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ABSTRACT 

In the recent years, deep learning has shown to have a formidable impact on object 

classification and has bolstered the advances in machine learning research. Many image datasets 

such as MNIST, CIFAR-10, SVHN, Imagenet, Caltech, etc. are available which contain a broad 

spectrum of image data for training and testing purposes. Numerous deep learning architectures have 

been developed in the last few years, and significant results were obtained upon testing against 

datasets. However, state-of-the-art results have been achieved through Convolutional Neural 

Networks (CNN). This paper investigates different deep learning models based on the standard 

Convolutional Neural Networks and Stacked Auto Encoders architectures for object classification on 

given image datasets. Accuracy values were computed and presented for these models on three 

image classification datasets.  
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1. INTRODUCTION 

Man is by nature a social animal. Over the past few centuries, he achieved many remarkable 

feats and fuelled many significant technological innovations. The advent of computers heralded a 

new era in the field of technology. In spite of making breakthrough technologies, it is essential to 

understand that machines are a creation of mankind and do not primarily work as human brains do. 

Therefore, it is imperative that the machine needs to be furnished with appropriate instructions to get 

our job done. 

1.1. Artificial Intelligence and Machine Learning 

Replicating the mode of working of a human brain is a daunting task. In the past few 

decades, computer systems have been programmed to perform simple tasks which require 

knowledge, perception, reasoning and other such cognitive abilities. Artificial Intelligence (AI) 

attempts to build these systems and provide a degree of “intelligence” to the computers. From the 

computational point of view, intelligence can be implemented either through symbolism or 

connectionism. While the former is through the use of symbols, the latter is by associated weights 

and connections [1]. Natural language processing, computer vision, automated programming, 

intelligent computer- assisted programming and robotics are some of the broad- based applications 

of Artificial Intelligence. 

    Over the years approaches in AI have focused on retrieving results based on knowledge 

inputted by the human. Hence the machine extracts answer based on the open data but falters when it 

encounters a question, for which it does not have an answer in the knowledge base. Machine 

learning is an area of artificial intelligence, which attempts to recognize objects by using the method 

of pattern classification [2]. Therefore, machine learning comes up with an answer by initially 

recognizing the pattern, sorting it and finally classifying it into a predictable pattern.  
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Until the introduction of this learning technique, human intervention was essential to deal 

with unknown data, but machine learning accelerated the capability of dealing with unknown data 

without human aid. Machine learning technology has made inroads into almost every sphere of 

learning, ranging from bioinformatics and web searches to consumer product technology such as 

mobile technology. Machine learning has its share of shortcomings too [2]. Feature engineering is 

one such area, which remains unaddressed since recognition of objects or features in an image was 

not possible.  

1.2. Computer Vision and Object Recognition  

Human Vision is unique in a way that it readily identifies objects in an image with little or no 

difficulty. The human vision effortlessly captures the scale, size and angularity of the objects in the 

image. In comparison, computer vision faces significant challenges due to variations in real world 

images. Recognition algorithms need to be robustly engineered to overcome these difficulties [3]. 

These algorithms need to be trained to use digital images and correctly classify objects. In this 

technological era where life is increasingly dependent on search engines where object identification, 

image recognition, speech recognition and its transcription into text and signal processing are 

becoming essential in turning in relevant results for the end user.  

1.3. Shortcomings of Conventional Techniques  

 Appropriate data has to be provided by the human for the machine to chart out the 

differences and these values given as inputs are often referred to as features. Nevertheless, the 

machine can achieve the degree of precision through feature engineering which seems to be a tough 

proposition conventional machine learning techniques suffer some significant drawbacks which 

include their inability to process natural data from the raw state. Considerable domain expertise is 

also needed to extract the features from the raw data. The raw data often needs to be processed into 
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an initial representational state, which will make it easier for building classifiers or predictors. This 

state is achieved by coalescing multiple nonlinear transformations giving rise to a much abstract 

representation. The shortcomings in conventional techniques have gradually transformed into better 

methods, which can process raw data much more efficiently [4]. Though feature engineering is an 

important aspect to be considered, construction of learning algorithms through deep learning helps to 

broaden the applicability of machine learning and reduce dependence on them. 

1.4. Evolution of Deep Learning  

 

Figure 1. History of neural networks [5] 

 

The discovery of the perceptron in the late 1950s, by Frank Rosenblatt, generated 

considerable interest in neural networks but many nonlinear decision functions such as the XOR 

function cannot be approximated. After a gap of almost two decades, the concept of the 

backpropagation algorithm again brought neural networks to the fore. In the 1980s, researchers 

introduced the concept of multilayer perceptrons, which are essentially a stack of linear classifiers. 

This discovery tried to address the solution of approximating nonlinear decision functions. These 

systems suffered disadvantages such as inability in training unlabeled data, weakening of the signal 
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upon passing through different layers and poor local minima [6]. Several improvements to solve 

nonlinear problems were made such as the Support Vector Machines (SVMs) but slowed down the 

research on neural networks [7]. Except Convolutional Neural Networks (CNNs) none of them were 

very accurate and efficient.   

Geoffrey Hinton in 2006 proposed a model called Deep Belief Nets (DBN), a machine 

learning algorithm which triggered interest in deep learning [8]. Deep learning refers to the presence 

of more than two layers in a neural network. The term “deep” signifies the importance of the use of 

unlabeled data without human intervention. Several deep learning architectures surfaced later, but 

CNNs, and DBNs are the most significant architectures. This first breakthrough of DBNs led to 

similar gains by Autoencoders [6]. Figure 1 represents a hype curve and gives an overview of the 

different phases in conception and development of neural networks. In the present paper, we will 

discuss Convolutional Neural Network and Stacked Autoencoders and apply them to popular image 

datasets such as Mixed National Institute of Standards and Technology (MNIST) [9], The Street 

View House Numbers (SVHN) [10], and The Canadian Institute for Advanced Research (CIFAR-

10) [11]. 
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2. RELATED WORK 

An enormous amount of data is continuously being added to the existing databases. 

