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ABSTRACT

The advent of phasor measurement units (PMUs) has unlocked several novel methods to

monitor, control, and protect bulk electric power systems. This thesis introduces the concept of

“Dynamic State Estimation” (DSE), aided by PMUs, for wide-area monitoring and protection of

power systems. Unlike traditional State Estimation where algebraic variables are estimated from

system measurements, DSE refers to a process to estimate the dynamic states associated with

synchronous generators. This thesis first establishes the viability of using particle filtering as a

technique to perform DSE in power systems. The utility of DSE for protection and wide-area

monitoring are then shown as potential novel applications. The work is presented as a collection

of several journal and conference papers.

In the first paper, we present a particle filtering approach to dynamically estimate the

states of a synchronous generator in a multi-machine setting considering the excitation and prime

mover control systems. The second paper proposes an improved out-of-step detection method for

generators by means of angular difference. The generator’s rotor angle is estimated with a particle

filter-based dynamic state estimator and the angular separation is then calculated by combining

the raw local phasor measurements with this estimate. The third paper introduces a particle

filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It

considers the situation where the field voltage measurements are not readily available. The particle

filter is modified to treat the field voltage as an unknown input which is sequentially estimated

along with the other dynamic states. The fourth paper proposes a novel framework for event

detection based on energy functions. The key idea is that any event in the system will leave a

signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance

events are buried in the components that constitute the energy function for the system. This

establishes a direct correspondence (or mapping) between an event and certain component(s) of

the energy function. The last paper considers the dynamic latency effect when the measurements

and estimated dynamics are transmitted from remote ends to a centralized location through the

networks.
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1. INTRODUCTION

Unlike traditional State Estimation where algebraic variables (voltage magnitudes and phase

angles) are estimated from system measurements, DSE refers to a process to estimate the dynamic

states associated with synchronous generators. Since State Estimation (SE) is based on the idea

that the system is in steady or quasi-steady state, it is extensively used for energy management

applications in modern control centers [1] in the steady-state operational context. When the sys-

tem is subject to a disturbance, the ensuing variations in states associated with all the dynamic

components cannot be extracted or retrieved through SE. In contrast with SE, DSE refers to the

problem of estimating and dynamically tracking the states of a synchronous generator and associ-

ated control units given a model of the system dynamics and measurements of physical variables. In

principle, DSE can be applied to any component whose dynamics are described through Ordinary

Differential Equations (ODEs). Synchronous generators constitute the heart of a power system and

not surprisingly, it is the most valuable asset in all system operation. A synchronous generator and

its primary control units – excitation system and turbine-governor are therefore natural choices for

the task of DSE.

Assuming that DSE can be performed, this thesis examines several fundamental questions

– How can the estimated dynamic states be put to use? Can they be computed in near real-time

to allow control and protection functions – traditionally done using readily measurable algebraic

variables - because of strict timing requirements? If so, can the functions be validated against

traditional methods in terms of their dependability and security?

This thesis shows that not only can DSE be robustly performed with the particle filter,

a purely nonlinear probability-based filter, but that the estimated states can be used to serve

protection and monitoring functions that are traditionally done using SE-type algebraic variables.

These advancements require the presence of Phasor Measurement Unit (PMU) for the angular

reference and the availability of computational resources which are increasingly becoming cheaper.

The following sections describe a road map for the development of the principal ideas and

results in this thesis.

1



1.1. A Particle Filter for Dynamic State Estimation of Synchronous Generators

DSE problem of a synchronous generator, which is at the heart of the power system dynam-

ics, will involve solving sets of nonlinear algebraic and differential equations. Customarily, DSE is

done using Kalman-based methods, using a model for the system dynamics and a model for the

system measurements.The extended Kalman filter (EKF) provides a natural starting point using

Bayesian nonlinear filtering techniques [2, 3]. Because the EKF relies on linearization, both the

accuracy of estimates and the tuning of the EKF strongly depend on the accuracy of lineariza-

tion. The unscented Kalman filter (UKF) improves the linearization accuracy of the EKF and

provides significant improvements over EKF estimates [4, 5]. An alternative to Kalman filtering

based approaches is the particle filter (PF)—a purely probability based estimator. Unlike the EKF

and UKF, PF is immune to nonlinearities and the presumption of Gaussian noise [6]. Therefore

it yields superior results at the expense of increased computational requirements. The scope for

particle filter-based estimator can be considerably expanded given the increasing availability of

performance computing resources and high fidelity measurements from PMUs with good sampling

rates.

1.2. Dynamic State Estimation Assisted Out-of-Step Detection for Generators

The results of DSE can be used to develop an application for synchronous generators,

specifically, Out of Step (OOS) protection. The state-of-the-art methods for OOS still use algebraic

variables – voltage and/or current. In contrast, we show that OOS can be performed using DSE.

While the approach requires the use of a PMU, it enables direct estimation/observation of the

angular variables during power swings unlike traditional methods where this variable is directly

unobservable. An out-of-step (OOS) event occurs when a generator (or a coherent group) exhibits

unstable power swings triggered by system disturbances which may potentially lead to loss of

synchronism between the unit(s) and the rest of the system. The prevalent methods for OOS relay

tuning are based on monitoring the rate of change and the trajectory of the positive impedance.

Since the problem of detecting the angle separation is projected into another space, it will require

substantial amount of system stability studies under different scenarios to determine the optimal

relay parameters. In this dissertation, a DSE-based method is proposed that calls for the most direct

form of stability assessment: by monitoring the angular difference between machine’s rotor angle
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and the phase angle of the voltage at the high-voltage (HV) side of the step-up transformer. This

provides a direct indication of the OOS conditions without making any simplifying assumptions,

and using local measurements.

1.3. Dynamic State Estimation Using Dual-filtering

Additionally, this dissertation develops a technique that allows DSE even under imperfect

or partially unknown models for the excitation subsystem. It is shown that the method can be

used to detect loss of excitation (LOE), an event that can severely undermine system stability.

The particle filter is modified to treat the field voltage as an unknown input which is sequentially

estimated along with the other dynamic states. The proposed method is able to provide reasonable

tracking results for the dynamic states and the field voltage simultaneously and rapidly tracks

minor excitation loss due to exciter internal failure while maintaining selectivity.

1.4. Dynamic State Estimation Assisted Application in Wide Area Measurement Sys-

tem

Wide Area Measurement Systems (WAMS) utilize measurements of several system vari-

ables from geographically dispersed locations and most commonly used for system monitoring and

control. It enables the monitoring of the transmission system over a large area. Wide area mon-

itoring, protection, and control system refers to using WAMS information and applying control

actions from a control center to remote sites. Such systems are targeted to utilize aggregated local

data to prevent the propagation of a disturbance and widespread outages. This dissertation applies

the syncrophasor measurements and estimated generator dynamics to one of the EMS application-

event detection. Power blackouts over the world have shown that power systems, although carefully

planned and protected, suffer from unforeseen events triggering instability. Such events often in-

clude misoperations of protective relays that result in unintended line trips, load shedding and

generation trip, which severely challenges the integrity of the system. Sometimes, these misopera-

tions go unchecked because global knowledge about actual system conditions is lacking. In order

to make the control actions more reliable, a new set of detection tools and analytical schemes are

developed based on wide area monitoring, protection and control system. Disturbance data from

PMUs have been used for identifying different disturbance events. One of the disadvantages of

this method is that it is purely data-driven. There is no physical basis to understand or correlate

which feature is most affected by which disturbance event. In contrast, a different method based
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on energy functions is proposed in this dissertation. Any event or a disturbance in the system will

leave a signature (like a fingerprint) in WAMS datasets. Such a signature is actually buried in the

components that constitute the energy function for the system. The trick is in determining which

(among the numerous) components of the energy function is sensitive, or reflective of the corre-

sponding disturbance. The components of an energy function depend on bus voltages that can be

measured directly and network parameters, as well as several internal state variables of generators.

The proposed PF-based estimator enables us to continuously track the internal state variables and

hence the construct the energy function components. The new approach is completed by monitor

the sensitivity of specific energy function components to detect and classify events.

The increases in the volume of the data has to be accommodated by communication networks

while honoring the timing requirements for wide area monitoring, control and protection applica-

tions. This requires careful analysis of two factors: the latencies introduced by the communication

network and the Phasor Data Concentrator (PDC) - the entity responsible for time alignment of

PMU data to ensure the measurements are synchronized. It has been shown that variable latencies

up to tens of milliseconds can be tolerated for several wide area applications. However, there are

certain scenarios where the latencies can build up to hundreds of milliseconds [7] (e.g. communica-

tion system error correction and data re-transmission). A PDC commonly is in charge of aggregate

data from multiple channels, when the transmitted data is lost in one channel (or more than one

channel) and retrieval is requested and performed, the time consumption of arrival at PDC side

can be significantly prolonged. As long as the waiting time threshold is not exceeded, PDC will

not forward any new data. Generally, the end-to-end latency is affected by the network, transport,

data link and the physical layer. Variability of the latency is subject to several non-deterministic

factors. Given the diversity in communication channels, routing protocols, and the competition

for increased data throughput subject to finite link capacities, it is suggested in this dissertation

that the latencies that actually occur in these systems can be dynamic. A transport delay model

is used to account for continuously varying latencies in communication systems, a PDC model is

proposed for time synchronization subject to time varying latencies. A power oscillation monitoring

application with standard modal analysis tools is utilized to study the impact of dynamic latency.
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1.5. Dissertation Organization

This dissertation is organized as follows: the background for the dynamic state estimation

problem and application based on the estimated dynamics are introduced in the first chapter; the

second chapter develops the particle filter-based method to solve the DSE problem considering

detailed models for synchronous generators in a multi-machine setting; the third chapter discusses

a new out-of-step detection approach based on the estimated rotor angle by a particle filter-based

estimator. The fourth chapter develops the DSE method under partially unknown models; the

fifth chapter introduces a novel method for event detection in a wide area sense, by utilizing

the synchrophasor information from PMUs as well as the estimated dynamics; the sixth chapter

examines the effect of dynamic latency for WAMS applications, and the last chapter concludes this

dissertation.

5



2. A PARTICLE FILTER FOR DYNAMIC STATE

ESTIMATION IN MULTI-MACHINE SYSTEMS WITH

DETAILED MODELS

This chapter is based on the work ”A particle filter for dynamic state estimation in multi-

machine systems with detailed models,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp.

3377-3385, Nov 2015 (doi: 10.1109/TPWRS.2014.2387792). The authors of the paper are Yinan

Cui1 and Rajesh G. Kavasseri.

2.1. Introduction

Dynamic State Estimation (DSE) in the context of a synchronous machine refers to the

problem of estimating and dynamically tracking the states of a synchronous generator and associ-

ated control units given a model of the system dynamics and measurements of physical variables [8].

PMU-assisted DSE is the key enabler for emerging paradigms such as the so called “setting-less”

protection [9] where potential applications for DSE are discussed. The extended Kalman filter

(EKF) [6] provides a natural starting point since the DSE is a nonlinear filtering problem. The

feasibility of EKF for DSE was reported in [10]. Because the EKF relies on linearization, both the

accuracy of estimates and the tuning of the EKF strongly depend on the accuracy of linearization.

The unscented Kalman filter (UKF) improves the first order accuracy of the EKF and provides

significant improvements over EKF estimates. The work in [11] shows that the UKF improves

the estimation accuracy compared to the EKF. A decentralized DSE scheme has been proposed

in [5] and tests have been implemented thoroughly on a multi-machine system. In a single machine

infinite bus (SMIB) setting, the EKF and UKF have also been proposed in [12] and [13] respec-

tively. In [13], input mechanical power (from the prime mover) and field voltage are assumed to be

accessible to PMUs while paper [12] estimates the field voltage as well as the the generator states.

An alternative to Kalman filtering based approaches is the particle filter - a purely prob-

ability based estimator. Unlike the EKF and UKF, the particle filter is immune to nonlinearities

and yields superior results at the expense of increased computational requirements, [6]. However,

1Yinan Cui was the first author and responsible for writing the manuscript and applying simulation tests. Dr.
Rajesh G. Kavasseri served as the proofreader and gave recommendations and guidance on drafting the paper.
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the scope for particle filter-based estimation can be considerably expanded given the increasing

availability of performance computing resources and high fidelity measurements from PMUs with

good sampling rates. A particle filter (PF) considering the classical generator model is reported

in [14] and extended in [15] to cover a generator model with transient dynamics, again in a SMIB

setting. In [15], the mechanical power (assumed noise-free) is estimated using a lower-pass filter and

the field voltage is estimated with pseudo-dynamic model which eliminates the fast dynamics from

the exciter. The results also demonstrate that the particle filter would diverge when the sampling

rate of the measurement is lower than the frequency of implementation of iteration.

In this paper, we show that the particle filter is suitable for DSE in a much more general case

and can provide superior results (compared to UKF) at the expense of increased computational

resources. Specifically, we include: (a) detailed models for synchronous generators - where the

transient and subtransient dynamics are represented, (b) dynamic models for the excitation (IEEE

DC1A, DC2A, AC5A) and prime mover components (steam and hydro) and (c) consider a multi-

machine setting (the IEEE-14 bus system).The estimation accuracy of the proposed particle filter

is compared with the UKF for several case studies. The rest of this paper is organized as follows.

Sec. 2.2 presents the relevant background on particle filters. Sec. 2.3 describes the dynamic models

and Sec. 2.4 describes how DSE is achieved with particle filters. The main results are presented in

Sec. 2.5 along with evaluation/discussion in Sec. 2.6. The conclusions are noted in Sec. 2.7.

2.2. Particle Filtering Method

A discrete time state representation of the system dynamics is assumed of the form:

xk = fk(xk−1, uk−1, nk−1) (2.1)

where the system state at step k xk is a function (possibly nonlinear, represented by f) of the

previous state xk−1, system input uk−1 and nk−1, which is an i.i.d (independent and identically

distributed) system process noise. The objective of the filter is to estimate the state xk recursively

based on the system representation along with the measurements function, given by:

zk = hk(xk, uk,mk) (2.2)
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where measurement zk is a function (possibly nonlinear, represented by h) of the state xk, input

uk and mk, which is an i.i.d measurement process noise sequence.

From a Bayesian perspective, the state xk can be recursively calculated if measurements up

to step k are accessible. The PF is a filtering technique which implements Bayesian tracking using

Sequential Monte Carlo method, in which case the posterior density function is approximated by

a set of weighted randomly generated samples. As the number of samples increases, the posterior

density function provides a closer approximation to the true representation (optimal Bayesian

solution). The density function is represented by:

p(x0:k|z0:k) ≈
N∑
j=1

wjk∆(x0:k − xj0:k) (2.3)

where x0:k is the set of all states up to step k, z0:k the set of measurements up to step k, ∆ the

delta function, xj0:k(j = 1, . . . , N) a set of particles, N the number of particles and wjk a set of

weights for particles chosen by Importance Sampling (IS) normalized such that
∑
j wk = 1 [16]. A

common problem with IS is degeneracy.

A suitable measurement of the degeneracy is the effective sample size (ESS) (small value

would indicate severe degeneracy), which is introduced in [17]:

ESS =
N

1 + V ar(ŵjk)
≈ 1

ΣN
j=1(wjk)

2
= ÊSS (2.4)

where V ar(ŵik) is the variance of the true weights, which is practically impossible to obtain. The

approximation ÊSS is often used.

It is shown in [18] that the variance of the importance weights can only increase (stochas-

tically) over time. Therefore, most of the particles would have negligible corresponding weights,

which means only a few particles will actually contribute to the estimation. One of the methods to

overcome this undesirable problem is resampling.

The fundamental objective of resampling is to substitute those particles with negligible

weights by drawing new samples from an approximated posterior density function such that the

new sample would have equal weights. Among all the resampling methods, systematic resampling

is often preferred because of its computational simplicity, good empirical performance [19] and
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efficiency [17]. We implement systematic resampling method for particle filtering in this paper.

The general particle filtering algorithm is summarized as follows:

2.2.1. Initialization of The Filter

The system states are initialized with steady-state value at step k = 0, N particles are

randomly generated based on the initial value for each system state:


x0 = x∗0

xjp = xp0 + εj p = 1, . . . , l

(2.5)

where x0 is the system initial state vector, x∗ the steady-state values (or the expected value) of

the states, xjp is a support particle, xp0 is a state in x0, l is the number of system states and εj is

a scalar randomly drawn from the known pdf of ε.

2.2.2. System Dynamics Propagation

At step k = 1, . . . , L, a priori (denoted by ”−”) estimate of particles is calculated using

(2.1) with knowledge of last step system input and a posterior estimate of particles (denoted by

”+”):

xj−k = fk(x
j+
k−1, uk−1, n

j
k−1) j = 1, . . . , N (2.6)

where process noise njk−1 is randomly generated based on the known pdf of nk−1.

2.2.3. Weights Generation

If the measurement function with respect to system states (particles) and inputs and pdf

of the measurement noise are known, then the conditional probability of the particle xj−k can be

evaluated after the the measurement is received at step k. The associated weight wjk of particle

xj−k is equal to the probability of measurement vector zk, which equals to the corresponding vector

measured values z∗k, given that the state xk is assumed to be equal to the particle xj−k , denoted

by P [zk = z∗k|xk = xj−k ]. Generally, the measurement noise vector mk is normal distributed

(mk ∼ N(0, R), R is measurement covariance matrix). Therefore, as introduced in [6], the weights

can be obtained by:

wjk = P [zk = z∗|xk = xj−k ] = P [mk = z∗k − h(xj−k )]
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∝ 1√
R(2π)d

exp(
−[z∗k − h(xj−k )]tR−1[z∗k − h(xj−k )]

2
) (2.7)

where d is the dimension of measurement vector zk and h represents a measurement function vector.

