
A STOCHASTIC BAYESIAN UPDATE AND LOGISTIC GROWTH MAPPING OF 

TRAVEL-TIME FLOW RELATIONSHIP 

 

 

 

 

A Dissertation 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Mohammad Mofigul Islam Molla 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Major Program: 

Civil Engineering 

 

 

 

 

December 2016 

 

 

 

 

Fargo, North Dakota 



North Dakota State University 

Graduate School 

 
Title 

  

A STOCHASTIC BAYESIAN UPDATE AND LOGISTIC GROWTH 

MAPPING OF TRAVEL-TIME FLOW RELATIONSHIP 

  

  

  By   

  
Mohammad Mofigul Islam Molla 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Matthew L. Stone, Ph.D. 

 

  Chair  

  
Ying Huang, Ph.D. 

 

  
Chowdhury K. A. Siddiqui, Ph.D., P.E. 

 

  
Yong Bai, Ph.D., P.E. 

 

    

    

  Approved:  

   

 January 10, 2017  Dinesh Katti, Ph.D., P.E.   

 Date  Department Chair  

    

 



iii 

 

ABSTRACT 

The travel-time flow relationship is not always increasing in nature, it is very difficult to 

predict precisely. Traditional method fails to replicate this unique conditions. Until millennium, 

although various researchers and practitioners have given much attention to develop travel-time 

flow relationships, the advancement to improve travel-time flow relationships was not 

substantial. The knowledge about the travel-time flow relationship is not commensurate with or 

parallel to the advancement of new knowledge in other fields. After millennium, most 

investigators did not devote enough attention to create new knowledge, except for application 

and performance evaluation of the existing knowledge. Therefore, it is necessary to provide a 

new theoretical and methodological advancement in travel-time flow relationship.  

Consequentially, this research proposes a new methodology, which considers stochastic 

behavior of travel-time flow relationship with probabilistic Bayesian statistics and logistic 

growth mapping techniques. This research moderately improves the travel-time flow 

relationship. The unique contribution of this research is that the proposed methods outperforms 

the existing traditional travel-time flow theory, assumptions, and modeling techniques. The 

results shows that the proposed model is considerably a good candidate for travel-time 

predictions. The proposed model performs 36 percent better and accurate travel-time predictions 

in compared to the existing models.  

Furthermore, travel-time flow relationship need capacity and free-flow speed estimations. 

Traditionally, practice of capacity estimation is mostly practical, subjective, and not steady-state 

capacity. Therefore, a robust and stable capacity-estimation method was developed to eliminate 

the subjectivity of capacity estimation. The proposed model shows robust and capable of 

replicating steady-state capacity estimation. The free-flow speed estimation should relate to the 
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traffic-flow speed model while the density is zero. Therefore, this research investigates the 

existing deterministic speed-density models and recommends a better methodology in free-flow 

speed estimation. This research presents how the undefined practice of free-flow speed selection 

can be sensitive.  

Additionally, finding suitable concurrent travel-time data and traffic volume is crucial 

and very challenging. To collect concurrent data, this research investigates and develops several 

technologies such as crowdsource, web app, virtual sensor method, test vehicle, smartphone, 

global positioning system, and utilized several state and local agencies data collection efforts.  

Keywords: Travel-Time Flow, Travel-Time Delay, Volume-Delay Function, Travel 

Time, Origin-Destination Survey, Travel Demand Model, Travel Data Collection, Transportation 

Survey, Internet Sensor, Crowdsourcing, Virtual Sensor Method, VSM, Transportation Planning, 

GPS, Smartphone, Loop Detector, Travel -Time Prediction, Travel-Speed Prediction, TDM, 

Bayesian Inference, Logistic Growth Function.
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1. INTRODUCTION 

1.1. General 

The four-step travel demand model (TDM) is widely used, well known, and recognized 

in the transportation-planning industry. This four-step travel demand prediction model requires 

trip generation, trip distribution, modal split, and traffic assignment. The first step, trip 

generation, estimates the number of trips; the second step, trip distribution estimates the number 

of trips for given origins-destinations; the third step, modal split distributes the trips’ origin-

destination (O-D) probability for different modes; and the final step, highway assignment, 

assigns different route levels for the trips.  

The efficacy of travel demand modeling substantially depends on how accurate the model 

performs when forecasting travel. The TDM involves accurate estimations of existing and future 

demand with proper alternatives. It is understood that the sequential TDM requires several input 

datasets and numerous input parameters. Because a TDM is a sequential model with several sub-

models, errors of any stage could be propagated and accumulated into the entire model and final 

outcomes.  

Several past studies have estimated the TDM’s inaccuracies. For example, 50 percent of 

the traffic predictions had estimation errors that were greater than 20 percent (Yang et al., 2013). 

Rasouli and Timmermans (2012) presented an extensive literature review about the uncertainty 

of travel demand forecasting models. Flyvbjerg et al. (2005) found that, for the past 30 years, 

TDMs underperformed when predicting traffic.  

Yang et al. (2013) studied the sensitivity-based uncertainty analysis of a combined TDM. 

They stated that the forecasting uncertainties were generated from socioeconomic datasets, input 

parameters, model methodology, and assumptions. Zhao and Kockelman (2002) studied the 
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propagation of uncertainty for TDMs. Their studies inferred that transportation systems’ 

operations are subjected to significant uncertainty due to the input parameters. 

There are possibilities for errors to occur with the TDMs due to the highway-assignment 

procedure. Inaccuracy during the highway-assignment step could propagate and accumulate 

downstream into the entire model, eventually leading to erroneous models. Travel-time delay 

(t/to) function is one of the key input for the highway-assignment step. Regardless of the 

highway-assignment algorithm, the t/to functions that are being using with the highway 

assignment may have the biggest influence on TDMs inability to replicate the observed traffic. 

Therefore, to improve the existing TDM theory and methodology, it is important to obtain new 

knowledge that can capture travel-time uncertainties and stochastic behavior for the highway-

assignment stage of TDM prediction. 

In order to understand the travel-time uncertainty, knowledge about the traffic-flow 

theory is necessary. Therefore, the next section discusses the existing traffic-flow theory. 

1.2. Background 

“Traffic-flow theory” is an inaccurate term because traffic flow does not happen in 

theory, rather it occurs on real roadways (Roess et al., 2011). Roess et al. (2011) stated that there 

is one common characteristic among all speed-flow historical models and Greenshields’ modern 

linear speed-flow model. The commonality is that speed always decreases with more flow (Roess 

et al., 2011). The two-dimensional speed-flow relationship has evolved through the three-

dimensional, speed-flow-density relationship (Hall, 1975). Most of the modern, two-

dimensional, speed-flow models are, thus, based on three special regions of this curve: 1) 

uncongested condition, 2) queue discharge, and 3) congested condition (Akcelik, 1991; Roess et 

al., 2011).  
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The first region explains the uncongested condition where speed reduces very slowly or 

is relatively constant until capacity (Roess et al., 2011). The second region establishes the queue-

discharge theory. At this region, the queue represents a vertical variation at the capacity. This 

segment is relatively very small (Roess et al., 2011). The third region suggests that the traffic 

congestion start forming at this stage. The last two regions are empirical.  

In contrast, ideally, travel time always increases with higher traffic flow. This 

relationship is recognized by the transportation industry as the travel-time flow, volume-delay, or 

delay functions. Until millennium, although various researchers and practitioners devoted much 

attention to developing the travel-time flow relationship, advances to improve the travel-time 

flow relationship is not substantial. Knowledge about the travel-time flow relationship is not 

commensurate with or parallel to the advancement of knowledge in other fields. After 

millennium, most researchers did not devote enough attention to investigate new knowledge, 

except for application and performance evaluation of the existing knowledge. One major issue is 

the way that the traffic theory can explain the speed-flow relationship; speed-flow model theory 

do not explain the travel-time flow theory in a similar way.  

Spiess (1990) has defined following conditions that need to be satisfied for a given t/to 

function to meet equilibrium assignment algorithm:  

i. The function should be strictly increasing in order to make the assignment 

convergent. 

ii. The function should generate one when the volume is zero and generate two when 

volume is equal to the capacity. 

iii. The derivative of the function should exist and be strictly increasing. 
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iv. One of the model calibration parameter should be observed at the derivative’s 

solution when the volume is equal to the capacity.  

v. The derivative of the function should be a finite and positive constant.  

vi. The derivative of the function should be positive when the volume is zero, i.e., at a 

free-flow travel time (FFT). 

vii. The function should be computationally less time consuming than the Bureau of 

Public Roads’ (BPR) method. 

So far, the overall background of the t/to function characteristics has been presented in 

this section. In a later section, the existing methodologies that might reveal the theoretical and 

methodological aspects of the t/to functions has been presented. These characteristics will guide 

to find the current conditions, industry needs, and gaps in the literature. 

1.3. Existing Methodologies  

The review of literature shows that there are number of t/to functions that are being used 

by researchers and practitioners. Some of the functions are presented in Table 1. Table 1 has 

been summarized and presented from the findings of Branston (1975), Gan et al. (2003), Ayad 

(1967), Gesalem and Fillone (2016), Mtoi and Moses (2014), Smith et al. (1999), and Kalaee 

(2010). Majority of the volume-delay functions presented in Table 1 were utilized from the 

works of Gan et al. (2003) and Branston (1975).  

Branston (1975) presented a brief literature review (up to 1974) about different t/to 

functions. He reviewed the works of Irwin et al. (1961), Irwin and Von Cube (1962), Smock 

(1962), Soltman (1965), Overgaard (1967), Mosher (1963), Bureau of Public Roads ([BPR], 

1964), Steenbrink (1974), and Traffic Research Corporation (1966). Gan et al. (2003) presented 
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the works of Campbell (1959), Irwin et al. (1961), Smock (1962), Mosher (1963), Soltman 

(1965), Overgaard (1967), Davidson (1966), and BPR (1974) models.  

Table 1. List of Travel-Time Delay Functions1  

Author Model Sources 

Campbell (1959) 

 

𝑡  = 𝑡0                                                   where 𝑣 𝑐𝑢⁄  ≤ 0.60 

𝑡  = 𝑡0 + 𝛼(𝑣 𝑐𝑢⁄ − 0.60)                 where 𝑣 𝑐𝑢⁄  ≥ 0.60 

Gan et al. (2003), 

Branston (1975) 

Irwin et al. (1961) 

 

𝑡  = 𝑡1 + 𝛼(𝑣 − 𝑐𝑝)                          where 𝑣 < 𝑐𝑝 

𝑡  = 𝑡1 + 𝛽(𝑣 − 𝑐𝑝 )                         where 𝑣 ≥ 𝑐𝑝 

𝑡1 = 𝑡0 + 𝛼𝑐𝑝 

Gan et al. (2003), 

Branston (1975) 

Irwin and Van 

Cube (1962) 

𝑡  = 𝑡1 + 𝛼(𝑣 − 𝑐𝑝)                              where 𝑣 < 𝑐𝑝 

𝑡  = 𝑡1 + 𝛽(𝑣 − 𝑐𝑝)                              where 𝑐𝑝 ≤ 𝑣 ≤ 𝑐𝑠 

𝑡  = 𝑡2 + 𝛾(𝑣 − 𝑐𝑠)                           where 𝑣 ≥ 𝑐𝑠 

𝑡1 = 𝑡0 + 𝛼𝑐𝑝 

𝑡2 = 𝑡1 + 𝛽(𝑐𝑠 − 𝑐𝑝) 

Gan et al. (2003), 

Branston (1975) 

Smock (1962) 𝑡  = 𝑡0 𝑒𝑥𝑝(𝑣 𝑐𝑢⁄ ) 
Gan et al. (2003), 

Branston (1975) 

Mosher (1963) 
𝑡 = 𝑡0 + 𝑙𝑛(𝛼) − 𝑙𝑛 (𝛼 − 𝑣)              

𝑡 = 𝛽 − 𝛼(𝑡0 − 𝛽) (𝜈 − 𝛼⁄ )               

Gan et al. (2003), 

Branston (1975) 

BPR (1964) 𝑡 = t0 (1 +  𝛼(𝑣 𝑐𝑝⁄ )
𝛽

) 
Branston (1975), Gan 

et al. (2003) 

Soltman (1966) 𝑡 = 𝑡02𝜈 𝑐𝑝⁄                                          where 𝑣 𝑐𝑝⁄ ≤ 2 
Gan et al. (2003), 

Branston (1975) 

Traffic Research 

Corporation (1966) 
𝑡 = t0 ∗ (2 + √𝛼2(1 + 𝑣 𝑐⁄ )2 + 𝛽2  −  𝛼(1 −  𝑣 𝑐⁄ ) – 𝛽) Branston (1975) 

Overgaard (1967) 𝑡 = 𝑡0𝛼(𝑣 𝑐𝑝⁄ )
𝛽

 
Branston (1975), Gan 
et al. (2003) 

Ayad (1967) 𝑡 = 𝑡0 𝑒𝑥𝑝(𝑣 𝑐⁄ − 1) Ayad (1967) 

BPR (1974) 𝑡 = t0(1 +  𝛼(𝑣 𝑐𝑢⁄ )𝛽) 
Gesalem and Fillone 

(2016) 

Steenbrink (1974) 𝑡 = t0 (1 +  𝛼(𝑣 𝑐𝑢⁄ )𝛽) 
Gan et al. (2003), 

Branston (1975) 

Davidson (1966), 

Davidson (1978) 

𝑡 = 𝑡0 [1 +
𝑗(𝑣 𝑐⁄ )

(1−𝑣 𝑐⁄ )
]                                where 𝑣 𝑐⁄ ≤Ʊ 

𝑡 = 𝑡0 [1 +
𝑗Ʊ

(1−Ʊ)
+

𝑗(𝑣 𝑐⁄ −1)

(1−Ʊ)2
]              where 𝑣 𝑐⁄ ≥Ʊ 

Mtoi and Moses 

(2014) 

Spiess (1990) 𝑡 = t0 (2 + √𝛼2(1 + 𝑣 𝑐⁄ )2 + 𝛽2  − 𝛼 (1 −  𝑣 𝑐⁄ )– 𝛽) 

Smith et al. (1999), 

Mtoi and Moses 

(2014) 

Akcelik (1991) 𝑡 = 𝑡0 [1 + 0.25𝑡0 + [(𝑣 𝑐⁄ − 1) + √(𝑣 𝑐⁄ − 1)2 + 8𝜏
𝑣 𝑐⁄

𝑡0𝑐
 ]] 

Mtoi and Moses 

(2014) 

 

                                                
1 Majority of the travel time delay function are presented in Table 1 are from the works Branston (1975), Gan et al. 

(2003), and Mtoi and Moses (2014).  
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The following notation is used for this entire section of this dissertation: 

i. v: traffic flow  

ii. t: travel time at traffic flow v  

iii. t0: initial travel time at zero traffic flow  

iv. t1, t2: travel time at different region 

v. t0: initial travel time at zero traffic flow  

vi. c: link capacity  

vii. cu: link ultimate capacity   

viii. cp: link practical capacity   

ix. cs: link stable capacity   

x.  α, β, γ, j, Ʊ, 𝜏  : Modeling calibration parameters 

Campbell (1959) proposed the following two functions (Equations 1 and 2) for use in the 

Chicago area (Gan et al., 2003). Campbell’s (1959) methodology indicates that free-flow travel 

is constant until the flow reaches 60 percent of the capacity, but his methodology shows a linear 

relationship when the flow rate is equal to or greater than 60 percent of its ultimate capacity (Gan 

et al., 2003). From a mathematical standpoint, the first function of Campbell methodology lacks 

the capability to explain the travel-time variation for congested places or larger cities, where 

traffic-flow characteristics is non-linear in nature.  

𝑡  = 𝑡0   where 𝑣 𝑐𝑢⁄  ≤ 0.60 (Equation 1) 

𝑡  = 𝑡0 + 𝛼(𝑣 𝑐𝑢⁄ − 0.60)   where 𝑣 𝑐𝑢⁄  ≥ 0.60 (Equation 2) 

 

According to Branston (1975) and Gan et al. (2003), one of the earliest assignment 

models was developed by Irwin et al. (1961). Irwin et al. (1961) proposed a simple travel-time 
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flow relationship (Equations 3-5) based on two regions and practical capacity. Their proposed 

model was convex linear for both the feasible region and the overloaded region (Branston, 1975; 

Gan et al., 2003). 

𝑡  = 𝑡1 + 𝛼(𝑣 − 𝑐𝑝)   where 𝑣 < 𝑐𝑝 

 

(Equation 3) 

𝑡  = 𝑡1 + 𝛽(𝑣 − 𝑐𝑝 )   where 𝑣 ≥ 𝑐𝑝 

 

(Equation 4) 

𝑡1 = 𝑡0 + 𝛼𝑐𝑝 (Equation 5) 

 

Later, Irwin and Van Cube (1962) revised the methodology (Equations 6-10) by adding 

practical capacity and steady-state capacity (Branston, 1975). This method include linear-

regression fitting for the difference between a link’s flow per lane and the practical capacity. 

Based on Gan et al. (2003) and Irwin et al. (1961), model can easily be applied to a majority of 

the highway-assignment procedure. From the results of Irwin and Van Cube (1962) and Irwin et 

al. (1961), the model fitted the actual condition (Branston, 1975; Gan et al., 2003). However, 

Branston (1975) pointed out that this methodology has difficulty creating a linear relationship to 

the link characteristics at the location of the discontinuity at practical capacity. 

𝑡  = 𝑡1 + 𝛼(𝑣 − 𝑐𝑝)   where 𝑣 < 𝑐𝑝 (Equation 6) 

𝑡  = 𝑡1 + 𝛽(𝑣 − 𝑐𝑝)   where 𝑐𝑝 ≤ 𝑣 ≤ 𝑐𝑠 (Equation 7) 

𝑡  = 𝑡2 + 𝛾(𝑣 − 𝑐𝑠)   where 𝑣 ≥ 𝑐𝑠 (Equation 8) 

𝑡1 = 𝑡0 + 𝛼𝑐𝑝 
(Equation 9) 

 

𝑡2 = 𝑡1 + 𝛽(𝑐𝑠 − 𝑐𝑝)  (Equation 10) 

 

Smock (1962) developed the earliest curvilinear exponential t/to function (Equation 11) 

for the Detroit area (Branston, 1975; Gan et al., 2003). A heuristic, iterative, capacity-restraint 
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assignment was tested by the author. The model predicted that significantly fewer assigned 

volumes exceeded the steady-state capacity (Branston, 1975).  