Consequently, this data needs to be analyzed to extract significant information e.g., for business 

organizations. The past few years has seen a surge in the number of techniques for storing, retrieving 

and manipulating data. Knowledge Discovery in Databases (KDD) refers to the overall process of 

discovering useful information from data [12]. The KDD process is represented diagrammatically in 

Figure 2. Data mining is one of the important steps of KDD focusing on algorithms, which discover 

new patterns. It deals with the exploration and analysis of large amounts of data by automatic or 

semi-automatic means, in order to discover meaningful patterns and rules.  

 

Figure 2. Data mining as a core process in KDD [13] 

 

The task of achieving data mining objectives is classified into two methods namely 

descriptive and predictive as shown in Figure 3. While the former aims to characterize the properties 

of the dataset, the latter focuses on drawing inferences from the data to make meaningful predictions 

[12]. One important and useful predictive technique is classification. 
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Figure 3. Descriptive and predictive data mining techniques [13] 

 

The classification technique is a data mining function that aims to assign items in a collection 

to target classes or categories. For every individual case in the data, this technique tries to predict the 

target class accurately. According to Weiss and Kuulikowski “Classification is learning a function 

that maps (classifies) a data item into one of several predefined classes” [14].  

Image classification is an essential step in image processing. It bridges the gap between the 

image and the presented object. Classification of an image is not an easy procedure since the image 

is essentially a group of pixels to the untrained machines and often contains noise or blurred 

contents. The task becomes more complex due to the presence of different objects in the image. 

Predefined patterns or images present in a database are used to test the unknown images for their 

classification [15]. Three main image classification techniques are available [16]: 

 Supervised classification consisting of labelled data points; 

 Unsupervised classification consisting of random, unlabeled data; 

 Semi-supervised classification, which uses unlabeled data points and removes 

interaction between domain and user to get rid of bias.  
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2.1. Classification Algorithms 

In the first step, a model is created by applying an algorithm on the given dataset. In the 

second step, a predefined test dataset is used to test the model. The testing step aims to measure the 

performance and accuracy of the model. MNIST dataset is one of the most famous and frequently 

used datasets on which different classifiers were trained and tested. The following are the most 

popular approaches to training the classifiers. 

2.1.1. K-Nearest Neighbors 

The k-nearest neighbor algorithm is an example of instance-based learning or memory-based 

learning [17]. It takes advantage of the fact that the hypotheses are constructed from the training 

instances. Prediction of objects is based on k-nearest neighbors in the feature space. It is the simplest 

non-parametric method for classification and regression. 

Classification of the object is usually done by a majority vote of the k-nearest neighbors. 

Therefore, if k =1, the object is usually assigned to the closest neighboring class. The same method 

is applied to regression too. The distance metric is calculated using the Euclidean distance, which is 

calculated using the formula  

𝒅(𝒙, 𝒚) =  √∑(

𝒎

𝒊=𝟏

𝒙𝒊 − 𝒚𝒊)𝟐 

where x is the test set and y is the training set, xi and yi represent the same features belonging to 

their respective classes.  

The greatest advantage of this approach is its adaptability in dealing with data that has never 

been encountered before. It also differs from other approaches in discarding the old instances and 

simply storing the new instances. Some of the downsides are the increasing complexity of 

hypotheses with the increasing amount of data and presence of irrelevant features [18]. 
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2.1.2. SVM 

SVM stands for Support Vector Machines. This classification method, invented by Vladmir 

Vapnik in 1979, divides data points or classes using hyperplanes. These hyperplanes maximize the 

margins between the differing classes. This method ensures that the generalization error is 

minimized [19]. Figure 4 shows the classification two different classes using SVM. Though SVM 

classification originally developed as a binary classifier, was further applied to multiclass problems 

too. Kernel functions were used to project the input data into a three-dimensional space and then 

applying a linear classification problem in the feature space. Since the feature space is larger than the 

dataset, several decomposition algorithms are proposed. Therefore, the decomposition problems are 

applied to decompose the multiclass into two class problems and further implementing them through 

SVMs. 

 

Figure 4. SVM Classification [18] 
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  SVM is a perfect fit for datasets having multiple attributes, but it has disadvantages too. 

Selection of kernel function parameters and lesser computational speed are some of the 

disadvantages [18].  

2.1.3. Boosted Stumps 

Decision trees are learning algorithms, which sort the instances depending on their feature 

values. Each feature is represented by a node on the decision tree, and the branch represents the 

value of the node [20]. Though decision trees are easy to interpret, efficient and flexible, they are not 

very accurate compared to other learning algorithms due to high variance. Boosting is one of the 

most popular ensemble methods in machine learning, which aid to improve the decision tree learning 

algorithms [21]. Boosting “boosts” the prospects of decision trees by increasing their accuracy and 

combines many weak learners into a strong one. 

Boosting is a deterministic algorithm and builds the models sequentially. The algorithm is 

applied sequentially to the misclassified instances by increasing their weights [20]. These instances 

are therefore focused on for every iteration. Computer vision, document ranking, and behavior 

analysis are a few important applications. 
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3. APPROACH 

Classification is a technique of building classification models from a given input dataset. The 

learning algorithm employed by the technique should possess the capability of assigning and 

predicting labels for unknown records.  

 

Figure 5. Steps to solve classification problem [2] 
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Figure 5 displays the steps involved in image classification technique. The learning phase 

involves two stages: 

 Training 

 Testing 

The training and the testing datasets first need to undergo feature engineering - a process that 

transforms input patterns into low-dimensional vector representations [2]. In the training dataset, 

class labels of known records are used to build a classification model. This model is applied to a test 

set with records containing unknown labels. Choice of the best model is made by evaluating its 

performance based on the number of records in the test set predicted correctly and incorrectly. The 

count of the number of correct and incorrect records is tabulated in a table known as confusion 

matrix. Accuracy and error rate are calculated to compare various models [22]. Models attaining the 

lowest error rate and the highest possible accuracy are usually the most desirable. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

As discussed earlier, deep learning uses representational learning to represent the features 

and therefore does not require to undergo the process of feature extraction which was deemed as one 

of the shortcomings of machine language and therefore paved the way to deep learning. 

