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ABSTRACT 

Habitat use is a key component to understanding the conservation needs of species.  

While an array of quantitative analyses for studying fine-scale habitat use and selection have 

been developed, such methods have rarely been applied to bat species, with most work focused 

at a broad scale or using qualitative methods. Insectivorous bat communities face major threats 

from habitat conversion, exploitation of natural resources, and the impending spread of white-

nose syndrome. Hence, detailed knowledge of their habitat needs is critical for developing 

effective management plans.  In North Dakota, little was known about local bat populations prior 

to 2009, with essentially no knowledge of habitat associations and preferences of bat species. 

The overall objective of this research was to survey habitats across North Dakota to document 

species occurrences within key ecological regions and to assess the influence of fine-scale 

habitat characteristics on community diversity and foraging patterns. We further aimed to assess 

the foraging habitat selection of little brown bats, Myotis lucifugus, a species of conservation 

concern. Our specific objectives were to: 1) assess species’ occurrence and distributions within 

North Dakota; 2) assess the influence of habitat and the availability of water resources on species 

diversity and community-level foraging activity; 3) identify habitats associated with areas of 

high foraging activity; 4) identify indicator species that characterize key habitats; 5) assess 

foraging habitat selection of female M. lucifugus; 6) and assess individual variation in habitat 

selection of M. lucifugus. From 2009 to 2012, mist netting and acoustic surveys were conducted 

to document species occurrence at 68 sites. From 2012 to 2015, targeted acoustic surveys were 

conducted at 37 sites to assess foraging activity levels in variable habitats. In 2014 and 2015, 

data-logging telemetry receivers were used to assess foraging habitat selection of M. lucifugus. 

The presence of 11 species was confirmed in the state. We found that bat community diversity 
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and foraging activity were influenced by fine-scale habitat characteristics. M. lucifugus selected 

for edge habitats and nearby water sources. These results will be valuable for the conservation 

and management of bats and provide baseline information for future research on habitat use of 

bats.  
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INTRODUCTION 

Bats (order Chiroptera) are specially adapted to access a wide diversity of habitats, 

occupying most terrestrial land types and climatic zones (Schnitzler and Kalko 2001). 

Insectivorous bats comprise more than 70% of bat species throughout the world; bat 

communities are diverse assemblages in which different species exploit a variety of insect 

resources and rely on heterogeneous habitats of variable structural complexity (Johnson et al. 

2010; Razgour et al. 2010).  Understanding the habitat and resource needs of these bat 

communities is critical for effective management and conservation efforts, of which many bats 

have become the focus of in recent years.   

Echolocation is the key link between foraging bats and the habitats in which they hunt. 

Bats use echolocation for spatial orientation and to detect, identify, and localize insect prey 

(Schnitzler et al. 2003). They use a wide variety of species-specific echolocation signal types that 

differ in frequency structure, duration, and sound pressure level that are adapted for specific 

tasks; and further, signal structure varies depending on the echolocation task confronting the bat 

(Schnitzler and Kalko 2001). Circumstances such as the structural complexity of habitat the bat 

must navigate through, foraging mode, and diet favor different signal types (Schnitzler and 

Kalko 2001). Foraging bats must detect, classify, and localize prey and discriminate between 

prey and echoes of unwanted “clutter” such as branches, foliage, or the ground. Echolocation 

calls can be grouped into narrowband (constant frequency or quasi-constant frequency), signals 

with the most prominent harmonic sweeps over less than half an octave, or broadband 

(frequency-modulated) where the most prominent harmonic covers more than half an octave 

(Schnitzler and Kalko 2001). Narrowband calls are well suited for detection of echoes and 

especially those of long duration, can also be used for target classification but are less suited for 
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precisely locating a target when bats must accurately judge range as well as angles (Schnitzler 

and Kalko 2001). Broadband calls are less suited for the detection of weak echoes but are well 

suited for localizing an exact target where the range and angles must be measured precisely 

(Schnitzler and Kalko 2001). 

Foraging Habitat Use 

Characterizing the habitat use of a species is a fundamental component to understanding 

the niche, ecological interactions, and evolutionary implications of species’ behavior. Habitat is 

particularly important to understanding bat foraging, as echolocation in bats may have first 

evolved for spatial orientation and was later refined for prey acquisition (Schnitzler et al. 2003). 

The composition and structure of habitats are important components resource partitioning and 

foraging modes of bats (Arlettaz 1999; Sattler et al. 2007). Here, we define habitat composition 

as categorical land cover attributes (e.g. forest, grassland, river) and habitat structure as the 

arrangement and density of vegetative cover (e.g. cluttered forest, edge/gap, or open habitat) or 

canopy cover. Both terrestrial and aquatic microhabitat characteristics affect the distribution and 

availability of resources, which ultimately shapes fine-scale species distributions of bats 

(Biscardi et al. 2007; Johnson et al. 2010; Razgour et al. 2010; Jung et al. 2012; Charbonnier et 

al. 2016).  

Habitat composition can also play a key role in the distribution of insect prey and 

foraging strategies of bats, as well as the partitioning of resources by sympatric bat species. Bats 

may spatially segregate foraging habitats based on differing habitat requirements of specific prey 

or partition foraging habitats behaviorally through microhabitat selection (Arlettaz 1999; 

Bergeson et al. 2013). Habitats over or near open water resources are associated with relatively 

high levels of bat foraging activity, as they provide drinking water and abundant insects (Grindal 
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et al. 1999; Seidman and Zabel 2001; Ciechanowski 2002; Johnson et al. 2010). The size, type, 

and characteristics of water sources also influences foraging activity and bat community 

composition (Seidman and Zabel 2001; Ciechanowski 2002; Razgour et al. 2010). However, bat 

use of water resources is also influenced by the composition and structure of the surrounding 

terrestrial habitat. Water sources within forests or that are bordered by well-developed vegetation 

are often selected for over water in open habitats (Zahn and Maier 1997; Warren et al. 2000; 

Biscardi et al. 2007). 

Finally, habitat structure has been shown to influence bat foraging strategies and 

community composition (Aldridge and Rautenbach 1987; Kalcounis and Brigham 1995; 

Schnitzler and Kalko 2001; Jung et al. 2012). Habitat structure has often been studied with a 

strong focus on understanding how morphological features and physiological states of individual 

species impact the structural complexity of the habitat in which they are primarily found 

(Kalcounis and Brigham 1995; Adams 1996). Habitat structure also influences bat communities; 

habitat structural heterogeneity has been found to be correlated with higher levels of bat species 

activity and species occurrence (Jung et al. 2012). Further, some studies have focused on 

classifying bats into functional groups based on echolocation call signal structure, wing 

morphology and flight behavior as it relates to habitat structure (Aldridge and Rautenbach 1987; 

Schnitzler and Kalko 2001). 

Current State of Knowledge 

As described above, studies of habitat use by bats are abundant in the ecological 

literature, yet detailed habitat characterizations are often limited, and a basic understanding of 

bat foraging habitat preferences is often lacking for many species beyond anecdotal observations 

and partial quantitative analyses (Ford et al. 2005). Inconsistencies in study protocols combined 
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with intra- and interspecific variation in bat foraging behaviors has made identifying patterns of 

foraging habitat use problematic (Kalcounis-Ruppell et al. 2005). Many studies focus on a 

limited number of broad habitat classes based on management practices or disturbance (e.g. 

deforestation or fragmentation). Holistic habitat use assessments are lacking, and the influence of 

fine-scale habitat characteristics on bat communities and foraging activity remains largely 

unexplored (Charbonnier et al. 2016). 

Our work focused on bat communities in North Dakota.  Prior to 2009, minimal research 

had been done on bat species in the state. Distribution and occurrence information was primarily 

based on 40+ year old occurrence records (Hall 1981). Eleven species were thought to be 

summer residents: Corynorhinus townsendii, Eptesicus fuscus, Lasionycteris noctivagans, 

Lasiurus borealis, Lasiurus cinereus, Myotis ciliolabrum, Myotis evotis, Myotis lucifugus, Myotis 

septentrionalis, Myotis thysanodes, and Myotis volans.  Despite limited documentation of these 

species in the state, detailed information about species distributions were severely lacking, and 

occurrences of Corynorhinus townsendii and Myotis thysanodes had not been confirmed outside 

of grey literature. Further, habitat associations for bats in North Dakota were almost completely 

undocumented. 

Objectives 

The primary objectives of this research were to survey habitats across the state to 

document species occurrences within key ecological regions and to assess the influence of fine-

scale habitat characteristics on the intensity of bat foraging activity at both the species and 

community level. Further, we aimed to assess the foraging habitat selection of the little brown 

bat, Myotis lucifugus, a species of special conservation concern. Specific objectives included: 1) 

assess bat species’ occurrence and distributions within North Dakota; 2) assess the influence of 
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habitat and the availability of water resources on bat species diversity and community-level 

foraging activity; 3) identify habitats associated with areas of high foraging activity; 4) identify 

indicator species that characterize key habitats; 5) assess foraging habitat selection of female M. 

lucifugus in terms of habitat composition and structure in tandem; 6) and assess individual 

variation in habitat selection of M. lucifugus. 
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CHAPTER 1. DISTRIBUTION AND OCCURRENCE OF BAT SPECIES IN NORTH 

DAKOTA1 

Introduction 

Knowledge of the distribution and habitat use of species is essential for successful 

conservation efforts. While the natural history of bats has been extensively studied in most of the 

United States, a few states still lack detailed information about the ecology of local bat 

populations. North Dakota is such a state; prior to 2009, little was known beyond that 9 bat 

species were known to be summer residents. This information was primarily based on 40+ year 

old occurrence records (Hall 1981). Bailey (1926) noted anecdotal sightings and scattered 

museum specimens of Lasiurus cinereus, L. borealis, Eptesicus fuscus, Myotis septentrionalis 

(incorrectly identified as M. ciliolabrum; Genoways and Jones Jr. 1972), M. evotis and M. 

lucifugus. Museum records of bats from southwestern North Dakota include M. ciliolabrum, M. 

evotis, M. lucifugus, M. volans and E. fuscus (Jones and Stanley 1962; Jones and Genoways 

1966; Genoways 1967). More recently, separate surveys along the Little Missouri River in 

western North Dakota reported captures of Corynorhinus townsendii, E. fuscus, Lasionycteris 

noctivagans, L. cinereus, M. ciliolabrum, M. evotis, M. lucifugus, M. septentrionalis, and M. 

volans, as well as acoustical detection of M. thysanodes (Tigner 2006; Lenard 2010). For a 

thorough summarization of these occurrences, see Hall (1981) or Seabloom (2011). Despite 

documentation of these bat species in North Dakota, detailed information about distributions 

within the state are lacking. 

                                                 

 

1 The material in this chapter was co-authored by Dr. Paul Barnhart. Dr. Barnhart and Josiah 

Nelson shared in the responsibility of data collection. Josiah Nelson was the primary developer 

of the conclusions, tables, and figures advanced here. Josiah Nelson also drafted and revised all 

versions of this chapter.  
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Several factors are currently affecting bat populations throughout the United States, 

including ongoing habitat loss/modification, development of wind energy, and the impending 

spread of white-nose syndrome, a fungal disease of hibernating bats (Alves et al. 2014; Zukal et 

al. 2014), to the Great Plains. As bat populations decline nationally due to these factors, it is 

imperative to verify species’ distributions and document key habitat requirements so that 

effective conservation plans can be established. Such information is especially needed in areas 

like North Dakota, where baseline information is scant, if available at all. The overall objective 

of this study was to obtain baseline information about bats in North Dakota. Specifically, we 

aimed to: 1) confirm the presence/absence of bat species that have previously been recorded in 

North Dakota, 2) use our data to generate current occurrence maps of each bat species in the 

state, and 3) compare our maps to currently accepted distributions of these species in North 

Dakota (Hall 1981, IUCN 2014). 

Methods 

Study Area 

Sampling focused on five ecologically distinct regions within the state: the badlands, the 

Missouri River Valley, the Turtle Mountains, Pembina Gorge, and the Red River Valley (Fig. 

1.1). We did not sample areas dominated by agriculture or anthropogenic development due to the 

lack of natural roosting resources available for bats. Within these five regions, 68 sites were 

sampled across the state (Fig. 1.1, Appendix A). 
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Figure 1.1. Ecological Regions and Study Sites 

Map showing the five ecological regions where sampling was focused in this study. Dots 

represent the 68 sampling sites. Note: given map scale, a single dot often represents multiple 

sites. 

