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ABSTRACT 

In the recent decade, there has been increasing interest in using renewable feedstocks as 

chemical commodities for composites and coatings application.  Vegetable oils are promising renewable 

resources due to their wide availability with affordable cost.  In fact, the utilization of vegetable oils to 

produce composite and coatings products has been around for centuries; linseed oil was widely used for 

wide variety of paints.  However, due to its chemical structure, the application of vegetable oils for high-

performance materials is limited; and thus chemical modification is necessary.  One of the modification 

approaches is by substituting the glycerol core in the triglycerides with sucrose to form sucrose esters of 

vegetable oil fatty acids, in which this resin possesses a higher number of functional group per molecule 

and a more rigid core. 

In this research, thermosets of highly functionalized sucrose esters of vegetable oils were 

developed.  Two crosslinking methods of epoxidized surcrose soyate (ESS) resins were explored: direct 

polymerization with anhydride moieties for composite applications and Michael-addition reaction of 

acrylated-epoxidized sucrose soyate (AESS) for coatings applications.  In the first project, it was shown 

that the reaction kinetics, thermal and mechanical properties of the materials can be tuned by varying the 

molar ratio between the epoxide and anhydride, plus the type and amount of catalyst.  Furthermore, the 

toughness properties of the ESS-based thermosets can be improved by changing the type of anhydride 

crosslinkers and incorporating secondary phase rubbers.  Then, in the second system, the epoxy 

functionality in the ESS was converted into acrylate group, which then crosslinked with amine groups 

through the Michael-addition reaction to produce coatings systems.  The high number of functional 

groups and the fast reactivity of the crosslinker results in coatings that can be cured at ambient 

temperature, yet still possess moderately high glass transition temperatures. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1. Future sustainability 

Due to uncertainty in the supply and cost of petrochemicals and greater awareness of future 

sustainability in the recent decades, more and more research has been dedicated to the development of 

materials from renewable resources. The challenges to this “green” movement are to produce materials 

that will be economically feasible and have comparable properties to the current technology.  Some of the 

renewable resources that have been explored include vegetable oils, polysaccharides (cellulose, starch, 

chitin), sugars, wood (tannins, lignin, cardanol), and others [1-9].  Among this list, vegetable oils are the 

most commonly used renewable resource in the chemical industry due to its abundancy, low cost and 

potential degradability.  Furthermore, historically, the use of vegetable oils for a chemical commodity is 

not a new idea.  Vegetable oils have been used widely in artists’ and other paints, varnishes, and as a 

component of linoleum due to its ability to form a film.  The application of these vegetable oils in coatings 

still exists today, and the use of vegetable oils has been broadened into more fields such as biofuels, 

lubricants, surfactants, and structural composites. 

1.2. Chemistry of vegetable oils 

Vegetable oils are triglycerides or glycerol esters of fatty acid, and a representative chemical 

structure is shown in Figure 1.1.  These fatty acids tend to have long carbon chain with 16 – 22 carbons, 

and have variations in the degree of unsaturation as well as the presence of additional functional groups. 

The number of unsaturated groups in the fatty acids can range from 1 – 3, and the configuration can be in 

either the conjugated or non-conjugated position.  The most typical fatty acids found in many vegetable 

oils include palmitic, stearic, oleic, linoleic, and linolenic acid. Fatty acids with functional group other than 

unsaturation such as ricinoleic acid (containing a hydroxyl functional group) or vernolic acid (containing 

an epoxy functional group) are quite uncommon, and can only be found in certain plant sources.   
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 Representative chemical structure of vegetable oil Figure 1.1.

The types and amounts of fatty acids found in vegetable oils are dependent on the plant source, 

crop season and location, and growing conditions.  The fatty acid composition of commonly used 

vegetable oils is summarized in Table 1.1.  In addition, Table 1 also lists the average number of double 

bonds and iodine value.  The iodine value is defined as the amount of iodine in milligrams needed to 

saturate the double bonds in 100 gram of oil; thus the iodine value is proportionally related to the average 

number of double bonds in the oil.  The iodine value (IV) of a vegetable oil is often correlated with the 

“drying” behavior of vegetable oil, or its ability to form a dry film: oils with IV value > 140 are classified to 

be drying oils, oils with IV values of 125 - 140 are classified as semi-drying oils, and oils with IV values < 

125 are classified as non-drying.  The “drying” of an oil is a result of polymerization of the fatty acids due 

to the unsaturated groups through an autoxidation process.  Literature articles describing the detailed 

reaction scheme of the autoxidation process of plant oils have been widely published [10-12].  The 

autoxidation rate of an oil depends on the number of double bonds, the conjugation of double bonds, and 

geometrical arrangement; the rate is faster for higher amounts of double bonds and in non-conjugated 

oils, the cis- configuration.   
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Table 1.1. Typical fatty acid compositions of vegetable oils [13] 

Vegetable 
oil 

Fatty Acids  Ave. 
Double 
bonds 

Iodine 
value 

Palmitic 
(16:0) 

Stearic 
(18:0) 

Oleic 
(18:1) 

Linoleic 
(18:2) 

Linolenic 
(18:3) 

Other 

Palm 42.8 4.2 40.5 10.1 - - 1.7 44 – 58 

Olive 13.7 2.5 71.1 10.0 0.6 - 2.8 75 – 94 

Castor 1 1 5 1 2 
Ricinoleic 

(90%) 
3.0 85 – 88 

Soybean 11.0 4.0 23.4 53.3 7.8 - 4.6 
117 – 
143 

Sunflower 5.2 2.7 37.2 53.8 1.0  4.7 
110 – 
143 

Safflower 7.0 4.0 13.0 75.0 1.0 - 5.0 
140 – 
150 

Linseed 5.5 3.5 19.1 15.3 56.6 - 6.6 
168 – 
204 

 

The polymerization of vegetable oils through the autoxidation reaction can be a slow process 

despite the addition of transition metal catalysts commonly called “driers.” The process continues for a 

long time, and may ultimately result in brittle films.  Chemical modifications of vegetable oils are often 

carried out to provide other reactive functional groups that can be used to polymerize the oils with 

different mechanisms.  One of the popular modifications is the epoxidation of the unsaturation, which then 

provides access to many crosslinking technologies such as homo-polymerization, acid/anhydride curing 

and further functionalization to introduce other functional groups (e.g. polyol, meth(acrylate), and cyclic 

carbonate).  Furthermore, epoxidized vegetable oils can also be used as additives such as plasticizers, 

stabilizers and lubricants [14-16]. 

1.3. Epoxidation method of vegetable oil 

The epoxidation of unsaturated fatty acids materials has been reported since the 1940s.  Findley 

et al. epoxidized various types of oils (i.e. lard, olive, peanut, cottonseed, soybean, linseed, castor, etc.) 

by using peracetic acid in acetic acid solution [17].  This epoxidation process is still widely used today, 

and also commonly known as the Prilezhaev reaction.  Scheme 1.1 illustrated the epoxidation reaction 

scheme [18, 19].  In general, the epoxidation of unsaturation follows these steps: 

1. Formation of peracids from reaction of hydrogen peroxide with the corresponding acid, either 

formic or acetic acid, in the presence of strong catalyst in the aqueous phase; 

2. Transfer of peracid from the aqueous phase to the oil phase; 
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3. Reaction between peracid and unsaturation in the oil phase through a “Butterfly Mechanism” 

where oxygen is added and the proton is shifted simultaneously, thus producing epoxides 

and organic acid; 

4. Undesired side reactions include degradation of the epoxide ring in the oil phase and oil-

aqueous interface due to reaction with acidic proton (acid catalyst, carboxylic acid, peracids), 

water and hydrogen peroxide; the reaction mechanism is illustrated in Scheme 1.2; 

5. Transfer of organic acids phase to aqueous phase. 

The kinetics of this epoxidation reaction has been studied using a variety of vegetable oils such as 

soybean oil, sunflower oil, corn oil, rubber seed oil, cottonseed oil, and many more [20-24]. 

 

Scheme 1.1. Epoxidation of unsaturation through Prilazhaev reaction 

 

Scheme 1.2. Oxirane degradation 
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The epoxidation kinetics through the Prilazhaev reaction has been shown to be dependent on 

reaction parameters such as reaction temperature, type and loading amount of carboxylic acid, type and 

loading amount of acid catalyst, molar ratio of hydrogen peroxide to unsaturation, stirring speed, and 

feeding system.  It is important to optimize the reaction parameter in order to achieve the highest epoxide 

conversion with a minimal reaction time and oxirane degradation.  Many researchers found that high 

epoxide conversion, up to 80%, may be obtained with moderate reaction temperature (40-60 °C), sulfuric 

acid as catalyst, acetic acid as peracid source and vigorous stirring speed to maximize the transfer of 

reactants between the organic and aqueous phase [20, 23, 24].  Furthermore, a biphasic reaction model 

of the epoxidation of soybean oil with H2O2 in a fed-batch reactor has been successfully established by 

Santacesaria et al [21]. 

The use of strong mineral acids such as sulphuric, phosphoric or nitric acid often results in many 

drawbacks such as poor selectivity to epoxidized product, challenging isolation process, corrosion issues 

on the reactor and safety concerns on handling the materials.  One of the improvements being made 

involves substituting the strong mineral acids with an ion-exchange resin as the peracid formation 

catalyst. The most commonly used acidic ion-exchange resin (AIER) is Amberlite IR 120 Na
+
 or H

+
, which 

is a gel type, strongly acidic cation exchange resin of the sulfonated polystyrene type. Since this AEIR 

catalyst comes in solid beads, and is insoluble, an easy separation becomes more feasible than 

conventional homogenous catalysts and chemical handling becomes safer.  Furthermore, AIER can be 

re-used up to 4 times without compromising the oxirane conversion value [25].  Similar to the 

conventional epoxidation process, the reaction kinetics as a function of reaction parameters has been 

studied extensively using many vegetable oils [25-29].   

Many studies have been dedicated to examining the effect of reaction parameters such as stirring 

speed, hydrogen peroxide-to-double bond molar ratio, acetic acid-to-double bond molar ratio, reaction 

temperature, catalyst loading and particle size.  Similar to the acid-catalyzed reaction, increasing the 

molar ratio of hydrogen peroxide or acetic acid to double bond will increase the reaction rate, yet also can 

increase the oxirane degradation at the same time.  Using AIER as a catalyst, high oxirane conversion 

may be obtained at shorter amount of time and higher reaction temperature compared to a conventional 

acid-catalyzed system.  However, it was also found that in two separate studies using two different 
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vegetable oils, Goud et al. and Petrovic et al. observed the correlation between the reaction temperature 

and the types of acids used [26, 30].  They observed that at lower temperature (≈40°C), peroxoformic 

acid was found to be more efficient than peroxoacetic with double the epoxidation rate constant.  

However, at higher temperature (>60°C), there is no difference between the two peroxo acids.  

Furthermore, Petrovic suggested  the reaction kinetics of unsaturation epoxidation using AIER catalyst 

was found be first-order with respect to double bond concentration, yet deviation was observed at higher 

temperature and higher conversion [30].   

When AEIR is used as a catalyst, the epoxidation process mechanism entails many sub-steps 

such as reactant’s diffusion into catalyst pores, reactant’s adsorption on the catalyst surface, reaction at 

the catalyst surface, and desorption of the products off the catalyst surface.  In a study of epoxidation of 

jatropha oil, Goud et al. observed that the catalytic reaction of the peracid formation was characterized by 

the adsorption of the acid on the catalyst site, and the irreversible surface reaction was the overall rate-

determining step [26].  However, surprisingly, the particle size of the AEIR (>599 µm vs <64 µm) did not 

make a significant difference, where the ratio of the initial reaction rates was practically the same [31].  

This result is contradictory to observations made by Campnaella and Baltanas.  They found that at the 

same catalyst loading, decreasing the particle size can reduce the reaction time and slightly improve the 

conversion [28].  However, decreasing the particle size of the AIER catalyst also resulted in a higher 

amount of epoxy degradation [29].   

Another reported epoxidation method is through an enzymatic process, where lipase was used to 

catalyze the conversion of fatty acids with hydrogen peroxides to peroxy fatty acids, which then converts 

unsaturation into epoxide through the Prilezhaev mechanism [32-35].  This epoxidation method eliminates 

the use of strong acid (either as catalyst for peracid source), and thus is thought to be a greener process.  

One of the most common lipase used for catalyzing this peracid formation is Candida Antarctica, which is 

also capable of catalyzing perhydrolysis or reaction of carboxylic aid esters with hydrogen peroxide to 

form percarboxylic acids; the reaction mechanism is shown in Scheme 1.3.  With this epoxidation 

reaction, unfortunately, the resulting product contains a mixture of tri-, di-, and mono-glycerides of 

epoxidized fatty acids, and the separation process can be very challenging.  To minimize the amount of 

mono- and diglyceride epoxy, Rüsch gen Klaas and Warwel added 5% molar ratio of free fatty acids 
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related to the unsaturation [36].  They observed that the hydroxyl group perhydrolysis by-products are re-

esterified immediately by the excess of free fatty acids.  Lu et al. further observed that the type of fatty 

acids used in the epoxidation of soybean oil methyl esters affects the oxirane conversion value [37]. 

 

Scheme 1.3. Epoxidation of unsaturation through enzymatic reaction 

The kinetics of chemo-enzymatic epoxidation of vegetable oils has been carried out by many 

researchers.  One of the important parameters determining the chemo-enzymatic epoxidation rate is the 

lipase activity and stability.  Hilker et al. observed that the activity and stability of the enzyme depends on 

the reaction temperature and H2O2 concentration [38].  They suggested that no enzyme deactivation may 

be obtained by carrying out the reaction at <60 °C and using >50% aqueous H2O2 concentration.  

Furthermore, in another study, Orellana-Coca conducted simultaneous esterification and epoxidation of 

oleic acid to produce alkyl epoxy stearates [39].  They found out that the type of alcohol used in the 

esterification affected the rate and yield of epoxidation; the use of iso-propanol enhanced the epoxidation 

rate, while the use of ethanol decreased the rate due to deactivation of enzyme. 

1.4. Crosslinking routes of epoxidized vegetable oil (EVO) 

The most common crosslinking route for epoxy functional groups is through reaction with amine 

groups.  However, for EVO system, this crosslinking method has been shown to be a less efficient curing 

compared to acid/anhydride curing.  First, EVO contains internal epoxy groups, and therefore they are 

less reactive compared to a terminal epoxy.  This low reactivity leads to low polymerization efficiency 
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when crosslinked with amine hardeners.  Second, there is a de-esterification of the fatty acid chain 

through ester-aminolysis reaction with amide and alcohol as a by-product; the reaction is illustrated in 

Scheme 1.4.  

 

Scheme 1.4. Ester aminolysis 

1.4.1. Homo-polymerization 

The epoxy functional group in the EVO can be reacted with itself in the presence of a cationic or 

anionic initiator.  Anionic polymerization of epoxides is possible through ring opening of the epoxides 

using metal hydroxides, alkoxides, oxides, amides, and metal alkyls.  Using this method of 

polymerization, polymer molecular weights, end chain, and polydispersity index may be precisely 

controlled.  However, there has been no published literature describing anionic polymerization of EVO.  In 

contrast, cationic polymerization of epoxides with the addition of super acids catalyst has been widely 

used for EVO curing.  Due to high reactivity of the super acids, the catalysts are often added as latent 

complexes, which are inert under ambient temperature and release active species upon external 

stimulation such as heating or photo-irradiation.  Most commonly used latent catalysts in EVO cationic 

polymerization include boron trihalides-derivatives and hexafluoroantimonate onium salts; chemical 

structure of the catalyst is shown in Figure 1.2.   

 

 Chemical structure of cationic initiator Figure 1.2.

The reaction mechanism for the EVO cationic polymerization is shown in Scheme 1.5.  First, the 

latent catalyst is activated through thermal heating or photo-irradiation to produce super acids.  This 

strong acid then reacts with an epoxide to form an oxonium ion.  Propagation of occurs by nucleophilic 

attack of the epoxides toward the oxonium ion.  The presence of hydroxyl groups or moisture in the 
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reaction may enhance the polymerization rate by reducing the activation energy and shifting the reaction 

toward activated monomer mechanism; with this mechanism, the hydroxyl group has higher 

nucleophilicity than the epoxides.  However, the presence of hydroxyl groups can also act as chain 

transfer agents, and too much of it may result in difficulty to achieve high molecular weight polymer. 

 

Scheme 1.5. Reaction mechanism of EVO cationic polymerization 

The structure-property relationships and reaction kinetics of EVO cationic polymerization have 

been studied by many researchers.  Using thermal latent catalyst, n-benzylpyrazaninium 

hexafluoroantiomante (BPH), Park et al. compared the thermoset properties of epoxidized soybean oil 

(ESO) and epoxidized castor oil (ECO) [40].  These EVO have different epoxide number per molecule 

and backbone structures: ESO has higher epoxide number (4.6 vs. 2.8), and ECO contains secondary 

hydroxyl groups in its backbone.  Due to the dissimilarities between the two EVOs, ESO thermosets were 

observed to have lower glass transition temperature (Tg) values, yet higher crosslink density.  Higher 

intermolecular interaction in the ECO thermoset was predicted to contribute to its high Tg value.  The 

effect of photo-initiators in the cationic polymerization of EVO has been studied by Chakrapani et al [41].  

They compared the induction time of diaryliodonium photo-initiators with different anionic groups: SbF6
-
, 

AsF6
-
, and PF6

-
.  Through monitoring the infrared absorption of epoxy group (830 and 1160 cm

-1
), they 

observed the photo-polymerization rate decreases in the order SbF6
-
 > AsF6

-
 > and PF6

-
.  They suggested 

that this observation was contributed to the nucleophilicity of the anion and its relative stability towards ion 

splitting reactions. 



 

10 
 

1.4.2. Acid/anhydride curing 

Acid/anhydride curing of epoxides is a crosslinking mechanism for EVO.  The reaction kinetics 

and mechanism of anhydride-cured epoxy are known to be complex due to many simultaneous reactions, 

and depends heavily on the type of catalyst used in the formulation.  Even though the addition of catalyst 

in the formulation is not needed to initiate the reaction, it is often added to ensure efficient polymerization.  

The type of catalyst that is often used to accelerate epoxy-anhydride curing includes alcohols, tertiary 

amines, quaternary onium salts, and metal salts and chelates.  The reaction mechanism for uncatalyzed 

and catalyzed process is shown in Scheme 1.6. 

For a non-catalyzed system, the reaction is possible due to the presence of hydroxyl groups in 

the formulation, which can either come from hydroxyls attached to the epoxy resin or anhydride 

crosslinker, impurities in the raw materials, or the presence of small carboxylic acid groups from the 

hydrolysis of the acid anhydride crosslinker.  These hydroxyl groups are able to ring open either epoxy or 

anhydride to form a mono-ester and carboxylic acid end group, which can then further react with either 

epoxy or anhydride.  In contrast, for a catalyzed system, the catalyst is able to ring open the epoxy or 

anhydride through nucleophilic attack and form a zwitterionic carboxylate and/or alkoxide anion.  This 

anion then becomes an active end group and propagates the polyester chain.  For either mechanism, it 

has been widely known that the addition of epoxy and anhydride occurs in an alternating fashion.  

Homopolymerization of epoxy is a possible side reaction, and this reaction rate has been found to be 

higher with uncatalyzed systems [42, 43]. 
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Scheme 1.6. Reaction mechanism for acid/anhydride curing 

Structure-property relationships studies of acid/anhydride-cured EVO thermosets have been 

widely published.  Boquillon et al. investigated the effect of catalyst and anhydride structure on the 

reaction kinetics and mechanical properties of the thermoset based on epoxidized linseed oil [44].  They 

found that imidazole catalyst shows a higher extent of conversion of anhydrides and increased material 

stiffness. In addition, they suggested that steric hindrance in an anhydride crosslinker such as methyl-

endomethylene tetrahydrophthalic anhydride (METH) results in thermoset system with lower crosslink 

density.  Furthermore, the presence of dangling ends and free anhydride in the network was observed 

when the anhydride-to-epoxy molar ratio was higher than 0.8.  In another study, Gerbasee et al. 

investigated the thermoset properties of anhydride-cured epoxidized soybean oil by varying the type of 

anhydride, anhydride-to-epoxy molar ratio, and epoxy group content [45].  They suggested that 

thermosets with higher Tg may be obtained by using anhydride crosslinkers with rigid structures such as 

phthalic, maleic anhydride, higher anhydride-to-epoxy molar ratio up to the threshold ratio, and higher 

epoxy group amount. 

1.4.3. Other curing 

In addition to epoxy homo-polymerization and anhydride crosslinking, the epoxy groups can also 

be easily converted into other functionalities, such as polyol, acrylate, (meth)acrylate, which then can 

provide other crosslinking methods (Scheme 1.7).  Polyol functionalities in the EVO can be obtained by 
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reacting the epoxides with alcohols.  With the hydroxyl functionalities, the EVO thermoset can then be 

reacted with isocyanate groups to form polyurethanes.  A literature review of vegetable oil polyurethanes 

has been published by Desroches et al. [46].  Acrylate acid can also reacted with the epoxide groups in 

an EVO. The acrylate group contains terminal double bond groups which can then be polymerized 

through free radical reactions or be reacted with nucleophilic moieties (i.e. amine, acetoacetate), through 

Michael-addition reaction [47]. 

 

Scheme 1.7. Reaction mechanism of epoxides ring opening using acid/alcohol 

1.5. Improving the mechanical properties of EVO-based thermoset 

Due to the long linear alkyl chain of the fatty acids, thermoset materials based on EVO tend to be 

rubbery and have relatively low glass transition temperatures.  In order to increase its mechanical 

strength, the most commonly taken approach includes blending EVO with petrochemical-based epoxy 

resin such as diglycidyl ether bisphenol-A or –F (DGEBA or DGEBF) resin or chemically-modifying the 

chemical structure. 

1.5.1. EVO blends with petrochemical-based epoxy resin 

Creating a blend of EVO with petrochemical-based epoxy resins such as DGEBA and DGEBF is 

advantageous from two perspectives.  By combining the rigid aromatic structure of the DGEBA or DGEBF 

resin and the flexible aliphatic structure of the EVO, improvement in toughness properties and easy 

formulation processability can be expected.  However, caution also must be taken in determining the 

blend ratio of the two resins, so that optimum impact toughness properties can be achieved without 

compromising the yield strength of the materials.  Furthermore, the large difference in the reactivity of the 

terminal epoxy in the DGEBA or DGEBF and the internal epoxy in the EVO may result in phase 
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separation and incomplete curing, which lead to inferior thermoset properties.  A thorough literature 

review of EVO blends with petrochemical-based resin has been reported by Tan and Wang [48, 49]. 

Altuna et al. studied the impact of EVO substitution in an anhydride-cured DGEBA thermoset, 

where they varied the concentration of the EVO from 0-100% by wt [50].  Figure 1.3 shows the tan delta 

curves, impact properties and compression properties of the thermosets as a function of EVO 

concentration.  In general, increasing the EVO content resulted in thermosets with lower enthalpy of 

polymerization, glass transition temperature, and compression strength.  The optimum set of properties 

that were able to be achieved at 40% wt. EVO substitution where significant improvement in the impact 

properties was observed with only slight decrease in the other mechanical properties.  Based on the 

scanning electron microscopy (SEM) imaging, they suggested that the improvement in the impact 

properties was a result of the phase separation of the EVO and DGEBA thermoset. 

 

 Mechanical properties of the EVO-DGEBA blends as a function of EVO concentration: Figure 1.3.
a. tan delta curves, b. Impact strength, c. Compression modulus and yield stress (The images 
were reproduced from Reference [50]) 

1.5.2. Chemically modified EVO and/or epoxy resin based on vegetable oil 

Another method to enhance the mechanical properties of EVO-based thermosets is by modifying 

the chemical structure to have a stiffer polymer backbone.  Chisholm et. al. developed a high molecular 
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weight poly-vinylether polymer based on soybean oil fatty acids ester; the synthesis route is illustrated in 

Scheme 1.8 [51].  Using a similar approach to conventional vegetable oils, the unsaturation in the fatty 

acids was then converted into epoxy groups.  The number of fatty acids chain (and oxiranes) in the 

polymer can be controlled by adjusting the molecular weight of the polymer.  In addition, further 

functionalization of the polymer or customized polymer backbone is possible through co-polymerization of 

the 2-(vinyloxy)ethyl soyate with other unsaturated monomers such as butadiene, cyclohexyl vinyl ether, 

maleic anhydride,  and many more.  Due to an increased number of functional groups per molecule, 

anhydride-cured epoxy copolymerization was shown to have faster curing kinetics compared to soybean 

oil-based system.  Furthermore, the storage modulus of the coatings thermoset was shown to have one 

order of magnitude higher than its soybean oil-based counterparts. 

 

Scheme 1.8. Synthesis of poly-epoxides based on 2-(vinyloxy)ethyl soyate 

In another study, Huang et al. developed a di-glycidyl or triglycidyl esters monomer (DGEC21 and 

TGEC22, respectively) based on tung oil fatty acid.  This dimer/trimer fatty acids system was derived from 

Diels-Alder addition of methyl-eleostearate (major component of tung oil) with acrylic acid and fumaric 

acid, as shown in Scheme 1.9.  When cured with nadic-methyl anhydride, the thermoset system was 

shown to have comparable strength, modulus and Tg to diglycidyl ether bisphenol A-epoxy system. This 
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performance was attributed to the high reactivity of its terminal epoxy group, cyclic structure, and shorter 

aliphatic segment between the epoxy groups in the backbone. 

 

Scheme 1.9. Synthesis of di/tri-glycidyl esters derived from tung oil fatty acids 

1.6. Epoxidized Sucrose Soyate (ESS) resin 

Another type of molecule invented as the result of derivatization of vegetable oil is sucrose esters 

of fatty acids.  Efficient synthesis of highly substituted sucrose ester was optimized by Proctor and 

Gamble in the 1960s and they marketed for a fat substitute under the name of Olestra .  The 

representative structure of this molecule is illustrated in Figure 1.4.  A variety of sucrose ester of fatty 

acids resins can be obtained with the selection of different vegetable oils or fatty acid methyl esters, 

degree of esterification, and hydrogenation of unsaturation.  Unlike triglycerides of fatty acids, sucrose 

esters of fatty acids can have up to eight fatty acids attached to its core molecule, resulting in larger 

molecular size.  Due to its larger size, human or bacterial enzymes in the digestive track cannot break 

down the molecule, and thus it is not absorbed in the intestinal wall to any appreciable extent. The 

potential use for Olestra as “fat-free” oil in the food market includes its application as frying oil, 

margarines, and food additives in snacks and cookies.  Unfortunately, after 30 years process of acquiring 

FDA approval and estimated $500 million in product development, the application of Olestra in the food 

market was not as successful as originally thought off due to reported gastrointestinal side effects 

concern from small fractions of consumers [52]. 
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 General structure of sucrose ester of fatty acids Figure 1.4.

Fortunately, the application of sucrose polyester is not only limited to food market.  Proctor and 

Gamble also commercialized sucrose ester as Sefose® for coatings and paint industry and as Sisterna® 

for cosmetics and personal care industry.  In 2009, Sefose® based alkyd coatings called Chempol® MPS 

was awarded with Presidential Green Chemistry Challenge Award for paint formulations that contains 

50% less volatile organic content (VOC) solvents and higher renewable content, while not compromising 

the performance such as application flow, dry time, scrub resistance and solvent resistance [53, 54].  The 

benefits of using Sefose® in the alkyd resin is attributed to the low viscosity of the resin due to the 

compact, star-like structure which minimizes intermolecular interactions and the unsaturation functionality 

in the resin which provides auto-oxidative crosslinking technology. 

An epoxy resin based on Sefose® resin has been developed by Webster et al., and is named 

epoxidized sucrose ester (ESE) [55-57]; the representative chemical structure is shown in Figure 1.5. This 

resin is obtained by converting the unsaturation in the Sefose® into epoxy groups through the Prilazhaev 

reaction using acidic ion exchange resin as catalyst.  Since invented in the late 2000s, many crosslinking 

routes using ESE resins have been explored.  Epoxy homopolymerization of ESE has been studied using 

cationic UV and thermal-cured method [58, 59].  Then, structure-property of polyester thermoset from 

acid/anhydride crosslinked ESE has also been well-studied [9, 60-64].  The conversion of the epoxy 

groups into methacrylated and acrylated group has been explored to provide external unsaturation, which 

then can be cured thermally and via UV-radiation [65-67].  Furthermore, polyol-ESE derivatives can be 

cured with polyisocyanates or melamine-formaldehyde [68-70]. These thermosetting polymers have been 

shown to have comparable properties to petrochemical-based counterparts.  This performance is 

attributed to its high number of functional groups and sucrose core.  When soybean oil fatty acids was 



 

17 
 

used, ESE have up to 8 fatty acids chains attached its sucrose core, thus would have up to 12 epoxy 

groups per molecule [64].  In comparison soybean oils only contain 3 fatty acid chains or an average of 

4.5 functional groups per molecule.  Furthermore, the improvement in the properties of the ESS 

thermosets was attributed to the rigidity of the sucrose core.  In a study comparing the properties of 

anhydride-cured epoxy thermoset using ESS and tripentaerythritol-based epoxy-- 2 epoxy resins with 

same number of functionalities yet different core molecule – the ESS-based thermoset was shown to 

have higher tensile strength and Young’s modulus. The application of the ESS-based thermoset system 

can range into coatings, composites, adhesives, printing inks, and many more [67, 71-74]. 