This paper attempts to implement the deep learning architectures - Stacked Auto Encoder 

[SAE] and Convolutional Neural Networks [CNN] and test them on the following popular image 

datasets. 

 MNIST [9] 

 SVHN [10] 

 CIFAR-10 [11] 
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Before we delve into the details about SAE and CNN, we will discuss the following 

concepts/terms, which are frequently used to implement deep learning architectures. 

Forward Propagation: Forward propagation also known as feed forward computation or 

forward pass is a two-step process. The first step comprises of extracting the values from the hidden 

layer nodes to compute values of the output layer. In the second step, those values are pitted against 

the desired outputs and the error is calculated [23]. Since there is no feedback and the information is 

passed to subsequent layers, this is known as forward propagation. 

Backward Propagation: Back propagation is a common method used, along with an 

optimization method such as stochastic gradient descent, to train deep neural networks. The errors 

calculated in the forward propagation step are used to adjust the weights of the network, this 

complete process repeats until the error is reduced to a negligible amount [24]. The gradients or first 

derivative of loss function/error function with respect to all the weights in the network are 

calculated, and the chain rule is applied to obtain error derivatives starting from the outermost output 

layer to the initial input layer backward, hence the name “backward propagation”. All the weights in 

the network are updated through the optimization method after calculating the gradient loss function. 

This robust method has been found to minimize the error through gradient descent. 

Stochastic Gradient Descent: In a deep learning system, several adjustable parameters are 

present which are often referred to as “weights” and influence the input-output functions of the 

machine. A typical deep learning architecture consists of a number of adjustable weights. For each of 

these weights, the learning algorithm computes a gradient vector, which estimates the weight 

increase or decrease, upon the increase in weight by small amounts. This step is followed by weight 

vector adjustment in the direction opposite to that of the gradient vector. The average of all the 

examples in the training set is essentially the objective function and is represented by a hilly 
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landscape. The steepest descent in this landscape is closer to the minimum and has a low output 

error. Stochastic Gradient Descent (SGD) is the most commonly used gradient vector [24]. It is 

known as stochastic since the small set of examples used, gives a noisy estimate of the average 

gradient of all the total examples. This gradient vector technique results in a good set of weights in 

comparison to several other optimizing techniques. SGD has an advantage of exhibiting faster 

convergence rate than that of the batch gradient descent on large datasets. 

Momentum: Momentum is an enhancement for SGD and helps in speeding up the 

convergence process by preserving a portion of the prior weight adjustments [25]. It also helps to 

prevent convergence to local minima. Nestrovs momentum is used in our experiments, which first 

takes a step into velocity direction and corrects the velocity vector based on the new location as 

opposed to the classical momentum which corrects the velocity first and then takes a step in that 

direction.  

Learning Rate:  With respect to the adjustable weights, the SGD algorithm moves in the 

direction of the negative gradient by approaching a local minimum [2]. The size of this step is called 

the learning rate. 

Xavier Rate Initialization: Initialization of weights is an important step towards learning. 

Updating the weights becomes difficult with wrong weight initializations and makes the gradients 

either too large or too small. 

Xavier rate initialization [26] strives to maintain the same distribution of activations and 

prevents the gradients from being too small i.e. mean zero with a small variance or too large i.e. 

mean zero with a large variance. 

Overfitting: Due to the presence of multiple non-linear hidden layers, a complex relationship 

exists between inputs and outputs in a neural network. It also results in the so called “over 
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expressive” models. Since the training set contains few data, these relationships exist due to the 

noise factor. The same is not applicable in real data and leads to a phenomenon called “overfitting”. 

Several methods have been proposed to reduce overfitting such as regularization, data augmentation, 

early stopping and dropout [27]. Regularization is one of the processes implemented to reduce 

overfitting in the current paper.  

3.1. Stacked Autoencoders (SAE) 

A solution to the problem of “backpropagation without a teacher” was first attempted by 

Hinton in the 1980s and Rumelhart in 1986 [28]. Autoencoders were proposed as a solution to this 

problem, and the input data was used as the teacher. The backpropagation algorithm is traditionally 

used to train neural networks and literally “back propagates” the error in the network backward from 

the output layer to the input layer. Since labeled data is required for this task, this is categorized as a 

supervised learning algorithm. The capability of deep neural networks is limited due to weaknesses 

of this algorithm. Backpropagation was not effective in deep layers and also most of the available 

input data was unlabeled [29]. In 2006, Hinton attempted to overcome these problems through Deep 

Belief Networks (DBN), which are composed of a stack of Restricted Boltzmann Machines (RBM) 

[8]. Greedy layer-by-layer training is one of the core concepts of DBNs. A similar strategy is used by 

stacking autoencoders yielding similar results.  

3.1.1. Autoencoders 

High dimensional data is difficult to store and makes classification and visualization difficult. 

Reducing the dimensionality of such data is the key to such problems (Hinton 2006). Autoencoders 

are alternatively known as “Autoassociators” or “Diabolo networks” [30]. They work by encoding 

the input into a representation, and a decoder works to reconstruct the representation into an output. 

The output is, therefore, the input itself.   
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Figure 6. Autoencoder [31] 

 

3.1.2. Stacked Autoencoders 

Basic autoencoders act as building blocks to create a deep network in which the autoencoders 

are stacked on each other. Hence the name Stacked Autoencoder. This multiple layers of 

autoencoders is widely used in reducing dimensionality [32]. They are trained one layer at a time 

(layer-wise training) and fine-tuned using backpropagation. 