𝑡  = 𝑡0 𝑒𝑥𝑝(𝑣 𝑐𝑢⁄ )   (Equation 11) 

        

Mosher (1963) suggested one logarithmic function (Equation 12) and one hyperbolic 

function (Equation 13) (Branston, 1975; Gan et al., 2003). From a mathematical standpoint, for 

both functions, if the steady-state capacity is less than α, then the functions create a 

computational problem or infinite travel time (Gan et al., 2003). Branston (1975) pointed out that 

this model is not suitable for iterative assignment.  

𝑡 = 𝑡0 + 𝑙𝑛(𝛼) − 𝑙𝑛 (𝛼 − 𝑣)   (Equation 12) 

𝑡 = 𝛽 − 𝛼(𝑡0 − 𝛽) (𝜈 − 𝛼⁄ ) 
  (Equation 13) 

The most widely used t/to function is the BPR function (Branston, 1975). The standard 

BPR function is shown in Equation 14. Later, the BPR modified this function as shown in 

Equation 15. 

𝑡 = t0 (1 +  𝛼(𝑣 𝑐𝑝⁄ )
𝛽

) 
  (Equation 14) 

 

𝑡 = t0(1 +  𝛼(𝑣 𝑐𝑢⁄ )𝛽)   (Equation 15) 

 

There are numerous studies about the BPR’s t/to functions. The original BPR curve was 

developed by fitting a polynomial equation based on a highway’s speed-flow relationship 

(Transportation Research Board [TRB], 1985; Mtoi and Moses, 2014). According to Spiess 

(1990), the BPR function is simple and very convenient. However, Spiess (1990) studies 

presented some inherent drawbacks of BPR functions: 1) a very high α value slows down the 

convergence for the highway-assignment procedure and can create numerical problems; 2) the 
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functions are very sensitive to FFS; i.e., the slightest change for the FFS may shift the highway 

assignment to a different path; and 3) the process is computationally expensive.  

Davidson (1966, 1978) developed a t/to function (Equation 16) based on the queuing 

theory (Gan et al., 2003). This function has one serious flaw. The function is not capable of 

estimating travel time when the volume is greater than 1 (Mtoi and Moses, 2014). The 

inconsistency for this method is discussed by Golding (1978), Akcelik (1991), Kalaee (2010), 

and Mtoi and Moses (2014).                       

𝑡 = 𝑡0 [1 +
𝑗(𝑣 𝑐⁄ )

(1 − 𝑣 𝑐⁄ )
]   (Equation 16) 

 

Akcelik (1991) proposed a time-dependent form (Equation 17) of the Davidson function 

which encompass the intersection delay (Mtoi and Moses, 2014). This function may be applied 

to volume/capacity (v/c) ratios above and below 1. This function can be applied to any facility 

(Smith et al., 1999). Dowling et al. (1998) reported that Akcelik’s functions provide more 

accurate and faster estimates than the BPR method. The Akcelik function is of interest because it 

is not followed by a smooth curve like other functions. However, this model generated scattered 

results than the other existing models (Dowling and Skabardonis, 2006).  

𝑡 = 𝑡0 [1 + 0.25𝑡0 + [(𝑣 𝑐⁄ − 1) + √(𝑣 𝑐⁄ − 1)2 + 8𝜏
𝑣 𝑐⁄

𝑡0𝑐
 ]]  (Equation 17) 

 

Spiess (1990) presented a conical congestion function (Equation 18). He defined certain 

conditions that need to be satisfied for given t/to functions to meet equilibrium assignment 

algorithm (Horowitz, 1991); these conditions were discussed earlier in the chapter.   

𝑡 = t0 (2 + √𝛼2(1 + 𝑣 𝑐⁄ )2 + 𝛽2  − 𝛼 (1 −  𝑣 𝑐⁄ )– 𝛽)  (Equation 18) 
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The first four conditions can be observed for the BPR functions (Spiess, 1990). The last 

three conditions were applied by Spiess (1990) to overcome the three drawbacks of the BPR 

functions. Eventually, Spiess’ (1990) conical t/to function improved the assignment convergence 

better than the BPR function (Spiess, 1990). According to Horowitz (1991), the first six 

conditions are met with the BPR functions. He claims that the second condition should be 

revised. The functions should generate a realistic value at zero volume, and volume at capacity. 

He also claims that third and seventh conditions are not necessary. However, he finds that 

Spiess’ (1990) conical t/to function has better, consistent results than BPR. At the same time, 

Horowitz (1991) utilized a least-square method to approximate α and β parameters based on a 

highway-capacity manual (Smith et al., 1999).  

In this section, the existing methodologies and state-of-the-art best practices in t/to 

prediction has been presented. In the following sections, overall gaps and issues in the existing 

methods and review of literature are presented.  

1.4. Gaps in the Current Research 

The Literature Review indicates that there are certain gaps in the existing information 

about the travel-time flow relationship.  Broadly, these issues can be classified in following six 

categories, which has been discussed in details in below.  

i. Always strictly increasing assumption issues. 

ii. Stochasticity and non-linearity issues. 

iii. Theoretical-aspect and binding-constraint issues. 

iv. Computational inability issues. 

v. Subjectivity of capacity estimation. 

vi. Undefined free-flow speed (FFS) consideration. 
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1.4.1. Issues with Always Strictly Increasing Assumption  

Based on current practice and the theoretical aspect, to make the highway-user 

equilibrium-assignment procedure convergent, the delay functions need to be strictly increasing. 

It was expected that the t/to for a given v/c ratio is stochastic in nature. This expectation partially 

outperforms the existing travel-time flow theory. According to TRB (1975), existing theory 

states that traffic conditions for a given road segment are stationary and that drivers behave the 

same way, on average, with the same average conditions (Kalaee, 2010). In a real situation for 

the Albuquerque metropolitan area in New Mexico, as presented in Figure 1, when the t/to is 

stochastic in nature for a given, discrete v/c ratio, a strictly increasing relationship may not be 

observed. This situation is described in the case of a system-wide model. Furthermore, the study 

area was narrowed down the problem with 50 freeway sections in Los Angeles, California. It is 

proven in Chapter 7 that t/to predictions are stochastic in nature for freeway. 

Most of the modeling functions are strictly increasing and significantly sensitive with the 

increased v/c. If someone captures the stochasticity of t/to by likelihood or probabilistic 

approximation, then the expected mean of the t/to for a given v/c ratio might not be always 

increasing. To have a convergent solution for an equilibrium highway-assignment algorithm, an 

increasing curve is always required; therefore, most of the existing t/to models are sensitive, 

especially when the v/c is greater than 1, i.e., in a congested situation. Therefore, the first 

assumption for this research is that the t/to function might not be strictly increasing to follow the 

user-equilibrium method. The function may increase or decrease, especially when the 

stochasticity of the t/to is very sensitive for a given v/c ratio. Therefore, a system should be 

designed in such a way such that it can capture the natural rise and fall of the t/to with respect to 

the v/c ratio.  
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Figure 1. Realized Sensitivity of an Actual Condition 

1.4.2. Stochasticity and Non-Linearity Issues 

Earlier studies did not put enough attention to incorporate stochasticity and probability in 

their t/to function development. The existing methods cannot suitably explain the probability for 

a t/to with a given v/c ratio. The existing models are fitted based on the least-square curve-fitting 

technique. The random errors generated with the existing models do not follow the assumption 

of a normal distribution where the random errors should be independent and identically 

distributed. The proof of this assumption is demonstrated in Section 7.1. Therefore, model may 

contains uncertainty. In the case of congested places such as Los Angeles, this uncertainty is 

extremely high. The least-square curve fitting technique may generate a very low value for the 

coefficient of determinations. 
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Therefore, a separate model is required to predict the t/to for such a case. In order to 

reduce errors and the variability of the generally least-square fitted model, the mean and 

variance’s chaotic nature need to be incorporated in the developed model.  

1.4.3. Theoretical Aspect and Binding-Constraint Issues 

Several existing t/to functions are only limited when the v/c ratio is less than 1, i.e., 

uncongested condition. Some of them can explain when the v/c is greater than 1, but several 

existing models are based on an empirical or theoretical approach. The main reason might be the 

data unavailability. Several existing models are developed based on forcedly fitting the curve by 

constraining the t/to function at zero volume and volume at capacity as presented in Spiess 

(1990) study. Horowitz (1991) claims to revisit Spiess’ (1990) second condition. Horowitz 

(1991) supports that these constraints should be revisited. Therefore, one of the assumption for 

this research is that the t/to function might not have any binding constraint at a FFS and volume 

at capacity. The proof of this assumption are presented in Section 3.5. 

1.4.4. Computational Inability Issues 

 The literature shows that many models that are not perfectly suited for the highway-

assignment procedure. Dividing by zero, generating infinite travel time, or inconsistency with the 

computation are frequently observed issues that are caused by different functions which 

outperform many of the developed functions. Therefore, a solution that can overcome this issue 

may be required. 

1.4.5. Subjectivity of Capacity Estimation  

The t/to functions need capacity estimations for input parameters. When the capacity 

estimation is used to the transportation-planning stages, the estimate is mostly practical and 

subjective in nature (Branston, 1975). Second, highway-capacity manuals provide guidance to 
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estimate capacity. This guidance is heavily concentrated on an operational aspect. When it comes 

to planning aspect, numerous assumptions are necessary to replicate the operational condition in 

the planning model. These assumptions come from various sources, which may include different 

error types. On the contrary, robust and stable capacity estimations might eliminate the 

subjectivity of capacity estimation. Therefore, a robust and stable capacity-estimation method 

may be necessary.  

1.4.6. Undefined Free-Flow Speed Consideration 

FFS is the last input parameter for t/to functions. The FFS has an important role. This FFS 

is used to calculate the initial FFT and the congested travel time for the highway-assignment 

steps. Wang and Huegy (2014) indicated that FFS is being used for regional travel demand by 

utilizing a look-up table. By definition and theoretically, the FFS formulation should relate to the 

traffic-flow speed while the density is zero. Therefore, the available speed-density model should 

be investigated, and a methodology should be proposed to find the FFS accordingly.  

In the earlier section, different issues and problems, which need to be addressed in t/to 

formulation have been presented. Considering these six specific issues, the research problem 

statement is defined. It is described in the following section. 

1.5. Problem Statement 

Until millennium, although various researchers and practitioners devoted much attention 

to developing the travel-time flow relationship, advances to improve the travel-time flow 

relationship is not substantial. One of the main reason might be the unavailability of concurrent 

travel time and traffic count data. Beside this, practitioners are widely using simple model. 

Because, even a simple model is computationally expensive in the highway assignment stage in 

travel demand model. Furthermore, t/to functions are comprised of numerous factors. Therefore, 



15 

 

after the millennium, most of the researchers and practitioners might be utilizing simple model 

and developing calibration/transferrable parameters based on the existing models. Therefore, a 

new t/to model might be required which can move forward the scientific community. 

The t/to dynamics are a function of the v/c ratio with two input parameters: FFS and 

capacity. There are specific problems with the current t/to functions. 

First, the current t/to models with respect to v/c are mostly represented by increasing 

function and, therefore, are significantly sensitive with the increased v/c. In practice, to achieve a 

convergent solution for the user-equilibrium method, the current models are forced to grow in a 

strictly increasing condition. In some cases, models are constrained at zero volume and capacity. 

To overcome the user-equilibrium assignment method drawbacks, the functions need to be 

strictly increasing. In reality, strictly increasing nature may not seem perfect. An always 

increasing function may not be possible. The t/to dynamics shows stochastic in nature, implying 

that the t/to growth with respect to the v/c is not strictly increasing when the likelihood or 

probabilistic uncertainty is incorporated. The t/to uncertainty may follow a logistic growth model 

which can explain the natural trends of t/to function. If someone wants to incorporate the 

stochasticity for the t/to functions’ growth, then fitting a curve using the state-of-the-art best 

practices may not be suitable. Thus, to capture the stochastic nature of the data, a new function 

may be needed. Therefore, it is necessary to provide new theoretical and methodological 

advancement for t/to dynamics so that, for a given transportation system’s t/to stochasticity can be 

eliminated.  

Second, computing the t/to by depending on v/c is stochastic in nature. Several t/to 

functions are fitted with the least-square curve technique where random errors portion of the 

model violates the assumption of normality. That way, the least-square curve fitting may produce 
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larger errors and variances for a model. For example, if someone classify the data as an infinitely 

small, discrete v/c value instead of a continuous v/c value, then, for a given discrete v/c value, the 

t/to is highly sensitive and stochastic in nature. For a given v/c, the distribution of the modeling 

errors may not normal. For a given transportation system of a network or a functional class, the 

t/to may behave differently, especially when the stochasticity of the t/to function for a given 

discrete v/c may have a significant influence. The t/to functions are significantly sensitive for a 

given v/c ratio. An existing deterministic method may fail to represents this condition. Existing 

methods did not put suitable attention to incorporate this t/to stochasticity based on the data’s 

statistical distribution. Therefore, it is necessary to find knowledge which can resolve issues two 

and three, particularly performing a stochastic, probabilistic approximation based on the 

statistical distributions for the given data.  

In several modeling functions, there are seven conditions of Spiess (1990) discussed 

earlier that might need to be met to become a good candidate as a t/to function to meet 

equilibrium assignment algorithm. To meet the theoretical aspect, the t/to function are forced to 

fit at zero volume and volume at capacity. The idea with the existing practices is that t/to 

functions should generate one when the volume is zero and generate two when the volume is 

equal to the capacity. To remove these issues, Horowitz’s (1991) constraint assumption was 

adopted.  

Third, t/to functions need an input parameter for capacity estimation. When capacity 

estimation is at the transportation-planning stage, capacity estimations are mostly practical 

capacity and are subjective in nature for a given link. Highway capacity manuals (HCM) provide 

guidance for estimating capacity. This guidance is heavily concentrated on an operational aspect. 

When it comes to planning, numerous assumption types are necessary to replicate the operational 
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condition in the model. These assumptions come from various sources which may include 

different error types. On the other hand, robust and stable capacity estimations might eliminate 

the subjectivity of capacity estimation. Therefore, a robust and stable capacity-estimation method 

may be necessary.  

Fourth, FFS is the last input parameter for t/to functions. The FFS has an important role. 

This speed is used to calculate the initial FFT and the congested travel time for highway-

assignment steps. Wang and Huegy (2014) indicated that FFS is being used for regional travel 

demand by utilizing a look-up table. By definition and theoretically, the FFS formulation should 

relate to the traffic-flow speed while the density is zero. Therefore, the available speed-density 

model should be investigated, and a methodology should be proposed to find the FFS 

accordingly.  

There are two questions that need to be answered in order to obtain a solution for the 

previously discussed issues. First, how to get the prior information about a Bayesian model 

update for a given t/to? Second, how and where to get the data that include the concurrent travel 

time and volume for a given location? The next section details these two problems.  

First, the Bayesian modeling technique requires prior information about a distribution. In 

order to estimate probability for the Bayesian model discussed with research issues two and three 

earlier, prior belief/information/knowledge about the data are necessary. Prior is the information 

about the t/to parameters for a given v/c ratio that needs to be learned before the Bayesian model 

update or experiment. Using historical data, prior information on the t/to for a given v/c can be 

estimated. The expected distribution of the prior information is stochastic, meaning that the 

random error is not normally distributed. From this random error, stochasticity may arise and 

should be accounted for in the prior estimation. Thereafter, question was how someone could 
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estimate the prior belief when there was uncertainty associated with the mean and variance for 

the t/to with a given v/c. On such an occasion, a stochastic method, the Program Evaluation and 

Review Technique (PERT), is well known and widely used in the field of operation research and 

project management. It was expected that PERT should have the capability to estimate the 

expected, most likely mean t/to for a given v/c based on the historical optimistic, pessimistic, and 

most likely mean t/to.  

Second, finding suitable concurrent travel-time data and traffic volume is crucial for 

regional transportation planning. Many larger agencies are collecting real-time or near real-time 

travel-time or traffic-volume data, but the concurrent, real-time or near real-time travel-time and 

traffic-volume data are rare. In order to develop a t/to function, researchers are always eager to 

have concurrent data. Because resources are constrained, it is necessary to develop a system such 

that, in the absence of data, it might be useful to represent concurrent data. If an agency is 

counting the traffic volume for a given highway’s link segment, then the developed system 

should have the capabilities to collect travel time. Using this concept, a new technology called 

virtual sensor methodology (VSM) is a current interest among researchers. Morgul et al. (2014) 

used MapQuest and Bing Maps to collect travel-time data, but the authors did not include other 

crowdsource web services, such as Google, OpenStreetMap, and HERE. Some issues with VSM 

are MapQuest, Bing, Google, and HERE’s are licensing and permission requirements.  On the 

contrary, OpenStreetMap is the only free and open crowdsource service. OpenStreetMap does 

not have any limits to collect travel time data. Considering these issues, it may be necessary to 

extend the knowledge of VSM beside Morgul et al.’s (2014) work. A detail literature review is 

included at Chapter 2 to support this statement. 
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1.6. Assumptions 

Based on the previous discussions, it was necessary to have some specific hypotheses or 

assumptions before obtaining a solution. In order to come up with a novel solution, there are 

certain assumptions that need to be considered: 

i. The t/to functions should not always be increasing. The t/to function should follow 

natural rise and fall trends/growth which could be increasing or decreasing for a given 

v/c ratio (Proof of this assumption is presented in Section 7.2 and 7.3).  

ii. Adopted Horowitz’s (1991) second assumption is that the functions should generate 

a realistic value at zero volume and capacity (Proof of this assumption is presented in 

Section 3.5).  

iii. The first derivative of the function may exist and follow the delay curve’s natural 

growth. This assumption is actually the complementary of the first assumption. 

iv. The random error due the t/to model for a given v/c ratio is not normally distributed 

(Proof of this assumption is presented in Section 7.1.5).  

1.7. Research Objectives 

This dissertation’s main goal was to propose a new methodology for a highway-link, t/to 

function formulation based on a stochastic Bayesian model update and a market-adopted, 

logistic-growth curve-fitting technique. In order to attain this goal, the research was focused on 

six specific research objectives:  

i. Approximate a new freeway travel-time congestion/highway assignment model based 

on knowledge borrowed from the logistic growth-mapping with eliminating 

stochasticity from the model. 
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ii. Provide a new approximation methodology for the traffic delay’s prediction using the 

knowledge from Bayesian modeling technique.  

iii. Provide a new, integrated logistics and quantile traffic-flow model for traffic flow 

prediction and capacity estimations.  

iv. Investigate deterministic speed-density models and propose a methodology for FFS 

estimation. 

v. Approximate of the informative prior distribution and its uncertainty of historical t/to 

using a performance evaluation and review technique. 

vi. Extend the knowledge about the VSM to collect travel-time data from crowdsource 

services.   

