicle to estimate the corresponding static axle mass [46]. Compared with static scales, WIM 

technology has gain popularity because of its ability to collect continuous traffic data without 

human intervention. Since the concept of WIM was brought up sixty years ago [47], WIM 

technologies have been used increasingly around the world for weight control of heavy vehicles, 



 

10 

the protection and management of pavement and other infrastructures [48]. In fact, most of the 

weight stations in United States use slow-speed WIM sensors that can estimate the weight of a 

vehicle that is moving at speeds up to 15mph.  For example, there are more than 100 Weigh-in-

Motion stations throughout California by 2002 [49]. The original highway WIM system [50] 

used weighing devices in one lane of the road.  

The introduction of weight-station bypass programs such as Pre-Pass encourages the 

development of high-speed WIM sensors. As early as 1989 [51], a high speed WIM system 

which was manufactured and supplied by International Road Dynamics (IRD), was installed on 

Highway 1 near Regina of Canada. When installed as in-pavement sensors, such high-speed 

WIM devices can enable real-time traffic monitoring, weight-based tolling, and traffic flow 

prediction, all of which are critical measures that nearly all transportation activities require [52]. 

During the past twenty years, both low-speed and high-speed WIM stations have been widely 

studied and developed by worldwide scholars and transportation agencies.  

For WIM measurements, many in-pavement sensing systems were developed including 

the piezoelectric sensors, bending plate, load cell, and fiber optic sensor [53]. Currently, most of 

the available WIM systems rely on strain measurements or can be transferred to strain 

measurements as a basis for weight calculation. Piezoelectric sensors, made from polarized 

crystal that generates an electric charge when mechanically deformed, can be used for permanent 

applications when installed directly into a road slot or for portable applications when taped 

down. Bending plate WIM system, attached with strain gauges underside, measures the dynamic 

load as a vehicle passes over. The data is then calibrated to obtain the vehicle’s static load. Load 

cell WIM system needs to be installed with a concrete vault. It has a single load cell with two 
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scales, each of which measures the either the left or right axle load. The summation of the 

measurements from the two scales produces the total axle weight.  

Due to the distributed sensing properties, high environment resistance, and other 

advantages, the studies and applications of optic fiber sensors in WIM systems increased 

significantly in the past 10 years [54-58]. A fiber optic sensor, made of two metal strips welded 

around an optical fiber, measures the load applied on the fiber based on the glass fiber’s photo-

elastic property that the pressure transferred to the optical fiber creates a phase shift between 

both polarization modes, i.e. a faster vertical mode and a slower horizontal mode. In 2007, 

Cheng et al. [53] presented the design of a capacitive flexible weighing sensor for a vehicle WIM 

system and Zhang et al [59] investigated a WIM system based on multiple low cost, light weight, 

small volume and high accuracy embedded concrete fiber optic strain sensors. To date, the WIM 

system based on the fiber optic sensors are still limited. 

1.3.3. Weigh-in-motion sampling frequency 

To measure the high-speed WIM accurately using any in-pavement strain based sensors, 

it requires an appropriate sampling frequency for a specific traveling speed. Insufficient 

sampling reduces the measurement accuracy. On the other hand, excessive sampling reduces the 

potential for real-time measurements by requiring more computational capability and memory 

space than is necessary [60]. In 1991, Loshbough et al. investigated the appropriate sampling rate 

for WIM measurements and determined that the sampling rate should be at least twice the natural 

resonant frequency of the scale weighing platform [61]. In 2009, Federal Highway 

Administration (FHWA) and New Jersey Department of Transportation (NJDOT) [62] tested 

WIM measurements under cyclic loading at a low speed using piezoelectric sensors. The test 

revealed a roughly 25% increase in voltage output when the sampling rate increased from 100Hz 
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to 1,000Hz but did not analyze the specific trade-off between sampling rate and accuracy. The 

recent attractiveness of high-speed WIM technology for truck weight enforcement has led to 

numerous studies and practices relating to sampling rate selection [62-65]. However, the current 

literature lacks analysis on the influence of sampling rate selection on accuracy to guide the 

requirements for data acquisition facilities.  

1.4. Integrated Monitoring System 

With the development of information technology and digitization, pavement monitoring 

has been integrated to other monitoring systems, such as bridge monitoring. Many bridges 

worldwide are closely monitored because of their economic importance and vulnerability to 

extreme loading and harsh environmental conditions. The monitoring of bridges is convenient to 

be integrated with pavement monitoring because of their similarity in structure and function. The 

monitoring system of Geumdang Bridge in Korea using high-resolution wireless sensors were 

combined together with the two-lane passing test road which employed 1,897 sensors to evaluate 

three types of pavement constructed along the road length [66]. In Hong Kong, the integrated 

monitoring system with more than 800 sensors permanently installed on the three long-span 

cable-supported bridges- the suspension Tsing Ma Bridge, the cable-stayed Kap Shui Mun 

Bridge, and the Ting Kau Bridge [67]. In United States, the Commodore Barry Bridge was 

instrumented using 77 sensors and 115 channels to track the loading environment and structural 

responses, and expected to be integrated with a WIM system in the future [67]. In 2012, Kim and 

Lynch [68] installed wireless sensors on both the bridge and moving vehicle and record the 

dynamic interaction between the bridge and vehicle. Although the pavement condition 

monitoring has been investigated to be integrated with the bridge condition detection, an 
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integrated system to simultaneous monitoring of road conditions and traffic such as WIM is yet 

to be developed. 

1.5. Problem Statement and Research Objectives 

From the literature review above, current challenges for pavement condition and traffic 

monitoring can be summarized below: 

1) Although there are versatile electrical sensors existing for road condition monitoring 

such as strain gauges and piezo-electric sensing, the electrical sensors have some 

significant limitations, such as high susceptibility to electromagnetic interference 

(EMI) and relatively short life cycles, which prevent their applications for reliable 

long-term road condition evaluation. Due to the capabilities of immunity to EMI and 

high accuracy and sensitivity, fiber optic sensor is a potential candidate for long-term 

pavement performance evaluation. However, a bare fiber optic sensor made of glass 

is very easily damaged during the harsh pavement construction process, which needs 

to be improved for road condition monitoring; 

2) As an alternative to in-pavement sensors, roughness index such as IRI can be used for 

a more mobile road condition assessment. Road roughness, which usually is obtained 

through inertial road profiling method, requires an individual automobile with 

instruments onboard to perform the roughness measurements, resulting in high 

measurement cost and preventing frequent road condition assessments;  

3) On the other hand, the weight control on roads usually relies on static weight 

measurements from static scales in weight stations, which cannot meet the 

requirements for modern high-speed weight control. The WIM technologies can meet 

this challenge, however, the implantation of WIM system currently highly depends on 
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the experiences from the operating engineers and lacks guidance on its system design 

and sampling rate selections;  

4) Literature reviews indicated that traditionally, pavement condition monitoring and 

traffic data collection require two specific systems: one automobile with instruments 

onboard for pavement condition evaluation and one instrumented weight station for 

weight control. Having multiple facilities and systems for the road conditions and 

traffic information monitoring raises the cost for the assessment and complicates the 

process.  

To solve these challenges, the main objective of this dissertation is to develop an 

integrated system to simultaneously monitor the health condition of the roads and the WIM of 

passing vehicles, which will phenomenally simplify the road and traffic monitoring. The 

integrated system might have a great potential in future application because of its cost-efficiency 

and integrity. To achieve such an integrated system, the specific tasks in this study include:  

1) Develop an integrated sensing system based on in-pavement strain sensors that is 

capable of serving the integrated road condition and traffic monitoring system;  

2) Apply the integrated system for pavement condition monitoring and validate the 

system performance through field measurements; 

3) Develop a method to apply the integrated system for road roughness monitoring 

and validate the methodology through numerical simulation and field testing;  

4) Apply the integrated system for WIM measurements and develop guidance on the 

sampling requirements of the use of the system for high-speed WIM 

measurements;  
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5) Optimize the integrated system for optimal performance on road condition 

evaluation and high-speed WIM measurements considering real traffic.  

1.6. Dissertation Organization  

Based on the specific tasks aligned to achieve the main objective of this study above, this 

dissertation is divided into six chapters as follows: Chapter 2 describes the design of the 

integrated sensing system for road condition and WIM monitoring, its installation, and its field 

calibration; Chapter 3 presents the implementation of the integrated system for pavement health 

monitoring and roughness measurements; Chapter 4 introduces the application of the integrated 

system for WIM measurements and the design of the sampling optimization using such a system; 

Chapter 5 optimizes the system design for pavement condition and high-speed measurements 

using the integrated system; and Chapter 6 presents conclusions and recommended future work. 

1.7. Premises and Delimitations 

Premises form the basis upon which this research rests. In this study, there are two 

assumptions used throughout the dissertation: 1) The field validation in this study assumes that 

the target truck load is located right above the target sensor, so that the output of data collection 

and result analysis corresponds to the amount of imposed loading; and 2) For the system 

optimization in weigh-in-motion measurement, the input signal to noise ratio (SNR) of the A/D 

converter is equal to its output SNR. In practice, however, A/D devices may produce additional 

noise such that the output SNR is lower than the input SNR. 

Delimitations define the scope of the research. In this study, we define three delimitations 

including: 1) The objects of this study on road condition and weigh-in-motion measurements are 

limited to concrete pavement panels that can be abstracted with a thin plate; 2) The numerical 

simulation and field validation in this study are based on the facilities available at MnROAD 
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research sections and this research doesn’t include data collection or signal processing for real 

traffic; and 3) The field validation of roughness evaluation relies on the proportionality of RIF 

with IRI which was characterized by cited previous work for the accuracy of estimating the IRI 

from RIF measurements. 
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2. DESIGN AND CALIBRATION OF THE INTEGRATED SENSING SYSTEM 

In this chapter, in-pavement strain sensors based on optical fiber Bragg grating are 

designed for the use of establishing an integrated sensing system for simultaneous road condition 

and traffic monitoring. The specifically designed in-pavement sensors were integrated as a 

sensing system and installed in an example concrete pavement for strain sensing calibration.  

2.1. Design of the In-pavement Strain Sensors 

As indicated in the literature review, it is desired for practical applications to have in-

pavement strain sensors with capabilities of immunity to EMI, high accuracy, high sensitivity, 

and long-term reliability. Fiber Bragg grating (FBG) sensor, one type of fiber optic sensor, due to 

the advantages of possessing these capabilities mentioned above can be an alternative for long-

term pavement performance evaluation. But the bare fiber optic sensor is made of glass and is 

easily to be damaged during pavement construction process. Glass fiber reinforced polymer 

(GFRP) material with great ruggedness has been considered as a potential packaging approach to 

protect FBG sensors for in-pavement installations [19, 20]. Thus, this study developed a rugged 

GFRP packaged FBG sensor for in-pavement strain sensing to achieve potential simultaneous 

road condition and traffic monitoring. 

2.1.1. Operational principle of FBG sensors for strain sensing 

FBG sensor, as one type of commonly used fiber optic sensors in civil engineering, is 

made by laterally exposing the core of a single-mode fiber to a periodic pattern of intense 

ultraviolet (UV) light as shown in Figure 3a for the operational principles. The UV light creates a 

fixed refractive index modulation, called grating. At each periodic refraction change, a small 

amount of light is reflected, forming a coherent large reflection at a particular wavelength known 

as the Bragg wavelength. Light signals at wavelengths other than the Bragg wavelength 
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propagate through the grating with negligible attenuation or signal variation. The ability to 

accurately preset and maintain the grating wavelength is a fundamental feature and advantage of 

fiber Bragg gratings [69]. Figure 3b shows a typical reflected spectrum of FBG. The Bragg 

wavelength satisfies the Bragg condition [70]:  

 nBragg 2                                                               (1) 

where n is the index of refraction and Λ is the grating periodicity of the FBG. 

 

a) Schematic of signal interrogation system 

and sensor operation principle 

 
 

b) Typical spectrum of FBG sensors 
 

Figure 3. Sensor operation principle and typical spectrum [69]. 

 

Due to temperature and strain dependence of the parameter Λ, the wavelength of the 

reflected component will change as a function of temperature and/or strain. The general 

expression of the strain-temperature relationship for the FBG strain sensor and temperature 

compensation sensor, can be described as [69] 
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where , , , Pe, ε, and T are the resonant wavelength, thermal-optics coefficient, thermal 

expansion coefficient, optical elasticity coefficient, strain, and temperature, respectively. The 

strain after temperature compensation can then be calculated as [69]: 
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2.1.2. Geometric design of the GFRP-FBG in-pavement strain sensor  

  To protect the FBG sensors from damaging during the construction process of the 

pavements, the GFRP packaged FBG sensors previously developed by Zhou [20] were modified 

and used in this study. The dimensions of the GFRP-FBG sensors were specifically designed for 

embedment in most concrete pavement panels. Two geometric layouts were designed for in-

pavement strain sensing using GFRP-FBG sensors including one layout in three dimensions (3D) 

as shown in Figure 4a and one layout in one dimension (1D) as shown in Figure 4b. For the 3D 

GFRP-FBG strain sensor, the short-gauged sensor was intended to monitor the vertical strain and 

the long-gauged sensors were used to monitor the longitudinal and transverse strains inside 

pavements. The vertical sensor was designed and fabricated with a total height of 2.1 in. (5.33 

cm), including the length of the GFRP holder, so that the size of the sensor is small enough to 

put inside most types of pavements. The longitudinal and transverse components of 3D sensors 

had a gauge length of 2.2 in. (5.59 cm). The diameter of 3D GFRP-FBG sensors was designed as 

0.2 in. (0.51 cm). The 1D GFRP-FBG sensors had a longer gauge length of 3 in. (7.62 cm), and 

they shared the same diameter with 3D sensors. Figure 4 shows the detail geometric layout of the 

developed sensors. 
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Photo of the 3D sensor 

 
   Elevation view                       Plan view (Unit: 

inch; 2.5cm) 

                  
Photo of 1D sensor    

Elevation view  

           (Unit: inch; 2.5cm) 

 

(a) 3D GFRP-FBG sensor (b) 1D GFRP-FBG sensor 

Figure 4. Geometric layout of the GFRP-FBG sensors. 

