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ABSTRACT 

Novel iron (Fe) cross-linked alginate (FCA) beads were used for aqueous phosphate 

removal. Batch experiments were conducted with the beads using three different concentrations 

of phosphate (5, 50 and 100 mg PO4
3--P/L) as well as environmentally relevant (eutrophic lakes) 

concentration of 100 µg PO4
3--P/L. About 80-97% phosphate was removed within 3 h. for lower 

concentrations of phosphate. The maximum phosphate sorption capacity was found to be 78.7 

mg PO4
3--P/g of beads. Phosphate removal was not affected because of the presence of Cl-, 

HCO3
-, SO4

2-, NO3
- and natural organic matter (NOM). FCA beads were also used with actual 

lake waters (11-69 µg PO4
3--P/L) and 81-100% phosphate removal was observed in 24 h. The 

FCA beads having a point of zero charge (PZC) of 9.2 make it an ideal candidate for phosphate 

removal in eutrophic lakes. 

Phosphate-laden spent iron cross-linked alginate (FCA) beads were used in hydroponics 

to evaluate the bioavailability of P and Fe using lettuce (Lactuca sativa) as a test plant. 

Phosphate-laden spent FCA beads were found to support the plants throughout the growth 

period. The bioavailability of P and Fe in the spent beads is promising considering the 

importance of phosphorus and iron in global nutrient security. 

Experiments were also conducted with lettuce and spinach (Spinacia oleracea) to 

evaluate the availability of iron from nanoscale zero-valent iron (NZVI). In both plants, bare 

NZVI enhanced the uptake of Fe as well as other essential elements. The results indicate that 

biofortification of spinach and lettuce with Fe is possible. The enhanced uptake of iron and other 

elements by lettuce and spinach is likely to have implications on global nutrient security. 

In another experiment, an iron-regulating gene (LsHA2) in lettuce was investigated to 

gain insights into the strategy taken by plants for acquisition of Fe from a readily unavailable 
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source, e.g., NZVI. The gene of interest was found to be regulated by the presence or absence of 

available iron in the solution. This research is likely to give us insights into the mechanism of 

plant nutrient fortification with nanoparticles. 
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1. INTRODUCTION 

1.1. Background 

Phosphorus (P) is important for the growth of plants and microorganisms in most 

ecosystems (Pierzynski, 2005). However, when excess phosphorus originating from point and 

non-point sources find its way into waterbodies it results in eutrophication (Almeelbi and 

Bezbaruah, 2012). Phosphorus affects 42% of the lakes and 66% of the river and streams in the 

United States (USEPA 2009). Accelerated eutrophication due to high phosphate presence not 

only impacts the aquatic life but also hampers the economy of communities that rely on aquatic 

food and other resources (Cleary, et al., 2009). It has been estimated that ~$2.2 billion is lost 

annually as a result of eutrophication in U.S. freshwaters (Dodds, et al., 2009). The cost of 

eutrophication to the United Kingdom water industry is estimated at more than £15 M per annum 

(Babatunde and Zhao, 2010). Therefore, it is imperative to devise effective methods to remove 

excessive phosphate from waters. There is a significant gap in technology to remove low 

concentration (eutrophic) phosphate from waters. Currently, there is no universally accepted 

method for phosphate removal from eutrophic lakes.  

On the other hand, phosphorus is heavily intertwined with the global food security 

(Cordell, et al., 2009). Modern agriculture is heavily dependent on phosphate fertilizer derived 

from phosphate rock, which is non-renewable in nature. It is estimated that at the present rate of 

consumption, the global phosphate reserves may be depleted in 50-100 years (Cordell, et al., 

2011). It is, therefore, very important to develop effective technologies to reclaim phosphate 

from other sources (mines) like eutrophic waters. 

Iron (Fe) is also essential for plants and humans. Iron deficiency is the most common 

nutritional deficiency in humans. Iron is vital for oxygen transport in the body and for energy 
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metabolism as well (WHO/FAO, 1998). Iron deficiency is manifested in anemia and is mainly 

prevalent in women and children. It was estimated in 2011 that around 43% of children, 38% of 

pregnant women, and 29% of non-pregnant women have anemia worldwide which correspond to 

273 million of children, 32 million of pregnant women, and 496 million of non-pregnant women 

(WHO, 2015). The African Region has the highest prevalence (62.3%) of anemia in children 

while the most affected number of children and women resides in the South-East Asia Region, 

including 96.7 million children and 202.0 million women of reproductive age (15-49 years) 

(WHO, 2015). Therefore, iron deficiency is a problem of global importance.  

Biofortification has been explored as a long-term solution to iron deficiency problem 

(Zhu, et al., 2007). The fortification of staple crop plants with bioavailable iron is likely to 

provide a sustainable and economical tool to remedy iron deficiency in target populations 

worldwide (Jeong and Guerinot, 2008). Biofortification as an agronomic intervention is 

sometimes not efficient because iron in oxidized ferric form is less soluble in aerobic 

environments. Innovative iron fortification through soil and foliar application of iron containing 

compounds has been tried in sorghum (Ortega-Blu and Molina-Roco, 2007), wheat (Aciksoz, et 

al., 2011), and leafy vegetables (e.g., spinach, (Almeelbi and Bezbaruah, 2014)). 

The current work described in this dissertation is aimed at removal of phosphate using 

innovative iron cross-linked biopolymer. The work also includes examining whether phosphate 

removed from different water sources can be used as a plant fertilizer. The cross-linked iron in 

the biopolymer was found to be bioavailable to plants and the work was expanded to include 

other sources or iron as a possible plant biofortifier. Iron nanoparticles have been investigated as 

a possible biofortificant. 
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Over the last decade, nanoparticles have been used in agriculture in different ways. 

Nanomaterials have been used as smart delivery systems of fertilizers, herbicides, pesticides and 

plant growth regulators (Perez-de-Luque and Hermosin, 2013). Scientists have also explored the 

possibility of using nanoparticles to biofortify plants. In a hydroponic study, Almeelbi and 

Bezbaruah (2014) used nanoscale zero-valent iron (NZVI) for phosphate removal and 

subsequently used the spent (phosphate-sorbed) NZVI as a source of phosphorus and iron for 

spinach and algae. They found increased growths of spinach and algae when spent NZVI was 

used as a sole source of iron and phosphorus. The iron content increased significantly in all plant 

parts (roots, stems, and leaves) when spent NZVI was used as a source of iron. Iron content 

increased by 7 and 11 times in the stem and leaves in spinach as compared to the control 

(conventional FeSO4 as the source of iron). However, in their study, Almeelbi and Bezbaruah did 

not have a microscale zero-valent iron (MZVI) particles or bulk iron particles as a control. 

Therefore, it is difficult to say that the enhanced uptake was solely due to the nano size of the 

iron particles. This dissertation research included microscale zero-valent iron particles along with 

NZVI in a study with spinach (Spinacia oleracea) to elucidate the role of nanosized iron in the 

enhanced uptake of iron and in the prolific growth of plant.   

This dissertation research also included additional plant species and looked at the 

possible mechanism involved in nanoparticle-triggered iron uptake by plants. Molecular level 

(genetic) studies were conducted to understand the possible mechanism of iron uptake by plants. 

1.2. Need Statement  

Phosphorus through accelerated eutrophication impacts aquatic lives and hampers the 

economy of countries relying on their aquatic food and other resources. Innovative new 

technologies are needed which will turn this problematic nutrient contaminant into a mineable 
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resource for the humankind who is anticipating a looming phosphate crisis. Technologies are 

also needed to solve the iron deficiency problem which is posing a serious risk to the health of a 

considerable number of people in the world. The new technology or technologies aimed at 

addressing these needs should be cost-effective. 

1.3. Research Objectives 

The main objectives of this study are: (1) the development of cost-effective technologies 

for removal of phosphate and subsequently use the reclaimed phosphate in agriculture, (2) to 

biofortify plants with iron. 

The specific objectives of this study are: 

 Investigate phosphate removal by the use of iron crosslinked alginate (FCA) beads. 

 Investigate the bioavailability of phosphate and iron from FCA beads. 

 Investigate the effect of nano and non-nano iron particles on spinach. 

 Investigate the possibility of iron fortification of lettuce plants with nanoscale zero-

valent iron NZVI. 

 Investigate the iron uptake mechanism in lettuce by looking at the expression level of 

a particular gene. 

1.4. Hypotheses 

 Iron present as FCA beads will be able to adsorb phosphate from water. 

 Phosphate adsorbed onto alginate beads and iron within the beads will be available 

for plant uptake.  

 Iron nanoparticles will enhance the uptake of iron in plants compared to bulk 

particles.  
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 Iron nanoparticles will trigger iron-regulating genes in plants for enhanced uptake of 

iron. 

1.5. Dissertation Organization 

There are seven chapters in this dissertation. Chapter 1 is an overview of the research 

problem, need statement, and objectives of this research. The other chapters (Chapter 2-6) in the 

dissertation are presented in journal paper formats, and each of these chapters has already been 

submitted or will be submitted for publication in peer reviewed journals. Each of these chapters 

has its own introduction, materials and methods, results, discussions and conclusions. Chapter 2 

discusses the use of iron cross-linked alginate (FCA) beads for phosphate removal from water. 

Chapter 3 includes the bioavailability of phosphate and iron from phosphate-containing iron 

cross-linked alginate beads (spent FCA beads) using lettuce (Lactuca sativa) as a test plant. 

Chapter 4 presents the bioavailability and the effects of NZVI to spinach (Spinacia oleracea) 

compared to microparticles. Chapter 5 describes the biofortification of lettuce with bare 

nanoscale zero-valent iron (NZVI) particles and phosphate-containing spent NZVI. Chapter 6 

presents the research with the homologous LsHA2 gene in lettuce (Lactuca sativa) to investigate 

its role in Fe acquisition from NZVI in hydroponics. Chapter 7 is the conclusions and the 

possible future directions of this and related research. 
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2. BIOPOLYMER BEADS FOR AQUEOUS PHOSPHATE REMOVAL: POSSIBLE 

APPLICATION IN EUTROPHIC LAKES 

2.1. Abstract   

Novel iron (Fe) cross-linked alginate (FCA) beads were used for aqueous phosphate 

removal. Batch experiments were conducted with the beads (0.118 g dry weight) using three 

different concentrations of phosphate (5, 50 and 100 mg PO4
3--P/L) as well as environmentally 

relevant (eutrophic lakes) concentration of 100 µg PO4
3--P/L. About 97% phosphate (initial 

phosphate concentration = 5 mg PO4
3--P/L) was removed by the beads in 360 min from an 

aqueous solution. With 50 and 100 mg PO4
3--P/L, the beads were found to remove ~76% and 

24%, respectively in 360 min. With 100 µg PO4
3--P/L, 80% removal was achieved within 20 

min. The first order reaction model fitted well for 5 mg PO4
3--P/L and reaction rate constant (k) 

was 0.0091 per min.  First-order reaction was also observed with 100 µg PO4
3--P/L with a k = 

0.0828 per min. The maximum phosphate sorption capacity was found to be 78.7 mg PO4
3--P/g 

of beads.  No change in phosphate removal was observed in the presence of Cl-, HCO3
-, SO4

2-, 

NO3
- and natural organic matter (NOM). To investigate the feasibility of using these FCA beads 

in real life situation (e.g., in eutrophic lakes), actual lake waters (11-69 µg PO4
3--P/L) were used 

and 81-100% phosphate removal was observed in 24 h.  Results presented here demonstrate the 

potential use of the FCA beads for the reclamation of eutrophic lakes (removal of excess of 

phosphate). 

2.2. Introduction 

Phosphorus (P) is important for the growth of plants and microorganisms in most 

ecosystems. However, when excess phosphorus stemming from point sources and non-point 

sources finds its way into waterbodies it leads to eutrophication. Phosphorus affects 42% of the 
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lakes and 66% of the river and streams in the United States (USEPA 2009). Municipal and 

industrial wastewaters are the major point sources that contribute to P build-up in the aquatic 

environment. About 260,000 metric tons of PO4
3--P are discharged to US waters every year from 

wastewater treatment facilities (Litke, 1999).  Agricultural run-offs constitute the major non-

point sources for phosphorus. In the US, agriculture contributes ~3,629,000 metric tons of PO4
3--

P per year to water bodies. Other non-point sources, especially animal agriculture, contribute 

~1,089,000 metric tons of phosphorus to US waters (Litke, 1999). Aquaculture (fish farming) is 

another growing source of nutrient pollution. For every metric ton of fish, aquaculture operations 

produce between 7.9 and 11.6 kilograms of phosphorus waste (Strain and Hargrave, 2005).  The 

amount of phosphorus dumped into the European coastal waters is 200,000 to 300,000 metric 

tons phosphorus per year (measured between 1985 and 2005) with major contributions from 

more intensively farmed agricultural regions (Grizzetti, et al., 2012).  

Accelerated eutrophication due to high phosphate presence not only impacts the aquatic 

life but also hampers the economy of communities that rely on aquatic food and other resources 

(Cleary, et al., 2009). It has been estimated that $2.2 billion is lost annually as a result of 

eutrophication in U.S. freshwaters (Dodds, et al., 2009). The greatest economic losses were 

attributed to lakefront property values ($0.3-2.8 billion/year) and recreational use of waters 

($0.37-1.16 billion/year). The cost of eutrophication to the United Kingdom water industry is 

estimated at more than £15 M per annum (Babatunde and Zhao, 2010).  

Algal growth is the manifestation of excess phosphate in waters. To avoid algae 

overgrowth problems, total phosphorus should not be >5 µg/L in streams discharging into lakes 

or reservoirs, 25 µg/L in lakes or reservoirs, and 100 µg/L in streams or flowing waters not 

discharging into a waterbody (USEPA, 1986).  Generally, surface waters with 10-30 µg/L of 
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total phosphorus remain free from algal blooms (Peleka and Deliyanni, 2009). It is imperative to 

devise effective methods to remove excessive phosphate from waters. There is a significant gap 

in technology to remove low concentration (eutrophic) phosphate from waters.  

Currently, there is no universally accepted method for phosphate removal from eutrophic 

lakes. The techniques used in lakes are aimed at the reduction of internal P-loading from 

sediments which include sediment dredging (Jing, et al., 2015), oxygenation (Yin and Kong, 

2015), use of chemical flocculants (Al, Fe or Ca-based chemical products) (Lin, et al., 2015), and 

in-situ sediment capping. In-situ sediment capping includes P sorbents based on Al, Ca or 

lanthanum-modified clay minerals. Products based on La-modified bentonite (e.g., Phoslock®) 

have been extensively used in fresh water lakes in many European countries to effectively lock P 

in sediments (Lurling, et al., 2016). Other developments in sediment capping include Fe-

modified clays (e.g., Bephos™ (Zamparas, et al., 2013) and Sinobent®(Gołdyn, et al., 2014)). 

Thermally modified calcium-rich attapulgite have been developed for capping sediments (Yin 

and Kong, 2015).  

The high cost involved and concomitant problems of treatment and disposal of the 

dredged sediment preclude the sediment dredging as an effective method (Lin, et al., 2015). 

Chemical flocculants result in disadvantages such as toxicity toward aquatic organisms (Pessot, 

et al., 2014) and the efficacy of iron salt is heavily dependent on environmental factors (e.g., 

redox and pH) (Immers, et al., 2013).  Sediment capping has promising potential as it is very 

effective and the raw materials are globally available (Reitzel, et al., 2013, Yin, et al., 2011). 

However, capping materials may also pose problems to the ecosystems (e.g., toxicity to Atlantic 

salmon (Pessot, et al., 2014) and free lanthanum affects aquatic organisms at low alkalinity 

(Copetti, et al., 2016)) and are currently cost-prohibitive (Spears, et al., 2013). 
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Present methods (Table 2.1) for phosphate removal from wastewater include biological 

treatments (de-Bashan and Bashan, 2004, Ekama, 2015), chemical precipitation with aluminum, 

iron and calcium salts (Tchobanoglous, et al., 1991), adsorption (Almeelbi and Bezbaruah, 2012, 

Lai, et al., 2016, Liu and Hesterberg, 2011), and reverse osmosis (Dolar, et al., 2011, Luo, et al., 

2016). Chemical treatment methods for aqueous phosphate removal use chemicals like lime 

(Ahn and Speece, 2006, Dunets and Zheng, 2014), alum (Babatunde and Zhao, 2010), and ferric 

chloride (Caravelli, et al., 2010). However, chemical precipitation is generally not suitable for 

low concentration phosphate removal, and reverse osmosis is capital intensive. Biological 

treatment methods do not use chemicals nor produce excess sludge. However, they require more 

complex plant configurations and operating regimes (Morse, et al., 1998). Biological 

assimilation and enhanced biological phosphorus removal (EBPR) are employed for phosphate 

removal from wastewater (Oehmen, et al., 2007). Biological assimilation using photosynthetic 

organisms (plants, algae, and some bacteria such as cyanobacteria) is also practiced. 

Sorption is one of the most attractive options for aqueous phosphate removal because of its 

simplicity in design, operational ease, range of sorbents available, and their cost effectiveness 

(Bhatnagar and Sillanpaa, 2011, Mishra, et al., 2010). Sorption has an advantage over other 

technologies due to its effectiveness at low phosphate concentrations (Loganathan, et al., 2014).  

An array of adsorbents has been investigated for phosphate removal. Peat-based biosorbent 

(Robalds, et al., 2016), modified chitosan beads (Liu and Zhang, 2015), dolomite mineral (Yuan, 

et al., 2015), lanthanum oxide and hydroxide material (Xie, et al., 2015, Xie, et al., 2014), 

nanoscale zero-valent iron (Almeelbi and Bezbaruah, 2012, Eljamal, et al., 2016, Soliemanzadeh, 

et al., 2016, Wen, et al., 2014), fly ash (Cheung and Venkitachalam, 2000), red mud (Huang, et 

al., 2008), iron oxide tailing (Zeng, et al., 2004), ferric sludge (Song, et al., 2011), phosphate 
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mine wastes (PMW) particles (composed of calcite, fluorapatite, and quartz) (Jaradat, et al., 

2016), blast furnace slag (Lee, et al., 2012, Oguz, 2004), half-burned dolomite (Roques, et al., 

1991), layered double hydroxides (Cheng, et al., 2009, Das, et al., 2006, Khitous, et al., 2016, 

Kuwahara, et al., 2016, Novillo, et al., 2014, Sun, et al., 2014, Yan, et al., 2015), magnesium 

oxide-based biochar (Jung and Ahn, 2016, Li, et al., 2016), and water treatment residuals (Wang, 

et al., 2011, Wang, et al., 2014) have been used. 

Table 2.1. Phosphorus removal and recovery technologies [adapted from (Morse, et al., 1998)]. 

Phosphorus Removal 

Technology 

Recovery Technology 

Advantages 

Technology 

Disadvantages 

Chemical 

Precipitation 

Low; binding is too 

strong 

Established 

Technology 

Low recyclability, 

sludge production, 

price extensive 

Enhanced 

Phosphorus 

Biological Removal 

(EPBR) 

Moderate Established 

Technology, no 

chemical used 

Complex technology, 

sludge handling 

difficult 

Crystallization High Retrofitting, 

recyclability 

Requires chemicals, 

process difficult 

Ion exchange High (struvite) High potential, use of 

struvite for 

agriculture 

Requires chemicals, 

process difficult 

Magnetic Low High Potential Requires chemicals, 

process difficult 

Tertiary filtration None Easy to use, proven 

technology 

No useful product 

Sludge treatments High Sludge value 

increased 

Requires chemicals, 

process difficult 

Adsorption Low High Potential Regeneration process 

difficult 

 

In the past, bio-based materials including polysaccharides (biopolymers) have been used 

as adsorbents for removing pollutants. Biopolymers are unique materials as they are abundant, 

inexpensive, renewable, and modifiable. They also have chirality, chelation, and adsorption 
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capacities (Crini, 2005). They are typically non-toxic for the ecosystem components, 

biocompatible, biodegradable, and polyfunctional (Crini, 2005). Sodium (Na) alginate, the salt of 

alginic acid, has been investigated as a sorbent for the removal of organic and inorganic 

pollutants from wastewaters (Li, et al., 2013). It is attractive because of its biodegradability, 

hydrophilicity, presence of carboxyl and hydroxyl groups, low cost, natural origin, and 

renewable nature (Li, et al., 2013). Alginates are anionic linear copolymers composed of two 

monomeric units, β-1-4-linked D-mannuronic acid (M) and α-1,4-linked L-guluronic (G) acid 

and are produced by brown algae and bacteria (Paques, et al., 2014). The gelling properties of its 

guluronic residues with divalent ions such as calcium enables the formation of alginate matrices 

as gels, films, beads, pellets, microparticles and nanoparticles (Sarmento, et al., 2007). Divalent 

metal ions cross-link to carboxyl groups on adjacent alginate molecules (Hassan, et al., 2014) 

and form alginate gels. Calcium (Ca) alginate biopolymer is an efficient sorbent for the removal 

of metal ions, but it is not capable of removing anionic species. Min and Hering (1998) used Iron 

(Fe3+) to partially displace loosely bound Ca2+ ion in Ca-alginate to produce Fe-doped calcium-

alginate beads; the iron-calcium alginate beads were found to be effective at removing 

oxyanionic contaminants, specifically Se (IV), Cr (VI) and As (V) (Min and Hering, 1998, Min 

and Hering, 1999) 

Iron (Fe) cross-linked alginate (FCA) beads were used in this study for phosphate 

removal. The objective of this research work was to determine if FCA beads can be used for 

effective removal of aqueous phosphate. A series of experiments were conducted with the FCA 

beads to investigate the mechanisms of phosphate sorption onto FCA beads. The specific 

objectives of this work were to: (1) investigate the phosphate sorption characteristics of FCA 

beads, and (2) determine the feasibility of using FCA beads in eutrophic lakes and wastewater. 
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2.3. Materials and Methods 

2.3.1. Material 

Iron (II) chloride tetrahydrate (FeCl2·4H2O, reagent grade, Alfa Aesar), calcium chloride 

(CaCl2, ACS grade, BDH), monopotassium phosphate (KH2PO4, 99% pure, EMD), sodium 

alginate (production grade, Spectrum), potassium nitrate (KNO3, 99%, Alfa Aesar), sodium 

hydroxide (NaOH, ACS Grade, BDH), potassium sulfate (K2SO4, ACS grade, HACH), 

potassium chloride (KCl, ACS Grade, BDH), potassium bicarbonate (KHCO3, ACS Grade, Alfa 

Aesar), natural organic matter (Suwannee River NOM, RO isolation, IHSS), and humic acid 

(H1452, Spectrum) were used as received unless and otherwise specified. 

2.3.2. Synthesis of Fe cross-linked alginate (FCA) beads 

Sodium alginate (20 g) was dissolved in 1 L of deionized (DI) water by stirring the 

solution overnight at 60 oC to form a 2% alginate solution. Fe cross-linked alginate (FCA) beads 

were synthesized by adding the alginate solution to ferrous chloride (FeCl2) solution (2% w/v) at 

room temperature (22±2 oC). The alginate solution (5 mL in each batch) was added drop wise 

into the FeCl2 solution using a peristaltic pump. FCA beads were formed immediately as the 

alginate came into contact with the iron solution. The beads from each batch were kept 

separately in a polypropylene tube fitted with a plastic cap. Enough FeCl2 solution was added to 

each tube to completely submerge the beads, and the beads in the tubes were allowed to harden 

in FeCl2 solution for an additional 24 h (Bezbaruah, et al.). The hardened beads were then 

washed with DI water. The wet FCA beads were stored in batches in DI H2O. Each batch of wet 

FCA beads was blotted with tissue papers to remove excess water prior to their use in 

experiments. The weight of the FCA beads are reported on dry weight basis (60 oC/12 h).  
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2.3.3. Kinetics studies 

FCA beads produced in a single batch (wet and dry weights 1.516±0.080 g and 

0.118±0.008 g, respectively) were added into 50 mL phosphate solution in a polypropylene 

plastic tube (reactor) fitted with a plastic cap. Four PO4
3--P concentrations (100 µg/L, 5, 50 and 

100 mg/L) were chosen for kinetic studies. The 100 µg PO4
3--P/L concentration was selected to 

get insights into the kinetics of removal at environmentally relevant PO4
3--P concentrations 

found in eutrophic lakes. Controls (no FCA beads but only PO4
3- solution) were also run. The 

reactors and controls were then rotated at 28 rpm in a custom-made end-over-end shaker to 

reduce mass transfer resistance. For 5, 50 and 100 mg/L PO4
3--P concentrations, a set of 

sacrificial reactors was withdrawn at specific time intervals (0, 10, 30, 60, 90, 120, 180, 240, 

360, 720, 1080, 1440 min), and the phosphate concentrations in the bulk solution were measured 

and reported as the average (with standard deviations) from three replicates. For 100 µg/L, the 

sacrificial reactors were withdrawn at more frequent time intervals up to 30 minutes (0, 4, 6, 8, 

10, 15, 20, 30 min) and then at longer intervals (60, 90, 120, 180, 240, 360, 720, 1080, 1440 

min). Ascorbic acid method was used for phosphate analysis (Eaton, et al., 2005). The phosphate 

removal efficiency (η) was calculated using the equation: η = (C0 – Ce)*100%/C0 where C0 and 

Ce are the initial and equilibrium concentrations of PO4
3--P in mg/L. A Hach DR 5000 

spectrophotometer (880 nm, detection limit = 9 µg PO4
3--P/L) was used for phosphate 

measurement.  

2.3.4. Isotherm studies 

Experiments were conducted to understand the isotherm behavior of the FCA beads 

during PO4
3- removal. One batch of FCA beads was used in each batch reactor. The reactors and 

controls were then rotated at 28 rpm. The phosphate concentration in the bulk solution was 
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measured after 24 h to calculate the sorption capacity of the beads. Initial concentration of 

phosphate was varied from 200 to 1300 mg PO4
3--P/L. The adsorption capacity of the beads were 

calculated as q = (C0 – Ce)*V/m, where q is the unit mass (mg) of PO4
3--P per g of FCA bead 

(dry weight), V is the volume of PO4
3- solution in L and m is dry mass of FCA beads in g.  

2.3.5. Interference studies 

Effects of possible competing ions and compounds on phosphate sorption by the FCA 

beads were investigated by adding common coexisting anions and natural organic matter (NOM) 

to the test solution. Interference studies were carried out with chloride (Cl-, 50-500 mg/L), 

bicarbonate (HCO3
-, 10-100 mg/L), sulfate (SO4

2-, 50-1000 mg/L), nitrate (NO3
-, 10-100 mg/L as 

NO3
--N), humic acid (2 mg/L), and Suwanee River NOM (10-50 mg/L) mixed with the test 

solution (C0 = 5 mg PO4
3--P /L). The specific ion or NOM was first mixed with the PO4

3- 

solution in a 50 mL plastic tube and one batch of FCA beads was added to it. The reactors were 

then capped and placed in the end-over-end shaker (28 rpm) for 24 h. The batch studies were 

carried out at room temperature. Triplicate reactors were run for each study and the average 

values with standard deviations are reported. 

2.3.6. Studies with lake waters 

Eutrophic lake water samples were collected in August 2014 from Sarah (45.065771°N, -

93.691412°W), Katrina (45.012913°N, -93.623659°W), Minnetonka (44.912489°N, -

93.580376°W), Half Moon (45.028521°N, -93.628103°W), and Gleason (44.984119°N, -

93.493294°W) lakes located in Minnesota. The lake water samples were filtered using a 0.45 µm 

pore size cellulose nitrate membrane filter (Whatman, 47-mm-diameter type) and stored in 

plastic bottles at 4 °C for further analyses. Initial PO4
3--P concentrations were measured from the 

lake water samples within 24 h of collection, and batch experiments were then conducted in 
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triplicate using 50 mL polypropylene plastic tubes as reactors containing 50 mL of lake water 

and a batch of FCA beads. The reactors were rotated at 28 rpm in the end-over-end shaker and 

then withdrawn after 24 h. The supernatant from each reactor was filtered through a 0.45 µm 

filter, and the phosphate concentration was measured.  

2.3.7. Studies with wastewater 

Wastewater samples were collected from three different locations in Fargo (North 

Dakota) Wastewater Treatment Plant in August 2015, and treated the same way as in the case of 

lake waters. Sample collection locations are shown in Figure 2.1. The Fargo plant consists of an 

influent pumping station, screening, grit removal, two pre-aeration channels, seven primary 

clarifiers, three BOD trickling filters, two intermediate clarifiers, two nitrification trickling 

filters, one final clarifier, chlorination and dechlorination units (Figure 2.1). The BOD trickling 

filters treat the wastewater biologically. The wastewater is sprayed onto synthetic media stacked 

to a depth of 15 feet in the tank, where the large surface area of the media offers a place for the 

aerobic bacteria to grow. After all the carbonaceous material is removed in the BOD filters, the 

wastewater is directed to the nitrification filters where ammonia and organic nitrogen are 

removed by a different species of bacteria. Three samples were collected from three points being 

located after primary clarifiers, after BOD trickling filters and after final clarifiers before 

chlorination tank. FCA beads were tested for phosphate removal from wastewater. Batch 

experiments were conducted in triplicate using 50 mL polypropylene plastic tubes as reactors 

containing 50 mL of wastewater and a batch of FCA beads. The reactors were rotated at 28 rpm 

in the end-over-end shaker and then withdrawn after 24 h. The supernatant from each reactor was 

filtered through a 0.45 µm filter, and the phosphate concentration was measured. 
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Figure 2.1. A schematic diagram of the Fargo Wastewater Treatment Plant ( : Liquid 

stream; : Solid stream; 1 (primary clarifier effluent), 2 (BOD trickling filter effluent), 3 

(final clarifier effluent) are the sampling points [adapted from Halis and Eakalak (2012)]. 