1.8. Expected Significances and Contributions 

There were six expected contribution for this research: 1) propose a new scientific 

methodology and theoretical foundation for the freeway t/to stochastic approximation; 2) propose 

a new methodology for the t/to dynamics/chaotic-behavior prediction; 3) investigate speed-

density models, and propose a better methodology for FFS estimation and speed predictions; 4) 

develop a model that can approximate stable capacity; 5) approximate the stochasticity for an 

informative prior distribution of t/to and its uncertainty; and 6) extend the VSM to collect travel-

time data from crowdsource web services.   

Two indirect, expected contributions for this research were generated: 1) reviewing the 

literature about crowdsourcing and VSM; and 2) developing a web app, several tools, and an 

automated workflow to collect and analyze travel-time data. 
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1.9. Expected Limitations 

There were two expected limitations which could be raised while conducting this 

research: 1) concurrent travel time and volume might be collected from two different 

sources/methods, and 2) crowdsource data are contingent based on approving the crowdsource 

agencies’ terms and conditions. 
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2. LITERATURE REVIEW 

The Literature Review is divided into seven broad categories. The identified gaps, 

existing problems, research needs, and research motivation for the research are presented in 

seven different sections.  

i. Existing travel-time flow relationship. 

ii. Existing prediction methodology. 

iii. Existing informative prior approximation methodology. 

iv. Existing data-collection methodology. 

v. Existing virtual sensor methodology. 

vi. Existing capacity estimation. 

vii. Existing FFS methodology. 

First section, existing travel-time flow relationship was discussed in Chapter 1 (Section 

1.3). Second, fourth, and fifth Sections are presented in Chapter 2. Third section, existing 

informative prior t/to methodology is presented in Chapter 3 (Section 3.3). Sections sixth and 

seventh are presented in Chapters 6 and 7, respectively. 

First section presents why there is a need of a new methodological and theoretical 

enhancement to predict the t/to. Second section presents why there is a need of a probabilistic 

Bayesian approach to predict the t/to for a given v/c ratio. Third section explains why the 

performance-evaluation and review technique to estimate the prior belief about t/to was 

considered. Fourth and fifth sections are tied to the data needed to complete this dissertation. 

Sections sixth and seventh proposed methodologies for input-parameter estimations of capacity 

and FFS, respectively. 
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2.1. Existing Prediction Methodology 

2.1.1. Definition of Travel-Time Prediction  

Travel-time prediction (TTP) can be defined as the estimation and prediction of the travel 

time before a vehicle has traveled on a route of interest: the freeway or an arterial (Billings, 

2006). Hao et al. (2009, p.189) defined TTP as “Travel time prediction refers to the calculation 

of the departure time for the future traffic conditions. Note that the principal difference between 

travel time estimation and travel-time prediction is that the former is based on the data available 

for current time instance. Thus, travel time estimation is mostly used for offline fashion. In 

addition, travel time estimation, by definition, is a technique used in cases where directly 

measured travel times are not available.” 

TTP is a critical element for releasing traffic information (Jiang et al., 2014). TTP has 

been an important research topic for the last two decades (Jiang et al., 2014; Billings, 2006). In 

order to make more informed, individual departure-time and route selections before trip planning 

or en-route navigation, advanced traveler information systems (ATIS) enable the inclusion of 

prevailing and/or predictive travel time (Fei et al., 2011; Zou et al., 2014; Zhang and Haghani, 

2015).  

Because travel time information is an important element for intelligent transportation 

systems (ITS), accurately predicting travel is crucial, specifically for the ATIS (Zou et al., 2014; 

Wu et al., 2004). Freeways travel time estimation and prediction are necessary to implement 

successful intelligent transportation system (Tak et al., 2014). The TTP is the major element to 

further the progress of the available of travel-time information application in both the transport 

and logistics fields (Lin et al., 2005). 
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The inclusion of accurate travel-time information through the ATIS provides travelers to 

make informed choices about the departure time, route, and mode (Zhang and Haghani, 2015). 

TTP is important element to proactively develop advanced traffic-management system (ATMS) 

strategies (Zhang and Haghani, 2015).  

Traffic accidents, weather, and road conditions have different uncertainties, making the 

TTP very challenging to estimate accurately. It is a known problem (Billings, 2006). However, 

prediction techniques and mechanism play bigger role in prediction accuracy than any other 

factors (Ishak and Al-Deek, 2002).  

Short-term delivery can be facilitated using the current travel-time information, but 

considering time-period perspective, long-term TTP is essential (Lin et al., 2005). The area with 

stable traffic conditions, a reasonable estimation can be utilized, but for an area with more traffic 

variations, a prediction model is required (Grol et al., 1999). Different factors, such as an 

incident, may affect the travel time with a higher sensitivity. Since the mid-1980s, short-term 

travel-time estimation and prediction has become more important (Park et al., 1999).  

Research about freeway travel-time estimation is very rich, but the arterial travel time is 

quite limited (Billings, 2006). The arterial road TTP is more challenging compared to the 

freeway TTP because the arterial-road section contains a congestion and delay caused by 

entering vehicles from cross streets (Billings, 2006). 

Mendes-Moreira et al. (2015, p.428) wrote- “Long-term bus travel time prediction (i.e., 

the prediction of the duration of bus trips several days ahead) is very important for the planning 

activities in freight and transport companies (e.g., definition of the schedules for trips and 

drivers). Long-term should be, in this context, understood as the prediction of a travel time for a 
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single future trip that is expected to occur in a given future timestamp. Not much attention has 

been dedicated to this problem.”  

2.1.2. Factors Affecting Travel-Time Prediction 

Wu et al. (2004, p.276) said, “Travel-time calculation depends on vehicle speed, traffic 

flow, and occupancy, which are highly sensitive to weather conditions and traffic incidents. 

These features make travel-time predictions very complex and difficult to reach optimal 

accuracy. Nonetheless, daily, weekly, and seasonal patterns can still be observed at a large 

scale.” 

Travel time may vary along the 1) individual locations, 2) short road sections, 3) long 

road sections, transit routes or trips, 4) corridors, 5) subareas, 6) regional networks, and 7) 

multimodal analysis (TRB, 2008) and may be based on different time periods, such as small time 

periods (peak or off-peak period), hourly, daily, and seasonal (TRB, 2008; May and 

Montgomery, 1984). Travel time may vary by area type such as urban and rural types (TRB, 

2008). May and Montgomery (1984) have listed travel-time variations in several broad 

categories: 

i. Inter-vehicle variation (car characteristics, driving style, traffic lanes chosen, and 

traffic conditions). 

ii. Inter-period variation (traffic volume, traffic composition, specific incidents, weather, 

time of day, day of week, time of year, and secular trends). 

iii. Inter-route variation (route or link). 

 TRB (2013) has defined following seven broad categories, which can affect the 

travel time.  

i. Traffic-control devices 
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ii. Daily/seasonal variation 

iii. Special events 

iv. Physical capacity 

v. Weather 

vi. Incidents 

vii. Work zones 

2.1.3. State-of-the-Art Best Practices for Travel-Time Predictions Method 

In this section, state-of-art best practices of TTP method are presented. Based on the 

findings of Lin et al. (2005), Chen et al. (2015), and Zhang and Rice (2003), most short-term 

TTPs can be listed as shown in Table 2. 

Fangfang et al. (2008, p.3753) said, “Travel time can be estimated or predicted based on 

the data collected by fixed detectors (e.g. loop detectors, video cameras, radar detectors) or non-

fixed detectors (e.g. AVI, AVL, GPS, Cellular Phone Tracking). At present, researchers have 

shown great interest in developing prediction models using data from probe vehicles equipped 

with GPS.”  

Billings (2006) studied the application of the auto regressive integrated moving average 

(ARIMA) models to an urban, arterial road’s TTP with a case study of a section of Minnesota 

State Highway I-94. He used the global positioning system (GPS) probe-vehicle method to 

collect data and applied ARIMA because of the data’s non-stationarity. His study indicated that 

the ARIMA model has potential and is efficient for short-term prediction; the model can be 

applied to other urban areas. He found that the predicted travel time replicates the observed 

condition. The research concluded that the ARIMA model is good for the higher speed limit. He 

also found that a lower speed limit, shorter link distance, and high cross traffic affected the 
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prediction’s performance. Zhang and Haghani (2015, p.309) said, “ARIMA models provide 

interpretable parameters with straightforward model structures. They can make very good 

predictions when traffic shows regular variations.” 

Table 2. List of TTP Methods 

Number Acronym Method 

1 ATHENA ATHENA 

2 ARIMA Auto Regressive Integrated Moving Average 

3 DLM Bayesian Inference-Based Dynamic Linear Model 

4 Clustering Clustering 

5 DynaMIT Dynamic Network Assignment for the Management of Information 

of Travelers 

6 EES Extended Exponential Smoothing 

7 GBM Gradient Boosting Method 

8 Ensemble Heterogeneous ensembles 

9 KF Kalman Filter 

10 K-NN K-Nearest Neighbor 

11 LM Linear Model 

12 LOKRR Local Online Kernel Ridge Regression 

13 NN Neural Network 

14 - Regression 

15 - Simple Statistical Model 

16 ST-D Space-Time Diurnal Method 

17 SNN Spectral Neural Network 

18 SSNN State Space Neural Network 

19 SVR Support Vector Regression 

 

 

Elhenawy et al. (2014) developed a data-clustering method using K-means and a genetic 

programming algorithm to predict the dynamic travel time for freeways. The authors’ proposed 

algorithm attained a 25 percent reduction in the prediction error for the instantaneous average as 

well as a 76 percent prediction-error reduction for the historical average on a congested day for a 

given spatiotemporal variation in road-segment speeds. Elhenawy et al. (2014, p.87) said, “The 

instantaneous method is very simple where it assumes the segment speed does not change during 

the entire trip time.” Their case study was based on INRIX traffic data.  
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Fei et al. (2011) presented a Bayesian dynamic linear model (DLM) approach for real-

time, short-term freeway TTP. They used loop-detector data of an I-66 segment in northern 

Virginia. They concluded that the prediction is accurate and reliable for the travel time. Zhang 

and Haghani (2015) employed a gradient-boosting method (GBM) to predict the travel time for a 

freeway in Maryland. They used INRIX data.  

Haworth et al. (2014) studied local, online kernel-ridge regression for forecasting the 

urban travel time with a case study of London’s road network. Data were only collected in the 

daytime by using a camera. Hayworth et al. (2014) found that this method can replicate better 

forecasts compared to the historical average. They also revealed that this method cannot forecast 

an abnormal congestion scenario.  

Jiang et al. (2014) studied the predictability for an urban road network based on multi-

source data, which are floating-car data and fixed-detector data. The results were compared 

against the VISSIM simulated results, and the authors found that the absolute relative error of the 

travel time for both cases increases up to 13.4 percent. They established a prediction model 

based on KF using real-time floating-car and loop data. They found that multi-source prediction 

is better than single-source data. Huang et al. (2013) studied an urban expressway in Guangzhou 

for TTP based on a fuzzy, adaptive KF. They used real-time detection data. Their study’s results 

indicated that the KF model had a better ability to estimate travel time than the conventional 

approach.  

Zou et al. (2014) proposed a space-time diurnal (ST-D) method to predict the freeway 

travel time by considering spatial and temporal travel time. They collected data on a segment of 

US-290 in Houston, Texas. This segment displayed a traffic-flow pattern. Their research 

included six automatic vehicle identification (AVI) readers and vehicles with toll tags to collect 
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the travel time. They found that the ST-D method is robust compared to the traditional vector-

autoregressive models. Their results indicated that the short-term travel time can be reliably 

predicted with this method.  

Ben-Akiva et al. (2001) presented the Dynamic Network Assignment for the 

Management of Information of Travelers (DynaMIT), a model-based, real-time system that can 

be used to guide travelers. DynaMIT has two functions: to estimate the travel time based on real-

time, dynamic traffic assignments as well as to predict the current and future traffic conditions. 

Ben-Akiva et al. (2001) used historical and real-time travel-time data to develop the system. The 

prediction methodologies of them were based on the departure time, pre-trip route and mode 

choice, and en-route choice decision.  

Mendes-Moreira et al. (2015) wanted to improve the accuracy of the long-term TTP for 

public transportation using heterogeneous ensembles method. Their model can predict the travel 

time in ahead of three days. They utilized random forest, projection-pursuit regression, and 

support vector machines method. They used the data from Sociedade de Transportes Colectivos 

do Porto, Portugal. The results showed that this method can produce higher accuracy and 

robustness compared to state-of-the-art learners. The authors acknowledged that, considering the 

complexity of this system, this method could be less attractive for some users although it 

enhances the results.  

Park et al. (1999) utilized a spectral neural network (SNN) for real-time forecasting on 

US-290 in Houston, Texas. They predicted the travel time for one-to-five time periods ahead for 

the Houston area. They used AVI of the TranStart to collect the data. Their research discovered 

that an SNN can produce similar results, such as the modular NN, and outperformed the NN’s 
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conventional methods. Overall, it revealed that SNN performed better than KF the exponential 

smoothing model, the historical profile, and the real-time profile. 

Wu et al. (2004) performed support vector regression (SVR) methods to predict travel 

time and substantially reduced the prediction error compared to baseline predictors. They proved 

the SVR method’s feasibility and applicability with better performance. Fangfang et al. (2008) 

predicted link travel time using extended exponential smoothing (EES) and a KF in dynamic 

networks. The authors used the probe-vehicle data on an urban network. They integrated 

exponential smoothing with the KF method. 

Lint et al. (2005) studied freeway, accurate travel-time forecasting using state-space 

neural networks (SSNN) with missing data. They showed that the SSNN method produced 

accurate and robust predictions for real and synthetic data. 

Tak et al. (2014) proposed a multi-level K-NN algorithm and data fusion method to 

predict the real-time travel time. They used congested travel-time data that were collected from a 

Korean expressway. The proposed algorithm could predict travel time with an error of less than 5 

minutes. Besides the aforementioned prediction methods, there are simple statistical techniques, 

such as a linear-regression model based on historical travel time or current travel time. Lin et al. 

(2005) said that the statistical technique has been used extensively in the field of travel-time 

estimation, prediction, and modeling. Tak et al. (2014, p.1861) stated, “The statistics-based 

methods have problems in accuracy, and some others are limited to predicting the travel time 

only during short time interval.”  

In this section, state-of-the-art best practices of TTP method has been presented. The 

summary of current state-of-the-art best practices is presented in Tables 3 and 4. 
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Table 3. Summary Findings of the TTP Techniques: Part I 

Acronym Method Pros-and-Cons References 

ARIMA Auto Regressive 

Integrated Moving 

Average 

 Urban Arterial  

 Very good prediction for freeway 

Billings (2006);  

Zhang and Haghani 

(2015) 

DLM Bayesian 
inference-based 

Dynamic Linear 

Model 

 Freeway 

 Accurate with recurrent and non-

recurrent traffic conditions 

 Reliable for recurrent and non-recurrent 

traffic conditions 

Fei et al. (2011) 

Clustering   Freeway 

 Simplicity of the model and 

computationally efficient 

 Interpretable and provides insight about 

the critical segments 

 Lower prediction error compared to an 
instantaneous algorithm 

Elhenawy 

et al. (2014) 

GBM Gradient Boosting 

Method 
 Freeway 

 Improved prediction accuracy compared 

to the base model 

 Considerable advantages for freeway 

travel-time prediction 

Zhang and Haghani 

(2015) 

KF Kalman Filter  Urban road network 

 Current state can be predicted from the 

past state 

 Able to eliminate the random interference 

noise 

 Approximates the real estimate 

 Fuzzy adaptive KF produced better 

results than the conventional KF 

 Good prediction accuracy 

Huang et al. (2013) 

LOKRR Local Online 

Kernel Ridge 

Regression 

 Can capture time-varying distribution 

 Capable to replicate traffic patterns, 

seasonality, and heteroscedasticity 

 New traffic data can be incorporated 

 Accurate forecasts than historical average 

travel time 

 Cannot forecast any abnormal congestion 
scenario 

 Computationally efficient for a single 

location 

 Good adaptability 

 

Haworth et al. 

(2014) 
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Table 4. Summary Findings of the TTP Techniques: Part II 

Acronym Method Pros-and-Cons References 

K-NN K-Nearest Neighbor  Higher computational efficiency 

 Accurate prediction 

 Data-fusion method 

Tak et al. (2014) 

EES Extended Exponential 

Smoothing 
 Urban arterial road network 

 Produces acceptable results 

Fangfang et al. 

(2008) 

SSNN State-Space Neural 

Network 
 Freeway 

 Accurate predictions 

 Robust prediction  

Lint et al. (2005) 

SNN Spectral Neural Network  Freeway 

 Predict one-to-five time periods 

ahead 

 Link travel time 

 Outperformed the conventional NN 

 Similar results as the modular NN 

 Overall best compared to KF, 

exponential smoothing, historical 

profile, and real-time profile  

 Accurate and better function 

approximation 

Park et al. (1999) 

SVR Support Vector 

Regression 
 Freeway in Taiwan 

 Substantially reduced the prediction 

error compared to baseline 

predictors 

 Better performance 

Wu et al. (2004) 

ST-D Space-Time Diurnal 
Method 

 Freeway 

 Considered spatial and temporal 

travel time, diurnal pattern, and the 

non-negativity of the travel time 

 Robust compared to the traditional 

vector’s autoregressive models 

Zou et al. (2014) 

DynaMIT Dynamic Network 

Assignment for the 

Management of 

Information of Travelers 

 Real time 

 Modeling-assignment based 

Ben-Akiva et al. 

(2001) 

Ensemble Heterogeneous 

Ensembles 
 Public transportation 

 Long-term travel-time predictions 

 Higher accuracy 

 Robust  

 Mitigate seasonal data 

Mendes-Moreira et 

al. (2015) 

 

2.1.4. Summary  

There are numerous methodologies are available to predict the travel time. Each method 

has its own flaws and prediction errors. However, each method may produce satisfactory results 

with the tolerance error. Some methods are proven to be robust. Some methods are very complex 



33 

 

to apply and are not feasible. It is evident that the probabilistic prediction method did not 

received proper attention to the researchers and practitioners.  

Most existing methods generate single-value outcomes and cannot measure the prediction 

results’ reliability (Fei et al., 2011). In contrast to these methods, according to Gelman et al. 

(2003), the Bayesian approach can update the knowledge systematically when new observations 

are available (Kim and Reinschmidt, 2009). The Bayesian approach has the capability to 

combine all related information in a systematic way (Kim and Reinschmidt, 2009). Bayesian 

process is a system that sequentially can update the prior knowledge, measure the uncertainty in 

a probabilistic way, and update the posterior estimates. Therefore, the Bayesian approach to 

predict the t/to for a given v/c was considered for this research.  