 

16 

 

Figure 7. Autoencoder with many layers (SAE) [32]  

 

3.1.3. SAE Architecture for Classification 

The stacked autoencoder as the name suggests is comprised of several individual 

autoencoders similar to Deep Belief Networks, which is comprised of stacked RBMs [8]. These 

several layers of autoencoders encode and decode the input leading to better representational 

learning. Better representation refers to “the one which yields a good classifier” [33]. Retaining most 

of the information from the input is a measure of a good representation since it is essentially the 

reconstruction of the input. Finally, the SAE consists of a classification layer, which classifies the 

images. In the current paper, we have implemented the basic model and introduced several layers 

with multiple nodes. The better performing models are listed in the experimental section. 
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Figure 8. Stacked Autoencoder with classification as output layer [31] 

 

3.1.4. Training Details of Stacked Autoencoder 

The presence of hidden layers presents a daunting task in training a deep network. This is 

attributed to two problems: 

Poor local minima: As the depth increases with the addition of layers, there is an increased 

probability of finding poor local minima [34]. The present paper implements regularization as a 

solution to this problem.  

Vanishing gradient problem: Vanishing Gradient Problem is known as “diminishing 

gradient flow” or “long time lag” [35]. The neurons in the higher layers pass on the errors to the 

lower layers. Based on the errors in the output layers, the weights are updated directly in the higher 

layer. As subsequent layers are added, they are updated based on the error in the higher layer. 

Therefore, decay is observed in the error rate. 
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Greedy Layer Wise Training was introduced as a solution to the vanishing gradient problem 

by Hinton et al. in 2006. Layer wise training involves two stages: 

a) Pre-Training: In this step, one layer is trained at a time using unsupervised learning. Use of 

unlabeled data makes this phase more appealing since this is unsupervised. The representation from 

each layer serves as input for the next layer, and a new representation is learned which can predict 

the variables of interest. By training one layer at a time, fewer local minima are involved and also 

cleaner gradients [8]. This optimization strategy also helps by initializing the weights in a region of 

the good local minimum. The tougher problems are taken care of in the fine-tuning step.  

  

Figure 9. Greedy Layer-wise training in Stacked Autoencoders [36] 

 

Figure 9 explains the layer wise deep training involving the different hidden layers. As the 

pre-training progresses through the different layers, the previous layers from which the 

representation output serves as the input are greedily and conveniently ignored.   

b) Fine tuning: The greedy layer supervised strategy provides a good initialization step for 

fine-tuning [8]. After the unsupervised pre-training step, the whole system is subject to supervised 

fine-tuning which helps to optimize the lower levels in the feature hierarchy in addition to the 



 

19 

classifiers. Stochastic Gradient Descent is used to optimize the loss function by calculating the 

gradients and fine-tune the network using backpropagation. 

 

Figure 10. Fine-tuning all the layers in Stacked Autoencoder [36] 

 

3.2. Convolutional Neural Networks (CNN) 

Neural networks are characterized by several layers where every individual neuron is 

connected to all the neurons in the previous layer, but neurons in the same layer are independent and 

are not connected. The “output layer” is the final fully connected layer and represents the class 

scores. Neural networks do not take into account the spatial structure of images. A larger number of 

weights in hidden layers makes it tougher for neural networks to increase the scalability of the 

image. The presence of many parameters often leads to “overfitting.” CNN reduce the number of 

parameters in the network by weight sharing.  

CNN is heavily inspired by the visual mechanisms in living organisms. The visual cortex in 

the brain is composed of a large number of cells, which function to detect light in small overlapping 

regions of the visual field known as receptive fields. CNNs in a similar fashion consist of multiple 

layers of neuron clusters which scan smaller portions of the image known by the same name 

‘receptive fields’. The resultant collections are designed in a clever way to gain a better 
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representation of the image [37]. Though the history of CNNs dates back to 1980s through the works 

of Kunihiko Fukushima on Neocognitrons, it was later refined by Yan LeCun in 1998 [38]. 

3.2.1. Convolutional Layer  

One of the primary functions of this layer is the extraction of features from the provided 

input. The initial layers extract low level features while the additional layers in the network extract 

the higher level features. This is achieved by applying filters referred to as kernels and the images 

convolved are referred to as “feature maps.” The input image is scanned by sliding the kernel over it, 

and the summation of the values is obtained as a multiplication filter within the kernel [24]. Various 

features can be extracted by considering different kernel values. 

 A certain portion of the image is referred to as a “channel,” and a standard digital image 

comprises of three channels - red, blue and green as opposed to a grayscale image which is 

comprised of just one channel. The main advantage of this layer is the establishment of local 

connectivity through correlation of neighboring pixels [38].  

 

Figure 11. Operation of the convolutional layer [38] 
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3.2.2. ReLu Layer 

ReLU stands for rectified linear unit. Nonlinearity is introduced into the layer of neurons 

without affecting the receptive layers in the convolutional layer. Hidden units are the ones, which are 

present neither in the input nor output. The input is subject to non-linear distortion by ReLU in the 

hidden layers, and as a result, the linear separation can be observed in the final layer categories. 

Until the advent of ReLUs, smoother non-linearities such as tanh (z) were used [24]. It was shown 

that with ReLUs, the training error rate on CIFAR-10 is six times faster than the network with non-

linearity induced by tanh(z). Convoluted neural networks with the help of ReLUs learn faster in 

networks, which contain many layers [39]. Faster learning is especially useful when training large 

datasets. 

𝑓(𝑥) = max (0, 𝑥) 

3.2.3. Pooling Layer 

A pooling layer is often introduced between two successive convolution layers [24]. The 

introduction of this layer merges two semantically similar features into a single entity. Images from 

convolutional layers are downsampled and hence also known as downsampling. Pooling reduces 

variance by calculating the average or the maximum value of a feature over an image and ensures 

that the distortions and translations in the image are negligible. This routine is important for object 

detection and classification. It progressively reduces the parameters and spatial size of the input and 

makes it more manageable. 
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Figure 12. The operation of the max-pooling layer [38] 

 

Max–pooling is the most applied downsampling method, where the image from the 

convolutional layer is subset in non-overlapping data and the maximum value is outputted from each 

data [38]. This way the upper layer computation is reduced and maintains the translation invariance. 