 

 Epoxidized sucrose soyate (ESS) chemical structure; the resin has an average of 12 Figure 1.5.
epoxy functional groups per molecule 

1.7. Conclusion 

The interest in the development of high performance materials derived from natural resources 

has gained popularity due to greater awareness of future sustainability and uncertainty in supply and cost 

of petrochemicals.  The abundancy and relatively low cost of vegetable oils make them an industrially 

attractive and feasible feedstock to be explored as chemical commodity.  The conversion of unsaturation 

in the vegetable oil fatty acids in to epoxy functionality has opened up routes to many crosslinking 

technologies to form thermosetting polymers.  To meet the high performance requirements for structural 

materials, chemical modification of the vegetable oils and addition of rigid molecules in the thermoset 

formulation has been explored.  Despite this improvement, vegetable-oil based thermosets still tend to be 
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softer than petrochemical-based materials or otherwise the bio-based content in the final product is 

compromised.  The breakthrough of sucrose ester as chemical building block has shown tremendous 

promise in creating a thermoset polymer that has comparable properties to the currently existing 

petrochemical-based counterpart.  The work described in this dissertation is devoted to the further 

exploration of the use of epoxidized sucrose soyate as an alternative to petrochemical feedstock in resins 

and thermosetting materials for composite and coatings application. 
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CHAPTER 2. CURING KINETICS OF BIO-BASED ANHYDRIDE THERMOSETS WITH ZINC 

CATALYST 

2.1. Abstract 

The kinetics of curing of epoxidized sucrose soyate with a cycloaliphatic anhydride was studied 

using differential scanning calorimetry.  Epoxidized sucrose soyate (ESS), a novel bio-based resin with 

high epoxy functionality, can be used to produce thermoset polymers for structural applications.  ESS was 

crosslinked with methyl hexahydrophthalic anhydride using a zinc-based catalyst.  Differential scanning 

calorimetry (DSC) studies indicated that the reaction kinetics was influenced by the formulation variables, 

i.e. anhydride-to-epoxy molar ratio and catalyst amount.  Multiple exothermic peaks suggest the presence 

of several different reaction mechanisms of the epoxy-anhydride reaction using metal complex catalyst, 

based on the formulation variables.  All of the reaction rate data can be fitted into both n-th order and 

autocatalytic kinetic models.  Based on the value of reaction order in the n-th order and autocatalytic 

kinetic model, the curing process is more dominated by non-autocatalytic reaction and less controlled by 

the autocatalytic process.  This kinetic model observation suggested that the presence of hydroxyl groups 

or carboxylic acid pendant chains in the ESS molecule or as the product of side reactions did not auto-

catalyze the reaction, and the reaction is initiated solely from the metal complex. 

2.2. Introduction 

In the recent decade, there has been increasing interest in replacing petrochemical-based 

materials with bio-based materials [1, 2].  This interest is mainly influenced by two factors: the rising and 

unstable cost of petrochemicals and a greater awareness of future sustainability.  The challenges to this 

“green” movement are to produce materials from renewable resources that will be both economically 

feasible and have comparable properties to current technology.  Some efforts have been made by 

partially substituting petrochemical products with chemicals derived from vegetable oils.  However, this 

technology results in a low bio-based content of the final product. Since thermosets or crosslinked 

polymers are used in numerous high performance applications such as matrix resins for composites, 

structural adhesives, and coatings, significant research efforts are underway to develop bio-based 

thermosets derived from vegetable oils or chemicals derived from lignin [3-13].  However, obtaining 
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materials having the performance that meets or exceeds the requirements for these demanding 

applications has been challenging. 

Recently, Webster et al. has developed a novel bio-based epoxy resin, namely epoxidized 

sucrose soyate (ESS), shown in Figure 2.1 [14].  When crosslinked, this epoxy resin has been shown to 

have properties comparable to its petrochemical-based counterpart [15-19].  The ESS-based thermoset is 

an improvement over epoxidized soybean oil (ESO); ESS has more epoxy functional groups per molecule 

and in addition its sucrose core provides rigidity to the thermoset [20].  Anhydride-cured thermosets 

based on ESS have been shown to be good candidates to be a matrix resin for structural composite 

materials [15, 21].  In order to be able to achieve the best possible properties, it is important to 

understand the effect of composition variables of the matrix resin itself on the curing kinetics and 

thermoset properties. 

 

 Epoxidized sucrose soyate (ESS) chemical structure; the resin has an average of 12 Figure 2.1.
epoxy functional groups per molecule. 

The epoxy-anhydride curing reaction may be catalyzed with alcohols, tertiary amines, quaternary 

ammonium or phosphonium salts, or metal salts and chelates.  The reaction mechanism for epoxy-

anhydride curing is known to be very complex, and depends heavily on the type of catalyst used in the 



 

27 
 

formulation.  Scheme 2.1 shows the reaction mechanism for an uncatalyzed system.  The reaction is 

feasible due to the presence of a hydroxyl group attached to either the epoxy resin or impurities present 

in the raw materials, or the presence of a small amount of carboxylic acid groups from the hydrolysis of 

the acid anhydride crosslinker [22-25].  This hydroxyl group is able to ring open the cyclic anhydride to 

form a mono-ester and carboxylic acid end group, which then can further react to form polyester.  Along 

with this mechanism, many scientists believe that homo-polymerization of epoxy occurs as a side 

reaction.   

 

Scheme 2.1. Uncatalyzed polymerization of anhydride and epoxy 

For comparison, Scheme 2.2 shows the reaction mechanism when a catalyst is used for the 

epoxy-anhydride polymerization.  The initial ring opening of cyclic anhydride/epoxy occurs from 

nucleophilic attack of the catalyst, i.e. tertiary amine, amidine, quaternary onium salt, or metal salts, to 

form a zwitterionic carboxylate and/or alkoxide anion [26].  The carboxylate and alkoxide anion then 

becomes the active end group and propagates the polyester chain.  Within this mechanism, there is a 

debate as to whether an active hydrogen atom, i.e. acid/alcohol, should be present in the 

copolymerization process; the hydrogen-bonded complex is thought to have enough reactivity to ring 

open the cyclic anhydride/epoxy [27-29].  However, depending on the type of acid/alcohol used, the 

formation of a hydroxyl/carboxylic acid end group is possible.  These functional groups can then catalyze 

the reaction, as shown in Scheme 2.1. 
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Scheme 2.2. Catalyzed polymerization of anhydride and epoxy 

Organometallic compounds have been used as epoxy-anhydride catalysts since the 1950s, 

mainly for electronic applications [30].  The most common ligand used for these catalysts is 

acetylacetonate [31-37].  Metal chelates are also capable of catalyzing epoxy homopolymerization; 

interestingly, there are more articles reporting the metal catalysis of epoxy homopolymerization than for 

the epoxy-anhydride copolymerization.  The final product properties of the thermoset polymer can be 

affected by the choice of metal, ligand, and anion type.  A review article regarding the use of metal 

chelates as epoxy resin modifiers has been published by Hamerton et al. [38].  They summarized 

catalysis by coordination compounds with different ligands: amino, acetylacetonate, imidazole, 

imidazolium, phthalocyanine, and Schiff’s base.  The use of metal coordination compounds as epoxy cure 

accelerators can modify the cure profile and improve storage stability. 

This paper focuses on a study of the curing kinetics of a novel highly functional bio-based epoxy-

anhydride resin system to understand the effects of the composition variables.  The variables studied are 

the anhydride-to-epoxy molar ratio and the amount of catalyst.  Differential scanning calorimetry (DSC) is 

a convenient and rapid tool for obtaining kinetic information on the curing process.  The kinetic 

parameters such as activation energy, reaction orders, and pre-exponential order are calculated based on 

different kinetic models.  These values may help to understand the reaction mechanism of ESS and 

anhydride curing. 
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2.3. Experimental 

2.3.1. Materials, polymer composition, and cure procedure 

Epoxidized sucrose soyate (ESS) was synthesized from sucrose soyate through the Prilezhaev 

reaction mechanism; the details of the synthesis reaction is presented in literature [14, 39].  ESS has an 

equivalent weight of 250 g/mol, determined by hydrogen bromide titration.  The crosslinker used in this 

study was methyl hexahydrophthalic anhydride (MHHPA), provided by Dixie Chemicals.  To catalyze the 

epoxy-anhydride reaction, a zinc-complex catalyst (CXC-1765® provided by King Industries) was added 

to the formulation. 

Nine formulations with different anhydride-to-epoxy (AE) molar ratios and catalyst amounts were 

prepared; the detailed amounts are listed in Table 2.1.  To prepare the formulations, ESS resin and 

MHHPA crosslinker were first mixed at 50 °C for 1 hour.  Then, the catalyst was added gradually to the 

mixture over a 1-hour period. 

Table 2.1. Polymer compositions 

Sample # 
AE Molar 

Ratio 
AE Weight 

Ratio 
Catalyst  

(% wt. total) 

S1 0.50 0.32 2 

S2 0.75 0.48 2 

S3 1.00 0.65 2 

S4 0.50 0.32 5 

S5 0.75 0.48 5 

S6 1.00 0.65 5 

S7 0.50 0.32 8 

S8 0.75 0.48 8 

S9 1.00 0.65 8 

 

2.3.2. Weight loss measurement by thermogravimetric analysis 

Thermogravimetric analysis was used to study the volatilization of raw materials and formulation 

mixtures as they were being heated.  The TGA experiment was conducted using a Q500 by TA 

Instruments, and the sample size used in the experiment was 30-50 mg.  Two TGA experiments were 

conducted: dynamic and isothermal scans.  During the dynamic scans, the samples were heated from 

room temperature to 600 °C at a rate of 10 °C/min.  For the isothermal scan experiments, the samples 

were heated from room temperature to 120 °C at a rate of 10 °C/min, and then the temperature was held 
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isothermally at 120 °C for 2 hours.  During both dynamic and isothermal scans, the samples were purged 

with air at 60 mL/min flow rate, while the TGA balance was purged with nitrogen at 40 mL/min flow rate.  

2.3.3. Curing kinetics by differential scanning calorimetry 

2.3.3.1. DSC experiment 

The kinetic parameters of the curing process were obtained by performing differential scanning 

calorimetry (DSC) experiments, using a DSC Q1000 by TA Instruments.  Non-isothermal scans of 10 mg 

samples were conducted at different heating rates (1, 2.5, 5 and 10 °C/min) from 25 to 250 °C under a 

nitrogen atmosphere.   

2.3.3.2. Reaction kinetic analysis 

Calculation of kinetic parameters by DSC assumes that the measured heat flow (𝑑𝐻/𝑑𝑡) is 

proportional to the reaction rate (𝑑𝛼/𝑑𝑡).  Furthermore, the extent of conversion/cure (𝛼𝑡) can be 

calculated from the integration of the heat flow (∆𝐻). 

𝑑𝛼

𝑑𝑡
=

𝑑𝐻/𝑑𝑡

∆𝐻𝑇𝑜𝑡𝑎𝑙
 and  𝛼𝑡 =

∆𝐻𝑡

∆𝐻𝑇𝑜𝑡𝑎𝑙
 (2.1 & 2.2) 

Then, the reaction rate of epoxy-anhydride can be described by the Arrhenius equation, a formula for 

temperature-dependent reaction rate, such as follows: 

𝑑𝛼

𝑑𝑡
= 𝐴𝑒−

𝐸𝑎
𝑅𝑇𝑓(𝛼) (2.3) 

where 
𝑑𝛼

𝑑𝑡
 is the reaction rate, 𝐴 is the exponential order, 𝐸𝑎 is the activation energy, and 𝑓(𝛼) is the 

function of cure.  The overall activation energy can be calculated through the Kissinger methods from the 

heat flow curves using multiple heating rates: 

𝑑(ln(𝛽/𝑇𝑝
2)

𝑑(1/𝑇𝑝)
= −

𝐸𝑎
𝑅

 (2.4) 

where 𝛽 is the heating rate in °C/min and 𝑇𝑝is the peak temperature [40].  Using this method, it is 

assumed that at the peak temperature, the extent of cure of the reaction is at a similar value. Then, the 

function of cure is often described with either a reaction order (RO) or an autocatalytic kinetic model: 

RO kinetic model: 𝑓(𝛼) = (1 − 𝛼)𝑛 (2.5) 

Autocatalytic kinetic model: 𝑓(𝛼) = 𝛼𝑚(1 − 𝛼)𝑛  (2.6) 
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where 𝑛 and 𝑚 are the reaction orders.  To determine whether a particular reaction would be 

appropriately modelled using an RO or autocatalytic kinetic model, a procedure described by Málek was 

followed; details of this procedure are provided in the literature [41].  In this literature, the calculations to 

obtain the kinetic parameters are also explained.  Then, using iso-conversional Flynn-Ozawa-Wall kinetic 

methods, the activation energy as a function of cure was determined.  The activation energy w 

𝑑(ln(𝛽)

𝑑(1/𝑇𝑝)
= −

𝐸𝑎
𝑅

 (2.7) 

where 𝛽 is the heating rate in °C/min and 𝑇𝑝is the peak temperature. 

However, the fastest and most efficient way to determine the kinetic parameters of a reaction 

from DSC experiments is through the TA Instruments Specialty Library with their Thermal Stability 

Analysis.  This method is based on ASTM E698 and assumes that the reaction follows a first-order kinetic 

model (𝑛 = 1) [42].  Using this software, kinetic parameters can be obtained automatically.  Kinetic 

parameters obtained using this method were compared with the values obtained using the RO and 

autocatalytic kinetic models. 

2.4. Results and Discussion 

2.4.1. Weight loss measurement by TGA 

As an initial experiment, weight loss analysis was conducted to understand the volatility of the 

components during the curing process.  Figure 2.2 shows the weight loss curves of the individual raw 

materials (ESS, MHHPA, and CXC-1765) in a dynamic scan.  The ESS resin shows an insignificant 

weight loss up to 332 °C, and then starts to lose weight rapidly due the degradation of the resin. The 

MHHPA crosslinker starts to lose weight significantly at 126 °C, despite its high boiling point of 290 °C.  

Furthermore, MHHPA shows a complete weight loss before the boiling point was reached; this 

observation indicates that MHHPA has a high vapor pressure.  The weight loss of the zinc complex 

catalyst CXC-1765 during the non-isothermal scan can be broken down into three regions: 126 – 175°C 

(R1), 175 – 235°C (R2), and 235 – 255°C (R3).  According to the manufacturer’s data sheet, the non-

volatile content of CXC-1765 is 60% after 60 minutes heating at 110°C and the boiling point is around 

250 °C.  The catalyst loses weight rapidly in the first region (R1), followed by a slower rate in the second 

region (R2).  The total weight loss during R1 and R2 combined is 45% of the initial weight; thus, this 
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weight loss is believed to be due to the evaporation of the carboxyl diluents.  The weight loss during R2 

occurs at a slower rate, which is anticipated since most of the volatile content has evaporated and the 

viscosity of the chemicals is fairly high; thus limiting the mobility of the carboxyl diluents.  The last weight 

loss region (R3) shows a rapid decrease in the weight due to the boiling of the zinc catalyst, which may 

indicate the dissociation of amino ligands from the zinc metal.  The evaporation of carboxyl diluents and 

ligand dissociation may also occur simultaneously in R2.  At temperatures above 255 °C, the catalyst only 

loses about 3% of its initial weight.  The final weight of the catalyst at the end of the experiment is 

observed to be 25%, while the CXC-1765 data sheet lists the metal content to be 7.5%.  Therefore, it is 

believed that not all of the ligands are dissociated from the zinc metals.  Similar multi-step weight loss has 

been observed with other organometallic compounds [43-45]. 

 

 Weight loss curves of raw materials from TGA experiments Figure 2.2.

While understanding the volatility of the separate components is a necessary first step, in the 

complete thermoset formulation, there is a competition between thermoset-forming reactions and the 

volatilization of the components.  The volatilization of components with anhydride-cured epoxidized 

soybean oil thermoset curing has been observed by other researchers [46].  Figure 2.3 shows the results 

of the TGA heating ramp experiments for the nine formulated samples.  Overall, the samples undergo 

multiple steps of weight loss: 100 – 175°C, 175 – 275°C, and above 275°C.  The first weight loss is 

observed at temperatures range of 100-175°C, indicating the evaporation of MHHPA and CXC-1765 
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carboxyl diluents.  Then, the formulations show a steady weight at 175 – 275 °C.  At this temperature 

range, the formulations may have reached the gel point or vitrification, where MHHPA has been 

incorporated into the network and thus can no longer evaporate.  Samples with higher AE ratio tend to 

lose weight more rapidly due to the higher amount of anhydride crosslinker in the formulation mixture.  

Furthermore, higher crosslinker amounts translate to lower viscosity of the samples, leading to more 

chemical mobility.  The amount of catalyst used in the formulation was expected to directly correlate to 

the amount of weight loss: as the amount of catalyst increases, reaction rates are expected to be higher 

and thermoset polymers may reach the gelation (and/or vitrification) point more rapidly, thus affecting the 

mobility and evaporation rate of the volatile components.  However, the results show that there may be an 

interaction between the amount of catalyst and the AE molar ratio.  When looking at samples with AE 

molar ratio = 0.5, the amount of catalyst did not affect the amount of weight loss significantly.  The last 

region of the weight loss occurs above 275°C due to degradation of the thermoset network.  One 

conclusion that can be drawn from these experiments is that anhydride curing is best used in applications 

done in a closed system, i.e. composites and adhesives, rather than in an open system, i.e. coatings, due 

to the potential volatility of the reagents. 
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 Weight loss curves of epoxy-anhydride samples Figure 2.3.
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2.4.2. Curing kinetics by DSC 

2.4.2.1. Heat flow curves 

Differential scanning calorimetry was used to obtain the kinetic information of the epoxy-

anhydride curing process. Non-isothermal curing of the epoxy-anhydride reaction shows a broad 

exothermic curve, spanning from 75 to 250 °C.  Figure 2.4 shows representative heat flow curves with 

different heating rates; the curves shown are taken from Sample 5.  The heat flows curves were then 

used to determine the total heat of polymerization, ∆HTot, by integrating the area under curves.  As 

expected, the height intensity increases as the heating rate increases.  Yet, the ∆HTot
 
did not differ 

significantly between each heating rates.  The values of the ∆HTot for the different samples are shown in 

Table 2.2. 

 

 DSC curves of S5 at a series of heating rates: 1, 2.5, 5, 10 °C/min Figure 2.4.

Figure 2.5 shows representative heat flow curves of different samples using a 2.5 °C/min heating 

rate.  Looking at this figure, multiple exothermic peaks are observed for every sample, and they are more 

pronounced for samples with 2% catalyst loading (S1, S2, and S3) as displayed in Figure 2.5a.  For S1, 

the relative height of the maximum heat flow value from the first and second exothermic peaks are 

different as the heating rates were varied.  As the heating rate was increased from 1 to 10 °C/min, the 

height of the maximum heat flow from the first exothermic peak is becoming lower than the value from the 

second exothermic peak. This observation may indicate the intrinsic nature of the epoxy-anhydride 
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reaction, which depends on the curing process and chemical composition.  In addition to the two 

exothermic peaks, a shoulder peak was also observed at the very beginning of the exothermic peak.  

These observations of multiple exothermic peaks plus a shoulder peak may indicate that the curing 

process undergoes multiple reaction mechanisms, either sequentially, or simultaneously.  Further 

discussion regarding this mechanism is presented in later section. 
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 DSC curves of the samples at a heating rate of 2.5 °C/min Figure 2.5.
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2.4.2.2. Activation energy 

The reaction rate (𝑑𝛼/𝑑𝑡) and the extent of cure (𝛼𝑡) for the DSC non-isothermal scans was 

calculated using Equations 2.1 & 2.2.  Then, using Equation 2.4, the overall activation energy was 

calculated through the Kissinger method at the maximum exothermic peak. The activation energy as a 

function of cure (from 0.01 – 0.99) was determined through iso-conversional Flynn-Ozawa-Wall method..  

Also, the function of cure was determined through a procedure described by Malek [41].  The results are 

presented in Table 2.2.  In this experiment, the activation energy was calculated in two ways: overall 

activation energy which is calculated from the degree of cure at maximum heating rate and activation 

energy as a function of degree of cure. 
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Table 2.2.  Kinetic parameters determined from non-isothermal DSC scans 

S 
 # 

∆HTot 

(J/g) 
Ea 

(kJ/mol) 
αP1 αP2 αS αM 

Autocatalytic RO αP RO 

n m n + m n n 

1 150 ± 18 72.0 
0.29 ± 
0.03 

0.80 ± 
0.05 

0.03 ± 
0.01 

0.03 ± 
0.01 

1.85 ± 0.4 0.07 ± 0.02 1.92 ± 0.4 3.66 ± 1.4 1.77 ± 0.4 

2 106 ± 5 66.8 
0.38 ± 
0.05 

0.85 ± 
0.06 

0.08 ± 
0.03 

0.09 ± 
0.02 

2.02 ± 0.4 0.19 ± 0.03 2.22 ± 0.4 3.02 ± 0.6 2.07 ± 0.6 

3 132 ± 5 62.1 
0.39 ± 
0.05 

0.79 ± 
0.08 

0.04 ± 
0.01 

0.06 ± 
0.03 

1.66 ± 0.4 0.11 ± 0.07 1.77 ± 0.4 2.66 ± 0.6 2.93 ± 0.4 

4 178 ± 10 66.8 
0.48 ± 
0.04 - 

0.10 ± 
0.03 

0.08 ± 
0.01 

1.74 ± 0.1 0.15 ± 0.02 1.90 ± 0.2 1.84 ± 0.4 1.60 ± 0.1 

5 194 ± 3 66.7 
0.49 ± 
0.05 - 

0.12 ± 
0.01 

0.09 ± 
0.01 

1.59 ± 0.1 0.16 ± 0.01 1.75 ± 0.1 1.76 ± 0.5 1.44 ± 0.1 

6 173 ± 25 74.1 
0.53 ± 
0.05 - 

0.13 ± 
0.02 

0.07 ± 
0.02 

1.53 ± 0.4 0.10 ± 0.01 1.63 ± 0.4 1.49 ± 0.4 1.49 ± 0.4 

7 150 ± 13 78.3 
0.55 ± 
0.02 - 

0.11 ± 
0.03 

0.09 ± 
0.01 

1.37 ± 0.1 0.14 ± 0.01 1.51 ± 0.1 1.33 ± 0.1 1.40 ± 0.4 

8 182 ± 12 74.4 
0.56 ± 
0.01 - 

0.19 ± 
0.03 

0.05 ± 
0.03 

1.42 ± 0.1 0.08 ± 0.03 1.50 ± 0.1 1.22 ± 0.1 1.22 ± 0.1 

9 178 ± 5 80.2 
0.58 ± 
0.04 - 

0.25 ± 
0.02 

0.08 ± 
0.04 

1.63 ± 0.2 0.14 ± 0.05 1.76 ± 0.3 1.16 ± 0.5 1.35 ± 0.2 
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First, the overall activation energy, Ea, of the reaction was calculated through the Kissinger 

method at temperatures where the maximum exothermic heat flow occurred.  The results of the activation 

energy calculation from Equation 2.4 are listed in Table 2.2.  The activation energy calculation through 

this  method assumes that the degree of cure at the maximum exothermic peak is similar at different 

heating rates.  Overall, the degree of cure at the maximum exothermic peaks ranges from 30 – 60%.  

Furthermore, samples with 2% catalyst loading possess multiple peaks; the second exothermic peaks 

were observed at approximately 80% degree of cure.  It can be seen from Table 2.2 that the degree of 

cure values at the maximum exothermic peak at different heating rates can differ up to 10% conversion; 

the standard deviations for the four heating rates was found to be 1 – 7%.  Using this method, the 

calculated activation energy was found to be between 60-80 kJ/mol, which is a typical range for common 

epoxy-anhydride polymerization. 

The overall activation energy values can also be calculated using TA Specialty software.  

However, caution must be taken when using this software, especially when multiple peaks are present.  

The relative height of the multiple peaks may differ depending on the heating rates used, and the 

software may calculate the overall activation energy by using different exothermic peaks, i.e. first 

exothermic peak vs. second exothermic peak.  This circumstance may happen because the software only 

determines one temperature where the maximum heat flow occurs, disregarding the fact that they may lie 

on different peak regions.  As mentioned earlier, S1 has multiple peaks with different relative heights of its 

first vs. second exothermic peaks, which are dependent on the applied heating rate.  Using the software, 

the activation energy is calculated using two degree of cure regions (α ≈ 0.3 and α ≈ 0.8).  However, 

despite this occurrence, the linear fitting of 𝑑(ln(𝛽/𝑇𝑝
2) vs. 𝑑(1/𝑇𝑝) still shows an R

2
 value of higher than 

98%.  This discrepancy can lead to misunderstanding on the assumption where the first-order reaction 

was still maintained.  It will be shown in later section later that even though the R
2
 value of the linear 

fitting is higher than 98%, the actual curve fitting itself does not represent the obtained data very well.   

Using Equation 2.7, the activation energies of the reactions were also calculated as a function of 

cure, from α = 0.01 through α = 0.99 with 0.05 increments.  The result is shown in Figure 2.6.  It can be 

seen that the activation energy changes throughout the curing process.  Significant changes are 

observed at the degree of cure where the shoulder and maximum exothermic peaks occurs. The samples 
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with 2% catalyst (S1, S2, and S3) show an initial decrease in the activation energy, but then the values 

start to increase at 0.4 degree of cure.  In contrast, the activation energy value of samples with 5% and 

8% catalyst (S4 – S9) showed an increasing value throughout the curing process.  Interestingly, the 

activation energy of S9 showed a large increase at the beginning of the reaction up to α = 0.75, followed 

by a large decrease at the end of the reaction.  On the whole, the activation energy values are ranging 

from 60 – 120 kJ/mol which agrees with activation energy values found in the literature for both epoxy 

homopolymerization and epoxy-anhydride copolymerization with metal complex as the catalyst [31, 32, 

47-50].  Overall, the amount of catalyst showed more of an effect on the curing reactions.  Yet, the effect 

of AE molar ratio may depend on the catalyst content in the reaction, and thus the activation energy value 

depends on both the AE ratio and the catalyst amount.   
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 Activation energy of epoxy-anhydride reaction as function of cure Figure 2.6.
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2.4.3. Possible curing mechanisms 

Based on the observations above, it can be suggested that the reaction mechanism is influenced 

by both the catalyst amount and the AE molar ratio.  The appearance of multiple exothermic peaks is 

believed to indicate different initiation mechanisms, instead of two types of polymerization reactions 

(polyesterification vs. polyetherification).  The actual reaction mechanisms are hard to determine since 

the exact ligands of the metal complex are unknown.  However, a Fourier-Transform infrared 

spectroscopy spectrum of the catalyst  indicates the presence of amine-based ligands (1045 cm-1 C-N 

stretch and 3400-3300 cm-1 NH stretch)  and carboxyl diluents (1699 cm-1 C=O stretch and broad 3300 

– 2500 cm-1OH stretch) [51].  Therefore, the epoxy-anhydride reaction may be initiated through three 

possible reaction mechanisms: metal coordination, reaction with carboxylate diluents or reaction with 

amine-based ligands. 

The first and the second mechanisms are believed to involve simultaneous initiation by 

carboxylate ligands and metal coordination.  As energy is given to the system, the carboxylate ligands are 

released.  Thus, the carboxylate ligands may initiate the reaction by ring-opening the epoxy functionalities 

and forming an alkoxide.  The alkoxide then reacts with the cyclic anhydride to form carboxylate.  

Subsequently, the chain polymerization continues.  The removal of carboxylate ligands may change the 

metal coordination of zinc complex from hexadentate to tetradentate, which allows anhydride and/or 

epoxy to complex with the metal atom.  This coordination results in ring-opening of the anhydride and/or 

the epoxy, and re-conversion of tetradentate coordination into hexadentate [52]. 

The third mechanism is suggested from the reaction of anhydride and/or epoxy with the amine-

based ligands.  The ligands can be dissociated from the metal complex as more energy is given.  The 

activation energy involving this initiation mechanism is predicted to be higher than the first one, therefore 

increasing the activation energy. 

The dissociation of ligands in the zinc complex may happen in an equilibrium state, and a higher 

amount of catalyst shifts the equilibrium toward greater ligand dissociation.  Consequently, there may be 

carboxylate ligands, tetradentate metal coordination, and loose amino ligands present right before the 

curing is started.  Therefore, when a lower amount of catalyst is used, the three mechanisms may happen 

in different stages, thus multiple exothermic peaks in the heat flow curves were observed.  In comparison, 
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when higher amount of catalyst used, the three initiation mechanisms may occur simultaneously and thus 

there was only one distinct exothermic peak observed. 

