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ABSTRACT 

The assembly of next-generation sequencing reads is one of the most challenging and 

important tasks in bioinformatics. There are many different types of assembly algorithms and 

programs that have been developed to assemble next-generation sequencing reads. However, the 

assembly quality of each assembly program may vary. This paper introduces and implements 

two different assembly approaches that use three types of next-generation sequencing datasets. 

Both assembly approaches are designed to achieve the same goal, which is to improve assembly 

quality. The assembly results from the two approaches were compared and evaluated by using 

some widely used quality metrics. The result shows each approach has advantages and 

disadvantages. 
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CHAPTER 1. INTRODUCTION 

This paper evaluates the differences in genome assembly quality between two hybrid 

genome assembly methodologies applied to a sample, which has three different types of datasets 

generated from Illumina, Roche 454, and PacBio technologies. 

The raw files from Illumina and Roche sequencing technologies are composed of many 

small pieces of DNA which are called reads. The length of reads ranges from 20 to 3000 bases. 

Each read contains extremely limited biological information because even the simplest 

chromosome has 130,000 base pairs [1]. Genome assembly is the process to assemble reads  to 

reconstruct the genome sequences. 

Some of the sequences assembly programs are designed for processing reads generated 

by only one type of sequencing platform. In contrast, the hybrid genome assembly programs 

utilize reads from multiple types of sequencing technologies.  It has been shown that hybrid 

genome assembly methods can improve the assembly quality over methods using a single 

sequencing technology dataset [5].  

Most of the hybrid genome assembly programs required at least one Illumina Paired-end 

dataset and one Illumina Mate-pair dataset as inputs [3]. Paired-end sequencing and Mate-pair 

sequencing are two types of sequencing technologies which generate high-quality reads from two 

sides of a fragment. The major difference between Paired-end and Mate-pair sequencing is the 

distance between the reads in a pair. In fact, some genome assembly tasks require several 

separate insert-sizes of Illumina Mate-pair datasets to support the whole assembly process. , 

Some hybrid genome assembly strategies use a library of long reads, e.g. Roche 454 Single End 

or PacBio RS datasets, instead of an Illumina Mate-pair dataset [4].  
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In this paper, two hybrid genome assembly methodologies were designed that used three 

datasets, Illumina Paired-end, Roche 454 Single End, and PacBio RS, to assemble genome.  One 

was called the Rescaffolding Hybrid Assembly Approach [24, 25, 26], and the other was 

Cerulean Hybrid Assembly Approach [27]. Compared with the ABySS Hybrid DNA assembly 

approach, the Cerulean Hybrid Assembly methodology implements the Cerulean assembly tools 

[27] to extend an assembled sequence file which is assembled using the ABySS assembly tool. 

The following section of this chapter gives an introduction to the next-generation sequencing 

technologies and genome assembly. Chapter 2 presents the results of each assembly approach 

and discussion. Chapter 3 provides a summary about the comparison between two assembly 

approaches. 

1.1. Next-generation Sequencing Technologies 

The process of decoding the DNA sequence of an organism is called sequencing [15]. 

Next-generation sequencing (NGS) technologies are also called “high-throughput” sequencing 

technologies. The NGSs are a collection of many sequencing technologies developed over the 

recent decade.  The NGS technologies process a large amount of genome sequences in parallel, 

and generate millions, even billionsof reads at one run [8]. The reads generated by NGS 

technologies are much shorter than those from traditional Sanger sequencing. But they provide 

higher coverage which can help overcome sequencing errors. NGS technologies are much faster 

and less costly than traditional Sanger sequencing [9]. The three types of commonly used NGS 

technologies which are related to this paper are described as follows: 

1.1.1. Illumina Paired-end 

The Illumina sequencing platform provides high-throughput sequencing for both DNA 

and RNA. The Illumina sequencing method is based on Illumina dye-terminators technology 
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[11].  The accuracy of Illumina sequencing is very high with a 99.9% accuracy rate for a single 

read.  After fragmentation, Illumina sequences each DNA fragment from both 5-end and 3-end, 

and produces two reads. For each run the read length can be set between 75 to 300 base pair (bp). 