If the above function is implemented to all the particles, then both sides of the representation are

equal to each other.

After getting all the associated weights, a normalization is applied to make sure the sum-

mation of conditional probability equals to one:

wk =
wk

ΣN
j=1w

j
k

(2.8)

where wk is the weight vector at step k.

2.2.4. Particles Resampling

Based on systematic resampling method, if ÊSS in (2.4) is less than a certain threshold

value ÊSSTh, new particles for step k will be sampled based on the normalized weights. The

following steps would be implemented for each particle xj−k (j = 1, . . . , N):

• Generate a random number u, where u ∼ U(0, 1)

• Find an integer r such that Σr−1
i=1w

i
k <

j−1+r
N ≤ Σr

i=1w
i
k

• Assign the corresponding values to a posterior particle: xj+k = xr−k

• Set all the weights equal: wjk = 1
N

2.2.5. State Estimation

Since a posterior particles xj+k (j = 1, . . . , N) at step k are distributed based on the pdf

p(xk|zk), the state xk could be estimated simply by calculating the algebraic mean of the particles:

xk ≈
N∑
j=1

xj+k wjk =
1

N

N∑
j=1

xj+k (2.9)

2.3. Dynamic Models

While detailed models for synchronous machines can extend up to the fourteen-th order

model [20], several transients related to the system network/machine stator usually decay very
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rapidly and the influence caused by those transients could be neglected [21]. Here, we represent

dynamics up to the subtransient level and consider the following synchronous machine model (for

notations, please see [22]):

δ̇i = 2πf0(ωi − ω0)

ω̇i =
1

Hi
(Tmi − Tei −Diωi)

Ė′di =
1

T ′qoi
(−E′di − (Xqi −X ′qi)iqi)

Ė′qi =
1

T ′doi
(Efdi − E

′
qi + (Xdi −X

′
di)idi)

Ė′′di =
1

T ′′qoi
(E′di − E

′′
di − (X ′qi −X

′′
qi)iqi)

Ė′′qi =
1

T ′′doi
(E′qi − E

′′
qi + (X ′di −X

′′
di)idi) (2.10)

where i is the synchronous generator index (i = 1, 2, . . . ,m), δ the rotor angle, f0 the nominal

frequency, ω0 the nominal synchronous speed, ω the rotor speed, H the inertia constant, Tm the

mechanical torque, Te the electrical torque across the air gap (approximately equal to the real

power, Te ≈ Pe) and Efd the output voltage of the exciter. E′d and E′q are dq components of

internal voltage behind a transient reactance (E′ = Vs + jX ′dIs); E
′′
d and E′′q are dq components of

internal voltage behind a subtransient reactance (E′′ = Vs + jX ′′d Is) [23]; Vs is the terminal voltage

and Is is the stator current.

As mentioned in the last section, our work does not require (or assume) that the quantities

Tm and Efd are accessible through the PMUs. Therefore, these two states are treated as system

states and tracked by the estimator. To setup a more general study, IEEE DC1A, DC2A and AC5A

excitation systems [24] are considered for different generators. If the transient gain reduction unit is

not required (since Power System Stabilizer (PSS) is applied to the excitation system and assumed

to be measurable), the voltage regulator and exciter for synchronous machines could be expressed

as follows:

V̇Ri =
1

TAi

(KAi(VPSSi + Vrefi − |Vsi | − Vfi)− VRi)

Ėfdi =
1

TEi

(VRi −KEiEfdi) (2.11)
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where VR is the voltage output of a voltage regulator, VPSS the measured PSS signal, Vref the

reference terminal voltage magnitude, Vfi the output of the excitation system stabilizer and |Vsi |

the stator voltage magnitude (also treated as terminal voltage magnitude). Other notations are

defined in the Appendix.

We simplify ESS for different excitation systems as:

V̇fi =
1

Tfi
(KfiĖfdi − Vfi) (2.12)

or

V̇fi =
1

Tfi
(Kfi V̇Ri − Vfi) (2.13)

Equation (2.12) is applied to DC1A and DC2A systems while equation (2.13) is to the AC5A

system.

A general steam turbine with no reheater and governor models [25] (a faster response to

a perturbation) is considered for the prime-mover control system. The speed governor is in boiler

leading mode of control, which leads to a unit boiler pressure approximately [26]. Automatic

generation control is applied with integral control (load frequency control(LFC)). Neglecting the

speed relay process, the prime-mover dynamics is represented by:

Ṗsi = −(
1

Rpi
ω̇i +KLi(ωi − ω0))

Ṗgoi =
1

Tsmi

(Psi + Prefi − Pgoi)

Ṫmi =
1

TCHi

(Pgoi − Tmi) (2.14)

where Ps is the power change after the droop and LFC unit, Rp the permanent droop, Pgo the gate

opening signal and Pref the mechanical power reference.

We also include hydraulic turbine and governor equivalent models for stability studies [25,27]

in prime-mover control system. The speed governor is modeled as a PI controller, we neglect the

transient droop compensation, power error goes through the permanent droop. We apply the

approximate linear model for hydro-turbine for the sake of generality. The model is represented
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by:

Ṗsi = Kpi ˙ωerr +Kiiωerr

Ṗgoi =
1

Tsmi

Ksmi(Psi − Pgoi)

Ṫmi =
2

Twi

(Pgoi − Twi
˙Pgoi − Tmi) (2.15)

Where

ωerr = (ω0 − ωi)−Rpi(Tei − Prefi)

Ps is the output of PI controller in speed governor, Rp the permanent droop, Pref the mechanical

power reference, Pgo the gate opening signal and Tw the water time constant.

Physical limits on the excitation and prime-mover variables in (2.11), (2.14) (2.15) are

accounted by:

VRi,min ≤ VRi ≤ VRi,max

0 ≤ Pgoi ≤ Pgoi,max (2.16)

Since stator transients are neglected, the stator voltage equation neglecting resistance is

given by:

Vdi = E′′di −X
′′
qiIq

Vqi = E′′qi +X ′′diId (2.17)

We assume that the states in each estimation step are in quasi-steady state for dynamic

estimation, and therefore, it is appropriate to use algebraic equations to model the interconnecting

of transmission network. Therefore, the multi-machine system model can be represented by (2.10) -

(2.15), which subject to (2.16), (2.17) and network algebraic constraints (A.1) (see Appendix for

details).
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Figure 2.1. A quasi-static phasor diagram for a synchronous generator with d-axis leading.

According to the phasor diagram shown in Fig. 2.1, rotor angle δ is defined as the phase

angle of q-axis component of generator internal voltage behind a reactance (Eq = Vs + jXqIs).

Assuming the terminal voltage is measurable from a PMU denoted by Vs = |Vs|6 θ, stator voltage

components in dq reference of frame can be obtained as:

Vdi = |Vsi |sin(θi − δi)

Vqi = |Vsi |cos(θi − δi) (2.18)

Substituting corresponding terms in (2.17), stator current components are given by:

Idi =
|Vsi |cos(θi − δi)− E′′qi

X ′′di

Iqi =
E′′di − |Vsi |sin(θi − δi)

X ′′qi
(2.19)

Hence, the real power and reactive power from machine i can be calculated by:

Pgi = VdiIdi + VqiIqi

Qgi = VdiIqi − VqiIdi (2.20)
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2.4. Particle Filter based Dynamic State Estimation

From the models developed in Sec. 2.3, the overall system model can be represented by:

˙̃xi = fi(x̃i, ũi, ñi)

z̃i = hi(x̃i, ũi, m̃i) (2.21)

subject to inequality and equality constraints:

gi,min ≤ g1,i(x̃i) ≤ gi,max

0 = g2,i(x̃i, ũi) (2.22)

The state vector x̃i is defined as:

x̃i = [x1i x2i x3i x4i x5i x6i x7i x8i x9i x10i x11i x12i ]
T

= [δi ωi E
′
di E

′
qi E

′′
di E

′′
qi VRi Efdi Vfi Psi Pgoi Tmi ]

T

The input vector ũi is defined as:

ũi = [u1i u2i u3i u4i u5i ]
T = [|Vsi | θi |Isi | φi VPSSi ]

T

The output vector z̃i is defined as:

zi = [z1i z2i ] = [Pgi , Qgi ]
T

where i is the i-th generator in the system, fi describes the system dynamics referring to (2.10) -

(2.15), ñi the process error, hi the measurement representation referring to (2.18) - (2.20), m̃i the

measurement error, g1,i the controller limits referring to (2.16), gi,min and gi,max the lower and

higher bounds of voltage regulator output and gate opening signal, g2,i the system network equation

algebraic constraints (A.1). We assume that each generator bus in the system is equipped with

a PMU which provides measurements of terminal voltage and current, namely, |Vs|6 θ = Vs and

|Is|6 φ = Is. The power injections from generators are accessible through the PMUs, we neglect the
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equality constraints in (2.22) in this study. All the phasor measurements are from positive sequence

calculation using raw three-phase phasors produced by discrete Fourier transform [28]. We assume

that real and reactive power outputs of the generators are also available from the PMUs since they

be computed from the measurable phasors.

We notice that differential equations (2.11) - (2.13) of x7i , x8i and x9i (VRi and Efdi and Vfi)

do not involve any other system states except for themselves, and hence variables in measurement

equations (2.18) - (2.20) do not include these states. Direct propagation under these circumstance

may degrade the estimates. In order to relate these measurements to corresponding states and

apply importance sampling to generate the weights, we replace |Vsi | in (2.11) with a function of

current phasor measurement and the states. Similar to the transformation performed in (2.18) for

voltage term, the dq current components are given by:

Idi = |Isi |sin(φi − δi)

Iqi = |Isi |cos(φi − δi) (2.23)

The magnitude of the terminal voltage is then represented by:

|Vsi | = ([x5i −X ′′qiu3icos(u4i − x1i)]
2

+ [x6i +X ′′diu3isin(u4i − x1i)]
2)

1
2 (2.24)

To simplify the procedure of recursive dynamic tracking of the system states, Euler’s method

is applied on (2.21) to obtain the state sequence representations. In general, the difference equation

is formulated approximately by:

xj−k = xj+k−1 + [f(xj+k−1, uk−1) + nk−1]∆t (2.25)

where ∆t is the estimation sampling time interval, k the estimation step and j the particle number.

2.5. Results

The performance of the proposed PF and UKF are tested and evaluated on IEEE 14-bus

system [29], shown in Fig. 2.2. Each generator contributes 12 state variables which yields a total of
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Figure 2.2. IEEE 14-bus system.

60 state variables for the entire system. According to a NERC report [30], most PMUs are capable

of sampling 30 measurements per second. In this study, the measurement sampling rate for all test

cases is 30 measurements/s. In our DSE algorithm, we assume that the system output remains

unchanged for each estimation step between every two PMUs’ measurement sampling instants. We

simulate the system in MATLAB/Simulink, and synthesize the corrupted measurements from the

noise-free simulation results. We assume the simulation results are true values of system states.

The sampling rate of DSE is 200 steps per second. In accordance with the IEEE standard for

synchrophasors [31], the maximum allowable total vector error (TVE) is 1%. Therefore, measured

values (voltage, current, real and reactive power) in (2.21) would have 1% Gaussian white noise;

1% Gaussian white noise would be added to each equations in (2.21) as process noise. The PF and

UKF are both initialized with steady state values (obtained from pre-disturbance system condition).

Two universally constant values are defined as: f0 = 60 (Hz), ω0 = 1.0 (pu)

In the following subsections, tracking results are presented for three cases listed below:

• Temporary (6 cycles) 3 phase to ground fault on line;

• 3 phase to ground fault on line section: followed by permanent loss of line

• Sudden addition of load at bus
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The simulations were carried out on a desktop PC with 3.4 GHz, core i7 processor and

8G memory. In all simulations that present estimation results, the true states are represented by

dashed lines, while solid lines represent UKF estimations and dotted lines are PF estimations. Note

that in many cases, the PF and UKF, both very closely track the true states and hence the lines

overlap. However, there are exceptions when the hydro-turbine models are considered. These are

noted separately and discussed. In what follows, we first present the dynamic tracking results for

three cases.

2.5.1. Temporary (6 cycles) 3 Phase to Ground Fault on Line

a three-phase ground fault is applied on line connecting bus #2 and bus #3 near bus #2,

at t = 6.0 (s). 6 cycles later, at t = 6.1 (s), the fault is cleared without opening the circuit breakers,

the network configuration is unchanged and the post-disturbance system is stable. Generator

#2 (denoted by G2) hosts a hydro-turbine and a DC1A exciter. The measurements for G2 are

displayed in Fig. 2.3 (the measurements for G4 and other generators in the following cases are

similar). Estimation results by PF and UKF for G2 and its excitation controller are illustrated in

Fig. 2.4. Number of particles for PF for each state variable in this study case is 50. Estimation

results from 10 randomly selected trials out of 100 for the mechanical torque for G2 are shown in

Fig. 2.5. Generator #4 (denoted by G4) is equipped with a steam-turbine and an AC5A exciter.

Estimation results by PF and UKF for G4 and its excitation controller are illustrated in Fig. 2.6.

10 (randomly selected) trials of mechanical torque estimation are shown in Fig. 2.7.
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Figure 2.3. Measured quantities for G2.
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Figure 2.4. Estimation results for G2 and its exciter by PF and UKF.
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Figure 2.5. Estimation results of mechanical torque for G2 (hosts a hydro-turbine) by PF and
UKF in 10 trials, dashed line is the actual mechanical torque.
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Figure 2.6. Estimation results for G4 and its exciter by PF and UKF.
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Figure 2.7. Estimation results of mechanical torque for G4 (hosts a hydro-turbine) by PF and
UKF in 10 trials, dashed line is the actual mechanical torque.
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2.5.2. Three-phase Ground Fault with Permanent Line Trip

A three-phase ground fault is applied on line connecting bus #2 and bus #3 near bus #2,

at t = 6.0 (s). 9 cycles later, at t = 6.15 (s), the fault is cleared by opening the circuit breakers

equipped at both end of the line, the network configuration is changed and the post-disturbance

system is stable. Generator #1 (denoted by G1) is equipped with a steam-turbine and an AC5A

exciter. Estimation results by PF and UKF for G1 and its excitation controller are illustrated in

Fig. 2.8. The true states values from simulation results are given by dashed lines while solid lines

represent UKF estimations and dotted lines are PF estimations. Number of particles for PF for

each state variable in this study case is 50.
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Figure 2.8. Estimation results for G1 and its exciter by PF and UKF.

2.5.3. Temporary Additional Load

A temporary load addition at bus #12 is considered. The load (constant impedance voltage

dependent) is applied at bus #12 at t = 6.0 (s), and the load is dropped at t = 11.0 (s).The network

configuration is unchanged and the post disturbance system is stable. Generator #3 (denoted by

G3)is equipped with a hydro-turbine and a DC2A exciter. Estimation results using PF and UKF
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Figure 2.9. Estimation results for G3 and its exciter by PF and UKF.
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Figure 2.10. Estimation results of mechanical torque for G3 by PF and UKF in 10 trials, dashed
line is the actual mechanical torque.
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and its controllers are illustrated in Fig. 2.9. The true states values from simulation results are given

by dashed lines while solid lines represent UKF estimations and dotted lines are PF estimations.

Number of particles for each state variable is 50 in this case. Estimation results (10 trials out of

100) of mechanical torque for G3 are shown in Fig. 2.10.

Mean values and corresponding standard deviations of RMSD in 100 trials are evaluated,

comparison of performance between PF and UKF in Case 2.5.1, 2.5.2 and 2.5.3 are summarized in

Fig. 2.11.

2.6. Evaluation and Discussion

In general, we note (from Figs. 2.4, 2.6, 2.8 and 2.9) that PF and UKF are all able to track

the states with comparable performance for different classes of disturbances. To evaluate their

performance further and explore the stochastic features more carefully, we implement 100 tracking

trials. The tracking performance of PF and UKF are presented in Fig. 2.11 which depicts the

standard deviation and mean for both filters, for all the state variables.
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Table 2.1. RMSD of estimation results of G5 and its controllers for different choices of N (number
of particles)

Number of Particle

State Variable (UKF rmsd) 50 80 120 150

δ5 (0.0319) 0.0336 0.0259 0.0238 0.0233

ω5 (0.0028) 0.0005 0.0003 0.0003 0.0002

E′d5 (0.0276) 0.0263 0.0215 0.0204 0.0200

E′q5 (0.0097) 0.0145 0.0142 0.0126 0.0133

E′′d5 (0.0295) 0.0295 0.0240 0.0226 0.0222

E′′q5 (0.0097) 0.0122 0.0109 0.0099 0.0103

VR5 (0.5910) 0.5668 0.5672 0.5679 0.5658

Efd5 (0.1919) 0.1145 0.1162 0.1210 0.1204

Vf5 (0.0135) 0.0128 0.0129 0.0128 0.0128

Ps5 (0.4235) 0.4380 0.4244 0.4223 0.4222

Pgo5 (0.0118) 0.0536 0.0301 0.0177 0.0121

Tm5 (0.0098) 0.0482 0.0255 0.0144 0.0097

Fig. 2.11 shows that while the performance of both filters are comparable for Case 2, the

PF significantly outperforms the UKF for the Cases 1 and 3. We also note from Figs.2.5, 2.10

and 2.11 that for cases involving an approximate linear model for the hydroturbine, the PF again,

provides better tracking performance over the UKF. For the cases that involve a steam-turbine,

both filters provide comparable performance as seen from Fig. 2.7.