 

 

The FBG signals from all of the strain sensors were monitored in real time using an 

optical signal analyzer (OSA) and recorded by computers for post processing. The NI PXIe-4844 

Optical Sensor Interrogator was used in this research for FBG data acquisition. Sensor 

calibration followed the approaches used by Zhou [20]. The GFRP-FBG sensors had a strain 

sensitivity of 7.937 × 10-4 nm/µε. 

2.2. Design of the Integrated Sensing System  

2.2.1. Implementation of an integrated sensing system  

For simultaneous road condition and traffic monitoring, multiple GFRP-FBG sensors and 

other types of strain sensors may need to be installed inside pavements to form an integrated 

sensing system. Figures 5a and 5b illustrate the possible sensor implementation layouts which 

can achieve an integrated system. Inside each pavement section, four sensors are required 

including one 1D GFRP-FBG sensor, one 3D GFRP-FBG sensor, one strain gauge and one 

temperature sensor. The strain gauges, as shown in Figure 6 are needed for comparison, sensor 
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calibration, and backup for high-speed strain sensing in case the GFRP-FBG sensing instrument 

does not have sufficient sampling frequency. To assess the mechanical effect from traffic loading 

for WIM measurements, all in-pavement sensors are proposed to be implemented along the 

wheel path. If the pavements which the sensors to be installed is for new construction, all the 

GFRP-FBG sensors, strain gauges, and temperature sensor inside the overlay should be deployed 

at the bottom of the pavement layer. If installed inside existing pavement sections, channel 

cutting is required to hold the sensors on the bottom of the pavement sections and high 

performance polymer is recommended to apply inside the channels to bond the sensor to the 

existing pavements. The transmission connections of all the sensors are recommended to be 

protected and centrally connected to the instrument at the roadside for data acquisition and 

processing.  

 

                       

                (a) Recommended layout #1                                          (b) Recommended layout #2 

 

Figure 5. Recommended implementation layouts of the integrated sensing system. (Note: a and b 

are the length and width of the pavement panel.) 
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Figure 6. Strain gauges to be used in the integrated sensing system. 

 

2.2.2. Example system implementation at MnROAD facility, MN  

MnROAD facility, that supports this research, is owned and operated by the Minnesota 

Department of Transportation (MnDOT).  MnROAD consists of two unique roadways including 

a two-lane low-volume road loop that is loaded with a 5-axle 80 000lb (36 287.39 kg) semi and 

the mainline, I-94’s two westbound lanes using live traffic, as  shown in Figure 7a. The example 

system implementation for this study utilized cell-40, which is an existing pavement test section 

(500 feet) on the low-volume road. Cell 40 originally had 15 ft. (4.57 m) by 12 ft. (3.66 m) 

skewed jointed concrete undoweled panels. After 19 years of continuous simulated truck loading, 

Cell 40 showed significant degradation. Two longitudinal cracks and one transverse crack were 

documented. Figure 7b shows the transverse crack and the short longitudinal crack, and Figure 

7c shows the long longitudinal crack. The two longitudinal cracks were identified at 18 ft. (5.49 

m) and 90 ft. (27.43 m) in lengths, while the transverse crack was at 12 ft. (3.66 m) at the east 

end of Cell 40. The long longitudinal crack occurred under the wheel path near the pavement 

edge, while the transverse crack and short longitudinal crack were located under the inner wheel 

path. The joint fault with an average width of a quarter inch (6.35 mm) was noticed with a 

history of pumping each spring. Based on the significant degradation, pavement rehabilitation 

was recommended by the MnDOT.  
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MnDOT installed a 3 in. (7.62 cm) ultra-thin fiber reinforced unbonded concrete overlay 

at MnROAD facility to cost-effectively rehabilitate the existing concrete pavements. The 

concrete material was reinforced with structural fibers of around 50% in weight. The overlay 

consisted of 6 ft. (1.83 m) by 6 ft. (1.83 m) square jointed panels, and sealed joints were applied 

between the overlay panels. Figures 7b and 7c also show the panel layout for original and 

overlay panels as the skewed joints for the underlying original concrete and the smaller 

rectangular joints for the overlay joint pattern. Moreover, to investigate the effectiveness of the 

separation layers two different thickness of fabrics were used in the study. Cell-40 was split in 

two new test sections each consisting of 250 ft. (76.2 m) The first consisted of a thin fabric 

interlayer (Fabric #1, 8 oz (236.59 ml) about one-eighth inch (3.18 mm)) with the 3 in. (7.62 cm) 

concrete overlay, which was numbered as Cell 140 (west end). The second test section consisted 

of a standard fabric interlayer (Fabric #2, 15 oz (443.6 ml) about a quarter inch (6.35 mm)) with 

the same 3 in. (7.62 cm) concrete overlay, which was numbered as Cell 240 (east end). The goal 

of the two test cells were to better understand if a standard (15 oz (443.6 ml)) fabric could be 

used under very thin concrete overlays without causing too much deflection and cracking when 

compared to the thinner (8 oz (236.59 ml)) fabric that would deflect less in theory [71].  
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(a) Layout of MnROAD Facility [71]            (b) Transverse and short longitudinal crack 

 

  

(c) Long longitudinal crack 

 

Figure 7. MnROAD facility and cracking mapping of existing concrete pavements. 

 

 

To calibrate and further validate the integrated system for simultaneous road condition 

and traffic monitoring, two panels in the concrete pavements of Cell 40 installed the 

recommended integrated sensing system. The panel with the first layout of a recommended 

integrated system as shown Figure 8a was named as West Panel of Cell 140 and the second 

layout of the recommended integrated system as shown in Figure 8b was named East Panel of 

Cell 240. Figures 8a and 8b illustrate the exact locations of the sensor layouts on the two panels 

with instrumented integrated systems, respectively, which were selected for monitoring based on 

the layout of the longer longitudinal crack and also the installation of fabric layers. To monitor 

the influence on the overlay from the joint opening behavior of the existing pavement, in 

addition to the required sensors for an integrated sensing system recommended in Figure 5, one 

more 1D-GFRP-FBG sensor (1D-3), was deployed across the joint of the existing pavement right 

          I-94 
Cell 40 

Low-volume traffic simulation line 
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below the Sensor 1D-1. Figure 9a shows the installation of the Sensor 1D-3. In addition, to track 

the potential growth or shrinkage of the transverse crack, another additional longitudinal 1D 

GFRP-FBG sensor (1D-5) was implemented across the transverse crack as shown in Figure 9b. 

Also, another 1D GFRP-FBG sensor (1D-4) was placed inside the overlay above 1D-5 for 

comparison. All the GFRP-FBG sensors, strain gauges, and thermal trees inside the overlay were 

deployed 0.5 in. (1.27 cm) above the existing pavements for the convenience of installation and 

all the sensors were best aligned with the wheel path. High performance polymer was applied to 

bond the sensor to the existing concrete pavement. In addition, MnROAD also deployed 

traditional pavement sensors such as vibration wires for validations, which will be included in 

future study. The transmission connections of all the sensors were protected and centrally 

connected to the instrument at the roadside for data acquisition and processing.  

 

                  

                (a) West Panel in Cell 140                                     (b) East Panel in Cell 240 

 

Figure 8. Sensor layouts on cell 40 (Unit: inch; 2.5cm). [Note: Sensor size not to scale.] 
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   (a) Deployment of 1D-3 across the joint     (b) Deployment of 1D-5 across transverse cracks 

 

Figure 9. Photos for sensor deployments in the existing pavement. 

 

2.3. System Calibration  

To calibrate the strain sensing performance of the developed integrated sensing system, 

field experiments were performed by loading the West Panel with instrumented sensing system 

using the wheels of the front two axles of the MnROAD 5-axle 80,000lb (36,287.39 kg) semi-

truck as shown in Figure 10 a for its dimension and the axle weight distribution of the MnROAD 

truck. Figure 10 b shows a photo of the truck for demonstration. To measure strains induced 

from weights on top of in-pavement sensors, the tire must be directly loaded on the sensors. Due 

to the small size of a GFRP-FBG sensor or a strain gauge, the sensor only measures the strains 

induced by the load from one tire. Thus, for future axle weight measurements or WIM 

measurements based on the in-pavement strains measured by the sensors in this sensing system, 

one should multiply the number of tires of each axle for an estimation of axle weights. In this 

calibration, only one tire of a front axle of the MnROAD truck is used for the loading, 

considering the distribution of installed sensors. Since there are two tires in the front axle of the 

MnROAD truck, therefore, the loading on the GFRP-FBG sensor or strain gauge for calibration 

is half of the axle weight of 12 kips, which equals to 6 kips. 
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                                  (a) Layout of MnROAD Truck                     (b) Photo of MnROAD Truck 

 

Figure 10. Dimension of the MnROAD 5-axle semi-truck. 

 

 

The data are collected using both the strain gauges and the GFRP-FBG sensors of the 

integrated system on the West Panel simultaneously. Table 1 shows the measured strains from 

the strain gauge and the transverse component of the 3D GFRP-FBG sensor, respectively. A 

maximum difference of 3.16% was noticed when comparing the test data from the strain gauge 

and that of the GFRP-FBG sensor, part of which can be accounted for by the positional 

difference between these two sensors. The variance within 5% proved the effectiveness of the 

developed GFRP-FBG sensor for strain sensing of the developed integrated sensing system. 

More importantly, Table 1 also shows that a 6kips of vehicle tire load of the front axle on top of 

a GFRP-FBG sensor embedded inside a concrete pavement will produce a strain of 62.07 με. 

Therefore, the load-strain sensitivity of the GFRP-FBG sensor is 10.3 /kips, which is 

consistent with the studies performed by other researchers [72]. For weight measurements or 

WIM in following chapters, a load-strain sensitivity of 10.3 /kips is then used based the 

calibration results here.  

 

Table 1. Comparison between developed sensor and strain gauges. 

Positions Strain gauge (με) 3D-1-T (με) Relative difference (%) 

Axle #2 60.17 62.07 3.16% 

Axle #1 52.46 51.18 -2.44% 
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2.4. Summary 

This section presented an innovative robust integrated sensing system based on the newly 

developed GFRP-FBG sensors and strain gauges for future simultaneous road condition and 

traffic monitoring. The integrated system include an implementation of at least four sensors, 

including one 1D and 3D GFRP-FBG sensors, one strain gauges, and one temperature 

compensation sensor. The developed integrated sensing systems were deployed at MnROAD 

facility, MnDOT, for calibration. The developed sensors in the integrated system showed a 100% 

survival rate after the concrete overlay was cast in place. The comparison between the strain 

gauge data and the strain of developed GFRP-FBG sensor validated the reliability of the 

developed sensing technology for in-pavement strain sensing. The load-strain sensitivity of the 

GFRP-FBG sensor is calibrated to be 10.3 /kips, which will be applied to all weight 

measurement purposes in following chapters.  
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3. PAVEMENT CONDITION ASSESSMENT AND ROAD ROUGHNESS EVALUATION 

In this chapter, the developed integrated sensing system in Chapter 2 was applied in the 

example concrete pavement panels of MnROAD Cell 40 which also introduced in Section 2.2 

and 2.3. The field case study is to validate the capability of the integrated sensing system for 

simultaneously monitoring of the pavement health condition and the road roughness situation. 

The monitored data can be further applied for road condition assessment and guide for resource 

relocations of road maintenance.  

3.1. Pavement Condition Assessment Using the Integrated Sensing System 

Strain distribution in pavements can provide valuable information for the pavement 

health conditions. With integrated sensing system instrumented, the measured strains from the 

system can be used to assess the pavement conditions effectively. This section details the early 

pavement performance assessment using the measured strains from the implemented integrated 

sensing system described in Chapter 2.    

3.1.1. Early pavement performance evaluation 

The concrete pavements described in Chapter 2 with integrated sensing systems 

instrumented were paved and cured for 21 days (June 10th 2013 to 1 July 2013). After curing, it 

was opened to simulated low-volume traffic with an 8 kips semi-truck as shown in Figure 10 

driving 50 laps a day for 5 days each week. The early performance of the overlay for the first 

year was evaluated in this study. Table 2 shows the measured raw strains at 21 days (July 1st 

2013, 100 ºF (38 ºC)), 52 days (August 1st 2013, 92 ºF (33 ºC)), 85 days (September 4th 2013, 

88 ºF (31 ºC)), 162 days (November 22nd 2013, 22 ºF (-6 ºC), and 308 days (April 18th 2014, 34 

ºF (1 ºC)) after paving. The accumulated strains, that were temperature compensated using 

equation (1) and with the consideration of strain transfer rate based on previous study [28], were 



 

30 

calculated by subtracting strains obtained at 21 days after paving from strains at 52 days, 85 

days, 162 days, and 308 days after paving. The positive values in the table indicate tension 

strains, and a negative value reflects a compressive strain. The performance monitoring of the 

instrumented pavements lasted for one year after the sensor installation and calibration. Future 

data collection and evaluation will produce more results for long term evaluation of the 

pavement health condition. 