 

Study Regions 

The Badlands of North Dakota are characterized by heavily eroded, rugged terrain with 

layers of exposed rock and soil strata, mixed grass prairie, and stands of Rocky Mountain Juniper 

(Juniperus scopulorum; Gonzalez 2001). Exposed slopes have abundant rock and soil crevices, 

and subsurface erosion forms many sinkholes and cave-like formations (Torri et al. 2000). These 

features potentially provide roosting habitat for crevice-dwelling bat species. Within the 

badlands, we surveyed sites in the Little Missouri National Grasslands, Theodore Roosevelt 

National Park, and Little Missouri State Park. Theodore Roosevelt National Park is comprised of 

three park units. The South Unit of the park is located along Interstate 94 near Medora. The 

North Unit is located about 130 km north of the South Unit, 24 km south of Watford City. The 

Elkhorn Ranch Unit is located between the North and South units, approximately 32 km west of 
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Fairfield. The Little Missouri River flows north and east through all three units of the park until 

it meets the Missouri River at Lake Sakakawea. 

The Missouri River is the largest river system in North Dakota, flowing through the 

western part of the state from Montana and south into South Dakota. The riparian vegetation is 

comprised of cottonwood forests, grasslands, and wetland habitat (Johnson et al. 1976). Along 

the Missouri River, areas surveyed included Cross Ranch State Park, Lewis and Clark Wildlife 

Management Area (WMA), Neu WMA, Oahe WMA, Painted Woods WMA, Smith Grove 

WMA, and Trenton WMA. 

The Turtle Mountains is an area in north-central North Dakota and a southwestern 

portion of the Canadian province of Manitoba. It is a plateau approximately 600 m above sea 

level, and 183 m above the surrounding flat, agriculturally dominated landscape (Potter and Moir 

1961). Extending some 22.5 km from north to south and 64 km from east to west, the area is 

covered by deciduous forest, wetlands, and numerous lakes, including Lake Metigoshe, which 

straddles the international border. The relatively dense woodlands are dominated by quaking 

aspen (Populus tremuloides) but also include green ash (Fraxinus pennsylvanica), box elder 

(Acer negundo), American elm (Ulmus americana), paper birch (Betula papyrifera), bur oak 

(Quercus macrocarpa), and balsam poplar (P. balsamifera; Potter and Moir 1961). Within the 

Turtle Mountains, we surveyed Lake Metigoshe State Park and Wakopa WMA. 

The Pembina Gorge consists of the most extensive oak woodland in North Dakota and is 

also one of the largest uninterrupted blocks of woodlands in the state (Faanes and Andrew 1983). 

The Pembina River has carved one of the deepest and steepest river valleys in North Dakota. 

Areas surveyed in this region included multiple sites associated with the Pembina Gorge State 
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Recreation Area and Icelandic State Park. Icelandic State Park is located along the Tongue River, 

a tributary of the Pembina River. 

The Red River Valley lies in the flat lakebed of ancient glacial Lake Agassiz, an 

enormous glacial lake created at the end of the Wisconsin glaciation (Stoner et al. 1993). While 

the Red River of the North drains the region, the actual Red River Valley is only ~100 m wide, 

while the floodplain is much wider. The riparian zone of the Red River consists of tracts of 

deciduous forest bordered by agriculture (Stoner et al. 1993). Along the Red River, we surveyed 

two sites near Wahpeton, as well as multiple sites along three tributaries: the Sheyenne River, 

Turtle River, and Goose River. These sites included Fort Ransom State Park, Little Yellowstone 

Park, and Sheyenne State Forest along the Sheyenne River and Turtle River State Park on the 

Turtle River. 

Survey Methods 

Surveys were conducted between mid-May and mid-August in 2009–2012. We sampled a 

total of 68 sites, with repeated sampling at many sites across years. We sampled using two 

methods: direct capture of bats via mist netting and ultrasonic recording of echolocation calls 

from free-flying bats. All research protocols were approved by the Institutional Animal Care and 

Use Committee (Protocol #s A0941 and A12040) at North Dakota State University.  

We captured bats using mist nets and standard mist netting techniques (Kunz et al. 2009; 

Nelson et al. 2012); two to five mist-nets were deployed at each sampling site each night. Mist 

nets were opened each night just before sunset and closed shortly before sunrise, or 120 minutes 

after the last capture of a bat. Bats were identified to species using van Zyll de Jong (1985) 

supplemented with a regional key developed for identifying bats in South Dakota (South Dakota 
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Bat Working Group 2004). A subset of captured bats were light tagged and recorded during free 

flight (see below). 

Active acoustic monitoring was conducted at mist netting sites using two broadband 

D240X Pettersson bat detectors (Pettersson Elektronik, Uppsala, Sweden). This time expansion 

bat detection system records for a short period of time (1.7 or 3.4 sec) and then plays back the 

recorded calls at one-tenth the original speed (i.e., time-expanded). Time-expanded calls were 

stored as an MP3 file on an Iriver player (Model iFP-890, Iriver Inc., Irvine, CA, USA) attached 

to the detector. Recordings were manually initiated when bats were detected in the area by the 

observer, who was listening to a heterodyne detector. 

Passive acoustic monitoring used the same D240X detector and Iriver recorder setup as 

described above. The system was housed in a protective casing and placed within 4 km of a 

netting site at a location of similar habitat, typically near vegetation and water. The bat detector 

was manually activated before sunset and automatically recorded sounds when an amplitude 

threshold was crossed. In 2011, Pettersson D500X detectors were substituted for the D240X 

model. These real-time, full-spectrum detectors are set to detect and record echolocation in .wav 

format without the need for a separate recording device. 

Recordings of the echolocation calls of captured bats, which had been identified in the 

hand to the species level, were used to build a call library for analysis of unknown calls and to 

verify the accuracy of automated classification software. Bats were tagged with a 1.5-inch 

chemoluminescent stick attached between the scapulae of the bat using non-toxic washable craft 

glue to make observations of activity and aid in recording echolocation calls (Brigham et al. 

1992; Fellers and Pierson 2002). To obtain these calls, select captured bats were housed in cloth 

bags and transported to an open release site within a short distance of the capture site. The 
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release site was continually monitored for bat activity to ensure no bats were foraging in the 

vicinity; after ~60 sec of no bat detections in the area, one individual, light-tagged bat was 

released. Echolocation calls from the released bat were manually recorded with the same 

Pettersson D240X and Iriver recording system described above. Calls from the first 5 sec after 

release were excluded from analysis, as we presumed that immediately after release bats are 

orienting to their environment and potentially emitting atypical search phase echolocation calls. 

Recorded echolocation calls were analyzed using SonoBat 3 (SonoBat, Arcata, CA). This 

software uses a decision engine, based on the quantitative analysis of approximately 10,000 

known recordings from species across North America, to identify each recording to the species 

level. Because variation in call structure between geographic locations is a possibility, we also 

included our recordings from light-tagged bats in the reference database. For each call in a 

sequence, SonoBat measures 72 call parameters, including highest frequency, lowest frequency, 

and duration, and feeds this information into a series of algorithms that combine information 

from multiple calls to ultimately identify a call sequence to a particular species. 

Results 

During the summers of 2009–2012, we sampled 68 sites, captured 333 individuals, 

recorded 6,629 high-quality echolocation call sequences, and confirmed the presence of 11 bat 

species (Tables 1.1, 1.2). We physically captured individuals of all 11 species and acoustically 

documented 10 species, including C. townsendii and M. thysanodes (Figures 1.2-1.4). Species 

richness varied across the state; we physically captured 10 bat species in the badlands region, 4 

species along the Missouri River, 3 species in the Turtle Mountains, 2 species in the Red River 

Valley, and 1 in the Pembina Gorge (Table 1.1). Across species, bat captures in mist nets were 

biased towards females (80.8%; 269 individuals; Appendix B). Echolocation call sequences for  
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the call library were collected from 107 individuals of the six most commonly captured species. 

Table 1.1. Bat Species Captures by Region in North Dakota, 2009-2012   

 Species  

Region C
O
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Badlands 1 26 1 0 2 17 13 75 5 1 2 143 

Missouri River Valley 0 23 11 0 0 0 0 88 18 0 0 140 

Turtle Mountains 0 0 1 3 0 0 0 6 0 0 0 10 

Pembina Gorge 0 0 2 0 0 0 0 0 0 0 0 2 

Red River Valley 0 0 36 2 0 0 0 0 0 0 0 38 

Total 1 49 51 5 2 17 13 169 23 1 2 333 

Numbers of bats captured by region in North Dakota, 2009-2012.  See Appendix A for a detailed 

listing of all capture sites.  COTO= Corynorhinus townsendii, EPFU= Eptesicus fuscus, LANO= 

Lasionycteris noctivagans, LABO= Lasiurus borealis, LACI= L. cinereus, MYCI=Myotis 

ciliolabrum, MYEV= M. evotis, MYLU= M. lucifugus, MYSE= M. septentrionalis, MYTH= M. 

thysanodes, MYVO= M. volans. 

Table 1.2. Numbers of Bat Species Echolocation Call Sequences by Region in North Dakota, 

2009-2012   

 Species  

Region 
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Badlands 12 255 383 7 83 302 72 149 0 1 2 1,266 

Missouri River 

Valley 
4 308 1,437 4 186 2 73 1,557 0 0 2 3,573 

Turtle Mountains 0 2 308 0 29 0 0 30 0 0 0 369 

Pembina Gorge 0 1 60 0 9 0 0 0 0 0 0 70 

Red River 

Valley 
3 36 1,082 36 194 0 0 0 0 0 0 1,351 

Totals 19 602 3,270 47 501 304 145 1,736 0 1 4 6,629 

Numbers of echolocation call sequences by region classified to species using automated 

classification in North Dakota, 2009-2012.  COTO= Corynorhinus townsendii, EPFU= Eptesicus 

fuscus, LANO= Lasionycteris noctivagans, LABO= Lasiurus borealis, LACI= L. cinereus, 

MYCI=Myotis ciliolabrum, MYEV= M. evotis, MYLU= M. lucifugus, MYSE= M. 

septentrionalis, MYTH= M. thysanodes, MYVO= M. volans. 
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Figure 1.2. Capture Sites and Known Distributions of M. thysanodes and C. townsendii 

Map of North Dakota and South Dakota displaying capture sites of M. thysanodes (black 

triangle) and C. townsendii (black dot) and IUCN Red List Distributions for each species. 
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Figure 1.3. Voucher Photographs of M. thysanodes 

(A) Voucher photograph of M. thysanodes. (B) Photograph of interfemoral membrane with 

magnified portion where distinctive fringe hairs of this species are visible. 

 

Figure 1.4. Voucher Photograph of C. townsendii. 
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Discussion 

This study provides the first detailed picture of the bat communities inhabiting natural 

areas of North Dakota. Our efforts substantially increase the areas of North Dakota in which 

detailed bat surveys have been conducted, and can serve as a baseline for comparison in the face 

of changing climate and land use. Species richness appears to follow a high to low gradient from 

southwest to northeast, with the most species documented in the badlands and the fewest 

documented in the Pembina region. The large number of species found in western North Dakota 

is likely due to the varied roosting and foraging habitats available in the badlands ecosystem. The 

Missouri River Valley, Turtle Mountains, Pembina Gorge, and Red River Valley all provide 

crucial forested habitat needed to support foliage and tree roosting bats in North Dakota’s 

agriculturally dominated landscape. 

Prior to 2006, M. thysanodes and C. townsendii had not been documented in North 

Dakota. The results of this study confirm the presence of these species in the state. Myotis 

thysanodes was first acoustically documented in North Dakota in 2006 (Tigner 2006) and again 

in 2009 (Lenard 2010); here, we confirm the presence of this bat with the first physical capture 

of M. thysanodes in the state. Although bats were identified through careful inspection in the 

field, we acknowledge that our photographs may not be sufficient to validate species 

identification (Fig. 1.3). The key characteristic for differentiation of M. thysanodes from M. 

evotis is the presence of conspicuous fringe hairs along the interfemoral membrane of M. 

thysanodes, which is in contrast to the inconspicuous and sparse hairs that may be found on M. 

evotis (Hall 1981; van Zyll deJong 1985). More detailed photographs, morphological 

measurements, and tissue samples should be taken of future captures to stand as vouchers for M. 

thysanodes in the state. While captures of C. townsendii had previously been reported in North 
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Dakota, our accompanied voucher photograph (Fig. 1.4) clearly provides evidence for the 

occurrence of this species. Given these new/confirmed findings, we have generated a map 

comparing our reported occurrences with current IUCN distributions (Fig. 1.2). We also captured 

M. ciliolabrum (Appendix C) and M. septentrionalis outside of their respective IUCN 

distributions, however, these occurrences are congruent with historical occurrences in the state. 