 

2.3.8. Characterization of alginate beads 

Scanning electron microscopy along with energy dispersive spectroscopy (SEM/EDS) 

was used to observe morphology and characterize the elemental composition of the beads. Fresh 

(before PO4
3- removal) and spent (after PO4

3- removal) FCA beads were dried overnight in a 

vacuum oven under a nitrogen environment, and cross sectional samples of the beads were used 

for imaging and EDS analyses.  Dried beads (some intact and some cut in half with a razor blade 

to reveal the internal structure) were attached to aluminum mounts with carbon tape. To increase 

conductivity, the beads were coated with a thin layer of carbon using a Cressington 208C carbon 

coater (TED Pella, Inc., Redding, California). SEM images were obtained with a JEOL JSM-

7600F Scanning Electron Microscope (JEOL USA, Inc., Peabody, Massachusetts). Energy 

dispersive spectroscopy information was acquired using an UltraDry silicon drift X-ray detector 

and NSS-212e NORAN System 7 X-ray Microanalysis System (Thermo Fisher Scientific, 

Madison, Wisconsin). 
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Fourier transform infrared spectroscopic (FTIR) spectra were obtained ex-situ on fresh 

and spent FCA beads using a Nicolet 8700 FTIR Spectrometer operated with OMNIC software. 

FTIR was also done on fresh Ca-alginate beads (alginate crossed linked with calcium) for 

comparison purposes. All spectra were obtained in the range of 4000–400 cm-1 using potassium 

bromide (KBr) as a background. The samples were dried in a vacuum oven under nitrogen 

environment for 2 days. Pellets were formed by crushing the dried samples with KBr with a mass 

ratio of 1:10 (sample:KBr). Spectra were recorded at a resolution of 4 cm-1 with each spectrum 

corresponding to the coaddition of 64 scans. The background collected from KBr was 

automatically subtracted from the sample spectra. The spectral information was collected and 

plotted in the same scale on absorbance axis. 

2.3.9. Statistical analysis 

The results are presented as the mean ± SD (standard deviation, n = 3). The data was 

checked for homogeneity of variance. One-way analysis of variance (ANOVA) was performed 

using General Linear Model, followed by a Tukey’s pairwise comparison where appropriate.  All 

statistical analysis was performed on Minitab version 17. Significance was determined based on 

whether p-values were <0.05 or not. 

2.4. Results and Discussion 

2.4.1. Synthesis and characterization of alginate beads 

The synthesized FCA beads (Figure 2.2) were approximately spherical in shape with 

average diameters of 3.98±0.03 mm (n = 22 batches). Average number of beads produced per 

batch was 86±6 (n = 26). The average weight of each fresh batch of beads was 1.516±0.080 g 

(wet) and 0.118±0.008 g (dry, 60 oC/12h). The dry weight of FCA beads was used for calculating 

maximum adsorption capacity of the FCA beads.  
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Figure 2.2. Image of the synthesized fresh Fe-cross-linked alginate (FCA) beads. The beads 

were approximately spherical in shape with average diameters of 3.98±0.03 mm. 

 

Cross-section images were taken at ×80 and ×90,000 magnifications to observe the 

surface morphologies of the fresh and spent FCA beads. SEM micrographs of fresh (Figure 2. 

3a) and spent (after phosphate sorption, Figure 2.3b) FCA beads indicate that the surface 

morphology of the beads changed when phosphate was sorbed. An apparent fragile outer layer 

was formed around the hard core in the spent beads (Figure 2.3b). Higher magnification showed 

nano-sized spheres (average size of 74±35 nm, n = 97) inside the FCA beads (Figure 2.3c). The 

size of nano spheres inside the beads increased marginally to 83± 42 nm (n = 67) after phosphate 

sorption (Figure 2.3d).  EDS analysis of fresh beads (Figure 2.4a) showed iron, carbon, 

chloride, calcium, and oxygen while spent beads (Figure 2.4b) had phosphorus along with the 

peaks found in fresh beads. 
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Figure 2.3. (a) SEM image of the surface of a fresh dry FCA bead, (b) SEM image of a used 

dry FCA bead, (c) SEM image of the cross-section of the center of a fresh dry FCA bead, (d) 

SEM image of the cross-section of the center of a used dry FCA bead. 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 2.4. (a) EDS spectrum of one point of a fresh FCA bead, and (b) EDS spectrum of 

one point of a used FCA bead. The iron detected in the bead was probably from both cross-

linked as well FeCl2 sorbed onto the beads. Chloride present in the fresh beads might have 

come from FeCl2 used for bead synthesis. Potassium peak in the spent beads was from 

KH2PO4 used to prepare phosphate solution. 

 

The FTIR data were collected on dried samples to gain information on the molecular 

structure of fresh FCA beads, spent FCA beads and calcium alginate beads (spectra in Figure 

2.5). Stretching vibrations of O-H bonds of alginate appeared at 3412 (Ca-alginate bead), 3424 

(fresh FCA bead), and 3425 cm−1 (spent FCA bead). Singh et al. (2014) reported stretching 

vibrations of O-H bonds of alginate nanoparticles in the range of 3000-3600 cm−1 (Singh, et al., 

2014). Stretching vibrations of aliphatic C-H were observed at 2847 and 2921 cm−1 in Ca 

alginate beads, and 2852 and 2923 cm−1 in fresh FCA beads. Daemi and Barikani (2012) 

observed vibrations of aliphatic C-H between 2920 and 2850 cm −1 (Daemi and Barikani, 2012).   

(b) 

(a) 
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Figure 2.5. FTIR vibrational spectra of fresh FCA beads, spent FCA beads and Ca-alginate 

beads. 

 

However, in spent FCA beads, there was only one band of C-H stretching vibration at 

2914 cm−1 indicating there was a slight shift of peak. The peaks at 1631 and 1434 cm−1 (Ca 

alginate), 1624 and 1426 cm−1 (fresh FCA) and 1625 and 1428 cm−1 (spent FCA) are assigned to 

the asymmetric and symmetric carboxylate (COO−) vibrations (Wang and He, 2002). Daemi and 

Barikani (2012) reported asymmetric and symmetric stretching vibrations of carboxylate salt ion 

in sodium alginate at 1649 and 1460 cm-1 (Daemi and Barikani, 2012). Van Hoogmoed et al. 

(2003) obtained asymmetric and symmetric stretching bands of the COO- group in Ca alginate 

beads near 1590 and 1410 cm-1, respectively (van Hoogmoed, et al., 2003). The asymmetric 

stretching vibration of carboxylate ion shifting to lower wave numbers in Ca alginate compared 

to fresh FCA beads and spent FCA beads is attributed to the difference in charge density, the 

radius and the atomic weight of the Ca and Fe cations (Daemi and Barikani, 2012). When PO4
3- 
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is added, the carboxylate band is protonated (COOH) and a new band appears at 1726 cm-1 in 

spent FCA beads. In spent FCA beads two new peaks at 526 and 471 cm−1 were observed. The 

peaks can be assigned to the P–O asymmetric bending of the PO4 group indicating that there was 

a formation of iron phosphate compound (Pasparakis and Bouropoulos, 2006). The main peak 

associated with the P-O is at around 1030 cm-1 which is overlapping with other bands of 

alginates at the same region.  

2.4.2. Removal kinetics 

Rapid phosphate removal by FCA beads was observed for C0 = 5 mg PO4
3--P/L, and 

about 97% of phosphate was removed within 6 h (Figure 2.6a). At 50 mg PO4
3--P/L, ~76% of 

phosphate was removed in 6 h, and no additional removal was achieved until the end of 24 h. 

Removal of phosphate was ~24% after 6 h for C0 = 100 mg PO4
3--P/L, and the removal increased 

to ~46% at 24 h.  The data from the batch experiments conducted with initial PO4
3- 

concentrations (C0) of 5, 50 and 100 mg PO4
3--P/L and FCA beads were fitted into zero-, first-, 

and second-order reaction equations (Figures A1-A3). The second order reaction model fitted 

better for 50 (R2 = 0.954) and 100 mg PO4
3--P/L (R2 = 0.985), and the observed reaction rate 

constants (k) were found to be 0.0078 and 0.0006 L/mg/min, respectively (Table A1). The first 

order reaction model fitted better for 5 mg PO4
3--P/L (R2 = 0.954, k = 0.0091/min).  

To investigate efficacy of the FCA beads to remediate phosphate present in low 

concentration (as in lakes), a 100 µg PO4
3--P/L test solution was used. About 80% of phosphate 

was removed within 20 min (Figure 2.6b), and then the phosphate concentration remained 

almost unchanged up to 24 h. The data for this lower concentration also fitted the first order 

reaction (R2 = 0.987, k = 0.0828/min, Figure A4). 
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Figure 2.6. (a) Phosphate removal by FCA beads from solutions with different high initial 

PO4
3- concentration (C0: : 5 mg PO4

3-P/L; : 50 mg PO4
3-P/L; and : 100 mg PO4

3-P/L); 

(b) low initial PO4
3- concentration (100 µg PO4

3- -P/L). No phosphate removal was observed 

for any C0 for the control (blank i.e., phosphate solution with no FCA beads). 

 

 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 200 400 600 800 1000 1200 1400

N
o

rm
al

iz
e

d
 P

O
43-

-P
 c

o
n

c.

Time, min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60

N
o

rm
al

iz
e

d
 P

O
4

3-
-P

 C
o

n
c.

Time, min

(a) 

(b) 



 

26 

2.4.3. Adsorption isotherms 

Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherm models were 

tried for the adsorption data obtained using one batch of FCA beads (0.118 g dry weight) with 

200-1300 mg PO4
3--P/L solutions. Langmuir adsorption isotherm model (Langmuir, 1918) (Eq. 

S1) assumes that all the adsorption sites have equal adsorbate affinity and adsorption at one site 

is independent of the adsorption at an adjacent site. The bonding to the adsorption sites can be 

either chemical or physical but strong enough to prevent displacement of the adsorbed 

molecules. 

𝑞𝑒 =
𝑏𝑄0𝐶𝑒

1 + 𝑏𝐶𝑒
 (S1) 

where 𝐶𝑒 is the equilibrium concentration of remaining ions in the solution (mg/L); 𝑞𝑒 is 

the amount of ions adsorbed per mass unit of adsorbent at equilibrium (mg/g); 𝑄0 is the amount 

of ions at complete monolayer or the maximum adsorption capacity (mg/g), and 𝑏 is the 

Langmuir constant related to the affinity of binding sites (mL/mg) which is a measure of the 

energy of adsorption.  

Freundlich model (Freundlich, 1906) (Eq. S2) considers monomolecular layer coverage 

of solute by the adsorbent. It also assumes that the adsorbent has energetically heterogeneous 

surface and has different affinity for adsorption. 

𝑞𝑒 =  𝐾𝐹𝐶𝑒
1/𝑛

 (S2) 

where 𝐶𝑒 is the equilibrium concentration of remaining ions in the solution (mg/L); 𝑞𝑒 is 

the amount of ions adsorbed per mass unit of adsorbent at equilibrium (mg/g); 𝐾𝐹 and 𝑛 are 

constants related to the adsorption capacity and affinity, respectively. 

Adsorption data did not fit very well with any of the isotherm equations. The 

experimental data fitted comparatively better for Freundlich (R2 = 0.83) and Langmuir (R2 = 
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0.77) isotherms (Figure 2.7, Table 2.2) compared to Temkin and D-R isotherms; the fits for 

Temkin, and D-R isotherm (R2 = 0.73 and 0.50, respectively) were poor. An apparent lag phase 

was observed in the phosphate adsorption when phosphate concentration was increased from 400 

mg/L to 600 mg/L. The adsorption capacity of the FCA beads then spiked again. That Freundlich 

isotherm most closely represented the experimental data suggests that phosphate experienced 

multilayer adsorption in FCA beads; multiple sorbent sites played a role in the removal of 

phosphate from aqueous solution. Freundlich isotherm describes sorption behavior better when 

heterogeneity is present in the adsorbents (Chitrakar, et al., 2006, Ogata, et al., 2011). The value 

of n in Freundlich model for phosphate removal were >1 (Table 2.2) indicating that this 

isotherm is nonlinear, and that is indicative of adsorption site heterogeneity. Different species of 

iron (e.g., cross-linked and ionic) might have worked during the sorption process. 

 

Figure 2.7. Freundlich and Langmuir isotherms models for the PO4
3- removal by wet FCA 

beads ( , Experimental Data;   , Freundlich Equation; and  , Langmuir Equation). 
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Table 2.2. Isotherm constants and correlation coefficients for the adsorption of phosphate onto 

iron cross-linked alginate beads. 

Model Parameters Values 

Langmuir isotherm b (mL/mg) 0.00398 

qmax (mg/g) 78.74 

R2 0.77 

Freundlich isotherm n 1.85 

KF 1.78 

R2 0.83 

Temkin isotherm A 118.5 

B 28.11 

R2 0.73 

Dubinin-Radushkevich (D-R) isotherm qm 4.12 

Β 0.0022 

E (kJ/mol) 0.015 

R2 0.50 

 

Adsorption heterogeneity was confirmed by another experiment where batches of fresh 

beads were put in 50 mL deionized water in 50 mL polypropylene vials. Multiple vials (units) 

were prepared and they were put in the end-over-end shaker. Units were withdrawn after 24 h 

and the beads were filtered out. The bulk solution was found to be reddish in color indicating 

leaching out of iron from the beads. The beads from three units were kept separately for 

phosphate removal studies. The beads from other units were put back to the vials (after cleaning 

them thoroughly) and fresh deionized water (50 mL) was added to each unit. They were again 

rotated in the shaker for another 24 h and filtration of the beads were repeated. Beads from three 

vials were again kept aside for phosphate removal studies and others were put back to the shaker 

after replacing the bulk water with DI water. The rest of the beads (3 vials) were withdrawn at 72 

h. The beads collected at 24, 48 and 72 h were used for phosphate removal studies. Each batch of 

beads (3 each collected at 24, 48, and 72 h) were transferred to a 50 mL vial. Another 3 vials 
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were prepared with fresh bead (1 batch in each vial). The phosphate removal studies were 

conducted in the 50 mL vial with 50 mL solution with an initial phosphate concentration of 100 

mg PO4
3--P/L. The vials (in triplicate) were rotated in the end-over-end shaker for 24 h. The 

removal percentage was 50%, 47% and 44% for beads shaken for 24 h, 48 h and 72 h, 

respectively compared to 64% for fresh beads (Figure 2.8). Tested by one-way ANOVA, 

phosphate removal percentages were found to differ significantly (p = 0.000) among the beads. 

The FCA beads which were not subjected to shaking removed significantly higher amount of 

phosphate compared to the other FCA beads which were shaken for different period of time. 

Different phosphate removal capacity of the FCA beads confirms that the phosphate removal 

mechanism involved two different types of iron sorbents, the iron involved in crosslinking and 

the physically-adsorbed iron which was leaching out of the beads during the shaking process. 

However, bulk of the phosphate was removed by the cross-linked iron. There might also have 

been some strongly physically-adsorbed iron in the beads even after shaking. The results from 

this experiment and the isotherm studies (where data fitted into the Freundlich equation well) 

conclusively prove that the removal of phosphate by FCA beads is achieved by cross-linked iron 

and physically-adsorbed iron. 
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Figure 2.8.  Phosphate is removed by cross-linked and physically-adsorbed iron in FCA beads. 

Beads lose physically-adsorbed iron when they are placed under shaking condition. As a 

result, phosphate removal is reduced. Initial PO4
3--P conc. was 100 mg/L. Different letters 

above bars indicate significant differences between different treatments.  

 

From Langmuir isotherm model, maximum sorption capacity was found to be 78.7 mg/g 

(dry weight) of FCA beads. Choi et al. (2012) used Freundlich isotherm model to describe PO4
3- 

adsorption behavior onto sulfate-coated adsorbents (zeolite, hydrotalcite, and activated alumina) 

(Choi, et al., 2012), whereas adsorption behavior of the same material without coatings were 

described better by Langmuir isotherm model.  

2.4.4. Interference studies 

Effect of the presence of Cl-, HCO3
-, SO4

2-, NO3
-, NOM and humic acid on PO4

3- (C0 = 5 

mg PO4
3- -P/L) removal by FCA beads was examined. The phosphate removal percentages 

varied from 96.3-98.3% in the presence of competing anions and compounds. Tested by one-way 

ANOVA, phosphate removal percentages were found to differ significantly (p = 0.000) in the 

presence of competing anions and compounds. Even though the differences are statistically 

significant compared to the control, the interferences are minimal considering the removal 
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percentages in the presence and absence of these ions and compounds (Figure 2.9). The ions 

used in this interference study are usually present in surface waters as well as wastewater and 

groundwater. Other researchers reported a 78% reduction in PO4
3- removal by slag microspheres 

in the presence of HCO3
- (Lee, et al., 2012). The addition of SO4

2- also decreased the PO4
3- 

removal efficiency by ~60% in a polymer-based nanosized hydrated ferric oxides system (Pan, et 

al., 2009), and the efficiency reduction was 24.5 % in a layered double hydroxides system (Das, 

et al., 2006).  The presence of SO4
2- and Cl- negatively impacted the PO4

3-reomval from lake 

water when high gradient layered magnetic separation was used (de Vicente, et al., 2011). In the 

presence of NO3
-, PO4

3- removal decreased by 29.2% with double hydroxides (Das, et al., 2006) 

as the adsorbent and by 6.27% while NZVI (Almeelbi and Bezbaruah, 2012) was used. NOMs 

are present in surface waters, and known to interfere with PO4
3- removal in adsorption processes 

(de Vicente, et al., 2011, Guan, et al., 2006). However, no effect of NOM on PO4
3- removal was 

observed in this study. Similar findings were reported earlier with NZVI (Almeelbi and 

Bezbaruah, 2012). The lack of interference by the dominant ions and NOM makes an FCA bead 

system a potential candidate for field application for PO4
3- removal. 
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Figure 2.9. Effects of competing compounds on phosphate removal by FCA beads (C0 = 5 mg 

PO4
3--P/L, contact time = 24 h). The control is only PO4

3- solution prepared in DI water and 

treated with FCA beads. Different letters above bars indicate significant differences between 

different treatments.  

 

2.4.5. Effect of pH and point of zero charge (PZC) 

The effect of pH on phosphate removal (C0 = 5 mg PO4
3--P /L) by FCA was investigated 

at pH of 4, 5, 7, 8 and 9 (Figure 2.10). The phosphate removal percentages varied from 95.1-

96.2% at different pHs. Tested by one-way ANOVA, phosphate removal percentages were found 

to differ significantly (p = 0.002) at pH 8 compared to other pHs. However, the removal of 

phosphate achieved at different pHs was satisfactory and the efficacy of these FCA beads is 

likely to be unaffected under the range of pH tested. pH not affecting the PO4
3- removal 

efficiency of FCA beads has important practical implications. The pH in eutrophic lakes ranges 

from 7.5 to 8.5 (Michaud, 1991).  The point of zero charge (PZC) of the beads was found to be 

9.2 (Figure 2.11) and that explains why the beads were effective even at high pH. When the 

solution pH is less than 9.2, the FCA beads remain positively charged allowing the sorption of 
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negatively charged phosphate (PO4
3-). Given their effectiveness at high pH, FCA beads will 

work well for phosphate removal in eutrophic lakes. 

 

Figure 2.10. PO4
3- removal using FCA beads at pH 4, 5, 7, 8 and 9 (C0 = 5 mg PO4

3--P/L, 

contact time= 24 h). Different letters above bars indicate significant differences between 

different treatments. 

 

PZC is defined as the pH value at which the charge of the solid surface is zero. Point of 

zero charge (PZC) was determined for the FCA beads following the potentiometric mass 

titrations technique (Vakros, et al., 2002). In brief, three solutions were prepared with 3 mL of 

0.1 M KNO3 and 6 mL of DI water in 50 mL polypropylene tubes and their pH values were 

measured immediately. Three different amounts of dry FCA beads (0.0254 g, 0.0384 g and 

0.0488 g) were added into those three polypropylene tubes, followed by the addition of 1 mL of 

0.01 M KOH. Then the samples were titrated with 0.01 M HNO3 and the results were plotted. 

The PZC of FCA beads was determined as 9.2 based on the point where the three titration curves 

intersected (Figure 2.11). A PZC of 9.2 explains the mechanism of phosphate removal by FCA 

beads. 
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Figure 2.11. Potentiometric mass titrations technique for the determination of the point of zero 

charge (PZC) of FCA beads. Three curves have a common intersection point at pH 9.2; at this 

point FCA beads do not have any charges ( , 0.0254 g; , 0.0384 g; and  , 0.0488 g).      

 

2.4.6. Studies with lake waters 

To test the efficacy of FCA beads in eutrophic lake waters, batch studies were conducted 

with waters from five eutrophic lakes located in Minnesota. The characteristics of lake water are 

given in Table 2.3. The initial average PO43--P concentrations were 20.1 µg/L at Sarah, 69.2 

µg/L at Katrina, 20.1 µg/L at Minnetonka, 11.2 µg/L at Half Moon, and 26.8 µg/L at Gleason 

lakes. The concentration of PO43--P in the treated Katrina water was 13.4 µg/L after 24 h (~81% 

removal). For the other four lakes, PO43--P in treated water was below instrument detection 

limit (Figure 2.12).  
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Table 2.3. Characteristics of lake water tested for phosphate removal (adapted from Minnesota 

Pollution Control Agency). 

Name DO (mg/L) Total P (mg/L) Turbidity 

(Secchi depth) 

(m) 

Sarah  12.03 0.154 0.4 

Katrina  7.03 0.221 1.50 

Minnetonka  9.06 0.047 2.5 

Half Moon  7.12 0.265 1.60 

Gleason  8.89 0.035 1.0 

 

 

Figure 2.12. PO4
3- removal from eutrophic lakes using FCA beads ( : initial PO4

3--P conc; : 

final PO4
3--P conc; Contact time = 24 h); BDL denotes below detection limit.  

 

2.4.7. Studies with wastewater 

FCA beads were also tested with wastewater to see their efficacy. The characteristics of 

wastewater are given in Table 2.4. Initial PO4
3- -P concentrations were 4.7 for primary clarifier 

effluent, 5.3 for BOD trickling filter effluent, and 4.8 for final clarifier effluent. Batch studies 

were conducted with 50 mL of wastewater samples from each point and 1.516 g of wet FCA 

beads in 50 mL vials. After 24 h reaction, the concentrations were 1.6 (65% removal), 1.9 (65%), 

and 2.7 (45%) PO4
3--P mg/L for primary clarifier effluent, BOD trickling filter effluent, and final 
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clarifier effluent, respectively (Figure 2.13). The phosphate removal was less in the final 

clarifier effluent compared to the BOD trickling filter effluent. It could be due to the higher 

concentration of NO3-N in the final clarifier effluent. The removal capacity of FCA beads was 

less for wastewater samples compared to artificial samples. This phenomenon is in line with 

other researchers’ findings (Jellali, et al., 2010, Karthikeyan, et al., 2004). Jellali et al. (2010) 

attributed this phenomenon to anionic competition, possibly from chloride or sulfate ions. 

Table 2.4. Characteristics of wastewater tested for phosphate removal (adapted from Fargo 

Wastewater Treatment Facility Report). 

Description pH TBOD 

(mg/L) 

COD 

(mg/L) 

NH3-N 

(mg/L) 

NO3-N 

(mg/L) 

Alk 

(mg/L) 

Primary clarifier 

effluent 

7.46 204 442.9 25.7 - - 

BOD trickling filter 

effluent 

7.08 35 110.3 11.3 9.6 224 

Final clarifier 

effluent 

7.57 9.3 48.1 0.7 20 156.4 

 

 

Figure 2.13. PO4
3- removal from wastewater using FCA beads ( : initial PO4

3--P conc.; : 

final PO4
3--P conc.; Contact time = 24 h). PCE stands for primary clarifier effluent, BTFE for 

BOD trickling filter effluent, and FCE for final clarifier effluent. 
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2.5. Environmental Significance 

2.5.1. Eutrophic lake remediation 

The PZC of the FCA beads is 9.2, making them ideal for lake applications. The beads are 

very effective as there was no interference in phosphate removal in the presence of Cl-, HCO3
-, 

SO4
2-, NO3

-, NOM and humic acid (Figure 2.9). About 80% removal of aqueous phosphate was 

achieved within 20 min at the environmentally relevant concentration of 100 µg/L (Figure 2.6b). 

Further, PO4
3- in actual lake waters were removed up to 100% (Figure 2.12). Based on the 

sorption capacity of 78.7 mg PO4
3--P/g (dry weight) of beads, the total amount of beads needed 

to remediate a 10-acre lake (4.05 hectares, 10 m deep, 100 µg PO4
3--P/L) is 360 kg (dry weight) 

of beads to reduce phosphate concentration to non-eutrophic level ( 30 µg PO4
3--P/L) (detailed 

calculation in Table 2.5).  

Assuming a factor of safety of 4 (i.e., beads are only 25% efficient in lakes), total amount 

of beads (= 1,440) 1,500 kg. Total cost of beads = 1,500 kg × $7/kg (cost analysis details in 

Table 2.6) = $10,800. With O&M and labor costs (100% of bead cost) of $10,800, the total cost 

for phosphate remediation of the 4.05-hectare eutrophic lake is ($10,800+$10,800 =) $21,600. 

Cost per hectare-m of lake is $533 (or per acre-ft is $72). The beads can be placed in porous 

pouches within the lake while the naturally occurring underwater current and waves are expected 

to keep the loosely packed beads in direct contact with water. This naturally stirred system 

should also reduce mass transfer resistance. The beads (containing sorbed phosphate) can be 

collected back as spent beads. 
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Table 2.5.  Detailed calculations* for amount of beads needed to remediate a eutrophic lake. 

Design Data: 

Lake area = 10 acres (4.05 hectare) 

Depth =30 ft (10 m) 

Current Lake PO4
3--P concentration = 100 µg/L (eutrophic) 

Target Lake PO4
3--P concentration of 30 µg/L (non-eutrophic) 

Sorption capacity of the beads = 78.7 mg PO4
3--P/g (dry weight) of beads 

Assumed factor of safety (FOS) = 4 (i.e., beads are only 25% efficient in lakes) 

FCA Bead weight 1.000 kg dry weight = 12.847 kg wet weight (based on each batch of FCA 

beads weighs 1.516±0.080 g (wet weight) or 0.118±0.008 g (dry weight) 

Calculations: 

Volume of lake/Volume of water to be treated = 405,500 m3 = 405,000,000 L  

The amount of PO4
3--P to be treated in the lake = 405,000,000 L × (100 µg/L−30 µg/L) = 

28,350,000,000 µg = 28,350,000 mg  

The amount of beads needed for = (28,350,000 mg × g of beads/78.7 mg) = 360,229 g of 

beads  360 kg of beads (on dry weight basis) 

Applying the FOS of 4, the total amount of beads needed = (360 × 4) kg (= 1,440)  1,500 kg 

(on dry weight basis) 

Amount of beads needed = 1500 x 12.847 = 19, 270 kg (on wet weight basis) 

*The calculations were done not taking into account the sediment phosphorus which might 

replenish the depleting phosphate content of lake water during the removal process. 
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Table 2.6. Cost calculation for eutrophic lake remediation. 

Available Data: 

The cost of sodium alginate = $5512 per metric ton (Qingdao Yijia Huayi Import and Export 

Co., Ltd.) 

Cost of FeCl2 = $496 per metric ton (Wuhan Golden Wing Industry & Trade Co. Ltd.). 

Each batch of alginate was produced using 5 mL of 2% alginate solution and 30 mL of 2% 

FeCl2 solution (maintaining a molar ratio of 6.7:1 between Fe and sodium alginate)  

The dry weight of each batch is 0.118±0.008 g  

O&M and Labor costs =100% of bead cost 

Lake size = 10 acres (4.05 hectares), 30 ft (10 m) deep 

Current Lake PO4
3--P concentration = 100 µg/L (eutrophic) 

Target Lake PO4
3--P concentration of 30 µg/L (non-eutrophic) 

Calculations: 

Cost involved in producing 0.118 g of dry beads = ($0.00992/1000 mL of FeCl2) × 30 mL + 

($0.1102/1000 mL of sodium alginate)× 5 mL = $0.0002976 + $0.000551 = $0.000849.  

Cost of 1 g of dry beads will cost = $0.000849/0.118 = $0.0072 

Cost of 1 kg of beads will cost = $0.0072 × 1000 = $7.20  

Cost of beads needed to remediate a 4.05-hactare (10 m deep) lake = 1500 kg × $7.20/kg = 

$10,800.  

O&M and Labor costs (= would be 100% of bead cost) = $10,800  

Total cost to remediate a 4.05-hectare area lake = $10,800+$10,800 = $21,600 

Cost per hectare-meter (lake total = 40.5 hectare-m) = $21,600/40.5 = $533.33  $533.00 

Cost per acre-foot (lake total = 300 acre-ft) = $21,600/300 = $72.00 

 

2.5.2. Sorption capacity and cost of phosphate removal 

The adsorption capacity of the adsorbents reported by others was 2-58 mg/g of sorbent 

(Choi, et al., 2012). The cost of phosphate removal using techniques reported by others varied 

from $2 to $1775 per g P removed (Choi, et al., 2012). The current FCA beads have a very high 

sorption capacity of 78.7 mg/g of beads which is 1.36-39 times higher than those reported. The 

cost of production of the beads is only $0.0072 per g of beads as compared to $0.06-28.77 per g 

(Choi, et al., 2012) of other sorbent. Higher sorption capacity and lower cost of production make 

the FCA very competitive with a cost of only $0.09 per g P removed. Assuming a factor of safety 
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of 4 (i.e., adsorption capacity is only 25% of the experimental value) the cost comes to $0.36 per 

g P removed (Table 2.7) and, thus, remain very affordable.  

Table 2.7. Comparison of different sorbents for sorption capacity and cost-effectiveness. 