 

Table 2. Measured raw and accumulated temperature (environmental) compensated strains. 

cell 

no. 

sensor 

no. 

raw strain , με 
accumulated strain after 

temperature compensation, με 

21 

day 

52 

day 
85 day 162 day 308 day 52 day 85 day 162 day 

308 

day 

140 1D-1 -14 38 29 -532 -497 125 134 45 -93 

240 1D-2 237 204 122 -655 -516 9.6 -55 -352 -388 

140 1D-3 -1251 -956 -927 934 -186 504 413 2746 1463 

240 1D-4 106 73 29 -825 -410 -24 10 -364 -218 

240 1D-5 -197 -211 -179 -350 15 45 108 415 -614 

140 3D-1-L 327 291 209 -414 -219 66 23 -267 -190 

140 3D-1-T 272 267 246 -451 -278 100 73 -153 -142 

240 3D-2-L 348 420 447 -303 -34 151 181 -90 -5.5 

240 3D-2-T 388 423 388 -282 -49 127 77 -133 -53 

 

As known from Chapter 2 that Sensor 1D-3 was placed across the joints in the existing 

pavements and Sensor 1D-1 was placed in longitudinal direction directly above 1D-3 inside the 

concrete pavement. Comparing the data of Sensor 1D-3 on different days, it can be seen that, the 

joint in the existing pavements had extensive tension strain (2,746 με) at 162 days. Since the 

concrete usually can only hold tension strains up to several hundred according to the research by 

Liners [32], potential further joint opening might be expected beneath the overlay after six 

months of overlay casting. Further close monitoring is needed to track the development of these 
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potential further opening of the beneath joints. With the unbonded design, the pavement above 

the existing joints behaved well with large tension (130 με) in summer and returned to minor 

tension (45 με) or compression in winter (-93 με). Considering that concrete materials are strong 

for compression, which can hold compression strains up to 2 or 3 thousand microstrain 

depending on the mix design of the concrete [32], no micro-cracks were expected inside the 

concrete overlay during the monitoring period.  

Also, Sensor 1D-5 was placed across the existing transverse crack, and Sensor 1D-4 was 

placed in the longitudinal direction right above 1D-5 inside the pavement. The measured strains 

of Sensor 1D-5 showed that although the transverse crack inside the existing pavement sealed 

with -197 με right after the overlay’s casting, it reopens a little in summer with a tension strain 

around 415 με at 162 days. This significant extension also caused the concrete overlay above to 

be in tension in summer (10 με) and in compression in winter (-316 με) at 162 days, as indicated 

from strain recorded by Sensor 1D-4. At 308 days, an abnormal large compression strain was 

recorded on Sensor 1D-5, indicating that the crack turned to be closing. This closing of the crack 

in existing pavements may be induced by through-cracks in the current or the adjacent concrete 

panels. A visual inspection was then performed and a large transverse crack was notified on the 

west side of the panel as shown in Figure 11, mostly induced by the freezing and thawing effect 

in spring. The sensors successfully detected abnormal events on the concrete pavements. 

Continuous close monitoring of the further opening of the transverse crack inside the existing 

pavements and their influence related to reflective cracking in the pavements was recommended. 
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Figure 11. The occurrence of transverse cracks on adjacent panel of crack sensors (1D-4 & 1D-

5). 

 

 

In addition, Sensor 1D-2 was installed in the transverse direction inside the pavement. As 

indicated in Table 2, continuous compressive strains from this sensor indicated an acceptable 

performance of the overlay in the transverse direction. The longitudinal and transverse 

components of the two 3D GFRP-FBG sensors both showed tension strains in summer and 

compression strains in winter. A tension strain of 181 με was noticed in 3D-2-L at the 85 days, 

indicating that careful attention should be paid on the longitudinal direction. Early longitudinal 

cracks may be developed with continuous simulated traffic after several season changes. In 

summer, the pavement sections in Cell 240 were noticed to deform more than Cell 140 with a 

tension strain difference of around 100 με in longitudinal direction. The regular fabric with a 

quarter inch (6 mm) of thickness induced a significant tension strain (181 με) in longitudinal 

direction on the overlay in summer, which may potentially bring up micro cracks in the near 

future and needs continuous close monitoring. In winter, Cell 140 compressed more than Cell 

240 in longitudinal direction with the significant temperature changes. In transverse direction, no 

significant difference was noticed between the Cell 140 and Cell 240.  The monitoring results 

from the 3D fiber optic sensors indicated that the thinner fabric, Fabric #1 with 8 oz. (236.5 ml) 

about one-eighth inch (3 mm), performed better than the thicker fabric, Fabric #2 with 15 oz. 
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(443.6 ml) about a quarter inch (6 mm). The test results approved the theory that thinner fabric 

will cause less deformation for the overlay, which also proved the potential supports effect from 

the existing pavements to the above concrete pavements although it was unbonded. 

3.1.2. Static loading tests 

In addition to the continuous evaluation of the performance of the concrete pavements, 

static loading tests were also performed on August 1st 2013 and April 18th 2014 to detect the 

early behavior of the pavements and to validate the system’s effectiveness. The MnROAD Truck 

shown in Figure 10 was again used as the loading truck. Eight loading positions were tested 

using the MnROAD truck as shown in Figure 12a-h. Loading Position 1 placed the right tire of 

the front axle on top of Sensor 1D-1, Position 2 loaded the same tire on top of Sensor 3D-1, 

Position 3 located the right tire of the second axle on top of Sensor 3D-1, Position 4 and 5 

situated the right tire of the front axle on top of Sensor 1D-2 and 3D-2, Position 6 and 7 placed 

the right tire of the second and third axle on top of Sensor 3D-2, and Position 8 loaded the right 

tire of the fourth axle on top of Sensor 3D-2.  

Figure 13 shows the measured strains after temperature compensation from the static 

field loading tests on August 1st 2013. On August 1st 2013, a static loading of 5.8 kips (2.63 t) on 

the concrete pavement developed a tension strain of around 50 με in the transverse direction, a 

tension strain of around 40 με in the longitudinal direction, and a compression strain of around -

35 με in the vertical direction. All the sensors in the integrated sensing system recovered after the 

removal of static loading. The static loads did not induce cracks inside the concrete panels with 

all the tension strains below 100 με, validating the strength of the mix design of the pavement. 

However, the truck loading induced relatively large tensile strains in the longitudinal and 
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transverse directions, which increases the possibility of fatigue cracks with long-term truck 

traffic.    

     

  

 

Figure 12. Field static loading testing setup.  
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(a) West panel in Cell 140                       (b) East panel in Cell 240 

 

Figure 13. Measured temperature compensated strains throughout static testing using the 

MnROAD semi parked on the sensors of the integrated sensing system on August 1st 2013. 
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Table 3 shows the comparison of measured strains of the static testing in two different 

seasons of the integrated sensing system on August 1st 2013 (Season of summer & fall) and April 

18th 2014 (Season of winter & spring). It is clearly demonstrated that the concrete pavement and 

its foundation acted much stiffer in winter season than in summer season with smaller strains in 

general for all loading cases. The phenomenon of stiffer concrete pavement was also attributed to 

the continuous dynamic loading with heavy vehicles on the pavements. In the winter season, the 

strain differences between two fabric types are smaller than in summer season. 

 

Table 3. Comparison of measured strains on August 1st 2013 and April 18th 2014. 

Position 

Strains on August 1st 2013 (με) April 18th 2014 (με) 

3D-1-

V 

3D-1-

T 

3D-1-

L 

3D-2-

T 

3D-2-

L 

3D-1-

V 

3D-1-

T 

3D-1-

L 

3D-2-

T 

3D-2-

L 

position 

2 
-29 49 40 0 0 -17 35 18 0 0 

position 

3 
-30 53 48 0 0 -20 42 26 0 0 

Position 

5 
0 0 0 90 60 0 0 0 62 33 

Position 

6 
0 0 0 85 76 0 0 0 51 45 

 

3.2. Road Roughness Evaluation1 

Road roughness is another parameter which assists pavement maintenance resource 

allocations. Traditionally, the road roughness evaluation is performed using road profiler 

instrumented on automobiles as mentioned in Chapter 1. Enabling the capability of road 

roughness measurements using the integrated sensing system with in-pavement strain sensors 

                                                 

 

1 © IOP Publishing.  Reproduced with permission.  All rights reserved 

http://iopscience.iop.org/article/10.1088/0964-1726/24/11/115029/pdf 

http://iopscience.iop.org/article/10.1088/0964-1726/24/11/115029/pdf
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will impact significantly the road management system for cost-effective maintenance resource 

allocation. This section, thus, develops a methodology to use the developed integrated sensing 

system for road roughness evaluation through systematic theoretical, numerical, and 

experimental analysis. 

3.2.1. Theoretical analysis  

Roughness occasionally exists as part of the roadway design or construction defects [73], 

and pavement wear increases the roughness levels over time since a deformation of the pavement 

structure would produce a change in the road profile. Consequently, a deformation-induced 

increase of strain within the pavement structure must correspond to an accumulation of profile 

unevenness. This study uses concrete pavements for the theoretical analysis. According to the 

Kirchhoff–Love plate theory [74], the strain in the longitudinal (x) direction of a thin-plate 

concrete panel, x, located inside the pavement at some known vertical position h0, is expressed 

as: 

,
d

d
2

2

0x
x

w
h                                                               (4) 

where w is the vertical displacement of the concrete pavement panel which is also known as the 

road elevation profile. With the sampling interval requirement satisfied, double integration of 

Equation (5) reproduces the relation between the road elevation profile and the measured strains 

from the in-pavement sensors as: 

.d
0

x

 x
h

w


                                                              (5) 

The IRI then becomes available because the slope rate of the road profile, w , which is the 

second derivative of the elevation profile, w, with respect to time, is a direct input to the 
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procedure that computes the IRI. For a temporal road profile of , the second derivative with 

respect to time is 

0

x

2

h

v
w


                                                             (6) 

where v = 80 km/h is the IRI standard speed [33].   

The Highway Safety Research Institute (HSRI) defines the IRI in terms of the responses 

from a standard quarter-car model having two degrees of freedom as shown in Figure 14. 

 

 
Figure 14. The HSRI quarter-car model. 

 

 

The parameters yt
s and yt

u are absolute displacements of the sprung- and unsprung-mass, 

respectively. The HSRI quarter-car parameters are ku/ms = 653.0 s-2, ks/ms = 63.3 s-2, mu/ms = 

0.15, cs/ms = 6.0 s-1 and cu/ms = 0.0 s-1. Let the relative displacement of sprung mass be ys and 

that of the unsprung mass be yu such that 

t

u

t

ss yyy        and      .t

uu  yy                                     (7) 

Expressed in matrix-form, the ordinary differential equations to define the system dynamics for 

the sprung and unsprung mass is  

)()()()( tRtKYtYCtYM                                             (8) 

where 
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Substituting Equation (6) into Equation (9) provides the expression: 
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Solving Equation (8) with a numerical algorithm such as the Newmark method yields the 

relative displacements ys and yu, the relative velocities sy and ,uy  and the relative accelerations sy

and uy as a function of the in-pavement strains and velocities of the vehicle. The IRI is then [33]: 


T

ty
L 0

s d
1

IRI                                     (11) 

in which, L is the segment length and T = L/v is the travel time. For a computational sample 

interval of Δt, the number of intervals is n = T/Δt and the discrete-time form of the computation 

becomes 
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3.2.2. Sensitivity study 

This section conducts the sensitivity study of the roughness evaluation process displayed 

in Section 3.2.1. The factors influencing the accuracy of the IRI estimation using the 

measurements from in-pavement strain sensors mainly include the implementation sensor 

interval and the sensor signal’s quality characterized by the signal-to-noise ratio (SNR). From 
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Equation (6), it can be seen that the in-pavement strain is directly proportional to the second 

derivative of the profile (  ). The interval of the road profile samples (and the second 

derivative of the profile ( ) can represent the strain sensor position intervals and the output 

signal of the sensors, respectively.   

To simulate road profiles ( of different roughness levels for sensitivity analysis, the 

inverse fast Fourier transform (IFFT) of the PSD is a suitable approach to apply [75, 76]. For this 

analysis, the second-order forward difference provides a higher-accuracy numerical 

approximation of the second derivative of the profile ( ) [77]. After solving Equation (8) using 

the Newmark method, Equation (12) then provides the associated IRI for the profile [77]. The 

variation in IRI is observable by changing the profile sampling interval size, which represents the 

strain sensor interval, for each evaluation of Equation (8). The method of noise sensitivity 

analysis involves adding white Gaussian noise to the in-pavement strains (x) thus, to the 

profile’s slope rate ( ), and observing the IRI variations. 

3.2.2.1. Roughness generation  

The ISO (1995) [78] represents the elevation profile (ξ) as a PSD such that 
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where, κ is the wavenumber with a unit of cycle/m, κ0 is the datum wavenumber in cycle/m, 

S(κ) is the road profile PSD in an unit of m3/cycle, and S(κ0) is the PSD at κ0 or initial PSD in 

m3/cycle. 
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For typical profiles, Cebon [79] recommended n1=3, n2=2.25, and 0=1/(2π) cycles/m. 

Table 4 summarizes the qualitative relationship between the roughness classification and the 

initial PSD. As expected, higher values of S(κ0) corresponds to poorer road condition in terms of 

roughness levels. 
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Table 4. Relationship between roughness classification and initial PSD [79]. 

Roughness Classification 
S(κ0) 

10-6 m3/cycle 

Very Good 2-8 

Good 8-32 

Average 32-128 

Poor 128-512 

Very Poor 512-2048 

 

Reference [80] indicates that the IRI does not respond to spatial wavelength components 

that fall outside of the 1.3 m to 30 m wavelength band. Therefore, the κ range from 0.02 cycle/m 

to 5 cycle/m is conservative for the IFFT computation. Figure 15a shows the road profile 

generated with S(κ0) = 3.2×10-5 m3/cycle, and Figure 15b shows the corresponding PSD. 
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(a) Generated Road Profile 

 
(b) Comparison on the Power Spectral Density 

 

Figure 15. Roughness generation at S(κ0) = 3.2×10-5 m3/cycle. 