We found a sex bias toward females for most of the bat species in this study, which is in 

contrast to patterns observed for those same species in South Dakota (Bogan et al. 1996; Mattson 

et al. 1996; Choate and Anderson 1997; Cryan et al. 2000; Swier 2003). However, this bias in 

South Dakota was not observed in the winter months (Cryan et al. 2000). The apparent sex biases 

observed throughout the region may be due to differences in seasonal distributions between 

sexes; future studies examining sex biases among captured bats in the region would be valuable 

for better understanding this pattern. 

While we captured multiple M. septentrionalis, automated classification of recorded 

echolocation calls failed to identify this species in the state. Species within the genus Myotis are 

notoriously difficult to separate based solely on echolocation calls (Thomas et al. 1987). While 

call libraries and identification algorithms have vastly improved in recent years, our results 

reveal that such issues can still exist when attempting to identify select species. Specifically, M. 

septentrionalis and M. evotis exhibit similar echolocation call structures, which likely led to 

misclassification in our study, as M. septentrionalis was physically captured multiple times, but 

never identified via automated classification of acoustic recordings. Even M. septentrionalis calls 

recorded from light-tagged individuals were misclassified as M. evotis by the analysis software. 

However, additional call data from 2014 that was not included in this study, positively identified 

M. septentrionalis calls from the Missouri River region. Overall, confirmation of species 
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occurrence must come from physical captures, as documented in our study. M. septentrionalis 

was recently listed as threatened by the U.S. Fish and Wildlife Service (U.S.F.W.S. 2015), 

therefore special consideration should be given to sampling methods and validation of automated 

classification of echolocation calls when conducting surveys to assess the presence of this 

species. 

While acoustic sampling has known challenges, it is a useful tool for documenting bat 

occurrences. For example, in our study, C. townsendii was first acoustically detected in the 

badlands in 2010, but despite extensive sampling was not physically captured until 2012. Mist 

netting is not without biases, as some species may be underrepresented if researchers rely only 

on this method (Kuenzi and Morrison 1998). While our acoustic data indicates species presence 

in areas where they have not been captured, further sampling may result in physical captures and 

extensions of known species distributions. This highlights the importance of using multiple 

sampling methods when surveying for bats, as differing sampling biases may impact conclusions 

about species distributions and habitat preferences (Barnhart and Gillam 2014). 

The North Dakota Game and Fish Department currently lists C. townsendii, E. fuscus, M. 

lucifugus, and M. septentrionalis as Species of Conservation Priority Level I (highest priority), 

and M. ciliolabrum, M. evotis, and M. volans as Level III (moderate priority, populations 

assumed to be peripheral or nonbreeding in North Dakota). All of these species can be found in 

the badlands region of the state and four of these species have been captured exclusively in the 

badlands. Since the development of extensive oil and natural gas production in the Bakken 

Formation, landscape modification has invariably altered the habitat, although no research has 

attempted to quantify the effect on bats. Although Theodore Roosevelt National Park is afforded 

some protection from such development, the Little Missouri National Grasslands and other 
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private lands of the region, which include high quality bat habitat essential to support the diverse 

bat community of the badlands, are not protected from oil exploration. Management efforts 

should focus on preservation of critical habitats, such as the badlands, Turtle Mountains, 

Pembina Gorge, and forested riparian zones, and work to reduce the environmental effects of oil 

and natural gas development in the region. 
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CHAPTER 2. INFLUENCE OF HABITAT ON COMMUNITY COMPOSITION AND 

FORAGING ACTIVITY OF BATS 

Introduction 

The study of habitat characteristics and resource availability is essential for the 

conservation and management of complex ecological communities. Bat communities are diverse 

assemblages in which different species exploit dynamic resources in heterogeneous habitats of 

variable physical complexity and structure (Johnson et al. 2010; Razgour et al. 2010). However, 

foraging habitat use studies of insectivorous bats often focus on a limited number of components 

describing the physical structure of the habitat or available water resources. Most studies focus 

on individual species use of different broad habitat classes that are based on management 

practices or disturbance (e.g. deforestation or fragmentation). Holistic habitat use assessments 

are lacking, and the influence of fine-scale habitat structure combined with the availability of 

varying water resources on bat community composition, diversity, and foraging activity remains 

largely unexplored (Charbonnier et al. 2016). 

It is well known that habitats over or near open water resources are associated with 

relatively higher amounts of bat foraging activity, as they provide drinking water and abundant 

insects (Grindal et al. 1999; Seidman and Zabel 2001; Ciechanowski 2002; Johnson et al. 2010). 

Some studies have found bat activity to be ten times greater or more over water sources than the 

surrounding habitat (Lunde and Harestad 1986; Thomas 1988) and the size, type, and 

characteristics of water sources influences the bat community composition and foraging activity 

(Seidman and Zabel 2001; Ciechanowski 2002; Razgour et al. 2010). However, the quality of 

aquatic habitats to bats is not independent of the surrounding habitat. Bats often select for water 
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sources within forests or that are bordered by well-developed vegetation over water in open 

habitats (Zahn and Maier 1997; Warren et al. 2000; Biscardi et al. 2007).  

Habitat structure, defined here as the arrangement and density of vegetative cover, has 

been shown to be an important factor influencing bat foraging strategies and community 

composition (Aldridge and Rautenbach 1987; Kalcounis and Brigham 1995; Schnitzler and 

Kalko 2001; Schnitzler et al. 2003; Jung et al. 2012). Typically, habitat structure has been 

studied with a strong focus on understanding how morphological features and physiological 

states of a given bat species impact the vegetative complexity of the habitat in which they are 

primarily found (Kalcounis and Brigham 1995; Adams 1996). Many studies have focused on 

classifying bats into functional groups based on echolocation call structure, morphology and 

flight behavior as it relates to habitat structure and habitat use (Aldridge and Rautenbach 1987; 

Schnitzler and Kalko 2001; Schnitzler et al. 2003). However, habitat use may not be predictable 

by echolocation or morphology alone (Arlettaz 1999; Davidson-Watts et al. 2006). Jung et al. 

(2012) found that increased structural heterogeneity of habitat was correlated with higher levels 

of bat species activity and species occurrence. Yet, few studies have investigated the effects of 

structural heterogeneity on bat communities, and most studies investigating the effects of habitat 

structure on bat foraging do not consider the availability and characteristics of water resources in 

conjunction with terrestrial habitat types.   

Both terrestrial and aquatic microhabitat characteristics can affect the distribution and 

availability of resources, which ultimately impacts foraging habitat quality and shapes fine-scale 

species distributions and community composition of bats (Biscardi et al. 2007; Johnson et al. 

2010; Razgour et al. 2010; Jung et al. 2012; Charbonnier et al. 2016). Despite the abundance of 

habitat use and bat community studies in the ecological literature, a basic understanding of bat 
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foraging habitat preferences is often lacking for many species beyond anecdotal observations and 

partial quantitative analyses (Ford et al. 2005). Further, inconsistencies in study protocols 

combined with intra- and interspecific variation in bat foraging behaviors makes identifying 

general patterns of foraging habitat use problematic (Kalcounis-Ruppell et al. 2005). Habitat 

relationships are typically assessed at the species level through univariate methods, and 

multivariate approaches that evaluate holistic community responses have been underused (Jaberg 

and Guisan 2001). As management decisions often must consider ecological communities 

instead of focusing on a select species, studies using multivariate approaches to investigate the 

influence of fine-scale habitat characteristics on bat communities should be beneficial for 

conservation and management.   

The objectives of this study were to: 1) assess the influence of habitat and the availability 

of water resources on bat species diversity and community-level foraging activity, 2) identify 

habitats associated with areas of high foraging activity, and 3) identify indicator species that 

characterize key habitats.  Our work focused on bat communities in North Dakota.  Prior to 

2009, minimal research had been done on bat species in the state. Since then, a total of 11 

species have been documented in the state, with species diversity peaking in the western 

Badlands region (Nelson et al. 2015). These species include: Corynorhinus townsendii, Eptesicus 

fuscus, Lasionycteris noctivagans, Lasiurus borealis, Lasiurus cinereus, Myotis ciliolabrum, 

Myotis evotis, Myotis lucifugus, Myotis septentrionalis, Myotis thysanodes, and Myotis volans. 

Barnhart and Gillam (2016) modeled habitat suitability for seven species (C. townsendii, L. 

borealis, M. ciliolabrum, M. evotis, M. septentrionalis, M. thysanodes, and M. volans) within the 

state and identified potential environmental variables and land cover attributes driving habitat 
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preferences. However, these models did not incorporate fine-scale microhabitat factors that may 

have major influences on patterns of habitat use.  

Methods 

Surveys were conducted between mid-May and mid-August from 2012–2015. We 

sampled a total of 37 sites in 6 study areas across North Dakota (Figure 2.1): Theodore 

Roosevelt National Park (North and South Units), Cross Ranch State Park, Lake Metigoshe State 

Park, Turtle River State Park, and Mirror Pool Wildlife Management Area (Sheyenne 

Grasslands). These areas were chosen based upon the ecological significance of the available 

habitats to bats (Nelson et al. 2015). All research protocols were approved by the Institutional 

Animal Care and Use Committee (Protocol # A0941 and A12040) at North Dakota State 

University. 

 

Figure 2.1. Map of Acoustic Study Areas 

Map of North Dakota depicting six study areas (black dots) within the Red River Valley, Turtle 

Mountains, Missouri River Valley, and badlands regions. 
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Study Areas 

The six study areas spanned a diversity of ecosystems in North Dakota.  Theodore 

Roosevelt National Park (TRNP) is comprised of three geographically separated areas of 

badlands in western North Dakota. We sampled within two units of TRNP, the South Unit and 

the North Unit. The badlands are characterized by rugged terrain with heavily eroded layers of 

exposed soil strata, mixed grass prairie, stands of Rocky Mountain juniper (Juniperus 

scopulorum), and stands of cottonwood (Populus deltoides) trees along the Little Missouri River 

(Gonzalez 2001). Cross Ranch State Park (CRSP) is located along the Missouri River in central 

North Dakota. The Missouri River riparian corridor is characterized by cottonwood dominated 

forests, grasslands, and wetlands (Johnson et al. 1976). Lake Metigoshe State Park (LMSP) is 

located along Lake Metigoshe in the Turtle Mountains of north-central North Dakota. This area 

is characterized by numerous lakes, wetlands, and dense deciduous forest (Potter and Moir 

1961). Turtle River State Park (TRSP) is located along the Turtle River, a tributary of the Red 

River of the North, within the Red River basin. While more that 70% of the basin has been 

converted to agriculture, the riparian corridor of Turtle River State Park contains tracts of 

deciduous forest with oak, cottonwood, elm, willow, and ash trees (Stoner et al. 1993). Mirror 

Pool Wildlife Management Area is a state managed protected area dominated by deciduous 

forest along the Sheyenne River in southeastern North Dakota, adjacent to the Sheyenne National 

Grasslands. 

Acoustic Monitoring 

Bat activity was passively sampled at each site using Pettersson D500 bat detectors 

(Pettersson Elektronik, Uppsala, Sweden), for a minimum of 6 nights at each site to reduce 

biased activity estimates from temporal variation in bat activity (Hayes 1997). Detectors were set 
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to record from sunset to sunrise each night. Numbers of search-phase echolocation calls or bat 

passes were counted as basic units of bat activity (Seidman and Zabel 2001; Avila-Flores and 

Fenton 2005). A bat pass is defined as a sequence of one or more echolocation pulses with less 

than one second between pulses (Hayes, 1997). Because individual bats may pass a detector 

multiple times, bat passes cannot be used as an absolute count of bats, however, this bias can be 

assumed to be similar for all survey sites, providing relative estimates of bat activity (Seidman 

and Zabel 2001). We made no effort to distinguish between commuting and foraging activity, as 

commuting bats may opportunistically forage and higher quality foraging habitats should 

produce relatively higher levels of bat activity. Therefore, we consider bat activity at all sites to 

be relative measures of foraging habitat use. Recorded echolocation calls were identified to 

species using SonoBat 3 echolocation analysis software (SonoBat, Arcata, CA) and only 

echolocation call sequences identified to species with a 95% classification quality value or 

higher were used for analysis. 