The reads and their sequencing quality scores are saved in two files in the fastq formats, which 

one file containing reads from one DNA strand.  Some assembly programs need the sequencing 

quality values to assemble sequence reads to avoid errors from raw data.; Inserted size is another 

important parameter in Paired-end sequencing. The insert size is the sum of the lengths of the 

two reads and the length the unsequenced region in between. Insert size is smaller than the 

fragment size, which is the sum of insert size and the sizes of Illumina adapters.  When the insert 

size is between 200 to 500 bp (short insert size), the Illumina sequencing is commonly called 

Paired-end sequencing. When the insert size in the range of 2 to 3 kbp (long insert size), the 

Illumina sequencing is called Mate-pair sequencing. Output dataset from Illumina Mate-pair 

sequencing is commonly used in the scaffolding process of genome assembly [12]. 

1.1.2. Roche 454 Single End 

Roche 454 [28] Single End has the same accuracy rate as Illumina platform. But Roche 

454 Single End only produces one   read for each DNA fragment. The length of the reads is 

around 700 bp. It is also considered to be one of the best input datasets for de novo assembly. In 

the hybrid assembly, Roche 454 Single End reads are used as long reads to construct contigs and 

scaffolds [5]. The cost of Roche 454 Single-end sequencing is higher than Illumina sequencing, 

but it is still an affordable price and much less costly than Sanger method. 

1.1.3. PacBio RS 

The real name of PacBio sequencing is Single Molecule Real Time sequencing [29]. This 

sequencing technology belongs to Pacific Biosciences Corporation (PacBio). The maximum read 
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length produced by PacBio sequencing can be around 40,000 bases, which is the longest read 

length in all NGS technologies. PacBio sequencing is also as fast and cheap as other NGS 

technologies. However, the single-read accuracy of PacBio sequencing is only 87% [13]. The 

long reads can be used in hybrid genome assembly to scaffold, close gaps or extend existing 

scaffolds [14].  

1.2. Genome Assembly 

When the reference genome of a species is available, the assembly of individual genomes 

can be done by aligning NGS reads to the reference genome. This is possible because the 

difference between two individual genomes of one species is small. For example, the genome of 

one human being is 99.5% identical to that of another human beings [16]. When the reference 

genome a species is unavailable, the assembly of individual genomes needs to start from scratch. 

This type of assembly is called “de novo assembly.” De novo means start from scratch.  

If a suffix of a read is identical to the prefix of another read, then there is an overlap 

between the two reads. The overlap is the glue that assembles sequencing reads into genomes. In 

some cases, the suffix of a read is not exactly the same as the next prefix, but the two reads are 

still considered to be overlapped. This is because sequencing errors and polyploidy can cause a 

difference of one or two bases between reads. The errors can be solved using the quality scores 

in the fastq files. The coverage is another important parameter in DNA sequencing and genome 

assembly. The coverage is the number of reads that cover a genome location. It can be calculated 

as ration of the size of a sequencing-reads dataset to the genome size. For instance, the genome 

size is 3000 bases, and the sequencing-reads dataset is 9000 bases. The average coverage for this 

dataset is 3-fold. More coverage leads to more and longer overlaps. But the cost of sequencing 

will increase too.  
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There are two commonly used assembly algorithms in genome assembly: Greedy shortest 

common superstring and Eulerian walks. In the Greedy shortest common superstring, genome 

assembly is treated as a shortest common superstring problem. The reads and the overlap 

information will be saved into a direct graph. The nodes are the reads. The edges are the 

overlapping information between two reads.  Without using the Greedy algorithm, the only way 

to solve the assembly problem is to enumerate all possible orderings of reads and find the 

shortest superstring. However, it is an NP-complete problem which is computationally 

intractable. The greedy algorithm addresses this issue very quickly. But the superstring produced 

by the greedy algorithm may not be the shortest superstring.  

The repeats in genome make it very difficult to assemble reads. When the genome has a 

replicated portion and the length of the sequencing read is the same as the repeated region, it will 

tend to over collapse the repeats. This approach is also called an Overlap-Layout-Consensus 

approach. The shortest common superstring is suitable for Sanger sequencing data, but it is not 

for the next generation sequencing data.  Not only is the reads length of next generation 

sequencing much shorter, but also NGS have a high coverage number which means the number 

of nodes are too big.  

Eulerian walks are good for most of NGS data assembly. Given a graph, an Eulerian walk 

is a path which passes every node and only goes through each edge once in a graph. When using 

Eulerian walks, it is necessary to construct a De Bruijn graph to save all overlap information. 