There are certain advantages for the Bayesian approach: 

i. Supports a natural and principled way of integrating prior beliefs (Moriarty, 2015; 

SAS Institute Inc. [SAS], 2016).  

ii. Supports inferences based on the data’s conditional treatment (Moriarty, 2015; SAS, 

2016).   

iii. Follows the likelihood principle (Moriarty, 2015; SAS, 2016).  

iv. Generates interpretable answers (Moriarty, 2015; SAS, 2016). 

There are certain disadvantages for the Bayesian approach: 

i. Computation is expensive (Moriarty, 2015; SAS, 2016). 

ii. Estimation of posterior is biased due to prior information (Moriarty, 2015; SAS, 

2016). 

iii. Produce subjective prior information (Moriarty, 2015; SAS, 2016). 
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2.2. Existing Data-Collection Methodology 

2.2.1. General 

There are many methods available for travel-time data collection. Every method has its 

own success stories, acceptability, errors, and flaws. Technology is changing, so are the data-

collection methods, such as crowdsourcing, aerial surveys, weigh-in-motion, and laser scanning. 

Therefore, this section reviews recent literature and combines the knowledge about different 

methods. Studies show that there are five major divisions which may include a total of 24 sub-

divisions of travel-time data-collection methodologies. Literature Review reveals a total of 44 

factors which might be considered before starting any travel-time data collection.  

2.2.2. Procedure for Travel-Time Data Collection 

Travel time can be measured by traversing the route(s) that connect(s) any two or more 

points of interest (Federal Highway Administration [FHWA], 1998). According to the FHWA 

(1998, p.1-6), “Travel time can also be estimated in certain cases by assuming the average speed 

at a particular point (spot speed) is constant for a relatively short distance (typically less than 0.8 

kilometer, or 0.5 mile). The assumption of consistent speeds over a short roadway segment is 

most applicable to uninterrupted flow facilities (e.g., freeways or expressways) with stable traffic 

flow patterns. The estimated travel time can be computed using the average spot speed, or time-

mean speed, and the roadway segment length. Average or mean travel times are computed from 

individual travel times by using standard statistical formulas or computer software.”  

2.2.3. Current Practices 

Travel time for given pairs of origins and destinations of a road link/route in the 

transportation network is the time required to travel between the origin and destination for a 

specific mode choice. In a broader context, the FHWA (1998) defined travel time between any 
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desired two points of a route as the time required to traverse that route. According to that report, 

travel time is composed of running travel time while the mode of transport is in motion and 

stopped delay time while the mode of transport is not in motion or stopped. The definition of 

stopped or delayed travel has been characterized by a speed that is typically less than 5 miles per 

hour (mph) (FHWA, 1998).  

Travel time is the most important measure in the transportation industry. The FHWA 

(1998, p.1-1) stated, “Travel time is a simple concept understood and communicated by a wide 

variety of audiences, including transportation engineers, planners, business persons, commuters, 

media representatives, administrators, and consumers. Engineers and planners have used travel 

time and delay studies since the late 1920s to evaluate transportation facilities and plan 

improvements.”  

Soriguera et al. (2010, p.1242) said, “Travel time for a road trip is a drivers’ most 

appreciated traffic information. Measuring travel times on a real time basis is also a perfect 

indicator of the level of service in a road link, and therefore is a useful measurement for traffic 

managers in order to improve traffic operations on the network. In conclusion, accurate travel 

time measurement is one of the key factors in traffic management systems.” 

Travel time is an important indicator to define the traffic quality (Jie et al., 2011). Travel 

time is the most influential parameter for the road user’s decision making. It serve as a bridge 

among the road users, engineers, planners, researchers, commuters, consumers, and business 

entities. There is abundant literature, such as Rasouli and Timmermans (2012), Wang and Xu 

(2011), Morgul et al. (2014), Cambridge Systematics (2013), FHWA (1998), and TRB (2015), 

that explains the travel time’s importance.  
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Urban travel time had a wider variation for a region (Jie et al., 2011). The authors 

concluded that a single or average travel time does not represent a meaningful measure because 

of the travel-time reliability. Their findings were further supported by Cambridge Systematics 

(2013) and Morgul et al. (2014). Cambridge Systematics revealed that the average travel time 

may vary from 0.80 to 1.5 times. Morgul et al. (2014, p.4) said, “Performance measures are 

defined as indicators of system efficiency. For example, in the context of transportation, travel 

time variability is an emerging performance measure increasingly used by decision-makers in 

making many transportation investment decisions. Information on how long it would take to 

travel between specific points is a vital information for all travelers. Accurate estimation of 

travel times reflects the system performance based on users’ point of view.”  

Travel times are measured with two fundamental sources: 1) directly collected or 

measured, and 2) estimated using modeling (FHWA, 1998). Morgul et al. (2014) said that there 

are two distinct approaches for traffic-surveillance methods: 1) road-based technologies (in-road 

detectors and road-side detectors) and 2) vehicle-based technologies. The authors also grouped 

the methodology into three groups based on the detection capability: 1) single-point detection, 2) 

multi-point detection, and 3) area-wide detection. 

Travel time is critically important for different perspectives among the road users, 

planners, transportation engineers, community, commuters, researchers, and business entities. 

Considering the transportation perspective, the 1991 Intermodal Surface Transportation 

Efficiency Act (ISTEA) and Moving Ahead for Progress (MAP 21) mandated the use of travel 

time to measure the traffic congestion, transportation analysis, and transportation decisions’ 

performance evaluation. There are several technologies for travel-time data-collection 

techniques; they are listed below from FHWA (1998) and Cambridge Systematics (2012). Each 
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method has the capability of direct measurement or estimation; road-based or vehicle-based 

technologies; and single-point, multi-point, or area-wide detections. The Literature Review 

revealed that the travel-time data-collection techniques can be broadly distinguished with five 

categories: 1) probe-vehicle measure, 2) spot measure, 3) test vehicle, 4) license-plate matching, 

and 5) emerging technologies. These broad categories have several distinguishable sub-

categories which are presented in Table 5. Details about these technologies are discussed in the 

following sections.  

Table 5. Types of Data-Collection Techniques 

No. Probe-Vehicle Measure Spot Measure Test Vehicle 
License-Plate 

Matching 

Emerging 

Technology 

1 Automatic Vehicle 

Identification  

Loop Detector Distance-Measuring 

Instrument 

Video with Manual 

Transcription 

Aerial 

Surveys 

2 Bluetooth  Magnetic 

Detector 

Global Positioning 

System 

Manual Laser 

Scanning  

3 Crowdsourcing Radar Manual Portable Computer Weigh-in-
Motion 

4 Global Positioning System  Video Imaging  Video with 

Character 

Recognition 

 

5 Radio Frequency 

Identification Transponder 

    

6 Radio Navigation      

7 Signpost-Based Automatic 

Vehicle Location 

    

8 Toll-Tag Readers     

9 Wireless/Cellular     

 

It is evident that there are many methods available for travel-time data collection. Every 

method has its own success stories, acceptability, errors, and flaws. Researchers and practitioners 

experienced many advantages and disadvantages, depending on different methods. The 

combined articulation of scholarly articles for different methods needs to be properly addressed 

so that the new technology can be compared with each method. Therefore, this dissertation also 

aims to review the recent literature about travel-time data-collection methods, to identify the 
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advantages and disadvantages for each method, and to find the factors that should be considered 

before collecting travel time.  

2.2.4. Advantages and Disadvantages of Current Methods 

This section lists the merits and demerits for each method found in the scholarly articles 

and reports. This section presents five major and 24 minor travel-time data-collection methods.  

2.2.4.1. Probe-Vehicle Measures  

Probe-vehicle method (PVM) is an emerging technique for directly collecting travel time 

for a given route or a road segment. Cambridge Systematics (2012, p.1-1) explained, “Probe 

vehicle techniques involve direct measurement of travel time (along a route or point to point) 

using data from a portion of the vehicle stream.” This technology does not require equipment 

installation and maintenance in the right-of-way (Young, 2007). Herrera et al. (2010, p.569) said, 

“In the era of mobile internet services, and with the shrinking costs and increased accuracy of 

GPS, probe based traffic monitoring has become one of the next arenas to conquer by industries 

working in the field of mobile sensing.” There are different kinds of probe-vehicle technologies 

that may be utilized depending on the different perspectives. These techniques include the 

technology of automatic vehicle identification, Bluetooth, crowdsourcing, global positioning 

systems (GPS), radio-frequency identification, radio navigation, signpost-based AVL, toll-tag 

readers, and wireless/cellular. Young (2007) demonstrated the vehicle-probe technology’s 

advantages and disadvantages.  

There are nine major probe-vehicle measure technologies: AVI, Bluetooth, 

crowdsourcing, GPS, radio-frequency identification transponder, radio navigation, signpost-

based AVL, toll-tag readers, and wireless/cellular. These methods’ performance is presented in 

the following sections. 
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2.2.4.1.1. Global Positioning System  

Travel-time data collection using GPS is very rich. There are numerous studies described 

in the literature. Some of that work is presented here. Herrera et al. (2010) evaluated traffic data 

obtained with GPS-enable mobile phones. Their studies stated that a GPS-enabled smartphone 

can exploit the extensive coverage. The results showed that this methodology can accurately 

estimate the traffic flow’s velocity. Sanwal and Walrand (1995), Zito et al. (1995), FHWA 

(1998), BRW (2000), Rahmani et al. (2010), and FHWA (1998) addressed the extensive 

advantages and disadvantages of the GPS technologies with travel-time data-collection 

techniques. The methodology’s advantages are 1) fewer staff members needed (FHWA, 1998; 

BRW, 2000); 2) less human error (FHWA, 1998); 3) relatively portable (FHWA, 1998); 4) 

accurate (FHWA, 1998; BRW, 2000); 5) accuracy plus/minus 50 meters (Zito et al., 1995); 6) 

producing a larger dataset (FHWA, 1998); 7) cost effective (BRW, 2000); 8) providing a 

geospatial location (BRW, 2000); 9) almost continuous data (Rahmani et al., 2010); 10) 

extensive coverage (Herrera et al., 2010); 11) providing the best vehicle-position location; and 

12) providing direct observations of vehicle speeds and travel directions (Zito et al., 1995). There 

are several issues with the GPS methods: 1) needing big storage (FHWA, 1998); 2) sometimes 

losing the signal (FHWA, 1998); 3) inherent errors, such as orbit errors, satellite-clock errors, 

receiver-noise errors, tropospheric and ionospheric errors, coordinate transformations, and 

selective availability (Zito et al., 1995); 4) multi-path errors (Zito et al., 1995); 5) data-

processing errors (Zito et al., 1995); and 6) selective availability when the U.S. Department of 

Defense degrades the GPS’ accuracies for real-time, non-U.S.-military users (Zito et al., 1995).  

2.2.4.1.2. Radio Frequency Identification Transponder 

According to Herrera et al. (2010, p.569), “Readers located on the side of the road keep 

record of the time the transponder (i.e. the vehicle) crosses that location. Measurements from the 
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same vehicle are matched between consecutive readers to obtain travel time.” Wright and 

Dahlgren (2001), Herrera et al. (2010), Porter et al. (2011), and Mittal and Bhandari (2012) 

presented the advantages and disadvantages of Radio Frequency Identification (RFID) travel-

time data-collection methodologies. The technique’s advantages are 1) accurate (Porter et al., 

2011), 2) cost effective (Mittal and Bhandari, 2012 ), 3) uninterrupted communication (Mittal 

and Bhandari, 2012 ), and 4) working in bad weather (Mittal and Bhandari, 2012 ). The method’s 

disadvantages are 1) the individual vehicle’s privacy issues (Porter et al., 2011), 2) limited 

coverage (Herrera et al., 2010), 3) installation costs for the reader’s infrastructure (Herrera et al., 

2010), and 4) only providing the travel time for two locations (Herrera et al., 2010), and 5) 

significantly lower quality than the loop-detector and video-image data (Wright and Dahlgren, 

2001). 

2.2.4.1.3. Bluetooth  

The methodology’s advantages are 1) being cost effective (Bhaskar and Chung, 2013; 

Morgul et al., 2014); 2) provide true travel time (Haghani and Aliari, 2012); 3) having high 

quality and reliability (Morgul et al., 2014); 4) collecting continuous, larger data set (KMJ 

Consulting, 2011); 5) being easy to install and operate (KMJ Consulting, 2011), and 6) being a 

more realistic approach (KMJ Consulting, 2011). The methodology’s disadvantages are 1) 

permanent/mobile/temporary installation (Cambridge Systematics, 2012), 2) unknown mode 

(Bhaskar and Chung, 2013), 3) limited zonal boundary (Bhaskar and Chung, 2013), 4) multiple 

matches causing noisy data (Bhaskar and Chung, 2013), 5) missed observations (Bhaskar and 

Chung, 2013), 6) a short range (Bhaskar and Chung, 2013), 7) expensive data collection (KMJ 

Consulting, 2011), 8) vulnerable to vandalism (KMJ Consulting, 2011), 9) disappointing data 

quality (Jie et al., 2011), 10) cannot eliminate outliers easily (Jie et al., 2011), and 11) 

uncertainty with the Bluetooth device’s proper identification (Jie et al., 2011).  
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2.2.4.1.4. Toll-Tag Readers 

The methodology’s advantage is the direct measurement of the travel time (Hass et al., 

2009). The disadvantages are 1) require permanent, mobile, or temporary installation 

(Cambridge Systematics, 2012); 2) lower performance (Hass et al., 2009); 3) cannot read all tags 

(Hass et al., 2009); 4) cannot tag all vehicles (Hass et al., 2009); 5) occasionally failed to read 

(Hass et al., 2009); 6) problems caused by misaligned toll tags (Hass et al., 2009); and 7) 

duplicate readings for slow vehicles.  

2.2.4.1.5. Wireless/Cellular 

The advantages of this methodology are 1) installation of equipment is not applicable 

(Cambridge Systematics, 2012) and 2) widely available (FHWA, 1998). The method’s 

disadvantages are 1) difficulty distinguishing closely spaced facilities (Young, 2007), 2) no cell-

phone technology was successfully assess the signalized arterial (Young, 2007), 3) questionable 

accuracy (FHWA, 1998), and 4) privacy concerns (Turner, 1995).  

2.2.4.1.6. Crowdsourcing 

Because crowdsourcing is the main focus for this research, there is a separate section 

later in this chapter. However, the methodology’s advantages and disadvantages are included in 

this section. The method’s advantages are 1) installation is not necessary (Cambridge 

Systematics, 2012), 2) the only cost is to obtain the data (Cambridge Systematics, 2012), 3) there 

are significant sources of speed data (Cambridge Systematics, 2012), and 4) there is a lower 

price (Halder, 2014). The method’s disadvantages are 1) mostly dependent on private industries 

(Rehan, 2015), 2) unknown algorithm (Rehan, 2015), 3) data quality not studied (Rehan, 2015), 

4) sparse snapshot of the entire network (Rehan, 2015), 5) fairly accurate with freeway speed but 

arterials showed less-accurate speed data (Cambridge Systematics, 2012), 6) cannot provide 
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volume data (Cambridge Systematics, 2012), 7) less credible output (Halder, 2014), and 8) 

privacy and protection of users’ personal and sensitive data (Halder, 2014).  

2.2.4.1.7. Signpost-Based Automatic Vehicle Location  

The methodology’s advantages are 1) minimized or eliminated roadside infrastructure 

(Young, 2007), 2) real-time travel information (Turner, 1995), 3) eliminates human error 

(Turner, 1995), and 4) directly collects travel time (Hadi and Al-Deek, 2015). The method’s 

disadvantages are 1) the quality depends on the monitoring-vehicle percentage (Young, 2007), 2) 

there is a higher initial cost (Turner, 1995), 3) the quality depends on the distribution of vehicle 

types (Young, 2007), and 4) there are errors with the exact location (Turner, 1995). 

2.2.4.1.8. Automatic Vehicle Identification  

Wright and Dahlgren (2001, p.1) said, “Probe vehicles equipped with electronic 

tags/transponders communicate with overhead antennas/transceivers to recognize specific 

vehicles at successive locations. An individual vehicle’s travel time is then calculated between 

these points. Generally, electronic tags are placed in vehicles as part of an electronic toll 

collection (ETC) system.” The methodology’s advantages are 1) continuously collecting large 

quantities of data (FHWA, 1998); 2) minimal human resources (FHWA, 1998); 3) highly 

accurate (FHWA, 1998); 4) a detection rate of 85 to 99 percent (FHWA, 1998); 5) collecting 

travel time for a specific lane (FHWA, 1998); 6) a proven technology for area-wide, real-time 

travel-time data (Tam and Lam, 2015); 7) low operating cost; and 8) good for annual, daily, and 

real-time data (Tam and Lam, 2015). The method’s disadvantages are 1) restricted to a certain 

number of tags (FHWA, 1998), 2) dependent on infrastructure (FHWA, 1998), 3) increased 

maintenance costs with clock-drift problems (FHWA, 1998), 4) individual vehicle’s privacy 

issues (FHWA, 1998), and 5) larger data storage needed (FHWA, 1998).  
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2.2.4.1.9. Radio Navigation  

Wright and Dahlgren (2001, p.1) said, “Probe vehicles (generally transit or other fleet) 

communicate with local radio tower infrastructure. There are no fixed detection points, so the 

system must calculate the position of the vehicle at different times to determine travel times.” 

The methodology’s advantage is good Accuracy (FHWA, 1998). The method’s disadvantage is a 

high initial or capital cost (FHWA, 1998).  

2.2.4.2. License-Plate Recognition  

2.2.4.2.1. Manual 

The methodology’s advantages are 1) a larger dataset (Porter et al., 2011; Turner, 1995), 

2) accurate (Porter et al., 2011), 3) low initial cost (FHWA, 1998), 4) more representative of the 

driving population (Hamm, 1993), 5) a representative sample (Turner, 1995), 6) low operating 

cost (FHWA, 1998), and 7) more cost effective than the manual method (Turner, 1995). The 

method’s disadvantages are 1) privacy issues (Porter et al., 2011), 2) a high operating cost 

(FHWA, 1998), 3) questionable accuracy (FHWA, 1998), 4) time consuming (FHWA, 1998), 5) 

labor intensive (Hamm, 1993), 6) incorrect reading (Turner, 1995), and 7) less practical for high-

speed traffic or long roadways (Turner, 1995).  

2.2.4.2.2. Video with Manual Transcription 

The methodology’s advantage is 1) continuous data (FHWA, 1998). The method’s 

disadvantages are 1) time consuming (FHWA, 1998) and 2) limited geographic coverage 

(FHWA, 1998).  
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2.2.4.3. Spot Measures 

2.2.4.3.1. Radar  

The methodology’s advantages are 1) lane accuracy (Siemens, 2014) and 2) inexpensive 

installation (Siemens, 2014). The method’s disadvantages are 1) reusable (Siemens, 2014) and 2) 

not responsive to adverse conditions (Siemens, 2014).  