Habitat Characterization 

For each site, habitat characteristics were recorded for a 20 m radius centered on the bat 

detector. These characteristics included: percent canopy cover, habitat structure, type of nearest 

water, and distance to water. The geographic coordinates and elevation were also recorded for 

each site. Canopy cover was assessed by recording the presence/absence of canopy at the center 

of the plot (directly above the acoustic detector) and at 10 and 20 meters in the 8 cardinal 

directions, for a total of 17 measurements. The counts of canopy present were then divided by 

the total for an index of percent canopy cover. Habitat structure was qualitatively categorized as 

open, edge, corridor, or cluttered based on the spatial distribution of vegetation. Water resources 

were categorized as river, lake, stream, pond, or marsh. Rivers, lakes, and streams were 
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categorized based upon local legal designations. Water sources inundated with vegetation (>50% 

of surface area) were characterized as marsh while those with open water were designated as 

ponds. Distance to the nearest water resource was recorded in meters. 

Analysis 

To assess the distribution of bat diversity across North Dakota and investigate the 

influence of habitat on bat community diversity, we examined ordination of sampling sites 

according to bat species assemblages with nonmetric multidimensional scaling (NMDS). 

Ultimately, NMDS provides a simplified graphical representation of multivariate species and site 

data that allows for the recognition and interpretation of patterns that reflect the underlying 

relationships between species and habitats. This method is often regarded as the most robust 

unconstrained ordination method in community ecology (McCune and Grace 2002; Estrada-

Villegas et al. 2010).  This analysis was conducted using the metaMDS function in the R vegan 

package (Estrada-Villegas et al. 2010; Johnson et al. 2010; Oksanen et al. 2013; R Core Team 

2013) applied to the data, which was compiled in a matrix with bat species (presence/absence), 

latitude, longitude, elevation, nearest water type, distance to water, habitat structure category, 

and percent canopy cover as columns and sites in rows. For the bat species portion of the data, 

Bray-Curtis dissimilarity distances among sites were determined. In NMDS, sites are ordered 

hierarchically by their Bray-Curtis distances, and then the optimum position of n entities in k-

dimensional space is sought out. NMDS optimizes the position of entities to reduce stress, or the 

magnitude entities must be moved in k-dimensional space to preserve the original hierarchical 

ordering of sites. We iteratively inspected stress levels of 1-6 dimensional ordinations with 10 

iterations for each dimension and chose to use the dimension (k=3) that produced the best 

compromise between stress (<.20) and interpretability (Clarke 1993; Johnson et al. 2010). Prior 
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to analysis, elevation was found to be correlated with longitude (Spearman’s coefficient -0.76) so 

it was not included in further analysis. To determine if longitude, latitude, habitat variables, and 

the availability of water resources were correlated with the bat community diversity, we used the 

envfit function in the R vegan package (Oksanen et al. 2013; R Core Team 2013). Longitude, 

latitude, distance to water, and percent canopy cover were fitted to the ordination as vectors 

based on 1000 permutations of the data. Vectors are represented as arrows, where the arrow 

points in the direction of the gradient and the length is proportional to the correlation. The vector 

output includes the squared correlation coefficient (r2) and p-values based on random 

permutations of the data. Nearest water and habitat structure were fitted to the ordination as 

factors (class centroids of sites) based on 1,000 permutations of the data.  

We also used NMDS to investigate relationships between habitat characteristics and bat 

foraging activity using methods as previously described above. For this analysis, the data was 

compiled in a matrix with bat species (proportion of total number of call sequences per site for 

each species), nearest water type, distance to water, habitat structure category, and percent 

canopy cover as columns and sites in rows. For the bat species data, the number of call 

sequences of each species at each site was divided by the total call sequences for each species. In 

this manner, each species was equally weighted within the data set. As before, we iteratively 

inspected stress levels of 1-6 dimensional ordinations with 10 iterations for each dimension and 

chose the dimension (k=3) that produced a compromise between stress and interpretability. To 

determine if habitat structural characteristics and the availability of water resources were 

correlated with the NMDS ordination axes of proportional bat species activity, we used the envfit 

function in the R vegan package (Oksanen et al. 2013; R Core Team 2013). Distance to water 

and percent canopy cover were fitted to the ordination as vectors based on 1000 permutations of 
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the data. Nearest water and habitat structure were fitted to the ordination as factors based on 

1000 permutations of the data. 

To identify sets of habitat variables associated with higher levels of bat foraging activity, 

we used a multivariate regression tree (MRT) analysis (De’ath 2002; McCune and Grace 2002; 

Larsen and Speckman 2004) using the mvpart extension of the R rpart package (Therneau et al. 

2012; De’ath 2013; R Core Team 2013). MRT is an extension of univariate regression trees that 

allows for the exploration of relationships between multispecies data and habitat or 

environmental characteristics (De’ath 2002; Larsen and Speckman 2004). MRT clusters sites by 

repeatedly splitting the data based on the habitat characteristics. Splits are chosen to minimize 

the dissimilarity within clusters, and the clusters with their dependence on the habitat 

characteristics are graphically represented by a tree. On the tree, each leaf represents a species 

assemblage and the variables associated with each node leading to a resulting leaf define the 

habitat associations of the leaf. The analysis was conducted using the proportional bat call data 

and habitat variables. For better interpretability of results, canopy cover was categorized into 

classes as high (> 66%), medium (33-66%), or low (< 33%), and distance to water was 

categorized as near (< 75 m) or far based upon natural breaks in the data. We ran 5 iterations of 

the analysis with 50 multiple cross validations on 10 random subsets of the data for each iteration 

to ensure stability of our results in terms of the tree size and cross-validation error rate. Tree size 

was determined by selecting the largest tree with a cross-validation error within one standard 

error of the minimum (Johnson et al. 2010). 

Not all bat species within a community will be impacted equally by any given habitat 

characteristic. Therefore, community measures such as absolute species richness or total bat 

activity may not be sufficient to fully understand the importance of a given habitat or water 



 

34 

resources on bat community diversity or foraging activity. Alternatively, it is recommended that 

the activity of each species be used as an indicator of the quality of specific habitats (Korine et 

al. 2014). To identify indicator species or species assemblages that characterize the habitats 

associated with each leaf of the MRT, we performed an indicator species analysis (Dufrene and 

Legendre 1997; De’ath 2002; Castro-Luna et al. 2007) using R functions in the labdsv package 

(R Core Team 2013; Roberts 2013). Indicator species analysis identifies species that characterize 

each group using an indicator species index, or indicator value, based on relative frequency or 

abundance in a given habitat or group (specificity) and relative frequency of occurrence (fidelity) 

(Dufrene and Legendre 1997; Castro-Luna et al. 2007). The indicator value, defined as the 

product of relative abundance and relative frequency of occurrence of the species within a group, 

can be calculated for each species–group combination, and species with high indicator values for 

a group are indicator species for that group (De’ath 2002). To test for significance, a Monte 

Carlo test of the observed maximum indicator value was performed for each species based on 

1000 randomizations. The p-value is based on the proportion of randomized trials with an 

indicator value equal to or greater than the observed indicator value. 

Results 

Acoustic Monitoring 

We surveyed bat activity at 37 sites in 6 study areas in summers 2012-2015. We recorded 

over 200,000 echolocation passes, of which 14,766 were positively identified to species. All 11 

species known to occur in North Dakota were detected, however, M. septentrionalis, M. 

thysanodes and M. volans were detected infrequently. 
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Statistical Analysis 

Solutions for NMDS ordinations of bat species presence in 3 dimensions were achieved 

within 4 runs of the data. The stress value stabilized at 0.06 (linear fit r2 = 0.98). Longitude, 

latitude, percent canopy cover, and habitat structure were all significantly correlated (p < 0.05) 

with the ordination (Table 2.1). Longitude explained the most variation in the ordination (r2 = 

0.68) followed by percent canopy cover (r2 = 0.34). Distance to water was also correlated with 

the ordination (p = 0.06). The type of nearest water was not correlated with the ordination (p = 

0.2) indicating that the bat community diversity is not influenced by water type. Longitude, 

latitude, and percent canopy cover were negatively associated with the first NMDS axis (Figure 

2). Latitude and distance to water were negatively associated with the second NMDS axis. While 

sites were not clearly separated in ordination space based upon habitat structure, those classified 

as open habitat were nearly separated on the second NMDS axis, indicating differences in 

species composition from cluttered, edge, and corridor sites (Figure 2.2). Of the 11 bat species, 

all but L. cinereus and L. noctivagans were positively associated with the first NMDS axis. C. 

townsendii, L. noctivagans, M. ciliolabrum, and M. lucifugus were negatively associated with the 

second NMDS axis (Figure 2.2).  
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Table 2.1. Habitat Variables and Results of NMDS Ordination 

 
Variable Definition 

NMDS 

Axis 1 

NMDS 

Axis 2 r2 P 

A 

Latitude Latitudinal coordinate at site -0.823 -0.568 0.268 0.011 

Longitude Longitudinal coordinate at site -0.909 0.416 0.687 <0.001 

Distance to Water Distance of nearest water source 0.665 -0.746 0.143 0.063 

Canopy Cover Percent canopy cover at site -0.706 0.708 0.336 0.002 

Nearest Water River, lake, stream, pond, or marsh - - 0.150 0.202 

Structure Open, edge, cluttered, or corridor  - - 0.191 0.024 

       

B 

Distance to Water Distance of nearest water source -0.431 -0.902 0.168 0.048 

Canopy Cover Percent canopy cover at site 0.296 0.955 0.381 <0.001 

Nearest Water River, lake, stream, pond, or marsh - - 0.381 <0.001 

Structure Open, edge, cluttered, or corridor  - - 0.160 0.070 

Habitat variables for (A) NMDS ordination of bats species occurrence and (B) proportional 

species activity. Bolded are significant P < 0.05. 

 

Figure 2.2. Non-metric Multidimensional Scaling of Bat Species Occurrence  

Non-metric multidimensional scaling (NMDS) of bat species occurrence data with fitted habitat 

variable vectors. Sites are denoted with habitat structure ( = cluttered,  = edge;  = corridor; 

 = open) shown in ordination space. Bat species: Coto = Corynorhinus townsendii, Epfu = 

Eptesicus fuscus, Labo = Lasiurus borealis, Laci = Lasiurus cinereus, Lano = Lasionycteris 

noctivagans, Myci = Myotis ciliolabrum, Myev = Myotis evotis, Mylu = Myotis lucifugus, Myse 

= Myotis septentrionalis, Myth = Myotis thysanodes, Myvo = Myotis volans. 
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Solutions for NMDS ordinations of proportional bat activity in 3 dimensions were 

achieved within 5 runs of the data. The stress value stabilized at 0.10 (linear fit r2 = 0.93). 

Canopy cover, water type, and distance to water were significantly correlated (p < 0.05) with the 

ordination (Table 2.1). Habitat structure was also correlated with the species space axes (p = 

0.07). Individually, all variables explained notable proportions (r2 > 15%) of variation in the 

ordination space. Overall, sites lacked clear separation in ordination space based upon habitat 

structure or nearest water; however, open stream habitat showed clear separation and was 

negatively associated with the first NMDS axis (Figure 2.3). Canopy cover was positively 

associated with both NMDS axes and distance to water was negatively associated with both 

NMDS axes. With the exception of M. ciliolabrum and M. volans, all bat species were positively 

associated with the first NMDS axis.  

Due to the infrequency of detections and small sample sizes, M. septentrionalis, M. 

thysanodes and M. volans were not included in the multivariate regression tree analysis or 

subsequent indicator species analysis. Regression tree analysis resulted in up to 7 leaves within 1 

cross-validation error of the minimum with meaningful interpretation of the contribution of 

habitat variables to bat activity (Figure 2.4). The model error was 0.622, indicating that 37.8% of 

the variation in bat activity was explained by the tree, which is comparable to similar studies 

(model error: 0.83; Johnson et al. 2010). High levels of bat activity were most associated with 

three habitats: edge, corridor, or cluttered habitats of moderate canopy cover near (< 75m) rivers; 

ponds; and to a lesser extent open riparian habitats (Figure 2.4).   
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Figure 2.3. Non-metric Multidimensional Scaling of Proportional Bat Species Activity 

Non-metric multidimensional scaling (NMDS) of proportional bat species activity with fitted 

habitat variable vectors. Sites are denoted with habitat structure and nearest water type factors 

are shown in ordination space. Sites nearest rivers ( ), lakes ( ), ponds ( ), and marsh ( ) are 

filled with black for cluttered, dark grey for corridor, light grey for edge, and white for open 

habitats. Sites nearest streams are denoted by dash marks: black = clutter; dark grey = corridor; 

light grey = edge; short black = open. Bat species: Coto = Corynorhinus townsendii, Epfu = 

Eptesicus fuscus, Labo = Lasiurus borealis, Laci = Lasiurus cinereus, Lano = Lasionycteris 

noctivagans, Myci = Myotis ciliolabrum, Myev = Myotis evotis, Mylu = Myotis lucifugus, Myse 

= Myotis septentrionalis, Myth = Myotis thysanodes, Myvo = Myotis volans. 