2.4.4. Reaction kinetic model fitting 

The rate of epoxy-anhydride reaction is often assumed to follow an Arrhenius temperature-

dependent rate equation, and its function of cure can be fitted as either a reaction order (RO) or 

autocatalytic model (SB or Sestak-Berggren) [53, 54].  RO and SB models differ on when the maximum 

rate of heat evolution occurs.  For the RO model, the maximum rate of heat evolution occurs at the 

beginning of a reaction, where α ≈ 0.  In contrast, for an autocatalytic reaction, the maximum rate of heat 

evolution occurs at α > 0 because one of the products is a reactant which can catalyze the reaction.  In 

the case of the epoxy-anhydride reaction, one of the products is a hydroxyl functional group and this 

hydroxyl group may catalyze the reaction. 

To determine whether the samples undergo RO or autocatalytic reaction, a procedure described 

by Malek was followed [41].  This procedure was used to find the α value where the maximum rate of heat 

evolution occurs.  Table 2.2 shows that the average value for α ranges from 0.03 – 0.09, with standard 

deviation of 0.01 – 0.04.  Malek suggested that a curing reaction can be considered to be an autocatalytic 

reaction if 0 < αM < αP∞; note that he also suggested the αM to be equal or greater than 0.05 to anticipate 

the calculation error.  For the samples described in this paper, the αM values range from 0.03 – 0.09, 

making it borderline between the RO and autocatalytic process.  Thus, the reaction rate of all of the 

samples will be fitted to both RO and autocatalytic process to obtain other kinetic parameters such as the 

reaction orders and pre-exponential factor.  Following the Malek procedure, the reaction rate was fitted to 

an autocatalytic kinetic model at α = 0.2 – 0.8, and to an RO kinetic model at α = αP (ROαP).  For a fair 

comparison, the reaction rate was also fitted to an RO model at α = 0.2 – 0.8 (ROα).  Please note that for 

samples with a 2% catalyst level (S1, S2, and S3), each exothermic peak was fitted individually.  In 

addition to the autocatalytic and RO kinetic models, the reaction rate was also fitted to a first-order kinetic 

model obtained from the TA Specialty software.  Table 2.2 lists the reaction kinetic order, while Figure 2.7 

show the examples of how the obtained data fits the kinetic model. 

First, as seen in Table 2.2, the values of reaction order 𝑛 in the RO kinetic model and 𝑚+𝑛 in the 

autocatalytic model are fairly similar, with the exception of samples with two exothermic peaks.  
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Furthermore, the values of reaction order 𝑚 are moderately small, therefore the values of 𝛼𝑚 are close to 

1.  This observation may indicate that the contribution of the autocatalytic reaction, i.e. the hydroxyl 

functional group catalyzing the epoxy-anhydride reaction, in the curing mechanism is fairly insignificant.  

That is also to say that the non-autocatalytic reaction, i.e. chain polymerization through alkoxide and 

carboxylate, dominates the curing process. 

Figure 2.7 compares how well the different kinetic models fit with the original data from S5 

(representing samples with catalyst amount of 5 & 8%, S4-S9).  As seen in this figure, the autocatalytic 

and ROα kinetic model fits the data well.  In contrast, the results from ROαP kinetic model deviate slightly 

from the original value: the reaction rate value is higher than original data before peak temperature,  𝑇𝑃, 

and lower than the original data after 𝑇𝑃.  Figure 2.7 also shows that the first-order reaction model (RO, n 

= 1) calculation from the TA Specialty Software did not fit the original data well, where the calculated 

values are much higher than the original data. 

 

 Reaction rate vs. temperature of S5 and S1: Obtained vs. fitted kinetic models Figure 2.7.

Similar observations are also noticed with reaction kinetic model fitting for samples with the 2% 

catalyst, shown in Figure 2.7 for S1.  Two exothermic peaks were fitted individually using two different 

reaction kinetic models.  The autocatalytic and ROα kinetic models fit the data well with the exception of 

transition areas between the exothermic peaks.  For these samples, the reaction order values for RO and 

autocatalytic models differ slightly, yet they are still within the standard deviations.  However, note that the 

standard deviations for these samples are higher compared to samples with higher catalyst amount (S4-

S9).  Furthermore, Figure 2.7 shows that the first-order kinetic model did not fit the reaction rate data. 
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2.5. Conclusion 

Epoxidized sucrose soyate, a novel bio-based resin, was successfully crosslinked with methyl 

hexahydrophthalic anhydride with zinc catalyst to form a thermoset polymer.  The curing kinetics of the 

thermoset system was studied as a function of composition variables, i.e. anhydride-to-epoxy molar ratio 

and catalyst amount.  The kinetic parameters for the ESS-MHHPA reaction were obtained using 

differential scanning calorimetry.  Based on the observation in the heat flow curves and activation energy 

values, the reaction mechanism may change as a function of the amount of catalyst, while the anhydride-

to-epoxy molar ratio may have an insignificant influence.  Furthermore, as with any other epoxy-anhydride 

reaction, the reaction kinetics was found to be fairly complex and does not follow a first-order reaction.  

Instead, the curves of reaction rate vs. temperature were fitted best to reaction order and autocatalytic 

kinetic model.  Additionally, based on the reaction order values in the reaction order and autocatalytic 

kinetic model, it is suggested that epoxy-anhydride curing of ESS and MHHPA is dominated by the non-

autocatalytic reaction (i.e. alternating addition of epoxy/anhydride through alkoxide/carboxylate end 

group) and the contribution of autocatalytic reaction (i.e. the reaction acceleration from hydroxyls or 

carboxylic acid formation) is minimal.  
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CHAPTER 3. BIO-BASED HIGH PERFORMANCE EPOXY-ANHYDRIDE THERMOSETS FOR 

STRUCTURAL COMPOSITES: THE EFFECT OF COMPOSITION VARIABLES 

3.1. Abstract 

The structure-property relationships of a designed series of anhydride-cured epoxidized sucrose 

soyate (ESS) thermosets were studied.  Epoxidized sucrose soyate is a novel bio-based epoxy resin 

derived from sucrose and soybean oil fatty acids, and it contains an average of 12 epoxy functional 

groups per molecule.  This epoxy resin was crosslinked with methyl hexahydrophthalic anhydride to form 

polyester thermosets with high crosslink density, and a zinc-complex catalyst was used.  In this study, the 

impact of composition variables—anhydride-to-epoxy molar ratio and catalyst amount—on the chemical, 

mechanical, and thermal properties of the thermosets were examined.  All of the thermoset samples had 

very high gel fraction, which indicated excellent network connectivity.  Samples made using an equimolar 

ratio of anhydride-to-epoxy groups had lower conversion of functional groups as shown by the somewhat 

lower gel fraction and higher moisture absorption.  Analysis of the thermomechanical and tensile 

properties of the thermosets suggests that there is a factor interaction between anhydride-to-epoxy molar 

ratio and catalyst amount.  Furthermore, the results suggest that the molecular networks of the thermoset 

samples are fairly complex due to the simultaneous competing reactions between catalyst-initiated epoxy-

anhydride, hydroxyl- initiated epo xy-anhydride, and epoxy homopolymerization.   

3.2. Introduction 

In the recent decade, due to the uncertainty of the cost and supply of petrochemicals, more and 

more research has been devoted to the development of vegetable oils as a chemical commodity [1-6].  

Vegetable oils offer promising potential in replacing petrochemicals in some applications due to their 

relatively low cost, abundant availability, and greater sustainability.  The use of vegetable oils as a 

chemical commodity is in fact not a new concept.  Vegetable oils such as linseed oil, tung oil, and 

soybean oil have been used for centuries in paints and coatings applications, such as in atist’s paints and 

varnishes.  The application of these vegetable oils as coatings still exists until today.  Currently, about 17 

million tons of vegetable oils go toward the synthesis of chemicals and materials; this is about 15% by 

weight of the total annual production of vegetable oils, and the value is estimated to grow at about 3.3% 
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per year [7, 8].  Furthermore, the use of vegetable oils has been broadened to many more fields, such as 

biofuels, lubricants, surfactants, and structural composites [1].  

Chemically, vegetable oils are the triglycerides or glycerol esters of fatty acids. Vegetable oils 

from different plant sources contain unique fatty acids compositions, with many vegetable oils containing 

a significant fraction of unsaturated fatty acids.  Polymerization of vegetable oils is possible through the 

unsaturation in the fatty acid chains, and the degree of unsaturation dictates the reactivity of a particular 

vegetable oil.  The unsaturation can lead to polymerization through auto-oxidation using metal catalysts 

[9].  However, this crosslinking route often takes an extensive period of time for the materials to fully cure.  

One popular modification of vegetable oils is the epoxidation of the double bonds, which then provides 

access to many crosslinking technologies, such as epoxy homo-polymerization and copolymerization with 

amines or acid/anhydrides.  Furthermore, the epoxy functionality can be ring opened with acids or 

alcohols to introduce other functional groups.  For example, epoxy groups can be reacted with acrylic or 

methacrylic acid to provide terminal double bond functionality, which can then be polymerized under ultra-

violet light and/or thermal exposure to form crosslinked materials [10-13].  In addition, epoxy groups may 

be reacted with alcohol to introduce hydroxyl functional groups, which then can be crosslinked with either 

isocyanates to produce polyurethanes or with melamine formaldehyde resins [7, 8, 14-17]. 

As mentioned before, epoxy groups can be polymerized through crosslinking with either amines 

or acid/anhydride groups.  Between these two potential crosslinkers, the acid/anhydride hardener is the 

main curing agent used for epoxidized vegetable oils for two reasons.  First, epoxy groups in the fatty 

acids are internal epoxides, and thus they are less reactive compared to terminal epoxides.  This low 

reactivity leads to low polymerization efficiency when crosslinked with amine hardeners.  Second, during 

the reaction between epoxidized vegetable oils with amine hardeners, there is possibility of de-

esterification of the fatty acid chain through an ester-aminolysis reaction to form amide bonds and 

alcohols as a by-product [18].   

The reaction of epoxides and anhydrides are known to be complex due to many simultaneous 

reactions.  The reaction can undergo both catalyzed and non-catalyzed processes.  An uncatalyzed 

reaction pathway may be possible due to the presence of hydroxyl groups on the epoxy resins or from 

impurities in the raw materials.  However, in most cases, the use of catalyst is necessary to ensure an 
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efficient polymerization [19-22].  Catalysis of epoxy-anhydride reactions is often performed with Lewis 

base catalysts such as tertiary amines, amidines, quaternary onium salts, or metal salts.  These catalysts 

initiate the polymerization reaction through nucleophilic attack on the epoxy and/or anhydride, and then 

form a zwitterionic alkoxide and/or carboxylate anion [23].  These anions then become the active group 

and propagate the polymer chain by further reaction with anhydride and/or epoxy groups.  Scheme 3.1 

illustrates the two reaction mechanisms.  The difference between these mechanisms lies in the initiation 

mechanism and active end group of the polyester chain.  For both mechanisms, the propagation 

reactions have been suggested to occur in an alternating fashion, therefore the bulk of the thermoset 

should contain polyester linkages.  However, the polyetherification side reaction is possible due to 

homopolymerization of epoxy groups; the extent of polyetherification that occurs depends on the type and 

amount of catalyst used in the curing formulation. 

 

Scheme 3.1. Reaction mechanism of epoxy and anhydride curing 

In the recent decade, there has been extensive research dedicated to the development of fiber 

reinforced polymer (FRP) composites using bio-based thermosets as the matrix resin [24-29].  For an 

application intended for structural parts that requires high performance properties, it is necessary that the 

thermoset has high crosslink density and glass transition temperature (Tg) so that it can efficiently transfer 

and distribute stress amongst the reinforcement without the initiation of cracks [30].  Unfortunately, most 
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of the thermosets based on anhydride-cured epoxidized vegetable oils (EVOs) generally have low 

crosslink density and Tg.  Therefore, FRP composites based on pure anhydride-cured EVOs are typically 

employed for situations that do not require high performance [31-33].  For use in structural FRP 

composites, EVOs are often blended with petrochemical-based epoxy resins such as the diglycidyl ether 

of bisphenol A (DGEBA) to enhance the strength and toughness of the final product [30, 34].  In spite of 

this, the amount of DGEBA added to EVO must be carefully considered to ensure achieving optimum 

curing time, modulus, Tg, thermal stability, and chemical resistance.  Often, DGEBA resin is used at 

concentrations of >60% of total weight, so that the final thermoset has comparable properties to the neat 

DGEBA polymers.  Yet, at this concentration, the final product would have significantly lower bio-based 

content. 

An improved bio-based epoxy resin derived from vegetable oil has recently been developed [35].  

This epoxy resin is named epoxidized sucrose ester (ESE), and a representative chemical structure is 

shown in Figure 3.1.  ESE resins are made by esterifying vegetable oil fatty acids onto the hydroxyl 

groups of sucrose, followed by epoxidation of the double bonds. Thermosets based on ESEs have 

significantly higher strength and Tg compared to EVO-based materials [36].  The improvement in the 

mechanical properties has been attributed to the rigidity of the sucrose core and the higher crosslink 

density due to more epoxy functional groups per molecule [36].  The number of the epoxy groups in the 

ESE depends on the type of fatty acids in the molecule.  Anhydride-cured thermosets based on ESE have 

been shown to have good mechanical properties for coatings applications [24, 37].  Based on this result, 

therefore, the thermoset has excellent potential to be used as a matrix resin for FRP composites.  

Furthermore, in order to be able to achieve the best possible properties, it is important to understand the 

effect of composition variables of the matrix resin itself on the thermoset properties. 
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 Representative chemical structure of epoxidized sucrose ester Figure 3.1.

In this study, the properties of anhydride-cured epoxidized sucrose soyate (ESS) are explored as 

a function of its composition variables, i.e. anhydride-to-epoxy equivalent ratio and catalyst amount.  A 

good understanding of the structure-property relationships is critical when designing FRP composites for 

various applications.  The properties assessed include sol/gel fraction, Tg and crosslink density, tensile 

properties, and moisture uptake. 

3.3. Experimental 

3.3.1. Materials, polymer composition, and cure procedure 

Epoxidized sucrose soyate (ESS) was synthesized from sucrose soyate through the Prilezhaev 

reaction [35, 38].  The epoxy equivalent weight of the ESS resin was analyzed through hydrogen bromide 

titration, and the value was determined to be 250 g/mol.  A liquid aliphatic anhydride, methyl 

hexahydrophthalic anhydride (MHHPA), was chosen as the crosslinker in this study; it was provided by 

Dixie Chemicals.  The zinc-complex catalyst, CXC-1765®, was provided by King Industries.  The 

thermoset polymer composition was varied based on the anhydride-to-epoxy (AE) molar ratio and the 

catalyst amount. The AE molar ratio was chosen to be 0.5, 0.75, and 1.0, while the catalyst amount was 

chosen to be 2, 5, and 8% of total weight of ESS and MHHPA; therefore, there is a total of nine 

formulations.  The composition of these nine formulations is listed in Table 3.1.  
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To prepare the thermosets, first, ESS and MHHPA were mixed at 50 °C for 1 hour.  Then, the 

catalyst was added gradually to the mixture over a 1-hour period.  The epoxy-anhydride formulation 

mixtures were cured in a Teflon mold sandwiched between aluminum sheets.  The formulation was cured 

in two stages: first stage involves curing at 120 °C for 1 hour, and then followed by curing at 150 °C for 3 

hours.   

Table 3.1. Polymer compositions 

Sample # AE Molar Ratio AE Weight Ratio Catalyst (% wt. total) 

S1 0.5 0.32 2 

S2 0.5 0.32 5 

S3 0.5 0.32 8 

S4 0.75 0.48 2 

S5 0.75 0.48 5 

S6 0.75 0.48 8 

S7 1.0 0.65 2 

S8 1.0 0.65 5 

S9 1.0 0.65 8 

 

3.3.2. Fourier-Transform infrared spectroscopy 

FTIR analysis was performed using a Thermo Scientific Nicolet 8700 FTIR spectrometer using a 

potassium bromide crystal.  The cured thermosets were characterized by Attenuated Total Reflectance-

FTIR (ATR-FTIR) spectroscopy using a Bruker Vertex 70 HTS-XT equipped with Pike MiRacle (zinc 

selenide crystal plates).  This crystal has a penetration depth of 2.00 µm at 45°.  For both transmission 

and reflectance FTIR, the spectra acquisition was based on 32 scans with data spacing of 4.0 cm
-1

. 

3.3.3. Soxhlet extraction 

Solvent extraction of the epoxy-anhydride thermosets was carried out using acetone (BP = 

56 °C).  Soxhlet extraction was conducted for partially and fully cured thermoset samples.  For partially 

cured samples (cured at 120 °C for 1 hour), the samples were extracted for 6 hours.  For fully cured 

samples, the samples were extracted for 17 hours.  The gel content of the thermoset samples was 

calculated by the weight percentage of the remaining material compared to the total initial weight.  

Furthermore, chemical analysis of the sol content was conducted by transmission FTIR spectroscopy. 

3.3.4. Moisture uptake 

Water absorption measurements were conducted through a gravimetric process. The shape of 

the thermoset sample was a circular disk with 40 mm diameter ×  2 mm thickness.  The specimens were 
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fully immersed in deionized water at room temperature (19 °C).  The weight of the specimens was 

measured after 1 week and 1 month of immersion. 

3.3.5. Dynamic mechanical analysis 

Thermo-mechanical properties of the thermosets were characterized using dynamic mechanical 

analysis (DMA) equipped with a 3-point bending clamp.  The instrument used is a Q800 DMA from TA 

Instruments.  The sample size was 50 mm × 10 mm × 3 mm.  The sample was heated from -100 °C – 

200 °C at a heating rate of 5 °C/min and a frequency of 1 Hz.  The glass transition temperature (Tg) was 

determined as the temperature of the tan 𝛿 maximum.   

3.3.6. Tensile testing 

Tensile testing of the bio-based thermosets was conducted using an Instron 5567 load frame with 

a 2 kN load cell at a rate of 5mm/min.  The specimen shape is a dogbone style Type 1 based on ASTM 

D638, with thickness of 3.4 mm and width of 10 mm.  The grip separation distance of the tensile testing 

was 115 mm, and the effective gauge length was 50 mm.  The tensile properties of each sample are 

reported as the average of five measurements of different specimens. 

3.4. Results and Discussion 

3.4.1. Epoxy-anhydride curing reaction 

Epoxy-anhydride polymerization can undergo both a catalyzed and non-catalyzed reaction.  The 

uncatalyzed reaction of ESS and MHHPA may be possible through the presence of hydroxyl groups in 

the sucrose ester (the sucrose is not fully esterified) and/or acid impurities in the anhydride crosslinker.  

However, a previous study on the curing kinetics of the ESS/MHHPA reaction reveals that this 

uncatalyzed reaction is minimal, and the curing process is dominated by a catalyzed reaction mechanism 

[39]. 

Figure 3.2 shows the FTIR spectra of the raw materials and a cured thermoset sample.  The 

formation of polyester linkages is confirmed by the presence of carbonyl peaks at 1732 cm
-1

.  These 

carbonyl ester linkages slightly overlap with the carbonyl ester peak of ESS at 1743 cm
-1

.  Furthermore, 

the presence of anhydride carbonyl peaks at 1857 and 1780 cm
-1

 are no longer detected in the cured 

material.  Unfortunately, it is challenging to confirm and quantify the amount of polyether linkages in the 
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thermoset system through FTIR analysis, since the C-O ether peak may overlap with C-O of esters and 

carboxylic acids. 

 

 FTIR spectra of the raw materials and cured thermoset S5. Figure 3.2.

To form the thermosets, the first curing step is done in an open-face molding plate.  Therefore, 

some of the anhydride and catalyst may evaporate due to their volatility at the curing temperature.  Even 

after the second curing step in the closed mold system, further loss of material can occur.  The amount of 

evaporation during the curing process is shown in Table 3.2; the listed value is the average and standard 

deviation of 3 samples. Overall, most of the samples retained 90%+ of their initial weight after the full 

curing process.  The highest weight loss was observed for Sample 7, and the lowest was observed for 

Sample 3. This observation was not unexpected for two reasons: the viscosity of the formulation and the 

expected rate of polymerization.  A high AE equivalent ratio means a high amount of anhydride in the 

formulation, thus leading to low viscosity and ability of the anhydride to diffuse through the system. Then, 

it is expected that with a high catalyst content, the polymerization reaction occurs faster, thus the 
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components are able to be incorporated into the network faster and the amount of evaporation is limited.  

A previous study using thermogravimetric analysis of the raw materials indicated that MHHPA crosslinker 

and CXC 1765 catalyst started to significantly lose its weight at 110 °C, while ESS started to decompose 

at 332 °C [39].  Therefore, the weight loss observed in this experiment is likely to be due to the 

evaporation of MHHPA crosslinker and dissociation of carboxyl diluents from the CXC 1765 catalyst. 

Table 3.2. Weight retained during curing, gel fraction, and moisture uptake of the thermoset 
samples 

Sample # 

Weight Retained During 
Curing (%) 

Gel Fraction (%) Moisture Uptake (%) 

Partially-
cured* 

Fully-
cured** 

Partially-
cured* 

Fully-
cured** 

1 week 1 month 

S1 93.4 ± 0.6 92.5 ± 0.2 66.2 ± 0.6 98.3 ± 0.1 0.59 ± 0.03 0.69 ± 0.04 

S2 93.3 ± 0.5 93.3 ± 0.3 71.2 ± 3.4 98.1 ± 0.3 0.61 ± 0.03 0.86 ± 0.13 

S3 94.5 ± 0.2 95.8 ± 0.1 89.1 ± 1.9 97.5 ± 0.4 0.64 ± 0.02 1.10 ± 0.07 

S4 89.1 ± 0.2 85.2 ± 0.8 68.1 ± 1.1 98.4 ± 0.3 0.92 ± 0.02 1.14 ± 0.03 

S5 91.5 ± 0.3 91.4 ± 0.1 80.2 ± 0.9 98.7 ± 0.3 0.89 ± 0.06 1.15 ± 0.07 

S6 93.3 ± 0.3 91.7 ± 0.9 87.1 ± 0.3 97.1 ± 0.6 0.84 ± 0.04 1.53 ± 0.20 

S7 86.5 ± 0.3 81.8 ± 1.2 58.9 ± 1.8 95.6 ± 0.5 1.08 ± 0.04 1.50 ± 0.12 

S8 89.0 ± 0.2 88.5 ± 0.3 74.0 ± 1.7 94.6 ± 0.4 1.11 ± 0.05 1.81 ± 0.02 

S9 91.5 ± 0.6 90.6 ± 0.2 79.5 ± 0.8 95.0 ± 1.5 1.09 ± 0.02 1.62 ± 0.03 

*Partially-cured samples: Samples that has been cured at 120 °C for 1 hour 
**Fully-cured samples: Samples that has been cured at 120 °C for 1 hour + 150 °C for 3 hours 
 

3.4.2. Gel content 

Soxhlet extraction was conducted to determine the gel content of the epoxy-anhydride 

thermosets, which may be related to the extent of cure.  Table 3.2 list the gel content of the samples, after 

the partial and full curing process.  As expected, the gel content after partial curing is significantly lower 

than the after the complete curing process.  The gel contents of the partially-cured samples are fairly low; 

samples containing 2%wt. catalyst loading only retain 60% of its weight after Soxhlet extraction.  In 

contrast, the gel content of all fully-cured samples are more than 94%, which indicates a high degree of 

conversion of the components.  It is very surprising that the gel content of partially-cured and fully-cured 

samples can differ up to 37%, e.g. Sample 7; this observation indicates that significant additional curing 

occurs during the second stage of the curing process.  It can be clearly seen that the amount of gel in the 

partially cured samples are affected by the catalyst amount; as the catalyst amount was increased, the 

gel content significantly increased.  The effect of AE molar ratio on the gel content of the fully cured resins 

is more ambiguous, and there might be a cross interaction between the AE molar ratio and the catalyst 
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amount.  This situation can be seen by comparing the increase in the gel content at a certain AE molar 

ratio as the catalyst amount was increased.  For example, when comparing Samples 1 and 2 (samples 

with AE molar ratio = 0.5), as the catalyst amount was increased from 2 to 5 wt. %, the gel content only 

differs by 5%.  In contrast, when comparing Samples 7 and 8 (samples with AE molar ratio = 1.0), 

increasing the catalyst amount from 2 to 5 wt. % results in 15% difference in the gel content.  Unlike the 

pattern seen in the partially-cured samples, the gel content in the fully-cured samples is more influenced 

by the AE molar ratio; where the lowest gel content was observed for samples with AE molar ratio = 1.0.   

Figure 3.3 shows the FTIR spectra of the sol content of the partially-cured samples.  For all 

samples, the spectra indicated that the sol contains the raw materials.  Looking at the carbonyl region, the 

anhydride peaks and the ester peaks from ESS (1857 and 1740 cm
-1

) are still observed.  As mentioned in 

the previous section, the reaction between epoxy and anhydride results in ester linkages and carboxylate 

end-groups.  The FTIR peak corresponding to the newly formed ester peak may overlap with the one for 

the ESS ester peak at 1740 cm
-1

.  Carboxylic acid end-groups can be observed at 1709 cm
-1

.  For 

samples with an AE molar ratio = 0.5, the intensity of the hydroxyl region was not as strong. 
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 FTIR spectra of sol fraction for partially-cured system Figure 3.3.

Figure 3.4 shows the FTIR spectra for the sol content of the fully-cured samples.  No anhydride 

was observed in the samples, except for Samples 7 and 8. However, for Samples 7 and 8, only shows 

trace amounts of anhydride are observed.  Looking closely at the carbonyl peak region, the relative peak 
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intensity between the ester (1740 cm
-1

) and carboxylate (1709 cm
-
) are different for each sample.  

Samples with an AE molar ratio = 0.5 are dominated by the ester group. In contrast, samples with AE 

molar ratio = 0.75 and 1.0, are more dominated by pendant carboxylic acids indicated by the presence of 

an broad OH peak in the 2500 – 3000 cm
-1

 region.   

The amount of sol in the partially-cured samples is predicted to correlate with the amount of 

initiated polymer chains.  The FTIR spectra of the sol fraction show the presence of raw materials, in 

addition to newly formed functional groups.  On the other hand, the amount of sol content in the fully-

cured samples is predicted to correlate with the overall network of the final thermoset system.  Samples 

with AE molar ratio 1.0 had the highest sol (lowest gel) content among all samples, and the FTIR spectra 

of the sol content indicates the presence of carboxylic acid/carboxylate pendant group.  This observation 

suggests that there may be excess anhydride in the reaction through the carboxylate pendant group that 

cannot react with epoxy functionalities since the system has already vitrified. 
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 FTIR spectra of sol fraction of fully-cured samples Figure 3.4.
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3.4.3. Moisture uptake 

Determination of the amount of water absorption of the thermoset systems can indicate the 

hydrostability of the systems.  Table 3.2 shows the weight gain after 1 week and 1 month of water 

immersion, and Figure 3.5 shows the appearance of the thermosets 1 month of immersion.  As shown in 

Table 3.2, all of the samples have fairly low water absorption, less than 2%.  Compared to a similar bio-

based thermoset system based on epoxidized vegetable oil, most of the samples in this study show lower 

water absorption [40, 41]. The highest absorption is observed for the samples with AE molar ratio = 1.0.  

This observation is expected due to the presence of carboxylic acid and/or hydroxyl end groups in those 

thermosets; these functional groups are hydrophilic, thus able to attract and retain water.  In contrast to 

the water absorption, the appearance of the thermoset samples appears to be related to the amount of 

catalyst used in the system.  As can be seen in Figure 3.5, there are white blemishes observed on the 

surfaces of the samples.  The amount of the blemishes increases with increasing catalyst amount and 

decreasing AE molar ratio. These white blemishes are attributed to the precipitation of the catalyst in the 

presence of water.   

 

 The appearance of the samples after 1 month water immersion Figure 3.5.

3.4.4. Viscoelastic properties 

The goal of the study is to understand the molecular network structure by analyzing the dynamic 

mechanical properties of the thermosets, which includes the glass transition temperature, crosslink 
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density, and the temperature dependence of the storage modulus, loss modulus, and tan delta.  Figures 

3.6-3.8 show the temperature dependence of the storage modulus, loss modulus, and tan delta of the 

thermosets.  The glass transition temperature can be determined through 3 different methods: the onset 

of the storage modulus drop (Tg, SM), the peak maximum of the loss modulus (Tg, LM), and the peak 

maximum of the tan delta (Tg, TD).  Table 3.3 lists the Tg values of the thermosets derived from these three 

methods. 

The storage modulus in the viscoelastic polymer represents the elastic portion, or solid-like 

behavior of the material.  In Figure 3.6, the storage modulus can be divided to be 3 regions: glassy state, 

glass transition region, and rubbery state.  In the glassy state, as the samples are heated, the storage 

modulus value is decreasing, indicating more movement in the polymer network.  Looking at the shape of 

the curves, samples with lower AE molar ratio tend to experience a higher decrease rate of the storage 

modulus values.  Then, samples with higher catalyst amount tend to have longer temperature range for 

its glassy state.  The temperature at the onset of the rapid decrease in the storage modulus can be used 

to determine the glass transition temperature, Tg, of the materials (Tg, SM).  Using this analysis, 

formulations with lower AE molar ratio and catalyst amount produce thermoset samples with lower Tg, SM.  