3.2.4. Fully Connected Layer 

In this layer, each neuron in the previous layer is connected to every neuron in the subsequent 

layer. The image output from the pooling layer serves as the input for the fully connected layer [38]. 

This layer is typically a traditional neural network and contains most of the parameters of CNN. For 

image classification, the vector is enabled to feed forward into different categories, and for follow-up 

processing, it is usually considered as a feature vector.  
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Figure 13. Operation of the fully-connected layer [38] 

3.2.5. Output Layer 

This layer is unique in a way for the requirement of a specific property as compared to other 

layers. The probabilities in the output classes should sum to one. This property is achieved through a 

linear classifier, which uses a log probability distribution such as softmax. The softmax layer is the 

loss function used in our present experiment. 

 

L =
1

N
∑ −log (𝑒𝑓𝑦𝑖 / ∑ 𝑒𝑓𝑗

𝑗
)

𝑖

 

where fj denotes the jth element (j ∈ [1, K], K is the number of classes) of the vector of class scores f, 

and N is the number of training data [40]. 
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3.2.6. Convolutional Neural Network Architecture for Classification 

A typical convolutional network is composed of stacked feature stages or layers. Multiple 

convolutional layers are interspersed by pooling or subsampling layers followed by a multiple fully 

connected layers and finally a single output layer that performs the classification. Yan LeCun 

introduced the LeNet architecture, which was initially applied to character recognition tasks. Over 

the period several revised architectures have been developed on the basis of LeNet architecture such 

as AlexNet, Clarifai, SPP, VGG, GoogLeNet, NiN. Further details about these architectures and their 

contributions can be obtained from the following papers [38]. For the current paper, we have 

developed two architectural models, which will be discussed in the experimental section. 

 

Figure 14. Pipeline of the general CNN architecture [38] 
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3.2.7. Training Details of CNN 

As we have discussed in the different layers in CNN, the convolution and subsampling layers 

perform feature extraction from the input image while the fully connected layer classifies the image. 

Training of CNN involves the following steps [41]: 

a. Initialization: All the filters and weights are initialized to random values. 

b. Forward Propagation: The convolutional, ReLu, subsampling/pooling layers and the fully 

connected layers carry on the forward propagation step on the input training image and 

computes the output probabilities for the different classes. 

c. Error Calculation: Summation of the different classes in the output layer can be used to 

compute the total error. 

d. Backpropagation: It is used to calculate the error gradients of the weights and gradient 

descent is used to update the weights for output error minimization. 

e. Iteration: The forward propagation, error calculation, and back propagation steps are 

repeated for the remaining images in the training set. 
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4. EXPERIMENT AND RESULTS 

In the current set of experiments related to this paper, a regular CPU system with a 2.4 GHz 

Intel i7 octa-core processor, 12GB RAM, and Ubuntu 16.04 operating system was used.  

We have used Deeplearning4j [42], an open source deep learning library for executing deep 

learning algorithms. The library is written for Java Virtual Machine and Java. It works with both 

CPUs and GPUs and is powered by its own open source numerical computing library ND4J. The 

ND4J library provides scientific computing for Java and Scala.  

Mini-batch SGD- an optimization technique, a weight decay of 0.00001 – a component of 

regularization, Xavier weight initialization and a momentum of 0.9 are used throughout our 

experiments. 

The model CNN and SAE architectures developed in this paper were tested on the following 

three image datasets: 

MNIST: MNIST stands for Mixed National Institute of Standards and Technology dataset 

and was developed by LeCun in the 1980s [9]. It is a dataset of handwritten digits and contains an 

extensive 60,000 example training set and a 10,000 example test set with different distortions and 

levels of noise. Each of these examples has 28 x 28 pixel grayscale values, most of them set to zero. 

The dataset has ten classes for the ten digits - 0 to 9 where digit ‘0’ has a label 10 and digit ‘1’ to ‘9’ 

have labels 1 to 9, respectively. This dataset is widely used for testing real-world data in relation to 

pattern recognition and learning techniques. Figure 15 depicts a sample image of MNIST digits.  
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Figure 15. Standard MNIST data a) training samples, b) testing samples [43] 

 

SVHN: SVHN stands for Street View House Numbers dataset [10]. House numbers in 

Google Street View images have been used to obtain SVHN. Machine learning and object 

recognition algorithms are developed for this real word image dataset. The dataset has ten classes for 

the ten digits - 0 to 9 where digit ‘0’ has a label 10 and digit ‘1’ to ‘9’ have labels 1 to 9, 

respectively. The dataset has a staggering 73,257 digits in the training set, 26,032 digits in the testing 

set and an additional 531,131 in the extra training dataset. The cropped digits format, with a fixed 

resolution of 32 x 32 pixels is used for our experimental conditions. Figure 16 depicts a sample 

image of SVHN digits. 
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Figure 16. SVHN dataset – Cropped Digits [10] 

 

CIFAR-10: CIFAR stands for Canadian Institute for Advanced Research [11]. 10 refers to 

the “10 classes” present in this dataset to distinguish it from CIFAR -100 which contains 100 

classes. For our current experiment, we will be using the CIFAR-10 dataset. The dataset consists of 

50,000 training images and 10,000 test images. Unlike the other two image datasets, CIFAR-10 has 

32 x 32 color real world objects such as an airplane, automobile, cat, etc. Figure 17 shows the 

different classes in the dataset and ten random images from each class.    
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Figure 17. CIFAR-10 dataset [11] 

 

4.1. Convolutional Neural Networks (CNN) Models 

Most of the state-of-art-results in object classification have been achieved using the CNN 

architecture. In the current experiment, we have engineered two CNN models based on the basic 

architecture. 