Indicator species analysis revealed five of the eight species included in the MRT to be 

indicator species. M. lucifugus and E. fuscus were the most significant indicators (p < 0.05) while 

L. cinereus, L. noctivagans, and M. evotis were also significant at the 0.1 significance level 

(Table 2.2). M. lucifugus and M. evotis were found to be indicators of pond habitat; E. fuscus for 

open riparian habitat; L. cinereus and L. noctivagans for cluttered, corridor, and edge habitat of 

moderate canopy cover near rivers. 
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Figure 2.4. Multivariate Regression Tree for Proportional Bat Species Activity 

Multivariate regression tree for proportional bat activity data. Proportional bat activity predicted 

by habitat variables at acoustic monitoring sites (n = 37) in North Dakota, 2012-2015. Indicator 

species are denoted at tree leaves. Bat species: Epfu = Eptesicus fuscus, Laci = Lasiurus 

cinereus, Lano = Lasionycteris noctivagans, Myev = Myotis evotis, Mylu = Myotis lucifugus. 

CC= Canopy Cover, DW= Distance to water. Indicator species significance levels: p < 0.05 (**), 

p < 0.1 (*). 

Table 2.2. Indicator Values and Significance 

 Epfu Laci Lano Myev Mylu 

P 0.021 0.052 0.069 0.093 0.006 

Indval 0.640 0.414 0.374 0.469 0.822 

Indicator values (Indval) and significance for five indicator species. Bat species: Epfu = 

Eptesicus fuscus, Laci = Lasiurus cinereus, Lano = Lasionycteris noctivagans, Myev = Myotis 

evotis, Mylu = Myotis lucifugus. 

Discussion 

We found the NMDS ordination of bat community diversity to be significantly correlated 

with longitude, latitude, percent canopy cover, and habitat structure. Longitude and latitude were 

negatively correlated with the majority of species, indicating that bat diversity increases with 
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decreasing longitude to the west and with decreasing latitude to the south. The availability of 

high quality foraging habitat may be at least partially responsible for this phenomenon. The 

landscape east of the Missouri River is more heavily dominated by agriculture, and agricultural 

practices limit the diversity and abundance of insect prey through monocultures and pesticide 

treatments. Canopy cover was negatively associated with C. townsendii, M. ciliolabrum, M. 

evotis, M. thysanodes, and M. volans, all species only definitively known to occur in the 

badlands region. While the badlands certainly have habitats with highly cluttered vegetation, 

these habitats often have sparse canopy cover. Riparian cottonwood stands in the badlands often 

have relatively low tree density, and stands of Rocky Mountain juniper are typically relatively 

short (< 10m tall) with the bulk of the vegetative mass near the bottoms of the trees. C. 

townsendii, M. ciliolabrum, M. evotis, M. thysanodes, and M. volans were also more positively 

associated with distance to water, indicating that these species may be less reliant on riparian 

forests. While cluttered, corridor, and edge habitats did not clearly separate in the ordination 

space, open habitats appear least associated with ordination of bat species, indicating that bat 

species occurrence is influenced by the presence of at least partially forested habitat.  

We also found both habitat structure and the availability of water resources to be 

significantly correlated with NMDS ordination of proportional bat activity. L. borealis and M. 

septentrionalis were associated with habitats of relatively high canopy cover near rivers and 

ponds. L. cinereus and L. noctivagans were associated with edge habitat with moderate canopy 

cover near water. M. lucifugus were associated with corridors near pond habitats with moderate 

canopy cover. E. fuscus were associated with open and edge habitats of relatively low levels of 

canopy cover near rivers. M. evotis were associated with habitats of relatively low levels of 

canopy cover near rivers and ponds. C. townsendii, M. ciliolabrum, and M. volans were 
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associated with cluttered, corridor, and edge habitats of little to no canopy cover relatively 

further from water. M. thysanodes was associated with riparian edge habitat of little to no canopy 

cover; however, results for M. thysanodes, M. volans, and M. septentrionalis should not be 

considered robust due to low sample sizes and M. thysanodes was only detected at one site.  

Regression tree analysis revealed that high levels of bat activity were most associated 

with riparian edge, corridor, and cluttered habitats of moderate canopy cover near water (Figure 

4). Ponds, and to a lesser extent open riparian habitats, were also found to be associated with 

relatively high levels of bat activity. Indicator species analysis revealed significant indicator 

species for each of these corresponding habitat clusters of the MRT. L. cinereus and L. 

noctivagans were found to be indicators of riparian edge, corridor, and cluttered habitats of 

moderate canopy cover near water; M. lucifugus and M. evotis are indicators of pond habitats; 

and E. fuscus are indicators of open riparian habitat. These results are consistent with the patterns 

observed in the NMDS ordination of proportional bat activity.  

The little brown bat, M. lucifugus, was the most significant indicator species (p = 0.003; 

indicator value = 0.82). Little brown bats are of special conservation concern, as they have 

experienced severe population declines in the eastern United States and Canada due to white-

nose syndrome (Alves et al. 2014; Vonhof et al. 2015). The indicator value is at maximum when 

all individuals of a species are found within a single group of sites or habitat type and when the 

species occurs in at all sites within the group or habitat type (Dufrene and Legendre 1997). The 

high indicator value for M. lucifugus at sites nearest ponds highlights the importance of 

conserving this specific habitat type. Modern agricultural practices have resulted in high rates of 

pond and wetland drainage for conversion to cropland in North Dakota and throughout the Great 

Plains, resulting in dramatic declines in waterbird productivity (Higgins et al. 2016). While 
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conservation of ponds has been considered for desert-dwelling bat species (Razgour et al. 2010), 

the implications of such habitat losses on bats in the Great Plains have not been considered.  

Our results highlight the importance of riparian zones to bat foraging and support 

previous findings (Grindal et al. 1999). However, these results also draw attention to the 

importance of habitat heterogeneity. Bat communities are able to efficiently exploit a diversity of 

habitat conditions by spatially segregating habitats and using differing foraging strategies 

(Schnitzler and Kalko 2001; Schnitzler et al. 2003). Therefore, heterogeneous habitats should 

support the highest diversity of bat species due to differences in selection of foraging habitat 

among species that spatially partition habitat to reduce resource competition (Kunz 1973; 

Johnson et al. 2010). Our results suggest that heterogeneous habitats of both varying structural 

habitat characteristics and water resources are best for maintaining bat species diversity and 

provide high quality foraging habitat for an abundance of species.  Our study takes a holistic 

approach to studying bat habitat use which helps provide relevant insights for conservation and 

management. Further we have identified ponds as a key habitat with significant conservation 

implications for M. lucifugus, a species of conservation concern. 
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CHAPTER 3. SELECTION OF FORAGING HABITAT BY FEMALE LITTLE BROWN 

BATS, MYOTIS LUCIFUGUS 

Introduction 

For effective conservation and management of wildlife populations, detailed information 

is needed about habitat use of a species. This information is also key for understanding 

ecological interactions and evolutionary implications of species’ behavior. Habitat composition 

and structure are important factors of ecological niches and foraging behavior (Arlettaz, 1999; 

Sattler, Bontadina, Hirzel, and Arlettaz, 2007). Here, we define habitat composition as 

categorical land cover attributes (e.g. evergreen forest, grassland) and habitat structure as a 

description of vegetation density (e.g. cluttered forest, edge/gap, or open habitat) or canopy 

cover. Measures of habitat use in terms of composition or structure are particularly valuable for 

assessing the importance of specific habitat types or conditions.  

Habitat composition plays a key role in the distribution of insect prey and foraging 

strategies of bats, as well as the partitioning of resources by sympatric bats species (Arlettaz 

1999; Bergeson et al. 2013). For example, Arlettaz (1999) found that sympatric sister species, 

Myotis myotis and Myotis blythii, spatially segregate when foraging based on differences in 

habitat requirements of prey. Similarly, Bergeson et al. (2013) found that sympatric Myotis 

sodalis and Myotis lucifugus partition foraging resources behaviorally and through variation in 

selection of land cover.  

In addition to habitat composition, habitat structure has also been studied in bats, with a 

strong focus on understanding how morphological features and physiological states of a given 

species impact the type of habitat structure in which they are primarily found. For example, 

Kalcounis and Brigham (1995) found that heavier M. lucifugus with greater wing loading 
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foraged in lower clutter habitat. Similarly, Adams (1996) found that juvenile M. lucifugus with 

higher wing aspect ratios and lower wing loading exploit more diverse and cluttered habitat than 

their still growing cohorts. Further, a large body of work has focused on classifying bats into 

functional groups based on echolocation call structure, morphology and flight behavior as it 

correlates with habitat structure and habitat use (Aldridge and Rautenbach 1987; Schnitzler and 

Kalko 2001; Schnitzler et al. 2003). However, resource use may not be predictable by 

echolocation or morphology alone (Arlettaz 1999; Davidson-Watts et al. 2006), and combining 

data for such functional groups, guilds, or even sexes may yield ambiguous or spurious results in 

selection studies (Broders et al. 2006). Overall, studies of habitat use by bats are abundant in the 

ecological literature, yet detailed habitat characterizations are often limited, and knowledge of 

foraging habitat selection of many bat species is lacking.  

Habitat selection is the decision making process through which animals choose resources 

relative to their availability or accessibility (Johnson 1980; Garshelis 2000). It is presumed that 

species should select for habitats that best meet their ecological and behavioral needs. A variety 

of study designs have been developed to investigate habitat selection (Garshelis 2000; Manly et 

al. 2002). The use-availability design identifies habitat selection as occurring when habitats are 

used disproportionately to their availability (Garshelis 2000; Manly et al. 2002). A significant 

challenge in habitat selection studies is defining habitats so that they are ecologically relevant 

and appropriately partitioned so that selection can be measured for a given species (Garshelis 

2000).  

The volant, nocturnal nature and relatively small size of bats make them particularly 

problematic for assessing habitat selection (Henry et al. 2002; Gannon et al. 2003). With recent 

advances in spatial analysis of habitat via Geographic Information Systems (GIS), habitat 
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selection studies have progressed.  However, the majority of such research on bats includes 

limited habitat characterizations, using only land cover attributes available in GIS datasets, 

which are not necessarily reflective of habitat structures that are important to foraging bats. Also, 

such GIS land cover datasets typically represent coarse landscape features which may lack the 

detail required for ecologically meaningful assessments of habitat use (Brambilla et al. 2009). 

Fewer studies have incorporated habitat structure, with those studies generally separating 

analysis of habitat structure from composition (Napal et al. 2010, 2013; Buckley et al. 2013; 

Arrizabalaga-Escudero et al. 2014; Ripperger et al. 2015). Further, most studies do not evaluate 

individual variation in habitat selection (Hillen et al. 2011), and therefore selection may not be 

detectable at the population level if individuals or sexes exhibit alternative selection strategies 

(Garshelis 2000).  

The goal of this study was to assess foraging habitat selection of the little brown bat, M. 

lucifugus. We radio-tracked bats using autonomous telemetry data logging receivers, which 

allow for simultaneous, long term data collection on multiple bats with minimal researcher input.  

While this type of autonomous telemetry has been used to assess bat migration (McGuire et al. 

2012) and various aspects of spatial ecology in other taxa (Bridger et al. 2001; Drewe et al. 2012; 

Ryder et al. 2012), it has not previously been used to study habitat selection in bats. Our specific 

objectives were to: (1) assess female M. lucifugus foraging habitat selection in terms of habitat 

composition and structure in tandem; (2) and assess individual variation in habitat selection of 

female M. lucifugus. 
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Methods 

Study Species 

The little brown bat is an insectivorous bat (6-11 g; van Zyll deJong 1985) widely 

distributed throughout most of North America (Fenton and Barclay 1980). M. lucifugus feed on a 

variety of small insects (3-10 mm long; Anthony and Thomas H. Kunz 1977), often in cluttered 

habitats near or over water (Fenton and Bell 1979; Fenton and Barclay 1980; Kalcounis and 

Brigham 1995; Adams 1996; Adams and Thibault 2006). Maternity colonies vary in size, 

ranging from a few to over a thousand individuals.  Roosts are often found in man-made 

structures, such as old buildings (Fenton and Barclay 1980; Anthony et al. 1981), and are usually 

near bodies of water (Kunz et al. 1995).  