Next, we consider the “best-case” result for the UKF (i.e. when the UKF’s performance

is better than the PF) and study the effect of increasing the number of particles. The higher

the number of particles N , the better the accuracy and higher the computational burden. The

results are summarized in Table. 2.1 (It should be noted that the run-time times are hardware

dependent). This set considers Generator #5 (denoted by G5), which hosts a steam-turbine, an

AC5A type exciter under Case 2.5.3. From Table 2.1, we find that by increasing the number of

particles N , the tracking performance of the PF can attain parity or outperform the UKF. For

both filters, we also note that the RMSD is relatively higher for VR and Efd compared to the other

state variables. This may be attributed to the high gain in the excitation control loop. However,

one should also note that: (a) PF may not generate more accurate estimation in some cases for
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some state variables(e.g. E′q5 in Table. 2.1), (b) the PF may also diverge in certain circumstances

and (c) the computational burden for PF increases with the number of particles. For computation

time comparison of EKF, UKF and PF with different number of particles, please note [32], though

the results there consider a lower dimension nonlinear system. It should be pointed out that the

PF inherits limitations typical to nonlinear filters such as: (a) sensitivity to initial conditions: poor

choices may cause divergence, (b) convergence speed: the higher the number of particles, the faster

the convergence and vice-versa: lower number of particles leads to a sluggish convergence and (c)

model parameter errors will influence the filter performance.

2.7. Conclusion

A particle filter is developed to dynamically estimate the states for a detailed synchronous

generator model in a multi-machine setting. The filter allows the inclusion of dynamic subcompo-

nents - mainly the exciter and the prime mover control system. While the three IEEE standard

exciters, a general steam turbine and a hydro-turbine model are considered here, the proposed

model can be readily extended to include other dynamic models for these components. The fil-

ter factors available measurements from the generator (real/reactive power outputs) and exploits

phasor information (both stator voltage and current) from PMUs assumed available at the gener-

ator bus. The performance of the proposed filter is compared with the unscented Kalman filter

and assessed by determining the RMSD of the estimation. Dynamic simulations indicate that the

proposed filter tracks the states with reasonable accuracy and reliability for three classes of distur-

bances, for several trials on the IEEE 14-bus system. The proposed filter: (i) does not require the

field voltage and mechanical power from PMUs and (ii) allows the inclusion of dynamic blocks such

as the exciter and prime mover and (iii) is illustrated on a multi-machine setting. With advances in

computational resources, the work suggests the potential of using particle filters for (near) real-time

security and control applications.
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3. DYNAMIC STATE ESTIMATION ASSISTED

OUT-OF-STEP DETECTION FOR GENERATORS USING

ANGULAR DIFFERENCE

This chapter is based on the work ”Dynamic State Estimation Assisted Out-of-Step De-

tection for Generators Using Angular Difference,” IEEE Transactions on Power Delivery (doi:

10.1109/TPWRD.2016.2615594). The authors of the paper are Yinan Cui1, Rajesh G. Kavasseri

and Sukumar M. Brahma.

3.1. Introduction

An out-of-step (OOS) event occurs when a generator (or a coherent group) exhibits unstable

power swings triggered by system disturbances which may potentially lead to loss of synchronism

between the unit(s) and the rest of the system. Such events are traditionally detected by dedicated

OOS relays. The prevalent methods for OOS relay tuning are based on monitoring the rate of change

and the trajectory of the positive sequence impedance, and require substantial amount of system

stability studies under different scenarios to determine the optimal relay parameters [33]. The most

secure scheme for determining OOS condition is Trip-On-Way-Out in single and double blinder

schemes [33]. However, the security comes at the cost of extended time for pole slipping, subjecting

the generator to pulsating torque, high rotor iron currents, and stator currents potentially higher

than short-circuit rating [34, 35]. This is considered as one of the gaps in secure detection of OOS

conditions [36].

The other drawback of currently used OOS schemes is that the angular separation between

breaker contacts is high when it is opened after detection of OOS condition, bringing extensive stress

to the breaker. Unless the breaker is dedicated for an OOS duty, the tripping will be intentionally

postponed until the angle separation goes beyond a certain value (e.g. 270◦). This is tentatively

achieved by the Trip-On-Way-Out in single and double blinder schemes [33], but at the cost of

extended period of pole-slipping, and associated stresses on generator.

1Yinan Cui was the first author and responsible for writing the manuscript and applying simulation tests. Dr.
Rajesh G. Kavasseri and Dr. Sukumar M. Brahma served as the proofreader and gave recommendations on drafting
the paper.
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It would therefore be useful if the detection of unstable swings can be made earlier without

losing security. Considerable research work has been done to predict the swing stability beforehand

such that trip could be initiated at a small angular value, so operation of both breaker and generator

can be made safer. The equal-area criterion in time domain using only local power output informa-

tion is studied in [37]. A state-plane method is applied to detect loss of synchronism in [38]. OOS

protection for distributed generation unit using equal-area criterion is examined in [39]. While the

equal-area criterion is a widely used basis to devise settings for the OOS relay, some of the under-

lying assumptions behind it include: (a) the single-machine-infinite bus (SMIB) treatment for the

generator under consideration with the rest of the system abstracted as an infinite bus, (b) neglect-

ing flux decay, effects of high-gain automatic voltage regulators (AVR), supplementary controllers

such as power system stabilizers, and frequency control loops. When such effects are modeled in a

general multi-machine scenario, unstable swings could occur beyond the first swing (time frame of

interest can extend to 10 seconds and above) [40] and include multiple dynamic modes. Since these

traditional assumptions are restrictive, alternate methods have been proposed to improve OOS

schemes. Neural network and fuzzy logic based methods are reported in [41] and [42] respectively

to predict the stability of the swings in real-time using synchrophasor information to enhance OOS

detection. A standing limitation of such soft-computing based methods is the requirement for large

training sets which involves extensive case studies. A Lyapunov-based direct method is applied to

on-line monitoring of rotor angle stability [43] using the maximum Lyapunov exponent to predict an

OOS condition. A real-time loss-of-synchronism detection algorithm using energy function analysis

is proposed in [44]. While these methods show satisfactory performance, they do require wide-area

information to make centralized decisions which elevates the complexity for local OOS protection.

Dynamic state estimation (DSE) is an emerging paradigm exploiting the computation power

and availability of synchrophasor measurements to estimate the internal variables of generators. The

dynamic nature and off-nominal-frequency behaviors of the power systems necessitates the need for

DSE in both normal and emergency situations [45]. Initial work for wide-area and decentralized

system control applications based on DSE has been reported in [46] and [47]. Since DSE provides

firsthand information of the internal states (e.g rotor angles and flux-linkages) of the generators, it

is intuitive to investigate the possibility of DSE-assisted protection applications for generators.
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In this paper, we use DSE to propose an approach that calls for the most direct form of

stability assessment: by monitoring the angular difference between machine’s rotor angle and the

phase angle of the voltage at the high-voltage (HV) side of the step-up transformer. This provides

a direct indication of the OOS conditions without making any simplifying assumptions, and using

local measurements. The other advantage of the proposed scheme is early prediction of marginally

unstable swings by performing stability analysis on the angular difference if the the generator

survives the first swing. We show that both DSE and instability prediction are possible in real time

using available computing resources. We compare the proposed scheme with the Trip-On-Way-Out

single-blinder approach and show that the scheme matches the security of this approach, while

allowing early detection for OOS phenomena.

3.2. Rationale and Assumptions Behind the Conventional OOS Protection Relay

The OOS relay for a generator (device 78) is usually located at the terminal of the generator

[35] as shown in Fig. 3.1, where Vs 6 φ and Zsystem represent the system Thévenin equivalent (the

other symbols are defined in the following section). The most widely-used OOS protection scheme

attached to large generators [48] uses blinders (single or double) with a mho element, with sample

characteristics as shown in Fig. 3.2. For the single-blinder scheme (left one in Fig. 3.2), the

impedance has to enter the mho element from outside and then traverse both blinders (B1 and B2)

to trigger a trip signal. The trip can be delayed until the impedance leaves the mho element [35]. For

the double-blinder scheme, the OOS condition is detected when the impedance stays between the

outer and inner blinders longer than a pre-set threshold. Determining the settings for these relays

is based on careful stability studies to prevent operation during stable swings while tripping at an

opportune moment when an unstable swing is interpreted. Single blinder scheme is easier to set and

very secure in detecting OOS; however, it takes more time in detection.The double-blinder scheme

Generator

78

System

qX systemZTX
dÐqE

qÐhV

fÐsV

Figure 3.1. OOS protective relay (device 78) for a generator.
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Figure 3.2. Typical operation logic of a OOS relay for a generator.

allows prompt operation, but determining the inner blinder (B2 in Fig. 3.2) settings requires very

careful analysis; with poor choices leading to misoperation during stable swings. Since (falsely)

tripping large generator units under stable swings can severely undermine system stability, the

single-blinder scheme is generally preferred over the double-blinder scheme for OOS protection.

The trip logic usually requires the impedance loci to traverse both blinders and then trip on either

exiting the second blinder or the mho element.

The impedance seen by the distance relays during power swings has been well studied

in [49]. Although the actual impedance loci can be more complex if AVR and governor effects

are included, the theory approximately describes the behaviors during power swings and sets the

foundation of convention OOS relay. It has been proved in [50] that decreasing apparent impedance

magnitude implies increasing angular difference at the electrical center of a two-source model with

equal voltage magnitude, [50]:

|Żm| = −
X/4

sin2(δ̃/2)

˙̃
δ (3.1)

where Zm is the apparent impedance seen by the OOS relay, X, the total reactance between the

two sources and δ̃, the angular difference between the two sources.
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Equation (3.1) indicates that diminishing values of the apparent impedance magnitude seen

by the OOS relay is equivalent to an advancing angular difference δ̃ before the electrical center is

crossed. Since the angular difference is not available, relay 78 depends on the impedance mapping.

However, since such mapping is made with simplifying assumption, extensive simulations of actual

system-conditions are required for setting the relay. Therefore, accurate estimation of δ̃ can provide

a more generalized and dependable OOS protection. Such a scheme is described in the next section.

3.3. DSE-assisted OOS Detection Based on Angular Difference Monitoring

Due to the lack of phase angle information in the past, angle separations between the

power system and generator was indirectly assessed using impedance measurements, as described in

Section 3.2. Conventional OOS relays utilize the measured apparent impedance and pre-determined

settings to detect a power swing, and initiate tripping when it is unstable. The availability of PMU

measurements partially simplifies this task because the phase angle of the voltage phasor can

be measured directly. Additionally, internal rotor angle (or power angle) of the machine could

be derived or calibrated [51] based on the measurements, which has been adopted for generator

modeling in voltage stability analysis [52]. However, the rotor angle of the generator is still not

generally amenable to direct measurement and hence needs to be estimated. This is one of the

key steps in the proposed approach outlined in this section. The overall scheme of the proposed

approach is illustrated in Fig. 3.3. Components of the figure are explained now.
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Figure 3.3. Block diagram of the OOS relaying scheme for a generator.
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Figure 3.4. Processes in the swing analysis block.

1. Utilizing PMU measurements assumed available at the substation, we construct a particle

filter (PF)-based dynamic state estimator (block DSE in Fig. 3.3). Based on the generator

model and phasor information from the PMU, the filter generates estimates of the generator’s

internal dynamic states. For OOS protection, since we are interested in the swing dynamics,

we focus on estimates of rotor angle δ. Formulation of PF-based estimator and reasons for

its choice are described in section 3.3.1.

2. Swing analysis is performed based on the angular difference δ̃ between rotor angle (δ) and

voltage angle of HV-side of the transformer (θ) (block Swing Analysis in Fig. 3.3). This

block is further explained in Fig. 3.4. δ̃act (chosen to be 60◦) serves as a threshold to flag the

presence of a swing, and activate the OOS module. The purpose of this module is to trace

the trajectory of a monotonically unstable swing. Once the swing is flagged, the observed δ̃

is compared against a threshold to declare OOS. The threshold is set to δ̃th = 120◦ - which is

consistent with conventional relay settings [33,34]. Thus, in case of a monotonically unstable

swing, this module will detect OOS using δ̃, without needing to use the imperfectly converted

impedance plane.
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3. If the swing is marginally unstable, the generator may survive the first swing and δ̃ may

not cross δ̃act, and the OOS module may not be triggered. At this point, it would be useful

to be able to determine quickly if this swing is stable or not. This is accomplished by the

Modal Analysis block which provides the damping ratios associated with the swing mode.

The angular difference δ̃ is fed to the modal analysis tool (Matrix Pencils, in our case) to

determine the damping factors of the swing dynamics. This helps early determination if the

swing will be unstable or not. Matrix Pencils is briefly described in Section 3.3.2.

Results generated by either block are converted to trip/restrain decision and the breaker is

commanded accordingly. It is to be noted that the breaker can also be actuated by the conventional

OOS relay (78) as shown in Fig. 3.3, instead of recommending its replacement, we are proposing

and evaluating an alternate method.

3.3.1. Estimation with Particle Filter

The use of a particle filter for DSE in the context of multi-machine systems is described in

detail in [53]. A brief overview is presented here. The filter considers a discrete time representation

of a nonlinear system given by:

xk = fk(xk−1, uk−1, nk−1) (3.2)

where the system state xk at step k is a function of the previous state xk−1, system input uk−1 and

system process noise nk−1. The filter is designed such that the state xk can be estimated recursively

based on the system model as well as the measurement model:

zk = hk(xk,mk) (3.3)

where measurement zk is a function of the state xk and measurement model process noise mk.

To solve the dynamic state estimation problem using a particle filter (PF), the posterior

density at step k is approximated by:

p(xk|z1:k) ≈
N∑
j=1

wjk∆((xk)− (xjk)) (3.4)
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where z1:k is a set of measurements available up to step k, ∆ the delta function, xjk(j = 1, . . . , N)

a set of particles, N the number of particles, wjk a set of weights. If we draw the particles xjk from

a density q(xk|z1:k) (or importance density), which is easier to accomplish than drawing it from

p(xk|z1:k), the importance sampling weight is given by:

wk ∝
p(xk|z1:k)

q(xk|z1:k)
(3.5)

This representation is further simplified as [6]:

wk ∝ P (mk = z∗k − hk(xk)) (3.6)

where z∗k is the obtained measurement at step k.

The steps of implementing PF for state estimation is summarized as follows:

• Initialize the particles {xj0, w
j
0}j=1:N ,

• Propagate the particles based on (3.2) at step k,

• Assign the corresponding weight to each particle based on (3.6),

• Normalize the weights using: wk/Σ
N
j=1w

j
k

• Resample a new set of particles from {xjk, w
j
k}j=1:N based on the likelihood of wjk (Resampling

step)

• Obtain the estimated state by taking the mean of the particles.

Compared with other widely used DSE algorithms (extended Kalman filter (EKF) and

unscented Kalman filter (UKF)), the PF is not restricted by model assumption (e.g probability dis-

tribution of measurement noise is Gaussian) and yields superior results on nonlinear/non-Gaussian

systems at the expense of increased computational effort [6].
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We use the same 6th-order model [54] (or model 2.2) to represent the generator dynamics,

the mathematical model in per unit is given by:

δ̇i = 2πf0∆ωi,

∆ω̇i =
1

Hi
(Pmi − Pei −Di∆ωi),

Ė′di =
1

T ′qoi
(−E′di − (Xqi −X ′qi)iqi),

Ė′qi =
1

T ′doi
(Efdi − E

′
qi + (Xdi −X

′
di)idi),

Ė′′di =
1

T ′′qoi
(E′di − E

′′
di − (X ′qi −X

′′
qi)iqi),

Ė′′qi =
1

T ′′doi
(E′qi − E

′′
qi + (X ′di −X

′′
di)idi). (3.7)

where i is the generator index in a multi-machine system, f0 = 60Hz the nominal frequency, ∆ω

the speed deviation, E′d and E′q are dq components of internal voltage behind a transient reactance

(X ′d) and E′′d and E′′q are dq components of internal voltage behind a subtransient reactance (X ′′d ).

Definition of other constants in (3.7) can be found in [54].