4.1.1. CNN Model-1 Architecture 

Figure 18 represents the overall architecture of Model 1. This model consists of 6 layers -two 

convolutional layers interspersed by two subsampling layers, a fully connected layer, and an output 

layer. Input, which is essentially the image, holds the raw pixel values with three color channels R, 

G, B. In this model, each convolutional layer has a kernel size 5, stride 1 and ReLu, used as an 

activation function. The first and second convolutional layers have 60 and 90 nodes, respectively. In 

the subsampling layer, max pooling is used along with the kernel size 5 and stride 1. The fully 
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connected layer has 500 nodes and uses the activation function ReLu. The final output layer uses the 

softmax function and contains ten nodes, each corresponding to a class score such as the ten 

categories of CIFAR-10. The model has been tested on the three datasets and results are presented 

below. 

 

Figure 18. CNN Model-1 architecture 
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4.1.1.1. Results of CNN Model-1 on MNIST dataset 

The following results were achieved on the MNIST dataset after 20 epochs, upon testing the 

CNN Model 1 with the batch size = 32 and learning rate = 0.001. 

Table 1. Results of CNN - Model 1 on MNIST dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 975 0 0 0 0 0 2 2 1 0 

1 0 1133 0 1 0 0 1 0 0 0 

2 1 0 1023 0 2 0 2 3 1 0 

3 0 0 1 1002 0 4 0 0 3 0 

4 0 0 0 0 979 0 1 0 0 2 

5 1 0 0 4 0 884 1 0 0 2 

6 3 2 0 0 2 1 949 0 1 0 

7 0 2 4 0 0 0 0 1021 0 1 

8 3 0 1 1 0 1 0 0 966 2 

9 1 0 0 0 5 3 0 3 1 996 

Overall Accuracy: 99.28% Overall Error rate: 0.72% 

 

Table 1 shows the results of the run, with the target class and the output class. The numbers 0 

to 9 in the target class represent the category in each class. Similarly, categories are represented in 

the output class. For example, in the first column the model classified 980 images in class 0, out of 

which 975 images that belong to class zero are classified correctly and the remaining 5 are 

incorrectly classified out of which 2 images belonging to class 6, 2 belonging to class 7, and 1 
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belonging to class 8. The green shading represents the number of correctly classified images, and the 

remaining fields represent incorrectly classified images. Overall, the accuracy and error rate are 

calculated using the equations below and are presented as a percentage in the blue box. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 =

9928

10000
 = 0.9928 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

72

10000
= 0.0072 

 

An accuracy of 99.28% and error rate of 0.72% was achieved for the MNIST dataset. 
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4.1.1.2. Results of CNN Model-1 on SVHN dataset 

The following results were achieved on the SVHN dataset after 20 epochs, upon testing the 

CNN Model 1 with the batch size = 16 and learning rate = 0.001. 

Table 2. Results of CNN - Model 1 on SVHN dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 1644 14 23 19 13 16 32 33 45 49 

1 8 2368 23 7 2 28 47 9 23 19 

2 10 10 2388 10 94 21 80 81 159 18 

3 4 10 20 1887 2 34 72 4 15 3 

4 3 18 71 12 2107 8 25 17 20 55 

5 49 167 60 94 11 4867 99 34 8 19 

6 6 34 30 30 13 20 3532 33 21 9 

7 24 31 49 2 14 5 28 1453 23 63 

8 21 10 18 11 13 8 82 21 1454 12 

9 38 39 23 7 43 11 17 34 16 1646 

Overall Accuracy: 89.68% Overall Error rate: 10.32% 

 

The accuracy and error rates were calculated as before. An accuracy of 89.68% and error rate 

of 10.32% was achieved for the SVHN dataset. 
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4.1.1.3. Results of CNN Model-1 on CIFAR-10 dataset 

The following results were achieved on the CIFAR-10 dataset after 30 epochs, upon testing 

the CNN Model 1 with the batch size = 16 and learning rate = 0.0015. 

Table 3. Results of CNN - Model 1 on CIFAR-10 dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 786 29 7 22 32 5 11 99 6 7 

1 39 771 4 11 83 6 9 35 4 1 

2 5 0 767 117 7 2 29 23 43 13 

3 7 4 35 845 15 13 30 11 27 40 

4 26 75 24 23 777 8 16 32 0 8 

5 9 11 29 75 8 772 49 10 37 12 

6 15 5 42 109 13 44 580 106 57 15 

7 25 22 10 11 23 10 12 892 16 4 

8 11 1 71 95 2 47 80 32 686 16 

9 26 9 53 393 24 62 50 26 53 260 

Overall Accuracy: 71.36% Overall Error rate: 28.64% 

 

The accuracy and error rates were calculated as before. An accuracy of 71.36% and error rate 

of 28.64% was achieved for the CIFAR-10 dataset. 
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4.1.2.   CNN Model-2 Architecture 

Figure 19 represents the overall architecture of Model 2. The model has a similar architecture 

as Model 1 with an additional fully connected layer containing 500 nodes. The kernel size, stride and 

activation functions used are similar to the CNN Model 1. The model has been tested on the three 

datasets and the results are presented as the following. 

 

Figure 19. CNN Model-2 architecture 



 

36 

4.1.2.1. Results of CNN Model-2 on MNIST dataset 

The following results were achieved on the MNIST dataset after 20 epochs, upon testing the 

CNN Model 2 with the batch size = 32 and learning rate = 0.001. 

Table 4. Results of CNN - Model 2 on MNIST dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 978 0 0 0 0 0 0 1 1 0 

1 0 1133 0 1 0 0 0 1 0 0 

2 1 0 1022 1 2 0 0 5 1 0 

3 0 0 0 1005 0 4 0 1 0 0 

4 0 0 0 0 978 0 1 0 0 3 

5 2 0 0 6 0 883 1 0 0 0 

6 3 2 0 0 1 3 946 0 3 0 

7 0 0 1 0 0 0 0 1025 1 1 

8 2 0 1 0 0 1 0 1 967 2 

9 1 1 0 1 4 4 0 1 0 997 

Overall Accuracy: 99.34% Overall Error rate: 0.68% 

 

The accuracy and error rates were calculated as before. An accuracy of 99.34% and error rate 

of 0.68% was achieved for the MNIST dataset. 
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4.1.2.2. Results of CNN Model-2 on SVHN dataset 

The following results were achieved on the SVHN dataset after 20 epochs, upon testing the 

CNN Model 2 with the batch size = 16 and learning rate = 0.001. 