Study Sites 

Data was collected at two nursery colonies of M. lucifugus: (1) a picnic shelter in the 

North Unit of Theodore Roosevelt National Park (TRNP) containing ~50 adult female bats, and 

(2) a bat house at Cross Ranch State Park (CRSP) containing ~40 adult female bats. The TRNP 

site consists of cottonwood (Populus deltoides) dominated riparian forest surrounded by 

badlands. The CRSP site consists of cottonwood-dominated riparian forest surrounded by upland 

prairie, pasture, and agricultural fields. The habitat of both sites is relatively similar in 

composition and structure at the scale of sampling in this study. Sites were selected based on 

previous work identifying these areas as sites of higher abundance of M. lucifugus in North 

Dakota (Nelson et al. 2015). 

Telemetry 

Bats were captured using mist nets (Kunz and Parsons, 2009) placed at roost entrances. 

The species, sex, age, mass, and forearm length were assessed for all captured animals. Trapping 
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and tracking of bats was avoided during parturition, which occurs mid-late June to early July 

(Farrrell and Studier 1973; Barclay 1982; Kunz et al. 1983). Bats selected for radio-tracking 

were fitted with digitally encoded transmitters (Lotek NTQB-1 Nano Tags, Lotek Wireless Inc., 

Newmarket, ON, Canada) attached to trimmed mid-dorsal hair over the scapulae using surgical 

skin adhesive. Each transmitter has a unique digital ID signature, although all transmitters emit 

the same frequency; this allows for simultaneous monitoring of multiple transmitters, which is 

not possible with traditional radio telemetry systems.  Transmitters weighed 0.29 g (<5% of the 

bat’s body mass; Aldridge and Brigham 1988), and had a pulse rate of 2s, resulting in a battery 

life of approximately 12 days.  

Upon release, bats were tracked using a telemetry array of three automated receiving 

towers. The towers each consisted of a data logging receiver (SRX DL, Lotek Wireless Inc., 

Newmarket, ON, Canada) connected to an antenna tower affixed with a pair of five-element 

Yagi antennas raised ~5m in the air. Antennas were monitored on alternating 4s cycles, which 

ensures detection if transmitters are within detectable range. The data loggers continuously 

recorded all transmitter detections and logged the transmitter ID, date and time of detection, 

antenna number, and signal strength. Calibration tests of line-of-sight detection gave a maximum 

detection range of approximately 400m in the direction an individual antenna was oriented, and 

150m to the side and rear. Telemetry arrays were strategically positioned so that the sampling 

range encompassed as much of the available area near the roost as possible. Each antenna was 

oriented to monitor a separate portion of the sampling area, although some overlap occurred 

(Figures 1 and 2). To ensure continuous monitoring, the operational status of each data logger 

was regularly checked and data from periods of time when batteries failed was excluded from 

analysis. 
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Habitat Selection 

In GIS (ArcMap, ArcGIS version 10.3), the data logger locations and antenna detection 

ranges were mapped. Habitat types were designated using 20 categories based on habitat 

composition and structure (Table 3.1). Habitat within detection range was manually digitized as 

a set of polygons using georeferenced aerial imagery corroborated by manual inspection of 

habitats done during sampling (Figures 3.1 and 3.2). From this data, the proportional area of each 

habitat type within each antenna’s sampling range could be determined. Telemetry data was 

filtered to only include detections during a window of two hours after sunset, as this corresponds 

with the primary peak in foraging activity of M. lucifugus (Anthony and Thomas H. Kunz 1977; 

Anthony et al. 1981; Henry et al. 2002). It is assumed that animals were selected independently 

with equal probability from a single population. Therefore, the animals can provide the needed 

replication to make inferences at the population level without concern for autocorrelation of 

location estimates (Otis and White 1999).  
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Table 3.1. Classifications and Descriptions of Habitat Types 

Habitat Type Description 

Mixed Forest 
Mixed species forest; highly cluttered 

understory 

Cottonwood Forest 
Cottonwood dominated forest; more sparsely 

distributed than mixed forest; medium clutter 

Grass/Herb Open grassland and herbaceous vegetation 

Crops 
Open areas of agriculturally converted land 

cover 

Mowed 
Open areas of mowed grass; predominately in 

campground areas 

Barren 
Open ground areas; characteristic of river 

sandbars and banks or badland bluff faces 

Shrubs Highly vegetated but lacking canopy cover 

Marsh 
Seasonal wetlands associated with drainages 

or streams 

Grass/Herb Edge  

Edge habitats formed from distinct boundaries 

between forest and associated open habitats; 

Water edge (water) is predominately 

associated with river habitat 

Water Edge  

Crop Edge  

Developed/Mowed Edge  

Corridor 

Marsh Edge  

River 
Aquatic habitats assigned by appropriate 

definitions 
Pond 

Stream 

Buildings Including picnic shelters 

Roadway Either paved or gravel roads 

Developed Other Miscellaneous anthropogenic structures 
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Figure 3.1. Map of Theodore Roosevelt National Park (North Unit) 

Map of TRNP showing locations of roost, data loggers, and sampling areas overlaid on digitized 

habitat types. 
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Figure 3.2. Map of Cross Ranch State Park 

Map of CRSP showing locations of roost, data loggers, and sampling areas overlaid on digitized 

habitat types. 

 

Because the exact location of a bat within an antenna’s sampling range cannot be 

accurately determined, habitat use was assigned by dividing the number of detections for an 

antenna proportionally among the habitats available within that sampling range. The counts per 

habitat were then summarized across all of the antennas as a representation of habitat use for that 

bat. The drawback of this method is that the strength of relative selection for/against any 

particular habitat type is diminished because habitat use is inevitably assigned to habitat types 

that may not actually be used, but are co-located with habitat types for which there is positive 

selection. Despite this feature, selection is still detectable as long as the proportions of habitat are 
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not uniform across all antenna sampling ranges. An additional complicating factor is that the 

antenna sampling ranges had some level of overlap, especially antennas attached to the same 

data logger. The nature of the detection system means that bats cannot be simultaneously 

detected on shared antennas, as the data logger systematically switches between monitoring each 

of the antennas individually.  Hence, a bat’s location cannot be confidently narrowed down to the 

overlapped habitat, and habitat use can only be assigned to each antenna individually. To address 

this issue, we used the proportions of habitat within each individual antenna’s sampling range, 

summarized across all antennas, as the available habitat for analysis. 

To assess habitat selection, selection ratios (wi) of used versus available habitat were 

calculated (Manly et al. 2002). In the absence of selection, a ratio equaling 1 is expected, while 

selection ratios greater than 1 reflect positive selection for that habitat. Habitats are subsequently 

ranked according to their selection ratio. There are three types of use-availability designs for 

assessing habitat selection: design I = animals are pooled and habitat use and availability are 

measured at the population level; design II = habitat use is measured for each animal and habitat 

availability is measured at the population level; design III = habitat use and availability are 

measured for each animal (Manly et al. 2002).  Since bats at each site shared a roost and could 

potentially share foraging sites, analysis of study design II or III could be applied to our data by 

simply using the same habitat availability for all animals under the design III framework. We 

conducted both analyses on our data so that nonrandom habitat use could be tested at both the 

population and individual level.  Following Manly et al. (2002), χ² goodness of fit tests were 

used to test for identical use of habitat by all animals, habitat selection by individuals, and 

independence of habitat use and availability (overall habitat selection). To assess selection of 

individual habitats, Bonferroni confidence intervals were constructed for individually estimated 
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proportions of habitat use and availability. Pairwise comparisons between selection ratios were 

then evaluated for statistical significance based on Bonferroni confidence intervals. For all tests, 

alpha was set to 0.05, and the confidence intervals were computed at the 95% level. To run all 

habitat selection analyses, we used the package “adehabitat” for R software (Calenge 2006) with 

R Studio Version 0.98.1028 (RStudio Team 2015).  

Because all animals may not exhibit the same patterns of habitat selection, we also 

analyzed our data at the individual level. To evaluate individual variation in habitat selection, we 

conducted eigenanalysis of selection ratios (Calenge and Dufour 2006), which is useful for this 

purpose when there is a high number of animals and habitat types. This analysis undertakes an 

additive linear partitioning of the White and Garrott statistic, maximizing the difference between 

habitat use and availability on the first factorial axis (Calenge and Dufour 2006). If all animals 

select the same habitat types, then the majority of variation in selection is explained on the first 

axis. However, when there is high variability in selection, the explained variation is distributed 

across multiple axes (Calenge and Dufour 2006). Therefore, variation on one factorial axis may 

reveal differing intensities of selection for the same habitat types, while variation on two or more 

axes may reveal separate modes of selection or that selection strategies differ across animals. 

Results 

Bat Captures 

At TRNP, we captured bats on 24 July 2014 and tagged 11 adult female M. lucifugus.  

We were able to gather sufficient data for analysis of 7 individuals over the subsequent 11 

nights. At CRSP, we captured bats on 4 June 2015 and tagged 18 adult female M. lucifugus, with 

sufficient data being gathered from 17 of these animals over an 11-night period. Given the 
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capture dates combined with visual inspection of the bats and roosts, sampling corresponded 

with mid-gestation in CRSP and mid- to late-lactation in TRNP. 

Habitat Selection 

Tests of overall habitat selection were highly significant under both design II and III 

frameworks. For simplicity, we report results under design II for the test of overall habitat 

selection. At both sites, bats did not use habitat in equal proportion to availability (TRNP: χ² = 

1115.5, df = 98, p < 0.001; CRSP: χ² = 20189.5, df = 306, p < 0.001) and there were significant 

differences in selection between habitat types (Appendix D). Only 1 of 24 bats in our study did 

not exhibit statistically significant habitat selection (Bat ML173 from TRNP; χ² = 4.6, df = 14, p 

= 0.09).  

In TRNP, bats selected for marsh, mixed forest, shrubs, and stream habitat, as well as 

edge habitat bordering roadways and mowed grass (Figure 3.3). In CRSP, bats showed strong 

selection for edge habitat bordering un-mowed grass/herb habitat (Fig. 3.4). Barren habitat was 

also selected for at both sites but this habitat type likely lacks ecological relevance to bats (see 

Discussion). Despite trends in selection at each site, bats did not exhibit identical use of habitat 

(TRNP: χ² = 305.4, df = 84, p < 0.001; CRSP: χ² = 6584.3, df = 288, p < 0.001). Most notably, 

there was an overall trend toward selection for river and river edge habitat at both TRNP and 

CRSP, but selection for these habitats was highly variable (Figures 3.3 and 3.4). Results of 

eigenanalysis revealed that the majority of individual habitat selection variation was accounted 

for on the first factorial axis (79.3% at TRNP and 84.3% at CRSP). Adding a second factor 

increased the variance explained to 97.6% at TRNP and 99.5% at CRSP.  
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Figure 3.3. Selection Ratios for Theodore Roosevelt National Park 

Selection ratios (wi) for habitats with Bonferroni confidence intervals for each habitat. Habitats 

are ranked by selection ratio. 

 

 

Figure 3.4. Selection Ratios for Cross Ranch State Park 

Selection ratios (wi) for habitats with Bonferroni confidence intervals for each habitat. Habitats 

are ranked by selection ratio.   

 

For TRNP, eigenanalysis confirms the overall trends in habitat selection found in the 

analysis of selection ratios. All but one individual bat exhibited similar patterns of habitat 
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selection. However, as previously noted, this individual (bat ML173) exhibited nonsignificant 

habitat selection (Fig. 3.5).  As confirmed by individual selection ratios (Fig. 3.6), eigenanalysis 

shows that the remaining bats exhibited varying intensities of selection between river, water 

edge, corridor, and stream habitats. Specifically, two individuals selected for stream habitat as 

opposed to the river and corridor.  

 

Figure 3.5. Eigenanalysis of Selection Ratios for Bats in Theodore Roosevelt National Park 
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Figure 3.6. Selection Ratios of Individual Bats, Theodore Roosevelt National Park 

Bat ML173 represented by bold black line. All other individuals represented by grey lines. 