2.2.4.3.2. Loop Detector 

The methodology’s advantages are 1) no privacy issues (Porter et al., 2011), 2) spot 

measurement (Zhang, 2006), 3) most common (Zhang, 2006), and 4) accurate estimation (Petty 

et al., 1998). The method’s disadvantages are 1) needing permanent installation (Cambridge 

Systematics, 2012) and 2) accuracy (Porter et al., 2011).  

2.2.4.3.3. Magnetic Detector 

The methodology’s advantages are 1) needing to install sensors into the road-like loop 

detector (Porter et al., 2011) and 2) being accurate (Porter et al., 2011). The method’s 

disadvantages are 1) very costly (Porter et al., 2011) and 2) not suitable for a large scale (Porter 

et al., 2011).  

2.2.4.3.4. Video Imaging 

The methodology’s advantages are 1) real-time information (Washburn and Nihan, 

1999), 2) a reasonable degree of accuracy (Washburn and Nihan, 1999), and 3) statistically 

validity (Washburn and Nihan, 1999). The method’s disadvantages are 1) unknown accuracy 

(Washburn and Nihan, 1999), 2) indirect measurement (Washburn and Nihan, 1999), 3) 

sensitivity to color recognition and resolution (Washburn and Nihan, 1999), and 4) only overall 

travel times (Turner, 1995).  
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2.2.4.4. Test Vehicle 

2.2.4.4.1. Manual 

The methodology’s advantages are 1) manually recording the data (Zhang et al., 1997), 2) 

having a person drive on the road (Zhang et al., 1997), and 3) no special equipment (Hamm, 

1993). The method's disadvantages are 1) fewer samples (Zhang et al., 1997), 2) judgmental bias 

and random human error (Hamm, 1993), 3) a higher cost compared with the amount of data 

(Hamm, 1993), and 4) not suitable for real-time information (Hamm, 1993).  

2.2.4.4.2. Distance Measuring Instrument (DMI) 

The methodology’s advantages are 1) easy to collect data (Turner, 1995), 2) safer to 

collect data (Turner, 1995), 3) provides a detailed travel time (Turner, 1995), and 4) cost 

effective (Turner, 1995). The method’s disadvantages are 1) few samples (Turner, 1995) and 2) 

biased results due to judgment (Turner, 1995).  

2.2.4.4.3. Global Positioning System  

The methodology’s advantages are 1) having lower equipment costs compared with using 

a direct measuring instrument (Dowling Associates, 1999) and 2) being more portable (Dowling 

Associates, 1999). The methodology’s disadvantages are 1) needing specialized equipment 

(Dowling Associates, 1999); 2) losing the GPS signal in urban canyons, under trees, or around 

power lines (Dowling Associates, 1999); 3) frequently losing the signal, creating lost data 

(Dowling Associates, 1999); and 4) post processing for missing points (Dowling Associates, 

1999).  
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2.2.4.5. Miscellaneous 

2.2.4.5.1. Weigh-in-Motion 

The methodology’s advantage is high accuracy (FHWA, 1998). The method’s 

disadvantages are 1) more suitable for larger vehicles and trucks (FHWA, 1998) and 2) limited 

applications (FHWA, 1998).  

2.2.4.5.2. Laser Scanning 

The methodology’s advantage is the capability to collect data for individual vehicles 

(FHWA, 1998). The method’s disadvantage is the lack of literature.  

2.2.4.5.3. Aerial Surveys 

The methodology’s advantages are 1) good accuracy (Dowling Associates, 1999), 2) 

wide-area coverage (Dowling Associates, 1999), and 3) fair variability (Dowling Associates, 

1999). The method’s disadvantages are 1) being labor intensive (Dowling Associates, 1999) and 

2) not being feasible without advance digital processing (Dowling Associates, 1999).  

2.2.5. Summary 

Every method has its own success stories, acceptability, errors, and flaws. A complete list 

of factors is presented in Table 6. Most methods were mainly tested on freeways and a few urban 

arterials. Researchers and practitioners compared their methodology based on accuracy, cost, 

maintenance, coverage, comparison to other methods, communication, staff requirements, 

direct/indirect measurements, human errors, portability, geospatial data availability, big data, 

continuous data, storage, inherent errors, data-processing errors, installation costs, real-time 

information, quality and reliability, mode availability, noise, privacy, vulnerability to vandalism, 

outliers, uncertainty, permanent, mobile, temporary, duplicities, performance failures, market 

availability, data types, credibility, roadside infrastructure, locations, operating costs, time, 
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reusability, weather effects, area coverage, special equipment, bias, sample sizes, easiness to 

collect data, missing data, and individual vehicle perspectives. 

Table 6. Influential Factors for Data-Collection Methodology 

Sl. Factors  Factors 

1 Accuracy 23 Market availability 

2 Area coverage 24 Methods 

3 Bias 25 Missing data 

4 Big data 26 Mode availability 

5 Communication 27 Noise 

6 Continuous data 28 Operating cost 

7 Cost 29 Outliers 

8 Coverage 30 Permanent/mobile/temporary 

9 Credibility 31 Portability 

10 Data-processing error 32 Privacy 

11 Direct/indirect measurement 33 Quality and reliability 

12 Duplicities 34 Real-time information 

13 Easiness to collect data 35 Reusability 

14 Weather effects 36 Roadside infrastructure 

15 Performance failures 37 Sample size 

16 Geospatial data availability 38 Special equipment 

17 Human errors 39 Staff requirements 

18 Individual vehicle perspective 40 Storage 

19 Inherent errors 41 Time 

20 Installation cost 42 Type of data 

21 Location 43 Uncertainty 

22 Maintenance 44 Vulnerable to vandalism 

 

Reviewing the existing methods leads to select a suitable methodology to collect travel 

time in a cheaper, free, and open way. Research reveals that the new crowdsourcing technology 

has the potential for travel-time data collection when considering economics as well as free, 

open, and big data. Therefore, review of literature related to crowdsourcing was further 

extended.  
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2.3. Crowdsourcing 

2.3.1. General 

The VSM is new technology for the transportation industry. This technique does not 

require any physical deployment of sensors, detectors, or equipment. Literature about the virtual 

sensor crowdsource technology in transportation is scarce. There is a strong need to rich the 

virtual sensor crowdsourcing literature. Therefore, this section describes the crowdsource 

literature by presenting the combined knowledge about crowdsourcing. This research reviews the 

literature about the virtual sensor crowdsource methodology and its potential for transportation 

planning. Studies indicate that the findings could be very helpful for the transportation agencies 

that have resource shortage for their transportation planning and operations. 

The VSM is a new technology for the transportation industry. The term “virtual sensor” 

can be addressed as the “internet as sensor” type of crowdsourcing. A virtual sensor does not 

require any installations or any physical deployment of instruments, sensors, or equipment. 

There is not enough literature showing this methodology’s pros and cons. The VSM did not 

received suitable attention by the researchers or practitioners in the transportation industry. 

Dennies et al. (2015, p.2) said, “Any research project that includes a literature review leverages 

the combined intelligence of the authors of previous works; however, literature review is not 

generally thought of as crowdsourcing. Presumably, literature review and similar research tasks 

are not considered crowdsourcing because the contributors of knowledge are passive in the 

process. Nonetheless, many activities that are commonly considered crowdsourcing also involve 

extracting data from passive providers.” 

According to Cambridge Systematics (2012, p.1-9), “Crowd-sourcing is the newest 

technology, which involves obtaining real-time traffic congestion information from drivers’ 
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GPS-enabled mobile phones. Crowd-sourcing relies on a large number of users and is primarily 

to support personal navigation systems and mobile applications.” The authors have listed several 

current applications of crowdsourcing, such as Google Maps, Google Latitude, TomTom 

Mapshare, Trapster, Waze, and INRIX. Crowdsourcing is gaining more popularity, is becoming 

well known, and has garnered more attention from researchers and practitioners in the last few 

years (Halder, 2014; Dennies et al., 2015; Misra et al., 2014). To obtain data, transportation 

agencies are often contract third-party vendors (Dennies et al., 2015). 

2.3.2. Definition of Crowdsourcing 

Misra et al. (2014, p.2) said, “Crowdsourcing is an example in which an organizer or an 

organization is able to use the network of collaborators to solve a problem that would otherwise 

be cost- or labor-intensive, or in which within a defined organization the expertise is unavailable 

or insufficient.” 

Dennies et al. (2015, p.V) defined crowdsourcing as follows: “Crowdsourcing involves 

leveraging the combined intelligence, knowledge, or experience of a group of people to answer a 

question, solve a problem, or manage a process.” 

2.3.3. Current Crowdsourcing Services 

Before utilizing any VSM, understanding the crowdsource-service methodology, terms, 

and conditions, as well as the usage limit, is necessary. There are 23 crowdsource services and 

apps which are presented in Tables 7 and 8. The tables are self-explanatory, and they include the 

five major crowdsource services and vivid data elements.  

Among the 23 listed services, Google Latitude and Waze are no longer available. Navteq 

and Nokia moved to HERE. Cellint, Garmin Viago, Graphhoper, INRIX, Sygic, TomTom, 

Tapster, and Trafficast do not provide free services. NextBus only provides transit services. 
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Scout is part of Telenav, which is essentially using OpenStreetMap services. To use ArcGIS, an 

organizational account with a license is required. Bing, Google, HERE, MapQuest, and 

OpenStreetMap have the potential for further evaluations. These five services allow access fully 

or partially to the public information through application programming interface (API). Except 

for OpenStreetMap, users need to abide by the foundation’ terms and conditions. The five major 

services are discussed in the following sections. 

2.3.3.1. Bing Maps 

Sinani (2015) said, “Bing Maps by Microsoft provide a collection of Application 

Programming Interfaces (APIs) that adds mapping capabilities to location-aware applications. 

The APIs, open to the public since their first beta release in 2005, can query for location or 

business by address or coordinates. They enable searching for routes, including traffic 

information; searching for geometrical shapes of geographical entities such as countries, regions, 

and other smaller administrative divisions. Consumers of Bing Maps APIs can geocode address, 

or reverse geocode coordinates via automated jobs.” 
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Table 7. Existing Web Services’ API 

No. Services Service Data 

Providers 

Provide 

Travel 

Time  

Provide 

Distance 

Provide 

Incident 

Data 

Limit 

(Free) 

Modal 

Information 

Time 

Unit 

Distance 

Unit 

Response 

Type 

Scripting Services Require 

Key 

1 Bing  Microsoft Yes Yes Yes 10,000 

monthly 

Driving, 

Walking, 

Transit 

Seconds Kilometer XML or 

JSON 

AJAX v7, 

Silverlight, 

REST 

Services, 

WPF 

Control, 

.NET 

Locations 

API, 

Elevation, 

Imagery, 

Routes, 

Traffic 

Yes 

2 Google Google Yes Yes Yes 2,500 daily, 

100 per 

query, 100 

per second 

Driving, 

Walking, 

Transit, 

Bicycling 

Minutes Kilometer XML or 

JSON 

JavaScript, 

Android 

SDK, iOS 

SDK 

Directions, 

Elevation, 

Geocoding, 

Geolocation, 

Place, 

Roads, Time 

Zone 

Yes 

3 HERE Nokia Yes Yes Yes 100,000 

transactions 

per month 

for 3-

month 

evaluations 

Car, HOV, 

Pedestrian, 

Truck, 

Transit 

Seconds Meter XML or 

JSON 

JavaScript, 

REST API, 

Mobile 

SDK, 

Platform 

Extensions, 

Legacy 

Map Tile 

API, Map 

Image API, 

Venue Maps 

API, 

Routing 

API, 

Geocoder 

API, Batch 

Geocoder 

API, Places 

API, Traffic 

API, 

Weather 

API, and 

Transit API 

Yes 

4 MapQuest  AOL Yes Yes Yes 15,000 

transactions 

per month 

Driving, 

Walking, 

Bicycling, 

Rail, Bus 

Seconds Mile XML or 

JSON 

JavaScript, 

iOS, 

Android 

Geocoding, 

Mapping, 

Directions, 

Traffic, 

Search  

Yes 

5 OpenStreetMap OpenStreetMap 

Foundation 

Yes Yes No No limit 

with 

request but 

not the 

excessive 

use 

Driving, 

Biking, 

Walking 

Seconds Meter JSON, 

GPX 

Java, 

C/C++, C-

Sharp, 

Scala, 

Ruby, 

Python 

Routing, 

Geocoding 

No 
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Table 8. Existing Web Services’ API 

No. Services Limit (Free) 

6 Cellint Private proprietorship 

7 Garmin Viago Private proprietorship 

8 Google Latitude No longer available 

9 Graphhoper Not free 

10 INRIX Not free 

11 Navigon Phone app 

12 Navteq Now HERE 

13 NextBus Transit 

14 Nokia Now here 

15 Scout Part of Telenav family 

16 Sygic App 

17 Telenav Following OpenStreetMap 

18 TomTom Private proprietorship 

19 TrafficCast Private proprietorship 

20 Trapster Private proprietorship 

21 Waze By Google earlier 

22 Yahoo Now here 

23 ArcGIS Need organizational account 

 

The Bing Maps Services API provides a Representational State Transfer (REST) 

interface to perform tasks such as creating a static map with pushpins, geocoding addresses, 

retrieving imagery metadata, or creating a route (Microsoft, 2015). Bing offers five APIs: 

Locations, Elevations, Imagery, Routes, and Traffic. The Routes API assists with finding a route. 

It provides a walking, driving, or transit route for given locations. The Traffic API provides 

traffic information along a route. Using this API, any incident details, incident severity, and the 

incident’s location and type can be obtained.  

The Bing API can communicate through several protocols, such as the Asynchronous 

JavaScript and extensible markup language (AJAX), Silverlight, REST services, Windows 

presentation foundation (WPF) control, .NET, and the simple object-access protocol (SOAP) 

based service. AJAX can be used for web applications and Windows store apps by using the 
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JavaScript language. The .NET approach is for Windows store apps. The SOAP-based service is 

for faster mobile applications.  

Bing maps’ Rest services is a collection of RESTful web services that can be accessed 

through a Uniform Resource Locator (URL) and the hypertext transfer protocol’s (HTTP) GET 

and POST methods. The response format for Bing maps is extensible markup language (XML) 

or JavaScript object notation (JSON). Up to 25 waypoints can be added to a single route request. 

Between any pair of waypoints, 10 intermediate points can be added. Bing map services offers 

driving, walking, and transit routes. The number of transactions is unknown, but 10,000 free 

transactions per month can be used by the developer (DuVander, 2012). 

Morgul et al. (2014) studied the VSM based on Bing maps’ API and MapQuest API 

traffic data. The data were compared to the loop-detector and electronic tag-reader data. The 

authors investigated the travel-time reliability for the New Jersey Turnpike. Their results showed 

that Bing maps’ data could be good for travel-time reliability analysis. They inferred that Bing 

map could be choice for an alternative traffic-monitoring method for transportation agencies with 

budget constraints. 

2.3.3.2. Google Maps 

This API service can be run using JavaScript, Android Software Developer Kit (SDK), 

and Internet Operating System (iOS) SDK. Using the Google Maps API, driving, walking, 

bicycling, and transit travel time can be found. Google offers many APIs: Directions, Elevation, 

Distance Matrix, Geocoding, Geolocation, Place Web Services, Roads, and Time Zone. 

Google has a distance-and-direction matrix API to calculate the travel time. The distance-

and-direction matrix API can be accessed with the HTTP GET and POST methods. The response 

format for Google maps is Extensible Markup Language (XML) and JSON. The standard usage 
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limit is 100 requests for a query, 100 requests for a second, or 2,500 daily. Wang and Xu (2011) 

have studied O-D implications, advantages, and implementation by using the Google Maps API. 

The authors have developed a desktop tool to complete the task by calling the Google Maps API. 

What they found is that, with various methods, the travel time leads to different accessibly 

patterns. They also said that using the Google Maps API is not free of concern because a user has 

no control over its quality and no editing rights.   

According to Google (2015), “Use of the Google Maps Distance Matrix API must relate 

to the display of information on a Google Map; for example, to determine O-D pairs that fall 

within a specific driving time from one another, before requesting and displaying those 

destinations on a map. Use of the service in an application that doesn't display a Google map is 

prohibited.” Google predicts travel time based on the historical time-of-day and day-of-week. 

2.3.3.3. HERE 

The HERE routing API calculates a route for a set of waypoints and is capable of 

calculating a matrix of routes between many start points and destinations (HERE, 2015). The 

HERE maps API uses JavaScript, the REST API, Mobile SDK, platform extensions, and legacy 

scripting to communicate. HERE REST API has the services of Map Tile, Map Image, Venue 

Maps, Routing, Geocoder, Batch Geocoder, Places, Traffic, Weather, and Transit.  

The HERE Maps API can be evaluated with a 90-day trail of the entire platform, 

providing the opportunity for 100,000 transactions per month. With an authorized, valid 

application code and application identity, an HTTP GET or POST request’s response format 

would be in the XML or JSON format. HERE traffic data are part of the FHWA’s National 

Performance Measuring Research Data Set (NPMRDS) program which collects travel time 

continuously for national freeways and some arterials.  
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2.3.3.4. MapQuest 

MapQuest provides different services, such as geocoding, mapping, directions, traffic, 

and search. The MapQuest Directions API allows access to the patented routing algorithm via a 

simple HTTP request (MapQuest, 2015). The output-response format is XML or JSON. 

MapQuest offers 15,000 transactions per month even though it was unlimited access previously. 

The services include different travel modes, which includes driving, walking, bicycling, rail, and 

bus. MapQuest is the only organization which provides open and limited licensed data to the user 

simultaneously (Morgul et al., 2014). 

2.3.3.5. OpenStreetMap 

OpenStreetMap router services is an open source which can be accessed with no limit on 

responses. OpenStreetMap has numerous web services, such as via-route, nearest, locate, table, 

match, and trip. An HTTP request can be made with JSON or global position system exchange 

format (GPX) output. OpenStreetMap services uses Java, C/C++, C Sharp, Scala, Ruby, and 

Python. OpenStreetMap services only includes driving, biking, and walking modes.  

2.3.4. Crowdsourcing for Transportation  

Halder (2014) presented the historical development of crowdsourcing in different fields. 

Dennies et al. (2015) grouped the crowdsource transportation-system data into four categories. 