Based on the storage modulus of the thermosets in the glass transition state, the thermoset samples may 

undergo different stages of relaxation. For some samples, the storage modulus as a function of 

temperature does not undergo a constant decreasing rate.  Sample 5 showed this occurrence more 

clearly than the other samples.  The storage modulus in the rubbery region is used to analyze the 

crosslink density of the thermoset; this topic will be discussed in a later section. 



  

67 
 

 

 Storage modulus as function of temperatures of the thermoset samples Figure 3.6.

The loss modulus in the viscoelastic polymer represents the viscous portion, or liquid-like 

behavior of the thermosets.  Figure 3.7 shows the loss modulus curve as a function of temperature.  For 

the thermosets with 2% wt. catalyst, the loss modulus starts to increase significantly as soon as the 

samples were heated.  In contrast, the loss modulus did not increase immediately for other samples.  This 

observation has a similar pattern to what has been observed with the storage modulus, i.e. storage/loss 

modulus changes significantly for samples with 2%wt. catalyst.  Furthermore, the width of the loss 

modulus curves for thermosets with 2 and 5% wt. catalyst is shown to be broader than the samples with 

8% wt. catalyst amount.  The peak maximum of the loss modulus curve can be used as another indication 

for the Tg of the polymer (Tg, LM).  Again, thermosets with 2% wt. catalyst showed significantly lower Tg 

values compared to other samples.  However, the effect of AE molar ratio is only observed with 

thermosets having 8% wt. catalyst amount.   
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 Loss modulus as function of temperatures of the thermoset samples Figure 3.7.

The ratio of loss modulus over the storage modulus is the tan delta.  The peak maximum of the 

tan delta is commonly identified as the Tg of a polymer (Tg, TD).  The tan delta curve of the thermoset 

samples is shown in Figure 3.8.  The highest Tg, TD was observed for S5 and S8, that is 79.1 °C and 

78.8 °C, respectively.  Furthermore, the width of the curve or the breadth of the tan delta peak may 

suggest the degree of homogeneity of the network.  For all samples, the width of the peak is fairly broad, 

up to 100 °C; this observation is similar what has been seen with vegetable oil-based thermosets [37].  

Narrow peak width and high peak intensity was observed for higher AE molar ratio and catalyst amount.  

Interestingly, samples with 2% catalyst (S1, S4, and S7) tend to have fairly broad tan delta peaks.  

Furthermore, the presence of multiple tan delta maxima may be observed for S4.  This observation may 

indicate that samples made using low catalyst level have more heterogeneity in the polymer network 

structure.   
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 tan delta as function of temperatures of the thermoset samples Figure 3.8.

The molecular network structure of ESS-MHHPA can be characterized by the crosslink density 

and the molecular weight between crosslinks.  This information can be calculated from the storage 

modulus in the rubbery region through rubber elasticity theory: 

𝐸′ = 3𝜈𝑒𝑅𝑇 (3.1) 

where 𝐸′ is the storage modulus, 𝜈𝑒 is the crosslink density, 𝑅 is the gas constant, and 𝑇 is the 

temperature [42].  For this equation to be valid, the temperature chosen should be well above the Tg of 

the thermosets.  Often times, the crosslink density is calculated from the storage modulus at Tg, TD+ 60 °C.  

However, due to the width of the tan delta curves in this experiment, the chosen temperature is 150 °C, 

temperature above Tg, TD+ 60 °C where the storage modulus is in the plateau region.  Table 3.3 shows the 

crosslink density values of the bio-based epoxy-anhydride thermosets.   

Often, high crosslink density is believed to result in higher Tg values and vice versa, such as 

displayed for Sample 5 with the highest Tg and crosslink density.  However, this assumption did not 

entirely hold true in this study.  For example, Sample 7 shows lower Tg value compared to Sample 9; yet 

Sample 7 has comparatively lower crosslink density than Sample 9.  This observation suggests that the 

mechanical properties of the thermoset do not only depend on the crosslink density of the network, but 

also on the composition of the polymer backbone. 
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Table 3.3. DMA analysis of thermoset samples 

Sample # 
Glass Transition Temperature (°C) E’ (MPa) 𝝂𝒆  

(mm
3
/mol) Tg, SM Tg, LM Tg, TD At 25 °C At 150 °C 

S1 -56.9 -36.7 59.0 118 21.7 2.06 

S2 -53.6 -34.2 57.0 126 23.9 2.27 

S3 -42.7 -30.4 52.2 119 22.3 2.11 

S4 -18.3 -3.7 68.5 423 37.8 3.59 

S5 6.7 5.6 79.1 807 44.1 4.18 

S6 13.9 21.0 69.2 788 34.5 3.27 

S7 3.3 1.3 57.7 413 30.8 2.92 

S8 18.1 41.4 78.8 1029 40.3 3.82 

S9 12.2 24.6 61.3 712 25.6 2.42 

 

3.4.5. Tensile testing 

Tensile testing was conducted to determine the Young’s modulus, tensile strength, elongation at 

break, and tensile toughness of the thermoset samples.  Figure 3.9 shows representative stress-strain 

curves, and Table 3.4 provides the analysis values.  Tensile toughness values were calculated from the 

area under stress-strain curve.  The tensile properties of samples with 0.5 AE molar ratio and 2% catalyst 

amount (S1-S4 and S7) are significantly different than samples with higher AE molar ratio and catalyst 

amount.  Looking at their stress-strain curves, S1-S3 and S7 behave more like rubbery materials, while 

the others tend to be more brittle.  This observation is further confirmed by looking at the Young’s 

modulus values.  For the rubbery-like materials (S1-S3, S7), the Young’s modulus values are fairly low, ≤ 

300 MPa.  In contrast, for brittle-like materials (S5, S6, S8, and S9), the Young’s modulus values are 

close to 1 GPa.  The tensile stress-strain curve for S4 is quite interesting; they have rubbery-like Young’s 

modulus values at 260 MPa, yet brittle-like percent of elongation at 4.2%.  Surprisingly, regardless of the 

shape of the stress-strain curve (rubbery vs. brittle), the toughness of most of the thermoset samples is 

fairly similar with values in the range of 800 – 1400 kJ/m
3
.   
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 Representative stress-strain curves for the thermoset samples Figure 3.9.

Table 3.4. Tensile properties of the thermoset samples 

Sample # 
Young’s Modulus 

(MPa) 
Tensile Strength 

(MPa) 

Elongation at 
Break 

(%) 

Tensile 
Toughness 

(kJ/m
3
) 

S1 166 ± 43 5.9 ± 0.9 15.9 ± 1.4 731 ± 51 

S2 283 ± 16 10.1 ± 0.3 19.5 ± 3.5 1320 ± 254 

S3 333 ± 10 9.0 ± 0.3 14.9 ± 3.0 1193 ± 339 

S4 263 ± 8 4.2 ± 0.3 2.3 ± 0.2 45 ± 8 

S5 866 ± 39 17.5 ± 2.3 6.9 ± 3.1 1141 ± 535 

S6 710 ± 43 21.6 ± 0.3 7.5 ± 0.9 1339 ± 320 

S7 290 ± 108 6.9 ± 1.9 7.6 ± 2.5 377 ± 133 

S8 717 ± 38 15.6 ± 0.4 2.9 ± 0.2 251 ± 25 

S9 910 ± 75 17.2 ± 3.6 5.4 ± 1.7 789 ± 436 

 

3.4.6. Structure-property relationships  of ESS-MHHPA thermosets 

Generally speaking, higher Tg and Young’s modulus values are often caused by more highly 

crosslinked materials.  However, this premise did not entirely hold true in this study.  For example, S1 and 

S9 have fairly similar Tg,TD and crosslink density values, yet their Tg,SM and Tg, LM values are quite different.  

Furthermore, the tensile properties also show a different failure behavior: S1 behaves more like a rubbery 

material, while S9 is more like a ductile material.  It is widely known that the molecular network structures 

of epoxy-anhydride thermosets are fairly complex due to many possible reactions that can occur at the 

same time.  In this study, the complexity is further enhanced when ESS was used, since ESS has a broad 
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range of functionalities [14].  Based on information above regarding the Tg, crosslink density and tensile 

properties, the molecular network of ESS-MHHPA is shown to be influenced by both the AE molar ratio 

and the catalyst amount; there may also be a synergistic effect between the AE molar ratio and the 

catalyst amount.  The complexity of the molecular network may be due to the following factors: 

intermolecular vs. intramolecular linkages between ESS molecules, polyesterification vs. 

polyetherification, entanglements vs. actual crosslink of the ESS-MHHPA network, and dangling ends 

from unreacted functional groups.  First, as the network is being formed, a carboxylic acid group can react 

with an epoxy group either on the same molecule or a different ESS molecule, leading to either an intra-

molecular linkage or an inter-molecular linkage [43]. A higher fraction of intermolecular structures may 

result in a better network structure and higher modulus values. Second, due to the high number of epoxy 

functional groups and the complicated structure of ESS, the fatty acid chains between the same or 

different ESS molecules might entangle with each other [44].  When the epoxy groups subsequently 

react, a trapped entanglement network may form.  This trapped entanglement can also act as a crosslink, 

and thus provide higher modulus.  Furthermore, note that 𝑣𝑒 determined using Equation 3.1 does not 

separate trapped entanglements from actual crosslinks.  Third, the epoxy-anhydride curing process may 

result in both polyesterification and polyetherification reactions; polyesterification occurs when epoxy 

groups react with anhydride, while polyetherification is produced when epoxy groups react with a hydroxyl 

group formed from another epoxy.  It is expected that these two linkages have different bond strengths, 

and thus might result in different thermoset modulus.  Finally, lower modulus and Tg of the thermoset may 

also be caused by the amount of dangling ends from unreacted functional groups. 

3.5. Conclusion 

A series of novel bio-based thermosets were successfully prepared by reacting epoxidized 

sucrose soyate with cycloaliphatic anhydride crosslinker.  It was found that the change in the 

compositional variables, such as anhydride-to-epoxy (AE) molar ratio and catalyst amount, results in 

unique chemical network and thus mechanical properties which include Tg, crosslink density, tensile 

properties, and moisture uptake.  In other words, it is suggested that the mechanical properties of the 

thermoset depends not only on the crosslink density of the network, but also on the polymer backbone.  

This unique chemical network was predicted to be attributed from the following factors: intermolecular vs. 
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intramolecular linkages between ESS molecules, polyesterification vs. polyetherification, entanglements 

vs. actual crosslink of the ESS-MHHPA network, and dangling ends from unreacted functional groups.  

High Tg and Young’s modulus values can be obtained with formulation containing less than equimolar 

ratio of anhydride-to-epoxy and higher catalyst amount.  Yet, the tunability in the mechanical properties of 

these thermosets samples by changing its compositional variation is beneficial in producing composite 

materials for different applications with a broad range of properties. 
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CHAPTER 4. IMPACT OF CATALYST ON THE CURING AND PROPERTIES OF BIO-BASED EPOXY 

ANHYDRIDE THERMOSETS 

4.1. Abstract 

While the non-catalyzed epoxy-anhydride reaction is feasible, a long polymerization time is 

required to achieve high conversion of functional groups.  Thus, the use of an accelerator to catalyze the 

reaction is necessary to ensure efficient polymerization.  Furthermore, the type of accelerator used in the 

reaction has been shown to affect the curing kinetics and reaction mechanism, which then determines the 

polymer network structure and properties of the material. This study explored many types of base 

catalysts used in the polymerization of cycloaliphatic anhydride and epoxidized sucrose soyate.  These 

catalysts include tertiary amines, amidine, metal ligands, and onium salts. The optimum catalyst will 

provide low initiation temperature, minimum weight loss during the polymerization process, and excellent 

mechanical properties.  Thermal analysis experiments such as thermogravimetric analysis (TGA), 

differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were conducted to 

evaluate the properties of the thermosets with different catalysts.  Then, using the same experimental 

procedures, the effect of water in the catalyst on the thermoset properties was also studied.   

4.2. Introduction 

In the recent decade, there has been increasing interest in using renewable materials as 

chemical building blocks for structural materials.  This interest is attributed to a higher awareness of future 

sustainability.  Numerous epoxy resins from bio-based resources such as vegetable oils, polyphenols, 

tannins, cardanol, lignin, and starch have been developed [1-3].  Among these, vegetable oils are the 

most commonly used resources in the chemical industry due to their abundancy.  Furthermore, the 

concept of using vegetable oils as a chemical commodity is actually not a new concept.  Vegetable oils 

have been used for centuries in paints and coatings applications, owing to their ability to polymerize 

through autoxidation process of the olefin groups.  To obtain epoxy functional groups, the olefins are 

reacted with a peracid.  However, in order to be applied for structural applications requiring high 

performance, epoxidized vegetable oils are often mixed with a petroleum-based epoxy resin such as 

diglycidyl ether of bisphenol-A or diglycidyl ether of bisphenol-F.  As a result, the bio-based content in the 

materials is reduced. 
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Recently, Webster et al. has developed a bio-based high performance epoxy thermoset 

technology based on epoxidized sucrose soyate (ESS).  This epoxy resin is obtained from epoxidation of 

sucrose soyate (SS), sucrose ester of soybean oil fatty acid, through the Prilezhaev reaction [4-6].  This 

epoxy resin can be synthesized from 100% bio-based resources, and the viscosity is low regardless of 

the high epoxy group functionality. The representative structures for SS and ESS are shown in Scheme 

4.1.  With this resin system, many crosslinking routes have been explored which include homo-

polymerization, acrylate/methacrylate grafting, carbonate grafting, hydroxyl functionalization and 

acid/anhydride crosslinking [2, 3, 7-17].   

 

Scheme 4.1. Epoxidation reaction of sucrose soyate (SS) to yield epoxidized sucrose soyate 
(ESS). 

One of the crosslinking technologies explored is the co-polymerization of epoxy and anhydride to 

produce polyester thermosets [2, 3, 17].  Structure-property relationship study from Chapter 3 has shown 

that the properties of the anhydride-cured ESS thermoset depend on the anhydride-to-epoxy molar ratio 

and catalyst amount [17].  It was observed that rubbery-like materials were produced with samples 

formulated with an anhydride-to-epoxy molar ratio of 0.5 and catalyst loading of 2%.  In contrast, stiffer 

and more brittle materials were produced with samples formulated with an anhydride-to-epoxy molar ratio 

of 0.75-1.0 and catalyst loading of 5-8%.  Overall, all of the samples had very high gel fraction, and glass 

transition temperature above 50 °C.  Even though excellent mechanical properties were obtained from 

this study, it is necessary to minimize the amount of the catalyst in the formulation to reduce the overall 

cost.   

Furthermore, it has been observed by many other researchers that the mechanical properties of 

anhydride-cured epoxies may depend on the type of the catalyst used [18-20].   
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The difference in the properties of the thermosets with variation in the catalyst is thought to be 

due to the different reaction mechanisms and kinetics.  Overall, it is widely known that the epoxy-

anhydride reaction can be fairly complex due to simultaneous initiation, propagation, and termination 

reactions.  Trappe and Bhurchard studied the kinetics and conformational properties of anhydride-cured 

epoxies and found that the degree of polymerization depends on the molar ratio of the monomers and 

initiator [21].  Furthermore, they also found that the initiation rate constant of the reaction is 10-50 times 

smaller than the propagation rate constant.  This finding was further confirmed by Leukel using matrix-

assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy analysis [22].   

The polymerization of epoxides and anhydrides itself has been thought to be able to be initiated 

with or without the presence of catalyst.  Epoxy-anhydride polymerization is often catalyzed with Lewis 

base catalysts such as tertiary amines, amidines, imidazoles, quaternary onium salts, organometallic or 

metal salts.  The main difference between the reaction pathways is the initiation mechanism and active 

propagating end-chain; Scheme 4.2 summarizes the reaction pathways with the non-catalyzed reaction 

and many types of catalysts.  Without the presence of catalyst, the reaction can be self-catalyzed through 

hydroxyl impurities in the raw materials.  Fisch et al. proposed that hydroxyl impurities can ring open the 

anhydride system to form mono-ester with a carboxyl group at the end of the chain, which then can 

further react to form polyester [23].  Based on the assumption that the epoxy and anhydride functional 

groups are added alternately, the consumption rate of the epoxy and anhydride groups should be similar 

to the formation of the diester.  Yet, Fisch et al. observed the opposing case, where the consumption rate 

of epoxy groups is faster than the formation of diester.  In other research, Dearborn et al. also observed 

unreacted anhydride when all of the epoxies were consumed, even at an equimolar ratio of epoxy to 

anhydride [24].  Therefore, it seems that the non-catalyzed reaction may lead to a significant amount of 

ether linkages due to homo-polymerization of epoxy functionalities. 

Then, unlike the non-catalyzed reaction, when tertiary amine or amidine was used to catalyze the 

reaction, the active group is not the hydroxyl group, but a zwiterionic carboxylate and/or alkoxide group 

[23, 25].  Within this mechanism, there is a debate whether an active hydrogen atom should be present in 

the copolymerization system.  This hydrogen active compound can be any proton donor such as acid, 

alocohol or phenol [26-28].  This hydrogen bounded complex has a higher reactivity to ring open either 
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anhydride or epoxy.  The carboxyl group is able to auto-catalyze the reaction.  The possibility of 

termination of the active propagating chain end was proposed through hydrogen abstraction from the 

ammonium salt [23].   

One of the more popular catalyst systems for epoxy-anhydride reaction is imidazole.  The 

initiation of the reaction involves nucleophilic ring opening of the anhydride or epoxide by the nitrogen 

atom to form anionic species of carboxylate or alkoxide, respectively.  This anionic species then reacts 

subsequently with epoxide and anhydride [29, 30].  Using imidazole as catalyst for epoxy/anhydride 

reaction has been shown to result in materials with higher physical and chemical properties compared to 

networks formed when tertiary amine was used as catalyst [18].  Bouillon attributed this improved 

property due to the ability of the imidazole to act as a crosslinking agent and thus become incorporated 

into the network. 
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Scheme 4.2. Reaction mechanism of epoxy and anhydride curing using different catalysts 
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Another possible catalyst system for the epoxy/anhydride reaction are quaternary onium salts.  

This catalyst system has been widely used for hybrid powder coatings and step-growth acid/hydroxyl 

poly-condensation reactions [31-34].  The structure of cation and anion of the quaternary onium salts may 

affect the reactivity of the catalyst system [35].  For phosphonium salts-catalyzed reaction, Amirova et al. 

used electrospray mass-spectroscopy to analyze the initiation reaction mechanisms [36, 37].  They 

observed simultaneous reaction of nucleophilic substitution at the α-carbon atom of the phosphonium salt 

releasing triphenyl phosphine and nucleophilic attack of water to anhydride to form carboxylic acid 

groups.  The active hydrogen in the carboxylic acid groups was then found to be the initiating species.   

Another type of catalyst to accelerate the curing of epoxy-anhydride are organometallic 

compounds, which are mainly used for electronic applications [35, 38-42].  The initiation process can be 

started by either metal complexation and/or ligand dissociation in the catalyst system [43].  The type of 

metal, ligand, and anion type in the organometallic catalysts may affect the curing mechanisms and thus 

the properties.  A review article regarding catalysis by coordination compounds with different ligands such 

as amino, acetylacetonate, imidazole, imidazolum, phthalocyanine, and Schiff’s base has been published 

by Hamerton et al [44]. 

In this study, 11 possible catalysts with different chemistries (tertiary amine, imidazole, chromium-

based, and quaternary ammonium salt) were selected to accelerate the crosslinking polymerization of 

ESS and MHHPA.  For this catalyst screening study, anhydride-to-epoxy (AE) molar ratio was fixed to be 

0.75 and catalyst was added at 2%wt. of the formulation.  The effect of the catalyst was determined 

through many characterizations including studying the amount of volatilization by thermogravimetric 

analysis (TGA), heat of polymerization by differential scanning calorimetry (DSC), thermo-mechanical 

properties by dynamic mechanical analysis (DMA), gel fraction by Soxhlet extraction, and moisture uptake 

by water immersion. 

4.3. Experimental 

4.3.1. Materials, polymer composition and cure procedure 

Epoxidized sucrose soyate was synthesized from sucrose soyate through the Prilezhaev reaction, 

and the detailed procedure is described previously [5, 6].  The epoxy equivalent weight was determined to 

be 250 g/mol by hydrogen bromide titration.  A liquid aliphatic anhydride, methyl hexahydrophthalic 
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anhydride (MHHPA) was provided by Dixie Chemicals.  The catalysts used in this study are shown in 

Table 4.1.  Benzyldimethyleneamine (BDMA), 2-ethyl-4-methylimidazole (2E-4MI), 1-butyl-3-

methylimidazolium bromide (1B-3MI Br), choline chloride (C Cl), benzyltriethylammonium chloride (BTEA 

Cl), tetrabutyl ammonium bromide (TBA Br), and chromium (III)-2-ethyl hexanoate (Cr-3) were purchased 

from Alfa-Aesar.  1-Methylimidazole (1-MI) was bought from TCI.  BV-Cat 7 was given by Broadview 

Technologies, and  2,4,6-tris(dimethylaminoethyl) phenol (Ancamine K54) were provided by Air Products.  

The chemical and physical properties of the catalysts are shown in Table 4.1.  In a later part of the study, 

a series of aqueous TBA Br catalysts were prepared and the properties of the thermosets were studied as 

a function of water content in the catalyst. 

To prepare the thermosets, first, ESS and MHHPA were mixed at 50 °C for 1 hour; the anhydride-

to-epoxy equivalent ratio was fixed at 0.75.  Then, the catalyst was added to the mixture at 2%wt of total 

formulation, and the mixture was continued to be stirred for additional 30 minutes.  The formulations were 

cured in either an aluminum weighing boat or silicone mold, depending on the sample format required for 

evaluation.  The curing process consisted of two stages: 120 °C for 1 hour, followed by 150 °C for 3 

hours.  The amount of volatilization during curing was measured by comparing the weight of the materials 

before and after curing in the oven. 

 



  

 
 

8
4

 

Table 4.1. Catalysts for epoxy-anhydride polymerization 

# Type Catalyst Structure 
MW / 

(Active) 
Appearance BP/MP (°C) Supplier 

Purity 
(%) 

1 

Tertiary 
amine 

Benzyldimethylamine 
(BDMA) 

 

135.2 
(1) 

Colorless liquid -75/180 Alfa-Aesar 98 

2 
2,4,6-

tris(dimethylaminoethyl) 
phenol (Ancamine K54) 

 

265.4 / 
(3) 

88.5 

Clear, light 
yellow viscous 

liquid 
-20/130 

Air 
Products 

97 

3 

Imidazole 

1-methylimidazole  
(1-MI) 

 

82.1 
(1) 

Colorless liquid -60/198 TCI 99 

4 
2-ethyl-4-

methylimidazole  
(2E-4MI)  

110.2 
(1) 

Light yellow 
crystalline 

50/292 Alfa-Aesar 96 

5 
1-butyl-3-

methylimidazolium 
bromide (1B-3MI Br) 

 

219.1 
(1) 

Light brown 
crystalline 

70 Alfa-Aesar 99 

6 

Quaternary 
Onium Salts 

Choline chloride (C Cl) 

 

139.6 
(1) 

White solid 
Decompose 

at 302 
Alfa-Aesar 98 

7 
Benzyltriethylammonium 

chloride (BTEA Cl) 

 

227.8 
(1) 

White 
crystalline 

190/450 Alfa-Aesar 99 

(continues) 
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Table 4.1. Catalysts for epoxy-anhydride polymerization (continued) 

# Type Catalyst Structure 
MW / 

(Active) 
Appearance BP/MP (°C) Supplier 

Purity 
(%) 

8 

Quaternary 
Onium Salts 

Tetrabutylammonium 
bromide (TBA Br) 

 

322.4 
(1) 

White solid 103 Alfa-Aesar 98 

9 
Tetrabutylphosphonium 

acetate acetic acid 
complex (TBP Ac) 

 

318.5 
(1 + 1) 
159.3 

Beige powder 72 Sachem 
40% 

in 
water 

10 BV-Cat 7 
Quat ammonium salts in 

propyl alcohol 
- Liquid - 

Broadview 
Tech 

- 

11 Chromium 
Chromium(III)-2-ethyl 

hexanoate (Cr-3) 

 

481.6 
(3 + 1) 
120.4 

Green viscous 
liquid 

- Alfa-Aesar 

50 
(in 

ethyl 
hexa-
noate) 

12 Mixture 
Chromium (#11) + TBA 
Br (#8) (Cr-3+TBA Br) 

#3 and #7 - - - - - 
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4.3.2. Thermal analysis 

4.3.2.1. Thermogravimetric analysis (TGA) 

TGA experiments were conducted using a Q500 by TA Instruments, and the sample size used 

was 30-50 mg. During the dynamic scans, samples were heated from room temperature to 600 °C with 

10 °C/min heating rate.  Furthermore, the samples were purged with air at 60 mL/min flow rate, while the 

TGA balance was purged with nitrogen at 40 mL/min flow rate. 

4.3.2.2. Differential scanning calorimetry (DSC) 

The heat of polymerization and peak temperature of the curing was analyzed using a Q1000 

differential scanning calorimetry (DSC) by TA Instrument.  DSC dynamic scan was performed in which the 

samples (~10 mg) were heated from 0 to 275 °C at 5 °C/min heating rate.  The experiment was 

conducted in modulated mode, where the modulated temperature is ±1.23 °C with a modulation period of 

40 seconds.  For selected samples, the glass transition temperature (Tg) of the thermosets was 

determined using modulated DSC.  The samples were heated from -50 to 250 °C at 5 °C/min heating 

rate.  The modulated temperature is ±3.18 °C and the modulation period is 60 seconds. 

4.3.2.3. Dynamic mechanical analysis (DMA) 

The thermo-mechanical properties of the thermosets were analyzed using a Q800 dynamic 

mechanical analysis (DMA) system by TA Instruments.  The sample is a rectangular shape with size of 60 

mm x 10 mm x 3.5 mm.  Using 3 point-bending mode, the samples was heated from -100 to 175 °C at 

3 °C/min heating rate.  The sample was exposed to 15.0 µm oscillation with pre-load force of 0.075 N and 

the force track was set to 125%.  The Tg was determined as the temperature of the tan delta maximum. 

4.3.3. Soxhlet extraction 

The gel fraction of the sample was determined using Soxhlet extraction.  Approximately 1 gram of 

sample was inserted in the extraction thimble of the Soxhlet apparatus.  The extraction process was 

conducted using acetone as a solvent.  Samples were extracted for 17 hours by warm acetone when 

acetone was heated to reflux.  After the process is completed, wet residual samples were dried in the 

oven at 120 °C for 1 hour. 
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4.3.4. Moisture uptake 

Moisture uptake of the thermosets was performed by immersing the sample in deionized water.  

A circular sample with 1.5” diameter x 2 mm was immersed in the water for 2 months.  The weight of the 

sample was measured periodically, and the moisture uptake was determined by comparing the initial and 

final weights of the sample. 

4.4. Results and Discussion 

4.4.1. Appearance of the thermosets and volatilization during curing 

4.4.1.1. Appearance of the thermoset 

ESS was crosslinked with MHHPA to form a polyester thermoset, and the reaction was 

accelerated using the twelve catalysts shown in Table 4.1.  First, looking at the appearance of the cured 

thermosets, shown in Figure 4.1, it can be clearly seen that the color of the samples depends on the 

catalyst used.  Samples with tertiary amines (BDMA and K54) produced a light yellow color, while the 

ones with imidazole-based (1-MI, 2E-4MI, and 1B-3MI Br) catalysts gave a dark yellow, slightly amber 

color.  This dark yellow, slightly amber color can be attributed to oxidation of amine during the curing 

reaction.  The samples containing quaternary onium salts (C Cl, BTEA Cl, TBA Br, TBP Ac, BV-Cat 7) 

produced similar yellow color as tertiary amine samples. However, it is important to note that the catalysts 

with chloride ions could not be completely dissolved in the formulations, thus resulting in catalyst particles 

either dispersed in the sample or settled to the bottom of the pan.  Then, as expected, samples with 

chromium-based (Cr3 and Cr3+TBA Br) catalyst had a green color.  Among all of the samples, tacky 

surfaces after curing were observed for ESS/MHHPA mixture catalyzed by tertiary amine, choline 

chloride, and the chromium-based compounds. 

 

 Appearance of thermoset samples Figure 4.1.

1
BDMA

2
K54

3
1-MI

4
2E-4MI

5
1B-3MI Br

6
C Cl

7
BTEA Cl

8
TBA Br

9
TBP Ac

10
BV Cat 7

11
Cr 3

12
Cr 3 + 
TBA Br
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4.4.1.2. Volatilization during curing by thermogravimetric analysis (TGA) 

The high curing temperature may cause the raw materials in the liquid formulation to evaporate.  