 

 

3.2.2.2. Sensitivity on in-pavement strain sensor interval  

The sensor interval is defined as the distance between sensors installed inside the 

pavements along the road sections in this dissertation. It is an important factor for the signal 

quality, as it is a direct indicator of resolution for the roughness data collection. The Nyquist-

Shannon sampling theorem dictates a minimum profile sampling interval of 0.65 m because the 

IRI becomes insensitive to wavelengths shorter than 1.3 m. Figure 16 shows the change of IRI 

with the sensor interval for the roughness generated at S(κ0) = 3.2×10-5 m3/cycle. As shown in 

Figure 16, the IRI steadily decreases as sensor interval increases. The tradeoff between IRI 
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accuracy and in-pavement strain sensor interval directly relates to the expense of sensor 

installation. The recommended standard sampling interval is 0.3 meters using the vehicle based 

profiling approaches [8]. However, installing strain sensors at the equivalent sampling intervals 

would require a significantly large number of strain sensors that would result in a high initial 

installation cost.  

 

 
Figure 16. IRI at different strain sensor intervals. 

 

 

To potentially reduce the number of sensors needed for a more cost-effective solution, 

Table 5 compares various sensor interval compared with the IRI calculated from standard 

intervals of 0.3 m for different levels of roughness S(κ0) with measurement accuracies of 90% 

and 80%. The results indicate that larger IRI or rougher surfaces require fewer sensors. Since the 

road roughness matter more when the IRI increases, users can increase the sensor interval to 

decrease cost without losing measurement accuracy. A sensor interval of 0.7~0.8 m would 

provide an accuracy within 80% for roughness levels that correspond to the road conditions with 

average or below that matter most to the agencies. Hence, trading off 20% accuracy reduces the 
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required number of in-pavement strain sensors by at least a factor of two. For specific 

applications, a sensor interval analysis is highly recommended before the sensor installation. 

 

Table 5. Sensor intervals required for an accuracy of 80% and 90%. 

S(κ0),  

10-6 m3/cycle 
2 4 8 16 32 64 128 256 512 1024 2048 

IRI at 0.3 m,  

m/km 
1.12 1.57 2.23 3.19 4.55 6.33 8.92 12.76 17.95 25.04 36.14 

Sensor Interval with  

90% Accuracy, m 
0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 

Sensor Interval with  

80% Accuracy, m 
0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.7 0.7 0.8 0.8 

 

3.2.2.3. Sensitivity on sensor signal quality  

This section uses the ASTM Standard E 1926-98 [33] profile with known IRI to study the 

noise sensitivity of the in-pavement strain sensor on IRI estimation. Figure 17 shows the 

simulated standard sinusoidal road profile. Table 6 lists the calculated IRI values and the relative 

errors for different levels of white Gaussian noise. The relatively small error of 5.0% between 

the IRI of the ASTM profile and the IRI computed from generating the slope rate estimated from 

the strain-based method in this study validates the method. Adding noise levels ranging from 3 

dB to 10 dB to the slope rate of the profile estimated from the strain-based approach result in 

relative errors that are less than 5% as listed. This result demonstrates that the developed strain-

based roughness estimation method is relatively insensitive to noise.  
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Figure 17. Road profile (ASTM Standard E 1926-98 [33]). 

 

 

Table 6. Validation of the method for IRI calculation. 

Parameter ASTM Strain-based Method from This Study 

  No Noise 3 dB Noise 8 dB Noise 
10 dB 

Noise 

IRI 0.0222 0.0211 0.0226 0.0216 0.0215 

Relative Error - 5.0% 1.8% 2.7% 3.2% 

 

3.2.3. Field experimental validations and discussions  

The high-resolution localization feature of the connected-vehicle method of roughness 

characterization provided validation for the in-pavement strain sensor method. The Cell-40 at 

MnROAD introduced in Chapter 2 with integrated sensing system instrumented was applied to 

validate the derived roughness index in this Chapter. Figure 18a shows the seventy concrete 

pavement panels of Cell 40 for roughness evaluation; they are numbered Panel 0 through Panel 

69. The length of each panel is 6 ft, so the total length of test section is 420 ft. Figure 18b is a 

photo of the concrete panel series in Cell-40 for visual evaluation. The sensor layout of the 

integrated sensing system is referred back to Figure 8 in Chapter 2. 
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                 (a) Plane view of the testing panels           (b) Photo of Cell-40    

                                                             

Figure 18. Road sections at MnROAD for roughness evaluation. 

 

As shown in Figure 16, the analysis treats the strain distribution along the wheel path of 

each panel as step functions. Following the procedure mentioned above for the strain-based 

method, the estimated IRI values for the three panels with instrumented in-pavement GFRP-FBG 

sensors are 3.33, 3.34, and 3.19 for Panel 36, Panel 40, and Panel 53, respectively.  

 

   

         (a) Panel 36                                   (b) Panel 40                                  (c) Panel 53 

 

Figure 19. Strain distribution along the wheel path track of each testing panel. 

 

This study used a regular passenger vehicle, a 2011 Chevrolet Traverse as shown in 

Figure 20, to collect the inertial and geospatial position data needed for the RIF-transform [81]. 

Three smart phones with a data logger application (app) were secured flat in the vehicle’s rear 

trunk and logged the resultant vertical accelerations. Figure 21 shows a top view of the 

smartphone installation, including their orientations. Phone 1 and Phone 2 were iPhone® 4S 
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devices fixed in the longitudinal orientation whereas Phone 3 was an iPhone® 5 oriented in the 

lateral direction. The GPS receiver had an update rate of 1 Hz and the accelerometer was set to 

sample at 128 Hz based on recommendations from prior studies [82]. The iOS® app logged 

inertial and geospatial position data as the vehicle traversed the 70 panels selected for roughness 

evaluation.  

 

 
Figure 20. Passenger vehicle for roughness evaluation (2011 Chevrolet Traverse). 

 

 

 
                        (a) Smart Phone Layout                     (b) Orientation of Smart Phone 

 

Figure 21. Smart phone installation at the rear trunk for fielding testing. 

[Note: Phone size and appearance for demonstration only and not for the real field testing, for 

real tests on site, please refer to the available smart phones on site.] 
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The EAR-index for the three panels deployed with the in-pavement GFRP-FBG strain 

sensors are 0.149, 0.162, and 0.144 for Panel 36, Panel 40, and Panel 53, respectively. 

 

 
Figure 22. Estimated EAR-index for Panel 0-69 using connected vehicle method. 

 

The direct proportionality relationship between the IRI and the EAR-index provides a 

cost-effective means of validating the developed roughness estimation method using in-

pavement strain sensors by comparing it with the respective roughness indices obtained from the 

connected vehicle approach for the three panels. Table 7 compares the estimated IRI using the 

strain-based method and the obtained EAR-indices from the connected-vehicle method for Panel 

36, Panel 40, and Panel 53 and their ratios. The ratios of the IRI to the EAR-indices for the three 

panels range from approximately 20 to 23. The estimated IRI is proportional to the EAR-indices 

at an average ratio of 21.71, and the standard deviation of the ratios is only 3.6% of the mean. 

This indicates a high degree of consistency in the IRI values derived from the developed strain-

based method. It demonstrates that the IRI estimated from the in-pavement strain sensors is 

directly proportional to the EAR-indices from the connected-vehicle method as expected, and 

this result validates the effectiveness of the IRI evaluation using the in-pavement strain sensors. 
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The accuracy of roughness evaluation was further validated with IRI values measured from 

profiling measurements of the same road section by a transportation management agency [83]. 

  

Table 7. Comparison of IRI and EAR-index on sensor-deployed panels. 

 Panel 36 Panel 40 Panel 53 

IRI derived from strain-based method 3.33 3.34 3.19 

EAR-index from the 

connected-vehicle method 
0.149 0.162 0.144 

IRI/EAR-index 22.35 20.62 22.15 

 

3.3. Summary 

This study provides transportation researchers and engineers with a cost-effective method 

of road condition assessment and roughness evaluation using the integrated sensing system 

deployed inside the pavement. The conclusions of this section are as follows: 

1) Field studies approve that the integrated sensing system is capable to detect the early 

performance of the instrumented pavements for road condition assessments; 

2) The strains obtained from the integrated system can be used to derive the roughness of the 

instrumented road section theoretically for road roughness evaluation; 

2) Numerical simulation proves that the integrated sensing system is able to measure the road 

roughness with a measurement accuracy of 80% or higher at a specific sensor 

implementation interval of 0.7 m or shorter for the roughness levels that are of most 

concern to agencies and this approach is relatively insensitive to the noise disturbances. 

3) The case studies validated the new roughness evaluation method based on the integrated 

sensing system by comparing the consistency of its proportionality with a connected-

vehicle method of roughness characterization that is directly proportional to the IRI. 
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The results of this research provide an alternative method of road condition assessment 

and roughness evaluation that does not require probe vehicles. This new method will provide 

roadway agencies with the ability to evaluate road condition and roughness in real time and 

continuously throughout the service life of the road to enable improved methods of predictive 

asset management, and the potential for significant lifetime cost savings.  
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4. WEIGH-IN-MOTION MEASUREMENTS2  

Weights of the passing vehicle are very critical information for traffic management and 

enforcements. The advances of WIM technology makes it possible to achieve high-speed WIM 

measurements. In this chapter, the developed integrated sensing system was applied for high-

speed WIM measurements. The detail theoretic derivations of the relations between the 

measured strains in the pavements to that of the WIM on road are delivered with numerical 

sensitivity study and field experimental validations. 

4.1. General Theoretical Analysis  

The rolling weight of the wheel contact area across the in-pavement strain sensors of the 

integrated sensing system produces the strain signal when the vehicle traverses the instrumented 

pavement sections. The quality of the strain signal directly affects the accuracy of the 

measurement. The appropriate sampling rate and signal-to-noise ratio will minimize strain signal 

distortions and maximize the measurement accuracy to distinguish the weight profile of different 

vehicles passing at the maximum design speed. The strain signal obtained from the integrated 

system is a convolution of the load from the wheel contact area and the sensitivity function of the 

in-pavement sensors. A Fourier transform of the resulting strain signal and the Nyquist-Shannon 

sampling theorem provide the theoretical foundation for selecting the minimum sampling rate. 

Theoretically, when one vehicle tire traverses the top of the in-pavement sensors of the 

integrated sensing system and the distance between two axles is sufficiently long to distinguish 

the signal from adjacent tire crossings, the sensors’ strain signal becomes the convolution of the 

pressure distribution from the vehicle’s tire contact area and the sensitivity function of the in-

                                                 

 

2 © IOP Publishing.  Reproduced with permission.  All rights reserved 

http://iopscience.iop.org/article/10.1088/0957-0233/26/6/065003/meta  

http://iopscience.iop.org/article/10.1088/0957-0233/26/6/065003/meta
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pavement sensor. For a specific tire, if the contact pressure p(x, y) at a location (x, y) inside the 

contact area has a length of L0 and a width of B0 (Figure 23a) then the compressive force P of the 

whole tire is 

syxpP
BL

d),(
00

 
 .                                                               (14) 

Integrating the contact pressure p(x, y) in the lateral dimension (y direction) aligns the 

pressure function with the longitudinal sensitivity of the sensor, PL, as: 

.d),(
2/

2/L
0
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yyxpP
B

B                                                              (15) 

Assume that the longitudinally deployed strain sensor has a sensitivity function of SL 

along the length of the sensor. The sensitivity is a function of sensor resolution, installation 

depth, and properties of pavement. Figures 23b and 23c illustrate area-equivalent functions of the 

compressive force PL(t) and the sensor’s sensitivity SL(t) respectively during the traversal period.  

 

 

                         (a) Contact area                    (b) Load function               (c) Sensitivity function  

  
                           (d) Convolution                                     (e) Strain signal 

Figure 23. Operation to acquire the strain signal in pavements by convolution. 
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Their respective durations 2T0 and 2t0 result from traversals at some specified speed. 

Therefore, the strain signal, I(t), is a convolution of PL(t) and SL(t) as illustrated graphically in 

Figures 23d and 23e: 

 d)()()( LL vStPtI 



                                                        (16) 

such that I(t) is zero outside the interval [0, 2(T0+t0)]. 

The Fourier transform of the strain function in Equation (16) provides the frequency 

distribution to guide the selection of the optimum sampling rate. Given a finite strain signal, I(t), 

in isolation, the Fourier transform [84] is: 

.d)exp()()( ttitII 



                                                           (17) 

The convolution property of Fourier transform [84] dictates that a convolution in the time 

domain is equivalent to a multiplication of the frequency domain functions. Thus, the Fourier 

spectrum of I(t) is: 

).()()( LL  SvPI                                                              (18) 

where PL() and SL() are the Fourier transforms of the load function PL(t) and the sensitivity 

function SL(t), respectively. 

The Nyquist-Shannon sampling theorem [85] posits that the minimum sampling rate 

required to capture the signal energy is twice the strain signal bandwidth B such that: 

.2S BF                                                                     (19) 

Therefore, deriving the strain signal theoretically will guide the sampling rate 

requirement for high-speed WIM measurements using the integrated sensing system with in-

pavement strain-based sensors. 
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4.2. Theoretic Analysis of the Case Study  

The case study discribed in Chapter 2 with the integrated sensing system instrumented in 

concrete pavements was used to validate the general theories of the previous section. 