 

Similarly, for CRSP, eigenanalysis confirmed the overall trends in selection found in the 

analysis of selection ratios, and reveals variation among individuals in selection for river, water 

edge, and corridor habitat (Figure 3.7). All bats selected for grass/herb edge habitat. The majority 

of bats (14 individuals) selected for the river and its associated edge habitat. However, as 

confirmed by individual selection ratios (Figure 3.8), three individuals selected for strongly for 

corridor and used the river and water edge in lesser proportion than available, resulting in the 

division across axes seen in the eigenanalysis (Fig. 3.7). 
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Figure 3.7. Eigenanalysis of Selection Ratios for Bats in Cross Ranch State Park 
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Figure 3.8. Selection Ratios of Individual Bats, Cross Ranch State Park 

Bats ML16, ML161, and ML162 represented by bold black lines. All other individuals 

represented by grey lines. 

 

Discussion 

Bats at both TRNP and CRSP exhibited selection for edge habitats as well as selection, 

with significant variation, for the river and its associated edge habitat. Barren habitat was also 

positively selected; however, in TRNP this habitat was spatially limited and roughly equally 

distributed between portions of the river embankment/sand bars, and bluff faces (Figure 3.1) 

while in CRSP this habitat was limited solely to small portions of the river embankment (Figure 

3.2). Therefore, selection for barren habitat is likely attributed to its association with other 

positively selected habitats, such as the river.  

In TRNP, selection for marsh and shrub habitat seemed initially counter-intuitive, but 

inspection of the spatial distribution of these habitat types provides insight into this pattern. The 

majority of these habitats were spatially associated with a portion of the stream. Together, the 

marsh and stream habitats represent the closest water source to the roost in TRNP. The relatively 

weaker selection for stream habitat may also be explained by its spatial distribution. Specifically, 
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the primary stream passes through roughly half of the sampling area, so measurable selection for 

this habitat type may have been limited by its relative abundance across less used portions of the 

sampling area. 

Patterns of selection at TRNP may be at least partially attributed to the reproductive 

condition of bats at the time of study. During sampling, ~2 week old pups were captured at the 

roost, and the sampling date corresponds to mid-to-late lactation (Farrrell and Studier 1973; 

Fenton and Barclay 1980; Anthony et al. 1981; Henry et al. 2002). Energy demands are highest 

during lactation for M. lucifugus (Fenton and Barclay 1980; Kurta et al. 1989a; Kunz et al. 1995) 

and lactation represents a substantial strain on maintaining water balance (Kurta et al. 1989b; 

Kunz et al. 1995). Also, M. lucifugus exhibit a substantial decrease in home range size during 

lactation (~50%), making frequent trips back to the roost to nurse (Barclay 1982; Henry et al. 

2002). Given that aquatic habitats provide not only drinking water but a high abundance of insect 

prey that M. lucifugus regularly exploit (Anthony and Thomas H. Kunz 1977; Fenton and Bell 

1979; Fenton and Barclay 1980), it is not surprising that lactating M. lucifugus in our study 

selected for such habitat in close proximity to the maternity roost.   

In contrast with CRSP, bats in TRNP selected for edge bordering roads or mowed grass. 

In TRNP, the campground roads and mowed camp sites have formed notably more edge habitat 

(of this type), relative to CRSP, in close proximity to the roost. One factor potentially 

contributing to these selection differences stems from prey availability. Insect control measures 

are typically conducted in campground areas of CRSP but not in TRNP. This could potentially 

drive foraging away from campground areas in CRSP, at a time when prey is a limited factor for 

pregnant M. lucifugus (Anthony and Thomas H. Kunz 1977; Anthony et al. 1981; Henry et al. 

2002). Despite these differences, bats in TRNP and CRSP clearly exhibited strong selection for 
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edge habitats. Also, bats at both sites selected for their respective rivers and associated edge 

habitats, although individuals exhibited a great deal of variation in selection for these habitats.  

Previous studies have investigated variation in habitat use/selection between groups of 

individuals classified by factors such as age, sex, reproductive condition, or morphology 

(Aldridge and Rautenbach 1987; Kalcounis and Brigham 1995; Adams 1996; Hillen et al. 2011). 

However, little attention has been paid to variation among individuals (Hillen et al. 2011). We 

assessed variation in habitat selection among individual bats via eigenanalysis of selection ratios. 

We found that inconsistencies in overall habitat selection can be accounted for by differing 

intensities of selection for specific habitats. In these cases, differing selection among individuals 

can be explained by bats using different subsets of ecologically similar habitat. Edge habitats and 

water resources were strongly selected for by M. lucifugus, with variation at the microhabitat 

scale delineating potential individual preferences for specific edge compositions and water 

habitats. For example, all bats in CRSP selected for grass/herb edge, yet only 3 individuals 

selected for corridor habitat. Also, all bats in TRNP selected for water resources, yet 2 

individuals selected for stream over river while their cohorts used both habitats. 

Overall, we found that female M. lucifugus selected for edge habitats and water 

resources, which is consistent with previous observations and findings (Fenton and Bell 1979; 

Kalcounis and Brigham 1995; Bergeson et al. 2013). We found that bats exhibited habitat 

selection on a microhabitat scale when habitats are characterized by both habitat composition 

and structure in tandem; specifically, not all edge habitats or water resources were selected 

equally, with the composition of edge habitat influencing patterns of selection. Future habitat 

selection studies of bats should consider the relationship between habitat composition and 

structure to avoid overlooking important microhabitat associations. 
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CHAPTER 4. CONCLUSIONS 

Summary 

The research presented here provides the first detailed picture of the bat communities 

inhabiting natural areas of North Dakota and can serve as a baseline for future comparisons in 

the face of changing climate and land use. Eleven bat species were documented and confirmed 

with physical captures. Species diversity was highest in the badlands region (all eleven species 

found) compared to other areas of the state. This is likely due to the abundance of variable 

roosting and foraging habitats available in the badlands ecosystem. The remaining areas of North 

Dakota have predominately been converted to agriculture. However, the Missouri River Valley, 

Turtle Mountains, Pembina Gorge, and Red River Valley also provide high quality forested 

habitat needed to support foliage and tree roosting bats. The presence of M. thysanodes and C. 

townsendii were each confirmed with physical captures; the distributions of these species were 

not previously thought to extend into North Dakota.  

Analysis of the influence of habitat on bat community diversity and foraging activity 

confirmed not only the significance of riparian habitats but highlight the importance of habitat 

heterogeneity. Heterogeneous habitats should support relatively higher diversity of bat species 

due to differences in foraging modes/behavior and differences in foraging habitat selection 

among species that spatially partition habitat to reduce resource competition (Kunz 1973; 

Johnson et al. 2010; Jung et al. 2012). Our results suggest that bat species diversity is best 

maintained with heterogeneous habitats of both varying structural habitat characteristics and 

water resources. Heterogeneous habitats provide high quality foraging habitat for an abundance 

of species. The holistic assessment of not only the bat communities but the habitat as well 

provides relevant insights for conservation and management. Further, ponds were identified as a 
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key habitat; this has significant conservation implications for little brown bats, M. lucifugus, a 

species that has suffered devastating population losses in the eastern U.S. and Canada due to 

white-nose syndrome.  

Habitat selection analysis revealed that, in general, female M. lucifugus selected for edge 

habitats and water resources. These results are consistent with previous observations and 

findings (Fenton and Bell 1979; Kalcounis and Brigham 1995; Bergeson et al. 2013). However, 

we found that bats exhibited microhabitat selection when habitats are characterized by both 

habitat composition and structure in tandem. The composition of edge habitat influenced patterns 

of selection, and not all edge habitats or water resources were selected equally. Further, 

individual bats exhibited variation in habitat selection. More specifically, individuals showed 

varying levels of selection for edges of differing composition and for different types of water 

sources. 

Synthesis 

Overall, the combined works presented in this dissertation show that heterogeneous 

habitats are not only key to maintaining bat community diversity, but these habitats are 

associated with higher levels of foraging for many species. Edge habitats, which are 

characteristic of heterogeneous habitat, were selected by M. lucifugus and were also correlated 

with higher levels of foraging at the community level along with cluttered and corridor habitats. 

Habitats nearest rivers were found to be correlated with high levels of bat foraging at the 

community level, and rivers were selected for by most individual M. lucifugus in the telemetry 

study. In contrast to the community-level acoustic study, habitat selection analysis of M. 

lucifugus did not reveal selection for pond habitats. However, ponds were not highly available in 

the sampling areas where the telemetry study was conducted. The lack of selection for ponds 
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may also be due to a sampling bias with telemetry. In this case, ponds may be selected for but 

individual bats may spend only a limited amount of time using these habitats, which would skew 

analysis of habitat selection against ponds (Garshelis 2000). 

Future Work 

Landscape modification has invariably altered the habitat of the badlands since the 

development of extensive oil and natural gas production in the Bakken Formation, although no 

research has attempted to quantify the effect on bats. While Theodore Roosevelt National Park is 

afforded some protection from such disturbances, the Little Missouri National Grasslands and 

other private lands of the region are not protected from oil exploration. These areas include high 

quality bat habitat essential to support the diverse bat community of the region. The North 

Dakota Game and Fish Department currently lists six of the species found in western ND as 

Species of Conservation Priority. C. townsendii, E. fuscus, M. lucifugus, and M. septentrionalis 

are listed as Species of Conservation Priority Level I (highest priority), and M. ciliolabrum, M. 

evotis, and M. volans as Level III (moderate priority, populations assumed to be peripheral or 

nonbreeding in North Dakota). Four of these species have been captured exclusively in the 

badlands. Future investigations should aim to assess the effects of oil and natural gas 

development on bats. Management efforts should focus on preservation of critical habitats, 

particularly the badlands, and work to reduce the environmental impacts of oil and natural gas 

development in the region. 

 The northern long-eared bat, M. septentrionalis was recently listed as threatened 

by the U.S. Fish and Wildlife Service (U.S.F.W.S. 2015). Special consideration should be given 

to this species for future bat research in North Dakota. Along with M. lucifugus, M. 

septentrionalis has suffered significant population declines due to white-nose syndrome. Future 
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studies should assess roosting and foraging habitat selection of M. septentrionalis in North 

Dakota. It is currently unknown whether ND supports an over-wintering population of M. 

septentrionalis, or where any summer residents migrate to during the winter months. Further, the 

status of all over-wintering bat species populations in North Dakota is unclear. Future work is 

needed to identify hibernacula within the state as well as to assess migration corridors. The 

understanding of bat migration in the region is critical for making predictions about the potential 

spread of white-nose syndrome and the looming impacts to regional bat populations. 
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APPENDIX A. BAT CAPTURE LOCATIONS BY SPECIES 

Table A1. Capture locations of Corynorhinus townsendii 

Region County Latitude Longitude Number Captured 

Badlands Billings 46.95845 -103.50604 1 

Capture locations of Corynorhinus townsendii with study region, county, North latitude, West 

longitude, and numbers captured at each location. 

Table A2. Capture locations of Eptesicus fuscus 

Region County Latitude Longitude Number Captured 

Badlands Billings 47.30053 -103.58954 1 

Badlands Billings 47.31607 -103.48592 4 

Badlands Billings 46.94951 -103.53457 1 

Badlands Billings 46.95200 -103.49492 2 

Badlands Billings 46.92205 -103.45566 1 

Badlands Billings 46.95929 -103.50129 5 

Badlands Billings 46.93840 -103.38145 1 

Badlands McKenzie 47.60198 -103.27851 1 

Badlands McKenzie 47.59476 -103.31741 2 

Badlands McKenzie 47.59422 -103.31570 6 

Badlands McKenzie 47.59409 -103.33324 2 

Missouri River Valley McLean 47.21537 -100.96681 6 

Missouri River Valley McLean 47.21215 -100.96753 5 

Missouri River Valley McLean 47.21534 -100.96617 2 

Missouri River Valley Oliver 47.21504 -100.99831 10 

Capture locations of Eptesicus fuscus with study region, county, North latitude, West longitude, 

and numbers captured at each location. 
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Table A3. Capture locations of Lasionycteris noctivagans  

Region County Latitude Longitude Number Captured 

Badlands Billings 46.95929 -103.50129 1 

Missouri River Valley McKenzie 47.98080 -103.97305 1 

Missouri River Valley McLean 47.21215 -100.96753 1 

Missouri River Valley Oliver 47.21504 -100.99831 8 

Missouri River Valley Oliver 47.16420 -100.98298 1 

Pembina Gorge Cavalier 48.93917 -98.07454 2 

Red River Valley Bames 46.63182 -97.95002 1 

Red River Valley Grand Forks 47.94654 -97.50694 4 

Red River Valley Grand Forks 47.93742 -97.50542 1 

Red River Valley Grand Forks 47.93985 -97.49814 3 

Red River Valley Grand Forks 47.94646 -97.49587 1 

Red River Valley Grand Forks 47.93683 -97.49923 1 

Red River Valley Grand Forks 47.93683 -97.49923 17 

Red River Valley Grand Forks 47.94124 -97.50078 2 

Red River Valley Grand Forks 47.93597 -97.51567 6 

Turtle Mountains Bottineau 48.98541 -100.33795 1 

Capture locations of Lasionycteris noctivagans with study region, county, North latitude, West 

longitude, and numbers captured at each location. 