An efficient catalyst should be able to initiate the reaction rapidly.  For anhydride-cured epoxy, previous 

research has shown that the propagation rate is much faster than initiation rate [21, 26].  An efficient 

catalyst should be able to initiate the chain rapidly.  Thus, more initiating chain ends would result in 

reaching the gel point faster, which then can reduce the evaporation of the raw materials.  To study the 

evaporation of the raw materials in the liquid formulation, non-isothermal thermogravimetric analysis 

(TGA) experiments were conducted.  In order to better analyze the formulation mixture, TGA analysis of 

ESS and MHHPA was first conducted, and the result is shown in Figure 4.2.   

It is important to note that both chemicals are solvent-free and have >99% purity.  It can be 

observed from Figure 4.2 that the ESS resin is thermally stable up to 345 °C, and then undergoes 

degradation rapidly.  In contrast, the MHHPA crosslinker started to lose weight significantly at around 

113 °C and no material remained after 200 °C.  This result is surprising since the safety data sheet listed 

the boiling point of MHHPA at 290 °C.  Thus, this observation suggests that MHHPA has a high vapor 

pressure.  A similar experiment was then conducted with the uncatalyzed ESS/MHHPA mixture. Multiple 

stages of weight loss were observed with the uncatalyzed ESS/MHHPA mixture.  Each stage is separated 

by an onset temperature.  The first onset temperature occurs at 125 °C, which is in a similar range where 

MHHPA starts to evaporate.  Therefore, it is suggested that MHHPA is evaporating at this onset 

temperature.  The rate of weight loss of the MHHPA in the uncatalyzed mixture is slower than MHHPA 

itself due to higher viscosity of the mixture of MHHPA with ESS compared to MHHPA alone.  This 

volatilization continues up to the second onset temperature which occurs at around 225 °C.  At this 

temperature, the remaining weight is approximately ~70%.  This mixture was formulated at 0.75 molar 

ratio of anhydride-to-epoxy molar ratio, or 32%wt. of anhydride in the mixture.  Therefore, at this second 

onset temperature, most of the anhydride crosslinker has evaporated.  The last observed temperature 

onset at 325 °C is suggested to be due to the degradation of ESS.  This observation may indicate that 

there is minimal polymerization occurring with the uncatalyzed ESS/MHHPA mixture. 
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 Weight loss curve as function of temperature: a. raw materials and liquid formulation, Figure 4.2.
b. liquid formulation with different catalysts 

In comparison, when a catalyst was added to the ESS/MHHPA mixture, the overall TGA curve 

shape is significantly different even though it still has similar weight loss stages: the MHHPA started to 

evaporate at ~125 °C and the materials started to degrade at ~325 °C.  In contrast, the MHHPA 

volatilization is greatly reduced before the materials started to degrade.  As seen in Figure 4.2b where 

several catalysts are used, the shape of the curves varies depending on the catalyst type.  In order to 

compare the performance of the catalyst, the following criteria are used to compare the weight loss 

properties of samples with different catalysts.  First, the temperature at which 2% weight loss occurred is 

used to signify the first onset temperature.  As mentioned before, the first onset temperature may indicate 

the ability of the catalyst to initiate the reaction thus delaying the loss of anhydride.  The second criterion 

used is the temperature at the second onset temperature at which the volatilization was significantly 

reduced, and may suggest the point where the matrix has gelled.  A high temperature of the second onset 

indicates that the gelation of the bulk occurs more slowly.  Other criterion being used is the total amount 

volatilization from 40-200 °C; an optimum catalyst would be one that can minimize the evaporation of 

MHHPA and thus have the lowest weight loss.  The last criterion used to compare the properties of 

catalysts is the degradation temperature of the cured thermoset. 

TGA analysis was carried out on systems containing each catalyst and the data analyzed based 

on the criteria above in Figure 4.3; this figure also contains the weight loss of materials during the curing 

process.  Figure 4.3 indicates that the trend of the onset temperature and weight loss during curing is 
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fairly similar. ESS/MHHPA catalyzed with tertiary amines (BDMA and K54) shows the highest amount of 

weight loss, where MHHPA evaporation starts at a lower temperature and the evaporation rate slowed at 

higher temperature.  Except for the 1-MI sample, other samples have 2% volatilization temperatures 

between 130-135 °C.  TGA analysis of the 1-MI catalyst showed evaporation of the catalyst at ~100 °C.  

Therefore, it is expected that the lowest 2% volatilization temperature of the 1-MI catalyzed ESS/MHHA is 

due to evaporation of both MHHPA and the 1-MI catalyst.  Comparing the second onset temperature, 

where the MHHPA evaporation slows down significantly, the lowest temperature was observed for 1-MI, 

2E, 4MI, TBA Br, TBP Ac, BV-Cat 7 and the mixture of Cr3-TBA Br.  These samples show a minimal 

weight loss (<3%) between the second onset temperature and the degradation temperature.  In contrast, 

other samples which had higher second onset temperature (BDMA, K54, 1B-3MI Br, C Cl, BTEA Cl and 

Cr3) continue losing weight between the second onset temperature and the degradation temperature; in 

some samples, this is up to 10%.  For this set of samples, the samples either initiate the reaction 

inefficiently and/or could not be dissolved in the ESS/MHHPA mixture.  Then, comparing the degradation 

temperature of all of the systems, some of the highest degradation temperatures were obtained from the 

samples which have highest evaporation rate (BCMA, C Cl, Cr).  The degradation temperature of these 

samples is similar to the degradation temperature of the ESS, which is indicated by the horizontal line on 

Figure 4.3c.  It is observed that the polyester thermoset crosslinked systems are less thermally stable 

than the ESS itself. The total amount of weight loss during TGA at 40 – 200 °C is presented on Figure 

4.3d.  A total weight loss of 5-25% was observed, and the trend is similar to what is observed for the 

second temperature onset.  The highest amount of volatilization was observed for ESS/MHHPA catalyzed 

by tertiary amine, and the lowest amount of volatilization was observed for 2E-4MI and soluble onium salt. 
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 TGA analysis for curing of ESS/MHHPA as a function of catalyst type: a. Temperature Figure 4.3.
at which 2% weight loss occurs, b. Temperature at which 2nd onset temperature (possibly 
gelation) occurs, c. Degradation temperature, d. Total amount of weight loss at 40-200 °C; e. Total 
amount of weight loss during oven curing 
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4.4.1.3. Volatilization during curing in the oven 

Although a TGA non-isothermal experiment can indicate the weight loss during the curing 

process, it is also necessary to measure the weight loss of materials that occurs during curing in the 

oven.  The weight of the samples is measured gravimetrically using an analytical balance before and after 

curing.  The amount of weight loss during curing is shown in Figure 4.3e.  The results from this 

measurement showed similar trends compared to what was observed from the TGA experiments.  When 

ESS/MHHPA mixture was catalyzed using 2E-4MI or soluble quaternary onium salts, less than 5% of 

materials were lost.  Overall, the TGA measurement tends to produce higher weight loss than the 

gravimetric measurement; it is believed that this occurrence was caused by the air flow purge used in the 

TGA experiment. 

4.4.2. Soxhlet extraction 

Soxhlet extraction was conducted to determine the gel content of the cured epoxy-anhydride 

thermosets, which may indicate the network connectivity of the cured thermoset.  Table 4.2 lists the gel 

content of the thermoset samples made using the series of catalysts.  Most of the samples have very high 

gel fractions, >95%, with the exception of samples made using the chromium-3 based catalysts.  This 

observation was a result of the lower reactivity of the chromium-3 catalyst in catalyzing the reaction, as 

shown in the TGA analysis and later in the differential scanning calorimetry (DSC) analysis.  

Table 4.2. Gel fraction and moisture uptake of thermoset samples cured with the catalysts 

# Type Catalyst Gel Fraction (%) 
Moisture Uptake (%) 

1-week 1-month 

1 Tertiary 
amine 

BDMA 95.83 ± 0.49 0.63 ± 0.08 0.67 ± 0.05 

2 K54 98.05 ± 0.11 0.70 ± 0.08 0.90 ± 0.13 

3 

Imidazole 

1-MI 99.21 ± 0.35 0.97 ± 0.02 1.05 ± 0.02 

4 2E-4MI 99.05 ± 0.14 0.73 ± 0.05 0.61 ± 0.14 

5 1B-3MI Br 98.17 ± 0.13 1.07 ± 0.04 1.32 ± 0.02 

6 

Quaternary 
Onium 
Salts 

C Cl 99.45 ± 0.03 -2.20 ± 0.25 -1.58 ± 0.38 

7 BTEA Cl 97.91 ± 0.2 2.18 ± 0.55 5.10 ± 0.94 

8 TBA Br 98.49 ± 0.08 0.53 ± 0.05 0.53 ± 0.12 

9 TBP Ac 99.19 ± 0.1 0.74 ± 0.01 0.97 ± 0.00 

10 BV-Cat 7 98.92 ± 0.19 0.56 ± 0.03 0.53 ± 0.01 

11 Chromium Cr-3 87.78 ± 0.32 0.93 ± 0.04 0.78 ± 0.04 

12 Mixture Cr3-TBA Br 99.45 ± 0.03 0.49 ± 0.09 0.83 ± 0.39 
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4.4.3. Moisture uptake 

The moisture uptake experiment was conducted to give insight into the hydrophilicity of the cured 

systems.  Table 4.2 shows the weight gain after 1-week and 1-month of full immersion in deionized water.  

As shown in Table 4.2, most of the samples have low moisture uptake, with less than 2% after 1-month 

immersion.  The highest water uptake was observed for the BTEA Cl samples with up to 5% weight gain.  

BTEA Cl thermoset samples have undissolved catalyst within the thermoset system, and it is expected 

that this undissolved catalyst is able to attract and retain water.  An interesting observation was found 

with samples with C Cl, where the samples actually lost weight after water immersion.  Similar to BTEA 

Cl, C Cl catalyst could not be dissolved well in the thermoset system.  Yet, in contrast to BTEA Cl, it is 

predicted that the samples were solubilized in the water, thus decreasing its weight. 

4.4.4. Heat of polymerization by differential scanning calorimetry (DSC) 

4.4.4.1. Theoretical heat of polymerization 

Chemically, the heat released during polymerization arises from the ring opening of epoxy and 

anhydride functional group.  Thus, theoretically, the total enthalpy of polymerization (∆Hpzn) can be 

calculated based on the total heat released for ring opening of epoxy and anhydride functional group.  

The ring opening of both epoxy and anhydride by hydroxyl end is shown Scheme 4.3.  It has been 

reported in many literature that the heat released from epoxy ring opening in epoxy homo-polymerization 

is ~94 kJ/mol, and the heat released from hydrolysis of phthalic anhydride is ~32 kJ/mol [10, 45]. 

 

Scheme 4.3. Ring opening of epoxy and anhydride 

In this experiment, the system was formulated with anhydride-to-epoxy molar ratio of 0.75.  Using 

the heat released value above, the theoretical enthalpy of polymerization is calculated to be 305 kJ/mol.  

Then, considering the molecular weight of ESS (~2500-2600 g/mol) and MHHPA (168 g/mol), the 

a. Ring opening of epoxy

+ ∆H = 94 kJ/mol

b. Ring opening of anhydride

+ ∆H = 32 kJ/mol
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theoretical ∆Hpzn is equal to be 335 J/g.  The experimental ∆Hpzn can be obtained from differential 

scanning calorimetry (DSC) experiments. 

4.4.4.2. DSC peak analysis 

Modulated differential scanning calorimetry (DSC) non-isothermal experiments were conducted to 

study the exothermic reaction of epoxy-anhydride polymerization, where the enthalpy of polymerization 

and temperature at maximum heat flow was compared between the catalysts.  The samples were loaded 

into hermetic pans and were heated from 0-275 °C at 5 °C/min heating rate.  Figure 4.5a-e shows the 

DSC non-reversible heat flow curves of epoxy-anhydride polymerization using different catalysts, and 

Figure 4.5f shows an example of the peak analysis that was used to compare the performance of the 

catalysts.  The result of the peak analysis is then shown in Table 4.3.  
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 DSC curves of samples with different catalysts: a. tertiary amine, b. imidazole, c. Figure 4.4.
quaternary ammonium salt containing chloride ion, d. quaternary onium salt, e. chromium-based, 
f. example of peak analysis 
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First, it is necessary to note the shape of the curves.  All of the samples, except the one catalyzed 

with a tertiary amine possess exothermic non-reversible heat flow.  For these samples, peak integration 

was not able to be obtained.  Furthermore, as listed in Table 4.3, the heat of polymerization (∆Hpzn) of all 

samples was less than the theoretical value of 355 J/g.  In fact, only TBP Ac sample was able to reach 

enthalpy of polymerization of 300 J/g.  The observed median value was found to be around 200 J/g.  

Therefore, the theoretical functional group conversion for the samples can be assumed to be between 70 

– 90%.  Based on this observation and results from volatilization study, it is expected that two competing 

events occur simultaneously: epoxy/anhydride polymerization (exothermic process) and volatilization of 

anhydride (endothermic process). These simultaneous events are therefore reducing the overall observed 

heat released.  Furthermore, it is predicted that not all of the functional groups were indeed reacted.  It 

may be quite difficult to reach 100% functional group conversion due to the thermoset reaching the 

vitrification point.  Finally, ring-opening process may have occurred during mixing procedure and thus not 

being recorded by DSC experiment, thus also reducing the observed ∆Hpzn. 

The temperature at where the maximum in the heat flow curves occurs is often associated with 

the activation energy of the reaction [46].  The Borchardt and Daniels approach assumes that the reaction 

follows nth order reaction and obeys Arrhenius temperature-dependence behavior. However, it is 

necessary to note that the activation energy of epoxy-anhydride polymerization can involve both initiation 

and propagation since propagation steps has been reported to occur at much faster rate than initiation 

[21, 22].  The peak temperature of exothermic heat flow curves of anhydride-cured ESS ranges from 155 

– 190 °C.  It is commonly thought that lower peak temperature can indicate lower activation energy.  

However, it will be shown later that lower peak temperature does not necessarily indicate lower activation 

energy. 
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Table 4.3. DSC peak analysis of samples with different catalysts 

# Type Catalyst ∆Htot (J/g) Tp (°C) 
Shoulder Ea 

(kJ/mol) ∆Htot (J/g) Tp (°C) 

1 Tertiary 
amine 

BDMA N/A N/A N/A N/A N/A 

2 K54 N/A N/A N/A N/A N/A 

3 

Imidazole 

1-MI 193.8 161.4 N/A 185.4 89.6 

4 2E-4MI 201.7 165.7 39.5 236.4 79.4 

5 1B-3MI Br 236.6 190.2 N/A N/A 79.4 

6 

Quaternary 
Onium 
Salts 

C Cl 26.43 173.7 34.6 235.3 N/A 

-7 BTEA Cl 55.3 157.7 16.1 216.9 N/A 

8 TBA Br 218.5 164.0 N/A N/A 75.7 

9 TBP Ac 300.6 175.2 N/A N/A 93.5 

10 BV-Cat 7 219.5 164.6 N/A N/A 82.5 

11 Chromium 
Mixture 

Cr-3 21.3 133.2 N/A N/A N/A 

12 Cr3-TBA Br 142.6 168.1 102.7 N/A N/A 

 

The activation energy values calculated from peak temperature can be obtained more accurately 

by using a multiple heating rate method.  Using the Kissinger method, the activation energy values can be 

obtained through following equations: 

𝑑(ln(𝛽/𝑇𝑝
2)

𝑑(1/𝑇𝑝)
= −

𝐸𝑎
𝑅

 (4.1) 

where 𝛽 is the heating rate in °C/min and 𝑇𝑝is the peak temperature [47].  Using this method, it is 

assumed that at the peak temperature using different heating rates, the extent of cure of the reaction is at 

a similar value.  For this experiment, the activation energy of selected samples was determined.  The 

samples include 1-MI, 2E-4MI, TBA Br, TBP Ac, 1B-3MI Br, BV-Cat 7.  These samples were selected due 

to considerably lower volatilization amount and fairly high enthalpy of polymerization.  With these 

samples, multiple DSC heating rate experiments (5, 10, and 20 °C/min) were conducted to determine the 

activation energy of the reaction.  Using Equation 4.1, the calculated activation energy is listed in Table 

4.3.  The value of activation energy ranges from 67 – 90 kJ/mol, which is similar to what has been 

reported in the literature [18, 19, 48].  The lowest value was obtained for samples catalyzed with TBP Ac, 

while the highest is with TBA Br.  Observing the peak temperatures, the samples catalyzed with TBA Br 

have a relatively lower peak temperature.  The opposite is true with the 1B-MI Br sample, where it has the 

highest peak temperature, yet relatively low activation energy. 
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4.4.5. Thermo-mechanical properties by dynamic mechanical analysis (DMA) 

The viscoelastic properties of the thermoset samples were analyzed using dynamic mechanical 

analysis (DMA).  Unfortunately, not all samples were able to be prepared successfully; some samples 

contain bubbles throughout the samples and thus could not be tested.  Figures 4.5 and 4.6 show the 

storage modulus and tan delta curves of the tested samples, respectively; while Table 4.4 lists the 

detailed analysis of the DMA curves.  These samples include BDMA, K54, 1-MI, 2E-4MI, C Cl, TBP Ac, 

BV Cat 7, Cr3 and Cr3 + TBA Br.  Glass transition temperature, Tg, of the samples is determined as the 

temperature where the tan delta maximum occurs, and the values range from 20 to 100 °C.  Overall, the 

Tg value and shape of the storage modulus and tan delta curves depends on the type of the catalyst 

used. 

 

 Storage modulus of anhydride-cured ESS thermoset with different catalysts: a. tertiary Figure 4.5.
amine, b. imidazole, c. quaternary onium salt, d. chromium-based 
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 tan delta of anhydride-cured ESS thermoset with different catalysts: a. tertiary amine, Figure 4.6.
b. imidazole, c. quaternary onium salt, d. chromium-based 

Table 4.4. DMA peak analysis 

# Type Catalyst 
Tg by tan 

δ (°C) 

tan δ Peak 
Storage Modulus 

(MPa) XLD at 
150 °C Width 

(°C) 
Height 

At 25 °C 
At 

150 °C 

1 Tertiary 
amine 

BDMA 32.6 104.4 0.24 243.2 9.41 0.89 

2 K54 64.8 70.1 0.29 487.7 11.4 1.08 

3 

Imidazole 

1-MI 100.9 94.9 0.16 940.2 57.6 5.46 

4 2E-4MI 94.1 54.4 0.24 850.9 29.8 2.88 

5 1B-3MI Br N/A N/A N/A N/A N/A N/A 

6 

Quaternary 
Onium 
Salts 

C Cl 20.3 52.6 0.36 92.2 9.03 0.86 

7 BTEA Cl N/A N/A N/A N/A N/A N/A 

8 TBA Br N/A N/A N/A N/A N/A N/A 

9 TBP Ac 83.1 26.4 0.53 1266 11.3 1.07 

10 BV-Cat 7 92.6 57.8 0.25 878.4 32.81 3.11 

11 Chromium Cr-3 26.1 73.6 0.28 87.7 6.52 0.62 

12 Mixture Cr3-TBA Br 97.6 58.2 0.22 889.5 35.8 3.39 
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The lowest Tg of ESS-MHHPA thermosets was observed for the C Cl-catalyzed sample, while the 

highest value was observed for the 1-MI catalyzed sample.  Samples catalyzed using tertiary amines and 

imidazoles tend to have very broad tan delta peaks. Furthermore, for certain samples, multiple peaks 

were observed in the tan delta curves.  Broad and multiple peaks in tan delta curves are often associated 

with the heterogeneity of the network system and the associated temperature where the polymer chain 

relaxation occurs.  It is suggested that the high Tg value and the broad tan delta peak of the 1-MI 

catalyzed sample is attributed to its ability to be incorporated in the network system as a crosslinking 

agent.  It was originally expected that the presence of water in the TBP Ac catalyst results in two types of 

initiation and/or propagation mechanisms, and thus lead to a more heterogeneous network.  Yet, 

surprisingly, the tan delta curve of TBP Ac-catalyzed sample shows a comparatively narrow peak, which 

may indicate a homogenious network.  One of the highest Tg values was obtained with samples catalyzed 

with Cr3+TBA Br, that is 97.6 °C.  This result is quite unexpected since the Tg value is higher than any of 

the Tg value observed for quaternary-onium salt samples, and the Tg of the Cr3-catalyzed sample itself is 

fairly low at 26.1 °C. 

The crosslink density (𝜐𝑒) of the polymer network can be estimated using the storage modulus 

value in the rubbery plate region using rubber elasticity theory as follows: 

𝐸′ = 3𝜐𝑒𝑅𝑇 (4.2) 

where 𝐸′is the storage modulus, 𝜐𝑒 is the crosslink density, 𝑅 is the gas constant, and 𝑇 is the 

temperature.  For this experiment, the 𝜐𝑒 is calculated at 150°C; and the result is shown in Table 4.4.  The 

𝜐𝑒 of the network is relatively proportional to the Tg of the samples: higher Tg samples have higher 𝜐𝑒.  

However, the relationship between Tg and 𝜐𝑒 is not quite linearly correlated due to following reason.  The 

shape of the tan delta curves of the thermoset samples with different catalysts are quite unique, which 

indicates that the molecular network structure of the polymers are likewise unique.  A linear correlation 

between Tg and 𝜐𝑒 can be obtained only if the molecular network structure and the backbone of the 

polymers are relatively similar.  The dissimilarity of the molecular network structure of the anhydride-cured 

ESS thermoset may be caused by possible side reactions occurring, amount of polymer dangling end 

chains from unreacted functional group, and different amount of intermolecular vs. intramolecular linkages 

between ESS molecules (intramolecular ESS linkages are when the epoxy in an ESS molecule is 
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connected with another epoxy within the same molecule, while intermolecular linkages are when the 

epoxy is connected with another epoxy of different ESS molecule).  Furthermore, the polymer backbone 

and 𝜐𝑒 of the ESS-MHHPA thermosets may differ due to the volatilization of MHHPA during curing.  As 

shown in the previous section, the amount of MHHPA volatilization depends on the type of the catalyst 

used in the formulation.  In this project, the anhydride-to-epoxy molar ratio of the formulation was fixed to 

0.75 or 32% by wt. of anhydride in the formulation.  The amount of anhydride left in thermoset can then 

be calculated from the difference of the initial concentration and the amount of volatilization.  Figure 8 

compares the amount of anhydride leftover in the thermoset after curing in the oven and the 𝜐𝑒.  There 

seems to be a correlation between the amount of anhydride leftover after curing and the 𝜐𝑒 of the 

thermosets.   Samples that has <15% anhydride content (BDMA, K54, C Cl, and Cr3), the 𝜐𝑒 is 

approximately 1.0 mm
3
/mol; while samples that has >15% anhydride content (2E-4MI, BV-Cat 7, and 

Cr3+TBA Br), the 𝜐𝑒 is approximately 3.0 mm
3
/mol.  The exception to this observation occurs for 1-MI and 

TBP-Ac, where 1-MI sample has comparatively higher 𝜐𝑒 and TBP-Ac sample has comparatively lower 𝜐𝑒. 

 
 The amount of anhydride after curing process and the crosslink density of the cured Figure 4.7.

thermosets 

4.4.6. Effect of water in the catalyst 

One of the catalysts that performed well in catalyzing ESS/MHHHPA polymerization is tetrabutyl 

phosphonium acetate (40% aqueous solution).  Previous research has shown that the presence of 

hydroxyl functionalities and/or impurities in the system can affect the reaction mechanisms, and may 
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promote polyetherification reactions [23, 24].  Here, the impact of the water in the catalyst system on the 

curing process and thermoset properties was evaluated.  To accomplish this, a series of tetrabutyl 

ammonium bromide (TBA Br) aqueous solution catalyst systems (25, 50, and 75% wt. TBA Br) were 

prepared.  Two sets of experiments were conducted. First, thermoset systems with 2% wt. loading of TBA 

Br catalyst solution were prepared; this set of experiments will be referred as “Set A”.  Second, the 

amount of pure TBA Br catalyst in formulation is fixed to 2% wt., therefore the TBA Br catalyst solution 

was added at 2-8% wt; this set will be referred as “Set B”.  The same series of experiments was 

conducted on both sets to evaluate the properties of the thermosets. 

4.4.6.1. Volatilization during curing 

Similar to the previous approach described above, the volatilization during curing was analyzed 

gravimetrically while curing in the oven and using non-isothermal TGA.  The amount of volatilization 

during curing in the oven is presented in Table 4.5.  All of the formulations only loss a total of 5% or less 

of its weight after the complete curing schedule.  This volatilization is suggested due to the evaporation of 

raw materials and the water in the catalyst.  There is no significant difference in the weight loss amount 

observed between the samples.  However, in contrast, a difference between samples was detected 

through TGA experiment.  Figure 4.7 shows the TGA curves of curing formulations heated from 23 to 

600 °C at 10 °C/min heating rate; while Table 4.5 listed the results of TGA experiments.   

 

 TGA curves of thermosets catalyzed with TBA Br solution: a. Set A, b. Set B Figure 4.8.
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Table 4.5. TGA curves analysis and amount of volatilization 

# Type 
Catalyst (% 

Aq. Solution) 

Temp. at 
2% wt. 

loss (°C) 

Temp. at 
2

nd
 onset 
(°C) 

Degradatio
n Temp. 

(°C) 

Weight 
loss at 40-
200 °C (%) 

Weight 
loss oven 
curing (%) 

13 Set A – 
2%wt. 

solution 
loading 

25 131.7 174.4 310.4 8.9% 4.71% 

14 50 128.7 166.8 306.2 8.0% 5.40% 

15 75 133.7 162.5 303.5 5.8% 4.44% 

8 Pure TBA Br 130.8 162.5 301.8 7.5% 4.15% 

16 Set B – 
2%wt. 
active 

loading 

25 134.4 158.3 288.4 5.9% 4.21% 

17 50 135.9 153.6 292.7 4.6% 2.61% 

18 75 131.9 156.4 298.5 5.5% 3.51% 

8 Pure TBA Br 130.8 162.5 301.8 7.5% 4.15% 

 

The presence of water in the catalyst did not affect the weight loss during curing up to 130 °C.  

However, as the temperature was further heated, the weight loss curve of the samples is dependent on 

the amount of catalyst and water that are added in the formulation.  Samples with 75% aqueous solution 

tend to perform better in minimizing anhydride volatilization.  In contrast, samples with 25 and 50% 

aqueous solutions performed poorer than if no water were added to TBA Br.  Comparing the two sets of 

samples, there are differences in the shapes of the TGA curves.  For the 2% active TBA Br or Set B, the 

formulation continued to lose its weight as the temperature was increased.  Furthermore, for these 

formulations, little or minimal gelation occurred to minimize the weight loss.  The amount of volatilization 

during curing in the oven was found to be less than 6%, and the values are less than the weight loss 

during TGA experiment at 40 – 200 °C.   

4.4.6.2. Soxhlet extraction and moisture uptake study 

Gel fraction and water uptake of the samples was obtained through Soxhlet extraction and 

moisture uptake experiments, respectively; the result is shown in Table 4.6.  The gel fractions of most of 

the samples are very high at >97%, while the moisture uptake after 1-month water immersion are very 

low at <2%.  The exception of this observation is the sample catalyzed with 25% TBA Br solution of Set B, 

where the gel fraction is only 58% and the 1-month moisture uptake is 7%.  It is expected that this sample 

has a high amount of carboxylic acid end groups in the network, which then caused poor hydrostability of 

the thermoset. 
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Table 4.6. Moisture uptake and gel content of thermosets catalyzed with TBA Br solution 

# Type Catalyst Gel Fraction (%) 
Moisture Uptake (%) 

1-week 1-month 

13 Set A – 
2%wt. 

solution 
loading 

25% Sln. 99.13 ± 0.03 0.92 ± 0.03 1.25 ± 0.06 

14 50% Sln. 99.06 ± 0.09 0.78 ± 0.03 0.92 ± 0.01 

15 75% Sln. 99.02 ± 0.03 0.59 ± 0.03 0.70 ± 0.01 

8 Pure TBA Br 98.49 ± 0.08 0.53 ± 0.05 0.53 ± 0.12 

16 Set B – 
2%wt. 
active 

loading 

25% Sln. 58.14 ± 0.49 3.68 ± 0.10 7.15 ± 0.01 

17 50% Sln. 97.05 ± 0.12 1.18 ± 0.02 1.78 ± 0.02 

18 75% Sln. 98.32 ± 0.05 0.74 ± 0.03 0.91 ± 0.05 

8 Pure TBA Br 98.49 ± 0.08 0.53 ± 0.05 0.53 ± 0.12 

 

4.4.6.3. DSC results 

Differential scanning calorimetry experiments were conducted to analyze the exothermic profile of 

the formulations during curing.  Figure 4.8 shows the non-reversible heat flow curves of samples when 

heated from 25 to 250 °C at 5 °C/min, while Table 4.7 shows the detailed data analysis.  For Set A 

samples, as the amount of water in the catalyst system was increased, the peak width at half height was 

broadened from 35 to 70 °C.  Despite the broadening of the curve, the peak temperature did not shift 

significantly.  In contrast, for Set B samples, the temperature at the maximum exothermic peak shifted to 

lower temperature as the amount of water was increased.  The temperature at the maximum exothermic 

peak of 25% TBA Br solution occurs at 134 °C, that is 30 °C lower than if no water was added to the 

catalyst.  For samples containing 50 and 75% TBA Br solution, the appearance of multiple peaks seems 

to be observed.  It is thought that the first peak correlates to the polymerization when pure TBA Br (no 

water added), while the other one correlates to the polymerization when water is added to the catalyst.  