Table 5. Results of CNN - Model 2 on SVHN dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 1840 10 53 7 3 38 17 53 64 59 

1 5 2090 39 2 5 66 17 3 18 11 

2 10 9 2713 2 21 65 29 22 83 6 

3 6 8 76 1884 2 117 43 4 15 5 

4 9 34 200 1 2138 30 15 22 29 34 

5 23 65 57 20 2 4983 31 21 6 8 

6 2 39 83 27 8 50 3642 22 22 9 

7 10 24 95 1 5 13 9 1525 48 38 

8 9 6 31 2 2 15 35 14 1159 6 

9 13 62 79 2 44 18 4 78 20 1513 

Overall Accuracy: 90.22% Overall Error rate: 9.78% 

 

The accuracy and error rates were calculated as before. An accuracy of 90.22% and error rate 

of 9.78% was achieved for the SVHN dataset. 
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4.1.2.3. Results of CNN Model-2 on CIFAR-10 dataset 

The following results were achieved on the CIFAR-10 dataset after 30 epochs, upon testing 

the CNN Model 2 with the batch size = 16 and learning rate = 0.0015. 

Table 6. Results of CNN - Model 2 on CIFAR-10 dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 821 27 12 8 12 7 15 63 6 8 

1 26 833 10 6 36 8 1 17 4 1 

2 1 1 827 61 6 4 22 10 26 14 

3 4 3 70 658 5 20 50 6 35 75 

4 28 103 31 19 770 9 11 34 2 6 

5 7 3 23 33 3 829 48 8 24 31 

6 17 7 57 88 6 47 691 43 54 33 

7 65 21 26 8 18 13 50 767 24 13 

8 9 0 115 54 5 22 84 21 762 21 

9 9 12 64 219 26 64 89 30 80 419 

Overall Accuracy: 73.77% Overall Error rate: 26.23% 

 

 

The accuracy and error rates were calculated as before. An accuracy of 73.77% and error rate 

of 26.23% was achieved for the CIFAR-10 dataset. 
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4.2. Stacked Autoencoder Architectures 

Unlike the CNN models, a separate model has been designed for each of the three datasets. 

Figure 8 represents the complete architecture of the Stacked Auto Encoder for the MNIST dataset. 

The input, which is essentially the image, holds the raw pixel values with three color channels R, G, 

B. The final output layer uses the softmax function and contains ten nodes each representing a class. 

Each layer has a specified number of nodes. The models for the datasets with the number of nodes in 

each layer are listed in Table 7. 

  
 

Figure 20. SAE architecture for MNIST dataset 
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Table 7. Number of nodes in each layer for different datasets 

Layers 
MNIST – 

Number of nodes 

SVHN  – Number 

of nodes 

CIFAR-10  – 

Number of nodes 

Layer 1 1000 5000 5000 

Layer 2 500 2500 2500 

Layer 3 250 1000 1000 

Layer 4 100 500 500 

Layer 5 30 250 250 

Layer 6 100 100 100 

Layer 7 250 50 50 

Layer 8 500 100 100 

Layer 9 1000 250 250 

Layer 10 1000 500 500 

Layer 11 - 1000 1000 

Layer 12 - 2500 2500 

Layer 13 - 5000 5000 

Layer 14 - 5000 10000 

Layer 15 - - 5000 

 

 

Table 7 lists the number of nodes in each layer, which is the distinguishing feature of the 

models among the datasets. After experimentation, these numbers achieved the best accuracy 

results. 
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4.2.1. Results of SAE on MNIST dataset 

The following results were achieved on the MNIST dataset after 30 epochs, upon testing the 

SAE with the batch size = 32 and learning rate = 0.001. 

Table 8. Results of SAE on MNIST dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 821 27 12 8 12 7 15 63 6 8 

1 26 833 10 6 36 8 1 17 4 1 

2 1 1 827 61 6 4 22 10 26 14 

3 4 3 70 658 5 20 50 6 35 75 

4 28 103 31 19 770 9 11 34 2 6 

5 7 3 23 33 3 829 48 8 24 31 

6 17 7 57 88 6 47 691 43 54 33 

7 65 21 26 8 18 13 50 767 24 13 

8 9 0 115 54 5 22 84 21 762 21 

9 9 12 64 219 26 64 89 30 80 419 

Overall Accuracy: 98.23% Overall Error rate: 1.77% 

 

 

The accuracy and error rates were calculated as before. An accuracy of 98.23% and error rate 

of 1.77 % was achieved for the MNIST dataset. 
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4.2.2. Results of SAE on SVHN dataset 

The following results were achieved on the SVHN dataset after 100 epochs, upon testing the 

SAE with the batch size = 16 and learning rate = 0.001. 

Table 9. Results of SAE on SVHN dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 849 134 132 66 101 123 153 35 7 149 

1 14 1968 86 11 32 236 60 1 2 39 

2 15 103 1946 40 114 339 197 14 6 18 

3 17 40 116 1389 26 285 136 2 0 15 

4 27 183 231 29 1549 203 101 4 5 92 

5 27 167 276 71 45 4285 153 2 0 42 

6 30 248 199 193 31 341 3215 11 0 34 

7 66 205 105 19 181 182 73 504 1 308 

8 164 153 151 44 156 195 163 45 428 95 

9 93 293 81 17 208 222 80 9 0 981 

Overall Accuracy: 65.74% Overall Error rate: 34.26% 

 

 

The accuracy and error rates were calculated as before. An accuracy of 65.74 % and error 

rate of 34.26 % was achieved for the SVHN dataset. 
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4.2.3. Results of SAE on CIFAR-10 dataset 

The following results were achieved on the CIFAR-10 dataset after 150 epochs, upon testing 

the SAE with the batch size = 16 and learning rate = 0.0015. 