Dennies et al. (2015) also provided the example of application, which are included below. 

i. Third-party aggregated data (historical and real-time traffic conditions such as speed, 

vehicle counts, people movement, travel behavior, and mobility pattern). 

ii. Social-media engagement (questions and concerns, communication systems for 

special events and disruptions). 
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iii. Internet as a sensor (speed estimation, mining social-media data, accident and 

prevention reporting, traffic-information dissemination, and predicting traffic spikes 

for special events). 

iv. Dedicated platforms (automated vehicle location, pavement condition, parking 

management, and O-D data). 

There are number of case study applications listed in Dennies et al. (2015) and Misra et 

al. (2014). A complete list can be reviewed in Dennies et al.’s (2015) work. Cambridge 

Systematics (2012), Dennies et al. (2015), and Misra et al. (2014) presented a brief overview of 

crowdsourcing and its use for transportation. They presented the current practices of 

crowdsourcing in the transportation industry. Misra et al. (2014) presented the feedback-based 

crowdsourcing systems, such as the SeeClickFix, FixMyStreet, PublicStuff, FixMyTransport, 

Shareabouts, StreetBump, and OneBusAway systems, and their case examples. Dennies et al. 

(2015) presented the City of Austin Social Networking and Planning Process (SNAPP); Twitter 

application during Hurricane Sandy in the New York Metropolitan Transportation Authority 

(MTA); and the Florida Department of Transportation (FDOT) and Waze Partnership project. 

Some of the case applications are presented in Table 9.  

Most of the case-study applications are based on the social-media type of crowdsourcing. 

Morgul et al. (2014) presented some travel-time reliability applications using the VSM. 

Elhenawy et al. (2014) and Fei et al. (2011) analyzed the INRIX crowdsource data. Dailey and 

Cathey (2006) deployed a VSM based on transit probes in an operational traffic-management 

system (traveler information). Dailey and Cathey (2006) used a dedicated platform for the VSM 

when the AVL instrumentation was deployed. Their research considered vehicle-tracking data 

that were obtained on the transit vehicle. Their research indicated that the VSM can be utilized to 
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capture recurring and non-recurring congestion. They stated that roadways which does not have 

any present speed traps can be instrumented without installing equipment on the roadway. They 

have conducted another research to estimate speed on arterial roads for the Washington 

Department of Transportation (WSDOT). Dailey and Cathey (2002) illustrated their past, 

successful implementation of VSMs for freeways and arterials. Their research recommended that 

judiciously selected virtual sensors on the freeways and arterials can extend the limited 

availability of speed traps. Kurkcu et al. (2015) extended Morgul et al.’s (2014) work with 

Twitter. They deployed the VSM for web-based, real-time transportation data collection and 

analysis for incident management. Their system collected incident data from Twitter. Most 

studies did not consider the VSM to collect travel-time data. Morgul et al. (2014) was the first to 

work with developing a VSM to collect the travel time with MapQuest and Bing Maps.  

Table 9. Case Applications of Crowdsourcing 

Case Purpose Reference 

SeeClickFix To report issues and find information. Interactive website 

reporting for the citizens. 

SeeClickFix (2015), 

Misra et al. (2014) 

FixMyStreet Report road maintenance issues. Misra et al. (2014) 

PublicStuff Reporting public issues through mapping. Misra et al. (2014), 

PublicStuff (2015) 

FixMyTransport Internet service could help people over the edge from 

grumbling about a problem. 

Misra et al. (2014), 

FixMyTransport (2015) 

Shareabouts Uses maps to generate user feedback about the preferred 
location of facilities and amenities. 

Misra et al. (2014) 

Street Bump 
To detect potholes and other street hazards as people 

drive around the city. 

Misra et al. (2014) 

OneBusAway 
Created to address the reliability issues with the on-time 

performance of transit systems in Seattle, Washington 

Misra et al. (2014) 

City of Austin Social 

Networking and Planning 

Process (SNAPP) 

Increase quality and quantity of public participation Misra et al. (2014) 

New York MTA Use of 

Twitter During Hurricane 
Sandy 

Communicating with the public Dennies et al. (2015) 

Florida DOT-Waze 

Partnership project 

Feed from FDOT’s 511 system Dennies et al. (2015) 
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2.3.5. Summary 

Finding suitable travel-time data is crucial for regional transportation planning. Suitable 

travel time data is unavailable for most of the smaller- or medium-size agencies. Therefore, this 

research presented the combined knowledge of crowdsource services that can be utilized for 

travel-time data collection. The literature indicated that crowdsource technology is going to be 

the next pioneer for travel-time data collection. By calling router, OpenStreetMap can be utilized 

flexibly compared to the other vendor’s rigid terms and conditions. The Literature Review 

revealed that there are several crowdsourcing options that can be achieved with VSM. Current 

studies show that crowdsource data are considerably good in replicating the true travel-time 

estimation even though quality and noise are a bigger issue for the data.  
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3. RESEARCH METHODOLOGY 

3.1. General 

Overall, the research methodology has been divided into several steps which are 

presented in Figure 2. These steps are marked as 1-9 in Figure 2. Steps 1 and 2 are tied to 

research objective 6, which indicates the data-collection efforts. Steps 3 and 6 involve data 

generation for different objective analyses, displaying how the data will be utilized in this 

research. Immediately after this step, research objectives third and fourth have been completed. 

Step 4 is tied to research objective five. Step 5 is tied to research objective two. Steps 7-9 are tied 

to the first research objective. The reseach objectives was accomplished in descending order. 

Each step has been discussed thoroughly as follows.  

At first and second step, VSM was developed to collect the travel time data from web 

services. Validations of VSM with the NPMRDS, manual crowdsourcing, a smartphone with a 

test vehicle, and a web-based crowdsource application was conducted. A geographic modeling 

tool for smartphone data conversion was developed. Automated workflow management for the 

NPMRDS data processing was created. After thorough investigation of the aforementioned 

sources and depending on its applicability, an alternative data sources was identified. At this 

stage, research objective sixth was completed. A detail description of this steps has been 

explained in Section 3.2 and Chapter 4.  

Once the data was collected, then the input parameters: 1) steady-state capacity and 2) 

FFS was approximated. This two parameters are shown in curly bracket as an external input for 

this research as presented in Figure 2. At this step, a new integrated logistics and quantile traffic-

flow model for traffic flow prediction was proposed and then steady-state capacity values were 

approximated. Capacity estimation merits a full separate Chapter. Therefore, Chapter 5 briefly 
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described how the freeway steady-state capacity was observed for this research. Similarly, for 

the second input parameter, which is FFS are described separately in Chapter 6. In Chapter 6, an 

investigation about the deterministic speed-density model was conducted, a new methodology 

was proposed, and formulated guidelines for FFS approximation. At this stage, research 

objectives third and fourth were accomplished.  

At Steps 3-5, evaluation of the performance of the historical t/to was completed. Bayesian 

predication model was formulated at these steps. This three steps are an integrated approach of 

Bayesian modeling techniques. A brief discussion of this methodology are presented in Sections 

3.3 and 3.4. Results and findings of this steps are presented in Chapter 7. Research objectives 

second and fourth were accomplished at this steps. 

Steps 6-9 are tied to the logistic growth modeling techniques. At this stage, a new, link 

t/to function based on the knowledge borrowed from the market-adopted, logistic-growth-curve 

technique and the Bayesian model update was established. A brief discussion of these steps are 

presented in Section 3.5. Results and findings are presented in Chapter 8. At this stage, first 

research objective was completed.  
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Figure 2. Research Methodology 
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3.2. Development of Virtual Sensor Methodology 

Finding suitable, concurrent travel-time data and traffic-volume is crucial for regional 

transportation planning. However, they are not readily available for the transportation agencies. 

There are many larger agencies which are collecting real-time or near real-time travel-time or 

traffic-volume data. Concurrent real-time or near real-time travel-time and traffic-volume data 

are rare. In order to develop t/to function, researcher are always eager to have concurrent data; 

those data are obviously necessary. Because of resource constraints, it is necessary to develop a 

system such that, in the absence of local data, it might be useful to collect concurrent data. For 

example, if an agency is counting the traffic volume for a highway’s given link segment, then the 

developed system should have the capabilities to collect travel time. Using this concept, a new 

technology called the VSM is a current interest among researchers. One such work is that of 

Morgul et al. (2014). They have collected travel time using MapQuest and Bing Maps, but they 

did not include other crowdsource web services such as Google, OpenStreetMap, and HERE. 

Some issues with the VSM are the licensing and permission requirements for MapQuest, Bing, 

Google, and HERE crowdsource data. Only OpenStreetMap is a fully free and open crowdsource 

service. OpenStreetMap does not have any limits for each request to collect travel time. 

Considering these issues, it was necessary to extend the knowledge of VSM beside the work of 

Morgul et al. (2014).  

A VSM is proposed in Figure 3. Figure 3 shows how these procedures will work overall. 

Each sections is described in the following sections. 
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Figure 3. Virtual Sensor Methodology 

3.2.1. Call the HTTP Web-Server API 

Using the vendors’ appropriate API calling, the respective HTTP protocol server can 

communicate the desired travel-time and distance response. In Google, the distance-and-

direction matrix API can be accessed with the HTTP GET and POST methods. The Bing API 

can communicate with several protocols, such as AJAX, Silverlight, REST services, Windows 

Presentation Foundation (WPF) Control, .NET, and SOAP-based service. AJAX v7 can be used 

for web applications and Windows store apps using the JavaScript language. Bing Maps’ Rest 

services is a collection of RESTful web services that can be accessed through a URL as well as 

the HTTP GET and POST methods. The HERE Maps API uses JavaScript, the REST API, 

Mobile SDK, platform extensions, and legacy scripting to communicate. The MapQuest 

Directions API allows users to access the patented routing algorithm with a simple HTTP 
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request. With OpenStreetMap, an HTTP request can be made with the JSON- or GPX-formatted 

output. The HTTP server’s communication protocol is different for different vendors. Each 

vendor has different platforms/language for this communication. Therefore, five different 

macros/programs using the SAS statistical software can be developed so that this macro can 

communicate with the respective server. Due to the lack of permission from the respective 

vendors, only the OpenStreetMap service was utilized. 

3.2.2. Response Received  

Each request’s response is in XML or JSON format for all vendors. The proposed macro 

could store the JSON-format output in a temporary/permanent file location. For a given origin 

and destination, the macro generated following information.  

i. Name of service (OpenStreetMap). 

ii. Link’s unique ID/corridor number. 

iii. Date and time of data collection. 

iv. Five minutes epoch number. 

v. JSON output as a variable. 

3.2.3. Extract Response 

While extracting JSON responses, the macro searched for different keywords, such as 

“Travel Time” and “Travel Distance,” depending on the scripting language for the JSON 

response. 

3.2.4. Extract Travel Time and Distance 

Once the extracted location for the travel-time and travel-time distance identification 

were confirmed, the travel time and distance were observed. Proper quality was maintained for 

accurate results.  
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3.2.5. Database Storage 

For a given link and response, the extracted data were stored in a database by the macro. 

For cross checking, in addition to the master database, each response file was stored with a date 

and time stamp.  

3.2.6. Post Processing 

Post processing and additional cleaning was required after the data collection.  

3.3. Performance Evaluation of Historical Prior 

Most existing methods generate single-value outcomes and cannot measure the prediction 

results’ reliability (Fei et al., 2011). In contrast to this existing method, according to Gelman et 

al. (2003), the Bayesian approach can update the knowledge systematically when new 

observations are available (Kim and Reinschmidt, 2009). The Bayesian approach has the 

capability to combine all related information in a systematic way (Kim and Reinschmidt, 2009). 

This process is where a system can sequentially update the prior knowledge, can measure the 

uncertainty in a probabilistic way, and can update the posterior estimates. The statistical measure 

of Bayesian inferences is based on Bayes’ theorem which is expressed in Equation 19. In 

Bayesian method, the target is to measure the posterior probability of parameter θ for a given 

dataset or model D, where p(D|θ) is the conditional probability, or likelihood, of model D for a 

given parameter, θ;  p(θ) is the knowledge before starting the experiment or Bayesian modeling; 

p(D) is the marginal probability of the model or dataset; and p(θ|D) is the posterior probability. 

In this case, the goal is to find the probability of the t/to for a given v/c. Replacing this equation 

by θ as t/to and D as v/c becomes Equation 20, 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)𝑝(𝜃)

𝑝(𝐷)
 

 (Equation 19) 
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𝑝(𝑡/𝑡𝑜|𝑣/𝑐 ) =
𝑝(𝑣/𝑐 |𝑡/𝑡𝑜)𝑝(𝑡/𝑡𝑜)

𝑝(𝑣/𝑐 )
 

 

 (Equation 20) 

To approximate the posterior distribution of the t/to for a given v/c, one must first have 

knowledge about the prior probability p(t/to). Bayesian prior should come from any earlier 

knowledge, beliefs, or thoughts before starting the Bayesian modeling or experient. The 

Bayesian modeling technique requires prior information about a distribution. In order to obtain 

the probability estimation with the Bayesian model, prior belief/information/knowledge about 

the data is necessary. Prior information is the belief about the t/to parameters for a given discrete 

v/c ratio that needs to be known before the Bayesian model update or experiment. Using 

historical data, Bayesian prior about the t/to for a given v/c can be estimated. The question is how 

to estimate Bayesian prior when there is uncertainty associated with the mean and variance for 

the t/to for a given v/c; the expected distribution of the prior information is not normally 

distributed. Thus, uncertainty may arise and needs to be accounted during the prior estimation. 

On such an occasion, a stochastic method called the Program Evaluation and Review Technique 

(PERT) is well known and widely used in the field of operation research and project 

management. PERT might have the capability to estimate the expected, most likely mean t/to for 

a given v/c based on the historical optimistic, pessimistic, and most likely mean t/to.  

PERT’s probability density function (PDF) originated from a beta distribution (Malcolm 

et al., 1959). The probability of the generalized beta function presented in Equation 21 for a 

given random, t/to would be (y=t/to), where α and β are the shape parameters of the beta 

distribution and (U, V) is the domain of y. 

𝑓(𝑦) =
𝛤(𝑃 + 𝑄)(𝑦 − 𝑈)𝑃−1 (𝑉 −  𝑦)𝑄−1

𝛤(𝑃)𝛤(𝑄) (𝑉 −  𝑈)𝑃−𝑄−1
;  𝑈 ≤ 𝑦 ≤ 𝑉;  𝑃, 𝑄 > 0 

 

  (Equation 21) 
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This general form of the beta distribution is not a standard beta distribution which may 

need to be bound by (U, V) = (0, 1). In this case, the standard beta distribution is shown in 

Equation 22.  

𝑓(𝑦) =
𝛤(𝑃 + 𝑄)𝑦𝑃−1 (1 −  𝑦)𝑄−1

𝛤(𝑃)𝛤(𝑄) 
,    0 ≤ 𝑦 ≤ 1, 𝑃, 𝑄 > 0 

 (Equation 22) 

 

If t/to, y is a beta distribution with bounds U and V, it can be transformed to a standard 

beta distribution with a variable, Z by, normalization using Equation 23 (Stackexchange, 2015).  

𝑍 =
𝑦 − 𝑈

𝑉 − 𝑈
 

 (Equation 23) 

 

Based on Malcolm et al.’s (1959) pragmatic postulation, the mean and variance for the 

random t/to(y) would be estimated as presented in Equations 24 and 25. Here U, M, and V are the 

subjective “optimistic,” “most likely,” and “pessimistic” t/to estimates, respectively, displayed in 

Figure 4. The mean and variance can further be related to Equations 26-27 in order to estimate 

parameters P and Q. 

 

𝜇 =
(𝑈 + 4𝑀 + 𝑉)

6
 

 

  (Equation 24) 

𝜎2 =
(𝑉 − 𝑈)2

36
 

  (Equation 25) 

 

µ =
𝑃

𝑃 + 𝑄
 

 (Equation 26) 

 ơ2 =
𝑃𝑄

(𝑃 + 𝑄)2(𝑃 + 𝑄 + 1)
 

 (Equation 27) 
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Figure 4. Distribution of the Prior Information Compiled from Malcolm et al. (1959) 

For a generalized beta distribution defined on interval [U,V], the mean and variance 

would be shown in Equations 28 and 29 (Stackexchange, 2011). 

𝑀𝑒𝑎𝑛, µ =
𝑈𝑄 + 𝑉𝑃

𝑃 + 𝑄
 

 

 (Equation 28) 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, ơ2 =
𝑃𝑄(𝑉 − 𝑈)2

(𝑃 + 𝑄)2(𝑃 + 𝑄 + 1)
 

 (Equation 29) 

 

By inverting Equations 28 and 29, the PDF-function shape parameters can be observed in 

Equations 30-32.  

 

𝑃 = 𝛾
µ − 𝑈

𝑉 − 𝑈
 

 

 (Equation 30) 

 

𝑄 = 𝛾
𝑉 − µ

𝑉 − 𝑈
 

 

 (Equation 31) 
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𝛾 =
(µ − 𝑈)(𝑉 − µ)

𝜎2
− 1 

 (Equation 32) 

 

The overall procedure for prior estimation can be followed with this proposed algorithm. 

i. Step 1: Classify the historical larger dataset into the desired, discrete dataset by 

breaking down the v/c. D is a historical dataset, and x as v/c is a continuous random 

variable (0, R), where R is a real number. Now, x needs to be stratified based on a 

desired increment of x (i.e., increment δx=0.05). To do further operation, the 

corresponding v/c value needs to rounded to the nearest increment of δx. Now, the 

continuous variable, x, becomes a real discrete set of {0, 0.05, 0.10, 0.15, 

0.20,…,1,…n}. The value of n could be observed from the given dataset. Figure 5 

displays how each dataset can be generated for a given x. Thereafter, dataset D 

includes different a subset {D0, D.05, D0.10, D0.15,…,D1.0,…, Dn). The increment should 

be selected in such a way that δx gets smaller as presented in Equation 33, where f 

and g are the lower and upper boundaries of x. To obtain better results, a smaller 

increment is desired. It is obvious that choosing a smaller increment will be 

computationally expensive.  

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚
𝛿𝑋→0

∑ 𝑓(𝑥)

𝑔

𝑥=𝑓

𝑔

𝑓

𝛿𝑥 
 (Equation 33) 
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Figure 5. Conceptual Data Sampling 

ii. Step 2: Normalize the t/to by using Equation 23.  

iii. Step 3: Test the type of distribution for {D0, D0.05, D0.10, D0.15,...D1.0,..., Dn}.  

iv. Step 4: Using Equations 24 and 25, estimate the mean and variance parameters based 

on each distribution for each {D0, D0.05, D0.10, D0.15,...D1.0,..., Dn}.  

v. Step 5: Generate a new dataset, D, with the mean parameters obtained from the 

previous step. 

vi. Step 6: Test the distribution type for D. It is expected that the distribution would be a 

beta distribution.  

vii. Step 7: Estimate the mean and variance using Equations 28 and 29.  

viii. Step 8: Estimate the shape parameters, P and Q, based on Equations 30 and 32. 

ix. Step 9: Calculate the prior probability p(y) using Equation 22 or 23.  
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3.4. Stochastic Approximation of Travel-Time Delay 

This section presents the methodology involved with the likelihood as well as the 

marginal and posterior distribution presented in Equation 19. Section from 3.4.1 to 3.4.3 

presented how the Bayesian method can be applied to predict t/to.  