Sorbents Cost of production 

per g of sorbent 

($) 

Max adsorption capacity 

(mg g -1) 

Unit price for 

removal per 1 g P 

($) 

Layered double 

hydroxides 

28.77 47 612* 

Sulphate-coated zeolite 0.06 30 2* 

Ion-exchange resin 3.55 2 1775* 

Titanium mesostructure 4.25 51 83* 

Hydrotalcite 1.82 58 31* 

FCA beads (this study) 0.0072** 79 0.36*** 

*Table adapted from Choi et al. (2012) 

**Refer to Table 2.6 

***A factor of safety of 4 is used meaning the beads are assumed to remove phosphate at only 

25% of the current value (from batch studies). Assuming 25% efficiency of phosphate removal 

means that the maximum adsorption capacity of the FCA beads will be 19.75 mg/g (dry weight) 

of FCA beads. 
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3. PHOSPHATE-CONTAINING BIOPPOLYMER BEADS AS SLOW-RELEASE 

PHOSPHORUS AND IRON FERTILIZERS 

3.1. Abstract 

An experiment was conducted to evaluate the potential use of phosphate-laden spent iron 

cross-linked alginate (FCA) beads biopolymer as slow-release phosphorus and iron fertilizers 

using lettuce (Lactuca sativa) as a model plant. Parris Island variety of lettuce was 

hydroponically grown in a custom-made growth chamber with three treatments, namely spent 

FCA beads + modified Hoagland solution containing no Fe and P, spent FCA beads + modified 

Hoagland solution containing no P, spent FCA beads + modified Hoagland solution containing 

no Fe, and one control (only Hoagland solution containing all the nutrients). Lettuce was grown 

until maturity and iron and phosphorus contents were measured. Spent FCA beads were found to 

support biomass production across the treatments indicating that the phosphorus and iron were 

available for plant uptake. The uptake of iron was significantly higher in the plants treated with 

spent FCA beads + modified Hoagland solution containing no Fe and P, and spent FCA beads + 

modified Hoagland solution containing no P compared to the control. Phosphorus uptake in the 

plants treated with spent FCA beads + modified Hoagland solution (containing no Fe) was 

comparable to the control plants. The bioavailability of P and Fe in the spent beads is promising 

and it suggests that spent FCA beads can be recycled back directly to soils as a slow-release P 

and Fe fertilizer which could act as supplementary sources of these elements in agriculture. 

3.2. Introduction  

Phosphorus is an essential element for the growth of organisms and plants and is also an 

indicator for the quality of surface water (Pierzynski, 2005). Phosphate may also impair water 

quality in waterbodies (Barlow, et al., 2005). Excessive phosphorus stemming from point and 
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non-point sources find its way into natural waters and triggers eutrophication (Smith, 2003). The 

USA suffer an economic loss of $2.2 billion annually as a result of eutrophication in its 

freshwaters (Dodds, et al., 2009).  

On the other hand, modern agriculture is heavily dependent on phosphate fertilizer 

derived from phosphate rock, which is non-renewable in nature. It is estimated that at the present 

rate of consumption, the global phosphate reserves may be depleted in 50-100 years (Cordell, et 

al., 2011). As mineable phosphorus is declining, it will need to be replaced with new sources of 

phosphorus (Rittmann, et al., 2011). Recovering lost phosphate (the phosphate that has been lost 

from the agricultural system) from the eutrophic waterbodies and wastewater treatment plants 

can be a viable solution to the phosphorus scarcity problem. Currently, chemical precipitation 

involving divalent or trivalent metal ions is a common practice adopted to reclaim phosphate 

from wastewater (Morse, et al., 1998). Magnesium- and calcium-based precipitation products are 

commonly used as fertilizer because recovered phosphate is less tightly bound to these metal 

ions (Morse, et al., 1998). Phosphate recovery from wastewater as struvite (also called 

magnesium ammonium phosphate hexahydrate, MgNH4PO4·6H2O) is a fairly common practice 

(Rittmann, et al., 2011); struvite precipitation readily occurs when phosphate concentration 

reaches 100-200 mg/L and ammonium is present in the solution (Kataki, et al., 2016). However, 

the technologies which are employed in wastewater treatment plant are not applicable for 

eutrophic waterbodies because of the very low concentration of phosphate in these waters. 

Sorption is regarded to be an effective technology for reclaiming phosphate at low 

concentrations (Loganathan, et al., 2014). It is, therefore, very important to find out an effective 

sorbent to reclaim phosphate from eutrophic waterbodies which can be safely disposed of in soil 

for agricultural purposes. 
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FCA beads were used as a sorbent for aqueous phosphate removal (Chapter 2). Findings 

from batch studies suggested that FCA beads can adsorb phosphate effectively. The maximum 

phosphate sorption capacity was found to be 78.7 mg PO4
3- -P/g of dry beads. The present study 

was undertaken to explore the potential use of spent FCA beads (the beads used for phosphate 

removal) as a supplementary source of phosphorus and iron (iron is present as a cross-linker and 

also as adsorbed ions) using lettuce (Lactuca sativa) as a model plant. PO4
3--P concentration at 

0.2 mg/L in soil solution is required for plants for optimum growth (Pierzynski, 2005). However, 

PO4
3--P concentrations as low as 0.03 mg/L are adequate to produce high yields of some 

agronomic crops (Pierzynski, 2005). The hypothesis of the present work is that the spent FCA 

beads would provide plants with the required amount of phosphate and it is also hypothesized 

that iron present in the beads will also be released for plant uptake. The main objective of this 

study was to determine whether spent FCA beads used to reclaim phosphate from eutrophic 

waters can be applied to soils as a P and Fe fertilizer.  

3.3. Materials and Methods 

3.3.1. Chemicals 

Iron(II) chloride tetrahydrate (FeCl2·4H2O, reagent grade, Alfa Aesar), sodium alginate 

((C6H7O6Na)n, reagent Grade, Spectrum), calcium nitrate tetrahydrate (CaNO3·H2O, Alfa 

Aesar), potassium nitrate (KNO3, Mallinckrodt Chemicals), magnesium sulfate heptahydrate 

(MgSO4·7H2O, Mallinckrodt Chemicals), magnesium nitrate hexahydrate (Mg(NO3)2·6H2O, 

Alfa Aesar), ammonium dihydrogen phosphate (NH4H2PO4, Alfa Aesar), sodium tetraborate 

decahydrate (Na2B4O7·10H2O, amresco), copper(II) sulfate pentahydrate (CuSO4·5H2O, 

BDH), manganese sulfate monohydrate (MnSO4·H2O, Mallinckrodt Chemicals), sodium 

molybdate dihydrate (Na2MoO4·2H2O, BTC), zinc sulfate monohydrate (ZnSO4·H2O, J.T. 
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Baker) and ethylenediaminetetraacetic acid, ammonium nitrate (NH4O3, ACS grade, Alfa 

Aesar), and iron(III) monosodium salt (FeNa(O2CCH2)2NCH2CH2N(CH2CO2)2, ACS Grade, 

Alfa Aesar) were used as received unless otherwise specified.  

3.3.2. Synthesis and preparation of spent FCA beads 

FCA beads were synthesized using sodium alginate and ferrous chloride (Chapter 2). 

Sodium alginate (20g) was dissolved in 1 L of water at 60 °C overnight under continuous 

stirring. FCA beads were synthesized by adding the sodium alginate solution drop by drop to 

ferrous chloride solution (2%). Then the beads were kept submerged in sufficient amount of 

ferrous chloride solution for 24 h. This was done to harden the beads and to continue the ion 

exchange process. The ion exchange process enables the divalent ions crosslink the copolymers 

of alginate (Min and Hering, 1998). After separating the hardened beads using a strainer, the 

beads were washed three times with copious amount of water and stored in vials in DI water for 

further use. Phosphate was then loaded onto and into the beads by running a phosphate sorption 

experiment. For phosphate loading, 100 mg/L PO4
3--P solution was used. A measured amount 

(10 g) of fresh FCA beads (corresponding to 0.78 g of dry beads) were put in a 500 mL of plastic 

bottle and 250 mL of 100 mg/L of PO4
3--P solution was added to the beads. Then the bottles 

were put in an end-over-end shaker for 24 h. After 24 h, the beads were separated from the bulk 

solution and kept for use in the plant study. The phosphate (as PO4
3--P) concentration in bulk 

solution was measured at 0 h and 24 h and a mass balance was done to find the amount of 

phosphate adsorbed onto the beads.  

3.3.3. Desorption study 

A desorption study was conducted to see the release pattern of adsorbed phosphate from 

the spent FCA beads. First a single batch of FCA beads (wet and dry weights are 1.516±0.080 g 



 

51 

and 0.118±0.008 g, respectively) was added to 50 mL of 50 mg/L PO4
3- -P solution. 

Polypropylene tubes were used as reactors for the sorption study. The reactors were rotated in a 

custom-made end-over-end shaker for 24 h. After 24 h, the reactors were taken out and the beads 

were separated from the solution. Then 50 mL of DI water was added to the spent or used FCA 

beads. The reactors were allowed to stand for 4 d (this constituted one cycle). After 4 days, 

solution was separated from the beads and tested for phosphate content. The beads were 

immediately added to 50 mL of DI water in 50 mL vials and were allowed to sit for another 4 

days. This process was continued for 28 days and every 4 days the solution was replaced with 

new DI water. The bulk solution was tested for phosphate content.  

3.3.4. Plant growth conditions  

3.3.4.1. Germination and plant preparation for hydroponic experiment 

Lettuce seeds of Parris Island variety (Lactuca sativa, Burpee, Warminster, PA) were 

purchased from a local outlet. The lettuce seeds were germinated in plug trays with nonabsorbent 

cotton as media (Figure 3.1). The seeds were kept moist using automated misting nozzles in a 

greenhouse. The germinated seeds were then moved to another room and allowed to grow for ten 

days. The seedlings were routinely fed with half strength Hoagland solution (Hoagland and 

Arnon, 1950).  The seedlings were provided with cool-white fluorescent light (14 h light/10 h 

dark cycle). The light intensity was ~100 µmol/m2/s. 
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Figure 3.1. (a) Lettuce seeds were germinated in a plug tray (b) Schematic of the plug tray. 

 

3.3.4.2. Hydroponic studies 

After plants developed a root system and were at four-to-five-leaf stage, healthy plants of 

similar size were carefully removed from the plug trays and the roots of the plants were rinsed 

with copious amount of deionized water, keeping the roots unharmed. Plants were then anchored 

in nutrient solutions contained in 1 L plastic tumblers. One lettuce seedling was placed into a 

Styrofoam disc float (a hole was made in the disc float using a hole punch) with their roots below 

the disc and the shoots supported above with a wrap of non-absorbent cotton (Jacob, et al., 

2013). The seedlings were held erect by plugging the gaps with non-absorbent cotton. The 

Styrofoam disc was cut in a way so that it goes inside the plastic tumbler and move up and down 

with water. The disc also reduces the light entering the nutrient solution beneath the Styrofoam. 

The growth reactors were wrapped with aluminum foil to prevent light penetration. Modified 

Hoagland nutrient solutions (Hoagland and Arnon, 1950) (750 ml) was poured into tumblers and 

the disc with seedling was placed on the solution ensuring continuous root contact with the 

nutrient solution (Jacob, et al., 2013). The Hoagland solutions were modified according to the 

need of the experiment (Tables 3.1, 3.2, 3.3 and 3.4). Iron, phosphorus and iron and phosphorus 

were eliminated from the standard Hoagland solution to make three modified solutions to be 

used with spent FCA beads as treatments. FCA beads were added to the modified nutrient 

solutions as needed before the seedlings were transplanted. The experiment was a completely 

(b) (a) 
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randomized design with three treatments and four replications. The treatments are (a) Spent FCA 

beads and modified Hoagland solution containing no Fe and P, (b) Spent FCA beads and 

modified Hoagland solution containing no P, (c) Spent FCA beads and modified Hoagland 

solution containing no Fe and (d) Control (only Hoagland solution containing all the nutrients). 

The control contained all the nutrients, including FeNaEDTA and NH4H2PO4 as sources of iron 

and phosphorus. There was a total of 16 tumblers with 4 replicates per treatment. The nutrient 

solution was aerated with bubblers (at a rate of ~2 cc/minute) to provide oxygen to the roots and 

also to keep the beads in suspension (Trujillo-Reyes, et al., 2014). The solution and spent beads 

were replaced every four days. The plants were grown 30 d in hydroponics. Light was provided 

in 14 h light/10 h dark cycles with cool-white fluorescent plant bulbs with a light intensity of 

~100 µmol/m2/s. 

The amount of FCA beads to be used for plant study in each reactor was decided based 

on another experiment previously conducted. The earlier experiment was carried out with lettuce 

to see if there is any toxicity due to ionic iron (which is itself a micronutrient for plants) 

stemming from FCA beads. Three different concentrations were used for the beads. Alginate 

beads at 13 g/L of hydroponic solution was found to be nontoxic, and support growth of lettuce. 

So in the plant growth reactors, 750 mL of hydroponic solution was used and 10 g of spent FCA 

beads were added to each reactor. 
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Table 3.1. Modified Hoagland solution (Hoagland and Arnon, 1950). 

Chemicals Final concentration Important ions 

mM or µM mg/L 

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  0.5 mM 123 Mg2+, SO4
2- 

Mg (NO3)2•6H2O  0.5 mM 128 Mg2+, NO3
- 

NH4H2PO4  2 mM 230 NH4
+, H2PO4

- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O   0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

FeNaEDTA 10 µM 1.69 Fe2+ 

Table 3.2. Modified Hoagland solution containing no iron (modified for this research). 

Chemicals Final concentration Important ions 

mM or µM mg/L  

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  0.5 mM 123 Mg2+, SO4
2- 

Mg (NO3)2•6H2O  0.5 mM 128 Mg2+, NO3
- 

NH4H2PO4  2 mM 230 NH4
+, H2PO4

- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O  0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 
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Table 3.3. Modified Hoagland solution containing no phosphorus (modified for this research). 

Chemicals Final concentration Important ions 

 mM or µM mg/L  

NH4NO3  2 mM 160 NH4
+, NO3

- 

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  1 mM 246 Mg2+, SO4
2- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O   0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

FeNaEDTA 10 µM 1.69 Fe2+ 

Table 3.4. Modified Hoagland solution containing no phosphorus and no iron (modified for this 

research). 

Chemicals Final concentration Important ions 

 mM or µM mg/L  

NH4NO3  2 mM 160 NH4
+, NO3

- 

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  1 mM 246 Mg2+, SO4
2- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O   0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

 

3.3.5. Analytical procedures 

3.3.5.1. Lettuce studies 

Plants were harvested after 30 d of hydroponic growth. The harvested plants were washed 

with copious amounts of DI water and the plants were separated into roots and leaves. The roots 

were washed with 10 mM CaCl2 solution to remove any attached FCA. The fresh weight of 

leaves and roots were measured. The harvested plant material was then dried at 65 0C until 
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constant weight and the final weight was recorded. Thereafter, the samples were powdered and 

homogenized using a mortar and pestle. 

3.3.5.2. Phosphorus and iron measurements 

The powdered plant tissues collected from hydroponic experiments were digested using 

the protocol by (Jones Jr., 2001). Samples (~0.25 g) were weighed into a digestion tube and 5.0 

mL of conc. HNO3 was added. The mouth of the digestion tubes was covered with watch glasses 

and then the tubes were allowed to stand overnight. The tubes were then placed on a hot plate 

and digested at 125 0C for 1 h. The tubes were then allowed to cool and 3 mL of 30% H2O2 was 

added to the tubes. The contents were again digested at 125 0C until the digest was clear. The 

colorless digest was brought to volume adding 1:10 HNO3 and the solution was analyzed for P 

and Fe. Phosphorus content was measured spectrophotometrically using yellow color method at 

470 nm (Eaton, et al., 2005). Iron content was measured using PinAAcle 900H Atomic 

Absorption Spectrophotometry (AAS) (Perkin Elmer). 

3.3.6. Statistical analysis 

Plant biomass (roots, leaves) are reported in g/plant. Phosphorus and iron contents in 

plant are reported in mg/plant. The data were checked for homogeneity of variance. One-way 

analysis of variance (ANOVA) was performed for fresh mass of plant parts and elements among 

the treatments, followed by a Tukey’s pairwise comparison (p <0.05). The results are presented 

as the mean ± SD (standard deviation, n = 4).  All statistical analysis was performed on Minitab 

version 17.  
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3.4. Results and Discussion 

3.4.1. Synthesis and preparation of spent FCA beads 

FCA beads were synthesized using sodium alginate and ferrous chloride. Synthesized 

beads were used for phosphate removal study. The maximum phosphate sorption capacity 

calculated from the previous experiment was 78.7 mg PO43--P/g of dry beads. Therefore, 

theoretically the beads should be able to adsorb all the phosphate (25 mg of PO43--P) supplied in 

the solution. To confirm the presence of phosphorus, the spent FCA beads were digested and 

analyzed for phosphate content. The amount of phosphorus adsorbed was 19.91±1.86 mg. In the 

reactor, 750 mL of hydroponic solution was used and 10 g of spent FCA beads were added to 

each reactor. Based on the chemical analysis, 10 g of spent FCA beads contained ~12.5 mg of Fe 

which is equivalent to 16.7 mg/L in the solution.  

3.4.2. Desorption study 

A desorption study was conducted with the spent FCA beads to see the release pattern of 

adsorbed phosphate (Figure 3.2). To assess the bioavailability of P from spent FCA beads, the 

desorption study was conducted. The desorption study consisted of seven cycles. The collected 

solutions from seven cycles were tested for phosphate content. The PO4
3--P content was 

measured spectrophotometrically using ascorbic acid blue color method (Murphy and Riley, 

1986). After the sorption study with 50 mg/L of PO4
3--P, the solution had 32.2 mg/L of PO4

3--P. 

Therefore, FCA beads had sorbed = (50-17.8)*50 = 1,610 µg or 1.61 mg of PO4
3--P. The amount 

of PO4
3--P desorbed over 28 days was = 

(0.94*50+0.27*50+0.54*50+0.33*50+0.31*50+0.70*50+0.36*50) µg = 171.5 µg or 0.17 mg. 

The remaining PO4
3--P sorbed on the beads was = (1.61-0.17) mg = 1.44 mg. Therefore, from the 

desorption study it was evident that the FCA beads could desorb phosphate at a rate deemed to 
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be sufficient to meet up the demand of a growing plant. The phosphate concentrations measured 

ranged from 0.27-0.94 mg/L, which is deemed to be enough for optimum growth of plants 

(Pierzynski, 2005).   

 

Figure 3.2. Phosphate was released successively from spent FCA beads after the introduction 

of fresh solution each time to simulate conditions for plant growth. Introduction of fresh 

solution created a gradient which enabled the desorption of phosphate from spent FCA beads. 

The desorption study was continued for 28 days. 

 

3.4.3. Plant biomass 

The fresh weight of lettuce plants (measured after the harvest) varied depending on the 

treatment (Figure 3.3). In the plants treated with spent FCA beads in nutrient solution and 

conventional modified Hoagland solution (containing no Fe and P), the average weight of fresh 

leaves and root were 12.23±5.52 g/plant and 4.90±2.10 g/plant, respectively. The plants treated 

with spent FCA beads and modified Hoagland solution (containing no P) yielded 7.92±3.23 

g/plant of leaf biomass and 3.76±1.44 g/plant of root biomass. The average weight of fresh 

leaves and roots were 18.04±11.68 g/plant and 4.30±1.79 g/plant, respectively for plants treated 

with spent FCA beads and modified Hoagland solution (containing no Fe). In the positive control 
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where the plants were provided with all the nutrients and no spent beads, the leaf and root 

biomass were 28.47±9.43 g/plant and 6.12±0.73 g/plant, respectively. There was a significant 

difference (p = 0.021) between the Control and No P hydroponic solution (with spent FCA 

beads) in terms of leaf biomass. No statistically significant differences were observed between 

other treatments. There were no significant differences (p = 0.240) among the treatments in terms 

of root biomass. 

 

Figure 3.3. Average fresh weights of lettuce leaves and roots treated with spent FCA beads. 

Treatments are (i) No Fe + No P: Spent FCA beads and Hoagland solution containing no Fe 

and P, (ii) No P: Spent FCA beads and Hoagland solution containing no P, (iii) No Fe: Spent 

FCA beads and Hoagland solution containing no Fe, and (iv) Control (only Hoagland solution 

containing all the nutrients). Differences were determined by one-way ANOVA followed by 

Tukey’s pairwise comparison (p<0.05). Different letters above bars indicate significant 

differences between different treatments.   

 

From the leaf and root biomass data, it is clear that plants treated with FCA beads and 

modified nutrient solution were able to take up phosphorus and iron for use. Even though the 

average leaf and root biomass is less in plants treated with spent FCA beads and different 

modified solutions compared to the control (containing all the elements), the results are 
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promising. The spent FCA beads used for phosphate removal from eutrophic waters could be 

used as a supplementary source of phosphorus in agriculture. The biodegradability of the FCA 

beads is likely to enable the spent FCA beads to release adsorbed phosphorus to soil to be taken 

up by plants.   

3.4.4. Phosphorus and iron analysis 

Phosphorus and iron contents in mature lettuce were analyzed and reported here as 

mg/plant. Uptake of elements was calculated by multiplying the dry weight of plant material by 

the concentration (mg/kg or µg/kg) of an element of particular interest. Uptake of elements will 

give insight into the bioavailability of P and Fe in the nutrient solution treated with spent FCA 

beads. 

3.4.4.1. P uptake 

Phosphorus uptake in mature lettuce leaves varied among the treatments (Figure 3.4 and 

Table 3.5). Phosphorus uptake in the leaves was high (5.51±2.03 mg/plant) in the plants treated 

with Hoagland solution containing all the elements. The uptake was significantly different (p = 

0.008) than in the plant leaves treated with no P modified Hoagland solution and spent FCA 

beads (1.42±0.49 mg/plant) and no Fe and P modified Hoagland solution and spent FCA beads 

(2.13±0.64 mg/plant) and spent FCA beads. As for root, the uptake of P was the highest 

(1.35±0.39 mg/plant) in plants treated with no Fe and spent FCA beads. The uptake of P was 

0.95±0.10 mg/plant in the plants treated with the control (Hoagland solution containing all the 

elements and no spent FCA beads). The uptake was significantly different (p = 0.001) than in the 

plants treated with no P modified Hoagland solution and spent FCA beads (0.44±0.03 mg/plant) 

and no Fe and P modified Hoagland solution and spent FCA beads (0.62±0.29). It appears that 
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additional Fe the in nutrient solution (control) decreased the uptake of P; spent FCA beads had 

sufficient Fe to replenish the nutrient solution with Fe.  

Some interesting results were observed from this study. Phosphorus uptake in the plants 

treated with spent FCA beads and modified Hoagland solution (containing no Fe and P) was 

higher (the uptake was 58% more) than in the plants treated with spent FCA beads and modified 

Hoagland solution (containing no P). It appears that excess Fe from the nutrient solution reduced 

the uptake of P. It is likely that additional Fe might have reacted with P being desorbed 

(Pierzynski, 2005). As a result, plants suffered from phosphorus deficiency. However, the spent 

FCA beads used in this study are likely to be degraded in soil over time and will be available for 

plant uptake. 

 

Figure 3.4. Average phosphate uptake in lettuce leaves and roots treated with spent FCA 

beads. Treatments are (i) No Fe + No P: Spent FCA beads and Hoagland solution containing 

no Fe and P, (ii) No P: Spent FCA beads and Hoagland solution containing no P, (iii) No Fe: 

Spent FCA beads and Hoagland solution containing no Fe, and (iv) Control (only Hoagland 

solution containing all the nutrients). The values represent the average phosphate uptake of 

four plants. Differences were determined by one-way ANOVA followed by Tukey’s pairwise 

comparison (p<0.05). Different letters above bars indicate significant differences between 

different treatments.  
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Table 3.5. Uptake of P in lettuce leaves and roots. Treatments are (i) No Fe and P: Spent FCA 

beads and Hoagland solution containing no Fe and P, (ii) No P: Spent FCA beads and Hoagland 

solution containing no P, (iii) No Fe: Spent FCA beads and Hoagland solution containing no Fe, 

and (iv) Control (only Hoagland solution containing all the nutrients). The values represent the 

average phosphate uptake of four plants. Differences were determined by one-way ANOVA 

followed by Tukey’s pairwise comparison (p<0.05). Different letters in the same column indicate 

significant differences between different treatments. 

Treatment  Uptake of P (mg/plant) 

Leaf Root 

No Fe and P 2.13±0.64b 0.62±0.29b 

No P 1.42±0.49b 0.44±0.03b 

No Fe 4.10±1.96ab 1.35±0.39a 

Control 5.51±2.03a 0.95±0.10ab 

 

3.4.4.2. Fe uptake 

Iron uptake also varied in mature lettuce leaves subjected to different treatments (Figure 

3.5). Iron uptake was the highest (0.88±0.24 mg/plant) in the plant leaves treated with no Fe and 

P and spent FCA beads (Table 3.6). The uptake was 0.85±0.23 mg/plant in the plant leaves 

treated with no P in the nutrient solution plus spent FCA beads. The uptake of iron was 

significantly higher (p = 0.004) in these two treatments compared to plants (0.32±0.10 mg/plant) 

treated with the regular Hoagland solution (Control). As for roots, the uptake of iron was 

0.21±0.03 mg/plant, 0.23±0.01 mg/plant, and 0.19±0.04 mg/plant for no Fe and P plus spent 

FCA beads, no P plus spent FCA beads and No Fe plus spent FCA beads nutrient solutions, 

respectively. The uptake was significantly higher (p = 0.000) in these three treatments than in the 

plants (0.10±0.02 mg/plant) treated with the control (regular Hoagland solution without spent 

FCA beads). 
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Figure 3.5. Average iron uptake in lettuce leaves and roots treated with spent FCA beads. 

Treatments are (i) No Fe + No P: Spent FCA beads and Hoagland solution containing no Fe 

and P, (ii) No P: Spent FCA beads and Hoagland solution containing no P, (iii) No Fe: Spent 

FCA beads and Hoagland solution containing no Fe, and (iv) Control (only Hoagland solution 

containing all the nutrients). The values represent the average iron uptake of four plants. 

Differences were determined by one-way ANOVA followed by Tukey’s pairwise comparison 

(p<0.05). Different letters above bars indicate significant differences between different 

treatments.   

Table 3.6. Uptake of Fe in lettuce leaves and roots. Treatments are (i) No Fe and P: Spent FCA 

beads and Hoagland solution containing no Fe and P, (ii) No P: Spent FCA beads and Hoagland 

solution containing no P, (iii) No Fe: Spent FCA beads and Hoagland solution containing no Fe, 

and (iv) Control (only Hoagland solution containing all the nutrients). The values represent the 

average iron uptake of four plants. Differences were determined by one-way ANOVA followed 

by Tukey’s pairwise comparison (p<0.05). Different letters in the same column indicate 

significant differences between different treatments. 

Treatment  Uptake of Fe (mg/plant) 

Leaf Root 

No Fe and P 0.88±0.24a 0.21±0.03a 

No P 0.85±0.23a 0.23±0.01a 

No Fe 0.58±0.17ab 0.19±0.04a 

Control 0.32±0.10b 0.10±0.02b 
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From the uptake pattern of lettuce plants, it is evident that plants were able to take up 

more Fe from the hydroponic solution supplemented with spent FCA beads. It is likely that Fe 

was leaching out of spent FCA beads increasing the availability of Fe in the solution. As a result, 

plants were able take up more iron from the solution.  

The spent FCA beads, which is laden with phosphate and iron, behaved as a slow release 

fertilizer and could release P and Fe into aqueous solution as P and Fe was being depleted from 

the hydroponic solution. The desorption study, which was done to mimic conditions for plant 

growth, also proved that the spent FCA beads could be used as a slow-release P and Fe fertilizer. 

However, the growth of plants under no P hydroponic solution and spent FCA beads was not 

comparable to the control. It could be attributed to either the reduced availability of P because of 

the additional Fe from hydroponic solution, or the toxic effects of excess iron in the solution. 

Additional Fe from the Hoagland solution might have reacted with P (Pierzynski, 2005) which 

formed iron phosphate compound, thereby rendering phosphate unavailable for plant uptake. 

This hypothesis is supported by the fact that a relatively better plant growth was observed under 

no P and no Fe hydroponic solution and spent FCA beads. Even phosphate uptake was higher in 

these plants compared to the plants treated with no P hydroponic solution and spent FCA beads. 

The uptake of Fe in plants was almost similar in these two treatments which disproves the 

hypothesis that the growth and the uptake of P by lettuce was affected by the toxic effects of 

excess Fe.   

3.5. Conclusions 

It is obvious that spent FCA beads were able to supply lettuce with phosphorus and iron 

to a certain extent. Even though the growth was not comparable to the control plants, the spent 

beads are promising as a slow-release fertilizer. While these spent FCA beads were not meant for 
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the primary source of phosphate and iron fertilizer, they can certainly be used as supplementary 

sources of phosphorus and iron. Therefore, FCA beads could be used for phosphate removal 

from eutrophic lakes and wastewater and then the phosphate-laden FCA beads could be applied 

directly to soil as a fertilizer. The biodegradability of the FCA beads is likely to allow the spent 

FCA beads to release adsorbed phosphorus to soils. Soil properties will determine whether 

released phosphorus will be readily available for plant uptake or not. Soil studies are needed with 

the spent beads to see the immediate availability of adsorbed phosphate to plants. The concept 

and findings from this work can be used to develop new technologies to combat eutrophication 

of waterbodies as well as to meet the rising demand of phosphate.  
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4. UPTAKE OF IRON BY SPINACH (SPINACIA OLERACEA) EXPOSED TO 

NANOSCALE IRON 

4.1. Abstract 

An experiment was conducted to evaluate the availability of iron for plant use from 

nanoscale zero-valent iron (NZVI) using spinach (Spinacia oleracea). The main purpose of this 

study was to biofortify spinach with iron, which is an essential element for both plants and 

human. In a hydroponics study, spinach was grown until maturity using three doses of iron (11, 

55 and 110 mg/L) using NZVI, microscale zero-valent iron (MZVI) and ferrous sulfate (FeSO4). 

Plants treated with bare NZVI at 55 mg/L yielded profuse biomass (78.1 mg root/plant and 674.2 

mg shoot/plant on dry weight basis) and exhibited an enhanced uptake of iron (19.77−64.9 

µg/plant) compared to the control. Because of the higher biomass, the uptake of other elements 

was high as well. The plants did not respond in the same manner when dosed with higher 

concentration (110 mg/L) of NZVI. The enhanced uptake of iron by spinach is promising and is 

likely to have implications in agronomy. 