Table A4. Capture locations of Lasiurus borealis 

Region County Latitude Longitude Number Captured 

Red River Valley Grand Forks 47.93985 -97.49814 1 

Red River Valley Grand Forks 47.94124 -97.50078 1 

Turtle Mountains Bottineau 48.98541 -100.33795 1 

Turtle Mountains Bottineau 48.98665 -100.33560 2 

Capture locations of Lasiurus borealis with study region, county, North latitude, West longitude, 

and numbers captured at each location. 

Table A5. Capture locations of Lasiurus cinereus 

Region County Latitude Longitude Number Captured 

Badlands Billings 46.95200 -103.49492 1 

Badlands McKenzie 47.60198 -103.27851 1 

Capture locations of Lasiurus cinereus with study region, county, North latitude, West longitude, 

and numbers captured at each location. 
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Table A6. Capture locations of Myotis ciliolabrum 

Region County Latitude Longitude Number Captured 

Badlands Billings 47.30053 -103.58954 1 

Badlands Billings 47.31607 -103.48592 2 

Badlands Billings 46.95200 -103.49492 3 

Badlands Billings 46.92205 -103.45566 1 

Badlands Billings 46.93645 -103.42641 1 

Badlands Billings 46.95929 -103.50129 1 

Badlands Dunn 47.54946 -102.73499 4 

Badlands McKenzie 47.60198 -103.27851 2 

Badlands McKenzie 47.59422 -103.31570 1 

Badlands McKenzie 47.59938 -103.34322 1 

Capture locations of Myotis ciliolabrum with study region, county, North latitude, West 

longitude, and numbers captured at each location. 

Table A7. Capture locations of Myotis evotis 

Region County Latitude Longitude Number Captured 

Badlands Billings 47.30053 -103.58954 3 

Badlands Billings 46.95200 -103.49492 1 

Badlands Billings 46.92205 -103.45566 1 

Badlands Billings 46.95929 -103.50129 3 

Badlands Golden Valley 47.22910 -103.67386 1 

Badlands McKenzie 47.60198 -103.27851 1 

Badlands McKenzie 47.59476 -103.31741 3 

Capture locations of Myotis evotis with study region, county, North latitude, West longitude, and 

numbers captured at each location. 
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Table A8. Capture locations of Myotis lucifugus 

Region County Latitude Longitude Number Captured 

Badlands Billings 46.95200 -103.49492 2 

Badlands Billings 46.95929 -103.50129 1 

Badlands Billings 46.93840 -103.38145 1 

Badlands McKenzie 47.60198 -103.27851 3 

Badlands McKenzie 47.59461 -103.33757 54 

Badlands McKenzie 47.59476 -103.31741 2 

Badlands McKenzie 47.59422 -103.31570 12 

Missouri River Valley McLean 47.21537 -100.96681 17 

Missouri River Valley McLean 47.21534 -100.96617 2 

Missouri River Valley Oliver 47.21504 -100.99831 16 

Missouri River Valley Oliver 47.21224 -100.99941 44 

Missouri River Valley Oliver 47.16420 -100.98298 9 

Turtle Mountains Bottineau 48.98541 -100.33795 3 

Turtle Mountains Rollette 48.96189 -99.83408 3 

Capture locations of Myotis lucifugus with study region, county, North latitude, West longitude, 

and numbers captured at each location. 

Table A9. Capture locations of Myotis septentrionalis 

Region County Latitude Longitude Number Captured 

Badlands McKenzie 47.60198 -103.27851 2 

Badlands McKenzie 47.59476 -103.31741 2 

Badlands McKenzie 47.59422 -103.31570 1 

Missouri River Valley Oliver 47.21504 -100.99831 10 

Missouri River Valley Oliver 47.21224 -100.99941 2 

Missouri River Valley Oliver 47.16420 -100.98298 6 

Capture locations of Myotis septentrionalis with study region, county, North latitude, West 

longitude, and numbers captured at each location. 

Table A10. Capture locations of Myotis thysanodes 

Region County Latitude Longitude Number Captured 

Badlands McKenzie 47.59409 -103.33324 1 

Capture locations of Myotis thysanodes with study region, county, North latitude, West 

longitude, and numbers captured at each location. 
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Table A11. Capture locations of Myotis volans 

Region County Latitude Longitude Number Captured 

Badlands McKenzie 47.59409 -103.33324 1 

Capture locations of Myotis volans with study region, county, North latitude, West longitude, 

and numbers captured at each location. 
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APPENDIX B. BAT CAPTURES BY SEX 

Table B1. Bat Captures by Sex 2009-2012 

 Male Female %Male %Female 

COTO 1 0 100.00 0.00 

EPFU 15 34 30.61 69.39 

LANO 3 48 5.88 94.12 

LABO 1 4 20.00 80.00 

LACI 2 0 100.00 0.00 

MYCI 7 10 41.18 58.82 

MYEV 7 6 53.85 46.15 

MYLU 20 149 11.83 88.17 

MYSE 6 17 26.09 73.91 

MYTH 1 0 100.00 0.00 

MYVO 1 1 50.00 50.00 

Total 64 269 19.22 80.78 

Numbers of bats captured by sex with associated gender ratios in North Dakota, 2009-2012.  

COTO= C. townsendii, EPFU= E. fuscus, LANO= L. noctivagans, LABO= L. borealis, LACI= 

L. cinereus, MYCI=M. ciliolabrum, MYEV= M. evotis, MYLU= M. lucifugus, MYSE= M. 

septentrionalis, MYTH= M. thysanodes, MYVO= M. volans.  
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APPENDIX C. ADDITIONAL OCCURRENCE MAPS 

 

Figure C1. Occurrence Map with IUCN Distribution for M. ciliolabrum  

Map of M. ciliolabrum captures and the current IUCN species distribution. 
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Figure C2. Occurrence Map with IUCN Distribution for M. evotis  

Map of M. evotis captures and the current IUCN species distribution. 
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Figure C3. Occurrence Map with IUCN Distribution for M. septentrionalis  

Map of M. septentrionalis captures and the current IUCN species distribution. 
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Figure C4. Occurrence Map with IUCN Distribution for M. volans  

Map of M. volans captures and the current IUCN species distribution. 
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APPENDIX D. HABITAT SELECTION MATRICES 

Table D1. Habitat Selection Matrix of Myotis lucifugus for Theodore Roosevelt National Park 
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Habitat selection for habitat types in TRNP. A double sign (++, --) indicates significant (p < 

0.05) selection of habitat in row in reference to habitat in column. 
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Table D2. Habitat Selection Matrix of Myotis lucifugus for Cross Ranch State Park 
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Table D3. Individual Selection Ratios of Myotis lucifugus in Theodore Roosevelt National Park 

Bat ID 
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ML173 0.94 1.04 0.98 1.20 0.67 1.00 0.85 1.01 1.12 1.08 1.01 1.12 1.17 1.27 1.00 

ML174 1.44 0.93 0.93 1.04 1.14 1.07 1.30 0.89 1.41 1.10 1.23 1.41 1.00 0.94 1.03 

ML176 1.31 0.89 0.98 0.99 1.24 1.15 1.32 0.87 1.29 1.09 1.16 1.29 1.06 0.91 1.03 

ML178 1.02 0.87 1.05 0.91 1.23 1.22 1.24 0.90 0.89 1.06 0.97 0.89 1.13 0.92 1.01 

ML180 1.04 0.77 1.11 0.75 1.17 1.45 1.57 0.86 0.36 1.09 0.85 0.36 1.24 0.84 0.98 

ML181 1.35 0.89 0.98 0.97 1.05 1.18 1.39 0.89 1.03 1.11 1.11 1.03 1.09 0.94 1.01 

ML184 1.48 0.85 0.96 1.04 1.48 1.12 1.27 0.81 1.62 1.13 1.30 1.62 1.06 0.90 1.08 

Matrix of individual selection ratios of bats at Theodore Roosevelt National Park. Individual bats in rows with habitat types in 

columns. 

 

 

 

 

 

 

 

 



 

 

9
1
 

Table D4. Individual Selection Ratios of Myotis lucifugus in Cross Ranch State Park 

Bat ID 
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ML10 0.48 1.16 1.09 0.02 0.73 1.17 0.67 0.64 1.15 1.35 0.16 0.60 0.81 0.63 1.46 0.73 0.64 0.83 0.72 

ML11 0.49 1.35 1.21 0.02 0.33 0.56 0.32 0.26 1.39 0.95 0.08 0.25 0.79 0.13 1.09 0.41 0.18 0.69 0.39 

ML12 0.20 1.09 1.11 0.01 0.30 1.71 0.28 0.25 1.20 2.13 0.07 0.24 0.35 0.20 2.46 0.33 0.35 0.66 0.32 

ML13 0.63 1.11 1.00 0.08 1.06 0.95 0.97 1.04 1.06 1.12 0.28 0.96 0.95 1.34 1.18 0.87 0.97 0.97 0.89 

ML14 0.28 1.14 1.12 0.00 0.38 1.47 0.35 0.32 1.21 1.85 0.08 0.30 0.49 0.25 2.12 0.42 0.38 0.69 0.40 

ML15 0.25 1.12 1.11 0.01 0.35 1.48 0.33 0.30 1.21 1.93 0.08 0.28 0.43 0.27 2.23 0.37 0.35 0.68 0.36 

ML16 0.70 1.36 1.16 0.02 0.74 0.24 0.68 0.64 1.30 0.43 0.16 0.60 1.14 0.58 0.41 0.76 0.49 0.85 0.75 

ML17 0.45 1.24 1.19 0.02 0.48 1.30 0.45 0.38 1.25 1.25 0.11 0.36 0.77 0.22 1.34 0.57 0.48 0.75 0.55 

ML18 0.39 1.15 1.15 0.05 0.52 1.67 0.49 0.43 1.18 1.57 0.15 0.41 0.66 0.30 1.70 0.59 0.59 0.76 0.57 

ML19 0.48 1.16 1.10 0.11 0.65 1.25 0.61 0.57 1.16 1.39 0.21 0.53 0.77 0.49 1.51 0.68 0.59 0.81 0.67 

ML20 0.40 1.23 1.19 0.03 0.40 1.43 0.38 0.31 1.26 1.39 0.10 0.30 0.68 0.15 1.51 0.49 0.44 0.72 0.47 

ML22 0.07 1.08 1.20 0.00 0.05 2.52 0.04 0.04 1.24 2.42 0.01 0.03 0.11 0.02 2.76 0.06 0.43 0.58 0.05 

ML23 0.46 1.23 1.19 0.00 0.56 1.53 0.53 0.44 1.21 1.22 0.11 0.41 0.84 0.21 1.25 0.69 0.60 0.78 0.66 

ML24 0.31 1.18 1.18 0.03 0.32 1.65 0.31 0.26 1.25 1.70 0.09 0.25 0.52 0.14 1.90 0.39 0.42 0.68 0.37 

ML161 0.79 1.17 0.96 0.02 1.34 0.36 1.22 1.28 1.04 0.62 0.28 1.18 1.25 1.59 0.59 1.14 1.05 1.07 1.16 

ML162 0.75 1.41 1.19 0.01 0.78 0.11 0.73 0.61 1.31 0.21 0.16 0.57 1.32 0.30 0.11 0.96 0.42 0.86 0.91 

ML163 0.51 1.24 1.18 0.02 0.62 1.30 0.59 0.49 1.21 1.09 0.14 0.46 0.92 0.24 1.11 0.77 0.58 0.80 0.73 

Matrix of individual selection ratios of bats at Cross Ranch State Park. Individual bats in rows with habitat types in columns. 