In Fig. 3.3, a PMU is assumed available at the HV side of the step-up transformer providing

us phasor measurements of voltage |Vh| 6 θ and current |Ih|6 ϕ. Rotor angle δ is defined as the phase

angle of the internal voltage (Eq = ~Vh + j(Xq + XT )~Ih) behind synchronous reactance Xq and

step-up transformer reactance XT . In addition, the measurements of the generator’s field voltage

(Efd), mechanical power input (Pm) and power outputs (Pe and Qe) are used. The state vector ~x,

input vector ~u and output vector ~z in this paper are defined as:

~x =[δ, ω, E′d, E
′
q, E

′′
d , E

′′
q ]

~u =[|Vhv|, θ, Efd, Pm]

~z =[Pe, Qe] (3.8)
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3.3.2. Modal Analysis of Angular Difference

Since the oscillatory response involving inertial dynamics of generators includes several low

frequency characteristic modes, typically in the range: (0.2 ∼ 0.7Hz) - corresponding to inter-area

modes, or the local rotor modes in the range of 0.7 ∼ 2Hz [21], the simplistic equal-area criterion

may be inadequate, since stability could be lost even if the system survives the first swing after

the disturbance. Modal analysis is a standard technique to identify the characteristic modes and

their dampings from the dynamic response, thus serving as a tool to monitor stability. The basic

principle is to represent an evenly sampled data set in terms of a weighted sum of exponentials

from which the damping ratio can be extracted. While Prony analysis [55] has been customarily

used in the past for online modal content analysis, we use Matrix Pencils [56] as an alternative,

noting its robustness to noise. Some of the extracted modes with low or negative damping factor

may result in false decisions of the stability. The procedure for modal analysis upon the angular

difference in our study is as follows:

• We perform a modal analysis of the angular difference (estimated via Particle Filtering) using

Matrix Pencils.

• From the modal analysis results, we determine the stability of rotor oscillations based on the

damping factors of the local mode (0.7 ∼ 2Hz).

Simulation results are presented next to illustrate the proposed method and track its per-

formance alongside the single blinder method.

3.4. Simulation Results

The proposed scheme is tested on the New England 10-generator system [57], which is

shown in Fig. 3.5. For all test cases the measurement reporting rate of the PMU is set at a

conservative value of 30 frames per second [51]. This was found suitable to complete all calculations

required between two consecutive samples, based on the execution time of our code. All the phasor

information (in complex form) is measured at the HV-side of the transformer and assumed to

have 3% additive Gaussian white noise as measurement error. The phasor information is plugged

into the PF-based estimator and all equations modeling the synchronous generator are assumed to

have 1% additive Gaussian white noise as process error. We also assume that the system outputs

stay unchanged for each PF estimation step between two consecutive PMUs’ measurement sampling
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instants. Note that PF operates with 80 (N) particles. Generally, the lager the number of particles,

the higher the accuracy. The accuracy versus number of particles trade-off is discussed in detail

in [53]. The generators are modeled accounting for subtransient dynamics [21]. The prime mover

dynamics (steam-turbine governor) and the excitation system (IEEE DC1A) models are considered

for each generator except for generator #10, which has constant excitation input. The impedance

seen by the relays shown for all the cases are noise-free results. In the relay settings, the blinder

distance for both sides are equal and based on a conservative value 120◦, and the OOS relays are not

responsible for cases where electrical centers reside on the system side. The size of the mho element

is based on the recommendations from [48] and the settings are noted in Appendix. The results

are shown for monotonically unstable and marginally unstable oscillatory swings. For numerous

well defined stable swings, the proposed method is consistent with classical OOS operation with

similar results. The simulation results show the estimated angular differences using PF/PMU and

the impedance loci used by relay 78. It is to be noted that the breaker opening times considered

in the simulation cases are unusually large and are chosen in order to generate the desired swing

characteristics.
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Figure 3.5. New England 10-generator 39-bus system.
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3.4.1. Verifying the Security of the Proposed Method

3.4.1.1. Worst Stable Swing

A three-phase to ground fault occurs on line 25-26 at t = 6s. The faulted line is tripped

and permanently removed by opening the circuit breaker at both ends of the line. The curves of

angular difference (δ̃) between rotor angle of generator #8 (denoted by G8) and voltage angle of

bus #25 for different clearing times are shown in Fig. 3.6. The worst stable swing is created by

clearing the fault 1 cycle earlier than the unstable case, i.e., after 13 cycles.
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Figure 3.6. Angular difference curves for different clearing time.

The fault is cleared at t = 6.217s (13 cycles after the fault), the stability is maintained after

the first swing. Impedance seen by the OOS relay at the terminal of G8, and the angular difference

are illustrated in Fig. 3.7. The post fault impedance locus exits the mho element from the same

quadrant it enters; the stable swing does not trigger any false trip. When δ̃ crosses 60◦, the OOS

module is triggered, but since the value does not cross the 120◦ threshold, the module does not

declare an OOS condition, consistent with the relay decision. Since the method is shown to work

well for the worst stable swing, it also covers milder (stable) swings (which are not reported here)

.

3.4.1.2. Coordination with OOS Relay on the Transmission Line

A temporary three-phase to ground fault happens on line 22-23 close to bus #23 at t = 6s.

The fault is self-cleared at t = 6.25s (15 cycles later) without tripping the line. Generator #6

(denoted by G6) and generator #7 (denoted by G7) lose the synchronism with rest of the system
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Figure 3.7. Impedance locus for the worst stable swing and estimated angular difference for G8.

and together form a coherent group. Rotor angle estimations for generator 1 through 9 and angular

differences for G6 and G7 are displayed in Fig. 3.8. In this case, the swing centers reside on the

transmission lines, the proposed method is not supposed to respond to the disturbance. It was

observed that though the OOS module was triggered for G-6, the proposed method did not generate

a trip decision as δ̃ did not cross the threshold. Thus, the decision made by the proposed method

complies with the conventional relay as it does not interfere with the OOS protective relays on line

21-22 and line 23-24.
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Figure 3.8. Generator’s estimated rotor angles and angular difference for G6 and G7.
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3.4.1.3. Performance During the Loss of Excitation Event

The occurrence a loss of excitation (LOE) event will force the generator to drain massive

reactive power from the system. The decay of the field current will weaken the coupling between the

rotor and the stator and eventually lead to an OOS condition [35]. An acceptable LOE protective

relay for synchronous generators is an offset mho distance relay in single phase [58]. Considering the

impact from stable swings and voltage regulator performance, we implement a two-zone scheme as

proposed in [59]. The partial and complete LOE incidents are created by setting the field voltage

for Generator #4 (denoted by G4) 1.1 p.u and 0 p.u respectively (pre-fault value is 2.25 p.u).

Impedance seen by the LOE relay for G4 and the estimated angular difference for both cases are

shown in Fig. 3.9 and 3.10. The results indicate the proposed approach correctly identifies the

OOS condition for both partial and complete LOE cases and the operation is also consistent with

the LOE relay which operates according to its corresponding zone time delay settings.
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Figure 3.9. Partial LOE case: impedance locus seen by LOE relay and estimated angular
difference for G4.
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Figure 3.10. Complete LOE case: impedance locus seen by LOE relay and estimated angular
difference for G4.

3.4.2. Verification of Dependability of the Proposed Scheme and Advantages of the

Predictive Feature

3.4.2.1. Detection of Monotonically Unstable Power Swings

Considering the same fault condition described in the “worst stable swing” case in Sec.

3.4.1.1, the fault is cleared t = 6.233s instead (14 cycles after the fault) and stability is lost during

the first swing as seen in Fig. 3.6. Generator #9 (denoted by G9) and G8 lose the synchronism with

rest of the system and form two coherent groups individually. Angular difference between rotor

angle of G8 and voltage angle of bus #25 and impedance seen by the OOS relay at the terminal of

G8 are illustrated in Fig. 3.11. Considering the threshold of 120◦, the suggestive tripping decision

(at 6.467s) by the proposed method abides by the actual relay decision (at 6.8s). However, the

breaker can be tripped at an early instant and also at a safe interruption angle (approximately

132◦ assuming 2-cycle breaker opening time). Clearly, for slower (unstable) swings, the proposed

method will issue earlier alerts for potential threats compared to the conventional relay.

3.4.2.2. Detection of Marginally Unstable Power Swings

A temporary three-phase to ground fault is created on line 2-11 close to bus #2 at t = 6s.

The fault is self-cleared at t = 6.25s (15 cycles later) without tripping the line. Generator #2

(denoted by G2) loses its synchronism due to the disturbance. The impedance seen by the OOS

relay at G2 are shown in Fig. 3.12. The swing trajectory exits the mho characteristics in the
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Figure 3.11. Impedance locus for the unstable swing and estimated angular difference for G8.

vicinity of its intersection with the left-side blinder. The interruption angle at t = 10.31s for the

beakers is around 282◦ (assuming 2-cycle breaker opening time). Fig. 3.13 illustrates the angular

difference between G2 and voltage angle of bus #6 before loss-of-synchronism. We can notice that

the peak values are below the pre-determined threshold π/3 (elec.rad), hence the OOS module is

not enabled. The modal analysis tool which is active during the swing reports the damping ratios as

shown in Table. 3.1. The tool continuously acquires the angular difference estimates and computes

the damping ratio. The local mode (associated with the generator rotor dynamics) within 1 ∼

1.2Hz has a negative damping ratio throughout the analysis. As the minimum damping factor

of any mode must be non-negative [60], the potential unstable swing can be identified as early as

t = 7.463s. The conventional relay will trip at 10.28 s. The proposed method is able to detect this

unstable swing much earlier compared to conventional method.

Table 3.1. Modal analysis results at different time

Report Time Frequency Damping Ratio

(Hz) (%)

t=7.463s 1.096 -36

t=7.823s 1.192 -5.97

t=8.243s 1.202 -6.41

t=8.743s 1.259 -10.11
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3.4.3. Supervision of Relay Behavior

There is no reliable backup to OOS relay that will operate quickly if the swing locus goes

through transformer or the generator impedance. Loss of field relay may pickup for OOS, but

due to time delays it may not operate fast enough. As far as the distance backup relay on the

generator is concerned it also may have a time delay and may not see the impedance going through

the generator during OOS. Thus, the conventional OOS scheme can benefit from supervision.

We show that the proposed method is potentially useful in case the settings of a OOS relay

are set incorrectly. For illustration, we assume there is a corrupted setting for the blinders, where

they are placed with sub-optimal reach (indicated by dashed vertical lines) in Fig. 3.14. A three-

phase to ground fault happens on line 6-11 at t = 6s. The faulted line is tripped and permanently
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Figure 3.14. Impedance locus for the unstable swing and estimated angular difference for G2.

removed at t = 6.25s. G2 loses its synchronism due to the disturbance. Fig. 3.14 illustrates angular

difference between rotor angle of G2 and voltage angle of bus #6 and impedance seen by the OOS

relay. Different from the test case in Sec. 3.4.2.1, we can see that conventional relay with corrupt

settings detects the unstable swing after two pole slippings while the proposed approach is able to

detect the unstable swing before the first pole slipping (around t = 6.57s). Such supervision can

be advantageous in cases when the settings or the relay are compromised.

3.5. Discussion

The proposed method is tested on a multi-machine system and hence eliminates the need for

establishing a two-source equivalent model (necessary for conventional relay setup), or simplifying

assumptions of generator control. No wide-area information is needed. Hence the proposed method

is completely independent of the system configuration, controls, or wide-area communications.
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The proposed method brings more computational burden as the estimation of the rotor angle

ought to be provided in real time. This means the whole procedure must be implemented between

two consecutive PMU measurements. For 30 fps reporting rate, this time is 1/30 = 33ms. The

simulations demonstrated above are carried out on a desktop PC with core i7 3.4GHz processor

and 8G memory. We use a 6th-order model to describe the generator dynamics in PF. Time taken

for different processes on this computer is: 7.1ms for PF to generate an estimate, and 6ms for

MP to perform modal analysis. Since implementation on dedicated hardware will only make these

processes faster, it is clear that the proposed method is compatible for real time implementation.

Note that the suggested detection timestamps are all postponed due to the inevitable time

delays in sensing and processing time in PMU. Since the PMU is assumed to be at the generator

bus, we assume the phasor measurements are directly fed to the DSE block, and not transmitted to

and from a PDC, so the communication delays are ignored. According to IEEE C37.118.2-2011 [7],

“delay in measurement is largely dependent on the processing window and filtering, which vary

with the data reporting rate and the PMU class of service. Processing delays for calculating the

measurement are generally very small compared with other delays.” We assume that the time-stamp

is associated with the center of the window, which means the delay due to windowing would be half

the size of the window. We assume a P-Type PMU that typically has a 2-cycle window, meaning a

delay of about 17ms for a 60Hz system. Adding filtering, PMU processing and transducer delays

based on the table C.2 in IEEE C37.118.2-2011, the total delay in creating a PMU measurement

would be about 25ms. We adjust our time-stamps using a conservative value of 30 ms, plus the

delays in PF (taken as 7.1ms) and MP (6ms), when applicable.

The measurement noise level for PMU is selected to be 3%, which is a more stringent

assumption compared to the suggested 1% in [51]. Note that noise level does not adversely affect

the tracking performance (i.e. accuracy) of the PF.

3.6. Conclusions

We introduce an OOS detection method based on direct estimation of angular difference

to serve as a supervisory unit of conventional impedance type relays. The concept rests on two

modules: (1) the availability of PMU measurements at the generator bus and (2) a PF-based

dynamic state estimator. The first two modules provide an estimate of the angular separation

between the generator’s rotor angle (treated as a dynamic state) and the external system. The
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separation is analyzed using a modal analysis tool (matrix pencils in this case) to determine (in

advance) the damping of the modal content(s) and hence, the likelihood of potentially unstable

swings. Simulation results on the 10-generator, 39-bus system show that the proposed approach

does not require any simplification of system topology. The proposed approach is compared against

the most secure OOS scheme - single blinder scheme. It is shown that the approach matches the

security of this scheme, while providing early detection of OOS for both monotonically unstable

and marginally unstable swings, resulting in reduced stresses on generator and circuit breaker.
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4. PARTICLE FILTER-BASED DUAL ESTIMATION FOR

SYNCHRONOUS GENERATORS

This chapter is based on the work ”Particle Filter-based Dual Estimation for Synchronous

Generators,” IET Gener. Transmiss. Distrib (doi: 10.1049/iet-gtd.2016.1294). The authors of the

paper are Yinan Cui1 and Rajesh G. Kavasseri.

4.1. Introduction

Given a dynamic model and a set of measurements, the process of Dynamic State Estimation

(DSE) seeks to estimate and track the internal state variables in the model which may not be

amenable to direct measurement. For synchronous generators, Phasor measurement unit (PMU)-

based DSE can be achieved with Bayesian non-linear filtering techniques [5, 11, 12, 15, 53, 61]. The

appeal of DSE lies in that it can be used to enable wide-area control schemes to improve the

system’s dynamic performance [46]. A preliminary study using DSE for event detection based on

energy functions is reported in [62] and the use of estimated rotor angle for generator out-of-step

protection is studied in [63]. Here, we focus on synchronous generators where two special challenges

arise.

Most modern generators use brushless AC excitation systems where it is difficult to obtain

measurements from shaft-mounted rotating components [54]. In this context, direct measurements

of the field voltage may not be readily available. There are generally two ways to solve this problem

for DSE: 1) model the entire excitation system and include the field voltage as a state variable,

or 2) treat the field voltage Efd as an unknown parameter and solve a dual estimation problem,

which refers to estimating the system states and unknown system model parameters simultaneously.

Commonly, the parameters to be estimated are treated as part of the system state vector. The first

approach [5,11,53] is predicated upon the availability and complete knowledge of all accompanying

models and herein lies the drawback, especially for excitation systems. If there is a failure in

one or more portions of the excitation system, or if some of the parameters of the model are not

known accurately, the underlying model itself is invalidated and hence the estimation results can

1Yinan Cui was the first author and responsible for writing the manuscript and applying simulation tests. Dr.
Rajesh G. Kavasseri served as the proofreader and gave recommendations and guidance on drafting the paper.
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be severely affected. This is different from the model validation and calibration problem considered

in [64–67] where constant model parameters are estimated. The second approach is to treat the

field voltage as an unknown parameter and jointly estimate it along with other dynamic states

as reported in [12] and [46] with an extended Kalman filter (EKF). While the simulations show

promising results for tracking the unknown field voltage, their performance/accuracy degrades with

measurement noise.

In this paper, we introduce a dual-estimation strategy with a particle filter which is: (i)

robust to measurement noise and (ii) accurate under modest model discrepancies in the excitation

system. The field voltage is treated as an unknown parameter and estimated along with other

generator dynamic states through a dual-estimator based on the particle filtering method. We also

show the filter can provide reasonable results during partial or complete loss of excitation event -

a condition cause by excitation system internal failure that can severely threaten system stability.

Simulation results are presented on the New England 10-machine, 39-bus system to illustrate the

capabilities of the proposed filter in various routine system disturbances. Since the scheme is based

on the particle filter, higher accuracies and immunity to noise are gained at the expense of higher

computational burdens compared with Kalman filter-based methods.

The rest of the paper is organized as follows. A brief overview of the particle filter-based

dual estimation technique is outlined in Sec. 4.2 and its application to the system model is described

in Sec. 4.3. Simulation results are presented in Sec. 4.4 along with a brief discussion in Sec. 4.5,

and conclusions are noted in Sec. 4.6.

4.2. Dual-Estimator for State and Parameter Estimation

We consider the discrete time representation for a nonlinear system given by:

xk = fk(xk−1, uk−1, p, nk−1) (4.1)

where the system state xk at step k is a function (represented by f) of the previous state xk−1,

system input uk−1, unknown parameter p and system process noise nk−1. The state xk and unknown

parameter p are estimated simultaneously and recursively based on the above system model and

the measurement model:

zk = hk(xk, p,mk) (4.2)
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Figure 4.1. A diagram of a sequential method for dual estimation.

where measurement zk is a function (represented by h) of the state xk, unknown parameter p and

measurement noise mk.