4.2. Introduction 

Human needs various nutrients for body metabolism (Graham, 2001). Some of these 

nutrients are present in low quantities in most staple foods resulting in deficiency of these 

elements in our diet (Gomez-Galera et al., 2010). Iron deficiency is one of the most common 

nutritional deficiencies prevalent across the globe. Iron has a number of functions in the human 

body. Iron constitutes the functional core of the heme complex in hemoglobin (oxygen carrier in 

blood) and myoglobin (oxygen storage unit in muscles). It is also found in the catalytic center of 

cytochromes which perform redox reactions. Therefore, iron is vital for oxygen transport in the 

body and for energy metabolism (WHO/FAO, 1998).  
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Iron deficiency is one of the leading factors for disabilities and deaths worldwide 

(Boccio, 2003). Iron deficiency causes anemia. In the year 2011, it was estimated that around 

43% of children, 38% of pregnant women, and 29% of non-pregnant women have anemia 

worldwide, corresponding to 273 million of children, 32 million of pregnant women, and 496 

million of non-pregnant women (WHO, 2015). Children in the African Region had the highest 

proportion (62.3%) of individuals suffering from anemia while the most affected number of 

children and women resided in the South-East Asia Region, including 96.7 million of children 

and 202.0 million women of reproductive age (15-49 years) (WHO, 2015).   

Several interventions were proposed to combat iron deficiency. The most effective 

intervention to alleviate iron deficiency is dietary diversification which includes consumption of 

meat, vegetable, fish and fruits with staple foods (Gomez-Galera et al., 2010). Supplementation 

through the ingestion of micronutrients in tablet or sachets forms and food fortification through 

the addition of minerals to processed foods are other interventions proposed earlier (Gomez-

Galera et al., 2010). Biofortification is regarded to be a more efficient and cost-effective solution. 

Biofortification involves “increasing bioavailable concentrations of an element in edible portions 

of crops before harvesting” (White and Boradley, 2009). Biofortification is achieved by 

fertilization, conventional breeding and/or genetic engineering. It is also done with 

microorganisms (for example, biofortification of selenium (Se) in wheat) (Duran et al., 2013). 

The fortification of staple plants with bioavailable Fe is likely to provide a sustainable and 

economical tool to remedy Fe deficiency in target populations worldwide (Jeong and Guerinot, 

2008).  

Agronomic intervention is sometimes not efficient because iron in oxidized ferric form is 

less soluble in aerobic environments. The oxidized iron Fe (III) has a very low solubility at basic 
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pH, and high bicarbonate which leads to reduced uptake of iron by plant roots (Lucena et al., 

2007). Therefore, even though iron is the fourth abundant element in the earth’s crust, it is the 

third most limiting nutrient for plant growth (Gomez-Galera et al., 2010). Innovative iron 

fortification through soil and foliar application of iron containing compounds has been tried in 

maize, wheat, barley, common beans, oats, and leafy vegetables (e.g., spinach) (Almeelbi and 

Bezbaruah, 2014; Ortega-Blu and Molina-Roco, 2007).  

During the last decade, there has been increased interest in the application of 

nanomaterials for agronomic purposes. Nanomaterials have been used as smart delivery systems 

of fertilizers, herbicides, pesticides and plant growth regulators (Perez-de-Luque and Hermosin, 

2013). Scientists have also explored the possibility of using nanoparticles to biofortify plants. It 

is an agronomic intervention where nanoparticles are applied to enhance the growth of plants, 

thereby increasing the uptake of mineral elements. In a hydroponic study, Almeelbi and 

Bezbaruah (2014) used nanoscale zero-valent iron (NZVI) for phosphate removal and 

subsequently used the spent (phosphate-sorbed) NZVI as a source of phosphorus and iron for 

spinach and algae. They found increased growths of algae and spinach when spent NZVI was 

used as a sole source of iron and phosphorus. The iron content increased significantly in all plant 

parts (roots, stems and leaves) when spent NZVI was used as a source of iron. Iron content 

increased by 7 and 11 times in the stem and leaves of the plant of spinach as compared to the 

control. Superparamagnetic iron oxide nanoparticles (SPIONs) was taken up and translocated by 

hydroponically-grown soybean plants and increase in chlorophyll content in the plants were 

reported and no toxicity to plants was observed (Ghafariyan et al., 2013).  

Keeping all these in mind, a study was undertaken to examine whether NZVI can be used 

for iron biofortification and whether the presence of NZVI affects the availability of other 
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minerals in hydroponically grown spinach (Spinacia Oleracea). In this study, micro zero-valent 

iron (MZVI) particles were also added as a treatment for comparison purposes. This will give 

insights into the nano effects of zero-valent iron particles on the uptake of iron by plants. 

Spinach was selected for this experiment because this plant is one of the most consumed 

vegetables with global cultivation area and production of approximately 890,000 ha and 

14,000,000 tons, respectively (Citak and Sonmez, 2010). Spinach plant is fast growing, and 

readily available worldwide. It is also an important source of minerals making it an important 

crop to be studied. The hypothesis of the research is that NZVI will outperform MZVI in 

enhancing the uptake of iron because of the nano size. 

4.3. Materials and Methods 

4.3.1. Chemicals 

Iron(II) sulfate heptahydrate (FeSO4·7H2O, 99 % pure, Alfa Aesar), micro zero-valent 

iron powder (<10 micron, 99.9+%, SIGMA-ALDRICH), sodium borohydride (NaBH4, 98 %, 

SIGMA-ALDRICH)), sodium hydroxide (5 N NaOH, Alfa Aesar), HNO3 (68 %, J.T. Baker), 

methanol (production grade, BDH), ethanol (ACS grade, Mallinckrodt Chemicals), calcium 

nitrate tetrahydrate (CaNO3·H2O, Alfa Aesar), potassium nitrate (KNO3, Mallinckrodt 

Chemicals), magnesium sulfate heptahydrate (MgSO4·7H2O, Mallinckrodt Chemicals), 

magnesium nitrate hexahydrate (Mg(NO3)2·6H2O, Alfa Aesar), ammonium dihydrogen 

phosphate (NH4H2PO4, Alfa Aesar), sodium tetraborate decahydrate (Na2B4O7·10H2O, amresco), 

copper(II) sulfate pentahydrate (CuSO4·5H2O, BDH), manganese sulfate monohydrate 

(MnSO4·H2O, Mallinckrodt Chemicals), sodium molybdate dihydrate (Na2MoO4·2H2O, BTC) 

and zinc sulfate monohydrate (ZnSO4·H2O, J.T. Baker) were used as received unless otherwise 

specified. 
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4.3.2. Synthesis and preparation of NZVI 

4.3.2.1. NZVI synthesis 

NZVI particles were synthesized using sodium borohydride reduction method (Almeelbi 

and Bezbaruah, 2012). Iron (II) sulfate heptahydrate (10 g) was dissolved in 100 mL of 30% of 

methanol (30 mL methanol + 70 mL deoxygenated de-ionized (DI) water) (Solution A). The pH 

of the solution was then adjusted to 6.1 adding 5 N NaOH drop by drop.  In the meantime, 3.94 g 

of sodium borohydride was dissolved in 100 mL of deoxygenated DI water in a 100 mL 

volumetric flask (Solution B). Once the pH reached 6.1, Solution A was immediately added 

dropwise to Solution B using a burette under vigorous stirring conditions (using a magnetic 

stirrer). The combined solution was then allowed to stand for 20 min. The resultant black 

precipitates (NZVI) were centrifuged and washed with ethanol. The NZVI in slurry form was 

then dried in a vacuum oven under nitrogen environment. Finally, the dried NZVI particles were 

ground using a mortar and pestle and stored in 20 mL vials (headspace flushed with nitrogen) for 

later use. 

4.3.3. Experimental set-up for spinach study in hydroponics 

4.3.3.1. Germination and plant preparation for hydroponic experiment 

Spinach (Double Choice Hybrid, Spinacia oleracea, Burpee, Warminster, PA) seeds were 

purchased from a local outlet. Seeds were initially treated with liquid nitrogen for cracking up 

the shells for faster germination. The spinach seeds were then placed on Perlite media in Petri 

dishes and kept in the dark at room temperature (22+2 0C) for three days for germination. After 

three days, the Petri dishes were moved to a custom-made growth chamber (Figure 1) and 

germinated seedlings were allowed to grow for another three days. The seedlings were provided 
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with cool-white fluorescent light (14 h light/10 h dark cycle). The light intensity was ~100 µmol/ 

m2/s. 

4.3.3.2. Growth studies 

After 3 d of growth in the growth chamber (Figure 4.1), the spinach seedlings were ready 

for transplantation to the hydroponic growth reactors. The growth reactor (890 mL) was 18.4 cm 

tall plastic tumblers with 8.9 cm top diameter (Figure 4.2). The roots of spinach plants were 

washed with DI water before transplantation. Three spinach seedlings were then placed into a 

Styrofoam disc float (three holes in the disc float) with their roots below the disc and the shoots 

supported above with a wrap of non-absorbent cotton (Jacob et al., 2013).  

 

Figure 4.1. Growth chamber used for spinach study. The temperature and relative humidity 

was maintained at ~75 °F and ~60%. 

 

Hoagland nutrient solutions (Hoagland and Arnon, 1950) were modified according to the 

treatments of the experiment. Iron was taken out from one of the nutrient solutions different 
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doses of NZVI or MZVI were added (Table 4.1). FeSO4 was included in the treatments to serve 

as an active control. The nutrient solution which was used for negative control (Control) 

contained no iron (Table 4.1).  

   

 

Figure 4.2. (a) Spinach growth reactor (b) Schematic of the growth unit. 

 

Table 4.1. Modified Hoagland solution containing no iron (modified for this research). 

Chemicals Final concentration Important ions 

mM or µM mg/L  

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  0.5 mM 123 Mg2+, SO4
2- 

Mg (NO3)2•6H2O  0.5 mM 128 Mg2+, NO3
- 

NH4H2PO4  2 mM 230 NH4
+, H2PO4

- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O  0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

 

(b) 

Spinach seedling 

Styrofoam disc 

Hydroponic solution 

(a) 
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The experiment was a completely randomized design with three nanoparticles (NZVI) 

treatments 11, 55 and 110 mg Fe/L), three microparticles (MZVI) treatments 11, 55 and 110 mg 

Fe/L), and three ferrous sulfate treatments 11, 55 and 110 mg Fe/L), with three replicates per 

treatment for a total of 30 pots. Once the nutrient solution was transferred, the disc was then 

placed on the surface of 450 mL nutrient solution in the hydroponic growth reactors ensuring 

continuous root contact with the nutrient solution. The growth reactors were wrapped with 

aluminum foil to prevent light penetration. The nutrient solution was aerated with bubblers (at a 

rate of ~2 cm3 air/min) to provide oxygen to the roots and also to keep the nanoparticles in 

suspension (Trujillo-Reyes et al., 2014). The growth solution and NZVI/MZVI were replaced 

every five days. Light was provided in 14 h light/10 h dark cycles with cool-white fluorescent 

plant bulbs with a light intensity of ~100 µmol/m2/s.  

4.3.4. Analytical procedures 

4.3.4.1. Spinach studies 

Plants were harvested after 39 days of hydroponic growth. The harvested plants were 

washed with copious amounts of DI water and the plants were separated into three parts—the 

roots, the lower part of the aboveground portion and the upper part of the aboveground portion. 

The lower part consisted of the stem, first two leaves on the plant and the larger leaves that grew 

sideways, and the upper part consisted of the stem and the leaves not included in the lower part 

(Figure 4.3). Roots were washed with 10 mM CaCl2 solution to remove any NZVI attached to 

the root surface (Almeelbi and Bezbaruah, 2014). The harvested plant material was then dried at 

65 0C until constant weight (three plants grown in each tumbler were dried together). After 

drying, the roots, the lower part of the plants and upper part of the plants were weighed. The 
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roots yielded very less mass and were not analyzed for macro and micro elements. The samples 

were then powdered and homogenized using a mortar and pestle.   

  

  

 

 

 

 

 

Figure 4.3. Schematic of spinach plant. 

 

4.3.4.2. Macro- and micro-nutrient measurements 

The powdered plant tissues collected from hydroponic experiments were digested using 

the protocol by Jones Jr. (2001). Samples (~0.25 g) were weighed into a digestion tube and 5.0 

mL of conc. HNO3 was added. The mouth of the digestion tubes was covered with watch glasses 

and then the tubes were allowed to stand overnight. The tubes were then placed on a hot plate 

and digested at 125 0C for 1 h. The tubes were then allowed to cool to room temperature (22±2 

°C) and 3 mL of 30% H2O2 was added to the tubes. The contents were again digested at 125 0C 

until the digest was clear. The colorless digest was brought to volume adding 1:10 HNO3 and the 

solution was analyzed for P, K, Ca, Mg, Na, Zn, Fe, Mn, Cu, B using a Perkin Elmer ICP-OES 

(5300 DV Model). A control standard was run after every ten samples to check whether the 

Upper part  

Lower part  

Roots 
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values were within acceptable limits (10% of the expected values). Total N in plant tissue was 

measured using a nitrogen combustion analyzer (Vario MAX cube, Elementar Americas Inc). 

4.3.5. Statistical analysis 

All elements are reported in mg/plant or µg/plant. However, the data was transformed 

where needed using Johnson transformation and Box-cox transformation prior to statistical 

analysis to increase the homogeneity of variance. One-way analysis of variance (ANOVA) was 

performed for elements among the treatments, followed by a Tukey’s pairwise comparisons. The 

results are presented as the mean ± SD (standard deviation, n = 3).  Pearson correlation analysis 

was also performed between the elements for each treatment. Significant correlations with r > 0.5 

(therefore explaining 25% of total variation) was only considered for further discussion. All 

statistical analysis was performed on Minitab version 17. Significance was determined based on 

whether p-values <0.05 or not.  

4.4. Results and Discussion 

4.4.1. Particles characterization 

Average particles size of virgin NZVI was 16.24 ± 4.05 nm (Almeelbi and Bezbaruah, 

2012). The percentage of oxygen in the virgin NZVI was found to be 12.10%. Krajangpan et al. 

(2012) reported it as 15.66%. The presence of a very low amount (0.51%) of Na was observed in 

the virgin NZVI. Sodium (Na) was possibly left behind as a residual from sodium borohydride 

(NaBH4) used in the NZVI synthesis process.  

4.4.2. Spinach growth study 

4.4.2.1. Seed germination 

Spinach seed germination in Petri dishes started after 2 d and the percent of seed 

germination varied from 80% to 100%.  
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4.4.2.2. Plant biomass 

The similar parts (e.g., leaves) from each reactor (three each) were combined together 

after harvesting at maturity. After drying at 65 0C, the roots, the lower part of the plants and the 

upper part of the plants were weighed. The average combined weight (mg) is reported. The dry 

weight of spinach varied depending on the treatment (Figure 4.4).  

4.4.2.2.1. Roots 

In the plants treated with MZVI 110 mg/L, the weight of roots was 263.2 mg which was 

significantly higher than the control (solution not containing iron) (17.9 mg). There was a 1370% 

increase in root mass. Plants treated with NZVI 55 mg/L yielded 234.3 mg of roots; root mass 

was increased by 1208% compared to the control. Root mass was increased by 176% (biomass 

was 49.4 mg) compared to the control in the plants treated with NZVI 11 mg/L. 

 

Figure 4.4. Dry biomass of spinach exposed to NZVI, MZVI and FeSO4. Treatments are: (i) 

Control: all nutrients but Fe, (ii) NZVI 11 mg/L (iii) NZVI 55 mg/L (iv) NZVI 110 mg/L (v) 

MZVI 11 mg/L (vi) MZVI 55 mg/L (vii) MZVI 110 mg/L (viii) FeSO4 11 mg/L (ix) FeSO4 55 

mg/L (x) FeSO4 110 mg/L. Except the control, the rest of the treatments were supplemented 

with the modified Hoagland solution containing all elements but Fe. 
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4.4.2.2.2. Lower part 

In the case of lower part of the plants, plants treated with NZVI 55 mg/L and MZVI 110 

mg/L yielded 1324.8 mg (1834% increase in biomass on the control) and 1372.1 mg (1903% 

increase in biomass on the control) of biomass, respectively that were significantly higher than 

the control (68.5 mg). At NZVI 110 and 11 mg/L application, the plants produced 711.7 mg 

(939% increase in biomass on the control) and 280.9 mg (310% increase in biomass on the 

control) of biomass, respectively. 

4.4.2.2.3. Upper part 

For upper part of the plants, plants treated with NZVI 55 mg/L (698.6 mg) (2925% 

increase in biomass on the control) had significantly more biomass than in plants treated with 

NZVI 11 mg/L (147.0 mg) (536% increase in biomass on the control), MZVI 11 mg/L (210.1 

mg) (810% increase in biomass on the control), FeSO4 11 mg/L (156.1 mg) (576% increase in 

biomass on the control), FeSO4 110 mg/L (114.1 mg) (394% increase in biomass on the control) 

and the control (23.1 mg). 

4.4.3. Macro- and micro-elements analysis 

All the macro-elements and micro-elements in spinach plants were analyzed and reported 

here as mg or µg per plant (Almeelbi and Bezbaruah, 2014). Uptake of elements was calculated 

by multiplying the dry weight of plant material by the concentration (mg/kg or µg/kg) of an 

element of particular interest. 

4.4.3.1. Fe uptake 

The total uptake of iron in the upper part of spinach plant could not be compared with the 

control (hydroponic solution without iron) because the control did not yield enough dry mass for 

measurement. Therefore, the comparison was made among the three treatments (NZVI, MZVI, 
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and FeSO4) at different concentrations (Table 4.2, Figure 4.5). The uptake of iron in the upper 

part of spinach was the highest (19.77 µg/plant) in plants treated with NZVI at 55 mg/L. At the 

same concentration, iron accumulation was 11.36 and 11.27 µg/plant for MZVI and FeSO4, 

respectively. So there was 75% increase in iron uptake by plants treated with NZVI compared to 

MZVI and FeSO4 treatments. For MZVI, iron accumulation was the highest at 110 mg/L (16.46 

µg/plant), which is comparable with the highest uptake value with NZVI treatment. Enhanced 

iron uptake is directly related with the higher biomass of plants. NZVI at 55 mg/L of application 

produced the maximum biomass in spinach. NZVI at 55 mg/L and MZVI at 110 mg/L apparently 

elicited the same response from plants in terms of iron accumulation. This phenomenon could be 

attributed to the surface area of NZVI and MZVI particles and thus possible transformation to 

Fe2+ and Fe3+. The NZVI particles used in this experiment had a surface area of ~25 m2/g, 

whereas MZVI had a surface area of ~2 m2/g (Bezbaruah et al., 2009). 
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Table 4.2. Uptake* of elements in the lower part of spinach (per plant) treated with NZVI, MZVI and FeSO4. Data from P, K, S, Ca, 

Mg, Na, Fe, Cu, and B were subjected to Johnson transformation prior to statistical analysis. Differences were determined by one-way 

ANOVA followed by Tukey’s pairwise comparison (p<0.05). Different letters in the same column indicate significant differences 

between different treatments. 

Treatment P (mg) K (mg) S (mg) Ca (mg) Mg (mg) Na (mg) Zn (µg) Fe (µg) Mn (µg) Cu (µg) B (µg) 

NZVI 110 mg/L 1.7±0.4abc 28.0±9.0ab 0.97±0.24ab  2 . 8 ± 0 . 9 a  2 . 4 ± 1 . 2 a b 0 . 3 1 ± 0 . 1 1 a 50.3±11.0a 38 .9±5.8a 1 2 5 ± 5 2 a 3 . 7 ± 0 . 4 a b 5 8 ± 3 1 a b 

NZVI 55 mg/L  2 . 9 ± 0 . 9 a 48.5±14.6a 1 . 4 ± 0 . 4 a 3 . 5 ± 0 . 8 a  3 . 7 ± 1 . 2 a 0.23±0.05ab 5 8 . 2 ± 9 . 9 a 64 .9±8.4a 1 3 2 ± 2 3 a 3 . 9 ± 0 . 5 a 7 4 ± 3 2 a 
NZVI 11 mg/L 0.85±0.49abc 8.9±4.6abc 0.32±0.17abc 1.2±0.6ab  0.7±0.3abc 0.04±0.02cd 2 8 . 4 ± 1 4 . 6 12.9±6.8ab  4 2 ± 2 2 a b 2.3±1.4abc 9 ± 4 c d 

MZVI 110 mg/L 3 . 4 ± 2 . 7 a 45.6±34.1a 1 . 5 ± 1 . 1 a 4 . 0 ± 2 . 7 a  3 . 4 ± 2 . 4 a 0.22±0.07abc 4 8 . 6 ± 2 . 1 a 57.3±39.0a  1 0 1 ± 1 7 a 4 . 1 ± 0 . 5 a 2 8 ±1 7 ab c 

MZVI 55 mg/L 1.9±1.2abc 25.9±16.8abc 0.78±0.41abc 1.9±0.9ab  1.8±1.0abc 0.10±0.02abcd 46.4±14.9ab  38.0±21.4a  8 8 ± 2 8 a b 3.3±1.0abc 16±10abcd 

MZVI 11 mg/L 1.1±0.6abc 12.6±8.0abc 0.48±0.28abc 1.2±0.2ab  1.2±0.8abc 0.10±0.06abcd 40.3±30.2abc 13.0±6.4ab  74.0±61.8ab 2.6±1.3abc 1 0 ± 4 

FeSO4 110 mg/L 0.48±0.44bc  6 . 0 ± 6 . 9 b c 0.23±0.22bc  0.49±0.39b 0.44±0.46bc  0 . 0 4 ± 0 . 0 4 d 6 . 0 ± 6 . 8 b c 14.2±14.2ab 7 ± 7 b 0.83±0.73c 6 ± 6 c d 

FeSO4 55 mg/L 2 . 2 ± 1 . 0 a b 35.5±19.8ab 0.92±0.42ab  2.0±0.9ab  2 . 2 ± 1 . 1 a b 0.09±0.03abcd 37.9±19.1abc 38.6±18.9a  6 2 ± 3 9 a b 3.0±1.1abc 2 6 ±1 3 ab c 
FeSO4 11 mg/L 1.0±0.3abc 12.4±4.2abc 0.45±0.10abc 1.3±0.4ab  1.0±0.3abc 0.05±0.04bcd  33.1±7.4abc 18.2±16.0ab 5 8 ± 1 0 a b 2.8±0.3abc 1 2 ± 4 b c d 

C o n t r o l 0.18±0.13c 1 . 8 ± 1 . 0 c 0.10±0.06c 0.43±0.24b 0 . 2 ± 0 . 1 c 0.04±0.02cd 5 . 0 ± 2 . 6 c 1 . 2 ± 0 . 7 b 6 ± 3 b 0.81±0.48bc  2 ± 1 d 

*Nutrient uptake per plant was calculated by multiplying dry weight by nutrient concentrations 
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Figure 4.5. Total uptake of Mg, Na, Zn, and Fe in the upper part of plants dosed with different treatments. Treatments are: (i) 

Control: all nutrients but Fe, (ii) NZVI 11 mg/L (iii) NZVI 55 mg/L (iv) NZVI 110 mg/L (v) MZVI 11 mg/L (vi) MZVI 55 mg/L 

(vii) MZVI 110 mg/L (viii) FeSO4 11 mg/L (ix) FeSO4 55 mg/L (x) FeSO4 110 mg/L. 
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The same trend was also observed in the lower part of spinach (Table 4.3, Figure 4.6). 

The plants took up more Fe when dosed with NZVI at 55 mg/L. At that concentration, iron 

uptake was significantly higher (64.9 µg/plant) than the control (1.2 µg/plant); the uptake was 

5308% higher compared to the control. The uptake was 71% higher compared to MZVI (Fe 

uptake was 38.0 µg/plant) and 68% higher compared to FeSO4 (Fe uptake was 38.6 µg/plant). At 

11 mg/L of NZVI application, the uptake was 12.9 µg/plant, respectively. Like the upper part of 

the plant, Fe uptake was also on the higher side in the lower part of the plants treated with MZVI 

at 110 mg/L (57.3 µg/plant), which was comparable to the highest uptake with NZVI at 55 mg/L. 

At the same concentration of NZVI, Fe uptake was less in plants (38.9 µg/plant). Plants treated 

with FeSO4 at 110 mg/L (14.2 µg/plant) also showed lower uptake of Fe compared to 55 mg/L 

(38.6 µg/plant) and 11 mg/L (18.2 µg/plant) of application. Therefore, it is evident from this 

study that NZVI was able to provide spinach with needed active iron.
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Table 4.3. Uptake* of elements in the upper part of spinach (per plant) treated with NZVI, MZVI and FeSO4. Data from P, K, S, Ca, 

Mg, Na, and B were subjected to Johnson transformation and Mn data was subjected to Box-cox transformation prior to statistical 

analysis. Differences were determined by one-way ANOVA followed by Tukey’s pairwise comparison (p<0.05). Different letters in 

the same column indicate significant differences between different treatments. 

Treatment P (mg) K (mg) S (mg) Ca (mg) Mg (mg) Na (mg) Zn (µg) Fe (µg) Mn (µg) Cu (µg) B (µg) 

NZVI 110 mg/L 0.8±0.5ab 9.1±5.1ab 0.42±0.23ab 0.64±0.37ab 0.69±0.30ab 0.09±0.05a 11.5±2.6 8.5±4.5 20.4±3.5ab 1.2±0.5 12.4±8.1ab 

NZVI 55 mg/L  1.7±0.4a 20.1±5.6a 0.84±0.25a 1.11±0.09a 1.39±0.40a 0.08±0.02a 18.7±2.7 19.8±9.7 21.8±12.3ab 1.8±0.1 21.9±9.6a 
NZVI 11 mg/L 0.4±0.1ab 4.3±0.9ab 0.19±0.04ab 0.41±0.14ab 0.40±0.09ab 0.02±0.00a 13.7±6.2 3.2±0.5 26.2±17.3ab 1.2±0.3 4.9±1.0ab 

MZVI 110 mg/L 1.2±0.6ab 11.8±5.0ab 0.58±0.27ab 0.87±0.46a 0.92±0.47ab 0.09±0.02a 17.0±4.8 16.5±7.4 24.4±11.0ab 1.3±0.4 8.2±4.5ab 

MZVI 55 mg/L 0.8±0.6ab 8.4±6.5ab 0.40±0.31ab 0.47±0.36ab 0.66±0.56ab 0.06±0.03a 13.3±10.5 11.4±8.6 19.7±16.3ab 1.4±1.2 6.0±4.8ab 
MZVI 11 mg/L 0.6±0.3ab 6.2±1.7ab 0.30±0.08ab 0.46±0.20ab 0.56±0.14ab 0.05±0.05a 18.1±5.2 5.5±2.0 33.3±10.8a 1.6±0.5 4.7±1.2ab 

FeSO4 110 mg/L 0.3±0.2b 2.8±1.9b 0.13±0.10b 0.13±0.11b 0.23±0.23b 0.02±0.02a 3.4±2.4 7.0±3.6 2.1±1.6b 0.3±0.3 2.3±1.3b 

FeSO4 55 mg/L 0.9±0.5ab 9.3±5.3ab 0.44±0.25ab 0.46±0.28ab 0.72±0.41ab 0.05±0.02a 10.8±5.1 11.3±6.8 11.3±9.5ab 1.2±0.6 6.2±3.5ab 
FeSO4 11 mg/L 0.4±0.1ab 4.0±0.8ab 0.21±0.05ab 0.29±0.01ab 0.35±0.06ab 0.02±0.01a 8.5±0.8 4.7±2.6 14.2±6.8ab 1.1±0.1 3.2±0.2b 

*Nutrient uptake per plant was calculated by multiplying dry weight by nutrient concentrations 

 

 

 



 

 

 

8
4
 

  

 

 

Figure 4.6. Total uptake of B, Fe and Cu in the lower part of plants dosed with different treatments. Treatments are: (i) Control: all 

nutrients but Fe, (ii) NZVI 11 mg/L (iii) NZVI 55 mg/L (iv) NZVI 110 mg/L (v) MZVI 11 mg/L (vi) MZVI 55 mg/L (vii) MZVI 

110 mg/L (viii) FeSO4 11 mg/L (ix) FeSO4 55 mg/L (x) FeSO4 110 mg/L. 
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4.4.3.2. Element uptake 

In this study with spinach, uptake patterns of different elements were analyzed in plants 

treated with NZVI, MZVI, FeSO4 and the control (Tables 4.2 and 4.3 and Figures 4.5-4.10). 

The total uptake of all the elements varied among the treatments.  

4.4.3.2.1. P and K uptake 

The uptake of P (1.68 mg/plant) and K (20.09 mg/plant) was the highest at NZVI 55 

mg/L of application in the upper part of spinach. In the lower part of spinach, the uptake of P and 

K was higher at MZVI 110 mg/L (3.37 mg/plant) and NZVI 55 mg/L (48.5 mg/plant) of 

application compared to the control and other NZVI, MZVI and FeSO4 concentrations.  

4.4.3.2.2. Ca, Mg, and S uptake 

In the upper part of spinach, the uptake of S (0.84 mg/plant), Ca (1.11 mg/plant), and Mg 

(1.39 mg/plant) was the highest at NZVI 55 mg/L of application. In the lower part of spinach, the 

uptake of Mg was higher (3.66 mg/plant) at 55 mg/L of NZVI compared to the control and other 

NZVI, MZVI and FeSO4 concentrations. The uptake of Ca (4.02 mg/plant) and S (1.48 mg/plant) 

was higher in plants treated with MZVI at 110 mg/L of application compared to the control and 

other MZVI, NZVI and FeSO4 concentrations.  

4.4.3.2.3. Zn, Mn, Cu, B and Na uptake  

The uptake of Cu (1.78 µg/plant), Zn (18.74 µg/plant), and B (21.92 µg/plant) in the 

upper part of spinach was the highest at NZVI 55 mg/L of application. But the uptake of Mn was 

higher at MZVI 11 mg/L (33.32 µg/plant). In the lower part of spinach, the uptake of Zn, Mn, 

and B was higher at 55 mg/L of NZVI compared to the control and other NZVI, MZVI and 

FeSO4 concentrations. The uptake of Zn, Mn and B was 58.2 µg/plant, 132 µg/plant, and 74 

µg/plant, respectively. The uptake of Cu was higher (4.1 µg/plant) in plants treated with MZVI at 
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110 mg/L of application compared to other treatments. Na uptake was higher (0.31 mg/plant) at 

110 mg/L of NZVI application.  