The De Bruijn graph has a different structure than the overlapping direct graph which is used in 

the shortest common superstring method. In a De Bruijn graph, the nodes are all possible 

substrings with a length of “k” in every sequencing read. We call these substrings “k-mers”.  The 

choice of the value of k is critical for a genome assembly, and it directly affects the assembly 
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quality. The sequencing  errors can cause dead-ends in the De Bruijn graph, and the polyploidy 

can produce bubbles in the graph.  Therefore, an assembly program will need to refine the De 

Bruijn graph to remove these abnormal structures. Most genome assembly programs  use the 

Eulerian walks method, such as the Allpaths-LG [30], ABySS [26], Velvet [32], Soap de Novo 

[33]. After a Eulerian-walk is found on the De Bruijn graph, many contiguous assembled pieces 

of DNA, called  contigs,  are generated. Using paired-end or mate-end reads, the relative 

orientation and distance between some contigs could be defined.  A set of contigs for which the 

relative orientation and distance between them are known is called a “scaffold.” Scaffolds are 

usually the final output of a genome assembly program.  

The output file from a genome assembly is called a “draft” assembly. The ideal draft 

assembly has a low number of fragments and longer contig reads. The maximum, average, and 

median contig size are parameters commonly used to assess the assembly quality. The N50 is 

another widely used statistic to assess the assembly quality. The definition of N50 is the shortest 

reads length at 50% of draft assembly [17]. When the reference genome is available, the draft 

assembly can be mapped to the reference genome and then evaluation tools can be  used to check 

the overall quality of the assembly. The commonly used evaluation tools are CGAL [34] and 

Quast [35]. 
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CHAPTER 2. RESULTS AND DISCUSSION 

2.1. Input Datasets 

The datasets used in this paper are stored in the NCBI SRA database under the Name of 

CF080- SRP010852 [5]. There are three types of reads which are PacBio RS, Illumina Paired-

end, and the Roche 454 Single End reads. The name of the species from which the reads were 

obtained is Rhizobium sp.CF080, which is a bacterium. Those sequencing files were trimmed 

and ready to be assembled [7]. The basic dataset information is shown on Table 1. (1 Mb = 

1,000,000 bp; 1 Gb = 1,000 Mb) 

 

Table 1. The basic information of three input datasets  

 CF080- SRP010852 Illumina PE Roche 454 SE PacBio RS 

Number of Bases 3.9 Gb 437.6 Mb 513.9 Mb 
Average Read length 100 bp 670 bp 6749 bp 

Sequencing Coverage 553-fold 62-fold 72-fold 

 

The reference genome and gene annotation of Rhizobium_sp.CF080 can be downloaded 

from www.bacteriaensemble.org, and the name for the reference genome is CF080_Reference.fa. 

The total base length of reference genome is 7,049,533 bp. Sequencing coverage of the three 

datasets are ideal for genome assembly. The Illumina PE dataset has two fastq files, named 

CF080_IlluminaPE_1.fq, and CF080_IlluminaPE_2. fq respectively. The insert size of the 

Illumina PE dataset is 300 bp. The Roche 454 SE dataset has only one file that is named 

CF080_454.fq. The file’s name for the PacBio RS dataset is CF080_PacBio.fq. 
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2.2. Rescaffolding Hybrid Assembly Approach 

A recent study compared various genome assembly tools showing that the overall quality 

of hybrid assembly is better than traditional assembly which uses only one type of sequencing 

dataset [5].  Previous studies also showed that an Illumina Mate-pair dataset was very important 

in hybrid assembly to achieve a high-quality draft genome [5] [18]. The Illumina Mate-pair 

dataset is not only used to construct a De Bruijn graph at the early stage of hybrid assembly, but 

also can be utilized for scaffolding and gap closing in the later stages to improve the assembly’s 

quality. High accuracy long reads, like those from the Roche 454 dataset, can replace the 

Illumina Mate-pair reads in the latter stages of hybrid assembly, but its assembly quality is lower 

than using Mate-pair datasets.   

The rescaffolding function from ABySS (version 2.0.2) allows high-quality hybrid 

assembly using long reads.Unlike using a long distance Mate-pair library to do scaffolding, the 

rescaffolding function allows for a different way to link the contigs toconstruct scaffolds. The 

rescaffolding function needs to use the BWA-MEM [36], which is a long-read support alignment 

software. In the rescaffolding stage, the scaffolds from a low-quality assembly are aligned with 

long reads, such as PacBio and Roche 454 reads. Based on the alignments information the 

scaffolds arelinked together to produce high-quality draft genome.  