The area-equivalent tire pressure along the wheel path is a constant value within the 

contact area (L0×B0) such that when travelling at a speed (v), the pressure function, PL(t), from 

Equation (15) becomes: 
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The aspect ratio, defined as the minimum of length and width divided by thickness, is 

typically between 8 and 80 for the slab of a concrete pavement. The mechanistic model is a 

rectangular thin plate supported by an elastic foundation. The mechnical behavior of thin plates 

supported by upward springs (elastic foundation) exhibited no significant differences with 

different boundary conditions [86]. The Kirchhoff plate theory [87] yields the maximum of strain 

sensitivity function as  
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(22) 

where 1- is the strain transfer coefficient, h is the thickness of pavement panel, h0 is the depth 

of sensor in the pavement, a and b are the length and width of pavement panel respectively, D is 
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the flexural rigidity of plates, k is the stiffness of the elastic foundation,  x0 and y0 are the position 

of sensor location, and q0 is the transverse location of the wheel path. The flexural rigidity D is: 

,
)1(12 2

3




Eh
D                                                               (23) 

where E, h, and  are the moduli of elasticity, the thickness, and the Poisson ratio of the plate, 

respectively. 

The area-equivalent rectangular function [16] has a constant intensity of A and a length 

of LS as shown in Figure 24. Therefore, the sensitivity function SL(x) in the time domain is: 
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0  and the equivalent length, LS, is: 
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Figure 24. Strain sensor’s sensitivity function and the equivalent rectangular function. 

 

 

Using Fourier transform, the spectra of the load and sensitivity function, respectively, are 

)iexp()( 0L T
v

P
P   sinc )π/( 0T  and )iexp(2)( 00L tAtS   sinc )π/( 0t                         (26) 

where, sinc(x) = sin(πx)/πx. The frequency domain equivalent of their convolution is: 
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Figure 25 shows the magnitude as a function of frequency. As observed, most of the 

strain signal’s energy is concentrated within the first lobe, termed as main lobe. The width of the 

main lobe was defined as its fundamental bandwidth [88]. Therefore, the fundamental bandwidth 

of the strain signal is: 

.
π

0T
B                                                                  (28) 

 

 

Figure 25. Illustration of the magnitude of I(ω). 

 

 

Thus, in theory, the minimum sampling rate required to capture the fundamental energy 

of the strain signal is: 
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where, the determination of B is dependent on the comparison between T0 and t0 for the relative 

dominance of the energy within the main lobe of I(). 

4.3. Numerical Analysis  

This section conducts numerical simulations using the theories presented above using the 

in-pavement strain gauge of the integrated sensing system as shown in Figure 8(a), shown again 



|I
(

)|
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in Figure 26 for the dimensions of the concrete pavement segment and the sensor layout that 

creates the high-speed strain gauge of the integrated system installed at the MnROAD facility 

[89]. The strain gauge is in the wheel path and orients in the longitudinal direction. The 

numerical analysis applies a load of 5,800 pounds (P) to simulate the weight of the front right tire 

of a five-axle MnROAD truck [18] with a tire contact area of 13.8 in. (L0) × 9 in. (B0). The truck 

wheel path is located 42.5 in. (q0) away from the edge of the pavement panel. The truck moves at 

a constant speed of 39 mph (v). Table 8 summarizes the parameters used to evaluate Equation 

22. Based on the case study introduced in Chapter 2 and 3, the size of the test pavement panel is 

72 in. of length (a) and width (b) and 3 in. of thickness (h). The sensor is installed 52.1 in. (x0) 

and 45.2 in. (y0) away from the edge of the panel and at a depth of 2.8 in. (h0). The length of the 

sensor can be considered as 1.4 in. (LS). In Table 8, it is also worth noticing that the elastic 

modulus of the concrete was tested to be around 2,176 ksi (E) with a passion ratio of 0.16 (μ), 

which are provided by MnROAD engineers. Figures 27a and 27b shows the resulting strain 

signal and the magnitude of its Fourier transform respectively. The rectangular function 

equivalents used for the load and sensitivity functions produce the trapezoidal shape of the strain 

signal and the sinc function of its spectra as theorized. The expected amplitude and bandwidth of 

the strain signal is 77.57 με and 312.52 rad/sec respectively. The sampling rate (FS) based on the 

fundamental bandwidth is 100 Hz.  
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Figure 26. Strain gauge configuration in the concrete pavement. 

 

Table 8. Parameters for numerical simulation. 

 

 

 

 
        (a) I(t)                                                (b) I() 

 

Figure 27. Strain signal I(t) and its Fourier spectrum  
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Parameter Value Unit Parameter Value Unit 

a 72 in. E 2,175,566 psi 

b 72 in. k 1078 pci 

P 5,800 lb h0 2.8 in. 

L0 13.8 in.  0.01 - 

B0 9 in. x0 52.1 in. 

v 39 mph y0 42.5 in. 

 0.16 - q0 42.5 in. 

h 3 in. LS 1.69 in. 
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Figures 28a and 28b show the strain signal in the time and frequency domains 

respectively after sampling at 100 Hz. As expected, the exclusion of harmonics beyond the 

fundamental frequency results in a loss of signal energy that creates the sharp transitions. Its 

peak intensity of 91.07  is 17% larger than that of the ideal signal.  

 

 
     (a) Fourier spectrum                            (b) Time domain signal 

 

Figure 28. Simulated strain signal at a sampling rate of 100 Hz 

 

 

The peak intensity approaches the ideal signal magnitude asymptotically as sampling rate 

increases. Figure 29 shows the strain signal from sampling at rates of 2, 8, and 32 times greater, 

or equivalently at 200 Hz, 800 Hz, and 3.2 kHz. The strain signal magnitudes are 86.07 , 78.4 

με, and 77.88  respectively. Hence, the errors are 10%, 1%, and 0.4%, respectively. On the 

other hand, the data storage requirements increase proportionally. For example, using 6 bits per 

sample will result in a daily storage requirement per sensor of 6.48 MB, 12.96 MB, 51.84 MB, 

and 207.36 MB, corresponding to the 100 Hz, 200 Hz, 800 Hz, and 3.2 kHz sampling rates [90]. 

In most cases, the high-speed WIM system will use 4 strain sensors to measure the weight of 

entire vehicles. For such a scenario, the daily storage space requirement to achieve measurement 

accuracies of 89.04%, 98.93%, and 99.6% will be 51.84 MB, 207.36 MB, and 829.44 GB 

respectively. Consequently, the trade-off in storage space and accuracy is a significant 

consideration in the design of high-speed WIM systems. 
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                 (a) 200 Hz                                  (b) 800 Hz                                   (c) 3.2 kHz 

 

Figure 29. Signal sampled at different rates. 

 

 

Table 9 shows the sampling rates needed to capture the fundamental frequency of strain 

signals resulting from traversals of 5 mph to 100 mph. It is evident that the sampling rate 

increases almost linearly as a function of vehicle speed. Hence, if an accuracy of 85% is 

acceptable for high-speed WIM measurements, then a sampling frequency of 255 Hz should 

accommodate traversal speeds up to 100 mph for the case study. 

 

Table 9. Sampling rates for different speeds. 

v, mph 5 10 20 30 40 50 60 70 80 90 100 

FS, Hz 13 26 51 77 102 128 153 179 204 230 255 

 

4.4. Field Validations and Discussion  

The integrated sensing system implemented at the MnROAD facility mirrors the 

arrangement of the theoretical development and the numerical analysis as in Section 4.3 [89]. 

Figure 30 shows the MnROAD truck used to traverse the sensor at 39 mph. Sampling the strain 

gauge at 1.2 kHz provides a sufficiently high rate to examine the effects of sampling rate 

reduction by post filtering. Figure 31 shows the strain signal acquired from the strain gauge in 

the unit of µɛ. The five pulses coincide with the five axle traversals of the MnROAD truck.  
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Figure 30. Field tests at MnROAD facility. 

 

 

 
Figure 31. Measured signal from the strain gauge at 1.2 kHz. 

 

 

Preliminary analysis indicated that a 7th order Bessel filter would provide a suitable 

tradeoff in noise reduction and signal distortion from passband phase response [91]. Figure 32 

shows the magnitude and phase response of the 7th order Bessel filter with cutoff frequency fc = 

75Hz. Figure 33a provides a detailed view of the first pulse in Figure 31. It corresponds to the 

first axle crossing the sensor. Isolating the first pulse maintains consistency with the numerical 

simulation in Section 4. Figure 33b shows the filtered strain signal. It is evident from the 

comparison between Figure 33a and Figure 33b that the digital filtering minimized the noise and 

adequately preserved the magnitude of the strain signal. 
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                  (a) Magnitude                                                       (b) Phase 

 

Figure 32. The 7th order digital Bessel filter 

 

 

  
                                  (a) Measured signal                (b) Digital filtered signal at fc = 75 Hz 

 

Figure 33. Strain signal at the passage of the first axle 

 

 

Decimating the original signal sampled at 1.2 kHz simulates a reduction in sampling rate 

to validate the theoretical and numerical analysis [92]. Figure 34 shows the result from digital 

signal processing for an equivalent sampling rate of 600 Hz, 400 Hz, 300 Hz, 200 Hz, 100 Hz, 

50 Hz, and 25 Hz. It is evident that the reduction of sampling rate introduces significant signal 

distortion and attenuation. For instance, the peak strain differs significantly from the original 

signal when the sampling rate decreases below the fundamental frequency of 100 Hz. 
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                  (a) FS = 600 Hz            (b) FS = 400 Hz             (c) FS = 300 Hz 

.  

           (d) FS = 200 Hz             (e) FS = 100 Hz              (f) FS = 50 Hz             (g) FS = 25 Hz 

 

Figure 34. Strain signal after digital filtering at different sampling rates 

 

 

Table 10 compares the errors at various sampling frequencies for the field test and the 

numerical simulation. The measured strain at FS = 1.2 kHz from field tests is 82.76  and that 

from the numerical simulation is 77.88 . The difference is only 5.9% and hence validates the 

theory. The slight differences between the two error trends account for the simplification that 

used rectangular functions for the boundary conditions of the concrete pavement panel.  

Table 10 also indicates that at FS = 100 Hz, the measured relative error of 22% is very 

close to the theoretical derivation of 17%. For the case of FS = 200 Hz, the relative error is only 

1% different from that of the theoretical derivation. Thus, if an error of 25% were practically 

tolerant, then a sampling frequency of 100 Hz would be suitable for collecting data from a 39 

mph traversal. Increasing the sampling rate to 200 Hz reduces the error to 10%. Consequently, 

Table 10 guides the practical tradeoff for installations using the setup of this field study. 

Similarly, Table 9 extends that guidance for a range of traversal speeds. 
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Table 10. Peak values of the first pulses at different sampling rates. 

 FS, Hz 1200 600 400 300 200 100 50 25 

Field tests 
Peak value,  82.76 81.36 79.82 85.41 77.24 94.02 48.14 25.25 

Relative error - 2% 2% 7% 10% 22% 49% 48% 

Numerical 

analysis 
Peak value,  77.88 79.70 82.49 84.11 86.07 91.07 67.57 37.46 

Relative error 0.4% 2.7% 6.3% 8.4% 11.0% 17.4% 12.9% 51.7% 

 
4.5. Summary 

This Chapter provides transportation researchers and engineers with guidance on the 

design of sampling rate selection for high-speed weigh-in-motion system deployment using the 

developed integrated sensing system. Field experiments in a specific case study are conducted 

with numerical simulations to validate the theoretical development. The conclusions of this 

section are as follows: 

1)  Generally, the strain signal of in-pavement sensors from the integrated sensing system for 

high-speed WIM measurements is a convolution of the pressure and the sensor sensitivity 

functions whereby the sampling rate requirement will be twice that of the resulting strain 

signal’s bandwidth. 

2)  Higher sampling frequency increases the measurement accuracy but also significantly 

increases the measurement data processing and storage needs. The specific case study of 

this analysis illustrates the trade-off by driving a truck at 39 mph across the sensor. 

Numerical and experimental analysis indicates that a sample frequency of 100 Hz yields a 

relative measurement error of 17% and 22% respectively. Doubling the sample frequency 

to 200 Hz reduces the error to 10%. 

3)  The required sampling rate for the strain sensors should consider a trade-off between the 

signal-to-noise ratio and pulse distortion of the strain signal. The sampling frequency must 

be sufficiently high to reduce the pulse distortion while minimizing the reduction of the 
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SNR. The scenario of this case study found that 150 Hz represented the best tradeoff for 

practical application. 
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5. SYSTEM OPTIMIZATION 

From Chapter 3 and 4, it can be seen that the developed integrated sensing system is 

capable of measuring WIM as well as monitoring road condition and roughness. However, for a 

cost-effective WIM measurement without interference from the road condition and roughness 

monitoring, it is required to have system optimization to achieve an ultimate effectiveness. This 

Chapter then presents a comprehensive framework for system optimization and introduces the 

procedures to achieve the optimization through the case study introduced in previous chapters. In 

this chapter, to accommodate a real traffic in future, a continuous axle loading at a variable axle 

spacing is used to simulate the real traffic loading condition. Thus, we do not assume a single 

axle load as in Chapter 4, which significantly extend the capability of WIM derived in Chapter 4 

for future real traffic applications. 

5.1. Methodology 

5.1.1. System design framework 

Figure 35 illustrates the developed framework for optimizing the design of the integrated 

sensing system for WIM measurements in this study. The parameters in the oval and square 

shapes are the independent and dependent variables, respectively. The optimal design must first 

identify parameters of the target application such as the maximum vehicle speed and the range of 

axle weights to be measured. The framework will then guide the remainder to the design to 

determine bounds of the system performance such as measurement errors and resolution. 
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Figure 35.  Flowchart of the optimal system design. 