For all of the samples, no additional shoulder peak was observed in the heat flow curves. 
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 DSC curves of thermoset catalyzed with TBA Br solution: a. Set A, b. Set B Figure 4.9.

Table 4.7. DSC peak analysis 

# Type Catalyst ∆Htot (J/g) Tp (°C) 
Ea 

(kJ/mol) 

13 Set A – 
2%wt. 

solution 
loading 

25% Sln. 210.4 175.75 77.1 

14 50% Sln. 241.4 169.19 80.8 

15 75% Sln. 192.8 165.7 N/A 

8 Pure TBA Br 218.5 164.0 66.3 

16 Set B – 
2%wt. 
active 

loading 

25% Sln. 205.6 133.59 N/A 

17 50% Sln. 247.5 147.64 71.8 

18 75% Sln. 265.2 164.3 N/A 

8 Pure TBA Br 218.5 164.0 66.3 

 

Integration of the heat flow curves results in the enthalpy of polymerization (∆Hpzn).  The ∆Hpzn 

values for these formulations were determined to be 180 – 280 J/g, which is similar to what has been 

previously observed.  Note that the standard deviation of ∆Hpzn is about 20%, thus it can be thought that 

there was no significant difference in the ∆Hpzn values for Set A samples.  Furthermore, it is suggested 

that TBA Br and water works synergistically to ring open the epoxy/anhydride groups.  In comparison, for 

Set B samples, the ∆Hpzn produced samples catalyzed with 25% solution and pure TBA Br (no water 

added), is less than the one catalyzed with 75% TBA Br solution.   

Then, the effect of water in the catalyst system on the activation energy is studied by comparing 

samples catalyzed by pure TBA Br and 50% TBA Br solution from Set A and Set B.  Samples catalyzed 

with 50% TBA Br solution for both sets indicates lower activation energy compared to the one catalyzed 

by pure TBA Br.  Based on this observation, lower activation energy may be caused by following 
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explanation.  First, at the same weight amount of TBA Br in the samples, the presence of water 

decreases the activation energy by 20 kJ/mol.  Second, as expected, increasing the amount of 

catalyst/water in the samples results in a lower activation energy.  Then, at the same weight amount of 

catalysts, decreased in the activation energy can be obtained by partially substituting TBA Br in the water. 

4.4.6.4. DMA results 

The viscoelastic property of the thermosets was analyzed using dynamic mechanical analysis.  

Unfortunately, only few samples were successfully prepared and examined; while other samples 

contained many trapped bubbles within the samples and thus cannot be tested.  The samples being 

tested include Set A: 25%, 50%, and 75% TBA Br solution and Set B: 50% and 75% TBA Br solution.  

Figure 4.9 display the storage modulus and tan delta curves of the samples, while Table 4.8 lists the 

detailed analysis of the curves. 

 

 Storage modulus and tan delta curve of thermosets catalyzed with TBA Br solution: a-Figure 4.10.
b. Set A, c-d. Set B 
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Table 4.8. DMA analysis of samples catalyzed with TBA Br solution 

# Type Catalyst 
Tg by 
tan δ 
(°C) 

tan δ Peak 
Storage Modulus 

(MPa) 
XLD at 
150 °C 

(mol/mL) 
Width 
(°C) 

Height At 25 °C 
At 

150 °C 

13 Set A – 
2%wt. 

solution 
loading 

25% Sln. 71.7 24.1 0.69 2184 18.52 1.76 

14 50% Sln. 82.1 27.7 0.53 1402 19.48 1.84 

15 75% Sln. 80.0 29.6 0.35 1266 46.27 4.38 

8 Pure TBA Br N/A N/A N/A N/A N/A N/A 

16 Set B – 
2%wt. 
active 

loading 

25% Sln. N/A N/A N/A N/A N/A N/A 

17 50% Sln. 61.5 22.0 1.02 1349 4.847 0.46 

18 75% Sln. 76.5 33.0 0.43 1174 19.48 1.846 

8 Pure TBA Br N/A N/A N/A N/A N/A N/A 

 

The tan delta curves of these samples indicate that increased amounts of water in the catalysts 

result in narrower and more intense peaks, which is similar to what has been observed with TBP Ac-

catalyzed sample. The glass transition temperature of the thermoset samples was determined at the 

temperature at maximum tan delta peak.  The highest Tg was observed with samples catalyzed by 50% 

and 75% TBA Br solution from Set A: 82.1 and 80.0 °C, respectively.  Even though their Tg values are 

fairly similar, the approximate crosslink density of 75% solution was observed to be higher than 50% 

solution.  This disparity is possible due to similar reasons explained in previous section, where their 

molecular network chain structures are quite different.   

4.5. Conclusion 

The structure-property relationships of ESS-MHHPA thermosets were studied as a function of the 

type of curing catalyst.  An optimum catalyst is determined to be one that can initiate the reaction 

efficiently at a relatively low temperature, minimizing the amount volatilization during curing, and yielding 

networks having a high glass transition temperature, high gel fraction, and good hydrostability.  Based on 

a series of experiments, it is believed that the nucelophilicity of the catalyst influences the reaction 

mechanism, and thus the materials properties, where the chromium-3 tris-2-ethylhexanoate shows the 

least efficiency, while quaternary onium salts shows the highest efficiency.  However, it was also 

observed that the structure of the cation/anion in the quaternary onium salts affect the catalyst efficiency.  

The poor dispersity/solubility of the chloride anion in the formulation results in the inefficiency of the 

catalyst.  Then, it was shown that moisture does play role in the catalysis of the epoxy-anhydride reaction.  
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However, there seems to be an optimum or threshold concentration before the effect of moisture in the 

catalyst becomes detrimental, resulting in lower Tg and poor hydrostability. 
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CHAPTER 5. TOUGHENING OF BIO-BASED ANHYDRODE-CURED EPOXY THERMOSETS MADE 

FROM EPOXIDIZED SUCROSE SOYATE 

5.1. Abstract 

Several methods to improve the toughness of anhydride-cured epoxidized sucrose soyate 

thermosets were explored. These included flexibilization via the addition of a secondary crosslinker and 

the introduction of a secondary phase rubbery polymer.  The addition of these toughening agents resulted 

in the tensile failure mode changing from brittle to ductile; yet the degree of toughness improvement was 

dependent on the nature of the toughening agents.  Overall, using a secondary crosslinker to flexibilize 

the polymer network resulted in a lower increase in the tensile strain, yet did not compromise the Young’s 

modulus and tensile strength.  In contrast, using a secondary phase rubbery polymer resulted in a greater 

increase in tensile strain, yet compromised the Young’s modulus.  The secondary phase network in the 

thermosets is well incorporated and is nanoscale sized based on results obtained from dynamic 

mechanical analysis, as well as visual and electron microscopy imaging. 

5.2. Introduction 

Epoxy resins are one of the most versatile chemical building blocks for thermoset materials, and 

have been used extensively for a wide range of applications including composites, coatings, adhesives, 

laminates, tooling, molding, and many more.  The versatility of epoxy resins can be attributed to their 

reactivity and numerous options for crosslinking.  Epoxy resins were first commercialized in the 1940s, 

and since then, a wide range of epoxy resins with different backbones and the number of functionalities 

per molecule have been introduced.  Epoxy resins are often prepared by glycidylation of hydroxyl groups 

using epichlorohydrin or via epoxidation of olefins using peracids.  The majority of the commercially 

available epoxy resins today are derived from petrochemicals, with one of the most commonly used 

classes of epoxy resins being the diglycidyl ethers of bisphenol-A (DGEBA).  However, in the recent 

decade, there has been an ongoing movement to promote future sustainability by using renewable 

materials as chemical commodities.  For epoxy thermosets, there has been an extensive research in 

creating building blocks—both epoxy resins and crosslinkers—and then exploring their applications in 

many fields.  These building blocks include renewable materials from polyphenols, tannins, cardanol, 

woody biomass, lignin, starch and vegetable oils [1-9].  The use of these renewable-based sources is 
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explored as either a full replacement or partial substitution of the petrochemical based systems 

depending on the desired target properties of the final application. 

One of the recently explored bio-based epoxy resin systems that shows promise as a 

replacement for the DGEBA epoxy system is epoxidized sucrose soyate crosslinked with a cyclic 

anhydride [10-12].  The epoxy resin is comprised of the sucrose ester of vegetable oil fatty acids, and 

named epoxidized sucrose ester (ESE); a representative chemical structure is shown in Figure 5.1.  The 

number of epoxy functional group in the ESE can be controlled by modifying the degree of esterification in 

the sucrose and/or changing the type of vegetable oil used.  For example, epoxidized sucrose soyate, 

ESS, can have an average of 12-13 epoxy functional groups per molecule.  Thermosets based on ESE 

have been shown to have significantly higher strength, modulus and Tg compared to comparable 

thermosets based on epoxidized vegetable oils.  The improvements observed in the mechanical 

properties of the thermosets has been attributed to both the rigidity of the sucrose core and the higher 

crosslink density obtained due to the high number of epoxy functional groups per molecule [13].  Many 

crosslinking technologies using this epoxy resin have been explored: epoxy homopolymerization (cationic 

UV and thermally cured) and epoxy-acid/anhydride curing [9, 13-18]. In addition, (meth)acrylated 

derivatives have been cured thermally and using UV and polyols derived from ESEs have been cured 

using either polyisocyanates to form polyurethanes and also melamine-formaldehyde resins [19-23].  

Furthermore, the use of this thermoset system based on ESE as a matrix resin for composite applications 

has been explored [24-28].  Even though composites comprising ESE resin have excellent flexural and 

tensile strengths, the ESE-based thermosets suffer a similar issue that is commonly encountered with 

petroleum-based epoxy resins; the thermosets tend to be brittle and thus require modification to yield an 

improvement in toughness. 
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 Chemicals used in this study which include epoxidized sucrose soyate, anhydride Figure 5.1.
crosslinkers and toughening agents 
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Figure 5.2 illustrates the various methods that are used to modify epoxy thermosets to improve 

their toughness.  First, the toughness can be improved by a flexibilization method, which works based on 

modification of the structure of the polymer backbone [29-32].  The flexibilization may involve 

incorporation of a more flexible backbone structure and/or decrease in the network crosslink density by 

either increasing the molecular weight between chains or decreasing the functionality of the crosslinker.  

The other common approach for epoxy toughening involves the incorporation of a dispersed secondary 

phase in the cured epoxy resin.  This secondary phase may include soft materials (i.e. rubber, reactive 

liquid polymer, and thermoplastic) or hard materials (i.e. silica, metal oxide, ceramic, clay, small molecular 

rigid molecule such as lignin). These secondary phase materials are often chemically functionalized to 

minimize the aggregation of the particles, to improve the interaction between particles and polymer 

network, and to further reinforce the polymer network.  One of the most commonly used functionalized 

rubbers or reactive liquid polymers is a copolymer of butadiene and acrylonitrile.  This copolymer is 

miscible in the liquid formulation, yet undergoes phase separation during the curing process.  The degree 

of phase separation and type of morphology in the cured matrix has been shown to depend on the curing 

temperature, loading amount, type of reactive functionalities, and ratio between acrylonitrile and 

butadiene.  Another type of rubbery polymer often used as toughening agents is amphiphilic block 

copolymers.  Similar to reactive liquid polymers, this block copolymers phase separate during the curing 

process.  However, in contrast to acrylonitrile-butadiene copolymer, the phase separation occurs at the 

nanoscale, and is thus expected to improve the toughness more efficiently [33, 34].  Many literature 

review articles regarding rubber-toughened epoxy thermosets have been published [30, 35, 36]. 
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 Methods of epoxy toughening: a. flexibilization through secondary crosslinker, b. Figure 5.2.
secondary phase through reactive functionalized rubber, c. secondary phase through block 
copolymers 

In this study, the toughness improvement of the ESS-anhydride thermoset system was explored.  

Two methods of toughening were evaluated.  The first approach involved the addition of a secondary 

crosslinker or reactive diluents; this secondary epoxy resin or anhydride crosslinker was predicted to act 

as a flexibilizing agent by modifying the rigidity of the polymer chain and the crosslinking density.  The 

second approach involved adding a secondary phase rubbery polymer; this rubbery polymer was 

predicted to phase separate during the curing process and then form a secondary phase in the thermoset 

network.  Viscoelastic properties, tensile properties, impact toughness, and fracture toughness were 

assessed. Morphology of the fractured surface was studied using electron microscopy.  As a control 
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system, thermosets materials comprised of DGEBA, epoxidized soybean oil (ESO), and polyanhydride 

AC39 were also prepared.   

5.3. Experimental 

5.3.1. Material and formulation composition 

Epoxidized sucrose soyate (ESS) was synthesized from sucrose soyate (Sefose 1618U from 

Procter and Gamble Chemicals) via the Prilezhaev reaction; the detailed synthesis process used is 

described in the literature [10, 11].  The epoxy equivalent weight of ESS was analyzed through hydrogen 

bromide titration, and the value was determined to be 246 g/eq.  The crosslinker used in the study is 

methyl hexahydrophthalic anhydride (MHHPA), provided by Dixie Chemicals.  MHHPA is liquid at room 

temperature, thus providing for easy mixing.  Tetrabutyl ammonium bromide aqueous solution (75% 

concentration) was used to catalyze the epoxy-anhydride reaction; it was purchased from Sigma Aldrich.  

Epoxy and carboxy terminated polybutadiene acrylonitrile copolymer (ETBN X63, ETBN X68, CTBN X8, 

CTBN X13, CTBN X31) was provided by Emerald Performance Materials, while copolymer of ethylene 

oxide and butylene oxide (Fortegra 100) was given by Dow Chemicals. 

5.3.2. Formulation compositions, mixing and curing procedures 

5.3.2.1. Formulation compositions 

In this study, 3 sets of formulations were prepared: control (C), secondary crosslinker-modified 

(SC), and secondary phase-modified (SP).  Secondary crosslinkers used in this experiment include 

epoxidized soybean oil (supplied by Arkema), bisphenol-A diglycidyl ether or EPON 828 (supplied by 

Momentive), polypropylene glycol di-dodecenyl succinate or AC 39 (supplied by Broadview Technology), 

and 2-(vinyloxy) ethyl soyate and maleic anhydride copolymer in 50% toluene or 2-VOES.  The synthesis 

of 2-VOES crosslinker is described by Chisholm et al [37].  The secondary phase used in this experiment 

includes epoxy or carboxy terminated poly-butadiene acrylonitrile (ETBN and CTBN) and copolymer of 

ethylene oxide and butylene oxide (Fortegra 100).  Many types of the ETBN and CTBN with variation in 

the acrylonitrile content were explored: ETBN X68, ETBN X63, CTBN X8, CTBN X31, and CTBN X13.  

ETBN polymer has an epoxy groups as its end chain, while CTBN polymer carboxylic acid groups as its 

end chain.  The amount of acrylonitrile in the polymer is as follow: 10% for CTBN X31, 18% for CTBN X8 

and ETBN X68, and 26% for CTBN X13 and ETBN X63.  Figure 5.1 shows the chemical structures of the 
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materials used in this study, while Table 5.1 lists the composition of the formulations that were prepared.  

The control formulations contain one primary epoxy resin (either ESS or secondary crosslinker epoxy 

resin) and one anhydride crosslinker (either MHHPA or seondary anhydride crosslinker).  The secondary 

crosslinker-modified (SC) formulations contain ESS, MHHPA and a secondary epoxy/anhydride 

crosslinker.  Then, the secondary phase-modified (SP) formulations contain ESS, MHHPA and a reactive 

liquid block copolymer.  For all of the systems, the thermoset polymer was formulated at an anhydride-to-

epoxy equivalent ratio of 0.75, catalyst amount of 2% by total weight, and toughening agents at 15% by 

weight relative to the epoxy resin or approximately 9% by weight of the total formulation. 

Table 5.1. Formulation compositions 

# Type Sample Epoxy Resin 
Anhydride/Carboxyl
ic Acid Crosslinker 

Toughening 
Agent 

1 

Controls (C) 

ESS ESS MHHPA - 

2 ESO ESO MHHPA - 

3 EPON 828 EPON 828 MHHPA - 

4 AC39 ESS AC39 - 

5 

Secondary 
Crosslinker 

(SC) 

ESS & ESO ESS + ESO MHHPA ESO 

6 ESS & EPON 828 ESS + EPON 828 MHHPA EPON 828 

7 MHHPA & AC39 ESS MHHPA + AC39 AC39 

8 
MHHPA & 2-

VOES 
ESS MHHPA + 2-VOES 2-VOES 

9 

Secondary 
phase (SP) 

ETBN X68 ESS + ETBN X68 MHHPA ETBN X68 

10 ETBN X63 ESS + ETBN X63 MHHPA ETBN X63 

11 CTBN X31 ESS MHHPA + CTBN X31 CTBN X31 

12 CTBN X8 ESS MHHPA CTBN X8 CTBN X8 

13 CTBN X13 ESS MHHPA CTBN X13 CTBN X13 

14 Fortegra 100 ESS MHHPA Fortegra 100 

 

5.3.2.2. Mixing procedure 

The addition of some toughening agents to the formulation requires pre-reaction of the functional 

groups.  This pre-reaction ensures a higher degree of conversion of the functional groups of the 

toughening agents and promotes the incorporation of the toughening agents into the thermoset networks.  

This step is important especially for lower reactive functionalities such as carboxyl groups in CTBN or 

internal epoxy groups in ESO.  ETBN toughening agents do not necessarily require pre-reaction since 

they contain terminal epoxy groups, which are more reactive than the internal epoxy of ESS.   

For the controls (#1-4), ETBN-containing formulations (#9-10) and Fortegra 100 (#16), the epoxy 

resin and anhydride crosslinker were first mixed at 50 °C for 1 hour.  Catalyst at 2% wt. of epoxy resin 
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and crosslinker was then added and the mixture was further mixed at 50 °C for 30 minutes, and then was 

cured in the oven. 

For the other formulations, pre-polymer mixing of the toughening agents and resin/crosslinker is 

required, and the mixing procedure varied based on the type of the toughening agents.  For formulations 

containing secondary epoxy crosslinker (ESO-#5 and EPON 828-#6), the epoxy was first mixed with 

MHHPA crosslinker at 10:1 equivalent ratio, while for formulations containing anhydride diluents (AC39-

#7, 2-VOES-#8, and CTBN-#11-13), the anhydride crosslinker was first mixed with ESS resin at 40:60 

weight ratio.  To catalyze the pre-polymer mixing, TBA Br catalyst was added at 1%wt total of the pre-

polymer and the reaction was stirred at 90 °C for 2 hours.  Then, the remainder of the ESS resin and/or 

MHHPA crosslinker was added to the mixture and the formulation was stirred at 50 °C for 1 hour.  Finally, 

the remaining TBA Br catalyst was added to the mixture, and the formulation was continued to be stirred 

at 50 °C for 30 minutes, and then ready to be cured in the oven. 

5.3.2.3. Curing procedure 

All of the formulations are cured in an RTV-11 silicone mold.  The formulations were cured at 

120 °C for 1 hour, followed by 150 °C for 3 hours. 

5.3.3. Dynamic mechanical analysis 

Viscoelastic properties of the thermoset systems were characterized using dynamic mechanical 

analysis (DMA) using a Q800 DMA from TA Instruments.  The experiment was conducted using a 3-point 

bending clamp, and the sample size was 50 mm x 10 mm x 4mm.  The sample was heated from -100 to 

180 °C at a heating rate of 3 °C/min and a frequency of 1 Hz.  The glass transition temperature (Tg) was 

determined as the temperature of the tan δ maximum.  The crosslink density (𝜈𝑒) was calculated using 

rubber elasticity theory as shown in Equation 5.1: 

𝐸′ = 3𝜈𝑒𝑅𝑇 (5.1) 

where 𝐸′ is the storage modulus at the plateau region, 𝑅 is the gas constant, and 𝑇 is the absolute 

temperature.  In this experiment, the 𝜈𝑒 is calculated at temperature Tg + 60 °C. 

5.3.4. Tensile test 

Tensile properties of the thermosets were characterized using an Instron 5567 load frame with a 

2kN load cell.  The tests were conducted following ASTM D638.  The specimen shape is a dogbone style 
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Type 1, with thickness of 3.4 mm and width of 10 mm.  The grip separation distance of the tensile testing 

was 115 mm, and the effective gauge length was 50 mm.  The strain rate was 5 mm/min.  The tensile 

properties of each sample are reported as the average of measurements five specimens. 

5.3.5. Izod impact tests 

Izod impact tests were performed using a Tinius Olsen Izod impact pendulum tester with no 

additional weight attachment.  The test was conducted following ASTM D256.  The samples were 

rectangular specimens with dimension of 60 mm x 11 mm x 3.8 mm.  The depth of the notch was 

approximately 1mm.  The reported value is an average of 6 different specimens. 

5.3.6. Atomic Force Microscopy imaging 

Atomic force microscopy (AFM) imaging of selected samples (CTBN X8 and Fortegra 100) was 

conducted using a Veeco Digital Instrument Dimension
TM

 3100 equipped with a Nanoscope IIIa ADC5 

controller.  The surface being analyzed was the fractured surface from the tensile test specimen.  The 

surface was analyzed through tapping contact mode using an FMG01 tip and the image analysis was 

conducted using Veeco Nanoscope.  For each sample, two scan sizes were performed: 20 µm × 20 µm 

and 4 µm × 4 µm (for CTBN X8) or 3 µm × 3 µm (for Fortegra 100). 

5.3.7. Scanning Electron Microscopy imaging 

Scanning electron microscopy (SEM) imaging of the same selected samples was observed using 

a JEOL JSM-7600F field-emission scanning electron microscopy (JEOL USA Inc., Peabody MA).  

Fractured samples were mounted on aluminum blocks with silver paste to view the fractured surface, and 

then the surface was coated with a conductive layer of carbon in a high-vacuum evaporative coater 

(Cressington 208C, Ted Pella Inc., Redding CA).  Energy-dispersive x-ray spectroscopy information was 

acquired using an UltraDry silicon drift X-ray detector and NSS-212e NORAN System 7 X-ray 

Microanalysis System (ThermoFisher Scientific, Madison WI). 

5.3.8. Transmission Electron Microscopy imaging 

In addition to AFM and SEM, TEM was also performed to analyze the samples.  First, samples 

were sectioned to 60-80 nm thickness using a RMC PowerTome XL ultramicrotome and then picked up 

on 2 mm slot grids with a carbon-coated Formvar film.  Sections on grids were placed in an enclosed petri 

dish on dental wax and 1-2 drops of ruthenium tetroxide, 0.5% stabilized aqueous solution or 2% osmium 
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tetroxide was placed near the grids.  The samples were subjected to the vapor for periods of 3-10 

minutes.  Images were acquired using a JEOL JEM-2100 LaB6 transmission electron microscope 

equipped with a Gatan Orius CCD camera at 200 kV. 

5.4. Results and Discussion 

5.4.1. Appearance of the thermosets 

In this study, two different approaches to improving the toughness of ESS-based thermosets 

were explored: the addition of secondary crosslinkers and incorporation of secondary phase rubbery 

materials.  The secondary crosslinkers chosen for the study included the diglycidyl ether of bisphenol-A 

(EPON 828), epoxidized soybean oil (ESO), AC39 polyanhydride, and copolymer of 2-(vinyloxy) ethyl 

soyate and maleic anhydride (2-VOES).  The addition of the secondary crosslinker is expected to act as a 

flexibilizer by modifying the rigidity of the polymer backbone and/or the crosslinking density.  Further, two 

types of rubbery polymers selected as secondary phases were poly-butadiene-acrylonitrile copolymers 

(CTBN and ETBN) and an amphiphilic polyethylene block copolymer (Fortegra 100).  These secondary 

phase agents are designed to be miscible in the liquid formulation and then undergo phase 

separationduring the curing process.  For the poly-butadiene-acrylonitrile copolymer system, the degree 

of phase separation and type of morphology has been shown to depend on the curing temperature, 

molecular weight of the thermoplastic, butadiene-acrylonitrile ratio, catalyst time, and gelation rate of the 

thermoset system [36].  In this study, 5 different poly-butadiene-acrylonitrile copolymers were selected for 

evaluation 

The toughening agents were added at 15% wt. of ESS resin or approximately 9%wt. of the total 

formulation.  The first step in preparing the thermoset samples is pre-reacting the functional groups of the 

toughening agents with either ESS or MHHPA.  This step was carried out since some of the functional 

groups have lower reactivity than the main crosslinker.  Furthermore, pre-reaction of the functional groups 

of the rubbery polymer has been suggested to lead to better control over the particle size of the 

secondary phase in the cured thermoset.  After this pre-polymer was made, the rest of the formulation 

ingredients were added.  The formulation was then cured in a silicone mold at 120 °C for 1 hour, followed 

by 150 °C for 3 hours. 
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First, it is necessary to note the visual appearance of the thermoset samples which is shown in 

Figure 5.3 since it may indicate the presence of a secondary phase in the cured thermoset.  All of the 

modified toughened samples are transparent.  This observation is particularly surprising, especially the 

ones modified with the secondary phase rubbery polymer.  The secondary phase particles in the cured 

thermosets were initially expected to have an approximate size of 1-2 µm, thus creating a hazy 

appearance.  Since all of the samples are transparent, the actual size of the secondary phase may be in 

the nanoscale range (<700 nm or below the visible light spectrum wavelength).  This observation will be 

further discussed in a later section through microscopy imaging. 

 

 Appearance of thermosets after curing: a. control, b. secondary crosslinker modified, Figure 5.3.
c. secondary phase modified 

5.4.2. Tensile test 

One of the simple, but necessary methods to evaluate the toughness improvement is through 

tensile testing.  Figure 5.4 shows representative stress-strain curves for the thermoset samples. Table 5.2 

lists the data from the stress-strain experiments which includes Young’s modulus (E), ultimate tensile 

strength (UTS), and tensile toughness (UT).  
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 Representative stress-strain curves of the thermosets: a. controls, b. secondary Figure 5.4.
crosslinker (SC) modified systems, c. secondary phase (SP) modified systems 
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The tensile behavior of the control samples will be discussed first.  The stress-strain data for ESS 

and EPON 828 samples indicates that the materials are brittle, with less than 5% elongation at break.  In 

contrast, the ESO thermoset shows a much more rubbery behavior.  It has the highest elongation with up 

to 80% strain at break.  Meanwhile, the AC 39 sample shows a unique stress-strain behavior.  The 

materials are very flexible and elastic, and show a linear stress-strain curve.  The AC39 thermoset failed 

at 35% elongation at break, yet the stress-strain curve indicates that the materials did not undergo plastic 

deformation.  After the AC39 sample broke, the thermoset actually went back to its original shape without 

any changes in dimension or shape.  In contrast, when the ESO sample failed, the specimen underwent 

plastic deformation, and the broken specimens buckled. 

Comparing the stress-strain curves of the modified vs. unmodified ESS-thermosets, there is 

clearly a difference in the shape of the curves.  In general, the addition of toughening agents causes a 

change in the failure type from brittle to ductile, with an exception of the 2-VOES sample.  However, it is 

important to note that the 2-VOES sample contained bubbles throughout which were thought to be from 

the evaporation of solvent (toluene) contained in the 2-VOES material.  For all of the modified samples, 

the strain at break is observed to be higher and necking formation or plastic deformation were observed.  

Furthermore, strain hardening of the thermosets was observed with CTBN X8 and Fortegra 100 samples.  