Uptake of minerals are modulated when plants are exposed to nanoparticles (Rico et al., 

2015). The uptake of elements was influenced by the application of NZVI in this study. In the 

present study, NZVI at 55 mg/L was seen to increase the uptake of most of the elements in the 

upper and lower parts of the plants. This is directly associated with the higher yield of biomass. 

As for MZVI, with a few exceptions, the uptake of mineral elements in the upper part of the 

plants increased with increasing doses of MZVI. However, the uptake of macro- (P, K, S, Ca, 

and Mg) and micro-elements (Fe, Zn, Cu, B) showed no statistically significant differences. This 

trend was not observed for NZVI and FeSO4. For these two treatments, the general trend 

demonstrated an initial increase in total uptake followed by a decrease in the uptake; total uptake 

increased from 11 to 55 mg/L of application and then the total uptake decreased at 110 mg/L of 

application. At higher concentrations, FeSO4 and NZVI might have caused toxicity resulting in 

reduced yield of biomass, thereby decreasing the total uptake of elements.  

 

 

 



 

 

 

8
7
 

  

  
Figure 4.7. Total uptake of P, K, S and Ca in the upper part of plants dosed with different treatments. Treatments are: (i) Control: all 

nutrients but Fe, (ii) NZVI 11 mg/L (iii) NZVI 55 mg/L (iv) NZVI 110 mg/L (v) MZVI 11 mg/L (vi) MZVI 55 mg/L (vii) MZVI 

110 mg/L (viii) FeSO4 11 mg/L (ix) FeSO4 55 mg/L (x) FeSO4 110 mg/L.  
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Figure 4.8. Total uptake of Mn, Cu and B in the upper part of plants dosed with different treatments. Treatments are: (i) Control: all 

nutrients but Fe, (ii) NZVI 11 mg/L (iii) NZVI 55 mg/L (iv) NZVI 110 mg/L (v) MZVI 11 mg/L (vi) MZVI 55 mg/L (vii) MZVI 

110 mg/L (viii) FeSO4 11 mg/L (ix) FeSO4 55 mg/L (x) FeSO4 110 mg/L. 
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Figure 4.9. Total uptake of P, K, S and Ca in the lower part of plants dosed with different treatments. Treatments are: (i) Control: all 

nutrients but Fe, (ii) NZVI 11 mg/L (iii) NZVI 55 mg/L (iv) NZVI 110 mg/L (v) MZVI 11 mg/L (vi) MZVI 55 mg/L (vii) MZVI 

110 mg/L (viii) FeSO4 11 mg/L (ix) FeSO4 55 mg/L (x) FeSO4 110 mg/L. 
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Figure 4.10. Total uptake of Mg, Na, Mn, and Zn in the lower part of plants dosed with different treatments. Treatments are: (i) 

Control: all nutrients but Fe, (ii) NZVI 11 mg/L (iii) NZVI 55 mg/L (iv) NZVI 110 mg/L (v) MZVI 11 mg/L (vi) MZVI 55 mg/L 

(vii) MZVI 110 mg/L (viii) FeSO4 11 mg/L (ix) FeSO4 55 mg/L (x) FeSO4 110 mg/L.  
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Excess B in the plants treated with NZVI might have come from the NZVI used for the 

experiment. NZVI used in this experiment was synthesized using sodium borohydride method 

and boron remained in NZVI as a residual. Almeelbi and Bezbaruah (2014) characterized bare 

NZVI with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with 

energy dispersive spectroscopy (SEM/EDS) and they indicated a significant concentrations of B 

(Figure 4.11 and Table 4.4). At higher dose, NZVI might have hampered the growth of plants 

because of the higher concentration of Fe3+ ions (Ma et al., 2013). Under reduced condition, 

NZVI is oxidized to Fe2+ ions which is further oxidized to its less soluble form (Fe3+) by the 

oxidizing agents that are exuded from plant roots forming a cover of an insoluble Fe3+ compound 

on the root surface (Ma et al., 2013). This insoluble compound along with NZVI could block the 

membrane pores and appreciably reduce the efficacy of root uptake of water and nutrients. 

 

 

Figure 4.11. EDS spectrum of virgin NZVI (reproduced from Almeelbi and Bezbaruah, 2014). 
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Table 4.4. Weight percentage of elements present in virgin NZVI (reproduced from Almeelbi 

and Bezbaruah, 2014).   

Particle Type Part number* 
Weight % 

O Fe Na 

Virgin NZVI 

1 12.10 87.39 0.51 

2 10.37 89.32 0.31 

3 10.90 88.70 0.39 

*The part numbers used for analysis are identified in the SEM images  

From the study with spinach, it is very evident that the presence of iron nanoparticles 

modified the uptake of iron and other elements. The objective of this present study was to see 

whether NZVI could be used as a biofortificant for plants. It is obvious that not only 

biofortification of plants with Fe was achieved but also NZVI increased the uptake of some other 

elements. The presence of iron nanoparticles affected the uptake of iron and other elements (P, 

K, S, Ca, Mg, Zn, Fe, Mn, and Cu). NZVI also enhanced biomass growth. That NZVI increased 

the uptake of iron at 55 mg/L concomitantly increased the uptake of most of the elements in both 

upper and lower part of the plants.  

The availability of Fe from NZVI as well as from MZVI indicates that plants were able to 

use Fe using some Fe acquisition strategies. The oxidation of NZVI and its subsequent 

dissolution might have provided Fe2+/Fe3+ needed for spinach growth (Kadar et al., 2012). It is 

not clear how bare NZVI caused an increase in nutrient uptake for other elements in spinach. 

However, in a previous study with Arabidopsis thaliana, Kim et al. (2014) revealed that NZVI 

enhanced root elongation by triggering OH radical-induced cell wall loosening (degradation of 

polysaccharides occurred as a result), and that in turn increased endocytosis in root cells. This 

could be an avenue for enhanced uptake of elements in spinach. In another study, Kim et al. 

(2015) demonstrated that NZVI triggered high plasma membrane H+-ATPase activity in 

Arabidopsis thaliana, which resulted in a decrease in apoplastic pH, an increase in leaf area, and 
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also wider stomatal aperture. They attributed these phenomena to a gene called AHA2 (Plasma 

Membrane H+-ATPase gene), which exhibited enhanced expression in the roots and leaves of 

Arabidopsis thaliana. This gene is involved in rhizosphere acidification (Kim et al., 2015). In 

this study, it is likely that a combination of these factors facilitated the enhanced uptake of the 

nutrient elements.  

4.5. Conclusions 

In this study, the feasibility of using nanoscale zero-valent iron (NZVI) as a biofortificant 

was tested using spinach. The experimental results suggest that NZVI can be used as a 

biofortificant for plants. However, the dose of NZVI appeared to be an important factor for 

biofortification. It was evident from the results that spinach did not respond in the same manner 

when the plants were dosed with a higher concentration of NZVI (110 mg/L was the highest 

concentration used in this experiment). Spinach plants produced more biomass with the 

application of 55 mg/L of nanoscale zero-valent iron. The presence of bare NZVI at 55 mg/L 

enhanced the growth of plant and the uptake of iron (19.77 µg/plant and 64.9 µg/plant for upper 

and lower part, respectively) and the uptake of other elements as well. There was a ~75% and 

~70% increase in iron uptake in the part of the plants treated with NZVI compared to MZVI and 

FeSO4 treatments. NZVI at 55 mg/L of application produced the maximum biomass in spinach. 

The availability of iron from bare NZVI particles was also evident from the total uptake and 

concentration of Fe in plants. It is believed that NZVI dissolution might have given the plant 

enough ionic iron in the solution for iron acquisition. The oxidation of NZVI and subsequent 

dissolution might have provided Fe2+/Fe3+ needed for spinach growth. However, 

recommendation on the optimum dose of NZVI could not be made based on this research. 

Optimum dose of NZVI should be determined for each plant species by carrying out extensive 
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studies with specific species. The combination of plant species, type and dose of nanoparticles is 

likely to determine how a given plant will respond to a given nanoparticle. Further research is 

required to consolidate the findings and on how to apply NZVI and other nanomaterials as a 

biofortificant in agricultural fields.  
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5. UPTAKE OF IRON BY LETTUCE (LACTUCA SATIVA) EXPOSED TO NANOSCALE 

IRON  

5.1. Abstract 

Experiments were conducted to evaluate the availability of iron for plant use from 

nanoscale zero-valent iron (NZVI) using lettuce (Lactuca sativa) as a model plant. The main 

purpose of this study was to biofortify lettuce with iron. Three lettuce (Lactuca sativa) varieties 

(Iceberg, Black Seeded Simpson, and Parris Island) were hydroponically grown in a greenhouse 

with bare NZVI (100 mg/L) and spent NZVI (phosphate sorbed) (100 mg/L) as sources of iron. 

Lettuce was grown until maturity (30 days) and iron and other nutrient elements were measured 

in the harvested plants. Bare NZVI was found to enhance biomass production across the 

varieties. The uptake of Fe and some other nutrient elements were positively affected by iron 

nanoparticles. The enhanced uptake of iron by lettuce is promising and will contribute towards 

plant nutrient fortification research. 

5.2. Introduction 

Socioeconomically-developing and -developed countries alike are increasingly facing the 

difficult question of how to feed their citizen amidst a host of emerging demographic, 

environmental, and health challenges. In addition to food quantity, increased attention is being 

paid to food quality attributes, especially nutrient content (Fan and Brzeska, 2014). Nutrition 

security is a broad and complex issue that encompasses a number of dimensions. Even though 

there are other aspects of nutrition security, in developing countries nutrition security is more 

geared towards malnutrition eradication efforts that address “hunger”. Micronutrient 

malnutrition, commonly known as ‘hidden hunger’, is one of the pressing issues in many parts of 

the world and affects as many as 3 billion people across the world (Welch and Graham, 2005). 
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Malnutrition in all its forms is directly linked to 300,000 deaths per year worldwide and is 

indirectly responsible for about half of all deaths in young children in the world (Black, et al., 

2008, Black, et al., 2003, Victora, et al., 2008). The vast majority of world population live in 

poverty and lack access to a secure supply of safe and nutritious food and they do not get the 

recommended dietary allowances (RDAs) of mineral nutrients (Table 5.1). 

Table 5.1. Recommended dietary allowances (RDAs) and tolerable upper limits (ULs) for the 

five key minerals for US adults. 

Element RDA UL 

Iodine (µg/d) 150 1,100 

Iron (mg/d) 8-18 45 

Zinc (mg/d) 8-11 40 

Calcium (mg/d) 1,000-1,200 2,500 

Selenium (µg/d) 55 400 

Reproduced from FNIC, 2016  

In human nutrition, essential minerals are defined as inorganic chemical elements or their 

dissociated ions that are needed for biological or biochemical processes (Gomez-Galera, et al., 

2010). Carbon, hydrogen, nitrogen and oxygen are not included due to their abundance in 

common organic molecules. Apart from these four, there are sixteen elements which are 

considered vital for human beings (Table 5.2). Of these sixteen elements, eleven elements are 

needed in small quantities and are typically supplied to the body through various routes, and their 

deficiency is rarely seen in human. The other five elements [iodine (I), iron (Fe), zinc (Zn), 

calcium (Ca) and selenium (Se)] have limited presence in our typical foods. Therefore, it is 

highly likely that a monotonous diet will easily lead to the deficiency of these nutrients (Christou 

and Twyman, 2004). Mineral deficiency is most prevalent in developing countries, where people 

have limited access to foods in general and fresh food in particular.  
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Table 5.2. Deficiency of sixteen essential elements for human. 

Prevalence of deficiency Elements 

Deficiency is rare P, Mg, Na, K, Cl, Cu, Cr, Mn, Mo, Ni, F 

Deficiency is common Ca, Fe, Zn, I, Se 

Adapted from Gomez-Galera et al. (2010) 

Iron (Fe) deficiency is the most common nutritional deficiency. Iron has a number of 

functions in the human body and it constitutes the functional core of the heme complex in 

hemoglobin (oxygen carrier in blood) and myoglobin (oxygen storage unit in muscles). It is also 

found in the catalytic center of cytochromes which perform redox reactions. Therefore, iron is 

vital for oxygen transport in the body and for energy metabolism (WHO/FAO, 1998). Iron 

deficiency is mainly prevalent in women and children and causes anemia. It was estimated 

(2011) that around 43% of children, 38% of pregnant women, and 29% of non-pregnant women 

have anemia worldwide which correspond to 273 million of children, 32 million of pregnant 

women, and 496 million of non-pregnant women (WHO, 2015). The African Region had the 

highest prevalence (62.3%) of anemia in children while the most affected number of children and 

women resided in the South-East Asia Region, including 96.7 million of children and 202.0 

million women of reproductive age (15-49 years) (WHO, 2015).   

The most effective intervention to alleviate iron deficiency is the administration of a 

diversified diet that include fish, meat, fruit and vegetables. However, it is a challenge to provide 

such a balanced diet to a large number of people in socio-economically challenged countries. 

Food fortification and supplementation are other conventional strategies that have been adopted. 

Iron nutrition can be improved using oral supplements (usually in tablet form) or fortification 

(where iron is added to processed foods). However, these strategies are focused on a small subset 

of population. Some countries in Latin America have made wheat fortification with iron 

mandatory (Shrimpton, et al., 2005), but it involves a strong food processing and distribution 
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infrastructure as well as monitoring. Moreover, it increases the price of the product making 

fortified products unaffordable for people living in socio-economically challenged countries, 

especially people living in rural areas (Gomez-Galera, et al., 2010). Iron fortification with 

fortificants is also technically challenging because iron compounds which are easily absorbable 

in the human gut are also easily leachable (Frossard, et al., 2000).  Fortificants also tend to make 

food less palatable (Frossard, et al., 2000) . On the other hand,  fortificants which have less 

impact on the palatability aspect of the food are less absorbable (Frossard, et al., 2000).  

Biofortification has been explored as an alternative long-term solution (Zhu, et al., 2007). 

Biofortification is defined as the process of augmenting the concentrations of essential elements 

in the edible part of the plants through soil application, foliar application, fertilization with 

irrigation water or genetic improvement (Márquez-Quiroz, et al., 2015). Biofortification is also 

done with microorganisms [for example, biofortification of selenium (Se) in wheat, (Duran, et 

al., 2013)]. The fortification of staple crop plants with bioavailable iron is likely to provide a 

sustainable and economical tool to remedy iron deficiency in target populations worldwide 

(Jeong and Guerinot, 2008).  

Agronomic intervention is sometimes not efficient because iron in oxidized ferric form is 

less soluble in aerobic environments. The oxidized iron Fe (III) has a very low solubility at basic 

pH, and high bicarbonate complexation which leads to reduced uptake of iron by plant roots 

(Lucena, et al., 2007). Therefore, even though iron is the fourth abundant element in the earth’s 

crust, it is the third most limiting nutrient for plant growth (Gomez-Galera, et al., 2010). 

Innovative iron fortification through soil and foliar application of iron containing compounds has 

been tried in sorghum (Ortega-Blu and Molina-Roco, 2007), wheat (Aciksoz, et al., 2011), and 

leafy vegetables (e.g., spinach) (Almeelbi and Bezbaruah, 2014).  
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During the last decade, there has been increased interest in the application of 

nanomaterials for agronomic purposes. Nanomaterials have been used as smart delivery systems 

of fertilizers, herbicides, pesticides  and plant growth regulators (Perez-de-Luque and Hermosin, 

2013). Scientists have also explored the possibility of using nanoparticles to biofortify plants. It 

is an agronomic intervention where nanoparticles are applied to enhance the growth of plants, 

thereby increasing the uptake of mineral elements. In a hydroponic study, Almeelbi and 

Bezbaruah (2014) used nanoscale zero-valent iron (NZVI) for phosphate removal and 

subsequently used the spent (phosphate-sorbed) NZVI as a source of phosphorus and iron for 

spinach and algae. They found increased growths of spinach and algae when spent NZVI was 

used as a sole source of iron and phosphorus. The iron content increased significantly in all plant 

parts (roots, stems and leaves) when spent NZVI was used as a source of iron. Iron content 

increased by 7 and 11 times in the stem and leaves in spinach as compared to the control 

(conventional FeSO4 as the source of iron). Superparamagnetic iron oxide nanoparticles 

(SPIONs) was found to be taken up and translocated by hydroponically-grown soybean plants 

and increase in chlorophyll content in the plants were reported and no toxicity to plants was 

observed (Ghafariyan, et al., 2013). FeOx NPs and MnOx NPs (<50 pp) were found to stimulate 

the growth of lettuce seedlings by 12-54% compared to their ionic counterparts (Liu, et al., 

2016).  Zinc nanoparticles (Zn NP) have also been shown to enhance growth in rice (Oryza 

sativa) when the plants were dosed with 25 and 50 mg/L of Zn NP (Upadhyaya, et al., 2015). 

Calcium phosphate nanoparticles in association with an arbuscular mycorrhizal fungus (G. 

mosseae) and endosymbiont (P. indica) was found to enhance growth, root proliferation and 

vitality improvement properties in Zea mays (Rane, et al., 2015).  
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Keeping all these in mind, studies were undertaken to examine whether NZVI can be 

used for iron biofortification and whether the presence of NZVI affects the availability of other 

minerals in hydroponically grown lettuce (Lactuca sativa). Lettuce was selected for this 

experiment because this plant is one of the most consumed vegetables worldwide with a global 

production of about 24 million tons (FAOSTAT, 2011). Mean daily consumption of lettuce in 

Europe is 22.5 g, which corresponds to 6.5% of the total dietary intake of vegetables (WHO, 

2003). Lettuce also contains several macro-elements (e.g., K, Na, Ca and Mg) and micro-

elements (e.g., Fe, Mn, Cu, Zn and Se) which are vital for human nutrition (Kawashima and 

Valente Soares, 2003).  Fresh lettuce is eaten in salads by a large number of people in the world. 

This work will provide insights into the effects of NZVI on the uptake of Fe and other essential 

mineral elements. The premise of the work is that NZVI will trigger an enhanced uptake of Fe 

when present in the hydroponic solution as a sole source of iron.  

5.3. Materials and Methods  

5.3.1. Chemicals 

Iron(II) sulfate heptahydrate (FeSO4·7H2O, 99 % pure, Alfa Aesar), micro zero-valent 

iron powder (<10 micron, 99.9+%, SIGMA-ALDRICH), sodium borohydride (NaBH4, 98 %, 

SIGMA-ALDRICH)), sodium hydroxide (5 N NaOH, Alfa Aesar), HNO3 (68 %, J.T. Baker), 

methanol (production grade, BDH), ethanol (ACS grade, Mallinckrodt Chemicals), calcium 

nitrate tetrahydrate (CaNO3·H2O, Alfa Aesar), potassium nitrate (KNO3, Mallinckrodt 

Chemicals), magnesium sulfate heptahydrate (MgSO4·7H2O, Mallinckrodt Chemicals), 

magnesium nitrate hexahydrate (Mg(NO3)2·6H2O, Alfa Aesar), ammonium dihydrogen 

phosphate (NH4H2PO4, Alfa Aesar), sodium tetraborate decahydrate (Na2B4O7·10H2O, amresco), 

copper(II) sulfate pentahydrate (CuSO4·5H2O, BDH), manganese sulfate monohydrate 
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(MnSO4·H2O, Mallinckrodt Chemicals), sodium molybdate dihydrate (Na2MoO4·2H2O, BTC) 

zinc sulfate monohydrate (ZnSO4·H2O, J.T. Baker) and ethylenediaminetetraacetic acid, 

ammonium nitrate (NH4O3, ACS grade, Alfa Aesar), and iron(III) monosodium salt 

(FeNa(O2CCH2)2NCH2CH2N(CH2CO2)2, ACS Grade, Alfa Aesar) were used as received unless 

otherwise specified. 

5.3.2. Synthesis and preparation of NZVI 

5.3.2.1. NZVI synthesis 

NZVI particles were synthesized using sodium borohydride reduction method (Almeelbi 

and Bezbaruah, 2012). Iron (II) sulfate heptahydrate (10 g) was dissolved in 100 mL of 30% of 

methanol (30 mL methanol + 70 mL deoxygenated de-ionized (DI) water) (Solution A). The pH 

of the solution was then adjusted to 6.1 adding 5 N NaOH drop by drop.  In the meantime, 3.94 g 

of sodium borohydride was dissolved in 100 mL of deoxygenated DI water in a 100 mL 

volumetric flask (Solution B). Once the pH reached 6.1, Solution A was immediately added 

dropwise to Solution B using a burette under vigorous stirring conditions (using a magnetic 

stirrer). The combined solution was then allowed to stand for 20 min. The resultant black 

precipitates (NZVI) were centrifuged and washed with ethanol. The NZVI in slurry form was 

then dried in a vacuum oven under nitrogen environment. Finally, the dried NZVI particles were 

ground using a mortar and pestle and stored in 20 mL vials (headspace flushed with nitrogen) for 

later use. 

5.3.2.2. Spent NZVI preparation 

One gram of NZVI was added to 250 mL of phosphate solution (500 mg PO4
3--P/L) in a 

reactor. The reactor was rotated end-over-end at 28 rpm in a custom-made shaker for 24 h, and 

then the contents were centrifuged at 4000 rpm. The supernatant was separated and analyzed for 
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phosphate concentration using ascorbic acid method (Eaton, et al., 2005). The spent iron 

particles (with phosphate sorbed in and onto them) were dried in a vacuum oven under nitrogen 

environment and ground using a mortar and pestle. A measured amount of the dried spent NZVI 

particles were used for lettuce studies.  

5.3.3. Experimental set-up for lettuce study in hydroponics  

5.3.3.1. Germination and plant preparation for hydroponic experiment 

Three commercial varieties of lettuce (Lactuca sativa, Burpee, Warminster, PA) seeds, 

namely Iceberg, Black Seeded Simpson and Parris Island, were purchased from a local outlet. 

The lettuce seeds were germinated in plug trays with nonabsorbent cotton as media (Figure 5.1). 

The seeds were kept moist using automated misting nozzles in a greenhouse. The germinated 

seeds were then moved to another room and allowed to grow for ten days. The seedlings were 

fed with half strength Hoagland solution (Hoagland and Arnon, 1950) every day.  The seedlings 

were provided with cool-white fluorescent light (14 h light/10 h dark cycle). The light intensity 

was ~300 µmol/m2/s. 

 

 

Figure 5.1. (a) Lettuce seeds were germinated in a plug tray (b) Schematic of the plug tray. 

 

5.3.3.2. Growth studies 

After plants developed a root system and were at four-to-five-leaf stage, healthy plants of 

similar size were carefully removed from the plug trays and rinsed with deionized water while 

keeping the roots intact. Plants were then anchored to a Styrofoam sheet with nine holes made 

(a) (b) 
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with a hole punch. The Styrofoam was cut in a way so that it snugly fitted the opening of a 

plastic container; this was done to reduce the light entering the nutrient solution placed beneath 

the Styrofoam. Light would otherwise stimulate algal growth in the water and could modify the 

growth condition for the plants. Nine plants (three plants from each variety) were anchored 

through the holes and held in place by plugging in nonabsorbent cotton (Figure 5.2). Ten liters 

(10 L) of Hoagland nutrient solution (Hoagland and Arnon, 1950) was modified according to the 

treatments (Tables 5.3, 5.4, 5.5, and 5.6) were used (Hoagland and Arnon, 1950). The 

treatments were (1) spent NZVI plus all nutrients but Fe and P, (2) No Fe and P: all nutrients but 

Fe and P, (3) No Fe: all nutrients but Fe, (4) No P: all nutrients but P, (5) bare NZVI plus all 

nutrients but Fe, and (6) Control 4: all nutrients.  The experiment was a completely randomized 

design and the doses of bare and spent NZVI were 100 mg/L. This concentration was chosen 

based on earlier works of other scientists. Concentrations higher than 200 mg/L were found to 

pose toxicity towards cattail and hybrid poplar and concentrations around 20 mg/L did not affect 

the growth of lettuce (Ma, et al., 2014, Trujillo-Reyes, et al., 2014). It was hypothesized that 

lettuce will not be affected by this concentration of NZVI (100 mg/L) and will rather promote the 

uptake of Fe. The experiment was conducted in duplicate in 12 plastic containers and the nutrient 

solution was aerated with bubblers at a rate of ~2 cm3 air/minute. The nutrient solutions and 

nanoparticles were replaced every five days. Light was provided in 14 h light/10 h dark cycles 

with cool-white fluorescent bulbs with a light intensity of ~300 µmol/m2/s. 
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Figure 5.2. (a) Plant growth unit (b) Schematic of the growth unit.  

 

Table 5.3. Modified Hoagland solution (Hoagland and Arnon, 1950). 

Chemicals Final concentration Important ions 

mM or µM mg/L 

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  0.5 mM 123 Mg2+, SO4
2- 

Mg (NO3)2•6H2O  0.5 mM 128 Mg2+, NO3
- 

NH4H2PO4  2 mM 230 NH4
+, H2PO4

- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O   0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

FeNaEDTA 10 µM 1.69 Fe2+ 

 

 

 

(a) (b) 



 

106 

 

Table 5.4. Modified Hoagland solution containing no iron (modified for this research). 

Chemicals Final concentration Important ions 

mM or µM mg/L  

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  0.5 mM 123 Mg2+, SO4
2- 

Mg (NO3)2•6H2O  0.5 mM 128 Mg2+, NO3
- 

NH4H2PO4  2 mM 230 NH4
+, H2PO4

- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O  0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

 

Table 5.5. Modified Hoagland solution containing no phosphorus (modified for this research). 

Chemicals Final concentration Important ions 

 mM or µM mg/L  

NH4NO3  2 mM 160 NH4
+, NO3

- 

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  1 mM 246 Mg2+, SO4
2- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O   0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

FeNaEDTA 10 µM 1.69 Fe2+ 
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Table 5.6. Modified Hoagland solution containing no phosphorus and no iron (modified for this 

research). 

Chemicals Final concentration Important ions 

 mM or µM mg/L  

NH4NO3  2 mM 160 NH4
+, NO3

- 

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  1 mM 246 Mg2+, SO4
2- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O   0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

 

5.3.4. Analytical procedures 

5.3.4.1. Lettuce studies 

Plants were harvested after 30 days of hydroponic growth. The harvested plants were 

washed with copious amounts of DI water and the plants were separated into roots and leaves. 

The roots were washed with 10 mM CaCl2 solution to remove any attached NZVI but the 

nanoparticles were found difficult to be removed. Moreover, there was algae growth around root 

surfaces. Therefore, the roots were not analyzed for macro- and micro-nutrients. The fresh 

weight of leaves was taken. Three plants for each variety grown in the reactors (plastic container) 

were combined during weighing and the combined mass is reported. The chlorophyll content was 

measured after 15 days of transplantation and just before harvest (30 days) using a Minolta 

Chlorophyll Meter SPAD-502 (Minolta, Japan). Total soluble solid (TSS) content was measured 

immediately after harvesting using a hand refractometer (Model N1; Atoago, Tokyo, Japan). For 

TSS measurement, 10 g of fresh tissue from a sample was ground and the paste was squeezed 

through four-layer cotton cloth to extract juice. A few drops of juice were then dropped onto the 
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refractometer window for reading the Brix value. The results are expressed in degree Brix. The 

harvested plant material was then dried at 65 0C until constant weight. Thereafter, the samples 

were powdered and homogenized using a mortar and pestle.   

5.3.4.2. Macro- and micro-nutrient measurements 

The powdered plant tissues collected from hydroponic experiments were digested using 

the protocol by Jones Jr. (2001). Samples (~0.25 g) were weighed into a digestion tube and 5.0 

mL of conc. HNO3 was added. The mouth of the digestion tubes was covered with watch glasses 

and then the tubes were allowed to stand overnight. The tubes were then placed on a hot plate 

and digested at 125 0C for 1 h. The tubes were then allowed to cool to room temperature (22±2 

°C) and 3 mL of 30% H2O2 was added to the tubes. The contents were again digested at 125 0C 

until the digest was clear. The colorless digest was brought to volume adding 1:10 HNO3 and the 

solution was analyzed for P, K, Ca, Mg, Na, Zn, Fe, Mn, Cu, B using a Perkin Elmer ICP-OES 

(5300 DV Model). A control standard was run after every ten samples to check whether the 

values were within acceptable limits (10% of the expected values). Total N in plant tissue was 

measured using a nitrogen combustion analyzer (Vario MAX cube, Elementar Americas Inc). 

5.3.5. Statistical analysis 

All elements are reported in mg/plant or µg/plant. However, the data was transformed 

where needed using Johnson transformation and Box-cox transformation prior to statistical 

analysis to increase the homogeneity of variance. One-way analysis of variance (ANOVA) was 

performed for elements among the treatments, followed by a Tukey’s pairwise comparisons. 

Means of the results are reported. Pearson correlation analysis was also performed between the 

elements for each treatment. Significant correlations with r > 0.5 (therefore explaining 25% of 
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total variation) was only considered for further discussion. All statistical analysis was performed 

on Minitab version 17. Significance was determined based on p-values <0.05.  

5.4. Results and Discussion 

5.4.1. Particles characterization 

Average particles size of virgin NZVI was 16.24 ± 4.05 nm (Almeelbi and Bezbaruah, 

2012). The percentage of oxygen in the virgin NZVI was found to be 12.10%. Krajangpan et al. 

(2012) reported it as 15.66%. The presence of a very low amount (0.51%) of Na was observed in 

the virgin NZVI. Sodium (Na) was possibly left behind as a residual from sodium borohydride 

(NaBH4) used in the NZVI synthesis process.  

5.4.2. Plant germination and growth 

Lettuce seed germination done on a plug tray was almost 100%. After the harvest, the 

similar parts (e.g., leaves) from each reactor (three plants each for each variety) were combined 

together and were weighed immediately. The average weight (g) is reported here. The dry weight 

is also shown in Table 5.7. 