 

Selecting the number of analog-to-digital (A/D) converter bits (n-bits) establishes the 

system resolution, subject to achieving an input noise level and distortion that satisfies the 

minimum required signal-to-noise ratio (SNRmin) at the input of the selected A/D converter. The 

in-pavement strain sensors in the integrated system produce the minimum input signal Smin when 

measuring the minimum desired weight Wmin. The sensor signal amplification prior to the A/D 

converter must set Smin to the single bit quantization level of the A/D converter. If the sensitivity 

function of the weight sensor is linear throughout its dynamic range, then it is characterized by a 

single number Sens. Subsequently, the sensitivity translates the single bit signal level to the 

minimum weight that the system can measure where 

 .minmin SensSW                                                        (30) 

Subtracting SNRmin from Smin determines the maximum A/D input noise. The 

deconvolution of the sensor signal through the amplification and the analog low-pass filtering 

then establishes the maximum noise n0 that the system can tolerate at the input of the strain 

sensor. The filter bandwidth is a function of the maximum vehicle speed, the minimum axle 
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spacing, and the number of signal harmonics to include. The latter involves a tradeoff between 

signal distortion and noise. 

Noise n1 at the input of the A/D converter leads to measurement inaccuracies and 

constrains the measurement resolution. One simplifying assumption is that the input SNR of the 

A/D converter is equal to its output SNR. In practice, however, A/D devices may produce 

additional noise such that the output SNR is lower than the input SNR. 

The noise levels are not necessarily controllable. In fact, the noise from the case study’s 

in-field integrated system discussed in previous chapters occupies many bits of the A/D 

converter range. Therefore, a design to accommodate noise present at the site of the in-pavement 

strain sensors must consider the expected maximum noise level as an independent variable that 

guides selection of an appropriate strain sensor, sensitivity value, and minimum measurable 

weight. In such a situation, the effective analog-to-digital (A/D) converter bits (Nbits_effective) is 

estimated as a function of the measured SNR, SNRmeasured, using the standard equation [93]: 

02.6

76.1measured
tivebits_effec




SNR
N                                                    (31) 

The quantity SNRmeasured is determined by measuring the ratio of the full scale strain 

signal divided by the root-mean-squared (RMS) noise measured when there is no weight on the 

sensor. It includes signal distortion. 

The maximum weight, Wmax, that the system can measure is 

 .2 tivebits_effec

minmax

N
WW                                                         (32) 

Subsequently, the measurement resolution, Rweight, for the WIM system is  

.2 tivebits_effec

maxweight

N
WR


                                                    (33) 

Hence, the measurement resolution is identical to the minimum weight that the system can 

measure because of the linear sensitivity function. 
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Selecting the maximum vehicle speed and minimum axle spacing establishes the 

bandwidth requirement. This then leads to designing the filter and selecting its bandwidth. The 

latter involves a tradeoff between noise and signal distortion. Finally, the sampling rate is 

determined to support the system bandwidth. Iterations may then be required to optimize the 

overall solution because sampling rate selection will also affect the noise input to the A/D, which 

in turn will affect the weight measurement resolution of the system. 

5.1.2. Theoretical derivation of system design parameters 

This section details all the theoretical derivations needed to derive the parameters 

summarized in Figure 35, based on the sensor layout in an integrated system and maximum 

vehicle speed of the application. The system design parameters to be derived include the WIM 

signal produced by the strain sensors in the integrated system, the data acquisition sampling rate, 

the measurement resolution, and the weight dynamic range.   

5.1.2.1. In-pavement strain signal with passing multiple axles 

To derive the WIM signal produced by the in-pavement strain sensors, this study assumes 

that the hypothetical vehicles have a constant tire load and the vehicle axles have a constant 

spacing. This assumption simplifies the theoretical derivation of the strain signals for multi-axle 

WIM measurements without limiting their generalization. The numerical simulation in Section 3 

also analyzes the cases beyond this assumption. 

As it is known, the passage of a single tire load across the in-pavement strain sensor of 

the integrated system produces a strain signal I(t), which is a convolution of the load function 

PL(t) and the sensitivity function SL(t) multiplied by the vehicle’s speed v as derived in Chapter 4 

and repeated in Equation 34. 

                                                                 d)()()( LL StPvtI 



                                            (34) 
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The strain signal from this load, I(t), is ideally a trapezoidal shape (Figure 36a). Therefore, its 

Fourier spectrum, I(), is a composite sinc function (Figure 36b). The expression of I() is: 

 
2

S)(
v

PAL
I  )π/(sinc)π/(sinc 00 Tt                                       (35) 

where, A is the amplitude of the sensitivity function SL(t), LS is the effective length of the load 

sensor, P is the magnitude of the tire load, t0 is half the duration of the sensitivity function SL(t), 

and T0 is half the duration of the load function PL(t). Vehicle traversals at a velocity of v realize 

the temporal functions from the spatial load and sensor functions. 

 

 

(a) I(t)                                 (b) I() 

Figure 36.  Strain signal from a single tire load and its Fourier magnitude spectrum. 

 

 

When multiple axles passing the in-pavement strain sensors in the integrated system, the 

sensor thus produces a periodic strain signal, )(tI , that results from the continuous crossing of 

equally spaced loading tires, as shown in Figure 37a. T1 is the time interval between adjacent 

axles. The expression for the periodic strain signal, )(tI , can be derived as:  

… 2, 1, 0, =  ,)()( 1  




kkTtItI
k

                                      (36) 

According to the principle of continuous time Fourier transform (CTFT), the spectrum of 

)(tI can be obtained with its Fourier coefficients ak that is expressed in Equation 37:  
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For 1 = 2/T1, the Fourier transform of periodical strain signal from multi-axle vehicles, )(I , 

can be given as: 

)(π2)( 1 kaI k

k

 




.                                                        (38) 

Substituting the expression of (37) into (35) and (35) into (38) gives the final expression of the 

Fourier transform of periodical strain signal, )(I , as 
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I                                 (39)    

Figure 37b shows the Fourier spectrum of the strain signals generated from multiple tires, 

)(I . For a periodic strain signal, )(tI , its Fourier coefficient, ak, is equally spaced samples of the 

Fourier transform I(), and its Fourier transform )(I  is a train of impulses occurring at the 

harmonically related frequencies and for which the area of the impulse at the kth harmonic 

frequency k1 is 2 times the kth Fourier series coefficient ak. 
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(a) )(tI  

 

(b) )(I  

Figure 37.  Strain signal from equally spaced multiple tire loads and its Fourier spectrum. 

 

 

5.1.2.2. Determination of data acquisition sampling rate for multiple axle WIM measurements 

For WIM measurements of multiple axles, having a sampling rate well beyond the second 

or third harmonic of the continuous time signal as shown in Figure 37b will reduce the signal’s 

distortion, as measured by the pulse width because the inclusion of higher frequency harmonics 

strengths the signal. However, on the other side, higher sampling rate will decrease the signal-to-

noise ratio (SNR) since the inclusion of higher frequency harmonics brings more energy from 

noise at higher frequency at the same time. Therefore, the selection of an appropriate sampling 

rate, fs, for multiple axle WIM measurement, is a tradeoff to maximize SNR and minimize signal 

distortion level (Dist), which can be determined as below: 

fs = f {Max[SNR(fs)], Min[Dist(fs)]}c                                            (40) 
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If the initial input strain signal is s0(t), the noise is n0(t), and the impulse response of the 

anti-aliasing filter is h(t), then the strain signal and noise after the filter, s1(t) and n1(t), 

respectively is derived as:  

s1(t) = s0(t)*h(t)                                                            (41) 

n1(t) = n0(t)*h(t)                                                           (42) 

where * denotes the convolution. The SNR of the input signal (SNR0) and that of the output 

signal (SNR1) can then be calculated as: 

SNR0 = 20*log10
)(RMS

)(RMS

0

0

n

s
                                                                                  (43)  

SNR1 = 20*log10
)(RMS

)(RMS

1

1

n

s                                                        (44)  

where, the function RMS() is the root mean square of a temporal signal. 

 

5.1.2.3. Determination of dynamic range and resolution 

A digital system decodes the sampled data with a bit-error-rate (BER) that is a function 

of the SNR at its input. A given level of acceptable BER determines a minimum SNR level, 

SNRmin, of the A/D converter. The power in dB of a noise, n0, at the input of an anti-aliasing 

filter, Pn0, dB is given as: 

Pn0, dB = 20*log10RMS(n0).                                                        (45) 

After anti-alias filtering, the output noise n1(t) has the power of Pn1, dB: 

Pn1, dB = 20*log10RMS(n1).                                                        (46) 

Thus, the minimum output power of the strain signal s1(t), Ps1, dB, must be 

Ps1, dB = Pn1, dB + SNRmin.                                                        (47) 

The input strain signal of the sensor, s0(t), is derived by deconvolving after the effects of 

the anti-aliasing filter, Ps1, dB. Subsequently from Equation 30, for any maximum tolerable noise 
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at the input of the A/D converter, the minimum output strain signal satisfying the minimum SNR 

requirement corresponds to a minimum measurable tire load. The dynamic range of the scale 

system is then [Wmin, Wmax].  

In summary, this section derived the theoretical strain signal of the in-pavement strain 

sensors of the integrated system under conditions of multiple axle tire loads, the corresponding 

requirement for an appropriate sampling rate, the dynamic range, and the resolution. 

Practitioners can use this theoretical framework to optimize and guide the design of a WIM 

system. 

5.2. Numerical Study 

This section conducts a numerical sensitivity study based on the theories established in 

Section 5.1 and the case study mentioned in previous chapters. The load from the first tire of the 

semi-truck in Figure 10, P, was used in this sensitivity analysis with a magnitude of 2,630.8 kg 

(5,800 lb). The vehicle speed, v, of 17.4 m/s (39 mph), same as in the case study, was used in the 

simulations. Table 11 lists all the parameters used for the numerical analysis of this Chapter 

which is consistent with Table 8 in Chapter 4 for the same case study. SA is the distance between 

the adjacent axles. This section followed the assumption that the tire load was a constant. Three 

scenarios of vehicle axle spacings, SA, were analyzed: 1.5 m (5 ft), 7.9 m (26 ft), and random 

values between 1.5-7.9 m (5-26 ft). The selection of the distance between axles was based on a 

national survey of the range of vehicles’ axle spacing, which covered most of the vehicle types in 

United States [94]. In this simulation, it was assumed that 100 axles passed the WIM sensor. 

Figures 38a-c show the simulated strain signals from the passing axles of the three scenarios. 
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Table 11. Parameters for numerical simulation. 

Parameter Value Unit Parameter Value Unit 

a 1.8 m K 29.8 × 106 kg/m3 

b 1.8 m x0 1.3 m 

h 0.076 m y0 1.1 m 

L0 0.35 m h0 0.07 m 

B0 0.23 m P 2,630.8 kg 

E 15000 MPa V 17.4 m/s 

 0.16 - SA 1.5-7.9 m 

 

 

            (a) SA = 1.5 m (5 ft)           (b) SA = 7.9 m (26 ft)          (c) SA = 1.5-7.9 m (5-26 ft) 

Figure 38.  Strain signals at different axle distances. 

 

 

To analyze the influence of various sampling frequencies, this study applied a 7th order 

Bessel filter as the anti-aliasing filter at different cutoff frequencies, which minimized the 

temporal distortions in the output pulse durations. Figures 39a-c illustrate the decrease in SNR 

with the increase of filter cutoff frequencies for the three scenarios of different axle distances of 

1.5 m (5 ft), 7.9 m (26 ft), and random values between 1.5-7.9 m (5-26 ft). For each scenario, the 

simulations assumed three hypothetical input noise levels, -13 dB, -3 dB, and 17 dB to highlight 

the expected trends of declining SNR. The three scenarios showed very little differences in 

between, indicating that the SNR change with cutoff frequency is not sensitive to axle distances 

if they are greater than 1.5 m (5 ft). Thus, for practical applications, since most vehicles on roads 

have axle distances larger than 1.5m (5ft), the axle distance is not a major concern for WIM 
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measurements, validating the assumption that a passing vehicle can be simplified as single tire 

load which was used by many researchers in field. In the case study performed, the axle spacing 

of the truck was between 1.5m to 7.9m. Therefore, Figure 39(c) also shows the SNR change with 

cut-off frequency for the semi-truck of the case study. From Figure 31, the actual noise level in 

the case study used in this study can be identified as 17.0 dB.   

 

 

     (a) SA = 1.5 m (5 ft)                  (b) SA = 7.9 m (26 ft)            (c) SA = 1.5-7.9 m (5-26 ft) 

  Figure 39.  Signal to noise ratio at different cutoff frequencies. 

 

 

The distortion levels of the strain signals of the three different scenarios of vehicle axle 

spaces were also analyzed by measuring the pulse width at the center of the signal series. This 

analysis measured the pulse width at the average signal level between the maximum and the 

minimum of the pulse train. Figures 40a-c show the changes of pulse width vs cutoff frequency 

for the three cases of axle spacing, respectively. It is noteworthy that an increase in cutoff 

frequency causes a decrease in pulse width or distortion level, validating the theoretical analysis 

developed in Section 5.2. That is, the increase of the filter cutoff frequency reduces distortion by 

trading off the output SNR. The figures also indicate that at 160 Hz, all the three scenarios 

showed a trend of diminishing of return. Since in the case study, the axle spacing of the truck 

was within 1.5m to 7.9m, from Figure 40(c), it is known that for the case study in this study, the 

cutoff frequency of the anti-aliasing filter is required to be 160 Hz or higher.  
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(a) SA = 1.5 m (5 ft)              (b) SA = 7.9 m (26 ft)           (c) SA = 1.5-7.9 m (5-26 ft) 

Figure 40.  Pulse width at different cutoff frequencies. 

 

 

Figure 41 shows the filtered signals of the passing semi-truck signals after the anti-

aliasing filter with cut-off frequencies of 160 Hz. When compared with Figure 41 of the original 

signal with sampling frequency of 1.2 kHz, it is clearly demonstrated that a cut-off frequency 

will be sufficient in this study for the anti-aliasing filter to meet the trade-off for high SNR and 

low distortion level as expected. 

 

 
Figure 41. Filtered signals from the case study with cut-off frequencies of 160 Hz. 