There are two steps in the rescaffolding hybrid assembly approach. The first step is to 

perform a hybrid assembly on the Illumina PE and Roche 454 SE datasets. I tried many different 

ways to achieve the best assembly result in this step. The SOAP de novo (version 2.01) [37] and 

ABySS (version 2.0.2) [25] are the only assembly tools that can hybrid assemble Illumina PE 

and Roche 454 datasets. A demo dataset was successfully tested with both assembly tools in my 

Ubuntu 14 operating system. However, the SOAP de novo crashed while assembling the 
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CF080_IlluminaPE_1.fq, and CF080_IlluminaPE_2. fq, and CF080_454.fq. I tried changing 

several parameters such as the k-mer and cuffoff values of the config file, but it still crashed. 

SOAP de novo was abandoned at this step due to its unknown reason for crashing. 

The ABySS supports multiple datasets and both fasta and fastq format data. It required at 

least one paired-end dataset. When doing the hybrid assembly on ABySS, the additional dataset 

can be either a paired-end or single-end dataset. 

ABySS required a k-mer value be set to build the De Bruijn graph in the early stages of 

the genome assembly. The k-mer size can directly affect the resulting quality. A small k value 

will make it difficult to solve repeats, but it will increase edges (overlapping) [19]. A larger k 

value will cause the results to have many small-sized contigs, but make it easier to solve the 

repeat issue. There is no best k-mer value for all assembly tasks. Based on past experiences, the 

optimized k-mer is between half to two-thirds of the reads length. In this assembly work, the 

reads to construct a De Bruijn graph are from the CF080 paired-end dataset. The average read 

length of the CF080 paired-end dataset is 100 bp. So, the optimal k-mer value may be between 

33 to 66. The ABySS only allows a k-mer size between 32 to 92. To find the optimal k value, the 

paired-end dataset was assembled many times using different k-mer sizes between 33 to 66. 

From each assembly, the contigs files were saved and marked with its own k-mer value. Then the 

abyss-fac function in ABySS selected an optimized k-mer value through evaluating each contig 

file. Figure 1 shows the automatic execute for these processes. 

 
Figure 1. Scripting code for finding the best k-mer and results  

 



 

10 

K=49 has been chosen as the optimal k-mer for hybrid assembly of the CF080 PE and 

Roche 454 datasets. The assembly quality result is shown on Table 2, which also lists two other 

assembly results using different k values. Compared with the other two k-mer; the k=49 gives the 

best overall quality. When varying the k value, the N20, N50, N80, and Max Read length 

reached the maximum when at k=49.When k value increases, the number of contigs decreases. 

The scaffolds from k-mer=49 hybrid assembly were saved for the next step. The name of the 

scaffolds file is Abyss_PE_454_k49.fa. 

 

Table 2. The result of three ABySS hybrid assembly by different k-mer 

Quality \k-mer 33 49 65 

Output File 
Name 

Abyss_PE_454_k33.fa Abyss_PE_454_k49.fa Abyss_PE_454_k
65.fa 

N20 616,991bp 1,117,354bp 540813bp 

N50 427,891bp 544,947bp 359,237bp 

N80 213,799bp 228,154bp 226,814bp 

Smallest Read 
Length 

629bp 526bp 810bp 

Largest Read 
Length 

900,622bp 1,126,114bp 615,862bp 

Number of 
contigss 

265 115 88 

 

The second step is to rescaffold the assembled scaffolds using the long-reads files. 

ABySS allows multiple long-reads datasets. During rescaffolding, the ABySS will first employ 

the BWA-MEM to do an alignment for assembled scaffolds and long reads. The BWA-MEM 

needs to be installed before rescaffolding. The reads from Abyss_PE_454_k49.fa, which has the 
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best assembly quality from the previous step, served as the low-quality scaffolds in 

rescaffolding.  

Both Roche 454 SE and PacBio can be used as long reads for rescaffolding. Since the 

PacBio Sequencing technology has lower sequencing accuracy, 87%, in ABySS PacBio dataset 

can only be used as a long-reads file for rescaffolding, and cannot be used as single reads to 

build the assembly with paired-end reads during the previous step. To use PacBio reads as long 

reads in rescaffolding may have a negative effect on alignment due to the lower accuracy rate. I 

tried three different combinations of long-reads files for rescaffolding. The first combination has 

a Roche 454 SE dataset (CF080_454.fq). The second combination only has a PacBio dataset 

(CF080_PacBio.fq). The third one has both Roche 454 SE and PacBio datasets (CF080_454.fq, 

CF080_PacBio.fq). The quality result for each rescaffolding is listed in Table 3. 