5.4.2.1. Leaf growth 

The fresh weight of lettuce plants varied depending on the treatment (Figures 5.3 and 

5.4). In the plants treated with bare NZVI, the average weights of fresh leaves were 82.3, 52.5, 

and 77 g/plant for Iceberg, Black Seeded Simpson and Parris Island, respectively. The 

corresponding values for the control (all the nutrient elements) were 71.5, 54.8, and 63.8 g/plant, 

respectively. Bare NZVI treatment resulted in increase in fresh weight of the lettuce by ~15% 

and ~21% for Iceberg and Parris Island, respectively compared to the control. However, fresh 

weight of NZVI-treated Black Seeded Simpson decreased by 4% compared to the control. 

However, the difference between these two treatments was not statistically significant. In the 
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plants treated with spent NZVI (phosphate sorbed), the average weights of fresh leaves were 5.3, 

0.8, and 4.2 g/plant for Iceberg, Black Seeded Simpson, and Parris Island, respectively. The 

corresponding values for No Fe and P (all nutrients but Fe and P) were 1.9, 0.3, and 1.4 g/plant. 

The values for No P (all nutrients without P) were 3.6, 0.5, 1.4 g/plant for Iceberg, Black Seeded 

Simpson and Parris Island, respectively. The fresh weight of lettuce plants treated with bare 

NZVI and the control were significantly higher across the varieties than in the plants treated with 

other treatments (No Fe and P, No Fe, No P and spent NZVI). Spent NZVI, which contains Fe in 

nano form and sorbed P, did better compared to No Fe and P, and No P, but the differences were 

not statistically significant. This suggests that the plant nutrients were available for plant uptake, 

but not to the point of being comparable to the plants grown with all regular nutrient elements 

(Control). 

 

Figure 5.3. Lettuce biomass under different treatments after 30 days of hydroponic growth. 

Treatments are: (i) Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but 

Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but Fe, (v) No P: all 

nutrients but P, and (vi) Control: all nutrients.  

Spent 

NZVI 

No Fe 

and P 
No Fe Bare 

NZVI 
No P Control  
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Figure 5.4. Average weights of lettuce leaves biomass after 30 days of hydroponic growth. 

Treatments are: (i) Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but 

Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but Fe, (v) No P: all 

nutrients but P, and (vi) Control: all nutrients. The values represent the average weight of three 

plants grown for each variety in each container. Different letters indicate significant 

differences between different treatments within the same variety. There were significant 

differences between bare NZVI treatment and No Fe and P, No Fe and No P. Differences were 

determined by one-way ANOVA followed by Tukey’s pairwise comparison. 
 

Table 5.7. Average dry weights of lettuce leaves biomass after 30 days of hydroponic growth. 

Treatments are: (i) Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe 

and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but Fe, (v) No P: all 

nutrients but P, and (vi) Control: all nutrients. The values represent the average weight of three 

plants grown for each variety in each container. 

Treatment Iceberg Black Seeded Parris Island 

Spent NZVI + all nutrients but Fe and P 1.13 0.26 0.89 

No Fe and P 0.57 0.10 0.53 

No Fe 1.16 0.34 0.99 

Bare NZVI + all nutrients but Fe 4.62 3.06 3.45 

No P 0.63 0.28 0.51 

Control 3.54 2.68 2.85 

 

There are conflicting reports in the literature about the effects of NZVI on plant growth. 

Some researchers demonstrated that NZVI can enhance the growth of plants (Almeelbi and 
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Bezbaruah, 2014, Kadar, et al., 2012). Other researchers reported the toxic effects of NZVI on 

plants (Ma, et al., 2013, Wang, et al., 2016). It is evident that in most of the cases these scientists 

worked with different species of plants (rice, spinach, lettuce, algae, cattail, etc.) and applied 

different doses of NZVI (10 mg/L, 20 mg/L, 200 mg/L, etc.). Plants exhibit a wide variety of 

responses towards nanoparticles which accounts for the contradictory reports about the toxicity 

of nanoparticles (López-Moreno, et al., 2010, Navarro, et al., 2008, Wang, et al., 2016).  

In the present experiment, enhanced growth was observed in Iceberg and Parris Island 

varieties treated with bare NZVI compared to plants treated with the control (containing all the 

nutrient elements). These findings could be corroborated by the findings of Almeelbi and 

Bezbaruah (2014). Almeelbi and Bezbaruah (2014) studied the impacts of spent NZVI 

(phosphate sorbed) on spinach (Spinacia oleracea) and revealed that spent NZVI increased the 

roots and shoots of spinach by ~3.5 times compared to control (which contained all nutrients 

required for plant growth but no NZVI). The findings of this present experiment are also in line 

with the findings of Kadar et al. (2012); marine microalgae Tetraselmis suecica demonstrated 

30% higher growth rate in the presence of NZVI (Kadar, et al., 2012). NZVI was also found to 

enhance the root elongation of Arabidopsis thaliana (Kim, et al., 2014). On the other hand, 

Trujillo-Reyes et al. (2014) used 10 and 20 mg/L concentrations of core-shell structured 

nanoscale materials (Fe/Fe3O4), and found no positive or negative effects on the length of roots 

and on the biomass of lettuce. Ma et al. (2013) varied the doses of NZVI in hydroponics and 

demonstrated that NZVI at lower concentrations (25-50 mg/L) enhanced plant growth in cattail 

(Typha latifolia) biomass. However, it triggered toxicity in plants at concentrations higher than 

200 mg/L; NZVI was found to reduce plant growth and biomass in cattail and hybrid poplar 

(Populous deltoids × Populous nigra). NZVI at higher concentrations (>200 mg/L) also reduced 
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transpiration rate in hybrid poplar. The decrease in transpiration was attributed to the formation 

of iron plaque on the root surface that might have reduced water uptake and to the significantly 

less number of leaves in plants (Ma, et al., 2013).  

In a soil study, Wang et al. (2016) used 0, 100, 250, 500, 750 and 1000 mg/kg of NZVI to 

investigate its effects on germination, seedlings growth, and physiology as well as toxicity on 

rice (Oryza sativa). They found no effects of NZVI on germination, but seedlings’ growth was 

found to be affected in higher concentrations (>500 mg/kg). The plants were noticeably shorter 

than the controls and the seedlings exhibited visible signs of chlorosis. At 1000 mg/kg of NZVI, 

they observed reduction in fresh weight of the root and shoot tissues by 46.8% and 22.8%, 

respectively. Visible symptoms of iron deficiency in plants were observed at higher 

concentrations (>500 mg/kg) of NZVI. The deficiency was induced by the apparent blocking of 

active iron from the root to the shoot as the cortex tissues were seriously damaged by NZVI 

applied in the soil (Wang, et al., 2016). Wang et al. (2016) also opined that the effect of NZVI on 

plant growth is dependent on the culture conditions and plant species. From the present 

experiment and the previous experiments conducted by other researchers it appears that the 

impact of NZVI is dependent on plant species as well as varieties. 

5.4.2.2. Root growth 

The fresh weight of lettuce roots also varied depending on the treatment and followed the 

same trend like leaves (Figure 5.5). In the plants treated with bare NZVI, the average weights of 

fresh roots were 7.04, 4.10, and 6.14 g/plant for Iceberg, Black Seeded Simpson and Parris 

Island, respectively. The corresponding values for the control, which contained all the nutrient 

elements, were 5.60, 4.25, 4.84 g/plant, respectively. Bare NZVI treatment resulted in increase in 

fresh weight of the lettuce roots by ~26% and ~27% for Iceberg and Parris Island, respectively, 
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compared to the control. However, fresh weight of roots of bare NZVI-treated Black Seeded 

Simpson decreased by ~3% compared to the control. In the plants treated with spent NZVI, the 

average weights of fresh roots were 0.41, 0.04, 0.26 g/plant for Iceberg, Black Seeded Simpson, 

and Parris Island, respectively. The fresh weight of lettuce roots treated with bare NZVI and the 

control were significantly higher across the varieties than in the plants treated with other 

treatments (No Fe and P, No Fe, No P and spent NZVI). 

 

Figure 5.5. Average root biomass weights of lettuce after 30 days of hydroponic growth. 

Treatments are: (i) Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but 

Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but Fe, (v) No P: all 

nutrients but P, and (vi) Control: all nutrients. The values represent the weight of three plants 

grown for each variety in each container. Different letters indicate significant differences 

between different treatments within the same variety. Differences were determined by one-

way ANOVA followed by Tukey’s pairwise comparison. 

 

5.4.2.3. Chlorophyll content 

The chlorophyll content of the leaves was measured by Minolta SPAD-502 Chlorophyll 

Meter (Spectrum Technologies, Plainfield, Ill.) 15 days after transplantation into the hydroponic 

solution and just before harvest. The SPAD-502 provides an alternative method for the 

b
b

b

a

b

a

b b b

a

b

a

b b
b

a

b

a

0

2

4

6

8

Spent NZVI No Fe and P No Fe Bare NZVI No P Control

A
ve

ra
ge

 b
io

m
as

s,
 g

/p
la

n
t

Treatment

Iceberg Black Seeded Simpson Parris Island



 

115 

 

measurement of chlorophyll. A good correlation was reported between SPAD 502 readings and 

spectrophotometric chlorophyll content of leaves (Hawkins, et al., 2009, Ling, et al., 2011).  

After 15 days of transplantation, the chlorophyll content was higher in Iceberg variety 

treated with bare NZVI (51.1 SPAD unit) compared to No Fe and P (30.3 SPAD unit), No Fe 

(16.8 SPAD unit) and the control (33.1 SPAD unit) (Figure 5.6). The chlorophyll content in 

lettuce plants with spent NZVI treatment (42.0 SPAD unit) was comparable with bare NZVI 

treatment. However, there was a significant difference between spent NZVI and bare NZVI in 

terms of fresh weight of lettuce leaves. It is likely that the chlorophyll content is more 

concentrated in the plants treated with spent NZVI that yielded less biomass. No significant 

differences in chlorophyll content were observed for other two varieties (Black seeded  

 

Figure 5.6. Average chlorophyll content of lettuce leaves after 15 days of hydroponic growth. 

Treatments are: (i) Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but 

Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but Fe, (v) No P: all 

nutrients but P, and (vi) Control: all nutrients. The values represent the average chlorophyll 

content (SPAD Unit) of three plants grown for each variety in each container. Different letters 

indicate significant differences between different treatments within the same variety. There 

were significant differences between bare NZVI treatment and No Fe and P, No Fe and the 

control for Iceberg variety. No significant differences were observed for other two varieties 

between bare NZVI and control. Differences were determined by one-way ANOVA followed 

by Tukey’s pairwise comparison. 
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and Parris Island) treated with bare NZVI, spent NZVI and the control. That bare and spent 

NZVI increased the chlorophyll content in Iceberg variety is in agreement with the findings of 

others (Almeelbi and Bezbaruah, 2014, Wang, et al., 2016). Almeelbi and Bezbaruah (2014) 

reported that bare NZVI and spent NZVI (with phosphate sorbed) enhanced the Chlorophyll A 

(Chl. A) content substantially in Selenastrum capricornutum (a common green algae). In a 

hydroponic study with ginger (Zingiber officinale), Siva and Benita (2016) observed that iron 

oxide nanoparticles at 100 mg/L increased chlorophyll content in ginger leaves compared to 

plants treated with FeEDTA. On the other hand, Trujillo-Reyes et al. (2014) used 10 and 20 

mg/L concentrations of core-shell nanoscale materials (Fe/Fe3O4), and observed no effects on the 

chlorophyll content of Lactuca sativa. Comparison of work by Almeelbi and Bezbaruah (2014), 

Siva and Benita (2016), and the current research leads to the conclusion that iron nanoparticles in 

zero-valent (Fe0) form affects chlorophyll content in plants. 

When compared with 15 days data, after 30 days of hydroponic growth, the chlorophyll 

content in Iceberg (44.4 SPAD unit) and Parris Island (35.7 SPAD unit) varieties decreased but 

the content increased in Black Seeded Simpson (27.4 SPAD unit) with the bare NZVI treatment 

in comparison with the control (56.0, 21.4 and 44.2 SPAD unit for Iceberg, Black Seeded and 

Parris Island varieties), where chlorophyll content increased across the varieties. However, the 

differences between bare NZVI and the control were not statistically significant (Figure 5.7). 

That chlorophyll content increased in Black Seeded Simpson and decreased in Iceberg and Parris 

Island varieties with time in the presence of NZVI could possibly be explained by maturity time 

of the three varieties. Iceberg and Parris Island varieties might have matured earlier than Black 

Seeded Simpson in the presence of NZVI. Chlorophyll content of certain species increases until 

maturity and then it decreases (Yang, et al., 2013). It is ascribed to the breaking down of the 
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proteins of the chloroplasts owing to the shortage of carbohydrates in the plant (Singh and Rao, 

1937). That chlorophyll content was high in Iceberg and Parris Island varieties in the middle of 

the growth period compared to maturity stage is in agreement with the findings of Pinto et al. 

(2014). In their experiment with lettuce, the chlorophyll content was found to decrease in an age-

related manner (Pinto, et al., 2014). In this work, there were no statistically significant 

differences observed among bare NZVI, spent NZVI and the control treatments across the 

varieties. Chlorophyll contents in No Fe and P (nutrient solution with no Fe and P) and No Fe 

(nutrient solution with no Fe) were significantly lower than most of the treatments; plants did not 

have Fe in the solution which is needed to synthesize chlorophyll and photosynthetic apparatus 

(Meharg and Marschner, 2012).  

 

Figure 5.7. Average chlorophyll content of lettuce leaves after 30 days of hydroponic growth. 

Treatments are: (i) Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but 

Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but Fe, (v) No P: all 

nutrients but P, and (vi) Control: all nutrients. The values represent the average chlorophyll 

content (SPAD Unit) of three plants grown for each variety in each container. Different letters 

indicate significant differences between different treatments within the same variety. There 

were no significant differences between bare NZVI treatment and the control for Iceberg, 

Black Seeded and Parris Island varieties. Differences were determined by one-way ANOVA 

followed by Tukey’s pairwise comparison. 
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5.4.2.4. Total soluble solids (TSS) content 

Total soluble solid (TSS) was measured (as 0Brix) for all the varieties immediately after 

the harvest for two treatments (bare NZVI and the control) (Figure 5.8, Table 5.8). 0Brix values 

were 4.6±0.8, 4.8±1.0 and 4.7±0.8 for Iceberg, Black Seeded and Parris Island varieties, 

respectively, treated with bare NZVI. The corresponding values were 4.4±0.6, 6.2±1.0, and 

4.2±0.5 for three varieties treated with the control (all nutrients including Fe but no NZVI). The 

plants treated with other treatments did not produce enough plant tissues which made it 

impossible for the plants to be tested for TSS. TSS in plant sample (measured as 0Brix) indicate 

the percentage of dissolved solids contained in the juice prepared from plant biomass and is an 

indicator of sugar content. A decrease in soluble solids is attributed to sugar consumption 

through respiration (Moreira, et al., 2006). 

 

Figure 5.8. Average 0Brix content in lettuce leaves after 30 days of hydroponic growth. 

Treatments are: (a) Bare NZVI + all nutrients but Fe, (b) Control: all nutrients. Two sample t-

tests were performed to see the difference. Statistically significant difference at 5% level of 

significance was observed only for Black Seeded Simpson variety. 

 

0.0

2.0

4.0

6.0

8.0

Iceberg Black Seeded Parris Island

0
B

ri
x 

co
n

te
n

t

Lettuce variety

Bare NZVI Control



 

119 

 

Table 5.8. Total soluble solid (TSS) for three varieties at harvest. Treatments are: (a) Bare NZVI 

+ all nutrients but Fe, (b) Control: all nutrients. Two sample t-tests were performed to see the 

difference. Statistically significant difference was observed only for Black Seeded Simpson 

variety. 

Sample TSS (0Brix) 

Iceberg Black Seeded Parris Island 

Plant treated with Bare NZVI 4.6±0.8 4.8±1.0 4.7±0.8 

Control 4.4±0.6 6.2±1.0 4.2±0.5 

Significance NS * NS 

*Significant at 5% level of significance  

Higher values of 0Brix indicate the health and expression of the plant’s genetic potential 

(Franquera, 2015). Lettuce having values of 8, 6, and 4 0Brix are good, average and poor in 

quality, respectively (Harrill, 1994). The plants tested for 0Brix from three varieties had values 

falling between average and poor in terms of quality. Statistically significant difference (p = 

0.041) was observed between bare NZVI and the control (all nutrients but no NZVI) for Black 

Seeded Simpson Variety. No statistically significant differences were observed between plants 

treated with bare NZVI and the control (all nutrients) for Iceberg (p = 0.761) and Parris Island (p 

= 0.169) varieties (Table 5.8). Therefore, it appears that bare NZVI had little effect on the total 

soluble solids content of lettuce. 

5.4.3. Macro- and micro-elements analysis 

All the macro- and micro-elements in mature lettuce were analyzed and reported here as 

mg or µg per unit mass of plant. Uptake of elements was calculated by multiplying the dry 

weight of plant material by the concentration (mg/kg or µg/kg) of an element of particular 

interest. 
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5.4.3.1. Fe uptake  

5.4.3.1.1. Iceberg variety 

The uptake of iron in Iceberg variety was higher in plants treated with bare NZVI and 

spent NZVI compared to the control (all nutrients). Iron accumulation was ~56% and ~32% 

more for bare NZVI and spent NZVI compared to the control. Iron uptake in plants treated with 

bare NZVI and spent NZVI were 510.3 µg/plant and 432.0 µg/plant, respectively. The uptake of 

iron by No Fe and P, No Fe, and No P were 52.5, 43.9, and 77.2 µg/plant, respectively (Table 

5.9 and Figure 5.9). The control had 327.5 µg Fe/plant which was higher than the plants treated 

with No Fe and P (all nutrients but Fe and P), No Fe (all nutrients but Fe), and No P (all nutrients 

but P). It is evident that there was a marked difference in Fe uptake between bare NZVI and the 

control.   
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Table 5.9. Uptake of elements per plant (Iceberg variety) during the growth period. Treatments are: (i) Spent NZVI + all nutrients but 

Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but Fe, (v) No P: 

all nutrients but P, and (vi) Control: all nutrients. Data from total N, P, K, S, Ca, Mg, Na, Fe, Cu, and B were Johnson transformed 

before statistical analysis. Differences were determined by one-way ANOVA followed by Tukey’s pairwise comparison. Different 

letters in the same column indicate significant differences between different treatments. 

Treatment Total N (mg) P (mg) K (mg) S (mg) Ca (mg) Mg (mg) Na (mg) Zn (µg) Fe (µg) Mn (µg) Cu (µg) B (µg) 

Spent NZVI 35±19a 0.76±0.47b  3 2 ± 2 1 b 1.6±0.9b 5.5±3.7a 2 . 7 ± 1 . 6 a 1.5±1.2a 6 0 ± 3 2 b 432±269a 1 5 2 ± 8 3 b 3.8±1.3a 1 0 0 ± 7 0 a b 

No Fe and P 24±12a 0.42±0.19b  3 8 ± 1 2 a b 3.2±1.4ab  4.7±1.9a 1 . 8 ± 0 . 8 a 1.2±0.6a 196±64ab 5 2 ± 1 a 3 5 9 ± 6 a b 6.1±2.6a 3 3 ± 1 8 b 

No Fe 52±52a 8.3±8.6ab 7 9 ± 6 7 a b 3.7±1.6ab  11.2±6.9a 4 . 3 ± 2 . 9 a 2.9±1.8a 238±75ab 4 4 ± 1 7 a 385±128ab 6.3±4.3a 6 3 ± 4 3 a b 

Bare NZVI 236±25a 39.7±2.5a 3 5 8 ± 2 2 a 9.9±1.0a 28.8±10.1a 12.5±1.9a 12.2±4.9a 233±22ab 5 1 0 ± 1 5 a 309±130ab 27.7±6.6a 2146±1178a 

No P 27±14a 0.39±0.20b  3 2 ± 1 3 a b 2.6±0.7ab  4.5±1.6a 1 . 8 ± 0 . 7 a 1.1±0.4a 1 4 4 ± 6 4 b 7 7 ± 7 2 a 288±116ab 5.2±2.7a 3 0 ± 1 4 b 

Control 173±38a 23.4±5.3ab 255±18ab 8.7±2.0a 24.4±2.9a 11.0±0.5a 2.4±0.0a 3 5 6 ± 1 1 a 328±108a 5 9 1 ± 9 1 a 24.8±5.0a 1 1 6 ± 2 a b 
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Figure 5.9. Total uptake of Zn, Mn, Fe, and B in Iceberg variety exposed to different treatments. Treatments are: (i) Spent NZVI + 

all nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients 

but Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. 
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5.4.3.1.2. Black seeded simpson variety 

The uptake of iron in Black Seeded Simpson variety was higher in plants treated with 

bare NZVI (380.67 µg/plant) compared to the control (all nutrients) (234.09 µg/plant). However, 

iron uptake was lower in plants treated with spent NZVI (124.53 µg/plant) in comparison with 

the control. The iron uptake increased by ~63% in plants treated with bare NZVI compared to the 

control. Total iron accumulation was 31.4, 21.8, and 70.2 µg/plant for No Fe and P, No Fe and 

No P treatments, respectively (Table 5.10 and Figure 5.10). 

5.4.3.1.3. Parris island variety 

In Parris Island variety, iron accumulation was higher (322.68 µg/plant) in plants dosed 

with bare NZVI compared to No Fe and P (40.51 µg/plant), No Fe (54.87 µg/plant), No P (58.42 

µg/plant), the control (243.71 µg/plant), and spent NZVI (224.01 µg/plant) (Table 5.11 and 

Figure 5.11). There was a ~32% difference in Fe accumulation between bare NZVI treated 

plants and plants treated with the control (all nutrients). Iron uptake from spent NZVI was 

comparable with the control (all nutrients).  

Plants treated with spent NZVI had more iron than in plants treated with No Fe and P, No 

Fe, No and the control. It is evident from this study that bare NZVI was not only able to supply 

required iron to all the varieties of lettuce but also induced an enhanced uptake of iron. Trujillo-

Reyes et al. (2014) also observed an enhanced uptake of Fe in lettuce root treated with nanoscale 

iron oxide compounds (10 and 20 mg/L) which were significantly higher compared to the control 

(Millipore water). In the present study, spent NZVI supplied plants with iron but the biomass 

production was significantly lower compared to plants treated with bare NZVI and the control 

(Figures 5.9, 5.10 & 5.11). In a soil study, Wang et al. (2016) found an increased uptake of iron 

by rice plant treated with 1000 mg NZVI/kg soil compared to control (no NZVI applied in soil). 
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However, the uptake was high in the roots of rice confirming the translocation of iron from soil 

to roots but not from roots to shoots. It is believed that iron nanoparticles in the root cannot cross 

the endodermis because of the casparian strip and the deposition of suberin between radial cell 

walls, which is characteristic of the endothermal cells and vitally important for the protection of 

the plant (Esau, 1977). In the present experiment, significant uptake was found in the upper part 

of the plants treated with bare NZVI; this is in contrast with the findings of Wang et al. (2016). 

That NZVI enhanced the uptake of Fe indicates an alternative route for the acquisition of Fe by 

lettuce. It is possible that plants just used the route it usually takes to take up iron (as ions) from 

the hydroponic solution. NZVI dissolution might have given the plant enough ionic iron in the 

solution and as a result obviated any need for plants taking other routes of iron acquisition.  
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Table 5.10. Uptake of elements per plant (Black Seeded variety) during the growth period. Treatments are: Treatments are: (i) Spent 

NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all 

nutrients but Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. Data from P, K, S, Ca, Mg, Na, Zn, Fe, Mn, Cu, and B 

were Johnson transformed before statistical analysis. Differences were determined by one-way ANOVA followed by Tukey’s pairwise 

comparison. Different letters in the same column indicate significant differences between different treatments. 

Treatment P (mg) K (mg) S (mg) Ca (mg) Mg (mg) Na (mg) Zn (µg) Fe (µg) Mn (µg) Cu (µg) B (µg) 

Spent NZVI 0 .2±0.0bc 9 ± 0 a b 0.53±0.03b 1 .6 ±0 . 0 a 0.99±0.04ab 0.4±0.0bc 1 9 ± 2 b 1 2 4 ± 2 2 a b 3 7 ± 6 a 1.40±0.02a 3 7 ± 0 a b 

No Fe and P 0 . 1 ± 0 . 0 c 7 ± 2 b 0.77±0.22ab 1 .0 ±0 . 1 a 0.46±0.02b 0 . 2 ±0 .0 c 4 2 ± 1 6 a b  3 1 ± 2 4 a b 2 2 7 ± 1 8 9 a 5.63±4.13a 2 4 ± 1 2 a b  

N o  F e 2.3±2.0abc 2 7 ± 2 6 a b 1.99±1.87ab 2 .0 ±1 . 5 a 1.01±0.68ab 0.4±0.3bc 1 4 5 ± 1 4 5 a b 2 2 ± 9 b 3 5 8 ± 3 5 5 a 3.52±3.61a 1 7 ± 1 0 b 

Bare NZVI 27.5±13.1a 2 0 5 ± 7 6 a 9.08±3.58a 17.9±8.1a 9.24±4.45a 7 . 4 ±2 .7 a 2 0 0 ± 1 1 7 a b 3 8 1 ± 2 6 1 a 2 2 6 ± 1 8 3 a 19.19±11.18a 1 4 5 8 ± 8 2 8 a 

N o  P 0.3±0.0abc 1 6 ± 1 a b 1.79±0.42ab 2 .2 ±0 . 0 a 1.14±0.03ab 0.6±0.1bc 7 1 ± 2 0 a b  7 0 ± 4 3 a b 1 2 9 ± 5 5 a 2.92±0.27a 2 2 ± 0 a b 

C o n t r o l   19.2±4.2ab 1 6 8 ± 3 3 a b 7.96±0.76a 18.5±9.4a 8.99±1.88a 1.6±0.7ab 2 8 4 ± 9 8 a  2 3 4 ± 9 8 a b 4 4 6 ± 1 7 2 a 21.06±0.25a 1 0 4 ± 3 8 a b 

Table 5.11. Uptake of elements per plant (Parris Island variety) during the growth period. Treatments are: (i) Spent NZVI + all 

nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients but 

Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. Data from Total N, P, K, S, Ca, Mg, Na, Mn, Cu, and B were Johnson 

transformed and Zn and Fe were subjected to Box-cox transformation prior to statistical analysis. Differences were determined by 

one-way ANOVA followed by Tukey’s pairwise comparison. Different letters in the same column indicate significant differences 

between different treatments. 

Treatment Total N (mg) P (mg) K (mg) S (mg) Ca (mg) Mg (mg) Na (mg) Zn (µg) Fe (µg) Mn (µg) Cu (µg) B (µg) 

Spent NZVI 3 0 ± 1 a b 0.5±0.0ab 1 8 ± 2 b 1.1±0.2c 3.3±0.1ab 1.6±0.2a  1.1±0.1b 3 0 ± 6 c 2 2 4 ± 4 7 a b 6 2 ± 1 2 c 4 . 8 ± 2 . 9 a 7 2 ± 2 0 a b c 

No Fe and P 2 3 ± 4 b 0 . 4 ± 0 . 1 b 2 6 ± 1 0 a b 2.9±0.9b 3.8±0.9ab 1.4±0.3a  1.0±0.2b 1 3 8 ± 6 9 a b 4 0 ± 1 9 b 3 0 0 ± 2 0 3 a b c  5 . 9 ± 1 . 8 a 2 7 ± 4 b c 

No Fe 4 3 ± 2 a b 7.8±0.3ab 7 3 ± 3 a b  4.0±0.4ab 10.3±2.1ab 4.5±0.4a  2.3±0.4ab 2 7 5 ± 4 4 a b 5 5 ± 2 2 a b 5 1 4 ± 7 7 a b 7 . 4 ± 0 . 5 a 6 2 ± 1 1 a b c 

Bare NZVI 1 9 2 ± 8 6 a 3 9 ± 2 3 a 267±126a 9 ± 5 a 18.4±5.8ab 1 0 . 6 ± 4 . 2 a 11.7±6.3a 2 0 9 ± 1 1 9 a b  3 2 3 ± 1 7 4 a 1 8 9 ± 1 0 5 a b c  27.1±15.8a 1 1 2 0 ± 3 4 4 a 

No P 2 2 ± 9 b 0 . 4 ± 0 . 1 b 2 1 ± 7 a b  2.4±0.3bc 3 . 4 ± 0 . 8 b 1.5±0.4a  1.0±0.0b 8 9 ± 2 9 b c 5 8 ± 3 8 a b 1 4 4 ± 2 6 b c 4 . 4 ± 1 . 2 a 2 5 ± 8 c 

Control  1 3 2 ± 2 3 a 2 1 ± 6 a b 176±24ab 1 0 ± 2 a 25.6±8.0a 1 1 ± 3 a 2.6±1.0ab 3 9 0 ± 2 2 a 2 4 4 ± 1 2 4 a b  6 5 7 ± 7 5 a 18.6±3.5a 1 1 8 ± 4 5 a b 
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Figure 5.10. Total uptake of Fe, B, and Mn in Black Seeded Simpson variety dosed with different treatments. Treatments are: (i) 

Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI 

+ all nutrients but Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. 
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Figure 5.11. Total uptake of Zn, Mn, Fe and B in Parris Island variety dosed with different treatments. Treatments are: (i) Spent 

NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all 

nutrients but Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. 
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5.4.3.2. Element uptake 

While high Fe uptake was observed when plants were exposed to NZVI, it would be 

prudent to analyze whether the presence of NZVI affects plant uptake of other nutrients. Uptake 

patterns were analyzed for different elements in the present study (Tables 5.9, 5.10 and 5.11).  

5.4.3.2.1. N, P, and K uptake 

In Iceberg variety, plants treated with bare NZVI exhibited higher uptake of some of the 

elements compared to plants treated with all nutrients (Control) and other treatments (No Fe and 

P, No Fe, No P and spent NZVI) (Figures 5.12, 5.13 and 5.14). Bare NZVI treatment enhanced 

the uptake of total N, P, and K in the plants. Total N, P, and K accumulation was ~36%, ~69%, 

~40% higher in plants treated with bare NZVI compared to the control (all nutrients).  

Black Seeded Simpson variety also behaved like Iceberg variety in terms of uptake of 

some minerals. NZVI application modulated the elemental uptake by plants significantly. Bare 

NZVI was found to improve the uptake of P and K. The increase in uptake was ~43% and ~22% 

for P and K, respectively. 