From these stress-strain curves, tensile toughness of the materials was calculated by determining the 

area under the curve.  The addition of the toughening agents resulted in up to a 5 times increase in the 

tensile toughness compared to the unmodified thermosets.  The highest increase is observed with the 

addition of CTBN X8 and Fortegra 100, where the samples underwent strain hardening. 
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Table 5.2. Results from tensile and Izod impact tests 

# Type Sample 

Tensile Test Izod Impact 

E (MPa) UTS (MPa) UT (J) 
Toughness 

(kJ/m
2
) 

1 

Controls (C) 

ESS 1068 ± 69 22.9 ± 4.2 1.86 ± 1.12 0.88 ± 0.01 

2 ESO 456 ± 17 15.1 ± 1.1 25.21 ± 3.70 1.12 ± 0.27 

3 EPON 828 2760 ± 83 67.7 ± 10.8 8.56 ± 3.64 2.80 ± 0.31 

4 AC39 3.14 ± 0.1 0.95 ± 0.1 0.69 ± 0.11 3.98 ± 0.46 

5 

Secondary 
Crosslinker 

(SC) 

ESS & ESO 1057 ± 46 22.40 ± 0.8 5.85 ± 1.19 0.89 ± 0.05 

6 ESS & EPON 828 1211 ± 59 26.2 ± 0.4 5.81 ± 1.40 0.92 ± 0.10 

7 MHHPA & AC39 1158 ± 44 31.2 ± 0.7 5.78 1.00 0.83 ± 0.09 

8 
MHHPA & 2-

VOES 
982 ± 164 20.4 ± 1.8 1.93 ± 0.71 0.89 ± 0.05 

9 

Secondary 
phase (SP) 

ETBN X68 775 ± 36 19.5 ± 1.1 2.65 ± 1.14 0.85 ± 0.05 

10 ETBN X63 821 ± 26 20.4 ± 0.7 3.80 ± 2.46 0.80 ± 0.07 

11 CTBN X31 853 ± 58 20.4 ± 1.3 3.46 ± 1.22 0.88 ± 0.07 

12 CTBN X8 721 ± 31 19.4 ± 0.2 9.31 ± 2.19 0.81 ± 0.10 

13 CTBN X13 707 ± 25 19.9 ± 0.4 6.03 ± 1.55 0.84 ± 0.07 

14 Fortegra 100 584 ± 15 16.6 ± 0.7 9.76 ± 3.36 0.79 ± 0.06 

 

First of all, for the Young’s modulus (E) and ultimate tensile strength (UTS) data, it is no surprise 

that EPON 828 control thermoset sample (#3) shows the highest value among all of the samples which is 

predicted due to the presence of the aromatic groups in the polymer backbone.  Then, the addition of the 

secondary crosslinker-type toughening agents to the ESS system do not significantly affect either the 

Young’s modulus or UTS values, while the addition of the secondary phase-type toughening agents lead 

to a reduction of these values by approximately 25%.  The exception to this observation is with the 

MHHPA & AC39 samples(#7), where the UTS is slightly improved.  AC39 is a polyanhydride molecule 

based on dodecenyl succinate, which has a long dangling aliphatic chain, and its functional equivalent 

weight is higher than the ESS epoxy equivalent weight.  As seen in the stress-strain curve, the ESS-

thermoset crosslinked with AC39 crosslinker (#4) itself shows elastic behavior with very low strength.  

Then, when AC39 added as a secondary crosslinker to the ESS/MHHPA thermoset, the UTS was 

improved by approximately 50%.  It is predicted that the addition of AC39 alters the ESS/MHHPA 

thermoset network structure by modifying the crosslink density of the network and by increasing the 

amount of ESS intermolecular crosslinking, where epoxy groups in an ESS molecule are connected to 

another ESS molecule instead of an epoxy group from the same molecule.  
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5.4.3. Izod impact test 

Another method that was used to evaluate the toughness of the modified thermosets is the Izod 

impact pendulum test.  Impact toughness is determined from the energy needed to create a new surface 

area.  A notched sample is put on the holder, and when the latch is released, the pendulum swings and 

breaks the sample at the notch. The Izod impact pendulum tester measures the energy absorbed, which 

then can be used to calculate the impact toughness.  The impact toughness values listed in Table 5.2 are 

an average value for 7 measurements.  The highest Izod impact value observed is for the AC39 sample 

(#4).  This sample did not fully break after the pendulum swing.  For other samples, there is no difference 

in the observed impact toughness values between the toughening agents.  This observation may indicate 

one of the following.  First, the results may indicate that there is truly no significant difference in the 

toughness properties between the unmodified and modified samples.  Second, the impact test conducted 

in this experiment could not sufficiently discriminate the differences in the impact toughness, and 

modification of the test method maybe necessary in order to observe the differences. 

5.4.4. Viscoelastic properties by DMA 

Dynamic mechanical analysis was performed to evaluate the viscoelastic properties of the 

thermosets and also to determine the glass transition temperature, Tg, and approximate crosslink density 

(XLD).  Figure 5.5 shows the tan delta curves of the thermoset samples as a function of temperature.  

The glass transition temperature of the thermosets was determined as the temperature at tan delta peak, 

while the XLD was calculated from storage modulus values at rubbery region (Tg + 60°C).  The observed 

Tg and XLD values of the thermoset samples are shown in Table 5.3.   
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 tan delta curves of the thermoset samples: a. control (C), b. secondary crosslinker (SC) Figure 5.5.
modified systems, c. secondary phase (SP) modified systems 
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 The impact of toughening agents on the Tg of a thermoset is dependent on the modification 

method.  Yet, first, it is important to note the Tg values of the control samples: ESS, ESO, and EPON 828.  

ESS and ESO have fairly similar chemical structures and epoxy equivalent weight, yet their Tg (83.8 vs 

48.9 °C, respectively) and XLD (2.21 vs. 0.67 mol/ml, respectively) are significantly different.  This 

observation is expected due to the greater number functional groups per ESS molecule compared to ESO 

which then leads to higher XLD values. The presence of the sucrose moiety in the ESS molecule has also 

been shown to contribute to the Tg of the networks [13]. Then, the Tg of the EPON 828 (124.4 °C) sample 

is higher than that of the ESS network, yet the XLD (0.92 mol/ml) is relatively low.  This observation thus 

suggests that the Tg of the EPON 828 network is primarily derived from the rigid aromatic backbone 

structure and less dependent on the XLD of the polymer network.  Comparing the Tg and XLD of the 

secondary crosslinker-modified samples, even though the samples have lower crosslink density 

compared to the ESS control (XLD ≤ 2.21 mol/ml), the Tg values are not necessarily lower, specifically for 

samples modified with the addition of EPON 828 (Tg = 82.0°C ) and AC39 polyanhydride (Tg = 84.1°C ).  

This observation is expected due to the modification in the rigidity of the backbone and the type of 

intermolecular/intramolecular network of the system.  Then, for the secondary phase modified systems, a 

decrease in both Tg and XLD of the thermosets was observed.  Overall, the amount of decrease for these 

secondary phase modified systems is independent of the type of the toughening agents.  

Table 5.3. Results from the DMA experiments 

# Type Sample Tg (°C) SM at 25 °C (MPa) XLD (mol/ml) 

1 

Controls (C) 

ESS 83.8 1251 2.21 

2 ESO 48.9 612 0.67 

3 EPON 828 124.4 2527 0.92 

4 AC39 29.1 74 0.47 

5 

Secondary 
Crosslinker 

(SC) 

ESS & ESO 73.6 914 2.07 

6 ESS & EPON 828 82.0 1217 1.91 

7 MHHPA & AC39 84.1 1357 2.01 

8 
MHHPA & 2-

VOES 
59.3 948 1.04 

9 

Secondary 
phase (SP) 

ETBN X68 72.5 901 1.51 

10 ETBN X63 69.7 941 1.06 

11 CTBN X31 78.1 823 1.62 

12 CTBN X8 68.1 885 0.72 

13 CTBN X13 69.4 826 1.20 

14 Fortegra 100 72.4 761 1.49 
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In addition to determining glass transition temperature (Tg) values, analysis of the tan delta 

curves can be used to determine the presence of different phases present in the networks and identify β-

relaxations of the thermosets.  If multiple phases in the thermoset network are present, a shoulder or 

secondary peak would be observed.  The peak temperature of this shoulder peak can then be correlated 

to the Tg values of the secondary phase.  Figure 5.6 shows the tan delta curves of the secondary phase 

modified samples in the low temperature region, and the observed Tg values  Figure 5.6 indicates the 

presence of multiple shoulder peaks in the tan delta curves.  The peaks at the lowest temperature range 

of -100 to -60 °C in Region 1 are thought to indicate the β-relaxation of the ESS thermoset, since they 

occur at similar temperature range for all networks.  Furthermore, this peak was also observed in the 

control ESS sample.  Then, the peaks in the temperature range of -60 to 15 °C in Region 2 are believed 

to indicate the presence of secondary phases within the modified systems.  It is important to note that 

these peaks were not observed in the ESS control samples or the secondary crosslinker-modified 

samples, and they are only observed for the secondary-phase modified samples.  For all of the samples, 

the observed Tg temperatures (at maximum tan delta peak) are slightly higher than the reported Tg values 

for the pure toughening agents.  For example, the Tg for ETBN X8 phase in ESS thermoset (#9) is 

observed at -13.3 °C, while the reported Tg of ETBN X8 copolymer is -66 °C.  This occurrence can be 

attributed to the phase mixing between ESS thermoset and rubbery polymer due to the chemical bonding 

of the ESS and toughening agents from the pre-polymer reaction.  The difference between the observed 

Tg of the secondary phase and Tg of the toughening agent may indicate the extent of phase mixing and 

connectivity of the ESS/MHHPA thermoset phase and the toughening agent phase. 
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 DMA tan delta curve analysis: a. tan delta curve of secondary phase modified samples Figure 5.6.
at lower temperature region, b. Tg comparison of pure thermoplastic polymer and observed peak 
temperature 

5.4.5. Cross-section imaging of fractured samples 

Atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron 

microscopy (TEM) were used to visually analyze the secondary phase of selected modified samples.  The 

samples investigated include the CTBN X8 and Fortegra 100 modified samples.  These two samples 

were chosen since they showed the greatest improvement in the tensile toughness.  Figure 5.7 shows 

AFM scan of fractured surface of CTBN X8 and Fortegra 100 samples with 3 µm and 4 µm scan size, 

respectively; while Figure 5.8 shows AFM scan of the fractured surface with 20 µm scan size. 

Using AFM imaging, it was expected that the height and phase images would show the presence 

of the secondary phase in the thermoset samples.  Based on other literature articles, using bisphenol-A 

based thermoset system, the size of this spherical secondary phase can be expected to be approximately 

1-2 µm for CTBN X8 and 100 nm for Fortegra 100 [32].  Therefore, the height image was expected to 

show either a spherical valley and/or ridge, which indicates the fractured regions from the secondary 

phase.  However, as shown in Figure 5.7a, 5.7c, 5.8a, and 5.8c, the height image of the fractured surface 

shows a fairly smooth surface, only with <100 nm features.  Then, the phase image was expected to 

show two regions of different modulus: more rigid ESS thermoset phase (lighter color) and rubbery 

thermoplastic secondary phase (darker color).  Similar to the height image, the phase image of the 

fractured surface shown in Figure 5.7b, 5.7d, 5.8b, and 5.8d, indicates fairly homogenous appearance of 

the materials with little separation between the rigid ESS-thermoset phase and the rubbery secondary 
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phase.  From these images, it is expected that rubbery thermoplastic copolymer did not fully separate into 

a secondary phase, and was well incorporated into the ESS-thermoset network. 

 

 AFM imaging of fracture surfaces 3 x 3 or 4 x 4 m scan size: a. height image of CTBN Figure 5.7.
X8 (#12), b. phase image of CTBN X8 (#12), c. height image of Fortegra 100 (#14), d. phase image 
of Fortegra 100 (#14) 
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 AFM imaging of fracture surfaces with  a20 x 20 µm scan size: a. height image of CTBN Figure 5.8.
X8 (#12), b. phase image of CTBN X8 (#12), c. height image of Fortegra 100 (#14), d. phase image 
of Fortegra 100 (#14) 

SEM imaging of the samples was also used to investigate the morphology of the thermosets, 

shown in Figure 5.9.  Similar results to the AFM was observed; the size of the particles was detected at 

much smaller size than what was originally expected at 1-2 µm.  SEM images of CTBN X8 (#12) shows 

spherical particles dispersed throughout the samples; the size of these particles is approximately 100 nm.  

Meanwhile, the appearance of a secondary phase within Fortegra 100 sample (#14) is barely seen.   
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 SEM imaging of cross-sectioned samples: a. CTBN X8 (#12) with 15K magnification, b. Figure 5.9.
CTBN X8 (#12) with 30K magnification, c. Fortegra 100 (#14) with 15K magnification, d. Fortegra 
100 (#14) with 30K magnification 

Energy dispersive x-ray spectroscopy (EDX) was conducted to further analyze the composition of 

the networks.  The samples were treated with osmium tetroxide to provide staining since it reacts with the 

unsaturation in the CTBN X8. Figure 5.10 shows the SEM/EDX results of the CTBN X8 and Fortegra 100 

sample.  The nitrogen in the polybutadiene-acrylonitrile copolymers was expected to be detected within 

the CTBN X8 samples (#12).  However, area analysis showed only the presence of carbon, oxygen, and 

osmium atom.  Furthermore, point analysis of the particles vs. the bulk material showed that there is no 

significant difference in the elemental analysis.  With the Fortegra 100 modified sample (#14), it was 

expected that the point analysis of the particles would show a higher carbon-to-oxygen atom ratio than 

the bulk particles since Fortegra 100 is a copolymer of ethylene oxide and butylene oxide.  Yet, there was 
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no significant difference in the atom count.  With no difference detected within the particles and the bulk 

materials, it is expected that the toughening agents are well incorporated and mixed with the ESS-

thermoset and the difference in the atom count might be beyond the detection limit of the instrument. 

 

 SEM/EDX imaging of cross-sectioned samples: a. SEM imaging of CTBN X8 (#12), b. Figure 5.10.
EDX atom count of area displayed in Figure 5.10a, c. SEM imaging of Fortegra 100 (#14), d. EDX 
atom count of point 1 displayed in Figure 5.10c 

Figure 4.11 shows the TEM images of the cross sections of the ESS Control (#1) and CTBN X8 

(#12) samples.  As clearly seen in these images, the samples of non-toughened (control ESS) thermoset 

vs. CTBN-toughened thermoset are different in appearance; the toughened thermoset appears to have 

more texture of darker/lighter areas compared to the control sample.  The appearance of the darker spot 

areas is distributed fairly uniformly across the samples.  The darker field in the TEM represents regions 

that are able to absorb more electrons, signifying regions with higher atomic number.  It is believed that 

these darker spots corresponded to the CTBN X8 particles, which has higher electron density due to the 

staining with osmium tetroxide.  
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 TEM imaging of cross sectioned samples: a. ESS with 2 nm bar scale, b. CTBN X8 Figure 5.11.
with 2 nm bar scale, c. ESS with 5nm bar scale, d. CTBN X8 with 5 nm bar scale, e. ESS with 10 nm 
bar scale, f. CTBN X8 with 10 nm bar scale, g. ESS with 20 nm bar scale, h. CTBN X8 with 20 nm 
bar scale 
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5.5. Conclusions 

Different methods were explored in order to improve the toughness of the ESS-MHHPA 

thermoset system including the use of flexibilizing curing agents and use of secondary phase rubbery 

polymers.  The improvement in the tensile toughness was observed to be dependent on the specific type 

of toughening agent used.  Using secondary crosslinkers as toughening agents for ESS/MHHPA 

thermoset resulted in more ductile behavior without compromising the Young’s modulus and tensile 

strength of the thermosets.  In contrast, using reactive liquid polymers for toughening resulted in higher 

elongation at break materials, yet led to a compromise in the Young’s modulus.  With these promising 

results, it will be worthwhile to explore the properties of ESS/MHHPA thermosets with the addition of both 

types of toughening agents.  With a more ductile primary bulk phase due to addition of secondary 

crosslinker, the toughness improvement due to incorporation of secondary phase is predicted to be 

significantly intensified.  This intensified improvement can be expected due to the role of matrix ductility in 

influencing the toughness of multiphase network.  The ductility of the bulk matrix system reduces the 

stress needed for localized shear yielding that is initiated by the secondary rubber polymer, and thus 

inducing plastic deformation to a far lesser extent and much greater improvement in the toughness 

properties.  Furthermore, exploration in the amount of toughening agents, miscibility additive, mixing and 

curing process is valuable to ensure defined phase separation between the rubbery thermoplastic phase 

and rigid ESS-thermoset phase, which can ultimately lead to further optimization of the toughness 

improvement. 
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CHAPTER 6. THE EXPLORATION OF MICHAEL-ADDITION REACTION CHEMISTRY TO CREATE 

HIGH PERFORMANCE, AMBIENT CURE THERMOSET COATINGS BASED ON SOYBEAN OIL 

6.1. Abstract 

Utilizing Michael addition crosslinking technology, thermoset coatings were prepared from 

acrylated epoxidized sucrose soyate (AESS) resin and amine crosslinkers.  AESS was synthesized from 

sucrose soyate, which is the sucrose ester of soybean oil fatty acids and has an average of about 12 

functionalities per molecule.  Due to the high functionality of AESS and fast reactivity of the amine 

crosslinkers, the coatings can be cured at ambient temperature (21 °C) in a relatively short period of time 

yielding good coatings properties.  When AESS was reacted with 4’4’-methylene bis(cyclohexylamine), 

the acrylate group conversion was determined by FTIR to be up to 90%.  It was also found that the type 

of solvent used in the coatings formulation affected the film formation and thus the coatings properties.  

The addition of 1,6-hexanediol diacrylate diluent in the formulation resulted in softer and lower Tg 

coatings.  Using a trifunctional amine such as diethylene triamine, coatings could be prepared without the 

addition of any catalyst.  Overall, thermosets made from AESS Michael crosslinking technology provide a 

highly bio-based coating system with good hardness and chemical resistance.  

6.2. Introduction 

Michael addition is reaction between nucelophiles (Michael donors) and activated olefins (Michael 

acceptors) to produce covalent bonds between Michael donors and acceptors.  The general reaction 

scheme is shown in Scheme 6.1.  The Michael addition reaction has been employed as a versatile tool in 

the synthesis of linear, graft, hyperbranched, dendritic and network polymers for a wide range of 

applications such as coatings, adhesives, bio-medical/pharmaceutical, and specialty chemicals [1-11].   

 

Scheme 6.1. General reaction mechanism of Michael addition 

The use of the Michael addition reaction for crosslinking in the coatings industry has been gaining 

more attention recently.  This popularity is motivated by the following benefits.  First, the reaction only 

requires mild conditions to achieve high conversion with favorable reaction rates, and thus coatings can 
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be cured at ambient temperature.  The reaction rates can be controlled by the selection of monomer 

precursor, catalyst system, and solvent [12-15].  Second, there are no volatile by-products of the reaction, 

thus eliminating or minimizing the amount of volatile organic compounds (VOCs).  Lastly, there are a wide 

range of varieties of commercially available chemicals that can be used as reactants and catalysts.  

Common functional groups used as Michael donors include acetoacetates, amines, thiols and 

phosphines.  There are more options of functional groups that can be used as Michael acceptors, which 

include acrylate esters, acrylonitrile, acrylamides, maleimides, alkyl methacrylate, and α,β-unsaturated 

aldehydes.  Even though it is not necessary to add catalyst to accelerate the reaction, catalyst is often 

added to ensure the reaction reaches high conversion; the catalyst can be either base (hydroxide, amine, 

alcohol, etc) or acid (p-toluene sulfonic acid, sulfuric acid, bis(trifluoromethanesulfon)imide, etc.  Mather et 

al. presented a thorough review discussing the use of a wide variety of those precursors for polymer 

macromolecular design for many applications [12]. 

The use of Michael addition technology for coatings application has been explored since the 

1980s [1, 13, 16-19].  Yet, there are many concerns to be addressed in order for this reaction to be widely 

applied for coatings applications.  First, this reaction can proceed fairly fast at room temperature and thus 

has a somewhat short pot life or working time.  Recently, Brinkhuis et al. address this concern by using a 

novel blocked catalyst and kinetic control additive system [20].  The system consists of the reversible 

blocking of a strong base catalyst with dialkylcarbonate.  The strong base reacts with the carbonate to 

form carbonate anions, which have low reactivity to initiate the Michael addition reaction and thus results 

in a long pot life in the container.  Upon application, the large surface area shifts the equilibrium to trigger 

the catalyst de-blocking and thus initiates the reaction.  Unfortunately, this reversible catalyst blocking 

system produces alcohol as a by-product.  Another cause of the limited use of the Michael addition 

reaction in the coatings industry is due to limited options for highly functionalized resins and/or 

crosslinkers to create thermoset coatings with good hardness and chemical resistance.  The most 

commonly used functional groups reported for Michael addition curing are acetoacetate and acrylate 

esters.  Often, appropriate blends of di-, tri-, and tetra- acrylates must be used to achieve good 

performance [8, 10, 19].  Recently, Webster et al. invented a highly functionalized acrylate resin based on 

epoxidized sucrose soyate (ESS) [21].  Epoxidized sucrose soyate is an epoxy resin derived from the 
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sucrose ester of soybean oil fatty acids.  This epoxy resin has an average of 12 functional groups per 

molecule, and has been shown to offer excellent mechanical properties in coatings and composites 

applications [22-32].  The ESS resin can be modified into an acrylate resin through ring opening of the 

epoxy using acrylic acid; the reaction is shown in Scheme 6.2.  The synthesis of AESS resin is a fairly 

straightforward, one-pot synthesis process with very high conversion and no further purification is 

needed.  The number of acrylate groups can be tuned by controlling the amount of acrylic acid used 

during the synthesis process.  The use of this highly functionalized acrylate resin for UV-curable coatings 

has been shown to have improved performance compared to an acrylate resin based on soybean oil [25].  

Using this AESS resin for Michael addition crosslinking can be beneficial due to its high functionality 

which can lead to a high crosslink density.  Furthermore, the use of AESS will also potentially increase 

the sustainability of the materials since it is a 75+% bio-based resin. 

 

Scheme 6.2. Acrylation of epoxidized sucrose soyate 

Thus, the goal of this work was to explore the feasibility of using the AESS resin to produce high 

performance, ambient cured coatings using Michael addition crosslinking.  Structure-property 

relationships of the coatings system were studied based on the variation in the acrylate-to-amine ratio, 

type of amine crosslinker used, and the amount of reactive diluent used.  The properties evaluated 

include mechanical coatings properties and thermal properties.  As a comparison, a coatings system 

derived from acrylated epoxidized soybean oil (AESO) was also prepared.   
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6.3. Experimental 

6.3.1. Raw materials 

Acrylated epoxidized sucrose soyate (AESS) resin was synthesized from epoxidized sucrose 

soyate (ESS), with 90% of the epoxy groups being converted into acrylate groups.  The synthesis and 

characterization of ESS and AESS resin is presented in previous publications [25, 33]. Ethyl 3-

ethoxypropionate (EEP) solvent was provided by Eastman Chemical Co.  4’4’-Methylene 

bis(cyclohexylamine) (PACM) was provided by Air Products.  Diethylene triamine (DETA), m-xylylyne 

diamine (MXDA), and p-toluene sulfonic acid monohydrate (pTSA) were obtained from Sigma Aldrich.  

1,6-Hexanediol diacrylate was provided by Sartomer.  Ethanol was obtained from Alfa-Aesar.  The 

structure of the chemicals used in this work is illustrated in Figure 6.1. 

 

 Structures of the chemicals used in this work Figure 6.1.

6.3.2. Coatings formulation 

AESS was first dissolved in a variety of solvent solvents, and then air bubbles in the mixture were 

removed by sonication. Then, amine crosslinker and pTSA catalyst was added to the mixture.  The 

mixture was stirred using a spatula for 1 minute, and then applied onto 3 x 6 x 0.020 in. Q-panel cold 

rolled steel panels pretreated with iron phosphate (Bonderite 1000 ™ obtained from Q-panel) and 4 x 6 x 
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0.032 in. glass panels using a draw down bar at 6 mils wet film thickness.  The panels were then forced-

cured in the oven at 80°C for 45 minutes.  For ambient-cured coatings, the coatings were set aside on the 

laboratory bench at 21°C.  Coatings properties were measured 1 week after the coatings were cured. 

6.3.3. Viscosity and gel-time study using rheometer 

An ARES Series Rheometer was used to measure the viscosity of the resin system and 

determine the gel time of the coatings formulation.  Parallel plate geometry was used and the gap 

between the plates was set to be 1 mm.  For viscosity measurement, the sample shear rate was 0.1 to 

100 Hz, and the reported value was taken from an average of 3 measurements at 10 Hz. Then, for gel 

time determination, the coatings formulations was sheared at 0.1 Hz, and storage modulus, loss modulus, 

and viscosity values were monitored.  Gel time was determined when storage modulus value was equal 

to loss modulus value or when the viscosity value increased dramatically. 

6.3.4. Drying time determination 

The drying times of the coatings were determined using a BK Drying Recorder.  The results were 

analyzed using ASTM D5895.  Four stages were determined: Stage 1 corresponds to set-to-touch time, 

stage 2 corresponds to tack-free time, stage 3 corresponds to dry-hard time, and stage 4 corresponds to 

dry-through time. 

6.3.5. Chemical analysis using FTIR spectroscopy 

Fourier-transform infrared (FTIR) spectroscopy was performed using a Thermo Scientific Nicolet 

8700 FTIR spectrometer using a potassium bromide salt crystal.  FTIR analysis was used to determine 

the conversion of the acrylate group in the AESS after the curing process.  The conversion is determined 

from the decrease in the area of three peaks that correspond to the unsaturation of the functional groups: 

810 cm
-1

 (C=C out of plane deformation), 1407 cm
-1

 (C=C scissoring of HC=CH2 (medium) in-plane CH2 

deformation 1637 cm
-1

 (C=C stretching for HC=CH2). 

6.3.6. Coatings characterization 

The dry film thickness on steel substrates was measured using a Byko-Test 8500 coatings 

thickness gauge; the reported value is the average and standard deviation of 10 points of measurement 

on the panel.  The hardness of the coatings was determined using König pendulum hardness and pencil 

hardness following ASTM D4366 and ASTM D3363, respectively.  Flexibility was measured using conical 
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mandrel bend test (ASTM D522) which indicates a slow deformation and reverse impact (ASTM D3794) 

which indicates a rapid deformation.  Adhesion was measured using cross-hatch adhesion method of 

ASTM D3359.  Solvent resistance was determined through the methyl ethyl ketone (MEK) double rubs 

test, where a MEK-saturated cheese cloth was wrapped on a hammerhead and then rubbed against the 

coatings surface back and forth until coatings failure was observed.  Solvent resistance may indicate the 

degree of crosslinking of the thermoset.  The specular gloss was measured using BYK Gardner Micro-Tri-

Gloss 20/60/85 degree Gloss Meter at 20°, 60° and 85° following ASTM D523.  

6.3.7. Thermal analysis 

Thermal properties of the cured coatings were analyzed through differential scanning calorimetry 

(DSC) and dynamic mechanical analysis (DMA).  DSC experiments were performed using a TA 

Instruments Q2000 DSC.  The glass transition temperature, Tg, of free films were determined using a 

heat-cool-heat method, and the reported value was taken from the inflection point during the heating 

cycle.  10 mg free film samples were exposed to heat-cool-heat cycle from -80 to 250 °C with 30 °C/min 

heating (or cooling) ramp.  DMA experiments were performed using a TA Instruments Q800 DMA.  

Coatings films were cut to have a width of 5 mm and was loaded at 15 mm in length.  The sample was 

heated from -50 to 150 °C with 3 °C/min heating ramp at 1Hz frequency and 0.1% strain.  Furthermore, a 

preload force of 0.01 N was used and force track was set to 125%. 

6.3.8. Soxhlet extraction 

Soxhlet extraction of the coatings was performed to determine the gel fraction of the thermoset 

network.  About 0.3 g of cured samples was folded inside filter paper, which then was inserted into an 

extraction thimble in the Soxhlet extraction apparatus.  The extraction process was conducted with 

acetone as a solvent, and samples were extracted for 17 hours by acetone at reflux.  After the process 

was completed, the wet residual samples were dried in the oven at 120 °C for 1 hour.  The gel fraction 

was calculated from the ratio of sample weight after and before the Soxhlet extraction. 

6.4. Results and Discussion 

6.4.1. Aza-Michael addition reaction overview 

A Michael addition reaction involving nitrogen-donor functionality is often referred as an aza-

Michael addition.  Since amine can act as both the donor agent and base, the addition of catalyst is often 
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not necessary.  In this research, highly functionalized AESS resin was reacted with an amine crosslinker 

to form a thermoset network, and the reaction is catalyzed using Bronsted acid p-toluene sulfonic acid 

monohydrate in ethanol.  Catalyst was added in the formulation to ensure high conversion of functional 

groups.  In the case of an acid-catalyzed reaction, the acid coordinates with the unsaturated olefin and 

activates the receptor.  This coordination increases the reactivity of the acrylate by increasing its 

electrophilicity [34-37].  The reaction mechanism and chemical structures of the raw materials are 

depicted in Scheme 6.3.   

 

R1, R2 = highly functionalized acrylate resin 
R = aliphatic, cycloaliphatic and aromatic crosslinker 

Scheme 6.3. Reaction between acrylate groups in AESS and amine 

As shown in Scheme 6.3, primary amines can react with two equivalents of acrylate to form 

tertiary amines.  The reaction of amine hydrogen with the acrylate functionality tends to follow second 

order kinetics based on the concentration.  Yet, the addition of acrylate to the formed secondary amine 

may affect the overall reaction kinetics as the reaction proceeds.  The reactivity of 1° amine vs. 2° amine 

is highly dependent on the electronic and steric environment of the amine [38].  Generally, 2° amines are 

more nucleophilic than 1° amines and are therefore more reactive, yet the steric hindrance of the 

surrounding environment often causes the slow addition of 2° amines.  In the case of linear aliphatic 

amines having low steric hindrance on the 2° amine such as n-methylenediamine, the reactivity sequence 

of multi-functional amines was observed to be 2° amines (original) > 1° amine >> 2° amines (formed).  