 

 

Figures 42a and 42b respectively plot the minimum input signal power and the minimum 

tire weight for a presumed value of SNRmin = 74 dB at the selected cutoff frequency of the anti-

aliasing filter, 160 Hz, for the three scenarios of different axle spaces. The power of the 

minimum signal in dB has a linear relationship with the power of the noise in dB, validating the 
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theoretical derivation in Section 5.1. This result also indicates that the minimum detectable tire 

weight increases by 12.2% for each dB decrease of the input noise power. Figure 42b also shows 

how the axle distances influence the minimum detectable weight of the WIM system. For the 

same noise level, the minimum detectable weight is smaller for the shorter axle spacing because 

the power of the signal is greater than that for the intermediate and wider axle spaces. It is worth 

noting here that both the weight and spacing of vehicle axles contribute to the signal power, and 

therefore determine the signal quality or allowable noise level. Thus, from Figure 42b, it can be 

seen that the WIM system in the case study of this study, would yield to a minimum detectable 

tire weight of 6*108 lbs for a 74dB noise level.  

 

 

(a) Minimum input signal power            (b) Minimum tire weight 

Figure 42.  Minimum identifiable signal at different noise power levels for SNRmin = 74 dB. 

 

 

Figure 43 shows that the minimum weight change with cutoff frequency for four different 

input noise levels, -10 dB, 0 dB, 10 dB, and 20 dB, for the case study with random axle spacing 

between 1.5m (5 ft) and 7.9m (26 ft). It can be seen that the minimum detectable tire weight 

generally increases with the cutoff frequency at different input noise levels. The increase is due 

to the additional noise as the cutoff frequency increases. It is evident that the filter has a greater 

impact at the higher input noise levels. If the cut-off frequency is set as 160 Hz, the minimum 
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measurable tire weight is 0.04, 0.14, 0.63, and 1.95 million pounds for noise level at -10dB, 0dB, 

10dB, and 20dB. 

 

Figure 43.  Minimum identifiable weight at different cutoff frequencies for 1.5-7.9 m (5-26 ft) 

random axle distances. 

 

 

5.3. System implementation 

This section evaluates an implementation using the optimal system design procedure 

established in previous sections, and uses parameters measured from the case study of the 

integrated system installed at the MnROAD facility as introduced in previous chapters.  

The WIM system design of the case study set the number of A/D bits to be 8-bits because 

of its common availability. The weight resolution of the optimal integrated system can then be 

calculated as: 

Rweight = Wmax/2
N-bit                                                                (48) 

The full scale of the strain signal input at the A/D is 157 in this case study yielding a 

maximum measurable weights of 4,989.5 kg (11,000 lb). According to Equation (48), the 

minimum measurable weight or weight resolution of the WIM system yields to 19.5 kg (43 lb) in 

the case study. 

The measured sensitivity of the installed WIM sensor is 0.03 /kg (0.014 /lb) [95]. 

Hence, the strain signal level from the minimum weight can be calculated following Equation 
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(46) as -4.2 dB. The minimum SNR requirement of the A/D was 49.9 dB from Equation (49). 

This dictated a maximum tolerable noise level at the A/D input:  

SNRmin = N-bit · 6.02 +1.76                                                 (49) 

Thus, the SNRmin of this case study is -54.2 dB from Equation (49). The sampling rate for 

the installed WIM system was 1,200 Hz. By the Nyquist Theorem, the bandwidth should be no 

greater than 600 Hz. The sensitivity study in Section 5.2 determined that 160 Hz was the best 

cutoff frequency for the analog anti-aliasing filter. Therefore, the fractional noise equivalent 

bandwidth of the system can be obtained as below:  

Bf = fc/BW                                                                             (50) 

which is calculated to be 160Hz/600Hz = 0.267 for the case study. 

The noise reduction can then be calculated as:  

NreddB = 20 · log(Bf)                                                              (51) 

which gives -11.5 dB in this case.  

Therefore, the maximum tolerable noise before the anti-aliasing filter is -54.2 – (-11.5) = 

-42.7 dB. From the number of bits and sensor sensitivity, the equivalent weight error for this 

integrated system can be expressed as: 

Eweight = Wmax/2
N-bit+1                                                              (52) 

which yields to ± 9.8 kg (21.5 lb) for this case study. 

However, from Figure 39, it can be seen that the SNR measured at the output of A/D is 

14 dB, and the signal level is 38.4 dB. The actual noise has 38.4 – 14 = 24.4 dB, which equals to 

16.5 The noise level can then be obtained as: 

Bitsn = ln(NdB)/ln(2)                                                             (53) 

 

Thus, for the installed WIM sensor in the case study, the noise occupied 4 bits of the 

bandwidth. The noise before the anti-aliasing filter was 35.8 dB, which corresponded to 61.9 
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his noise level was much greater than the maximum tolerable level of 24.4 dB 

corresponding to 16.5 which is established earlier. Therefore, the analysis performed here 

demonstrated that the noise level at the transducer prevented the integrated system in the case 

study from providing the expected resolution for WIM measurements. Advanced solutions of 

transducers with less noise are needed for an optimal system. From this section, it is clearly 

demonstrated that the developed system design framework in this study can identify problems of 

an integrated system for WIM measurements so that users can resolve the problems and achieve 

an optimal WIM system.  

5.4. Summary 

This chapter developed a comprehensive framework for optimal the integrated sensing 

system design for WIM measurements. It derived the relationships between the sampling rate, 

resolution, SNR, sensor sensitivity, and the dynamic range of the WIM weight scale. The 

approach provided a solution for future integrated system to select the sampling rate of the data 

capture equipment, determine the dynamic range of the weight measurement scale, and establish 

the tolerable noise levels. The theoretical analysis and numerical simulations of the case study 

provide a template for future integrated system designs for WIM measurements and sensor 

parameter selection.  
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6. CONCLUSIONS AND FUTURE WORK 

This dissertation designed an integrated monitoring system for simultaneous road 

condition monitoring and weigh-in-motion (WIM) measurements using in-pavement strain 

sensors. It presented a robust sensing system based on the GFRP packaged FBG sensors 

including several 1D and 3D GFRP-FBG sensors, and strain gauges. A case study performed at 

MnROAD facility, MnDOTshowed that the developed sensing system monitors the behavior of 

the concrete pavement under short-term vehicle load and environmental impact. It served as an 

approach for pavement’s structural health monitoring. Meanwhile, it collected the information 

about road roughness and ride quality of the road sections by virtue of the relationship between 

the strain distribution and the pavement deformation. The WIM sampling analysis and system 

optimization could provide guidance on future WIM measurements using in-pavement strain 

sensors with respect to sampling rate, resolution, noise disturbance, and weight scale. The 

conclusions of this dissertation study include: 

1) This study presents an innovative robust integrated sensing system based on in-pavement 

strain sensors for simultaneous road condition and traffic monitoring. The integrated 

system includes an implementation of at least three in-pavement strain sensors and one 

temperature sensor. The developed integrated sensing systems were deployed at 

MnROAD facility, MnDOT, for a case study to validate its performance.  

2) This study provides transportation researchers and engineers with a cost-effective method 

of road condition assessment and roughness evaluation using the integrated sensing 

system deployed inside the pavement. Field studies approve that the integrated sensing 

system is capable to detect the early performance of the instrumented pavements for road 

condition assessments. The sensors monitored the reopening behavior of existing cracks 
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and joints and the cracking of adjacent pavement panel. In addition, the strains obtained 

from the integrated system can be used to derive the roughness of the instrumented road 

section theoretically for road roughness evaluation. Numerical simulation proves that the 

integrated sensing system is able to measure the road roughness with a measurement 

accuracy of 80% or higher at a specific sensor implementation interval of 0.7 m or shorter 

for the roughness levels that are of most concern to agencies and this approach is 

relatively insensitive to the noise disturbances. The case studies validated the new 

roughness evaluation method based on the integrated sensing system by comparing the 

consistency of its proportionality with a connected-vehicle method of roughness 

characterization that is directly proportional to the IRI. This new method will provide 

roadway agencies with the ability to evaluate road condition and roughness in real time 

and continuously throughout the service life of the road to enable improved methods of 

predictive asset management, and the potential for significant lifetime cost savings.  

3) This study provides transportation researchers and engineers with guidance on the design 

of sampling rate selection for high-speed weigh-in-motion system deployment using the 

developed integrated sensing system. Field experiments in a specific case study are 

conducted with numerical simulations to validate the theoretical development. Generally, 

the strain signal of in-pavement sensors from the integrated sensing system for high-

speed WIM measurements is a convolution of the pressure and the sensor sensitivity 

functions whereby the sampling rate requirement will be twice that of the resulting strain 

signal’s bandwidth. Thus, a travelling speed of 80 mph requires a sampling rate of 204 

Hz for an accuracy of 85% based on the example study conditions. Higher sampling 

frequency increases the measurement accuracy but also significantly increases the 
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measurement data processing and storage needs. Numerical and experimental analysis 

indicates that a sample frequency of 100 Hz yields a relative measurement error of 17% 

and 22% respectively. Doubling the sample frequency to 200 Hz reduces the error to 

10%. The required sampling rate for the strain sensors should consider a trade-off 

between the signal-to-noise ratio and pulse distortion of the strain signal. The sampling 

frequency must be sufficiently high to reduce the pulse distortion while minimizing the 

reduction of the SNR. The scenario of this case study found that 150 Hz represented the 

best tradeoff for practical application. The outcome of this research can serve as a 

reference for future WIM activities. The required sampling rate for high-speed weigh-in-

motion installations is directly proportional to the maximum traversal speed that it must 

accommodate. 

4) At last but not least, this study develops a comprehensive framework for optimal the 

integrated sensing system design for WIM measurements. It derived the relationships 

between the sampling rate, resolution, SNR, sensor sensitivity, and the dynamic range of 

the WIM weight scale. The approach provides a solution for future WIM designs to select 

the sampling rate of the data capture equipment, determine the dynamic range of the 

weight measurement scale, and establish the tolerable noise levels. The theoretical 

analysis and numerical simulations of the case study provide a template for future WIM 

system designs and sensor parameter selection. An system implementation shows that the 

case with a noise component occupying 4 bits of the 8-bit A/D converter requires a better 

signal transducer to increase the signal to noise ratio. 

Future work will be remaining to refine the integrated monitoring system through 

theoretical and numerical analysis, practical field testing, and signal processing, including: 
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1) Application of the integrated monitoring system on traffic data collection and analysis. 

Weigh-in-motion is one aspect of traffic data collection. The extension of the integrated 

monitoring system onto other aspects, e.g. vehicle counting and vehicle classification, 

would broaden the application of the system. 

2) Improvement of the system by real traffic data. This study conducted all the field testing 

on the research road section at MnROAD facility, MnDOT. It lacks the validation and 

further improvement using real traffic and vehicle loading. 

  



 

86 

REFERENCES 

1. Mertz, L., Origins of the Interstate. on the website of the US Dept. of Transportation, 

www. fhwa. dot. gov/intrastructure/origin. pdf, 1986. 

2. Cheng, H.-D. and M. Miyojim, Automatic pavement distress detection system. 

Information Sciences, 1998. 108(1): p. 219-240. 

3. Bam. Available from: http://www.bam.de. 

4. Potter, J., H. Mayhew, and A. Mayo, Instrumentation of the Full-scale Experiment on A1 

Trunk Road at Conington, Huntingdonshire. Rrl Reports, Road Research Lab/UK/, 1969. 

5. Sebaaly, P., et al., Instrumentation for flexible pavements—Field performance of selected 

sensors. Federal Highway Administration, Washington, DC, 1991. 

6. Sebaaly, P., N. Tabatabaee, and B. Kulakowski, Evaluation of the Hall Effect sensor for 

pavement instrumentation. Journal of testing and evaluation, 1995. 23(3): p. 189-195. 

7. Hipley, P. Caltran’s current state-of-practice. in Proceedings of the Instrumental Systems 

for Diagnostics of Seismic Response of Bridges and Dams. 2001. 

8. Huff, R., C. Berthelot, and B. Daku, Continuous primary dynamic pavement response 

system using piezoelectric axle sensors. Canadian journal of civil engineering, 2005. 

32(1): p. 260-269. 

9. Xue, W. and E. Weaver, Pavement shear strain response to dual and wide-base tires. 

Transportation Research Record: Journal of the Transportation Research Board, 

2011(2225): p. 155-164. 

10. Lajnef, N., et al., Toward an integrated smart sensing system and data interpretation 

techniques for pavement fatigue monitoring. Computer‐Aided Civil and Infrastructure 

Engineering, 2011. 26(7): p. 513-523. 

11. Davis, M. and A. Kersey, All-fibre Bragg grating strain-sensor demodulation technique 

using a wavelength division coupler. Electronics Letters, 1994. 30(1): p. 75-77. 

12. Hirayama, N. and Y. Sano, Fiber Bragg grating temperature sensor for practical use. 

ISA transactions, 2000. 39(2): p. 169-173. 

13. Maaskant, R., et al., Fiber-optic Bragg grating sensors for bridge monitoring. Cement 

and Concrete Composites, 1997. 19(1): p. 21-33. 

14. Mufti, A.A., Structural health monitoring of innovative Canadian civil engineering 

structures. Structural Health Monitoring, 2002. 1(1): p. 89-103. 

15. Chauhan, M. and E. Sharma, A Special Fiber Optic Sensor for Measuring Wheel Loads of 

Vehicles on Highways. International Journal of Research, 2014. 1(11): p. 1272-1283. 



 

87 

16. Li, H.-N., D.-S. Li, and G.-B. Song, Recent applications of fiber optic sensors to health 

monitoring in civil engineering. Engineering structures, 2004. 26(11): p. 1647-1657. 