The total uptake of N, P, and K was positively affected in Parris Island variety treated 

with bare NZVI. The increase in mineral uptake due to the application of bare NZVI was ~46%, 

~84%, and ~52% for total N, P, and K, respectively. 

5.4.3.2.2. Zn and Mn uptake 

Bare NZVI treatment reduced the total uptake of Zn and Mn in Iceberg variety. The 

uptake of Zn and Mn in Iceberg variety was reduced by ~34% and ~48% compared to the control 

(all nutrients) (Figures 5.9, 5.10 and 5.11). 
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In Black Seeded Simpson variety, the uptake of Zn and Mn was negatively affected by 

the application of NZVI. The decrease in Zn and Mn uptake was ~30% and 49%, respectively, 

compared to the control.  

In Parris Island variety, the uptake of Zn and Mn was reduced due to the application of 

NZVI. The decrease in the uptake of Zn and Mn was of the order of ~46% and ~71% compared 

to the control in the variety. 
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Figure 5.12. Total uptake of N, P, K and Na in Iceberg variety exposed to different treatments. Treatments are: (i) Spent NZVI + all 

nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all nutrients 

but Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. 
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Figure 5.13. Total uptake of P, Na, K, and Zn in Black Seeded Simpson variety dosed with different treatments. Treatments are: (i) 

Spent NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI 

+ all nutrients but Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. 
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Figure 5.14. Total uptake of total N, K, P, and Na in Parris Island variety dosed with different treatments. Treatments are: (i) Spent 

NZVI + all nutrients but Fe and P, (ii) No Fe and P: all nutrients but Fe and P, (iii) No Fe: all nutrients but Fe, (iv) Bare NZVI + all 

nutrients but Fe, (v) No P: all nutrients but P, and (vi) Control: all nutrients. 
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5.4.3.2.3. Na and B uptake 

For all three varieties, the uptake of Na, and B was significantly higher in the presence of 

bare NZ 

VI (Figures 5.9-5.14). Na and B accumulation was ~408% and ~1744% higher in 

Iceberg variety plants treated with bare NZVI compared to the control (all nutrients). In Black 

Seeded Simpson variety, the increase in uptake was ~348%, and ~1309% for Na and B, 

respectively. The uptake of Na and B in Parris Island variety was ~346% and ~846% more 

compared to the control. Boron (B) is an ingredient of the human diet. Boron intakes by humans 

range from 1.7-7 mg/d with fruits, nuts and vegetables as the major sources (Penland, 1994).  

Boron is associated with bone, mineral and lipid metabolism, energy utilization, and immune 

function (Penland, 1998). Boron deprivation might result in poorer performance in human body, 

particularly tasks of motor speed and dexterity, attention and short-term memory (Penland, 

1998). Therefore, the presence of boron in high amounts could be beneficial with respect to 

human nutrition. Sodium is also vital for fluid balance and cellular homeostasis. About 500 mg 

Na/day is required to maintain homeostasis in adults (Farquhar, et al., 2015). The uptake of 

boron and sodium by lettuce can help meet up the demand of humans. The strikingly higher 

uptake of Na and B could be attributed to the residuals of sodium borohydride used for the 

synthesis of NZVI. Almeelbi et al. (2014) characterized bare NZVI with X-ray photoelectron 

spectroscopy (XPS) and scanning electron microscopy with energy dispersive spectroscopy 

(SEM/EDS) and they indicated a significant presence of sodium (Na) and boron (B). They 

reported 0.51% of Na in virgin NZVI. 

In the present study, an antagonistic relationship was observed between Fe and Zn and Fe 

and Mn across the varieties (Tables 5.9-5.12). In Iceberg variety, bare NZVI-treated plants were 
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found to take up 510.3 µg/plant of Fe, 233.2 µg/plant of Zn, and 309.3 µg/plant of Mn, whereas 

the corresponding values for the control were 327.5, 356.4, and 591.2 µg/plant, respectively. In 

Black Seeded Simpson variety, the uptake of Fe, Zn, and Mn was 380.7, 199.9, and 226.5 

µg/plant, respectively, in the plants treated with bare NZVI. The corresponding values were 

234.1, 284.1, and 446.1 µg/plant for plants treated with the control. In Parris Island variety, the 

plants treated with bare NZVI took up 322.7 µg/plant of Fe, 209 µg/plant of Zn, and 188.8 

µg/plant of Mn.  On the other hand, the plants treated with the control had 243.7, 390.5, and 657 

µg/plant of Fe, Zn and Mn taken up. These findings are in agreement with previous findings by 

other scientists. A group of researchers carried out a study with tomato (Lycopersicon 

esculentum L.) and reported that Fe suppressed plant uptake of Mn and Zn and there is an 

antagonistic relationship between Fe and Mn (Gunes, et al., 1998). Fe was also found to inhibit 

Mn translocation from root to shoot (Ghasemi‐Fasaei, et al., 2005). The antagonistic effect of Fe 

with Mn is chiefly via the restriction of absorption stage (Heenan and Campbell, 1983). 

Increasing iron level was also found to decrease Zn translocation in plants (Brar and Sheklon, 

1976). Antagonistic effect of Fe with Mn and Zn in sorghum was demonstrated by (Singh and 

Yadav, 1980). Proteins (plasma membrane transporters) embedded in root membranes participate 

in nutrient uptake. The transport of nutrient elements across the plasma membrane is catalyzed 

by plasma membrane transporters. Similar cations and similar anions compete for binding to 

specific carrier proteins. Because of their valence, Fe, Zn and Mn compete for the same carrier 

proteins. Therefore, if one is taken up more, others are taken up less and vice versa (Rietra, et al., 

2015). 
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Table 5.12. A summary of increased or decreased uptake of elements in the presence of NZVI 

compared to the control, which contained all the nutrients. Uptake of Fe, Na, and B is not shown 

here. Increase/decrease was denoted by (↑) and (↓), respectively. 

Variety P K S Ca Mg Zn Mn Cu 

Iceberg ↑ ↑ ↑ ↑ ↑  ↓ ↓ ↑ 

Black Seeded Simpson ↑ ↑ ↑ ↓ ↑  ↓ ↓ ↓ 

Parris Island ↑ ↑ ↓ ↓ ↓  ↓ ↓ ↑ 

 

From this study, it is clear that plants treated with bare and spent NZVI had more iron 

than in plants treated with No Fe and P, No Fe, No P and the control. Bare and spent NZVI were 

able to supply iron to all the varieties of lettuce. The nanoparticles also induced an enhanced 

uptake of iron. Other researchers working with iron nanoparticles also observed enhanced uptake 

of iron in plants (Trujillo-Reyes, et al., 2014). However, some scientists (Wang, et al., 2016) 

reported that the uptake of Fe is less in leaves which is in contrast with the findings of present 

study. It is possible that lettuce in the present study used an alternative route for the acquisition 

of Fe. NZVI dissolution might have given the plant enough ionic iron in the solution for uptake. 

Core-shell Fe/Fe3O4, which is similar to bare NZVI used in this experiment, was found to release 

1.7 mg/L of iron ions in aqueous phase at 250 mg/L (Trujillo-Reyes, et al., 2014). The oxidation 

of NZVI and subsequent dissolution might have provided lettuce sufficient Fe2+/Fe3+ needed for 

growth (Kadar, et al., 2012). 

Other researchers working with nanoparticles revealed that nanoparticles could modify 

uptake patterns of minerals by plants. A group of researchers worked with cerium oxide 

nanoparticles and observed an enhanced uptake of P, K, Ca, Mg, S, Fe, Zn, Cu and Al in the 

plants treated with 250 mg/kg (soil) of cerium oxide nanoparticles (Rico, et al., 2015). Jacob et 

al. (2013) carried out an experiment with TiO2 nanoparticles and observed significant changes in 

the uptake pattern of nutrient elements by E. Canadensis; uptake of Mg and Mn was altered by 
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the application of TiO2 nanoparticles. In the present study, with few exceptions bare NZVI was 

found to increase the uptake of N, P, K which are macroelements for plants and decreased the 

uptake of Zn and Mn which are microelements. It is not clear how bare NZVI caused an increase 

in nutrient uptake for other elements in lettuce. However, in a previous study with Arabidopsis 

thaliana, Kim et al. (2013) revealed that NZVI enhanced root elongation by triggering OH 

radical-induced cell wall loosening (degradation of polysaccharides occurred as a result), and 

that in turn increased endocytosis in root cells. This could be an avenue for enhanced uptake of 

elements in lettuce and spinach. In another study, Kim et al. (2014) demonstrated that NZVI 

triggered high plasma membrane H+-ATPase activity in Arabidopsis thaliana, which led to a 

decrease in apoplastic pH, an increase in leaf area, and also wider stomatal aperture. They 

attributed these phenomena to a gene called AHA2 (Plasma Membrane H+-ATPase gene), which 

exhibited enhanced expression in the roots and leaves of Arabidopsis thaliana. In the current 

experiment, it is believed that a combination of these factors might have facilitated the enhanced 

uptake of the nutrient elements. 

5.5. Conclusions 

In this study, the feasibility of using NZVI as a biofortificant was tested using lettuce. 

The experimental results suggest that NZVI can be used as a biofortificant for plants. Lettuce 

varieties responded well to the application of NZVI. The iron content and yield was positively 

affected by NZVI application. Iron uptake in Iceberg variety treated with bare NZVI and spent 

NZVI were 510.3 µg/plant and 432.0 µg/plant, respectively, where the accumulation of Fe was 

~56% and ~32% more compared to the control (327.5 µg Fe/plant). Likewise, the uptake of iron 

in Black Seeded Simpson variety and Parris Island variety was higher in plants treated with bare 

NZVI (380.67 µg/plant and 322.68 µg/plant for Black Seeded Simpson and Parris Island, 
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respectively) compared to the control (all nutrients) (234.09 µg/plant and 243.71 µg/plant for 

Black Seeded Simpson and Parris Island, respectively). The iron uptake increased by ~63% and 

~32% in Black Seeded Simpson and Parris Island varieties treated with bare NZVI compared to 

the control (all nutrients). Iron uptake by Black Seeded Simpson and Parris Island from spent 

NZVI was comparable with the control (all nutrients). It is evident from this study that not only 

Bare NZVI was able to supply required iron to all the varieties of lettuce but also induced an 

enhanced uptake of iron and some other elements. Spent NZVI supplied plants with iron but the 

biomass production was significantly lower compared to the plants treated with bare NZVI and 

the control (all nutrients). Plants treated with spent NZVI might have suffered because of 

phosphorus deficiency rather than iron deficiency as phosphorus was not possibly bioavailable. 

The higher uptake of Fe in plants could be due to NZVI dissolution which furnished the plants 

enough ionic iron in the solution for uptake. The oxidation of NZVI and subsequent dissolution 

might have provided Fe2+/Fe3+ needed for lettuce growth. However, conclusive statements cannot 

be made about NZVI application as some of the findings are contradictory to previous findings 

by other scientists. Bare NZVI was found to affect total soluble solids content of lettuce in Black 

Seeded Simpson variety. Therefore, optimum dose of NZVI should be determined for each 

species and variety by carrying out an extensive study with that particular variety of a species. 

The combination of plant species, type and dose of nanoparticles is likely to determine how a 

given plant will respond to a given nanoparticle. Further research is required to consolidate the 

findings and to determine how to apply NZVI as a biofortificant in agricultural fields.  
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6. CORRELATION BETWEEN LSHA2 EXPRESSION AND THE AVAILABILITY OF 

IRON (NANO VS NON-NANO)  

6.1. Abstract 

An experiment was conducted to see the change in the expression level of the Lactuca 

sativa H+-ATPase2 (LsHA2) gene, which is an Arabidopsis ortholog of H+-ATPase2 (AHA2) 

gene, because of the availability of iron from nanoscale zero-valent iron (NZVI) and other 

sources of iron, namely micro zero-valent iron (MZVI), iron sodium EDTA (FeNaEDTA) and 

ferrous sulfate (FeSO4) as a control. The current investigation found that exposure of Lactuca 

sativa to NZVI (at 100 mg/L), MZVI (1000 mg/L) and FeNaEDTA triggered LsHA2 gene in the 

leaves of lettuce, which was demonstrated by the higher biomass in the plants of those 

treatments. The differences in the gene expression level between nanoparticles (NZVI) and non-

nano sources (MZVI, FeNaEDTA and FeSO4) were governed by the availability of iron in 

solution. 

6.2. Introduction  

Engineered nanomaterials (ENMs) have found their way into various applications 

because of their unique physical, chemical, thermal, magnetic and optical properties. During the 

last decade, there has been widespread interest in the application of nanomaterials for agronomic 

purposes. Nanomaterials have been used as smart delivery systems of fertilizers, herbicides, 

pesticides and plant growth regulators (Perez-de-Luque and Hermosin, 2013). Nanoparticles 

have also been used to modify genetic constitution of plants. Novel genes have been introduced 

or delivered with the help of nanoparticles with pinpoint accuracy, which led to an enhanced 

growth of crops (Torney, et al., 2007, Yashveer, et al., 2014). Scientists have used starch-

nanoparticles as plant-transgenic vehicle to bind the green fluorescence protein (GFP) gene and 
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then transport it across the cell wall of Dioscrea Zigberensis G H Wright plant by readily 

creating pore channels in the cell wall, cell membrane and nuclear membrane (Liu, et al., 2008). 

Surface-functionalized mesoporous silica nanoparticles have facilitated the precise manipulation 

of gene expression at single cell level by delivering DNA and its activators in a controlled 

manner by penetrating through the plant cell wall (Torney, et al., 2007). 

Scientists have also started to explore the possibility of using nanoparticles to biofortify 

plants. It is basically a form of agronomic intervention where nanoparticles are applied to 

enhance the growth of plants, thereby increasing the uptake of mineral elements. In a hydroponic 

study, Almeelbi and Bezbaruah (2014) used nanoscale zero-valent iron (NZVI) for phosphate 

removal and subsequently used the spent (phosphate-sorbed) NZVI as a source of phosphorus 

and iron for spinach and algae. They found increased growths of algae and spinach when spent 

NZVI was used as a sole source of iron and phosphorus. Fresh NZVI also showed enhanced 

growth. The iron content increased significantly in all plant parts (roots, stems and leaves) when 

spent NZVI was used as a source of iron compared to control where no iron was applied. Iron 

content increased by 7 and 11 times in the stem and leaves of the plant of spinach as compared to 

the control. A group of scientists reported that superparamagnetic iron oxide nanoparticles 

(SPIONs) can be taken up and translocated by hydroponically-grown soybean plant and as a 

result SPIONs can increase chlorophyll levels in the plants with no trace of toxicity (Ghafariyan, 

et al., 2013). In a study with lettuce and spinach (in this research), NZVI was found to supply 

plants with needed iron where NZVI was the sole source of iron. Moreover, it enhanced the 

uptake of other essential elements (See Chapter 5). 

Plants take up iron following two phylogenetically distinct uptake strategies. Strategy II 

plants (graminaceous monocot plants, such as barley, maize and rice) rely on the excretion of 
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phytosiderophores which can chelate iron; subsequently the resulting Fe-loaded complexes are 

imported by the roots (Santi and Schmidt, 2009). When grown under Fe deficiency, Strategy I 

plants use multiple approaches. Several morphological and physiological responses in their roots 

occur which help them to enhance Fe mobilization and uptake. Some of these responses include 

development of subapical swelling with abundant root hairs, development of transfer cells, 

enhancement of ferric reductase activity (due to enhanced expression of Arabidopsis thaliana 

ferric reductase (AtFRO2)-like genes), enhancement of Fe2+ uptake capacity (due to enhanced 

expression of Arabidopsis thaliana iron transporters (AtIRT1)-like genes), acidification of the 

extracellular medium (due to enhanced expression of H+-ATPase genes), and release of flavins 

and phenolics (Hell and Stephan, 2003, Romheld and Marschner, 1986). In the model plant 

Arabidopsis thaliana, the reduction-based strategy (Strategy I) for iron uptake involves the 

dissolution of iron by rhizosphere acidification through the action of the H+-ATPase AHA2, and 

then reduction of iron from ferric (Fe3+) to ferrous (Fe2+) iron by the reductase FRO2, and finally 

bivalent Fe ions are imported into the root cell by the metal transporter IRT1 (Ivanov, et al., 

2012). The soil acidification activity of AHA2 seems to be regulated independently of the iron 

reduction and transport. In spite of the altered soil acidification in the aha2 mutants, the 

reductase activity remained unchanged (Santi and Schmidt, 2009). In a similar manner, in the 

frd1-1 mutant (defective for FRO2 gene), the soil acidification activity corresponds to that of 

wild-type (Yi and Guerinot, 1996). However, expression of the AHA2 gene is dependent on 

transcription factor FIT. FIT is necessary but not sufficient for AHA2 expression. Another 

potentially important AHA isoform is Arabidopsis thaliana H+-ATPase7 (AHA7), which is also 

induced under iron deficiency and its upregulation is also dependent on FIT (Colangelo and 

Guerinot, 2004). Mutant plants lacking a functional AHA7 gene still could induce acidification 
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activity under iron deprivation in the same manner like the wild type. However, aha7 mutant 

roots showed less root hair density, which was more pronounced under iron deficiency (Santi 

and Schmidt, 2009). This phenomenon suggests that AHA7 might be involved in iron deficiency 

as a regulator of root developmental responses. Therefore, AHA2 is the main gene triggered in 

the absence of available Fe. AHA2 belongs to the P-type ATPase superfamily of cation-

transporting ATPases and it pumps protons out of the cell, generating a proton gradient that 

drives the active transport of nutrients by proton symport (TAIR website 

https://www.arabidopsis.org/). This AHA2 gene in leaves is an essential component of stomatal 

opening (Wang, et al., 2014). 

Nanoscale zero-valent iron (NZVI) has unique redox reactivity. Because of their strong 

reducing capacity, NZVI gets oxidized and insoluble iron oxy-hydroxides, such as FeOOH and 

Fe(OH)3 form rapidly on their surface. Moreover, NZVI can raise pH by water decomposition 

following electrochemical/corrosion reactions (Reactions 1 and 2), which results in 

thermodynamically less soluble Fe (Zhang, 2003). The combined effect is the reduced Fe 

availability in the rhizosphere. Citing these reasons, Kim et al. (2014) demonstrated that the 

presence of NZVI enabled the operation of proton pumps in plants. Plants dosed with NZVI had 

lower apoplastic pH. They opined that exposure of Arabidopsis thaliana to NZVI required plants 

to acidify their rhizosphere. Plants needed to activate plasma membrane (PM) H+-ATPase to 

extrude protons and acidify their rhizosphere. They also revealed that high plasma membrane 

H+-ATPase activity is accompanied by an increase in leaf area, which promotes CO2 assimilation 

(Kim, et al., 2015, Kim, et al., 2014). 

2Fe0
(s) + 4H+

(aq) + O2(aq) → 2Fe2+
(aq) + 2H2O(l) 

Fe0
(s) + 2H2O(aq) → Fe2+

(aq) + H2(g) + 2OH-
(aq) 

(1) 

(2) 
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In a previous experiment with lettuce (Lactuca sativa), enhanced uptake of Fe and some 

other elements (e.g., P, K, S, Mg, and Cu) was seen when plants were grown with NZVI as a 

source of Fe (Chapter 5). That particular work was the motivation to undertake this study. 

Therefore, this study was carried out to delve into the mechanism of Fe acquisition in lettuce 

plants, particularly the role of NZVI on the expression of AHA2 gene involved in Fe acquisition, 

which encodes an H+-ATPase that was shown to be expressed in the root epidermis in the model 

plant Arabidopsis thaliana (Luc Moriau et al., 1999). To date no work had been done on the 

effect of nanoscale zero-valent iron (NZVI) on the AHA2-like gene in lettuce (Lactuca sativa). 

The hypothesis is that the presence of NZVI in rhizosphere would increase plasma membrane 

(PM) H+-ATPase activity in the roots due to the upregulation of AHA2-like gene in lettuce 

which will increase the uptake of Fe. It is also hypothesized that overexpression of AHA2-like 

gene in plant leaves will increase stomatal opening, thereby enhancing the photosynthetic 

activities of plants. And finally there will be a difference in the activity of plasma membrane 

(PM) H+-ATPase activity based on whether the plants are exposed to nanoparticles or non-nano 

sources of iron. 

6.3. Materials and Methods 

6.3.1. Chemicals 

 Iron(II) sulfate heptahydrate (FeSO4·7H2O, 99 % pure, Alfa Aesar), micro zero-valent 

iron powder (<10 micron, 99.9+%, SIGMA-ALDRICH), sodium borohydride (NaBH4, 98 %, 

SIGMA-ALDRICH)), sodium hydroxide (5 N NaOH, Alfa Aesar), HNO3 (68 %, J.T. Baker), 

methanol (production grade, BDH), ethanol (ACS grade, Mallinckrodt Chemicals), calcium 

nitrate tetrahydrate (CaNO3·H2O, Alfa Aesar), potassium nitrate (KNO3, Mallinckrodt 

Chemicals), magnesium sulfate heptahydrate (MgSO4·7H2O, Mallinckrodt Chemicals), 
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magnesium nitrate hexahydrate (Mg(NO3)2·6H2O, Alfa Aesar), ammonium dihydrogen 

phosphate (NH4H2PO4, Alfa Aesar), sodium tetraborate decahydrate (Na2B4O7·10H2O, amresco), 

copper(II) sulfate pentahydrate (CuSO4·5H2O, BDH), manganese sulfate monohydrate 

(MnSO4·H2O, Mallinckrodt Chemicals), sodium molybdate dihydrate (Na2MoO4·2H2O, BTC), 

zinc sulfate monohydrate (ZnSO4·H2O, J.T. Baker) and iron(III) monosodium salt 

(FeNa(O2CCH2)2NCH2CH2N(CH2CO2)2, ACS Grade, Alfa Aesar) were used as received unless 

otherwise specified.  

6.3.2. Synthesis and preparation of NZVI 

NZVI particles were synthesized using sodium borohydride reduction method (Almeelbi 

and Bezbaruah, 2012). Iron (II) sulfate heptahydrate (10 g) was dissolved in 100 mL of 30% of 

methanol (30 mL methanol + 70 mL deoxygenated de-ionized (DI) water) (Solution A). The pH 

of the solution was then adjusted to 6.1 adding 5 N NaOH drop by drop.  In the meantime, 3.94 g 

of sodium borohydride was dissolved in 100 mL of deoxygenated DI water in a 100 mL 

volumetric flask (Solution B). Once the pH reached 6.1, Solution A was immediately added 

dropwise to Solution B using a burette under vigorous stirring conditions (using a magnetic 

stirrer). The combined solution was then allowed to stand for 20 min. The resultant black 

precipitates (NZVI) were centrifuged and washed with ethanol. The NZVI in slurry form was 

then dried in a vacuum oven under nitrogen environment. Finally, the dried NZVI particles were 

ground using a mortar and pestle and stored in 20 mL vials (headspace flushed with nitrogen) for 

later use. 
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6.3.3. Plant growth conditions  

6.3.3.1. Germination and plant preparation for hydroponic experiment 

Lettuce seeds of Parris Island variety (Lactuca sativa, Burpee, Warminster, PA) were 

purchased from a local outlet. The lettuce seeds were germinated in plug trays with nonabsorbent 

cotton as media (Figure 6.1). The seeds were kept moist using automated misting nozzles in a 

greenhouse. The germinated seeds were then moved to another room and allowed to grow for ten 

days. The seedlings were fed intermittently with half strength Hoagland solution.  The seedlings 

were provided with cool-white fluorescent light (14 h light/10 h dark cycle). The light intensity 

was ~100 µmol/m2/s. 

 

 

Figure 6.1. (a) Lettuce seeds were germinated in a plug tray (b) Schematic of the plug tray. 

 

6.3.3.2. Hydroponic studies 

After plants developed a root system, healthy plants of similar sizes were carefully 

removed from the plug trays and the roots of the plants were rinsed with copious amount of 

deionized water, keeping the roots unharmed. Plants were then anchored in nutrient solutions 

contained in 1 L plastic tumblers. First of all, one lettuce seedling was placed into a Styrofoam 

disc float (a hole was made in the disc float using a hole punch) with their roots below the disc 

and the shoots supported above with a wrap of non-absorbent cotton (Jacob, et al., 2013). The 

seedlings were held erect by plugging the gaps with non-absorbent cotton. The Styrofoam disc 

was cut in a way so that it snugly fitted the opening of the plastic tumbler; this was done to 

(a) 
(b) 
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reduce the light entering the nutrient solution beneath the Styrofoam. The discs were then placed 

on the surface of 750 mL Hoagland nutrient solution without iron added and with iron added 

(Tables 6.1 and 6.2) in a tumbler ensuring continuous root contact with the nutrient solution 

(Hoagland and Arnon, 1950). The nutrient solutions had already been treated with nanoparticles 

and other treatments before the seedlings were transplanted. The experiment was a completely 

randomized design with three treatments, namely NZVI (100 mg/L), micro zero-valent iron 

(MZVI) (100 mg/L), MZVI (1000 mg/L), and FeNaEDTA (1.69 mg/L) and a control containing 

FeSO4 as a source of iron. There was a total of 20 tumblers with 4 replicates per treatment. The 

nutrient solution was aerated with bubblers (at a rate of ~2 cc/minute) to provide oxygen to the 

roots and also to keep the nanoparticles in suspension (Trujillo-Reyes, et al., 2014), and the 

solution was replaced every five days. The plants were grown 30 days in hydroponics. Light was 

provided in 14 h light/10 h dark cycles with cool-white fluorescent plant bulbs with a light 

intensity of ~100 µmol/m2/s.  

Table 6.1. Modified Hoagland solution (Hoagland and Arnon, 1950). 

Chemicals Final concentration Important ions 

mM or µM mg/L 

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  0.5 mM 123 Mg2+, SO4
2- 

Mg (NO3)2•6H2O  0.5 mM 128 Mg2+, NO3
- 

NH4H2PO4  2 mM 230 NH4
+, H2PO4

- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O   0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

FeSO4•7H2O/FeNaEDTA 10 µM 1.69 Fe2+ 

 



 

150 

Table 6.2. Modified Hoagland solution containing no iron (modified for this research). 

Chemicals Final concentration Important ions 

mM or µM mg/L  

Ca(NO3)2•4H2O  2 mM 472 Ca2+, NO3
- 

KNO3  6 mM 606 K+, NO3
- 

MgSO4•7H2O  0.5 mM 123 Mg2+, SO4
2- 

Mg (NO3)2•6H2O  0.5 mM 128 Mg2+, NO3
- 

NH4H2PO4  2 mM 230 NH4
+, H2PO4

- 

Na2B4O7•10H2O  20 µM 3.81 B4O7
2- 

CuSO4•H2O  0.5 µM 0.089 Cu2+ 

MnSO4•3H2O  10 µM 2.05 Mn2+ 

Na2MoO4•2H2O  0.5 µM 0.12 MoO4
2- 

ZnSO4•H2O  4 µM 0.716 Zn2+ 

 

6.3.4. Primer design (Arabidopsis ortholog in Lactuca sativa) 

Actin was selected as a housekeeping gene as described in Borowski et al. (2014). The 

HA2 gene was the experimental gene chosen based on Arabidopsis thaliana data showing that 

the upregulation of the AHA2 gene was putatively involved in the prolific growth after exposure 

to NZVI particles (Kim, et al., 2014). To identify the Lactuca sativa orthologous gene the A. 

thaliana AHA2 cDNA sequence was mined from the TAIR website 

(https://www.arabidopsis.org/). The A. thaliana AHA2 cDNA sequence (AT4G30190.1) was 

used in BLAST searches against the expressed sequence tag (EST) database in the national 

center for bioinformatics information (NCBI) database limited to Lactuca sativa (taxid: 4236). 

The Lactuca sativa ESTs with the highest significance were assembled into a unigene contig 

using the Vector-NTI software.  The resulting unigene sequence was assembled into a Lactuca 

sativa orthologous HA2 unigene sequence. Three primer pairs were designed from the Lactuca 

sativa HA2 unigene sequence, designated LsHA2, that were expected to yield 151, 201, and 221 

bp amplicons (Table 6.3). The primer pairs were tested on cDNA and the PCR amplicons of the 
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expected size were sequenced on an ABI777 (Genscript) utilizing the original primers used to 

generate each amplicon. 

Table 6.3. Primer sequences designed to amplify the Lactuca sativa LsHA2 ortholog and the 

actin housekeeping gene. The amplicon size and the melting temperature of the primers are 

given. 

Name Primer sequence 5´-3´ (forward) Primer sequence 5´-3´ (reverse) Amplicon length (bp)  Ta (0C) 

SSAHA2Q1 TGCAGTTTCTATCACTATCCGTATT AGATGGCTTCACTCTATCCTTTG 151 62 
SSAHA2Q2B ATTGTGCTTACTGAACCTGGTCTCAG ATCGTTAAGGATTGCGATAATC 201 62 

SSAHA2Q2A AGAAGGCAGACATTGGAATTGC ATCAAACTTCCATATCAATGCGATG 221 62 

Actin AGGGCAGTGTTTCCTAGTATTGTTG CTCTTTTGGATTGTGCCTCATCT 106 62 

 

6.3.5. Total RNA extraction 

Leaf and root tissue (~30 mg) were collected from Lactuca sativa (Parris Island variety) 

plants 7 days after exposure to nanoparticles and at maturity (30 days after exposure to 

nanoparticles) dosed with NZVI, MZVI, FeNaEDTA and FeSO4. Total RNA was isolated from 

the samples using Qiagen RNA extraction kit following the manufacturer’s standard protocol 

(Protocol A1). The concentration (or quantity) of extracted RNA was measured at 260 nm using 

a Qubit 2.0 Fluorometer. The measurement of RNA concentration was done using 199 µL buffer 

(Qubit ®RNA BR Buffer), 1 µL 200X dye (Qubit RNA BR Reagent) and 1 µL RNA. Purity of 

the total RNA extracted was determined as the 260/280 nm ratio and the integrity of total RNA 

was checked on an agarose gel stained with ethidium bromide. Before running on the gel, the 

RNA samples were prepared using 9 µL H2O, 10 µL dye (Ambion gel loading dye buffer II) and 

1 µL RNA. 