The block diagram in Fig.4.1 describes the concept of the dual-estimator approach where

the estimation problem is divided into two parts: state estimation and parameter estimation. At

step k, the system and measurement models are assumed known as well as the parameter p, which

is estimated at previous step k − 1. Then the estimated states xk are treated as known inputs to

determine the parameter p, which will be used at the next step k+1. An expectation-maximization

algorithm [68] is utilized to tackle the varying states with unknown parameters. In contrast with

joint state and parameter estimation where the unknown parameter is simply augmented to the

state, in the proposed dual-estimator, the states and unknown parameter are estimated sequentially.

This “sequential” strategy has been credited with better tracking performance during scenarios

where there is an abrupt change in the parameters [69]. The state and parameter estimation blocks

shown in Fig. 4.1 are described next.

4.2.1. State Estimation Using Particle Filtering

Similar to solving a nonlinear dynamic state estimation problem using a particle filter (PF),

the posterior density at step k is approximated by:

r(xk|z1:k) ≈
N∑
j=1

wjk∆((xk, pk−1)− (xjk, pk−1)) (4.3)

where z1:k is a set of measurements available up to step k, ∆ the delta function, xjk(j = 1, . . . , N)

a set of particles, N the number of particles, wjk a set of weights and pk−1 the unknown parameter

updated at step k − 1. If we assume the proposal density q(xk, pk−1|zk) (or importance density),
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where drawing the particles xjk only depends on the corresponding particle xjk−1 from the previous

step and the measurement zk at the current step [16], the importance sampling weight wjk can be

calculated recursively as:

wjk ∝ w
j
k−1

r(xjk, pk−1|xjk−1)r(zk|xjk, pk−1)

q(xjk, pk−1|xjk−1, zk)
(4.4)

The representation could be then simplified in terms of Eqn. (4.2) as [6]:

wk ∝ P (ek = z∗k − hk(xk, pk−1)) (4.5)

where ek is the measurement error and z∗k the actual measurement at step k. Note that xk here

represents a priori estimate based on Eqn. (4.1).

The steps of implementing PF for state estimation is summarized as follows:

• Initialize the particles {xj0, w
j
0}j=1:N with unknown parameter initial guess p0

• Update the system model with estimated unknown parameter pk−1 from step k−1 for ∀k > 0

using parameter estimation PF

• Propagate the particles based on Eqn. (4.1) at step k

• Assign the corresponding weight to each particle based on Eqn. (4.5)

• Normalize the weights using: wk/Σ
N
j=1w

j
k

• Resample a new set of particles from {xjk, w
j
k}j=1:N based on the likelihood of wjk (Resampling

[6])

• Obtain the estimates by taking the mean of the particles.

4.2.2. Parameter Estimation Using Particle Filtering

An “artificial evolution” method is introduced to deal with the time-varying parameter

estimation by adding small random noise to the parameter updating model:

pk = pk−1 + ζk (4.6)
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Where ζk ∼ N(0, Vk) and pk−1 and ζk are conditionally independent. The over-dispersed approxi-

mation flaw caused by Eqn. (4.6) is corrected using a kernel location shrinkage [70] to approximate

the parameter evolution with the Gaussian distribution. The unknown parameter is then esti-

mated based on the recursive prediction error (RPE) [71] algorithm, where the objective function

(expectation of the squared error) with respect to pk−1 is minimized:

J(pjk−1) = E(ε(pjk−1)εT (pjk−1)) (4.7)

Where E is the expectation notation and εj = z∗k − hk(xk, pk−1) the prediction error. Note that xk

represents a posterior estimate from Sec. 4.2.1. The algorithm includes the contribution of pk−1

from the previous step based on a shrinkage factor a, which will push the updated parameter back

to pk−1 before artificial noise is added. The estimation model for pk is given by [72]:

mj
k = pjk−1 + γkR

j
kψ

j
kε
j

pjk = amj
k + (1− a)m̄k−1 + ζjk (4.8)

Where Rjk = E(εj(εj)T ) is the variance of the prediction error, ψjk = ∂(hk(xk, p
j
k−1))/∂(pjk−1) the

partial derivative of the measurement function hk with respect to pk−1, hk is defined as a function

of parameter pk−1, γk the step size and can be a sequentially decreasing value [73] or set to a fixed

value, and m̄k−1 the mean value of {pjk−1} (or estimate of p from the last step).

The implementation of PF for parameter estimation is similar to the one for state estimation,

the estimated state xk are now treated as a known input.
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4.3. Dual Estimation for Power Systems

We consider a fourth order model for a synchronous generator dynamics -including one

damper winding in the q-axis while neglecting subtransient dynamics as given by [54]:

δ̇i = 2πf0∆ωi

∆̇ωi =
1

2Hi
(Pmi − Pei −Di∆ωi)

Ė′di =
1

T ′qoi
(−E′di − (Xqi −X ′qi)iqi)

Ė′qi =
1

T ′doi
(Efdi − E

′
qi + (Xdi −X

′
di)idi) (4.9)

where i is the synchronous generator index in a multi-machine system, δ the rotor angle, f0 the

synchronous frequency, ∆ω the rotor speed deviation, H the machine inertia constant, Pm the

mechanical power input, Pe the real power output at the terminal of the generator, and Efd the

field voltage or the output voltage of the excitation system. Xd and Xq are d-axis and q-axis

synchronous reactances. X ′d and X ′q are d-axis and q-axis transient reactances. T ′do and T ′qo are

open-circuit d-axis and q-axis transient time constants. E′d and E′q are d, q components of transient

internal voltage (E′ = Vs + jX ′dIs) behind X ′d. The rotor angle δ is defined as the phase angle of

the internal voltage (Eq = Vs + jXqIs) behind Xq, Vs is the generator terminal voltage and Is is

the stator current.

4.3.1. Generator Dynamic States Tracking

The measurement model is derived from the following considerations. The power output

(Pe and Qe) and the terminal voltage phasor (|Vs|6 θ = Vs) are assumed accessible from a PMU

located at the dedicated substation. The measurements Pe can be related to the states through

the following relations:

Pe = VdId + VqIq (4.10)

where the d, q components can be represented by the phasor components and other dynamic vari-

ables:

Vd = |Vs|sin(θ − δ), Vq = |Vs|cos(θ − δ)
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Id = (Vq − E′q)/X ′d, Iq = (E′d − Vd)/X ′q (4.11)

The state vector ~x, input vector ~u and output vector ~z are defined as:

~x = [δ ∆ω E′d E
′
q], ~u = [|Vs| θi Pm], ~z = [Pe Qe] (4.12)

In this work, the mechanical power Pm is considered as a known input since the focus is

on the field voltage. If not, the prime mover dynamics can be modeled and its associated state

variables estimated routinely as reported in [53]. The state estimation procedure is summarized in

Sec. 4.2.1. At each step k, Efd in Eqn. (4.9) is assigned to a value obtained by the parameter

estimator at step k − 1.

4.3.2. Field Voltage Estimation

The field voltage Efd is estimated based on the tracking results from the above estimator.

Since the dynamics of Efd is unknown, the artificial evolution method is applied to estimate the

field voltage Efd:

Efd,k = Efd,k−1 + ζk (4.13)

In practice, field voltage Efd is generally not a fixed quantity. One can anticipate variations

during both regular and abnormal circumstances. Note that to determine an appropriate variance

for ζk is not an easy task [73], a trade-off between tracking capability during abrupt change and

performance in stead state should be considered. In this study, the variance is a compromise between

tracking performance in steady-state and following capability during transients. The selected value

is determined after different simulation trials.

Since the field voltage or direct measurements from the rotating components in the excita-

tion system are assumed unavailable, there is no direct correlation between Efd and any available

system output variables in Eqn. (4.12). Therefore, the fourth differential equation regarding E′q in

Eqn. (4.9) is utilized to establish the measurement model in Eqn. (4.2):

Id,k =
Ė′q,kT

′
do + E′q,k−1 − Efd,k
Xd −X ′d

(4.14)

where Id,k = |Is,k|sin(φk − δk), derivative Ė′q,k ≈ (E′q,k − E′q,k−1)/∆t is approximated by Euler’s
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Figure 4.2. Block diagram of detecting LOE incident using the proposed method.

method and ∆t is the sampling rate of estimation, which is usually same as the state tracking

process. The derivative term Ė′ can also be computed from the second order backward difference,

but there is no appreciable difference in the estimation results between the two approximations.

The states [δk E
′
q,k] are available from the state estimator, the history data E′q,k−1 is assumed

accessible for current step k. The current phasor |Is,k| 6 φk = Is,k is assumed available from the

PMU.

Treating Efd as an unknown input is advantageous for excitation system internal failure

events, which may lead to loss of excitation (LOE) for synchronous generators. An LOE event can

occur due to an open or short circuit in the field circuit. Since an open field is less likely the origin

of an LOE incident [35, 59], we focus our attention for conditions involving a short circuit in the

field circuit. It must also be noted that for an open circuit case, the assumption of machine model

parameters such as X ′d and T ′do being constant does not hold due to the open path and hence the

estimation model itself is invalid. On the contrary, the machine model remains valid as long as

there is a closed path for the field current, even if the fault occurs within the excitation system.

Subsequently, the model defined in Eqn. (4.9) would be effective throughout the time frame of

interest.

An overall diagram is shown in Fig. 4.2. Unlike conventional DSE, the dual estimation

process can estimated the machine dynamics as well as the excitation subsystem output without

the need to model the field circuit or direct measurements of field quantities.
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4.4. Simulation Results

The performance of the proposed dual-estimator is tested and evaluated on the New England

10-machine system [57]. The one line diagram of the system can be found in [63].The simulations

are implemented on Matlab–Simulink and the synthesized measurements are then calculated based

on the simulation results. The measurement and system process errors are set to 3% and 1%

respectively and both of them are modeled as additive white Gaussian noise. The PMU which

provides all the available measurements is assumed to have a reporting rate at 30 frames per second

[51]. The sampling rate of proposed PF-based dual-estimator is 5ms. Between two measurement

observations, the pseudo measurements are assumed to be unchanged for the estimator. The dual-

estimator as well as EKF with unknown inputs (EKFUI) method proposed in [12] are all initialized

with true states from the simulation and the number of particles is set to 80 for all test cases.

The standard deviation of dynamic noise in field voltage estimation model is chosen to be 0.012,

the step size and shrinkage factor in Eqn. (4.8) are selected to be 10−4 and 0.5 respectively. In

all simulations, the solid lines denote the true values and estimated values are represented by the

dashed lines or dotted lines. The results are organized in three subsections: (i) filter performance

with external disturbance, (ii) filter performance with exciter model mismatch and (iii) performance

during loss of excitation incidents due to field short circuit.

4.4.1. Filter Performance with External Disturbance

In this scenario, we assume that the excitation subsystem is intact and functioning normally.

The performance of the proposed filter is compared with EKFUI method for three types of external

disturbances where the post-fault system is stable: (i) a three-phase to ground fault and (ii) load

rejection, and case (iii) where the post-fault system is unstable. These disturbances are chosen

because they strongly influence the dynamics of the excitation system and hence the accuracy of

the filter in tracking the field voltage excursions under such conditions can be assessed. For each

simulation case, 100 independent trials are conducted to test the reliability of the proposed method

and the time traces of all state variables show the mean and standard deviations (±3σ) of the trials.

Case (i): A three-phase to ground fault is placed on line 6-11 near bus #6 at t = 6s and

the fault is cleared by permanently tripping the line at t = 6.17s (10 cycles later) and the post-fault

system is stable.
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Figure 4.3. State tracking results (with 3% measurement noise) by the proposed dual-estimator
for G2 for three-phase to ground fault

Table 4.1. RMSD of estimation results of G2 for different TVE levels by proposed dual-estimator
and EKFUI

State Variable Method
RMSD with Different TVE Levels

1% 3% 5%

δ2
Dual-filter 0.0435±0.00085 0.0488±0.0034 0.0562±0.0018

EKFUI 0.0381±0.0013 0.0411±0.0012 0.0531±0.0012

ω2
Dual-filter 0.0004±0.000055 0.0005±0.00016 0.0006±0.000097

EKFUI 0.0029±0.000089 0.0035±0.000083 0.0046±0.000088

E′d2
Dual-filter 0.0397±0.00017 0.0420±0.00081 0.0436±0.000304

EKFUI 0.0442±0.00065 0.0424±0.00047 0.0431±0.00075

E′q2
Dual-filter 0.0405±0.0012 0.0614±0.0045 0.0677±0.0014

EKFUI 0.0357±0.0014 0.0326±0.0018 0.0339±0.0017

Efd2
Dual-filter 0.4718±0.027 0.6272±0.045 0.5495±0.0099

EKFUI 1.4592±0.028 3.0993±0.051 3.8173±0.047

The estimation results are shown for generator #2 (denoted by G2), the generator closest to

the fault. The time tracking traces by the proposed filter are displayed in Fig. 4.3. For comparison,

the estimation error in terms of root mean square deviation (RMSD) is tabulated in Table 4.1 for

all state variables for 1, 3 and 5 % total vector error (TVE) [51] levels, where the results generated

by EKFUI method [12] are also presented. Note that the proposed approach and EKFUI method

are initialized with the same state vector ~x0 = [δ0 ∆ω0 E
′
d0
E′q0 Efd0 ] = [0.76 0.00 −0.55 1.16 2.73].
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It can be observed that the proposed filter is relatively robust to a noise level up to 5% as compared

to the EKFUI method where the field voltage (Efd) estimates are significantly affected.

Case (ii): The load at bus #20 is permanently disconnected at t = 6s. The post-

disturbance system is stable. The tracking results for generator #5 (denoted by G5) are illustrated

in Fig. 4.4. In the state-tracking results, the change in rotor angle for G5 as referenced to bus

20 is shown to correlate the variables with respect to the load rejection scenario. The loss of load

triggers the exciter dynamics at 6 s and calls for a reduction in field voltage which settles to a

new reduced value shortly after 15 s. The estimation errors are tabulated in Table 4.2 for all state

variables for 1, 3 and 5 % TVE levels. Again, from Table 4.2, it can be observed that the proposed

filter is relatively robust to a noise level up to 5% as compared to the EKFUI method where the

field voltage (Efd) estimates are substantially affected.
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Figure 4.4. State tracking results (with 3% measurement noise) by the proposed dual-estimator
for G2 for a load rejection event at bus 20.
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Table 4.2. RMSD of estimation results of G5 for different TVE levels by proposed dual-estimator
and EKFUI

State Variable Method
RMSD with Different TVE Levels

1% 3% 5%

δ5
Dual-filter 0.0081±0.0018 0.0118±0.0013 0.0186±0.0022

EKFUI 0.0129±0.00039 0.0335±0.00105 0.0548±0.0017

ω5
Dual-filter 0.0002±0.000055 0.0003±0.000036 0.0004±0.000047

EKFUI 0.0010±0.000019 0.0026±0.000056 0.0040±0.000080

E′d5
Dual-filter 0.0058±0.00067 0.0082±0.00054 0.0119±0.0011

EKFUI 0.0081±0.00034 0.0170±0.00095 0.0272±0.0015

E′q5
Dual-filter 0.0069±0.00097 0.0096±0.0013 0.0167±0.0024

EKFUI 0.0082±0.00022 0.0223±0.00065 0.0376±0.0013

Efd5
Dual-filter 0.1705±0.016 0.1002±0.0079 0.1035±0.0091

EKFUI 1.4520±0.027 4.3172±0.087 7.0538±0.17

Case (iii) Here, we consider a scenario which leads to loss of synchronism: a three-phase to

ground fault occurs on line 25-26 near bus #25 at t = 6s and the fault is cleared by permanently

tripping the line at t = 6.23s (14 cycles later). The clearing time is deliberately chosen long

enough so that the post-fault dynamics is unstable, we can notice that the pole slipping starts at

approximately t = 7s. The estimated states for generator #8 (denoted by G8) with 3% TVE level

are shown in Fig. 4.5. The estimation error (up to 7s) with 3 different TVE levels by proposed

dual-estimator and EKFUI method are summarized in Table. 4.3.
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Figure 4.5. State tracking results by proposed dual-estimator for G8 with a 3-phase-to-ground
fault.

Table 4.3. RMSD of estimation results of G8 for different TVE levels by proposed dual-estimator
and EKFUI

State Variable Method
RMSD with Different TVE Levels

1% 3% 5%

δ8
Dual-filter 0.1042±0.0018 0.0967±0.0030 0.0943±0.0055

EKFUI 0.0667±0.0010 0.0721±0.0023 0.0836±0.0036

ω8
Dual-filter 0.0010±0.000055 0.0011±0.00013 0.0012±0.00021

EKFUI 0.0039±0.000021 0.0042±0.000046 0.0048±0.000059

E′d8
Dual-filter 0.0626±0.00067 0.0620±0.00066 0.0622±0.0018

EKFUI 0.0702±0.00043 0.0731±0.00013 0.0757±0.0021

E′q8
Dual-filter 0.0631±0.00097 0.0594±0.0023 0.0598±0.0025

EKFUI 0.0348±0.0013 0.0347±0.00020 0.0417±0.0029

Efd8
Dual-filter 0.7749±0.016 0.7271±0.038 0.7309±0.030

EKFUI 1.9459±0.063 3.5352±0.101 4.2268±0.098

Remark: The performance of the proposed filter is comparable to the EKFUI for all state

variables for all cases and can be clearly observed from Tables 4.1, 4.2, and 4.3 with a notable

exception for the field voltage under all noise levels. For this state, the proposed filter clearly

outperforms the EKFUI method.