3.4.1. Likelihood Estimation 

The likelihood function, p(D|θ), for the t/to, while it is a beta distribution, can be 

explained as shown in Equation 34.  

𝑝(𝐷|𝜃) = 𝐿(𝑃, 𝑄|𝒚) = ∏
𝛤(𝑃 + 𝑄)

𝛤(𝑃)𝛤(𝑄) 
𝑦𝑖

𝑃−1 (1 −  𝑦𝑖)𝑄−1

𝑛

𝑖=1

 
 (Equation 34) 

 

 

Owen (2008) has approximated P and Q parameters of PERT, beta likelihood function 

using Equations 35-38. He has used the Newton-Raphson iterative procedure to find these 

parameters.  

µ̃ =
𝑃

𝑃 + 𝑄
 

 

 (Equation 35) 

�̃�2 =
𝑃𝑄

(𝑃 + 𝑄)2(𝑃 + 𝑄 + 1)
 

 

 (Equation 36) 

𝑃 ̃𝑃𝐸𝑅𝑇 = µ̃ (
µ̃(1 − µ̃)

�̃�2
− 1) 

 

 (Equation 37) 

𝑄 ̃𝑃𝐸𝑅𝑇 = (1 − µ̃) (
µ ̃(1 − µ̃)

�̃�2
− 1) 

 (Equation 38) 

 

In order to calculate the likehood probability of the t/to for a given v/c, following 

procedures were followed. 

i. Step 1: Follow Steps 1-4 as described in Bayesian prior estimation for the larger 

dataset.  
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ii. Step 2: Calculate the parameters based on Equations 35 and 36 for dataset {D0, D0.05, 

D0.10, D0.15,...D1.0,...,Dn}.  

iii. Step 3: Calculate the shape parameters using Equations 37 and 38. 

iv. Step 4: Iteratively follow Steps from one to three for m number of datasets. For 

example, D0 dataset becomes, i.e., {D0,1, D0,2 , D0,3,…, D0,m} datasets. 

v. Step 5: Using Equation 34, approximate the likelihood estimate for all datasets {D0,1, 

D0,2, D0,3,…, D0,m, D.05,1, D.05,2 , D0.05,3,…, D.05,m ,…,Dn,1, Dn,2 , Dn,3,…, Dn,m}. 

3.4.2. Marginal Distribution  

The marginal probability of Bayesian inferences was estimated using Equation 39. 

𝑝(𝐷) = ∫ 𝑝(𝐷, 𝜃)𝑑𝜃 
 (Equation 39) 

To find the marginal probability for Equation 39, following procedures were followed: 

i. Step 1: Follow Steps one and two as described for the likelihood estimation.  

ii. Step 2: Find the joint probability using 𝑝(𝐷|𝜃)𝑝(𝜃). 

iii. Step 3: The summation of all joint probabilities forms the number of datasets for a 

given v/c.  

3.4.3. Posterior Distribution 

i. Step 1: Using Equation 19, the posterior distribution was calculated.  

ii. Step 2: Estimate the parameters’ mean, variance, probability, bias, and accuracy.  

3.5. Logistic Growth Modeling 

The probabilistic t/to dynamics with respect to the v/c ratio may show chaotic behavior, 

implying that the t/to growth with respect to the v/c ratio is neither linear nor strictly increasing, 

i.e., chaotic in behavior. The chaotic behavior of the t/to may follow a logistic growth model that 

can explain the natural phenomena of the t/to functions’ growth, which may have either 
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increasing or decreasing characteristics. A system which is chaotic nature might not always 

generate the ever-increasing curve. To fit a given system like this, a cumulative, logistic growth 

modeling might need attention from the transportation industry. Cumulative-growth modeling, 

especially population-growth modeling, is widely applied in the social sciences.  

To capture the chaotic nature of a given system’s deterministic portion, modeling the 

cumulative growth might be mathematically explained with a logistic growth curve. Logistic 

growth modeling involves dealing with the logistic function; the logistic curve is a common “S” 

shape (sigmoid curve) that is presented in Equation 40. This Equation is the standard form of the 

sigmoid function. Sigmoid functions are common in statistics as cumulative distribution 

functions (Wikipedia, 2016). The first aspect of a logistic function is to produce a system so that 

it can capture the natural, cumulative rate of system growth that is chaotic in nature. The second 

aspect of a logistic function is to make a system such that the growth rate follows the system 

capacity. In that case, the more generalized form of a logistic function can be defined as shown 

in Equation 41. Here k represents the curve’s growth rate, l is the saturated maximum capacity 

that can be sustained for a given system, and xo is a location parameter.  

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

 

 

 (Equation 40) 

𝑦(𝑥) =
𝑙

1 + 𝑒−𝑘𝑥−𝑥0
 

 (Equation 41) 

 

It is obvious that the t/to follows some laws with the v/c ratio. All it was known about this 

system is that it is chaotic (increasing or decreasing) in nature. If someone fits the cumulative 

growth of a t/to, then the change for the t/to might be directly proportional to the v/c, as explained 

by Equation 42. According to Fokas (2007), in 1798, Malthus suggested this relationship to 



 

74 

 

estimate the population size. Here dy/dx represents the t/to change, k is the growth rate, and y(x) 

is the cumulative t/to.  

𝑑𝑦

𝑑𝑥
= 𝑘𝑦(𝑥) 

 (Equation 42) 

 

Verhulst added a correction item (1-y(x)/k) with Equation 42 when the system, y(x), 

growth is exponential in nature as presented in Equation 43 (Meyer, 1994; Fokas, 2007). The 

growth change can be defined as presented in Equation 44 (Meyer, 1994; Fokas, 2007). A primer 

on logistic growth and substitution has been presented by Meyer (1994) and Fokas (2007). 

Interested readers are directed to read those articles. The proposed methodologies developed in 

this dissertation were formulated by utilizing the work of Meyer (1994) and Fokas (2007). 

𝑦(𝑥) = 𝑥𝑜𝑒𝑘𝑥 
 (Equation 43) 

𝑑𝑦(𝑥)

𝑑𝑥
= 𝑘𝑦(𝑥)(1 −

𝑦(𝑥)

𝑙
)  (Equation 44)  

 

A time-dependent solution, as presented in Equation 45, finds y(x) from Equation 44; this 

result has been reported in several studies (Fokas, 2007; Meyer, 1994).  

𝑦(𝑥) =
𝑙

1 + 𝑒
[−

𝑙𝑛(81)
∆𝑥

 (𝑥−𝑥𝑚)]
 

 (Equation 45) 

 

 

The function presented in Equation 45 has three parameters: 1) l is the asymptotic 

maximum value where the t/to growth is saturated; 2) ∆𝑥 is the time required to reach 10-90 

percent of l; and 3) xm is the midpoint in time.  

In the n-logistic function’s theory, if the growth function, y(x), shows a different pattern 

in another region with respect to v/c, then the n-logistic function can be established. In this case, 

the updated logistic function can be explained in Equation 46. In Figure 2 Part 7, this situation is 
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visualized, indicating that, at some range, the growth change can be explained by sub-process 

one; in another region, two processes (a sub-process and sub-process two) are necessary.  

𝑦(𝑥) = 1 + 𝑦1(𝑥) + 𝑦2(𝑥)+ . . . + 𝑦𝑛(𝑥) (Equation 46) 

Model added a 1 to constrain the fitting when the traffic volume is zero. Later, it will be 

shown that adding this value, 1, to the function as a constraint does not affect the t/to curve 

fitting, and not necessarily to add this value 1. In a more simplified form, the function in 

Equation 46 can be mathematically formulated as Equation 47. 

𝑦(𝑥) = 1 + ∑ 𝑦𝑖(𝑥)

𝑛

𝑖=1

 
 (Equation 47) 

 

Furthermore, the function in Equation 46 is being utilized to predict the value for set W= 

{1, 2, 3…w}. Any predicted value for Equation 47 is the predicted cumulative t/to. For example, 

at point w in W, the cumulative t/to can be expressed as the sum t/to at point wth  and (w-1)th, 

which can be further expressed as Equation 48.  

𝑦𝑤(𝑥) + 𝑦𝑤−1(𝑥) = 1 + ∑
𝑙𝑖

1 + 𝑒
[−

𝑙𝑛(81)
∆𝑥𝑖

 (𝑥𝑖−𝑥𝑚𝑖)]

𝑛

𝑖=1

 (Equation 48)  

 

Again, for the example at the wth item in W, an individual t/to can be computed by 

subtracting from the wth and (w-1)th item as expressed in Equations 49 and 50.  

𝑦𝑤(𝑥) = 𝑦𝑤(𝑥) − 𝑦𝑤−1(𝑥) 

 (Equation 49) 

 

𝑦𝑗(𝑥) = ∑
𝑙𝑖

1 + 𝑒
[−

𝑙𝑛(81)
∆𝑥𝑖

 (𝑥𝑖−𝑥𝑚𝑖)]

𝑛

𝑖=1

− ∑
𝑙𝑖

1 + 𝑒
[−

𝑙𝑛(81)
∆𝑥𝑖

 (𝑥𝑖−𝑥𝑚𝑖−1)]

𝑛

𝑖=1

 
 (Equation 50) 

 

 

Here, it is proven that adding a constraint at volume zero into the t/to function’s 

formulation does not affect the model’s dynamic function. Adding the constraint 1can neutralize 
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the Equations 49 and 50. Equation 50 is the formal, proposed t/to relationship which can be 

further expressed as Equation 51; Equations 52-54 are required to compute the t/to in Equation 

51. The solution of ki and xmi as presented in Equations 53 and 54 were utilized from the study of 

Meyer (1994) and Fokas (2007). Here d is the initial v/c value for the Bayesian prediction used 

earlier in the posterior estimation dataset, 𝛿𝑥 is the v/c increment used in for the Bayesian model 

prediction dataset in the posterior estimation dataset, v is the traffic flow, and c is the practical 

capacity. 

 

𝑡 = 𝑡0 [∑
𝑙𝑖

1 + 𝑒
[−

𝑙𝑛(81)
∆𝑥𝑖

 (𝑥𝑖−𝑥𝑚𝑖)]

𝑛

𝑖=1

− ∑
𝑙𝑖

1 + 𝑒
[−

𝑙𝑛(81)
∆𝑥𝑖

( 𝑥𝑖−𝑥𝑚𝑖−1)]

𝑛

𝑖=1

] 

 

 (Equation 51) 

𝑥 = 1 +
𝑣/𝑐 − 𝑑

𝛿𝑥
 

 

 (Equation 52) 

𝑘𝑖 =
𝑙𝑛(81)

∆𝑥𝑖
 

 

 (Equation 53)  

𝑥𝑚𝑖 = −
𝑥𝑜𝑖

𝑘𝑖
 

 (Equation 54) 

 

To find the relationship between the t/to and v/c, the overall algorithm can be coded as 

follows. 

i. Step 1: Observe the Bayesian-predicted, posterior, probabilistic mean t/to for each v/c, 

i.e., {E(t/t0)v/c=0, E(t/t0)v/c=0.05, E(t/t0)v/c=0.10, E(t/t0)v/c=0.15,…, E(t/t0)v/c=n}, 

where n is the largest-observed v/c value rounded to the nearest 0.05. This portion is 

displayed in Figure 2 part 6, where each red dot shows the predicted, posterior 

probabilistic, mean t/to for a given v/c.  

ii. Step 2: Estimate the cumulative t/to for a given v/c with the previous v/c.   
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iii. Step 3: Fit the cumulative t/to growth by using logistic growth modeling. For the t/to, 

it is expected that the exponentially always increasing, simple growth curve presented 

in in Equations 43-45 might be observed.  

iv. Step 4: Fit the growth as an n-logistic function as shown in Equation 47. 

v. Step 5: Use Equations 53 and 54 to estimate the parameters expressed in Equation 45 

iteratively for Equation 47.   

vi. Step 6: Formulate the formal t/to relationship as Equations 51 and 52.  

3.6. Tasks 

There were certain tasks that needed to be done in order to accomplish the six research 

objectives. Some major tasks are presented in Figure 6; it displays the two aspects of the 

methodology. The left portion shows the data needs and a supplementary technique to collect the 

concurrent travel-time and traffic-counts data. The left side also shows how different 

technologies, such as smartphone and existing crowdsource technology, can be utilized. The 

right side of Figure 6 illustrates the six research objectives. The overall tasks are as follows. 

i. Task 1: Conduct an extensive and rigorous Literature Review on the travel-time data-

collection technique, crowdsourcing, VSM, the TTP methodology, and the travel-

time functions for traffic assignment.  

ii. Task 2: Establish a conceptual workflow, and develop the VSM’s structural 

components. Develop VSM to collect the travel time from web services.  

iii. Task 3: Test and validate the VSM with the NPMRDS, manual crowdsourcing, a 

smartphone with a test vehicle, and a web-based crowdsource application. Develop a 

geographic modeling tool for smartphone data conversion. Create automated 

workflow management for the NPMRDS data processing.  
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iv. Task 4: Collect concurrent travel-time and traffic-count data using VSM, NPMRDS, 

or varied transportation agencies.  

v. Task 5: Develop a new, integrated logistic growth traffic-flow model. Then, estimate 

the capacity-input parameters. Validate the methodology.  

vi. Task 6: Investigate the deterministic traffic speed-density model. Then, estimate the 

FFS’ input parameters. Validate the methodology.  

vii. Task 7: Evaluate the performance of the historical t/to. Approximation of Bayesian 

prior information for the historical t/to was performed. The expected mean and 

probability for the t/to conditioning the discrete v/c ratio is computed during this step. 

Validate the methodology.  

viii. Task 8: Provide a new, technical and scientific methodological approach to predict 

the t/to using the stochastic Bayesian dynamic update and PERT techniques. 

Approximate the posterior distribution, and estimate the parameters. Validate the 

methodology.  

ix. Task 9: Establish a new, link t/to function based on the knowledge borrowed from the 

market-adopted, logistic-growth-curve technique and the Bayesian model update. 

Study the proposed method by comparing other suitable methods that are practiced by 

the transportation industry. Validate the methodology.  

A well-defined and systematic methodology is crucial to achieve the research goals and 

tasks. The research workflow is presented in Figure 7. The entire workflow has four main 

phases.  

At phase 1, this research started with a demanding topic. In the first phase, a thorough 

plan was developed after identifying the research interest. An extensive and rigorous Literature 
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Review on the development of the travel-time data-collection techniques, VSM, TTP 

methodologies, and the t/to function was performed. From the Literature Review, the research 

needs, the literature gaps, and the industry needs, leading to specific research goals, hypotheses 

and assumptions, expected results, and a problem statement was identified. A pilot study was 

performed to check the data collection, data availability, assessing the research’s possibility and 

feasibility, and finding the resource requirements.  
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0
 

 

Figure 6. Research Objectives Flowchart 
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At phase 2, several sub-phases: extending the VSM as well as creating apps, macros, and 

programs to collect the travel time was completed. Framework for the VSM was developed. The 

VSM was then utilized to collect the travel time from web services based on OpenStreetMap. 

Testing and validating the VSM was also included in this phase.  

To validate the VSM, the travel time was collected from different sources. Because of 

limited number of resources, this research considered several methodologies such as smartphone, 

test vehicle, and NPMRDS. 

At phase three, immediately after testing the VSM, collecting the data using the new 

methodology was started. Necessary noise removal was performed. At phase four, the necessary 

analysis for my remaining research objectives was conducted. Finally, the results were presented, 

drew the overall summary and conclusions, found the research limitations, and provided the 

appropriate recommendations.
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Figure 7. Dissertation Flowchart 
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4. DATA COLLECTION AND VIRTUAL SENSOR METHOD 

This chapter discusses following items and investigates potential data sources.  

i. Investigate VSM, Crowdsource, and NMPRDS 

ii. Investigate Location Enabled Smartphone 

iii. Research Location 

In this Chapter, applicability of VSM, crowdsource, NPMRDS, and location enabled 

smartphone data are presented. The findings of these methodologies are presented in Sections 4.1 

and 4.2. At Section 4.3, study location is presented.  

4.1. Investigate VSM, Crowdsource, and NMPRDS 

4.1.1. General 

Travel time is an important parameter for transportation planning and operational 

decision making process especially for corridor, subarea, or any given study area. There are 

numerous methodologies such as Bluetooth, cellular phone, crowdsourcing, probe measures, and 

spot measures (radar, detector, image processing) involving travel time data collection. Literature 

review suggest that each of these methodologies require mobile, temporary, or permanent 

equipment installation and maintenance, or paid third party vendors, which will price a 

substantial amount of cost and time depending on the research goal. On the contrary, the 

OpenStreetMap crowdsource mapping application would leverage for an O-D travel time data 

collection technique. This methodology is probably lacking suitable attention to researchers and 

practitioners, which merits an investigation to see if this resource can be useful as an alternative 

data collection technique. Null hypotheses assumed that the collected travel time through 

crowdsource services may indicate real-time or near real-time travel time, eventually which can 

be useful in the absence of local data unavailability.  
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There is a strong needs for real-time or near real-time travel time data for the 

transportation planning due to the following reasons. 

i. Travel time based on FFS following HCM. 

ii. Congested assignments based on FFS may affect the models output accordingly 

(Motuba, 2012).  

iii. In the absence of local data, the FFS based on national averages are being using to 

calibrate and validate the model outcomes in traditional practice (Motuba, 2012).  

iv. National averages are based on limited numbers of model areas.  

v. Need real-time or near real-time travel time data to replicate ground truth condition. 

4.1.2. Problem Statement 

Finding suitable travel time data is much crucial for regional transportation planning and 

considerably unavailable. Therefore, this research aimed to investigate whether a suitable travel 

time data collection technique can be used in model calibration and validation purpose for given 

matrices of origins and destinations. 

4.1.3. Research Objective  

The main objective of this research section was to investigate whether a crowdsource 

services could be an alternative resources for travel time data collection. To achieve the research 

goals, what lead to concentrate on this research is that how can someone use the best resources 

that is open, big, or freely available to some extent so that relate our everyday movement. 

Eventually, the idea of utilizing crowdsource data collection through online services. 