The N50 and Max contig Length are two most important quality metrics to evaluate 

assembly quality. The best overall result quality is from rescaffolding using only PacBio dataset 

as long read. Rescaffolding with two long-reads files, Roche 454 SE and PacBio did not improve 

the quality. Figure 1 shows the process of rescaffolding hybrid assembly approach.   
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Table 3. The result of Rescaffolding Hybrid Assembly Approach 

Quality 
Matrices/lo
ng-reads 
files 

Roche 454 SE PacBio  Roche 454 SE & PacBio 

Output File 
Name 

AbyssPE454_Rescff
454.fa 

AbyssPE454_RescffPac
Bio.fa 

AbyssPE454_Rescff454&P
acBio.fa.fa 

N20 1120672bp 1120680bp 1117354bp 

N50 577209bp 589362bp 544947bp 

N80 229,592bp 230862bp 228154bp 

Smallest 
Read 
Length 

526bp 526bp 526bp 

Largest 
Read 
Length 

1126114bp 1127415bp 1126114bp 

Number of 
reads 

105 1299 114 
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Figure 2. Rescaffolding Hybrid Assembly Approach overview 
 

2.3. Cerulean Hybrid Assembly Approach 

Cerulean Hybrid Assembly Approach uses in both Cerulean (Version 0.1) [27] and 

ABySS (Version 2.0.2) [31] to assemble PacBio long reads, Illumina Paired-end, and Roche 454 

SE datasets. At first, ABySS hybrid assembled Illumina Paired-end and Roche 454 SE datasets, 

and the assembled contigs were mapped with reads from the PacBio RS dataset. Lastly, Cerulean 



 

14 

uses the mapping information to extend the assembled contigs. Cerulean (Version 0.1) is a 

genome assembly program specified for PacBio datasets. It uses the similar strategy like 

rescaffolding in ABySS, but Cerulean does not use the De Bruijn Graph. Instead, Cerulean uses a 

Skeleton Graph which is a simplified De Bruijn graph that ignores all intermediate short 

contigs[39]. Cerulean uses BLASR (Basic Local Alignment with Successive Refinement) [38] as 

the alignment tool that was designed for PacBio reads and is more suitable than the BWA-MEM. 

Cerulean can extend the contigs from ABySS using the PacBio datasets. There are three input 

files required in the Cerulean Hybrid Assembly approach. The best quality result from ABySS 

assembly of Illumina Paired-end and Roche 454 SE datasets are used as input 

(Abyss_PE_454_k49.fa). The Abyss_PE_454_k49.dot file is a graph structure file of 

Abyss_PE_454_k49.fa, and is also required as an input file for Cerulean. The last required data 

file is an alignment information file from PacBio reads (CF080_PacBio.fq) map to the assembled 

contigs (Abyss_PE_454_k49.fa) by BLASR (Basic Local Alignment with Successive 

Refinement 

The high error rate from PacBio reads makes assembly difficult. There are two 

approaches to handling the PacBio read in assembly. To use the Paired-end short-reads dataset to 

correct the long reads from PacBio datasets is one approach. The biggest shortcoming of this 

approach is that it requires an enormous amount of computational resources [20]. Most 

workstations and desktops cannot handle it. The ALLPATH-LP [30] is a hybrid assembly 

program that has the best assembly quality for bacterial assemblies. (Required minimum is two 

Paired-end libraries). ALLPATH-LP implements the first approach which uses short reads to 

correct the PacBio long reads.  The memory requirement for the ALLPATH-LP is 32 GB of 

memory for small genomes and 512 GB memory for the large genomes [21]. Another approach 
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is to assemble the short reads first and then to use PacBio long-reads mapping on the assembly 

graph to solve repetitive regions and extended contigs. Cerulean and rescaffolding apply to the 

second approach. 

Pre-processing is the first step in the Cerulean Hybrid Assembly Approach. In this step, 

there are two processes. The first process is to assemble the Illumina Paired-end and Roche 454 

SE datasets using ABySS, and save its assembled contigs file (Abyss_PE_454_k49.fa) and the 

graph structure file (Abyss_PE_454_k49.dot). Based on the Cerulean requirement, I rename 

these two files to AbyssPE454-contigs.fa and AbyssPE454-contigs.dot. The second process is 

mapping PacBio long reads to assembled contigs using BLASR. Cerulean gives a template 

BLASR command line, and only data name and number of threads can be modified. The name of 

output file is AbyssPE454_pacbio_contigs_mapping.fasta.m4. The three files generated from this 

step need to be saved.  