In the next section, we present results to assess filter performance with model errors.
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4.4.2. Filter Performance with Exciter Model Mismatch

We consider the case when there is a mismatch between the model assumed for estimation

and the actual model used in simulation. This can be representative for example, for a case when

(i) one or more critical parameters within the subsystem are approximately known or (ii) there is a

failure in the subsystem which can be captured parametrically. Here, we consider the circumstance

corresponding to a partial loss of excitation (pLOE). In such scenarios, the proposed model is very

advantageous as demonstrated by the following results. Note that IEEE type I excitation and

control system is used in the test, the block diagram of the it can be found in [74]. Although the

simulations are shown with this exciter model, the impact of model mismatch on filter performance

will be similar for other types of exciter models.

First, we consider a case when the true value of the exciter gain (KE) is 1.0 while the model

used in a standard PF considers this to be 1.2. The state tracking results by the standard PF and

the proposed method for generator #9 (denoted by G9) for a line trip (26-29) at t = 6s are shown

in Fig. 4.6. It is clear from Fig. 4.6 that with a standard PF, such a parametric error leads to a

steady drift between the theoretical and estimated state. Note that the illustrated case can either

reflect a modeling inaccuracy or a glitch in one component of the equipment. As expected, the

proposed dual filter tracks the states properly until the pole slipping starts (at t = 17s) despite

this parametric discrepancy.
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Figure 4.6. Discrepancy in estimation with approximate parameters for a standard PF with a line
outage incident.
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Next, we consider a more drastic case to mimic a pLOE condition by reducing the gain of

voltage regulator (KA) to 50 % of its nominal value. The state tracking results for generator #4 (de-

noted by G4) is shown in Fig. 4.7. It can be seen that although estimations of two electromechanical

states (angle, speed) by a standard PF roughly follow the theoretical trace, the post-disturbance es-

timates for field voltage and E′q diverge. In contrast, estimations by the proposed method correctly

track the variations despite the partial loss in regulator gain.
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Figure 4.7. Tracking performance for a malfunctioning voltage regulator (pLOE), the generator
loses its synchronism at t = 17s.

Next, we illustrate filter performance for partial and complete loss of excitation events.
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4.4.3. Loss of Excitation Events

The loss of excitation events are analyzed for two different operating conditions as annotated

in the figures. A pLOE for these initial loading conditions is achieved by reducing the voltage input

of the field winding by 67% and 48% respectively for generator #1 (denoted by G1), which is

initiated at t = 6s. The complete loss of excitation is achieved by setting the terminal voltage

of the field winding to zero (short circuit fault, Efd = 0) for G1, which would lead to a loss-

of synchronism ultimately for two loading conditions. Fig. 4.8 shows the field voltage estimation

mean values and the standard deviations based on 100 successful trials for both partial and complete

LOE incidents. In the complete LOE cases, the generator loses synchronism (corresponding to a

pole-slipping condition) shortly after t = 12s t = 10.5s respectively. The proposed filter tracks the

field voltage faithfully up to the pole-slipping instant.
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4.5. Discussion

One of the potential applications for dynamic state estimation is the possibility of detect-

ing an internal failure in a component such as the excitation system considered here. For such

applications, selectivity is an important attribute. For the class of disturbances analyzed here, the

simulation results indicate reliable tracking of Efd, which suggests the possibility that the proposed

method could be used to detect a failure/malfunction within the excitation system status. It should

also be noted that the other dynamic states {δ ω E′d E′q} for all these cases are reasonably estimated

as well.

In contrast, we observe that the onset of pole slipping ( loss of synchronism) considerably

influences the estimates in Fig. 4.5 and 4.8. This is because the estimation of field voltage (Eqn.

(4.14)) depends on the internal voltage and its derivative (E′q and Ė′q) (see Eqn. (4.9)), existing

model is not sufficient enough to describe the fast dynamics cause by loss of synchronism and

degradation continues sequentially in between the state and parameter estimators. Generally,

the tracking accuracy can be improved with a higher estimation sampling rate at the expense of

increased computational burden. For dynamic tracking applications, there always exists a time

delay between the points of collecting measurements and the instant when estimates are available.

It is challenging to achieve the near-real-time requirement with a PF-based estimator where there

is a natural trade-off between the number of particles (computational burden) and accuracy. In

this study, the pseudo-measurements between two filter iterations are assumed to be unchanged.

Alternatively, a multi-step interpolation method [75, 76] and the prediction approach [61] can be

used, where the balance between the estimation accuracy and computational time could be adjusted.

PF-based approaches are computationally more expensive compared to other Bayesian tracking

techniques such as the EKF. The simulations in this paper are implemented on a desktop PC with

core i7 3.4GHz processor, and 8GB memory. The average time consumption of a PF-based dual-

estimator on a 30-second simulation is 28.10s. If parallel computations, as suggested in [77] can be

further exploited, the computational burden of PF-based methods could be reduced accordingly.

4.6. Conclusion

A particle filtering based method is proposed to estimate the dynamic states for synchronous

generators considering the field voltage as an unknown input. The method is particularly useful
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in modeling scenarios when the actual model of the excitation is either unknown, or when there

is an internal failure in the excitation system resulting in partial or complete loss in excitation, or

when the parameters within the system are not known precisely. The particle filter is modified to

estimate the states and the unknown parameter in a sequential manner. The proposed method is

evaluated via dynamic simulations on a 10-machine, 39-bus system with case studies under routine

disturbances and under loss of excitation conditions along with comparisons with Kalman filter-

based methods. The results indicate while the tracking accuracy of the proposed filter is comparable

to that of EKFUI method for the internal states, there is a drastic reduction in the field voltage

estimation error for noise levels up to 5%. The robustness of the filter to noise and performance

under these modeling assumptions suggest that the such a filter may serve as a computational

surveillance unit to supervise the functioning of excitation systems.
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5. A NEW APPROACH FOR EVENT DETECTION BASED

ON ENERGY FUNCTIONS

This chapter is based on the work ”A New Approach for Event Detection Based on Energy

Functions,” 2014 IEEE PES General Meeting — Conference & Exposition, National Harbor, MD,

2014, pp. 1-5 (doi: 10.1109/PESGM.2014.6939804). The authors of the paper are Rajesh G.

Kavasseri, Yinan Cui1 and Sukumar M. Brahma.

5.1. Introduction

Power blackouts over the world have shown that power systems, though carefully planned

and protected, suffer from unforeseen events triggering instability. Such events often include misop-

erations of relays that result in unintended line trips, load shedding and generation trips. Some-

times, these misoperations go unchecked because global knowledge about actual system conditions

is lacking. In the form of global knowledge related to tripping, control centers simply acquire relay

trip flags, circuit breaker (CB) status flags, and sometimes line currents and voltages for more

reliable interpretation of these flags. These signals in most cases do not convey whether the trip

was as per design (correct) or it was a misoperation. Disturbance data from phasor measurement

units (PMUs) have been used for identifying different disturbance events. The crucial step in this

process is feature extraction, and the method used by many researchers [78–82] for this step is

the Minimum Volume Enclosing Ellipsoid (MVEE) algorithm. In this method, a multidimensional

ellipsoid is used to enclose a given set of PMU measurements. The geometrical properties of the

MVEE such as volume, change in volume, center, length of semi-axis are used as features.

However, the biggest disadvantage of this method is that it is purely data-driven [83]; there

is no physical basis to understand or correlate which feature is most affected by which disturbance

event, or whether such one-to-one mapping even exists. Therefore, this approach requires the user

to select a set of features simply by trial and error. Due to this uninformed implementation, the

resulting feature vector is huge. For example, the feature vector used in our clustering work [82]

had 102 features. In contrast, this paper explores an alternative method based on energy functions.

1Yinan Cui was the co-author and responsible applying simulation tests and writing the simulation section.
Dr. Rajesh G. Kavasseri was responsible for writing the manuscript and Dr. Sukumar M. Brahma served as the
proofreader and gave recommendations on drafting the paper.
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5.2. Key Ideas

Any event or a disturbance in the system will leave a signature (like a fingerprint) in Wide

Area Measurement Systems (WAMS) datasets as evidenced by our previous research [82]. While

there is no dearth of such data, extracting this fingerprint from concurrent data traces still remains

an open problem. While all prior research has been based on empirical methods - (purely from a

data standpoint) that are impervious to the dynamics of the physical systems, we contend (and

demonstrate) that such a signature is actually buried in the components that constitute the energy

function for the system. The trick is in determining which (among the numerous) components of

the energy function is sensitive, or reflective of the corresponding disturbance. In other words, our

aim is to establish a mapping between the energy traces and events in the power system, and in

future use this mapping to detect and distinguish disturbance events.

By construction, the components of an energy function depend on bus voltages that can

be measured directly, as well as several internal state variables of generators that can neither be

measurable directly nor estimated easily with conventional (i.e. non-phasor) measurements [84,85].

Thus, energy function (and its time derivative) evaluations on a numerically simulated trajectory are

not useful enough for a real or even near-real time applications, because a high-fidelity simulation

that includes full state representation of all dynamic components takes significantly more time

compared to the real-time response, despite the availability of hardware acceleration and GPU

based integrators. In contrast with all prior work that use energy functions for stability assessment,

our aim is to show how, the individual terms can be used to detect and distinguish events that

occur in the system. The main steps in our approach are:

• step 1: estimate the internal states of generators using a particle filter;

• step 2: use the estimated states (from step 1) and bus voltage phasor information from PMUs

to construct energy function components;

• step 3: monitor the sensitivity of specific energy function components to detect and classify

events.

These key steps for this method are described next.
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5.2.1. The Particle Filter

Assuming that {wk} and {vk} are independent white noise processes with known pdf (∼

N(0, R)), consider the following models for the system dynamics and measurements:

xk+1 = fk(xk, wk) (5.1)

yk = hk(xk, vk) (5.2)

Based on the pdf of the initial state p(x0), N particles, denoted by x+
0,i are generated

(i = 1 . . . N). The higher the number of particles, the better the accuracy. Hence N parameterizes

the computational effort-accuracy tradeoff.

For each time step k:

• The a priori particles x−k,i are computed from the system dynamics (f()) and the known pdf

of the process noise.

x−k,i = fk−1(x+
k−1,i, w

i
k−1), i = 1 . . . N. (5.3)

• For m measurements, the probability qi of x−k,i conditioned on the measurement (y = y0) is

given by:

qi ∼
1

(2π)m/2|R|1/2
exp(

−QtkR−1Qk
2

),

Qk = y0 − h(x−k,i) (5.4)

• The probabilities are normalized: (qi = qi∑
qi

) and the a posteriori particles x+
0,i are re-sampled,

i.e., x+
k,i = x−k,j with probability qj . This re-sampling step requires two additional steps:

• First, generate a random number r uniformly distributed in [0, 1].
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• Form a partial sum of qi - up to an index j until it exceeds r (i.e. find j such that
∑j−1
m=1 qm < r

and
∑j
m=1 qm ≥ r) in which case, the new particle x+

k,i is set to the old particle x−k,j . Since

the particles x+
k,i are now distributed with pdf p(xk|yk), any statistical measure of this pdf

can be calculated. Typically, the algebraic mean of the particles (providing the estimate we

seek) is calculated from:

E(xk|yk) =
1

N

N∑
i=1

x+
k,i (5.5)

We consider dynamic models for the generator based on the 1.1 model [85] with the IEEE

type one excitation system and a general steam turbine model for the prime mover control system.

The internal state variables for each generator are: xg = (δ, ω̄, E′q, E
′
d, Efd). The dynamic model

defines the process equations - Eqn.(5.1). The measurement set includes the real and reactive

powers at each generator as functions of xg. This defines the measurement equations - Eqn.(5.2).

The states estimated via particle filtering are used to construct the components of the energy

function, which is described in the following section.

5.2.2. Construction of Energy Function Components with Particle Filter Estimates

The application of energy or Lyapunov-like functions has been extensively studied: [86–94],

mainly for transient stability assessment. A comprehensive collection can be found in [85, 95, 96].

It is also been applied for voltage stability assessment [97] and dominant power transfering paths

monitoring and analysis in large power systems [98].

However, the critical difference between all prior work in energy functions and our work is

that we construct each of the components of the energy function explicitly. Doing this requires

full knowledge of the dynamic state - acquired through the particle filter and phasor information -

available from PMU measurements.

Here, we assume that the system is completely observable through PMUs, i.e. phasor

information of bus voltages and line currents are known. The assumption is required for the

particle filter based dynamic state estimation. Considering the proliferation of PMUs and given

the evolution of future power systems, this is a very reasonable assumption. Thus, all bus voltage

measurements are available, including the phase angles of bus voltages and line currents at generator

buses.
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We consider an energy function of the form, [85]:

W (x,y, t) = WKE +WPE

W1 = WKE =
1

2

M∑
i=1

Miω̄i
2, WPE =

11∑
i=1

W2i (5.6)

The energy function has contributions from different entities in the system as explained

below.

Loads:

Consistent with the assumptions made in transient stability analysis, the load at bus i is

represented as follows:

P iL = fpi(Vi) = a0i + a1iVi + a2iV
2
i

QiL = fqi(Vi) = b0i + b1iVi + b2iV
2
i (5.7)

where Vi is the voltage magnitude at bus i. The contribution of the load components (active,

reactive) to the energy function is then given by:

W22(t) =
N∑
i=1

∫ t

t0
fpi(Vi)

dφi
dt
dt

W23(V) =
N∑
i=1

∫ Vi

Vi0

fqi(σi)

σi
dσi (5.8)

Here, W22 and W23 are the relative (i.e., with respect to a steady state operating condition) changes

in the potential energy terms due to active and reactive components of a load. Here, φi denotes

the angle of the terminal voltage at a generator bus, with respect to the center-of-inertia (COI),

i.e. (Vqi + jVdi)e
jθi = Vie

jφi and θi denotes the rotor angle with respect to the COI, [85]. The

subscript “0” refers to the values prior to a fault. Note that these functions can be calculated for

all non-generator buses simply through PMU measurements (no particle filter required), with the

assumption that the system is observable through PMUs.
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Transmission lines:

The relative change in magnetic energies stored in the transmission lines is captured by the

component W25 given by:

W25 = −1

2

N∑
i=1

N∑
j=1

Bij(ViVj cos(φij)− Vi0Vj0 cos(φij0)) (5.9)

Here, φij = φi − φj , Bij = Imag(Yij) (Yij is the system bus admittance matrix), the subscript “0”

denoting the prefault value. The term W25 is made of ` (= number of buses + lines) components.

Each of the ` components can be individually determined because the system is assumed observable

in a wide-area sense, as mentioned above. Again, note that a particle filter is not required to

calculate this term of the energy function. System wide observability from PMUs provides sufficient

information.

Generator:

The energy contributions from a generator arise from the magnetic energies stored in the

machine reactances, damper windings on the d, q axes and the field circuit (with the AVR). The

specific functional form of these terms are given as follows. It is important to note that to compute

these terms individually, it is necessary to know the state variables x associated with the machine.

With the 1.1 model, the internal state variables for each machine are: x = (δ, ω̄, E′q, E
′
d, Efd).

Except the speed ω̄ which is measurable, the other state variables cannot be directly measured and

hence need to be estimated. The particle filter based estimator (section 5.2.1) provides estimates

of these variables which are used to construct each of these terms individually.

W21(y) = −
M∑
i=1

∫ t

t0
Pmi(t)

dθi
dt
dt

W24(x,y) =
M∑
i=1

[f i24 − f i24,0],

f i24 = E′qi
2

+ V 2
i − 2E′qiVi cos(θi − φi)

W26(y) =
M∑
i=1

[f i26 − f i26,0],

f i26 = [V 2
i (cos 2(θi − φi)− 1)]

x′di − x′qi
4x′qix

′
di
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W27(x,y) =
M∑
i=1

[f i27 − f i27,0],

f i27 = [E′di
2

+ V 2
i + 2E′diVi sin(θi − φi)]

1

x′qi

W28(y) = −
M∑
i=1

V 2
i − V 2

i0

2x′qi

W29(x) = −
M∑
i=1

∫ t

t0
[

Efdi
xdi − x′di

]
dE′qi
dt

dt

W210(x) =
M∑
i=1

E′qi
2 − E′qi0

2

2(xdi − x′di)

W211(x) =
M∑
i=1

E′di
2 − E′di0

2

2(xqi − x′qi)
(5.10)

• The component W29 is the contribution from the field circuit (on the d axis). The term W210

is the contribution from the d axis. Note that if the AVR is considered, then the integral in

this component is path dependent because the field voltage Efd is time varying;

• The components W27,W28,W211 are contributions from the q axis and the damper windings;

• The component W26 is zero if transient saliency is neglected (i.e. when x′q = x′d);

• The component W24 is the change in magnetic energy stored in the machine reactances;

• The component W21 is the change in potential energy due to the mechanical input to the

machine relative to the center of inertia.

These components provide a signature that can be exploited for event detection as explained

next.

5.2.3. Sensitivity of Energy Function Components

• The component W25 captures the total magnetic energy stored in the transmission lines.

Therefore, it is natural to expect that this component will be strongly sensitive to any event

that directly involves a transmission line: such as fault, line trip, reclosing etc.