17. Wang, J.-N. and J.-L. Tang, Using Fiber Bragg Grating Sensors to Monitor Pavement 

Structures. Transportation Research Record: Journal of the Transportation Research 

Board, 2005(1913): p. 165-176. 

18. Udd, E. and W.B. Spillman Jr, Fiber optic sensors: an introduction for engineers and 

scientists 2011: John Wiley & Sons. 

19. Zhou, Z., et al., Techniques of Advanced FBG Sensors: Fabrication, Demodulation, 

Encapsulation, and Their Application in the Structural Health Monitoring of Bridges. 

Pacific Science Review, 2003. 5(1): p. 116-121. 

20. Zhou, Z., J. Ou, and B. Wang. Smart FRP-OFGB bars and their application in reinforced 

concrete beams. in Proceedings of the first international conference on structural health 

monitoring and intelligent structure. 2003. Tokyo, Japan. 

21. Timm, D.H., A.L. Priest, and T.V. McEwen, Design and instrumentation of the structural 

pavement experiment at the NCAT test track 2004: National Center for Asphalt 

Technology, Auburn University. 

22. Lukanen, E., Load testing of instrumented pavement sections. 2005. 

23. Al-Qadi, I.L., et al., The Virginia SMART ROAD: the impact of pavement instrumentation 

on understanding pavement performance (with discussion). Journal of the Association of 

Asphalt Paving Technologists, 2004. 73. 

24. Loulizi, A., I.L. Al-Qadi, and M. Elseifi, Difference between in situ flexible pavement 

measured and calculated stresses and strains. Journal of transportation engineering, 

2006. 132(7): p. 574-579. 

25. Komsa. Available from: http://komsa.com.tr. 

26. ASTM, E867 Standard Terminology Relating to Vehicle-Pavement Systems, 2012, 

American Society for Testing Materials, ASTM. 

27. Abaynayaka, S., et al., Tables for estimating vehicle operating costs on rural roads in 

developing countries. 1976. 

28. Brickman, A.D., et al., Road Roughness Effects on Vehicle Performance, 1972. 

29. Gillespie, T. and M. Sayers, Role of Road Roughness in Vehicle Ride, in 60th Annual 

Meeting of the Transportation Research Board 1981, Transportation Research Board: 

Washington District of Columbia, United States. p. 15-20. 

30. Van Deusen, B.D., Analytical techniques for designing riding quality into automotive 

vehicles, 1967, SAE Technical Paper. 



 

88 

31. Saleh, M.F., M.S. Mamlouk, and E.B. Owusu-Antwi, Mechanistic roughness model 

based on vehicle-pavement interaction. Transportation Research Record: Journal of the 

Transportation Research Board, 2000. 1699(1): p. 114-120. 

32. Klaubert, E.C., Highway Effects on Vehicle Performance, 2001. 

33. ASTM, E1926 Standard Practice for Computing International Roughness Index of Roads 

from Longitudinal Profile Measurements, 2008, American Society for Testing Materials, 

ASTM. 

34. Marcondes, J., et al., Spectral analysis of highway pavement roughness. Journal of 

transportation engineering, 1991. 117(5): p. 540-549. 

35. Smith, K., et al., Smoothness specifications for pavements, 1997. 

36. ASTM, E1489 Standard Practice for Computing Ride Number of Roads from 

Longitudinal Profile Measurements Made by an Inertial Profile Measuring Device, 1998, 

American Society for Testing Materials, ASTM. 

37. McKenzie, D. and M. Srinarawat, Root Mean Square Vertical Acceleration (RMSVA) as 

a Basis for Mays Meter Calibration. Center for Transportation Research, Univ. of Texas 

at Austin, Brazil Project Tech. Memo BR-23, 1978. 

38. Huang, Y.H., Pavement analysis and design 1993. 

39. Brown, D., W. Liu, and T. Henning, Identifying pavement deterioration by enhancing the 

definition of road roughness 2010. 

40. Spangler, E.B. and W.J. Kelly, GMR road profilometer-a method for measuring road 

profile. Highway Research Record, 1966. 

41. NCHRP, Measuring, Characterizing, and Reporting Pavement Roughness of Low-Speed 

and Urban Roads, 2013, Transportation Research Board. 

42. Hyman, W.A., et al., Improvements in data acquisition technology for maintenance 

management systems 1990. 

43. McGhee, K.H., Automated pavement distress collection techniques. Vol. 334. 2004: 

Transportation Research Board. 

44. American Association of State Highway, and Transportation Officials, AASHTO Guide 

for Design of Pavement Structures, 1993. Vol. 1. 1993: AASHTO. 

45. Prozzi, J.A. and F. Hong, Effect of weigh-in-motion system measurement errors on load-

pavement impact estimation. Journal of Transportation Engineering, 2007. 133(1): p. 1-

10. 

46. Austroads, Weigh-in-motion Technology, 2000, Austroads: Sydney, Australia. 



 

89 

47. Hopkins, R., Weighing vehicles in motion. Highway Research Board Bulletin, 1952(50). 

48. George, Y. and C. Antoniou, Integration of weigh-in-motion technologies in road 

infrastructure management. Institute of Transportation Engineers. ITE Journal, 2005. 

75(1): p. 39. 

49. Lu, Q., et al., Truck traffic analysis using weigh-in-motion (WIM) data in California. 

University of California, Berkeley, Institute of Transportation Studies, Pavement 

Research Center, Berkeley, California, USA, 2002. 

50. American Society for Testing and Materials, Standard specification for highway weigh-

in-motion (WIM) systems with user requirements and test methods,, in ASTM Standard 

E1318-091994. 

51. Sharma, S.C., G. Stamatinos, and J. Wyatt, Evaluation of IRD-WIM-5000-a Canadian 

weigh-in-motion system. Canadian journal of civil engineering, 1990. 17(4): p. 514-520. 

52. Stephens, J., Y. Qi, and D. Veneziano, Montana Weigh-in-Motion (WIM) and Automatic 

Traffic Recorder (ATR) Strategy, 2013, Montana Department of Transportation Helena, 

MT. 

53. Cheng, L., H. Zhang, and Q. Li, Design of a capacitive flexible weighing sensor for 

vehicle WIM system. Sensors, 2007. 7(8): p. 1530-1544. 

54. Malla, R.B., A. Sen, and N.W. Garrick, A special fiber optic sensor for measuring wheel 

loads of vehicles on highways. Sensors, 2008. 8(4): p. 2551-2568. 

55. Yuan, S., et al., Optic fiber-based dynamic pressure sensor for WIM system. Sensors and 

Actuators A: Physical, 2005. 120(1): p. 53-58. 

56. Teral, S.R., et al. Fiber optic weigh-in-motion sensor: correlation between modeling and 

practical characterization. in 1996 Symposium on Smart Structures and Materials. 1996. 

International Society for Optics and Photonics. 

57. Muhs, J.D., et al. Results of a portable fiber optic weigh-in-motion system. in OE Fiber-

DL tentative. 1991. International Society for Optics and Photonics. 

58. Tobin Jr, K.W. and J.D. Muhs. Algorithm for a novel fiber optic weigh-in-motion sensor 

system. in Specialty Fiber Optic Systems for Mobile Platforms. 1991. International 

Society for Optics and Photonics. 

59. Zhang, W., C. Suo, and Q. Wang, A novel sensor system for measuring wheel loads of 

vehicles on highways. Sensors, 2008. 8(12): p. 7671-7689. 

60. Bushman, R. and A.J. Pratt. Weigh in motion technology-Economics and performance. in 

Presentation on the North American Travel Monitoring Exhibition and Conference 

(NATMEC). Charlotte, North Carolina. 1998. 



 

90 

61. Loshbough, R.C. and D.L. Hall, Vehicle weighing in motion apparatus and method, 

1991, Google Patents. 

62. FHWA-NJ, Implementation of Weigh-in-Motion (WIM) Systems, 2009, FHWA-NJ: 

Piscataway, NJ. 

63. Gagarine, N., I. Flood, and P. Albrecht. Weighing trucks in motion using Gaussian-based 

neural networks. in Neural Networks, 1992. IJCNN., International Joint Conference on. 

1992. IEEE. 

64. Hill, D.J., P.J. Nash, and N. Sanders. Vehicle weigh-in-motion using multiplexed 

interferometric sensors. in Optical Fiber Sensors Conference Technical Digest, 2002. Ofs 

2002, 15th. 2002. 

65. Lechner, B., et al., A wavelet-based bridge weigh-in-motion system. International Journal 

on Smart Sensing and Intelligent Systems, 2010. 3(4): p. 573-591. 

66. Lynch, J.P., et al., Performance monitoring of the Geumdang Bridge using a dense 

network of high-resolution wireless sensors. Smart Materials and Structures, 2006. 15(6): 

p. 1561. 

67. Ko, J. and Y. Ni, Structural health monitoring and intelligent vibration control of cable-

supported bridges: Research and application. KSCE Journal of Civil Engineering, 2003. 

7(6): p. 701-716. 

68. Kim, J. and J.P. Lynch, Experimental analysis of vehicle–bridge interaction using a 

wireless monitoring system and a two-stage system identification technique. Mechanical 

Systems and Signal Processing, 2012. 28: p. 3-19. 

69. Zhou, Z., et al., Optical fiber Bragg grating sensor assembly for 3D strain monitoring 

and its case study in highway pavement. Mechanical Systems and Signal Processing, 

2012. 28: p. 36-49. 

70. Yin, S.S. and P. Ruffin, Fiber optic sensors 2002: Wiley Online Library. 

71. Burnham, T. Thin concrete pavements and overlays—ongoing MnROAD research. in 

MnDOT, Presented in 2013 NCC Spring Meeting, Philadelphia, PA. 2013. 

72. Huang, Y. and M.a.A.-T. Muapos, Glass fiber-reinforced polymer packaged fiber Bragg 

grating sensors for low speed weight-in-motion measurements. Optical Engineering, 

2016: p. OE-160542P. 

73. Karamihas, S.M., M.A. Barnes, and R.O. Rasmussen, Pavement surface specification for 

road load measurement. 2014. 

74. Timoshenko, S., S. Woinowsky-Krieger, and S. Woinowsky-Krieger, Theory of plates 

and shells. Vol. 2. 1959: McGraw-hill New York. 



 

91 

75. Jiang, C.D., et al. Simulation of Road Roughness Based on Using IFFT Method. in 

Software Engineering (WCSE), 2012 Third World Congress on. 2012. IEEE. 

76. Wu, J.-J., Simulation of rough surfaces with FFT. Tribology International, 2000. 33(1): p. 

47-58. 

77. Bender, C.M. and S.A. Orszag, Advanced mathematical methods for scientists and 

engineers I: Asymptotic methods and perturbation theory. Vol. 1. 1999: Springer. 

78. Andren, P., Power spectral density approximations of longitudinal road profiles. 

International Journal of Vehicle Design, 2006. 40(1): p. 2-14. 

79. Cebon, D., Handbook of vehicle-road interaction 1999. 

80. Sayers, M.W. and S.M. Karamihas, The little book of profiling. Ann Arbor: 

Transportation Research Institute, University of Michigan. http://www. umtri. umich. 

edu/erd/roughness/lit_book. pdf, 1998. 

81. Bridgelall, R. A participatory sensing approach to characterize ride quality. in SPIE 

Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. 

2014. International Society for Optics and Photonics. 

82. Bridgelall, R., Inertial Sensor Sample Rate Selection for Ride Quality Measures. Journal 

of Infrastructure Systems, 2014. 

83. Zhang, Z., et al. Field validation of road roughness evaluation using in-pavement strain 

sensors. in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health 

Monitoring. 2016. International Society for Optics and Photonics. 

84. Bochner, S. and K. Chandrasekharan, Fourier transforms 1949: Princeton University 

Press. 

85. Robert, J.M., Introduction to Shannon Sampling and Interpolation Theory 1991, New 

York: Springer-Verlag. 

86. Mishra, R.C. and S.K. Chakrabarti, Rectangular plates resting on tensionless elastic 

foundation: some new results. Journal of engineering mechanics, 1996. 122(4): p. 385-

387. 

87. Timoshenko, S. and S. Woinowsky-Krieger, Theory of Plates and Shells, 1959, Mcgraw-

Hill College: New York. 

88. Choi, Y.H. Gated UWB pulse signal generation. in Ultra Wideband Systems, 2004. Joint 

with Conference on Ultrawideband Systems and Technologies. Joint UWBST & 

IWUWBS. 2004 International Workshop on. 2004. IEEE. 



 

92 

89. Zhang, Z., et al., Glass fiber–reinforced polymer–packaged fiber Bragg grating sensors 

for ultra-thin unbonded concrete overlay monitoring. Structural Health Monitoring, 2015. 

14(1): p. 1475921714554143. 

90. Wikibooks, A-level Computing/AQA/Problem Solving, Programming, Data 

Representation and Practical Exercise/Fundamentals of Data Representation/Sampled 

sound, 2012. 

91. Thomson, W., Delay networks having maximally flat frequency characteristics. 

Proceedings of the IEE-Part III: Radio and Communication Engineering, 1949. 96(44): p. 

487-490. 

92. Lathi, B.P. and R.A. Green, Essentials of Digital Signal Processing 2014: Cambridge 

University Press. 

93. Kester, W., Understand SINAD, ENOB, SNR, THD, THD+ N, and SFDR so you don't get 

lost in the noise floor. MT-003 Tutorial, www. analog. 

com/static/importedfiles/tutorials/MT-003. pdf, 2009. 

94. FHWA, http://ops.fhwa.dot.gov/Freight/sw/index.htm. 

95. Zhang, Z., et al., Sampling optimization for high-speed weigh-in-motion measurements 

using in-pavement strain-based sensors. Measurement Science and Technology, 2015. 

26(6): p. 065003. 

 

 

 

 