The last step is to run the Cerulean to execute assembly. The resulting name is 

AbyssPE454_cerulean.fa. Figure 3 provides some command lines which were used in the 

Cerulean Hybrid Assembly approach. 

 

 
Figure 3. Command lines in Cerulean Hybrid Assembly approach 

 
To check any possibly to extend the result from rescaffolding hybrid approach, I have 

also used the final results from the rescaffolding hybrid assembly approach 

(AbyssPE454_RescffPacBio.fa and AbyssPE454_RescffPacBio.dot) as the input for Cerulean to 
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perform the Cerulean Hybrid Assembly Approach. The result name is 

AbyssPE454RescffPacbio-cerulean.fa. The quality metrics of AbyssPE454_cerulean.fa and 

AbyssPE454RescffPacbio-cerulean.fa is shown in the Table 4.   

 

Table 4. The result of Cerulean Hybrid Assembly Approach 

Quality Metrics\File 
Name AbyssPE454_cerulean.fa ABYSSALLPE454_recaffPacBio_ 

cerulean.fa 

N50 4,114,241bp 1,817,394bp 

N75 4,107,391bp 731,549bp 
Largest reads length 4,346,447bp 1,817,394bp 

Number of Reads 10 15 

 

Figure 3 shows whole processes in the Cerulean Hybrid Assembly Approach. The 

embolden names are the output files in the graph. 
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Figure 4. Cerulean Hybrid Assembly Approach overview 

 

2.4. Assembly Quality 

The N50, length of largest reads, and number of contigs are the most important quality 

metrics. Those three are being used to evaluate the quality of the two hybrid assembly 
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approaches. However, these three metrics only measure the quality in terms of contig length. The 

assembled cotigss may have some misassemblies caused by the assembly programs. The only 

method to assess misassembly rates is mapping the assembled contigss to the reference genome. 

The mapping result shows misassembly locations in the assembled contigs. Quality Assessment 

Tool (QUAST version 4.3) is a program to evaluate the genome assembly result by computing 

various metrics which include the number of misassemblies [23]. In the QUAST, misassemblies 

are classified as relocation, translocation, and inversion. The report only shows a total number of 

misassemblies, but the detailed information of misassemblies can be found in the alignment 

viewer which is a virtualized alignment graph provided by QUAST. Figure 6 shows QUAST 

statistics of four assembled files (AbyssPE454_cerulean.fa, AbyssPE454_RescffPacBio.fa, 

Abyss_PE_454_k49.fa, and AbyssPE454RescffPacbio-cerulean.fa,). 

 

 
Figure 5. Screenshot for QUAST results statistics 
 

The two assembled reads files from Cerulean Hybrid Assembly Approaches has fewer 

contigs numbers and larger contigs, but they also have a large number of misassemblies. The 
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AbyssPE454_RescffPacBio.fa from Rescaffolding Hybrid Approach has a much lower number 

of misassemblies and better genome fraction rates (total number of aligned bases in reference 

genome/reference genome size). Figure 7 shows a piece of alignment view of four assembled 

reads files aligned to reference genome (CF080_Reference.fa). The image shows two contigs 

(2034_161306 and 2034_161306_25300181_1939) from Abyss_PE_454_k49.fa that are 

assembled into one contig without any errors in AbyssPE454_RescffPacBio.fa. 

 

 
Figure 6. Screenshot for QUAST alignment view  
(From top to bottom are AbyssPE454_cerulean.fa, AbyssPE454_RescffPacBio.fa, 
Abyss_PE_454_k49.fa, and AbyssPE454RescffPacbio-cerulean.fa) 
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CHAPTER 3. CONCLUSION  

This paper presents an overview of two hybrid assembly approaches, Rescaffolding 

Hybrid Assembly approach, and Cerulean Hybrid Assembly approach, and evaluates the 

assembly quality for both approaches. In general, Cerulean Hybrid Assembly approach has better 

assembly quality in N50, the maximum contig length, and contig numbers than the Rescaffolding 

Hybrid Assembly Approach. But the Rescaffolding Hybrid Assembly has a much lower 

misassemblies rate. The Cerulean Hybrid approach extends assembled contigs from the 

Rescaffolding Hybrid Assembly approach which can cause a large number of misassemblies, and 

N50 and length of the largest read are not significantly changed. Two approaches are designed 

for assembling three different NGS datasets, Illumina PE, Roche 454 SE, and PacBio RS. These 

two approaches should help others looking to hybrid assembly those three NGS datasets. 
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