• Similarly, the components W22 and W23 capture the potential energy contributions from the

active and reactive power components of the loads respectively. Hence, these components will

be strongly sensitive to events that involve a significant loss or addition of load.
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• Likewise, the component W21 captures potential energy changes due to changes in prime-

mover inputs to the machine. Hence, this component will be strongly sensitive to significant

addition/loss in generation.

Hence, continuously monitoring the sensitivity of these traces over a moving window gives

a method to pick up and classify disturbances. Preliminary results with this approach on a small

multi-machine system are shown next.

5.3. Results and Discussion
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Figure 5.1. Four-machine, two-area system.

We consider the 2 area, 4 machine system [99] as shown in Fig. 5.1. We consider four

events:

• Event 1: Temporary (6 cycles) 3 phase to ground fault on line;

• Event 2: 3 phase to ground fault on line section: 7-8 followed by permanent loss of line

• Event 3: Sudden addition of load at bus 8

• Event 4: Step change in reference power for generator

Preliminary results obtained with particle filtering for dynamic state estimation and con-

struction of the energy function components are shown in Fig. 5.2.

For brevity, particle filter estimates are only shown for event 1. For all events, the particle

filter with N = 80 particles provided reasonably accurate tracking results. The estimated states

are used to compute the energy function components, which are shown next for all events.
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Figure 5.2. Dynamic states (δ, ω̄, E′q, E
′
d, Efd) estimated from the particle filter for Generator 1 in

Event-1. The dashed/red lines denote estimated values. The solid/blue lines denote actual values
from a numerical dynamic simulation.

20 40 60
0

2

4
x 10

−3

time (s)

W
1 

(p
u)

20 40 60
−0.05

0

0.05

time (s)

W
21

 (
pu

)

20 40 60
−2000

0

2000

time (s)

W
22

 (
pu

)

20 40 60
−10

0

10

time (s)

W
23

 (
pu

)

20 40 60
−50

0

50

time (s)

W
24

 (
pu

)

20 40 60
−10

0

10

time (s)

W
25

 (
pu

)

20 40 60
−5

0

5

time (s)

W
26

 (
pu

)

20 40 60
−10

0

10

time (s)

W
27

 (
pu

)

20 40 60
−2

0

2

time (s)

W
28

 (
pu

)

20 40 60
−10

−5

0

time (s)

W
29

 (
pu

)

20 40 60
−0.5

0

0.5

time (s)

W
21

0 
(p

u)

20 40 60
−0.5

0

0.5

time (s)

W
21

1 
(p

u)

Figure 5.3. Energy function components constructed with particle filtering estimated states for
Event 1
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Figure 5.4. Energy function components constructed with particle filtering estimated states for
Event 2
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Figure 5.5. Energy function components constructed with particle filtering estimated states for
Event 3
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Figure 5.6. Energy function components constructed with particle filtering estimated states for
Event 4

Events 1-4 represent four distinct classes of system events or disturbances. While Event-2

involves a line, Event-4 involves a generator. These two events result in two distinct signatures

that are apparent from the energy function traces. It could been seen from the presented figures,

the component W25 is strongly influenced by the line event (Event-2) in Fig. 5.4 compared to

the generator event (Event-4) in Fig. 5.6. On the other hand, the potential energy term W21 in

Fig. 5.6 for the generator event (Event-4) regarding a mechanical power reference change increases

negatively while it grows positively for the other events. Comparing Event-3 (the load event) with

Event-4 (the generator event), it is evident that the components W22 and W23 for the generator

event (Event-4) in Fig. 5.6 are less sensitive than for the load event in Fig. 5.5. Steady-state values

of a specific component could also indicate the manifest signature between two events. Consider

the first two events (both relate to a three-phase ground fault), Event-2 involves a line trip while

the network structure stays unchanged for Event-1. Differences in steady-state values are apparent

by comparing the component W25 Fig. 5.4 for Event-2 versus Fig. 5.3 for Event-1. Since the energy

function terms W () are examined as a whole, this is a “coarse grained” approach to tag an event
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under a suitable category. Each constituent in an energy function term has contributions, in turn

from the specific individual components. For example, the term W1 has M contributions, from each

of the generators in the system. Likewise, the term W25 has contributions from each individual

line in the system. Monitoring the statistical properties of each of these terms can hence give a

“fine-grained” approach to pinpoint a disturbance, after it is tagged within a category. While these

results provide a proof of concept on a small system, our future work will include this application

on larger test systems.

5.4. Conclusions

This paper presents a novel framework for event detection in power systems based on energy

functions. The key idea is the contention that the components of the energy function (rich in event

information) provide a basis to “mine” events by establishing a direct correlation, or one-to-one

mapping between an event and one or more distinct components of the energy function. Wide

area data assumed available from PMUs is used to estimate the dynamic (internal) states of all

the generators in the system via a nonlinear particle filtering approach. The estimated states

and PMU data are used to construct individual components of the energy function. Preliminary

simulations show that for four classes of events, there is a direct correlation between the event and

the sensitivity of one of the energy function components. The proposed method thus opens up a

potentially new way for feature extraction and event identification from wide area data sets that is

grounded in the underlying system dynamics.
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6. MODELING AND SIMULATION OF DYNAMIC

COMMUNICATION LATENCY AND DATA

AGGREGATION FOR WIDE-AREA APPLICATIONS

This chapter is based on the work ”Modeling and simulation of dynamic communication la-

tency and data aggregation for wide-area applications,” 2016 Workshop on Modeling and Simulation

of Cyber-Physical Energy Systems (MSCPES), Vienna, 2016, pp. 1-6. (doi: 10.1109/MSCPES.2016.

7480225). The authors of the paper are Yinan Cui1, Rajesh G. Kavasseri, and Nilanjan Ray Chaud-

huri.

6.1. Introduction

Phasor Measurement Units (PMUs) and the integration of communication technologies are

rapidly enabling several Wide-Area monitoring and control (WAMC) applications for bulk power

systems. Increased deployment of PMUs however, result in increases in the volume of the data which

has to be accommodated by communication networks while honoring the timing requirements for

WAMC applications. This requires careful analysis of two factors: the latencies introduced by (a)

the communication network and (b) the Phasor Data Concentrator (PDC)- the entity responsible

for time alignment of PMU data. Since latencies can significantly influence control performance,

there has been considerable focus on the design of latency-aware wide-area controllers. In [100],

latency present in the communication channels for WAMC system is formulated with stochastic

model and its influence on the wide-area control system is studied. The impact of time delay for

a closed-loop controller is investigated in [101] along with a design for a robust supervisory power

system stabilizer. In [102–104], the contribution of signal transmission delay is taken into account (a

priori) when designing the wide-area measurement-based stabilizing controllers. It is shown in [105]

that variable latencies up to tens of milliseconds can be tolerated for several WAMC applications.

1Yinan Cui was the first author and responsible for writing the manuscript and applying simulation tests. Dr.
Rajesh G. Kavasseri and Dr. Nilanjan Ray Chaudhuri served as the proofreader and gave recommendations on
drafting the paper.
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However, there are certain scenarios where the latencies can build up to hundreds of mil-

liseconds [7] (e.g communication system error correction). If such latencies are experienced during

transient power swings, it can have an adverse impact for WAMC applications. An adaptive phasor

power oscillation damping controller is proposed in [105] to continuously compensate time-varying

and possibly large latencies.

The importance of accurate modeling of communication latencies and PDC in the context

of WAMC applications for transmission system operators is discussed in [106]. While it is pointed

out that the background traffic on the communication network and bandwidth determines the

end-to-end delay of the link [106], the analysis is limited to static delays. A brief summary of com-

munication delays from current PMU standards [7] is shown in Table 6.1. After the data’s departure

from PMUs, the latencies can vary depending on whether the data transmission uses: (a) dedicated

channels with fixed (static) routing, or (b) shared channels with adaptive routing protocols. With

the former, latencies are fixed and small, whereas in the latter, there can be considerable variation

in latencies and the possibility for large scale fluctuations. For instance, when the transmitted

data is lost and a retrieval is requested and performed, the time consumption of arrival at phasor

data concentrator (PDC) side can be significantly prolonged. Generally, the end-to-end latency is

affected by the network, transport, data link and the physical layer. Therefore, variability of the

latency is subject to several non-deterministic factors. Currently, data re-transmission process is

not supported in standard C37.118.2-2011 [7], which however is evolving with time. If the waiting

time threshold of PDC is sufficiently large, it will undoubtedly increase the latency at the PDC

output-end due to the need of time alignment. Given the diversity in communication channels,

routing protocols, and the competition for increased data throughput subject to finite link capaci-

ties, we argue here that the latencies that actually occur in these systems can be dynamic, i.e. time

varying and develop models for the same. Specifically, the contributions of this paper are:

Table 6.1. Summary of delay source and range

Delay source Delay range

Communication system I/O 0.05ms to 30ms

Communication distance 3.4 to 6 µs/km

Communication system buffering and error correction 0.05ms to 8s

PDC processing and time-alignment 2ms to 2+s
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• We propose a transport delay model to account for continuously varying latencies in commu-

nication systems including large scale variations;

• We propose a PDC model for time synchronization subject to time varying latencies, and

• We illustrate the impact of these models for a typical WAMC application - namely power

oscillation monitoring with standard modal analysis tools

The rest of the paper is organized as follows. A model for time-varying delays is presented

in Sec. 6.2 presents and a model for PDC behavior in the wake of time varying delays is presented

in Sec. 6.3. Dynamic simulation results on the IEEE 39 bus, 10 machine system illustrating the

impact of these models for the WAMC application are discussed in Sec. 6.4 and conclusions are

noted in Sec. 6.5.

6.2. Modeling Time-varying Delay

In general, a delayed data transmission process can be represented as an input signal u(t) is

“written” into the moving medium and afterwards “read” as the output y(t) at a remote end [107].

This mechanism is displayed in Fig. 6.1, input signal u(t) is written with speed vw(t), the moving

COM link

𝑣𝑤 (𝑡) 

𝑣𝑟(𝑡) 
𝑦(𝑡) 

𝑢(𝑡) 𝑣𝑚 (𝑡) 

Figure 6.1. Representation of data transmission with time-delay

medium is traveling with speed vm(t) and output signal y(t) is “read” with speed vr(t). The

relationship between input and output with a time-varying delay τ is given by:

y(t) = u(t− τ) (6.1)

The time-varying delay is then can be obtained with respect to the time varying speed [107]:

vr(t)− vm(t) = [vw(t− τ)− vm(t− τ)](1− dτ

dt
)] (6.2)
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Between the data’s departure at a local PMU (sending end) and arrival at the PDC, the

time delay in the communication channel can be represented by the algebraic summation of different

types of delays [100, 108]. The data propagation delay is only one component of the total latency

and can be deterministically defined given a certain communication medium (e.g fiber-optic cable).

If we treat the one-way communication process as the delivery of a datum via a specified route,

the only contribution to the uncertainty of total end-to-end latency will depend on the velocity of

transmission. The instantaneous delay (or total end-to-end latency) at time instant t is defined as:

τin(t) =
`

vm(t)
(6.3)

where ` is the length of the communication route. The speed vm(t) is a time-varying variable

reflecting the congestion and traffic in the channel. Therefore, we can obtain:

` =

∫ t

t−τ
vm(η)dη (6.4)

We can reform the above equation into:

∫ t

t−τ

1

`/vm(η)
dη =

∫ t

t−τ

1

τin(η)
dη = 1 (6.5)

Where τ defines the actual time consumption of delivering the datum. And with respect to a

reference time instant t0, we have:

∫ t

t0

1

τin(η)
dη −

∫ t−τ

t0

1

τin(η)
dη = 1 (6.6)

A direct method to solve for τ is introduced in [109] and it can be easily implemented in the

programming environment (e.g “transport delay” in Matlab/Simulink). Differentiating (6.6) using

Leibniz ’s rule yields:

1

τin(t)
− 1

τin(t− τ)
(1− dτ

dt
) = 0 (6.7)
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This relationship can be also obtained with (6.2) and (6.3) if we assume that processing

speed at both ends of the communication link is high enough. The time-varying delay τ then can

be calculated based on the instantaneous delay as:

τ(t) =

∫ t

t−∆t
(1− τin(η − τ(t−∆t))

τin(η)
)dη + τ0 (6.8)

where τ0 is the initial latency. Here, the instantaneous delay τin or transmission speed vm(t) is

modulated to simulate the varying latency τ(t). The model can also be applied to the scenario

where the datum is sent from PDC to control units in the system. In the next section, we present

a model to process the received data at the PDC.

6.3. Data Aggregation at PDC

The primary function of the PDC is to receive data from multiple PMUs in the system and

produce a time-aligned output data stream. A typical network structure for synchrophasor data

collection is shown in Fig. 6.2. The phasor information collected by local PMUs are transmitted in

real-time to a PDC at the central location of the utility. The data is aggregated with coordinated

universal time (UTC) at the utility PDC and the synchrophasor information after time-alignment

is then utilized for a WAMC application. While the PDC may serve other functions including

error-correction, or data logging for offline analysis, we restrict our PDC model to that of time-

synchronization. PDC standards are still evolving and their algorithms are vendor specific. For

example, in case of congestion in one or more channels, a commercial PDC PCU400 waits till it

UTC



Channel Delay

Channel Delay

Time

Alignment

PMU #1

Utility PDC

PMU #n

Applications

Regional PDC

Channel Delay

Applications

PMU #2

Channel  Delay

Figure 6.2. A typical structure for synchrophasor data collection
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receives data from all the PMUs. Therefore, the total latency is the sum of latency in the most

congested channel and the time required for synchronization [?]. Once the PDC receives data from

all the channels it starts sending data to control center at a much faster rate (1 kHz max) until

it clears the back-log. Since the time-alignment algorithms used in PDCs are vendor specific and

proprietary, we consider the general model prescribed by [110] calling for a relative or absolute wait-

time. The length of the waiting duration depends on the latency requirement for the subsequent

applications (e.g real-time visualization or data storage). The latency processing model we consider

here is illustrated in Fig. 6.3.

Time Instant

Channel #1 delay

Arrival of

first data packet

PMU#1 data

PMU#k data

PMU#n data





Arrival of

last data packet

Channel #k delay

Channel #n delay

Dispatch of

time-aligned

dataPDC

processing delay

Figure 6.3. Latency of data aggregation in PDC

The time-delay τPDC between the data’s departure at a local PMU and the PDC is equal

to the latency τlast of the last arrived PMU stream plus the PDC processing delay τp [105]:

τPDC = τlast + τp (6.9)

While the processing delay τp due to the PDC depends on the algorithm implemented, it

can be treated as a constant, given a specific PMU and hence we attribute negligible variations

for τp. As is shown in Table 6.1, the size of the latency varies within a wide range. However, the

processing delay can be anticipated according to the specified PDC functional requirements. The

addition of this processing delay τp will only introduce a simple offset in the overall delay and does

not contribute to dynamic latency variations. Therefore, the most congested channel determines

the time-varying delay at the output end at the PDC. In the next section, simulation results with

these models are described along with a WAMC application.
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Figure 6.4. New England 10-generator 39-bus system

6.4. Results

The simulation results are presented on the New England 10-generator system [57] whose

one-line diagram is shown in Fig. 6.4. The simulation is performed on Matlab/Simulink, where

the generators are represented as a sixth-order (accounting for sub-transient dynamics) model. All

generators host the steam turbine and governor except for generator 1, where the prime-mover

is a hydraulic turbine. The IEEE DC1A excitation system is considered for generator 1 - 9 and

power system stabilizer is also modeled and enabled at all locations. Generator 10 is assumed to

have a constant field voltage input. PMUs are assumed available at the each generation site. The

measurement reporting rate of the PMU is set at 60 frames per second [111]. First, in Sec. 6.4.1,

we illustrate the effect of time-varying latencies by simulating a dynamic response and noting the

corresponding response at the PDC end. It is important to note that the effect of dynamic latencies

are most pronounced and hence more important, compared to steady state conditions. Following
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this, we describe the modal analysis results with latency models, in Sec. 6.4.2. For this, note that

the system is partitioned into three areas and PMU data from tie-lines between these areas (for

example, line 1-39, between area 1 and area 2) is considered for the analysis.

6.4.1. Latency Variation During Transients

The power swing is initiated with a three-phase-to-ground fault. The fault is placed on

one of the tie-lines (connecting Area 1 and 3) between bus 16 and bus 17 at t = 6s. The fault

is then cleared by permanently tripping the line at t = 6.08s (5 cycles later). All measurements

are noise-free simulation results to highlight the impact of delay variations. The terminal voltage

magnitude during the transients of generator 2 (denoted as G2) is shown in Fig. 6.5. We can clearly

observe the distorted signal due to the latency variation in the communication channel between

PMU at G2 and PDC. The latency build-up occurs at t = 7s as the next new sample is received

at PDC input-end 8 cycles later. Due to absence of new sample for the previous 7 cycles, the

received data can be represented by duplication of last received sample (data holding). Note that

the time-varying delay τ cannot change instantaneously as τin(t) does. Instead, it will gradually

increase depending on τin(t). In the example, we apply a step-up change (from 25ms to 500ms)

to Tin at t = 7s. The “data holding” duration is even prolonged starting after t = 7.1s. This

phenomenon continues until the cumulated delay τ reaches to a steady state value (approximately

equal to 500ms). Similarly to a step-down change at t = 10s (from 500ms to 30ms) time delay τ

shifted to a new value (approximately equal to 30ms) after 3 cycles instead of and abrupt change.