6.3.6. cDNA synthesis 

~640 ng of RNA was used as template in the reverse transcription reaction to synthesize 

cDNA using the GoScript Reverse Transcription System (Promega) (Protocol A2). The resulting 

20 µL of cDNA was diluted with the addition of 40 µL ultrapure water (1:3) (Ambion). 
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6.3.7. PCR Reaction 

All the PCR reactions were performed using Go Taq DNA polymerase (M3001) and 

buffer, 2.5 mM dNTP stock solution and 10 µM working concentrations of primers. The final 

conc. of dNTP and primers were 75 µM and 500 nM, respectively. Briefly, 6 µL of 5X Go Taq 

Buffer (PCR Master mix), 0.5 µL of dNTP, 0.2 µL of Taq polymerase, 1 µL of forward and 

reverse primer each, 1 µL of cDNA, and 20.3 µL of H2O were used in a total reaction volume of 

30 µL. The thermocycler program was one initial cycle of denaturation at 95 °C (3 min), 

followed by 35 cycles of  95 °C (30 s, denaturation), 62 °C (45 s, annealing), 72 °C (1 min, 

elongation) and a final elongation at 72 °C (5 min). The PCR amplicons were purified using 

Wizard Gel purification kit (A9281) following manufacturer’s protocol (Protocol A3). 

6.3.8. qRT PCR 

Quantitative real-time PCR (qRT-PCR) reactions for LsHA2 were carried out using the 

BIO-RAD SsoAdvanced Universal SYBR® Green Supermix using the manufacturer protocol on 

a CFX-96 Real Time PCR detection system (BIO-RAD) (Protocol A4). The Lactuca sativa actin 

gene (Genbank acc. # AY260165.1) was used as a housekeeping gene (endogenous control) to 

normalize the LsAHA2 gene expression. Samples treated with FeSO4 were used as control for 

expression analysis at 7 day and at maturity. Three biological replicates were analyzed using 

three experimental replicates per sample and the resulting data was analyzed using the BIORAD 

CFX Manager software. The real-time PCR efficiency was determined for each gene with the 

slope of a linear regression model.  

6.3.9. Data acquisition 

Expression levels were determined as the number of cycles needed for the amplification 

to reach a threshold fixed in the exponential phase of PCR reaction (CT). The CT values were 
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transformed into starting quantities using PCR efficiencies on BIORAD CFX Manager Software 

(BIORAD, USA). 

6.3.10. Statistical analysis 

CT values were analyzed using BIORAD CFX Manager 3.1 software. Four biological 

replicates were used and for qPCR three technical replicates were run from each of the biological 

replicate. The values were manually checked for inconsistencies, if any. A p-value less than 0.05 

indicated that difference in variation of expression could be deduced. 

6.4. Results and Discussion 

6.4.1. Characterization of nanoscale zero-valent iron (NZVI) 

Average particles size of virgin NZVI was 16.24 ± 4.05 nm (Almeelbi and Bezbaruah, 

2012). NZVI particles were characterized using scanning electron microscopy with energy 

dispersive spectroscopy (SEM/EDS). Elemental composition of virgin NZVI was determined 

using SEM/EDS (JEOL JSM-6300, JEOL, Ltd.). The percentage of oxygen in the virgin NZVI 

was found to be 12.10%. (Krajangpan, et al., 2012) reported it as 15.66%. The presence of a very 

low amount (0.51%) of Na was observed in the virgin NZVI. Sodium (Na) was possibly left 

behind as a residual from sodium borohydride (NaBH4) used in the NZVI synthesis process. 

6.4.2. Plant biomass 

 The fresh weight of lettuce plants (measured after the harvest) varied depending 

on the treatment (Figure 6.2 & Table 6.4). In the plants treated with NZVI 100 mg/L, the 

average weight of fresh leaves and root were 33.07 g/plant and 2.52 g/plant which were 

significantly different than in the plants treated with the control (9.52 g/plant and 0.85 g/plant) 

and MZVI 100 mg/L (16.73 g/plant and 1.19 g/plant). The average weight of fresh leaves (29.42 

g/plant) and roots (2.46 g/plant) treated with MZVI 1000 mg/L were significantly different than 
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in the plants treated with the control and MZVI 100 mg/L but were not significantly different 

than the plants treated with NZVI 100 mg/L. The average weight of fresh leaves (30.25 g/plant) 

and roots (2.68 g/plant) treated with FeNaEDTA were significantly different than in the plants 

treated with the control (FeSO4) and MZVI 100 mg/L but were not significantly different than 

the plants treated with NZVI 100 mg/L and MZVI at 1000 mg/L. 

 

Figure 6.2. Average fresh weights of lettuce leaves and roots treated with NZVI, MZVI, 

FeNaEDTA and FeSO4. Treatments are (a) NZVI at 100 mg/L, (b) MZVI at 100 mg/L, (c) 

MZVI at 1000 mg/L, (d) FeNaEDTA at 1.69 mg/L, and (e) Control (FeSO4). Differences were 

determined by one-way ANOVA followed by Tukey’s pairwise comparison (p<0.05). 

Different letters above bars indicate significant differences between different treatments.   

 

The dry weight of leaves and roots followed the same trend (Figure 6.3 & Table 6.4). 

The dry weight of plant leaves and roots with NZVI treatment, i.e., NZVI at 100 mg/L (2.74 

g/plant and 0.23 g/plant for leaves and roots, respectively) were statistically different than the 

control (0.80 g/plant and 0.09 g/plant for leaves and roots, respectively) and MZVI treatment at 

100 mg/L (1.41 g/plant and 0.13 g/plant for leaves and roots, respectively). Plants treated with 

the higher dose of MZVI, i.e., MZVI at 1000 mg/L (2.39 g/plant and 0.22 g/plant for leaves and 
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roots, respectively) yielded significantly more dry biomass than the plants dosed with MZVI at 

100 mg/L and the control.  

Plants treated with FeNaEDTA yielded significantly higher amount of dry biomass (2.51 

g/plant and 0.22 g/plant for leaves and roots, respectively) than the plants dosed with MZVI at 

100 mg/L and the control (FeSO4). Plant biomass from NZVI at 100 mg/L, MZVI at 1000 mg/L 

and FeNaEDTA were not significantly different from one another. Plants performed well in the 

presence FeNaEDTA which is used as a source of iron in hydroponic solution (Hoagland and 

Arnon, 1950). Plant biomass being comparable at 100 mg/L of NZVI application and 1000 mg/L 

of MZVI application could be attributed to the comparable surface area of NZVI and MZVI 

particles. The NZVI particles used in this experiment had a surface area of ~25 m2/g, whereas 

MZVI had a surface area of ~2 m2/g (Almeelbi and Bezbaruah, 2012, Bezbaruah, et al., 2009). 

The higher reactivity of NZVI particles due to the higher surface area might have facilitated the 

dissolution of iron (Filip, et al., 2014) more compared to MZVI particles. Consequently, the 

hydroponic solution contained almost the same amount of ionic iron at 100 mg/L of NZVI and 

1000 mg/L of MZVI.  
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Figure 6.3. Average dry weights of lettuce leaves and roots treated with NZVI, MZVI, 

FeNaEDTA and FeSO4.Treatments are (a) NZVI at 100 mg/L, (b) MZVI at 100 mg/L, (c) 

MZVI at 1000 mg/L, (d) FeNaEDTA at 1.69 mg/L, and (e) Control (FeSO4). Differences were 

determined by one-way ANOVA followed by Tukey’s pairwise comparison (p<0.05). 

Different letters above bars indicate significant differences between different treatments.   

 

6.4.3. Chlorophyll content 

The chlorophyll content of the plants treated with different Fe sources was measured 

shortly before harvest. The chlorophyll content varied depending on the treatment (Table 6.4). 

However, there were no significant differences among the values.   

Table 6.4. Average fresh and dry weights of lettuce leaves and roots and chlorophyll content of 

leaves were shown with standard deviation. Treatments are (a) NZVI at 100 mg/L, (b) MZVI at 

100 mg/L, (c) MZVI at 1000 mg/L, (d) FeNaEDTA at 1.69 mg/L, and (e) Control (FeSO4). 

Differences were determined by one-way ANOVA followed by Tukey’s pairwise comparison 

(p<0.05). Different letters in the same column indicate significant differences between different 

treatments. 

  
Fresh (g) Dry (g)  

Treatment Leaf Root Leaf Root Chlorophyll (SPAD Unit) 

(a) NZVI 100 mg/L 33.07±6.77a 2.52±0.64a 2.74±0.46a 0.23±0.02a 38.8±0.87a 

(b) MZVI 100 mg/L 16.73±5.94b 1.19±0.32b 1.41±0.02b 0.13±0.02b 42.2±3.14a 

(c) MZVI 1000 mg/L 29.42±2.66a 2.46±0.69a 2.39±0.12a 0.22±0.04a 38.8±3.93a 

(d) FeNaEDTA 30.25±1.44a 2.68±0.43a 2.51±0.06a 0.22±0.10a 37.3±1.9a 

(d) Control (FeSO4) 9.52±2.89b 0.85±0.26a 0.80±0.26b 0.09±0.04b 41.0±2.29a 
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6.4.4. LsHA2 gene expression 

Lettuce (Lactuca sativa) leaves and roots were collected 7 days and 30 days post 

exposure to nanoparticles and other treatments. Total RNA was extracted from the leaf tissue and 

reverse transcribed to cDNA. The cDNA was used as templates in quantitative real-time 

polymerase chain reactions (qPCR). All PCRs displayed efficiencies between 93% (Actin) and 

97% (LsHA2).  

6.4.4.1. Comparison between two time points 

The qPCR data was used to analyze the levels of LsHA2 and thus specifically evaluate 

plasma membrane (PM) H+-ATPase expression at the transcriptional level. Actin housekeeping 

gene was used to normalize the LsHA2 gene expression. Samples treated with FeSO4 were used 

as control for expression analysis at 7 day and at maturity. Relative expression was determined 

using FeSO4 expression as 1. Expressions for NZVI and other treatments at 7 day and maturity 

was compared against FeSO4 expression (taking it as 1) at 7 day and maturity, respectively. The 

expression level of the LsHA2 gene varied between two time points (7 days and 30 days post 

exposure) across the treatments. The expression level of the LsHA2 gene in plant leaves 

decreased invariably at 30 days post exposure compared to 7 days post exposure to nanoparticles 

and other treatments (Figures 6.4 and 6.5). Compared to 7 days post exposure expression level, 

there was 18.66-fold downregulation in the expression level of LsHA2 in plants treated with 

FeNaEDTA at 30 days after exposure. The gene was downregulated 11.93-fold in the plants 

treated with nanoparticles (NZVI) at 30 days post exposure compared to 7 days post exposure. 

The expression level was 4.99, 3.56 and 3.27-fold lower in the plants treated with MZVI 1000 

mg/L, MZVI 100 mg/L and the control (FeSO4) at 30 days post exposure compared to 7 days 

post exposure.  
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In the root, the changes in the expression of the LsHA2 gene between two time points 

was not statistically significant. Compared to 7 days after exposure, at maturity (after 30 days of 

exposure to nanoparticles), the expression level went down by 1.26, 1.27 and 1.09-fold in the 

plants treated with NZVI 100 mg/L, MZVI 1000 mg/L, and MZVI 100 mg/L, respectively. On 

the other hand, the expression level for the LsHA2 gene increased 1.35 and 1.26-fold in the 

plants dosed with FeSO4 (Control) and FeNaEDTA. 

 

Figure 6.4. Expression data of LsHA2. Treatments are (a) NZVI100-7 day and NZVI100-

Mday: NZVI at 100 mg/L, (b) MZVI100-7 day and MZVI100-Mday: MZVI at 100 mg/L, (c) 

MZVI1000-7 day and MZVI1000-Mday: MZVI at 1000 mg/L, (d) FeNaEDTA-7 day and 

FeNaEDTA-Mday: FeNaEDTA at 1.69 mg/L, and (e) FeSO4-7day and FeSO4-Mday: Control 

(FeSO4). 
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It is evident that LsHA2 was expressed more in the leaves at 7 days post exposure to 

nanoparticles compared to 30 days post exposure. It implies that the LsHA2 gene was activated 

in leaves after 7 days of exposure to nanoparticles; LsHA2 is the major gene responsible for 

stomatal opening (Wang, et al., 2014). Stoma is a key organ for CO2 uptake for photosynthesis in 

plants and as a result stomatal aperture is a limiting factor in photosynthesis and plant growth 

(Kim, et al., 2015, Wang, et al., 2014). Therefore, the higher expression of LsHA2 in leaves at 7 

days post exposure was possibly because of plants heightened photosynthetic activities at that 

point in time.  

 

Figure 6.5. Expression of LsHA2 in lettuce leaves and roots at 7 days and 30 days after 

exposure to nanoparticles and other treatments. Treatments are (a) NZVI100-7 day and 

NZVI100-Mday: NZVI at 100 mg/L, (b) MZVI100-7 day and MZVI100-Mday: MZVI at 100 

mg/L, (c) MZVI1000-7 day and MZVI1000-Mday: MZVI at 1000 mg/L, (d) FeNaEDTA-7 

day and FeNaEDTA-Mday: FeNaEDTA at 1.69 mg/L, and (e) FeSO4-7day and FeSO4-Mday: 

Control (FeSO4). Data are mean and SE of three technical treatments which were taken from 

three biological replicates.  

 

6.4.4.2. Comparison between the treatments 

The expression level of the LsHA2 in lettuce plant leaves and roots were also compared 

among the treatments. Actin housekeeping gene was used to normalize the LsHA2 gene 

expression. Samples treated with FeSO4 were used as control for expression analysis at 7 day and 

LsHA-leaf LsHA-root 
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at maturity. Relative expression was determined using FeSO4 expression as 1. Expressions for 

NZVI and other treatments at 7 day and maturity were compared against FeSO4 expression 

(taking it as 1) at 7 day and maturity, respectively. Expression level of the LsHA2 gene also 

differed among the treatments (Figures 6.4 and 6.5). Here, the changes in the expression level of 

the LsHA2 gene with different treatments are compared with the change in the expression level 

of the gene in the plants treated with the FeSO4 control. After 7 days of exposure, the gene 

expression level increased 1.83-fold in the leaves of NZVI treated plants, compared to FeSO4 at 

the same time point. The change was statistically significant at that time point. On the other 

hand, in the roots of lettuce plants expression level decreased 2.63-fold in 7 days post exposure 

plants compared to FeSO4 control.  

Similar kind of trend was observed in the gene expression level of the plants treated with 

MZVI 1000 mg/L, which was included in the experiment for a comparison purpose. MZVI at 

1000 mg/L has comparable surface area to NZVI at 100 mg/L. After 7 days of exposure, the 

gene expression level increased 2.16-fold in the leaves of NZVI treated plants compared to 

FeSO4 at the same time point and the change was statistically significant. 

In the plants treated with MZVI 100 mg/L, after 7 days of exposure, the level of gene 

expression in the leaves and roots were 1.04-fold and 1.09-fold lower compared to FeSO4, which 

were not statistically significant. 

In the plants treated with FeNaEDTA, which is used as a source of Fe in hydroponic 

solution, the level of expression in the leaves of the plants increased (2.26-fold) after 7 days of 

exposure compared to FeSO4. The differences in the expression level was statistically significant. 

On the other hand, at the same time point the expression level was 1.49-fold lower in the roots of 

the plants compared to FeSO4. 
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The original hypothesis in this study was that the LsHA2 gene will overexpress in the 

roots and leaves of lettuce in the presence of NZVI. Data from LsHA2 expression profile 

suggests that the LsHA2 gene was upregulated in the plant leaves treated with NZVI 100 mg/L, 

MZVI 1000 mg/L, and FeNaEDTA compared to FeSO4 after 7 days of exposure (Figures 6.4 

and 6.5). This data correlates with the higher biomass in the plants treated with NZVI 100 mg/L, 

MZVI 1000 mg/L and FeNaEDTA compared to the control (FeSO4) and MZVI 100 mg/L 

(Figure 6.2). On the other hand, the gene LsHA2 in the roots downregulated in all the treatments 

compared to the control, where plants were dosed with the regular nutrient solution and FeSO4 

(used as a source of Fe) (Figures 6.4 and 6.5). It indicates that the LsHA2 gene in the roots of 

the lettuce were affected in the presence of NZVI (100 mg/L), MZVI (1000 mg/L), MZVI (100 

mg/L) and FeNaEDTA. The mRNA accumulation of LsHA2 gene was less in these plants 

(treated with NZVI, MZVI, and FeNaEDTA) compared to FeSO4. When there is a low Fe 

availability, plants activate LsHA2 gene or plasma membrane (PM) H+-ATPase to extrude 

protons out of the cell and acidify the rhizosphere and a proton gradient is generated which 

drives the active transport of nutrients. The activation of the this gene could occur across the 

whole plant due to cross-talk between PM H+-ATPase and auxin (Hohm, et al., 2014). The 

mRNA of LsHA2 being less accumulated means plants did not need to acidify the rhizosphere to 

take up iron from a readily unavailable source (in this case NZVI and MZVI). From the profuse 

growth of the plants, it is obvious that plants had sufficient Fe in the solution to take up from the 

medium dosed with NZVI, MZVI (at higher concentration) and also from FeNaEDTA, which is 

a readily available source. The findings from the current research are partly in agreement with 

the findings of Kim et al. (2015). They reported that the levels of the AHA2 (H+-ATPase) 

increased almost 2-fold not only in leaves but also in roots in 2-week-old Arabidopsis thaliana 



 

162 

exposed to NZVI. The findings from the current research indicates that the regulation of LsHA2 

gene in lettuce plants was controlled by the availability of iron. In the hydroponic solutions 

dosed with NZVI, MZVI (1000 mg/L) and FeNaEDTA, plants had sufficient Fe and the 

vegetative growth was good. The availability of Fe from NZVI is substantiated by the 

availability of Fe in core-shell Fe/Fe3O4, which is similar to bare NZVI used in this experiment; 

core-shell Fe/Fe3O4 was found to release 1.7 mg/L of iron ions in aqueous phase at 250 mg/L 

(Trujillo-Reyes, et al., 2014). The oxidation and subsequent dissolution of NZVI and MZVI 

might have provided plants with sufficient Fe2+/Fe3+ needed for lettuce growth (Kadar, et al., 

2012). Because of the higher growth, plants needed to photosynthesize more which in turn 

activated the LsHA2 gene in the lettuce plants. LsHA2 gene is responsible for stomatal opening 

which controls the photosynthesis process. At maturity, plants did not need to accelerate the 

photosynthesis process and stomatal opening was not an issue. This is probably the reason, the 

gene was downregulated at maturity in the plants treated with NZVI, MZVI and FeSO4. On the 

other hand, even though the LsHA2 gene was expressed in the roots of plants treated with 

FeSO4, MZVI 100 mg/L, the cross-talk between auxin and LsHA2 gene was not that effective 

(Hohm, et al., 2014). As a result, the expression level of the gene was not that high in those 

plants.  

Therefore, the original hypothesis formulated in this experiment is rejected. The 

hypothesis was that the presence of NZVI in rhizosphere would increase plasma membrane (PM) 

H+-ATPase activity and thus enhance the stomatal opening due to the overexpression of HA2-

like gene in plants, thereby enhancing the uptake of Fe and other elements in plants. It is not the 

nanoparticles, rather the availability of Fe in solution which controls the expression of LsHA2. 

The plants dosed with NZVI at 100 mg/L and MZVI at 1000 mg/L had sufficient ionic iron in 
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the solution for uptake. Other Fe-regulating genes [e.g., AHA7 (Colangelo and Guerinot, 2004) 

of Arabidopsis, CsHA1 of cucumber (Santi, et al., 2005), AtFRO2-like genes, AtIRT1-like 

genes] should be investigated to see their roles in Fe acquisition from not a readily available 

source like NZVI.  
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

7.1. Conclusions 

In this research, novel iron (Fe) cross-linked alginate (FCA) beads were synthesized and 

used for aqueous phosphate removal. Batch experiments were conducted with different 

concentrations of phosphate, including an environmentally relevant concentration of phosphate. 

The beads were found to remove lower concentrations of phosphate very fast from the solution. 

Phosphate removal was not affected by the presence of competing ions and compounds. The 

FCA beads was also used in real life situation (e.g., in eutrophic lakes), and the beads were found 

to remove 81-100% of phosphate from lake waters. The maximum sorption capacity and the 

point of zero charge (PZC) of the beads make the beads an ideal candidate for eutrophic lakes. 

The cost analysis showed that the beads are also very affordable.  

Used or spent FCA beads were used for plant studies to see the bioavailability of P and 

Fe and also to evaluate the potential use of spent FCA beads as slow-release phosphorus and iron 

fertilizers. Spent FCA beads were found to support biomass production to a certain extent 

indicating that the phosphorus and iron were available for plant uptake. This research indicates 

that these FCA beads are promising as a phosphate remover and also as a slow-release non-

conventional phosphate fertilizer. While these spent FCA beads were not meant for the primary 

source of phosphate and iron fertilizer, they can certainly be used as supplementary sources of 

phosphorus and iron. Because of the biodegradable nature, the phosphate-laden FCA beads could 

be applied directly to soil as a fertilizer.  

In the present study, the feasibility of using nanoscale zero-valent iron (NZVI) as a 

biofortificant was tested using lettuce and spinach. Lettuce varieties responded well to the 

application of NZVI. The iron content and yield was positively affected by NZVI application. 
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The uptake of some macro and micronutrient elements were also enhanced because of the 

presence of NZVI. The experimental results suggest that NZVI can be used as a biofortificant for 

plants. However, the dose of NZVI appeared to be an important factor for biofortification. 

Spinach did not respond in the same manner when the plants were dosed with 110 mg NZVI/L 

(which is close to 100 mg/L used for lettuce study). NZVI at 55 mg/L of application produced 

the maximum biomass in spinach. Recommendation on the optimum dose of NZVI should be 

made for each plant species by carrying out extensive studies with specific species. The 

availability of iron from NZVI particles was evident from the total uptake and concentration of 

Fe in plants. That iron from NZVI was bioavailable could be explained by the oxidation and 

subsequent dissolution mechanism of NZVI. 

The availability of iron from NZVI was further proved by the genetic study with lettuce. 

The presence of NZVI did not trigger the LsHA2 gene which is putatively responsible for 

rhizosphere acidification when there is a shortage of Fe in the root zone. The gene of interest was 

rather upregulated in the presence of available Fe from NZVI, MZVI and FeNaEDTA. 

Therefore, it is not the nanoparticles, rather the availability of Fe in solution which controls the 

expression of LsHA2. The expression of LsHA2 in the presence of these iron sources indicates 

the plants dosed with NZVI and MZVI had sufficient ionic iron in the solution for uptake.  

The concept and findings from this research can be used to develop new technologies to 

combat eutrophication of waterbodies, to form a supplementary source of phosphorus. The 

enhanced uptake of Fe and different mineral elements in the presence of NZVI is exciting 

considering the importance of plant fortification research. Further research is warranted to 

investigate the role of NZVI as a fortificant in different plants. Research is also required to 

determine the application method of NZVI and other nanomaterials in agricultural fields. Fe-
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regulating genes should also be investigated to see their roles in Fe acquisition from not a readily 

available source like NZVI.  

7.2. Future Directions 

The FCA beads were synthesized in the lab and used for phosphate removal from 

phosphate-spiked artificial water and also from eutrophic lake water and wastewater. But the 

efficacy of these FCA beads in in situ condition is not proven yet. Therefore, the future challenge 

would be to produce these beads on a large scale and then use the beads in eutrophic lakes and 

phosphate-rich waterbodies for phosphate reclamation. That will prove the viability of this 

technology. Extensive studies are also needed to see the bioavailability of reclaimed phosphate. 

NZVI particles have been used for iron fortification in lettuce and spinach. While there was 

promising results from these studies, more studies with different species and varieties of plants 

are required to understand the iron acquisition strategy by plants from a not readily available 

source of iron. That research will pave the way for fortifying plants with nanoparticles in the 

future. To strengthen the iron fortification research, researchers also need to conduct in-depth 

studies with iron-regulating genes in different plant species. 

The biodegradability of the FCA beads is likely to allow the spent FCA beads to release 

adsorbed phosphorus to soils. Soil properties will determine whether released phosphorus will be 

readily available for plant uptake or not. Soil studies are needed with the spent beads to see the 

immediate availability of adsorbed phosphate to plants. 
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APPENDIX. TABLES, FIGURES, AND PROTOCOLS 

Table A1. Reaction rate constants calculated based on the obtained results. 

C0 Ce Zero Order First Order Second Order 

mg/L Kobs R2 Kobs R2 Kobs R2 

5 0.16 -0.002 0.642 -0.0091 0.954 0.076 0.936 

50 11.48 -0.0017 0.696 -0.0034 0.851 0.0078 0.954 

100 49.6 -0.0003 0.932 -0.0004 0.964 0.0006 0.985 

100* 20 -0.0401 0.966 -0.0828 0.987 0.2027 0.922 

*Concentration is in µg/L 

Units: Kobs Zero Order (mg/L/min), Kobs First Order (/min), Kobs Second Order (L/mg/min)  
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Figure A1. Zero, first and second order rate equations for 5 mg PO4

3--P/L removal by FCA 

beads. 
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Figure A2. Zero, first and second order rate equations for 50 mg PO4

3--P/L removal by FCA 

beads. 
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Figure A3. Zero, first and second order rate equations for 100 mg PO4

3--P/L removal by FCA 

beads. 
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Figure A4. Zero, first and second order rate equations for 100 µg PO4

3--P/L removal by FCA 

beads. 
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Protocol A1. RNA isolation 

1. ~30 mg of plant tissue was disrupted and 380 µL of RLT buffer was added to 

homogenize the lysate. The lysate was centrifuged for 3 min at maximum speed. The 

supernatant was carefully removed by pipetting. 

2. 1 volume of 70% ethanol was added to the lysate (from step 1) and mixed well by 

pipetting. 

3. 700 µL of the sample (from step 2) was transferred to an RNeasy Mini spin column 

placed in a 2 mL collection tube. The lid was closed and the spin column was centrifuged 

for 15 s at ≥8000 ×g. The flow-through was discarded. 

4. 700 µL of the Buffer RW1 was added to the RNeasy spin column. The lid was closed and 

the column was centrifuged for 15 s at ≥8000 ×g. The flow-through was discarded. 

5. 500 µL of Buffer RPE was added to the RNeasy spin column. The lid was closed and the 

column was centrifuged for 15 s at ≥8000 ×g. The flow-through was discarded. 

6. 500 µL of Buffer RPE was added to the RNeasy spin column. The lid was closed and the 

column was centrifuged for 2 min at ≥8000 ×g. 

7. The RNeasy spin column was placed in a new 1.5 mL collection tube, and 50 µL of 

RNase-free water was added directly to the spin column membrane. The lid was closed 

and the column was centrifuged for 1 min at ≥8000 ×g to elute the RNA. 

Protocol A2. cDNA conversion 

1. Extracted RNA from different samples, Oligo Primer and nuclease-free water were mixed 

into a final volume of 5 µL. 

2. The reaction was heated in a 70 0C heat block for 5 minutes. The reaction was 

immediately chilled in ice water for at least 5 minutes. The reaction was then centrifuged 
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for 10 s in a microcentrifuge. The reaction was stored on ice until reverse transcription 

mix was added.  

3. The reverse transcription reaction mix was prepared, 15 µL for each cDNA reaction, 

combining the following components: GoScript™ 5X Reaction Buffer (4 µL), 1.5 to 5.0 

mM MgCl2 (4 µL), PCR Nucleotide Mix (final conc. 0.5 mM each dNTP) (1 µL), 

Recombinant RNasin® Ribonuclease Inhibitor (0.5 µL), GoScript™ Reverse 

Transcriptase (1 µL), and Nuclease-Free Water (4.5 µL). The mixing was done on ice. 

4. 15 µL of reverse transcription mix was combined with 5 µL of RNA and primer mix.  

5. The RNA with reverse transcription mix and primer mix was annealed in a heat block at 

25 0C for 5 minutes. 

6. It was then extended in a heat block at 42 0C for half to one hour. 

7. The reverse transcriptase was inactivated in a heat block at 70 0C for 15 minutes. 

Protocol A3. Purification of cDNA using Promega kit  

1. 4 volumes of Binding Buffer (B2) was added to 1 volume of PCR reaction. The reaction 

was mixed well 

2. A PureLink® Clean-up Spin Column in a Wash Tube was removed from the package. 

3. Sample in Binding Buffer from Step 1 was added to the PureLink®
 Spin Column. 

4. The PureLink® Spin Column was centrifuged at room temperature at 10,000 ×g for 1 

minute. 

5. The flow through was discarded and the PureLink® Spin Column was replaced into the 

Wash Tube. 

6. 650 µL Wash Buffer with ethanol was added to the PureLink® Spin Column. 
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7. The PureLink® Spin Column was centrifuged at room temperature at 10,000 ×g for 1 

minute. The flow-through was discarded from the Wash Tube and the PureLink® Spin 

Column was replaced into the tube. 

8. The PureLink® Spin Column was centrifuged at maximum speed at room temperature for 

2-3 minutes to remove any residual Wash Buffer. The Wash Tube was discarded. 

9. The PureLink® Spin Column was placed in a clean 1.7-mL PureLink® Elution Tube. 

10. 50 µL Elution Buffer was added to the center of the PureLink® Spin Column. 

11. The PureLink® Spin Column was incubated at room temperature for 1 minute. 

12.  Then the PureLink® Spin Column was centrifuged at maximum speed for 1 minute. 

13. The elution tube contained the purified PCR product. The PureLink Spin Column was 

removed and discarded. The recovered elution volume is ~48 µL. 

Protocol A4. qPCR 

1. In a 20 µL reaction, 10 µL of SsoAdvanced™ Universal SYBR® Green Supermix 

(Catalog #172-5271), 1 µL forward and reverse primers, and 4 µL of cDNA was used to 

do qRT PCR.  

2. Amplification conditions were as follows: denaturation at 95 °C for 30 s followed by 40 

cycles at 95 °C for 15 s, 62 °C for 30 s. 

 