Table 10. Results of SAE on CIFAR-10 dataset 

 T A R G E T  C L A S S  
0 1 2 3 4 5 6 7 8 9 

O 

U 

T 

P 

U 

T 

 

C 

L 

A 

S 

S 

0 683 46 17 17 50 13 12 94 33 35 

1 97 870 23 30 209 15 29 52 10 49 

2 11 10 623 68 35 25 54 36 68 70 

3 15 10 87 420 14 80 63 21 49 209 

4 66 103 25 18 503 18 10 51 16 30 

5 11 5 16 57 16 393 55 5 80 58 

6 32 12 52 89 29 73 467 85 171 102 

7 84 26 10 21 31 22 33 412 28 13 

8 35 12 81 90 18 116 192 67 579 89 

9 27 29 55 232 38 107 79 38 60 375 

Overall Accuracy: 53.25% Overall Error rate: 46.75% 

 

 

The accuracy and error rates were calculated as before. An accuracy of 53.25% and error rate 

of 46.75% was achieved for the CIFAR-10 dataset. 
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Table 11. Comparison of Results 

Deep learning architectures MNIST SVHN CIFAR-10 

CNN Model-1 results 99.28 % 89.68 % 71.36 % 

CNN Model-2 results 99.34 % 90.22 % 73.77 % 

SAE results 98.23 % 65.74 % 53.25 % 

State-of-art results 99.79 % 98.31 % 96.53 % 

 

Table 11 presents the comparison of the three architectural models with the state-of-the-art 

results across the three datasets. As mentioned before two CNN models were devised for the three 

datasets, but three independent SAE models were developed for each of the three datasets. The state-

of-the-art results represent the best results obtained for the three datasets and were obtained from a 

crowd sourced list [44] of accuracy results for the image classification datasets. 

A large number of independent researchers achieved best results with the implementation of 

the CNN model. However, over the past few years, a number of techniques were adopted to improve 

accuracies. The models implemented in this paper relied on the standard CNN and SAE architectures 

and differed in the addition of extra layers and number of nodes. The basic techniques such as 

Stochastic Gradient Descent (SGD) along with Nestrovs momentum, Xavier weight initialization, 

and regularization were applied to our models to improve results. Based on the results presented in 

the table the following inferences can be made: 

 Comparison of results of all the there models (CNN model-1, CNN model-2, and SAE 

model) show that CNN model-2 performs better on all the three datasets. 

 Overall, both CNN models performed better in comparison to the SAE models across all 

datasets. 
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 Among the three datasets, all the models performed better on the MNIST dataset and the 

accuracies are closer to the state-of-the-art results. 

 Across the three datasets, the CNN model 2 exhibited a negligible increase in accuracies 

as compared to model 1. 

 The SAE model designed for MNIST performed better in comparison to SAE models 

designed for SVHN and CIFAR-10 datasets. 

As mentioned earlier, the SVHN dataset contains an additional 531,131 images as part of the 

extra training data. Most of the models tested on the SVHN dataset achieved best results by using the 

extra training dataset. In the present experimental setup, we have trained our models on the SVHN 

dataset containing the regular 76,032 image datasets. Since we have a limited memory on the 

machine, the extra training dataset could not be further used. Lesser accuracies on SVHN, obtained 

in this experiment, can be attributed to this reason.   

Though it is a tough proposition to achieve the state-of-the-art results, it is not impossible 

altogether. The addition of an extra layer in the CNN model 2, did not significantly increase the 

accuracies. Making the models “deeper” will yield better results [24], but doing so significantly 

increases the training time and also requires higher processing machines with a good memory. As a 

solution to this problem, training deep models on GPUs and application of batch normalization [45] 

will reduce the training time significantly. Techniques such as data augmentation and dropout to 

reduce overfitting [27], and preprocessing techniques such as ZCA whitening [11] can be introduced 

to increase accuracies.  
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5. CONCLUSION AND FUTURE WORK 

Deep learning has a profound impact on machine learning technologies. The historical 

development graph in machine learning has seen many highs and lows owing to the technological 

difficulties and the limited infrastructure availability. Nevertheless, the evolution of new concepts 

over the decades has led to improvements over the earlier proposed learning methods. The increasing 

demand for newer technologies and their cross-functionality across different domains has also 

catapulted machine learning to an altogether new level. Deep learning found inroads into almost 

every existing technology with a wide variety of applications. The famous Google Brain Project 

started in 2011, voice recognition in Apple Siri, and the concept of self-driven cars [46] are few 

important applications. 

In our present paper, based on the standard CNN architecture, we have implemented two 

CNN models, which differ in the number of deep layers and tested these models on the three image 

datasets namely MNIST, SVHN and CIFAR-10 and achieved an accuracy of 99.34%, 90.22%, and 

73.77%, respectively. Similarly, three models based on the SAE architecture were implemented and 

tested on the three respective datasets, achieving an accuracy of 98.23 %, 65.74 % and 53.25%.  

Our present work has opened up new avenues in implementing techniques to increase 

accuracy. As mentioned earlier, techniques such as dropout and data augmentation can be applied to 

reduce overfitting. ZCA whitening, a pre-processing technique can be further implemented to 

improve accuracy. Deeper models can be generated by addition of layers and can be trained on 

GPUs. All these techniques aim to improve accuracies. Alternatively, the CNN models can be 

adapted and tested on datasets for natural language processing, sentence classification, and speech 

recognition. Apart from the regular autoencoders used in this study, it can also be extended to 
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denoising autoencoders, sparse autoencoders, and variational autoencoders. Comparative analyses of 

models can also be done by testing them on different image datasets. 
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