Yet, for linear aliphatic amines having high steric hindrance on the 2° amine such as n-

hexylethylenediamine, the reactivity sequence changed to 1° amine > 2° amine (original) > 2° amine 

(formed).  For a similar reason, the addition to the 2° amine (formed) tends to be significantly slower due 

to high steric hindrance of the polymer backbone [38].   
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6.4.2. Solvent selection 

Before going into more detail into the Michael reaction between AESS resin and amine croslinker, 

it is important to mention that AESS resin has an extremely high viscosity (1.30×10
6
 mPa.s due to the 

high number of hydroxyl groups in the resin.  Thus, in order to be easily applied as coatings, the resin 

viscosity must be reduced by the addition solvent and/or diluents.  The solvent or diluent should be 

compatible with the formulation components.  Furthermore, if using solvent, the solvent should evaporate 

at an appropriate rate during the curing process.  If diluents are used, the addition of diluents should not 

affect the mechanical properties dramatically.  The range of the viscosity for easy application was 

targeted to be below 1000 mPa.s. 

Several solvents were screened to determine their suitability in reducing the viscosity of the 

AESS resin as well as their influence on coatings properties. Solvents were added at 40% wt. of AESS to 

produce 75% solids coatings formulations.  The solvents evaluated included methyl ethyl ketone (MEK), 

methyl iso-butyl ketone (MIBK), tert-butyl acetate (TBA), ethyl-3-ethoxypropionate (EEP), hexane (HEX) 

and cyclohexanone (CHX).  These solvents were selected based on the following criteria: polarity, boiling 

point, and regulatory issues (i.e., VOC exempt).  In this experiment, 4’4’-methylene bis(cyclohexylamine) 

(PACM) was used as the crosslinker.  Coatings formulations were prepared with acrylate to primary 

amine equivalent ratio of 1.5:1, and pTSA catalyst at 5% by mole of 1° amine.  To form coatings, the 

formulations were applied on cleaned and degreased Bonderite steel panels using a drawdown film 

applicator at 6 mils wet film thickness.  The coatings were cured in the oven at 80 °C for 45 minutes.  

Coatings characterization was performed one week after being cured. 

Table 6.1. Effect of solvent on coatings made using AESS cured with PACM. 

Solvent 

AESS + Solvent 
Properties 

Coatings Properties 

Soluble 
Viscosity 
(mPa.s) 

Appearance 
König 

Hardness (s) 
MEK 

double rubs 

MEK Yes 770 Trapped bubbles (small size) 75 200 

MIBK Yes 660 Trapped bubbles (small size) 48 325 

CHX Yes 2940 Defects throughout 20 75 

TBA Yes 1260 Trapped bubbles (bigger size) 50 325 

EEP Yes 790 Minimal amount of bubbles 109 >400 

HEX No - - - - 
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The addition of solvent decreases the viscosity of the resin due to a decrease in the polymer-

polymer interaction forces, dominated by the hydrogen bonding, which was overcome by the polymer-

solvent interactions.  As expected, AESS was not soluble in non-polar solvents such as hexane; and thus 

the AESS-HEX coatings formulation was not prepared.  AESS is miscible fairly well in ketone- and ester-

based solvents.  The amount of decrease in the viscosity depends on the polarity of the solvent.  With the 

ketone-based solvent, due to similar structures of MEK and MIBK, the decrease in the viscosity is similar.  

The symmetrical chemical structure of the CHX causes the molecule to be less polar than MEK and 

MIBK, and thus the viscosity of the AESS-CHX system is higher.  Then, comparing TBA and EEP 

solvents, EEP is more polar than TBA due to its ethoxy group and thus the decrease in the viscosity was 

observed to be higher. Even though the viscosity of AESS-CHX and AESS-TBA was out of the target 

range, coatings formulations were still prepared. 

Initially, it was thought that the addition of PACM to the formulation would reduce the viscosity 

further since its viscosity is fairly low (80 mPa.s @25 °C).  However, after the addition of amine and 

catalyst, the viscosity increases immediately to the range of 2000+ mPa.s for MIBK and EEP.  This 

increase in the viscosity thus did not allow air bubbles introduced in the mixing process to escape quickly 

enough during application, and thus resulted in trapped bubbles in the cured coatings.  The size of the 

bubbles in the cured coatings is affected by the boiling point and the solubility of the solvent.  For the TBA 

system, the size of the bubbles was observed to be the largest compared to the other systems.  It is 

thought that the solvent was not quite miscible in the AESS-PACM mixture, and thus tended to result in 

larger trapped bubbles in the cured coatings.   

As seen in Table 6.1, the coatings properties based on AESS-PACM with different solvents are 

fairly good with the exception of the CHX system.  The CHX-containing coating is fairly soft and not well 

crosslinked as indicated by MEK double rubs.  Furthermore, this coating formulation had a longer pot-life 

than the other systems. Typically, the formulations would gel in the vial an hour after mixing, yet the CHX 

system did not.  It is known that ketones may react with primary amines to form imine and water, and this 

reaction is reversible.  Since CHX has a comparatively higher boiling point compared to MEK and MIBK, it 

does not evaporate as quickly and is expected to bind more with amine as an imine.  Thus, there are less 

amine functionalities available to react with AESS, resulting in poor MEK double rubs for the coating. 
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Overall, the most optimum coatings were obtained with EEP with excellent pendulum hardness 

and MEK double rubs.  The slow evaporation rate of EEP balances the quick reactivity of the AESS-

amine reaction, resulting in a minimal amount of bubbles trapped in the cured coatings.  Based on these 

observations, EEP was chosen to be the solvent for further exploration. 

6.4.3. Effect of stiochiometry 

As shown in the previous section, initial thermoset coatings made from AESS-PACM were 

successfully prepared and the excellent MEK double rubs data is an indication that the coatings are cured 

and have good solvent resistance.  To confirm that the reaction did occur at the molecular level, FTIR 

spectroscopy analysis of the coatings formulations and cured coatings was carried out.  Furthermore, it is 

necessary to study the impact of the molar ratio of acrylate to 1° amine on the properties of the materials.  

In this part of the study, AESS was crosslinked with PACM and the reaction was catalyzed using pTSA 

catalyst.  Mixing and curing processes are conducted following previously described procedures. 

6.4.3.1. Functional group conversion 

Figure 6.2 shows the FTIR spectra of 2 different coating systems before and after curing: AESS-

PACM with a range of acrylate to 1° amine ratios and AESS with pTSA catalyst without any PACM.  It can 

be observed in the spectra that there is a decrease in the acrylate group concentration shown by a 

decrease in the intensity of the C=C bond at 1637 cm-1 (C=C stretching for HC=CH2), 1406 cm-1 (C=C 

scissoring for HC=CH2), and 810 cm-1 (C=C out of plane deformation).  By calculating the change in the 

peak area of those C=C peaks before and after curing, the acrylate group conversion can be estimated.  

It is important to note that peak deconvolution was performed to obtain a more accurate determination of 

the peak area.  For liquid coatings formulation, peak fitting was carried out using Voight calculation, while 

a Gaussian peak fit calculation was used for the solid cured coatings.  The results of the calculations are 

shown in Table 6.2. 

As seen in Table 6.2, the acrylate conversion decreases as the acrylate-to-1°amine molar ratio is 

increased, and the pattern can be observed with every C=C peak.  The conversion ranges from 90% to 

40%, which seems to be fairly low for a thermoset system.  However, it is important to note also that even 

though complete conversion was not achieved after curing at 80 °C for 45 minutes, the coated surfaces 

were tack-free.   
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 FTIR spectroscopy of coatings with 2:1 molar ratio of acrylate to 1° amine (using PACM Figure 6.2.
amine) and coatings with no PACM amine (AESS+pTSA catalyst) 

Table 6.2. Acrylate conversion by FTIR spectroscopy with different equivalent ratios 

Acrylate-to-
1° Amine 

Decrease in the peak area (%) 

1637 cm
-1 

1406 cm
-1 

810 cm
-1 

1 : 1 86.4 96.6 93.0 

1.5 : 1 67.5 87.0 82.3 

2 : 1 53.6 71.5 69.3 

3 : 1 63.8 50.2 44.5 

No Amine 32.1 50.1 17.6 

Coatings were prepared using PACM  
 

While preparing the formulations, it was found that the mixture of AESS and pTSA catalyst, 

without the presence of PACM amine, gelled in the container 6 hours after it was mixed.  This unexpected 

observation suggests that the hydroxyl groups in the AESS resin might be able to react with the acrylate 

groups.  To verify this hypothesis, AESS resin was mixed with pTSA catalyst (2.45%wt.) and then cured 

in the oven at 80 °C for 45 minutes.  Then, the same FTIR analysis was conducted.  As shown in Figure 

6.2 and Table 6.2, characterization by FTIR spectroscopy further showed that the hydroxyl and acrylate 
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groups decreased after curing at 80 °C for 45 minutes.  Furthermore, the coating film from the AESS-

pTSA system was found to have 100 MEK double rubs, which shows that the coating was fairly 

crosslinked.  The crosslinking between acrylate and 2° hydroxyl in the AESS resin may signify two 

possible scenarios.  First, without the presence of amine or other crosslinker, the AESS resin may react 

with itself to form a polymer network as shown in Scheme 6.4.  Then, in the presence of amine or other 

crosslinker, this reaction becomes a side reaction.  Looking back at Figure 6.2, it can be observed that 

there were no changes in the area of the OH peak at 3300 cm
-1

, which indicates that the amount of this 

side reaction maybe very minimal. 

 

Scheme 6.4. Possible reaction of AESS self-crosslinking 

6.4.3.2. Gel time and dry time 

In the previous experiment, AESS-PACM coatings formulations were cured at an elevated 

temperature to accelerate the curing reaction.  However, these systems have sufficient reactivity to be 

cured at ambient temperature, and it will be shown later that the properties of the oven-cured and room 

temperature-cured coatings do not differ significantly.  In this section, the gel time and dry time of the 

AESS-PACM coatings at ambient temperature (~23 °C) were studied as a function of the acrylate to 1° 

amine molar ratio and the results are shown in Figure 6.3 and Table 6.3. 

The gel time of the coatings was determined using a rheometer at 23 °C.  At the gel point, the 

molecular network is undergoing a transition from liquid to solid, and thus the storage modulus value (G’) 

is equal to the loss modulus value (G”) and the viscosity (η) increases dramatically.  As seen in Figure 6.3 

and Table 6.3, the gel time increased as the acrylate to 1° amine molar ratio was increased.  The results 

from G’=G” value and η agree with each other as they follow the same pattern, and the gel time values 

are in the same range.  It is interesting to observe that despite the fact that the gel times of the four 
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formulations were different, the G’ or G” values at the gel point are approximately the same at 2.32 kPa.  

Then, as expected, the viscosities of the formulations at 90 minutes are very different; they increased as 

the molar ratio was increased. 

 

 Rheological properties of AESS-PACM with different acrylate to 1° amine molar ratios Figure 6.3.

Table 6.3. Gel time and dry time of thermoset coatings with different equivalent ratios 

Acrylate-to-
1° Amine 

Gel Time (min) Dry Time (hour:min) 

G’ = G” η increase 
Set-to-
touch 

Tack free Dry-hard 
Dry-

through 

1 : 1 17.85 21.86 0:20 0:30 5:30 >12:00 

1.5 : 1 27.55 33.20 0:35 0:50 2:00 5:25 

2 : 1 47.57 51.78 1:05 1:25 2:45 5:50 

3 : 1 71.23 76.12 1:30 1:45 3:45 6:10 

Coatings formulations were prepared using PACM 
 

The dry times of the coatings formulations of AESS-PACM with different molar ratio were also 

determined using a BK drying time recorder, where a stylus was moved across a 12” glass strip which 

was applied with liquid formulation at a rate of 1”/hour.  The recorded drying behavior values listed in 

Table 6.3 are an average of 6 different measurements.  As observed with the gel time values, increasing 
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the molar ratio resulted in slower drying times up to the tack free time.  Yet, surprisingly, the dry-hard and 

dry-through times of the 1:1 coatings system were much slower compared to the other coatings system, 

which implies that the molecular network was built up at a slower rate after a certain point.  Furthermore, 

after 12 hours, the 1:1 coatings are still soft and can be easily scratched.  Overall, this observation 

indicates that fast tack-free time or gel time does not necessarily imply a fast dry-through time. 

6.4.4. Coatings properties 

In order to further understand the impact of the acrylate-to-amine molar ratio on the AESS-PACM 

coatings, it is important to conduct thermal and mechanical coatings characterization.  Thermal 

characterization was conducted using differential scanning calorimetry (DSC) to obtain the glass 

transition temperature, Tg and residual heat of polymerization. Dynamic mechanical analysis (DMA) was 

used to obtain the Tg and storage modulus values.  Mechanical coatings characterization includes 

determinations of hardness, solvent resistance, adhesion, and flexibility.  These characterizations were 

determined 7 days after application process to ensure a high level of conversion, and the results are 

shown in Figure 6.4 and Tables 6.4 and 6.5.   

First, in the DSC curves in Figure 6.4, the Tg of the coatings obtained from the first heating cycle 

is lower than that obtained in second heating cycle.  However, a small exothermic peak in the first heating 

cycle was observed, indicating the occurrence of some additional curing.  It is predicted that during the 

first heating cycle, polymer network rearrangement and further curing occur simultaneously, thus causing 

the increase in the observed Tg in the second heating cycle.  The Tg by DMA was determined at the 

temperature where tan delta maximum occurred.  The obtained Tg value from both DSC and DMA show 

a similar pattern.  The Tg value of coatings with acrylate to 1° amine molar ratio of 1:1 and 1.5:1 are fairly 

similar.  Increasing the molar ratio results in a decrease in the Tg value.  The storage modulus values at 

25 °C values decrease as the acrylate to 1° amine was increased, which indicates that the coatings 

became softer and more flexible. The storage modulus value in the rubbery region at Tg+60°C is often 

used to indicate the crosslink density of the coatings.  The highest modulus was obtained for coatings 

with acrylate to 1° amine molar ratio of 1.5:1. 

Coatings mechanical properties in Table 6.5 show that there is no significant difference in the 

hardness and Tg of the coatings with 1:1 and 1.5:1 molar ratio, similar to what was observed with the Tg 
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values.  Yet, surprisingly, the chemical resistance of the 1:1 molar ratio system is lower compared to 

1.5:1.  This observation was predicted due to the the cracking defects that appeared in the 1:1 system, 

which was caused by fast gelation at the surface.  Furthermore, this cracking appearance caused the 

coatings to have lower specular gloss.  Increasing the molar ratio resulted in softer coatings, which 

agrees to what was observed with the findings in thermal analysis.   

To summarize, the system with 1.5:1 molar ratio showed good properties compare to other molar 

ratios with fairly high conversion, good gel time thus workable condition, excellent hardness, flexibility and 

chemical resistance.  Thus, this formulation was chosen as a control system for further study involving 

variation in the diluents, amine crosslinker, acrylate resin, and curing process.   

 

 The DSC first and second heating cycle of coatings with different acrylate to 1° amine Figure 6.4.
ratios 
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Table 6.4. Thermal properties of the coatings 

System No. Sample 

DSC analysis DMA analysis 

Tg Cycle 1 
(°C) 

Tg Cycle 2 
(°C) 

Tg by tan δ 

(°C) 
E’ @ 25°C 

(MPa) 

E’ @ 

Tg+60°C 
(MPa) 

Acrylate-
to-Amine 

Ratio* 

1 1:1 15.4 37.8 45.8 1037 5.87 
2† 1.5:1 29.2 36.9 43.4 714 6.28 
3 2:1 22.6 26.8 35.9 304 4.62 
4 3:1 5.4 16.3 28.5 92 4.35 

HDDA 
Amount* 

2† 0% 29.2 36.9 43.4 714 6.28 
5 25% 26.6 26.7 33.1 298 4.40 
6 50% 15.3 15.3 19.1 21 4.54 
7 75% -0.8 2.4 16.0 13 6.31 

Amine X-
linker 

2† PACM 29.2 36.9 43.4 714 6.28 
8‡ DETA 21.4 28.4 39.9 489 15.74 
9 MXDA 20.8 20.6 38.2 516 11.78 

Acrylate 
Resin* 

2* AESS 29.2 36.9 43.4 714 6.28 
10 AESO -2.7 1.1 13.8 8 2.94 

Cure 
Process* 

2* Forced 29.2 36.9 43.4 714 6.28 
11 RT 39.3 36.6 38.6 581 8.65 

*Coatings were formulated using PACM crosslinker and pTSA catalyst 
†Formulation used as control: using PACM crosslinker (1.5:1 molar ratio) 
‡No catalyst was added 
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Table 6.5. Mechanical coatings properties 

System No. Sample 
DFT König Pencil Hardness MEK 

Double 
Rubs 

Reverse 
Impact 

(inch/lb) 
Adhesion 

Mandrel 
Bend 

Gloss Gel 
Fraction 

(%) 
µm (sec) Gouge Scratch 20° 60° 85° 

Acrylate
-to-

Amine 
Ratio 

1 1:1 64±17 108 6H 3B 250 100 2B >28% 85 123 81 93.6 

2† 1.5:1 62±14 105 9H B >400 80 2B >28% 109 132 100 91.6 

3 2:1 57±9 52 7H 2B 275 100 3B >28% 120 135 100 92.9 

4 3:1 58±11 21 7H 4B 100 80 3B >28% 116 128 101 92.5 

HDDA 
Amount 

2† 0% 62±14 105 9H B >400 80 2B >28% 109 132 100 91.6 

5 25% 53±8 59 8H 2B 175 40 0B 28% 88 113 97 92.2 

6 50% 44±11 20 3H 4B 50 80 3B >28% 107 139 98 93.7 

7 75% 48±10 14 2H 4H 100 100 4B >28% 77 133 85 95.3 

Amine 
X-linker 

2† PACM 62±14 105 9H B >400 80 2B >28% 109 132 100 91.6 

8‡ DETA 52±5 56 5H HB 225 100 2B 28% 64 109 77 98.0 

9 MXDA 50±4 82 9H B >400 120 4B >28% 88 117 86 94.1 

Acrylate 
Resin 

2* AESS 62±14 105 9H B >400 80 2B >28% 109 132 100 91.6 

10 AESO 43±8 12 B 8B 75 100 4B >28% 143 149 97 93.2 

Cure 
Process 

2* Forced 62±14 105 9H B >400 80 2B >28% 109 132 100 91.6 

11 RT 57±10 107 8H F >400 60 0B >28% 88 113 97 90.4 

*Coatings were formulated using PACM crosslinker and pTSA catalyst 
†Formulation used as control: using PACM crosslinker (1.5:1 molar ratio) 
‡No catalyst was added  
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6.4.5. Structure-property relationships 

Further studies were then carried out to explore the properties of coatings made using reactive 

diluents and different amines.  Then, the obtained properties were compared with a system derived from 

a similar, but much lower functionality, bio-based acrylate resin, acrylated epoxidized sucrose soyate 

(AESO).  It is important to note that all of the coatings were cured at 80 °C for 45 minutes to accelerate 

the experimental time.  Therefore, it is also necessary to compare the properties of oven-cured coatings 

with ambient-cured coatings.  The complete thermal and mechanical coatings properties are listed in 

Tables 6.4 and 6.5.  Overall, all of the coatings were observed to have good flexibility with >28% 

elongation and highly crosslinked with >90% gel fraction. 

One method to adjust the viscosity of the formulations is by blending the AESS resin with a 

reactive diluent such as 1,6-hexanediol diacrylate (HDDA).  Therefore, a series of AESS-HDDA blends 

was prepared and coatings formulations were made.  Adding low molecular weight difunctional acrylate 

into the formulation may cause plasticization as observed in the lower hardness and Tg of the thermoset 

networks.  Furthermore, looking at the DMA results, the storage modulus values at temperatures well 

above Tg for systems with 75% of HDDA and without HDDA are fairly similar.  This observation indicates 

that the approximate crosslink density of the network system is fairly similar, and thus the properties of 

the networks are largely dependent on the backbone of the network rather than on the crosslink density.   

Variation in the amine crosslinker composition results in different coatings properties.  First, it is 

important to mention that catalyst was not added to the formulation with diethylene triamine (DETA).  It 

was found that if catalyst was added to the formulation, the system gelled within a few minutes of mixing 

and thus making the application process difficult.  This rapid gelation was predicted due to the presence 

of the 2° amine.  Recall in the previous section, unhindered 2° amine is more reactive than a 1° amine.  

The order of reaction rate was predicted to be 1° amine > 2° amine > 2° amine (formed).  Since gelation 

was obtained very quickly, it is expected that high conversion of functional groups might be limited as the 

network is locked in place, and thus inferior MEK double rubs were observed.  However, surprisingly, the 

storage modulus values of the DETA system at a temperature well above Tg is comparatively higher than 

PACM system.   
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Comparing coatings derived from AESS and AESO, it can be clearly seen that the AESO-based 

coating is significantly softer and has a lower Tg despite a similar acrylate equivalent weight between 

AESS and AESO at 310g/mol.  However, the key difference between the resins is the much higher 

number of functional groups per molecule in the AESS. This higher functionality leads to a higher 

crosslink density resulting in higher Tg and hardness. 

Finally, coatings properties for the system cured at ambient temperature are compared with those 

cured at elevated temperature. It was found that the properties are not significantly different with similar 

values of hardness, flexibility and Tg. 

6.5. Conclusion 

The Michael addition reaction was successfully utilized to produce thermoset coatings derived 

from AESS and amine crosslinker.  FTIR spectroscopy of the coatings before and after curing indicates 

that the reaction is capable of reaching up to 90+% conversion of acrylate.  Furthermore, it is suggested 

that AESS is able to undergo self-crosslinking polymerization from the reaction of acrylate and hydroxyl 

groups.  Yet, in the presence of amine crosslinker, this reaction might be occurring, but to a minimal 

extent.  A fast gelation time can be reached with a formulation having a 1:1 molar ratio of acrylate to 1° 

amine, and it can be prolonged by increasing the molar ratio.  However, fast gelation times can cause 

cracking and incomplete reaction and thus lead to inferior chemical resistance.  The thermal and 

mechanical coatings properties with different amounts of diluents and different amine crosslinkers were 

also evaluated.  The addition of diluents into the system resulted in coatings that are softer, while the 

presence of 2° amine in the DETA causing the system to gel very fast and thus did not require the 

addition of catalyst. In sum, this preliminary study has shown that the aza-Michael reaction of a highly 

functional acrylated resin can be used as a viable coating binder system that cures rapidly at ambient 

conditions and can yield coatings having good solvent resistance, as well as good hardness and 

flexibility. 
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CHAPTER 7. OVERALL CONCLUSION 

The overall objective of this study was to explore the design of high performance thermosets 

systems derived from highly functionalized epoxidized sucrose ester of soybean oil (ESS).  Two 

crosslinking methods were explored: direct polymerization of epoxy with anhydride moieties and 

crosslinking of acrylate-derivative of ESS (AESS) resin through the Michael-addition reaction.  Anhydride-

cured ESS thermoset are intended for structural composite applications, while AESS Michael-addition 

reaction is intended for coatings applications. 

In developing thermoset systems for structural composite applications, it is critical to understand 

the reaction kinetics and structure-property relationships of the thermosets with variation in the 

composition variables such as molar ratio of the reagents, type and amount of catalyst, and presence of 

moisture in the reaction.  Overall, the change in the compositional variables resulted in unique reaction 

kinetics behavior and chemical network, and thus unique mechanical properties.  Thermoset samples 

from this experiment possesses either rubbery or brittle properties, depending on the compositional 

variations.  The tunability of the mechanical properties of these thermoset samples is beneficial in 

producing composite materials for different applications with a broad range of properties.  However, 

interestingly, despite the long linear chain of fatty acid chains, some of the anhydride-cured ESS 

thermoset systems possessed quite brittle properties and therefore an improvement in toughness is 

necessary.  Improvement in the toughness properties of the materials was achieved by the addition of 

flexible crosslinkers and secondary phase rubbery materials.  Through this method, the toughness was 

shown to be increased up-to 5-fold depending on the materials used.   

Acrylated epoxidized sucrose soyate (AESS) resin was obtained by reacting the epoxy 

functionalities with acrylic acids.  Thermoset coatings were then prepared by crosslinking the acrylate with 

amine compounds.  Structure-property relationships of the thermoset coatings based on the molar ratio 

between acrylate to amine, type of amine, and addition of diluents was also explored.  Due to the high 

functionality of the resin and high reactivity of the resin, the coatings can be cured at room temperature, 

while still providing excellent coatings hardness and chemical resistance.  In comparison, a similar 

coatings system based on epoxidized soybean oil was observed to have lower glass transition 
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temperature and inferior chemical resistance.  This observation shows the potential of AESS as a 

coatings binder system that can be cured rapidly at ambient temperature. 
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CHAPTER 8. FUTURE WORKS 

8.1. Reaction kinetics of anhydride-cured ESS thermosets 

The curing kinetics of anhydride-cured ESS was studied using differential scanning calorimetry 

(DSC).  The reaction parameter values (reaction order, activation energy, and pre-exponential factor) 

were established with variation in the compositional variables (anhydride-to-epoxy molar ratio and 

catalyst amount).  Using these values, it is beneficial to obtain a time-temperature curve to provide a 

general guideline of curing schedule.  Also, this value can then be used in computational polymer 

molecular modeling software such DryAdd, which is capable of simulating reaction condition and provide 

an overview of the thermoset networks. 

8.2. Structure-property relationship of anhydride-cured ESS thermosets 

The structure-property relationship studied in this work was limited to the variation in the 

anhydride-to-epoxy molar ratio, catalyst amount, and catalyst type.  Further exploration can be made by 

blending methyl-hexahydrophthalic anhydride (MHHPA) crosslinker with other types of anhydride or acid-

functionalized crosslinkers.  Another useful study to be conducted may include the study of durability 

performance of the thermoset using accelerated weathering testing such as QUV, prohesion chamber, 

moisture uptake, and thermal aging. 

8.3. Impact of catalyst on anhydride-cured ESS thermosets 

Many types of base catalysts were explored in the polymerization of ESS with methyl-

hexahydropthalic anhydride.  The results showed that the type of catalyst used in the reaction affects the 

curing kinetics and reaction mechanism.  It woud be interesting to create a mixture of catalysts and 

assess the thermoset properties.  The results also indicated that there seems to be an optimum 

concentration or threshold concentration before the effect of moisture in the catalyst becomes 

detrimental.  The presence of water in the system can acts as catalyst and hydrolyzing agent.  Therefore, 

it will be advantageous to understand the role of water in the polymerization process from molecular 

structure at various degree of conversion.  

8.4. Toughness improvement of anhydride-cured ESS thermosets 

The study found that the addition of both a flexibilizing secondary crosslinker and secondary 

phase rubbery material can improve the toughness of ESS-thermosets.  Yet, both methods showed 
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opposing behavior:  the secondary crosslinker resulted in lower improvement in tensile strain and no 

compromise on the Young’s modulus and tensile strength, while secondary phase materials resulted in 

higher improvement in tensile strain and decrease in the Young’s modulus and tensile strengh.  

Therefore, it would be interesting to combine both methods and explore the materials properties as the 

blend ratio was varied.  The toughening agents that would be recommended for this study are AC39 

polyanhydride and HYPRO CTBN X8 rubber.  With this blend, it can be expected that toughness can be 

further improved.  Furthermore, other reported studies have shown that the impact of secondary phase 

rubbery material is larger in ductile environment compared to brittle materials. 

8.5. Michael-addition crosslinking coatings 

In this dissertation, it was shown that the Michael-addition reaction can indeed be used as one of 

the crosslinking technoligies of epoxidized sucrose soyate (ESS).  This represents a significant potential 

in broadening the research scope to further explore this crosslinking technology and optimize the 

thermoset properties.  First, it is necessary to further explore the compositional variables in the coatings 

formulation such as type of crosslinkers and catalyst.  Few examples of the crosslinkers include 

acetoacetate, bis-maleimide, and thiols; while an example of catalyst may include strong amines such as 

1,8-diazabicyclo-5.4.0-unde-7-ene (1,8-DBU).  Second, further optimization in the formulation pot life 

without compromising the coatings hardness can be carried out.  One method to accomplish this goal can 

be by blending the AESS resin with methacrylated-epoxidized sucrose soyate (MAESS); MAESS is a 

methacrylated version of AESS.  Since methacrylate groups have lower reactivity than acrylate groups, 

they will react more slowly and result in longer pot life.  Yet, since MAESS has same backbone with 

AESS, no decrease in the mechanical properties should be expected.  Third, it is important to study the 

weathering performance of this technology since coatings based on acrylic system are often used as a 

top-coat due to its excellent UV-stability.  Fourth, da ual-cure system of AESS resin can be explored.  An 

oligomer can be first prepared by using a Michael addition reaction.  Then, this oligomer can be further 

crosslinked by the use of UV light.  Finally, due its fast reaction and no-byproduct, Michael-addition AESS 

crosslinking can be used not only for coatings application, but also for composite and rigid foams 

application.  For composite applications, exploration of the fiber type, loading and treatment can be 
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explored.  Meanwhile, for rigid foams application, it is necessary to study the impact of compositional 

variables such as blowing agent, catalyst, and surfactant on the properties of the foam. 