Fig. 6.6 illustrates the zoomed-in version of the results shown in Fig. 6.5.
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Figure 6.7. Comparison of Pe information at different locations due to delay variation

A brief summary of delay variation in communication channels for all 10 PMUs at all

generation sites to PDC is given in Table 6.2. The latency build-up and tail-off in both channel

“G2 to PDC” and occur “G5 to PDC” at t = 7s and t = 10s accordingly. The instantaneous

latency is drawn from a Gaussian distribution whose mean and variance are shown in Table 6.2.

The real power output of each generator (Pe) is collected by local PMU and then sent to PDC for
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Table 6.2. Delay variation in the channels

Channel
Instantaneous Delay

0 ∼ 7s 7 ∼ 10s 10 ∼ 30s

PMU at G1 to PDC 100ms mean ± 5ms std

PMU at G2 to PDC
25ms mean 500ms mean 30ms mean

± 5ms std ± 5ms std ± 5ms std

PMU at G3 to PDC 40ms mean ± 5ms std

PMU at G4 to PDC 40ms mean ± 5ms std

PMU at G5 to PDC
60ms mean 300ms mean 25ms mean

± 5ms std ± 5ms std ± 5ms std

PMU at G6 to PDC 110ms mean ± 5ms std

PMU at G7 to PDC 120ms mean ± 5ms std

PMU at G8 to PDC 1000ms mean ± 5ms std

PMU at G9 to PDC 150ms mean ± 5ms std

PMU at G10 to PDC 80ms mean ± 5ms std

data aggregation. A comparison of Pe at different locations (PMU sending-end, PDC receiving-end

and output-end) in time-domain is shown in Fig. 6.7, 2 generator outputs are selected from each

area. We can see that even though the delay variation of some channels is negligible (e.g PMUs at

G3 and G4 to PDC), the output stream at the PDC end is clearly distorted because of the variable

latencies and time-alignment at the PDC.

6.4.2. Estimation of Electromechanical Mode Using Ringdown Data

The PDC outstream can be used in several WAMC applications and transmission system

operators may differ in priorities. For the Nordic region, the priorities from possible applica-

tions including: oscillation monitoring, voltage stability, frequency instability along with timing

requirements and stream resolutions, is presented in [106]. The CIGRÉ working Group C4.34 on

‘Application of PMUs for Monitoring Power System Dynamic Performance’ is also looking into the

present and future research directions for PMU applications which include model validation, load

modeling and islanding detection.
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Table 6.3. Latency variation in the channels

Instantaneous Delay

0 ∼ 7s 7 ∼ 9s 9 ∼ 30s

40ms mean 300ms mean 30ms mean

± 5ms std ± 5ms std ± 5ms std

Here, we choose oscillation monitoring as an illustrative example, and show the impact of

channel delay variations. Modal extraction from captured ringdown data for WAMC applications

is discussed in [112]. The mode identification is implemented using Prony’s method [55] with the

sliding-window block-processing algorithm.

A power swing is initiated with a three-phase fault on line 5 − 6 at t = 6s and cleared at

t = 6.08s (5 cycles later) by tripping the line permanently. The ensuing swings are damped out

within 20s after the disturbance. The sliding-window size is chosen to be 9s. To create latency

variations during transients, instantaneous delay at specific time instants is varied and the summary

of latency variations is given in Table 6.3. This scenario is applied to all communication channels

between PDC and local PMUs, which take tie-line power flow measurements. Note that there are

4 tie-lines connecting 3 areas in the system as illustrated in Fig. 6.4. The noise-free ringdown data

of tie-line real power flow is shown in Fig. 6.8. To assess specific impact of the PDC, we show the

modal analysis results for data at the (i) input end of the PDC and (ii) at the output end of the

PDC.

6.4.2.1. Modal Analysis at the Input side of PDC

The modal characteristics for the first 9 seconds after the disturbance (from t = 6.5s to

t = 15.5s) are summarized in Table 6.4 where the raw measurements are assumed to have 1%

additive Gaussian white noise.

For the first three dominant modes, the frequency and associated damping factor (DF) are

noted. We observe that the presence of latency variation alters the estimated damping factors,

which includes both underestimates and overestimates. There are substantial overestimates, for

example, as in the damping factor for the 0.1 Hz mode on line 1 − 39. Here, the consideration of

latency results in an overestimate as the delayed samples are interpreted as a damped response.

Similar observations are noted for the modes on line 4-3 and 16-17. Additionally, one of the
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Figure 6.8. Comparison of Pe on tie-lines at different locations due to delay variation

dominant mode (0.87 Hz) for line 4 − 3 is classified as 0.60 Hz. Note: The “x” denotes that

the accurate damping factors are not reported when the observed mode has very weak content.

Although most frequency components are not shifted significantly, the modal spectrum is mildly

sensitive to the dynamic latency variations. Next, we show the results when the analysis is applied

on the PDC output stream after time alignment.

6.4.2.2. Modal Analysis Results on time-aligned datastream at the PDC output end

Here, the latency variation described in Table 6.3 is applied to one of the four tie-lines.

Because of the dependence on the PDC for time alignment, dynamic delays in one channel affect

the output streams of all other channels. The modal results are shown in Table. 6.5. We observe

both under and over-estimates of the damping factors. For the 1.03 Hz mode on line 4-3, the

damping is now estimated at 11 % compared to 6 % in the absence of delays. For the same line,

damping for the 0.45 Hz mode is estimated at 4 % compared to 9 % without delays, and 21 %

accounting for delays. For line 1-39, both the 0.4 Hz and 0.6 Hz modes show mild sensitivity to

latencies and PDC models.
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Table 6.4. Modal analysis before time-alignment

Channel

Latency Modes 1 Modes 2 Modes 3

variation Freq. DF Freq. DF Freq. DF

occurrence (Hz) (%) (Hz) (%) (Hz) (%)

Line flow No 0.10 29 0.39 13 0.65 6

1-39 Yes 0.07 47 0.43 16 0.66 3

Line flow No 0.50 9 0.87 19 1.03 6

4-3 Yes 0.46 21 0.60 45 1.11 5

Line flow No 0.04 x 0.40 23 1.07 8

14-15 Yes 0.04 x 0.43 17 1.14 8

Line flow No 0.19 26 0.39 15 0.61 x

16-17 Yes 0.22 29 0.4 11 0.64 x

Table 6.5. Modal analysis after time-alignment

Channel

Modes 1 Modes 2 Modes 3

Freq. DF Freq. DF Freq. DF

(Hz) (%) (Hz) (%) (Hz) (%)

Line flow 1-39 0.09 33 0.43 17 0.65 3

Line flow 4-3 0.46 4 0.76 7 1.07 11

Line flow 14-15 0.08 40 0.42 18 1.2 12

Line flow 16-17 0.13 50 0.45 9 1.13 7
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Remarks

• We note that the modal distortion induced by latencies and/or the PDC properties depends

on the swing modes, dynamic latencies in the channels and other factors: severity of the initial

disturbance, time instant of the delay variation occurrence during the transients, magnitude

of the latency deviation and duration of the congested conditions.

• A more severe case not reported here is when a dominant mode completely vanishes due to

the extensively distorted dynamic swings.

Based on these results, we can see that the mode properties may accidentally convey optimistic

system dynamics-overestimated damping factors, which can misrepresent field conditions when the

mode of our interest is actually very poorly damped. Although most frequency components are not

shifted significantly, the models influence modal damping factors substantially.

6.5. Conclusions

This paper proposed a transport delay model to simulate the effect of dynamic latencies

in communication networks for synchrophasor-based applications. A data aggregation model for

Phasor Data Concentrators is also considered to mimic the impact of dynamic latencies on time-

aligned information. The resulting models are used in dynamic simulations on the IEEE 10 machine,

39 bus system for tie line oscillation monitoring using Prony analysis, a sample WAMC application.

The results in general show that the proposed models significantly influence the modal spectrum,

both in terms of the observed modes and their damping factors. The consideration of dynamic

latencies alone was found to have a moderate impact on the modal spectrum with the modes being

preserved and their damping factors mildly altered. However, the consideration of the PDC model

induces strong distortions in the modal results with the modes being altered and both over- and

underestimates of damping factors. The results suggest that dynamic communication latencies

and PDC models must be given careful attention for designing wide-area control algorithms and

remedial actions.
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7. CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

The integration of phasor measurement units have opened up opportunities to upgrade the

existing electric grid monitoring and control system. The high sampling and reporting rate of the

phasor measurements enable us to capture dynamic behavior of a power system. This is possible

mainly through Dynamic State Estimation (DSE). This dissertation shows how particle filters can

be tapped to robustly and accurately solve the DSE problem. The research work here is presented

in five separate chapters based on previously published papers and the essential conclusions are as

follows:

• Particle filters are pure probability-based Bayesian filters. Unlike existing methods based

on variations of nonlinear Kalman filter. It is totally immune to the high nonlinearity of the

dynamic model of the generator. A particle filter-based estimator is developed to dynamically

estimate the internal states for a detailed synchronous generator model in a multi-machine

setting. The method allows the inclusion of dynamic subcomponents—mainly the exciter

and the prime mover control system. While the three IEEE standard exciters, a general

steam turbine and a hydro-turbine model are considered. The filter utilizes the available

measurements of the generator (real/reactive power outputs) and exploits phasor information

(both stator voltage and current) from PMUs assumed available at the generator bus. The

performance of the proposed filter is compared with the unscented Kalman filter (a prevalent

and favorable choice among the existing methods for DSE) and assessed by determining the

RMSD of the estimation. Time-domain simulations indicate that the proposed filter tracks

the states with reasonable accuracy and reliability for different classes of disturbances on the

IEEE 14-bus system. With improvements in computational power, the work suggests the

potential of using particle filters for (near) real-time applications.

• We show how DSE is a powerful tool for system protection by developing a protection ap-

plication. Due to the dearth of direct measurement of phasor angle difference, the classical

and conventional OOS protection philosophy has been based on measuring the apparent
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impedance trajectory. We introduce an OOS detection method based on direct estimation

of angular difference to serve as a supervisory unit of conventional impedance type relays.

The concept rests on two modules: the availability of PMU measurements at the generator

bus and a PF-based dynamic state estimator. The two modules provide an estimate of the

angular separation between the generator’s rotor angle (treated as a dynamic state) and the

external system. The separation is then analyzed using a modal analysis tool (matrix pencils)

to determine the damping of the modal content(s) and the likelihood of potentially unsta-

ble swings. Simulation results on the 10-generator, 39-bus system show that the proposed

approach matches the security and dependability of the most secure OOS scheme - single

blinder scheme, while providing early detection of OOS for both monotonically unstable and

marginally unstable swings.

• A dual-filter method is proposed to estimate the dynamic states for synchronous generators.

The method is particularly useful for scenarios where the actual model of the excitation

is either unknown, or when there is an internal failure in the excitation system resulting in

partial or complete loss in excitation, or when the parameters within the system are not known

precisely. The particle filter is modified to estimate the states and the unknown parameter

in a sequential manner. Time-domain simulations on a 10-machine, 39-bus system with case

studies under routine disturbances indicate while the tracking accuracy of the proposed filter

is comparable to that of EKFUI method for the internal states, there is a drastic reduction

in the field voltage estimation error for noise levels up to 5%. The robustness of the filter to

noise and performance under these modeling assumptions suggest that the such a filter may

serve as a computational surveillance unit to supervise the functioning of excitation systems.

• Event detection is an essential function in modern EMS as it helps improve situational aware-

ness for securing the operation of the system.We propose a novel framework for event detection

in power systems based on energy functions. The key idea is that the components of the en-

ergy function with rich dynamic information provide a basis to identify events by establishing

a direct correlation, or one-to-one mapping between an event and one or more distinct com-

ponents of the energy function. Wide area measurements assumed available from PMUs is

used to estimate the dynamic (internal) states of all the generators in the system via the
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proposed particle filtering approach. The estimated states and PMU data are then used to

construct individual components of the energy function. Preliminary simulations show that

for four classes of events, there is a direct correlation between the event and the sensitivity

of one of the energy function components.

• Deployment of synchrophasor-based application creates challenge for big data transmission.

The centralized functions in EMS are implemented in real time or near real time, it is necessary

to consider the latency factors from the communication network and phasor data concentrator,

which is in charge of time-alignment for PMU measurements collected at different locations.

We propose a transport delay model to simulate the effect of dynamic latencies in commu-

nication networks. A data aggregation model for phasor data concentrators is considered to

mimic the impact of dynamic latencies during time alignment process. The proposed models

are used in dynamic simulations on the IEEE 10 machine, 39 bus system for tie line oscillation

monitoring using Prony analysis. The results suggest that dynamic communication latencies

and PDC models must be given careful attention for designing wide-area control algorithms

and remedial actions.

Apart from the mentioned EKF and UKF method, other approach like ensemble Kalman

filter and extensions of generic filtering techniques are proposed to solve the DSE problem. Some of

the methods have been tested and proved to have a better performance than the generic PF method

discussed in this dissertation. PF method should NOT be treated as the unique solution and only

option for tracking the dynamic states. We shall consider the application accuracy requirement

and computational resource we have in order to select the appropriate method. One problem

that still remains open is the sensitivity analysis of the dynamic model when applying the filtering

techniques. The dissertation has already attempted to analyze the performance of PF with dynamic

model uncertainty, but how much impact each model constant will bring when the model is not

accurate needs further investigation.

In this dissertation, only rotor angle estimation is used for a new local protection method.

With a detailed generator dynamic model, plenty of internal states can be captured in the DSE

process, other protection and control methods can be designed based on these rich dynamics.

Currently only directly measured phasor information is transmitted to a PDC for applications in
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WAMS. If the dynamic states of the inter-connected synchronous generators can be aggregated for

centralized application, it would open up a new stage for wide area monitoring, protection and

control system. Conventional relay and other controllers are designed based on local data, future

analysis would consider the protection and control applications from a global standpoint and involve

coordination between components from different regions. The corresponding tests and simulation

should be implemented on larger scale systems to validate such ideas.
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APPENDIX

A.1. Network Algebraic Constraints and DSE using global measurements from WAMS

The network algebraic constraints for the generator and load equivalent circuits at all the

buses in the system can be represented by the following two equations:

|Vi|ejθi(idi − jiqi)e
−jδi + PLi(|Vi|) + jQLi(|Vi|)

=
n∑
k=1

|Vi||Vk|Yikej(θi−θk) i = 1, . . . ,m

PLi(Vi) + jQLi(Vi) =
n∑
k=1

|Vi||Vk|Yikej(θi−θk)

i = m+ 1, . . . , n (A.1)

where PLi and QLi are voltage dependent function (usually nonlinear) for real and reactive load at

bus i for a m-machine, n-bus system; Y is the network admittance matrix.

If we consider only transient dynamics and neglect transient saliency and stator resistance,

the armature current quantity in (A.1) can be represented by:

(idi + jiqi)e
jδi =

1

jX ′i
[(E′qi + jE′)di)e

jδi − |Vi|ejθi ] (A.2)

where X ′i = X ′di = X ′qi when transient saliency is neglected.

Substituting the corresponding armature current in (A.1) using (A.2), the network algebraic

constraints become functions of measurable voltage phasors and power consumptions with respect

to dynamic state variables (δ, E′d and E′q). Instead of using local power outputs in (2.21), the

measurement representation can be replaced with (A.1) if power consumption at each bus is known;

this would form a real-time DSE using global measurement from WAMS.

A.2. Implementation of physical limit constraints in PF

As is mentioned in Section III, for a multi-machine dynamic model, physical constraints

in (2.16) have to be included in the DSE process. It is found that in each case, the particle filter

manages to track the dynamic states of the system considering the constraints. Since the PF is a
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probability based filter, it is simple to alter the particle value based on the pre-defined condition for

the state variables (VR and Pgo). Therefore, it is feasible to set the threshold value to any particle

which exceeds the bound since the weight for having such a condition is 0%. Note that we don’t

consider gate opening rate limit since the true rate does not apply to the particle’s propagation

with random process noise which may lead to divergence.

A.3. Definitions for constants in synchronous machine modeling

Table A.1. Definitions for constants in synchronous machine modeling

Constants Definitions

KA, TA Voltage regulator gain and time constant

KE , TE Exciter gain and time constant

Kf , Tf ESS gain and time constant

Rp Permanent droop for speed regulation

Ksm, Tsm Gate servo-motor gain time constant

KL Integral control gain in LFC

TCH Steam chest and inlet piping time constant

Ka, Ki Proportional and integral gains in PI controller

A.4. OOS relay settings

The blinder distance settings are given by :

d =
1

2
(X ′d +XT )tan(90− 1

2
δc) (A.3)

Table A.2. Generator Relay settings

Generator Mho Diameter (Center Position) Blinder Distance

G8 1.488 (0,-0.396) 0.2315

G2 1.769 (0,-0.509) 0.2734

whereXT is the transformer impedance and δc is the critical value of the angular separation.

In the paper we use the conservative 120◦ for this separation.
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The circular mho unit is set to reach in the system direction at 1.5 times the transformer

impedance, and in the generator direction the reach is chosen at twice generator’s transient reac-

tance [48].

In Sec. 3.4, two generators: G8 and G2 are involved in the simulation results; the dedi-

cated OOS relay settings using the single blinder scheme is summarized in Table A.2. The Mho

characteristics and the blinder separation (d) are given in per unit.
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