There are many crowdsource vendors such as Bing, HERE, Google, OpenStreetMap, 

MapQuest, TomTom, INRIX, and AirSage. Cambridge Systematics (2012) stated that Google 

Map is a big player in crowdsourcing to collect the real-time traffic data collection. The study of 
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Wang and Xu (2011) evident that Google Map API can be deployed. Morgul et al. (2014) has 

studied Bing and MapQuest through VSM. Morgul et al. (2014) proposed that their methodology 

can be an attractive alternative for traffic surveillance method. In order to provide a novel 

solution, data collection using OpenStreetMap services would be a suitable crowdsource to 

collect travel time data. The main reason to select OpenStreetMap is that it is fully free, open and 

big. On the contrary, other services are not technically free and open except MapQuest. 

MapQuest services are free in some extent and with limited usage. In addition to that most of the 

crowdsource services requires explicit permission and have limits on uses before using the 

respective services.  

4.1.4. Data Collection and Analysis 

A corridor containing nine segments of I-29 freeway (Northbound) within the Fargo-

Moorhead Metropolitan Planning Area (FMMPA) was considered. The research corridor is 

presented in Figure 8. Figure 8 displayed two major freeways (I-29 and I-94) running over the 

research location. This Figure 8 also displayed the Traffic Message Channel (TMC) stations. 

This TMC points are coming from NPMRDS program of Federal Highway Administration. The 

NPMRDS data will be used for the validation purpose of the OpenStreetMap data2. Data was 

collected for different time period and day for a week from OpenStreetMap and is licensed under 

ODBL 1.0. Once the data collection was done, a workflow management for NPMRDS data 

collection was developed using ArcGIS, Python, and SAS. Travel time was then normalized as 

travel time per mile so that the selected nine segments can be compared.  

                                                
2 OpenStreetMap data was collected as a part of varied projects of Advanced Traffic Analysis Center at Upper Great 

Plains Transportation Institute.  
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Figure 8. Research Area and TMC Locations 

4.1.5. Results and Discussions 

This section discussed some interesting findings and results that can be useful for the 

travel time data collections techniques and transportation planning. Null hypotheses was that 

travel time from the OpenStreetMap service is not different in compare to the observe data. In 
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this regards, statistical paired t-test (NPMRDS-vs.-OpenStreetMap) was performed for the 

studied nine segments, which is presented in Table 10. The paired t-test for the OpenStreetMap 

services over NPMRDS is significantly different even at 90 percent confidence interval, which 

fails to accept the null hypotheses that the travel time from OpenStreetMap services are not 

different because the p-value found was 0.00316. The reason of these two are significantly 

different might be the update frequency of OpenStreetMap services. However, results indicate 

some interesting facts as well. 

Table 10. OpenStreetMap Statistical Significance Test 

Items NPMRDS OpenStreetMap 

Mean (Second per mile) 62.65 77.53 

Variance (Second Square) 46.98 110.59 

Standard Deviation (Second) 6.85 10.52 

t-Stat  3.56 

P(T<=t) two-tail  0.00316 

t-Critical two-tail  2.14 

  Significant 

 

Table 10 shows that the mean travel time per mile for the study freeway is 77.53 and 

62.65 seconds for the OpenStreetMap and NPMRDS respectively. But the mean travel time 

varied 14.88 seconds per mile to replicate the observed condition. The standard deviation of the 

true data is 6.85 seconds but the OpenStreetMap is 10.52 seconds respectively. The difference in 

standard deviation found to be 3.67 second for the OpenStreetMap in compare to NPMRDS. 

Estimated percent difference travel time of the OpenStreetMap against NPMRDS dataset 

is presented in Figure 9. In the horizontal axis in Figure 9 is the link segments from first to ninth. 

This corridor starts with rural area with speed limit 75 mph, in the middle urban area with speed 

limit 55 mph, and at the end again rural area with speed limit 75 mph. The vertical axis in Figure 

9, indicate the percent of travel time varied by the OpenStreetMap compared to NPMRDS 
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The percent variation of travel time by the OpenStreetMap varied approximately 10-40 

percent. In the urban area travel time variation is less compare to rural area. Probably the 

prediction power of OpenStreetMap has better algorithm for the urban area in compare to rural 

area.  

 

Figure 9. Percent Differences of Travel Time Plot over NPMRDS 

Trends of mean travel time over each segment is presented in Figure 10. The vertical-axis 

of Figure 10 represents the mean travel time in seconds. Figure 10 also supports the previous 

discussions of Figure 9.  

What can be seen is that the OpenStreetMap travel time is replicating the trends and 

variation of the observed data. Mean observed travel time ranged from 53.18-72.42 seconds for 

the nine segments. The OpenStreetMap travel time ranged from 62.28-96.54 seconds for the nine 

segments. The OpenStreetMap is always over predicting the travel time compare to the observed 

NPMRDS data. However, in the corridor level OpenStreetMap replicate the similar trends.  
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Figure 10. Trends of Corridor Travel Time 

At last, cumulative distribution of the mean travel time per mile for the nine segments is 

presented in Figure 11. This plot reflects that travel time over the corridor does not varied much. 

The travel time over each section is considerably consistent by the OpenStreetMap. 
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Figure 11. Cumulative Distribution of Travel Time 

4.1.6. Summary 

OpenStreetMap might be a potential candidate for corridor level travel time study. The 

smaller and medium size transportation agencies with vivid resource constraint might get help 

substantially using this methodology especially for corridor level planning. Regardless of flaws, 

it is evident that this new technology is cheap; free with limited capability; no cost except 

obtaining the data cost; and finally installation is not required. However, literature of 

crowdsource is not rich. Therefore, this research will rich the literature of crowdsourcing data 

acquisition technology as well. 
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4.2. Investigate Location Enabled Smartphone  

4.2.1. General 

Travel time for a given pair of O-D or waypoints can be collected many ways such as 

broadly categorized into probe vehicle measure, spot measure, test vehicle, license plate 

matching, and emerging technology. Each method has its own advantages and disadvantages. 

However, crowdsourcing is a new technology falls under probe vehicle measure need suitable 

attention to the transportation industry. While the required resources for travel time collection is 

constrained heavily upon resources, the crowdsource travel time through web mapping vendors 

such as Bing, Google, MapQuest, OpenStreetMap, and Yahoo now named as HERE create a new 

milestone for the transportation industry. These web mapping services is pioneer and well known 

to the transportation user and industry especially for the travel navigation system. Therefore, this 

research aimed to investigate the proximity of the travel time data collection from the open and 

free web mapping services OpenStreetMap. Manual travel time collection from web mapping 

services was validated against global positioning system enabled smartphone and test vehicle. 

The outcomes of this research will contribute to the needs of the crowdsource literature, 

transportation industry, researcher, and practitioner significantly. 

4.2.2. Introduction 

Based on the literature findings, it is clearly indicative that there are some gaps of the 

study that need to enrich in order to fill the crowdsourcing literature. First, none of the earlier 

studies performed comprehensive comparative study such as Bing, Google, MapQuest, Open 

Street, Yahoo (HERE), and INRIX, etc. Second, none of the above study did investigate the big 

and completely free OpenStreetMap services though MapQuest is open with limited response. 

Third, collecting travel time through web-based virtual sensor or macro is programming oriented 
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and advanced, where small or medium size cannot be benefited where technical expertise is 

limited. Therefore, considering the last two issues, the online travel time data may be collected 

manually through the open web mapping services OpenStreetMap. Of course, OpenStreetMap 

terms and conditions apply. Therefore, the research goal of this section was to investigate the 

real-time proximity of travel time data collection from web mapping services in compared to 

GPS enable smartphone. In order to validate the data, real-time travel time can be collected 

through GPS location enable smartphone by ignoring of its disadvantages. The reason of 

choosing GPS locations enable smartphone was based on the unavailability of other technology 

such as loop detector is most common methodology for travel time data collection methodology 

validation.  

The research methodology incorporates manually collection of travel time with hyper 

linking in a simple excel data sheet from web mapping services; utilized publicly available free 

travel time data collection app that can be integrated with test vehicles. Post processing of the 

data dictated to develop a macro to analysis the data and a GIS tool to process the smartphone 

app generated data. However, the proposed methodology sometime experience several 

challenges, which has been describe in the methodology chapter. A case study of a freeway 

corridor within the medium size FMMPA is included for an illustrative example.  

The section is organized as four sub-sections. Section 4.2.3 presents the methodology, 

develop the model and study the available apps. Section 4.2.4 discuss the results and presents the 

summary. Section 4.2.4 draws appropriate conclusion based on the research findings.  

4.2.3. Methodology 

To achieve this section research goal, a 5.3 miles’ corridor of freeway I-29 northbound 

within the FMMPA was considered. The study area is portrayed in Figure 12 by the buffer line. 
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The origin was considered started closest to 52nd Avenue North (Latitude: 46.809985, Longitude: 

-96.838904) and destination was closest to 12th Avenue North (Latitude: 46.885929, Longitude: -

96.839353). Travel time from OpenStreetMap was collected manually during AM and PM peak 

hours from July 24, 2015 to September 18, 2015. The AM peak hour are from 7:00 AM to 9:30 

AM and the PM peak hour are from 4:00 PM to 6:00 PM. During each peak period, observations 

was recorded from the web services.  

 

Figure 12. Study Area and Ping Points 
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The methodology of data collection from web mapping services was based on online 

(manual operation). To make the methods a little friendly, for the given origin and destination, a 

Hypertext Transfer Protocol (HTTP) link was generated. In an excel sheet, each link can be 

attached in a cell value. Clicking linked cell can directed to the web services and showed the 

travel time. However, this method indicated a little laborious job and limitation. First, for the 

same origin and destination, service showed different location and direction shifting of the actual 

location. Therefore, a further manual operation was needed to rectify the problem. Second, 

sometime, web service don’t allow to start routing in the middle of the freeway. It forced to 

select some closest facilities like a land, parking, business, housing, etc. The web service that 

create the second issues, was not considered in this study. 

During the same time frame, a free smartphone app called “SPEEDVIEW” was utilized, 

which has the capability to enable current location coordinates of a test vehicle3 using cell phone 

GPS; collect current time of the locations for a specific time, and store the data on the system; 

and finally would be able to create a track points line of the vehicle movement. Of course, every 

app has its own capability and limitation. Considering the SPEEDVIEW capability, the 

minimum time between points for pining of the GPS settings was considered one second and 

minimum accuracy 10 meter.  

To remove the biasedness of the outcomes, the test vehicle was driving by following 

randomly selecting the closest vehicle with same relative speed and distance. If a selected 

vehicle, took an exit, then the next closest vehicle was followed. In the absence of no vehicle, 

posted speed limit was followed. However, data collection indicated some drawback of these 

methodologies. During the data collection, GPS signal lost found frequently. Data showed some 

                                                
3 Data was collected as part of varied projects of Advanced Traffic Analysis Center at Upper Great Plains 

Transportation Institute. Special thanks and acknowledge to Dr. Diomo Motuba for his permission to use this data.  
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noisy location and path of travel sometime. Therefore, the noisy ping location was eliminated 

using a buffer line. Sometime the app does not store the data or even store then don’t allow to 

send the data. 

To process the GPX data, a model tool was developed using ArcGIS software. The model 

is presented in Figure 13. The model initially collects the GPX file, convert from the GPX to 

feature, clipping the ping location within the buffer line, sorting, create suitable field and 

combined a dbf format file. At this step, the model just produced the combined GPS dataset. The 

major attributes in this step is unique sorted ID, date-time stamp, latitude, and longitude. A 

sample of the data is shown in Figure 14.  

Since every peak hour have one GPX file but include many ping locations. To calculate 

the travel time for each GPX file in database created using the model tool earlier, the statistical 

SAS programming software was used utilized to consider the first and last location time stamp 

and calculate the difference of total travel time. After this process, travel time from the web 

services was aggregated into a single database. A sample of the final combined data and sample 

major attributes is presented in Figure 15.  
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Figure 13. Model for Processing GPX Data 

 

Figure 14. Sample Model Database 

 

Figure 15. Sample Final Database 

4.2.4. Results and Discussions 

This section presents the appropriate results and discussion based on analyzed data 

collected from OpenStreetMap web mapping service. The results are then validated and 

compared against the data collected from GPS enabled smartphone with test vehicle. Later this 

section will present the travel time reliability of these methodologies based on working day of 

month, workday of a week (Monday through Friday), and two peak hours (AM and PM). 
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First the analysis looked at the statistical mean travel time of working day of the month 

for the 5.3 miles’ urban freeway corridor. It was found that the travel time was 6.08 and 6.00 

minutes for Manual and OpenStreetMap respectively. The mean travel time of the 

OpenStreetMap services are considerably close to the manual method for the study period of July 

24, 2015 to September 28, 2015. The difference of daily mean travel time with respect to manual 

method which is observed data found 4.8 seconds for OpenStreetMap. Even though the daily 

mean difference is ranged from 54.6-58.8 seconds for the 5.3-mile section, but the standard 

deviation of the daily mean travel time was observed 1.92 and 0 minutes for Manual and 

OpenStreetMap respectively. The standard deviation of OpenStreetMap services is zero 

indicating that the travel time updates is not so frequent. One of the interesting fact over the 

study period is that OpenStreetMap travel time did not show any variation. Therefore, standard 

deviation of OpenStreetMap web mapping services is zero. A complete list of mean statistics and 

standard deviation is presented in Table 11 based on daily, peak hour and working day of week.  

Mean statistics showed that Monday and Friday showed more variation than other 

working days. Mean difference of web services compared to manual method range from 0.91-

0.98 minutes from Monday to Friday. PM peak hour travel time shows higher than the AM peak 

hour travel time. The PM peak hour travel time indicate more variability than AM peak hour.  
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Table 11. Travel Time Mean Statistics 

  Work Day          

  Daily         

Type Mean Std          

Manual 6.09 1.93         

OpenStreetMap 6 0         

           

 Peak Hour        

 AM PM       

Type Mean Std Mean Std        

Manual 5.93 1.96 6.52 1.9       

OpenStreetMap 6 0 6 0       

           

 Day of Week 

 Monday Tuesday Wednesday Thursday Friday 

Type Mean Std  Mean Std  Mean Std  Mean Std  Mean Std  

Manual 6.91 0.86 6.39 0.91 5.02 0.38 5.95 0.78 6.25 0.95 

OpenStreetMap 6 0 6 0 6 0 6 0 6 0 

 

Summary statistics only reveal each methods deviation from the ground truth condition. 

But the question, is whether or not the travel time is approximating the ground truth condition or 

the OpenStreetMap has its own complementarity. First test was done whether or not the daily 

travel time by web services is significantly different than the manual method. Least square 

means test showed in Table 12 that the mean travel time of OpenStreetMap is not significantly 

different than the manual method at 95 percent confidence interval.  
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Table 12. Daily Travel Time Significance Test 

Least Squares Means for Effect Type 

t for H0: LSMean(i)=LSMean(j) / Pr > |t| 

Dependent Variable: Travel Time 

i/j Manual OpenStreet 

Manual 
  0.48823 

  0.626 

OpenStreet 
-0.48823   

0.626   

   

Legend:   

  Insignificant 

  Significant  

 

Later significance test was performed at 95 percent confidence interval for AM and PM 

peak hours. The test results is presented in Table 13. Test results indicate that OpenStreetMap 

AM peak hour travel time is not significantly different than the manual AM travel time at 95 

percent confidence interval. Which clearly a good representation of near-time travels time 

estimation by the web services. Similarly, OpenStreetMap PM Peak hour travel time is not 

significantly different than the manual PM travel at 95 percent confidence interval. The manual 

method AM and PM travel time is not significantly different as well. Similarly, OpenStreetMap 

AM-vs.-OpenStreetMap PM is not significantly different though the mean statistics showed 

more variation in the PM peak than the AM peak hour. Since the case study area is a medium 

size metropolitan area and from the local experience, there is consistency in the peak hour travel 

time. Travel time does not vary much in the AM and PM peak hour which support the expected 

results. Therefore, it might be inferred that travel time collected from OpenStreetMap service are 

nearly-real-time for the AM and PM peak hour. It also showed that majority of the cases except 

few instances, the AM and PM peak hour travel time is complementary of each other. 
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Table 13. Peak Hour Significance Test 

    Least Squares Means for Effect Type*TimeCat 

  t for H0: LSMean(i)=LSMean(j) / Pr > |t| 

    Dependent Variable: Travel Time 

      Manual OpenStreet 

      AM PM AM PM 

  i/j 1 2 3 4 

Manual 

AM 1 
  -1.23 -0.13 -0.09 

  0.22 0.89 0.93 

PM 2 
1.23   0.87 0.67 

0.22   0.39 0.51 

OpenStreetMap 

AM 3 
0.13 -0.87   0.00 

0.89 0.39   1.00 

PM 4 
0.09 -0.67 0.00   

0.93 0.51 1.00   

Legend:       AM Insignificant   

     PM Insignificant  

    Significant  

 

4.3. Study Location 

Five-minute interval traffic flow data captured with loop detectors were collected from 

Caltrans Program Evaluation and Monitoring System (PEMS) for the complete year 2011-2015. 

The study link location was a four lane segment of Interstate 5 south bound in Los Angeles 

County, California, which is was one of the 10 most congested places in the United States (USA 

Today, 2015). The geographic location of the loop detector was California post mile 11.3, which 

is station number 763980 presented in Figure 16. Consecutively, I-5 route was the highest 

congested place in Los Angeles since 2009 (CalTrans, 2012). However, according to Caltrans 

(CalTrans, 2012), the study location was the most congested bottleneck place at I-5 in 2012 

during the afternoon/evening peak period.  

The raw data processing was tedious and exhaustive in nature. After extracting the 5 

minutes interval data for a complete year, it uses 60 Gigabytes of computer memory. The raw 

database contains almost 200 million records for the district seventh for each year. The 

agglomeration of data was performed using multiple statistical packages using SAS, R, and MS 
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Access. Once the data was agglomerated then the desired study location data was extracted from 

the main database. Raw data included bad weather and detector failure data. Therefore, only 100 

percent quality data were utilized which does not have any bad weather effect and detector 

problem. Later, query out of any major events (accident, road construction, and so on) that 

negatively affect the traffic flow on a specific day and time was performed. For example, around 

22 percent data for the year 2014 indicated reliable dataset which was then considered for this 

research.  

 

Figure 16. Study Location 
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5. MODELING OF STABLE CAPACITY4 

5.1. Overview 

Capacity approximation of highway link segments is critically essential, subjective, 

widely recognized by the transportation industry, and is a topic that generates a high level of 

research interest. It is obvious because transportation investment decisions are highly correlated 

to the accuracy of forecasting of the amount of traffic, vehicle hours travelled, vehicle miles 

travelled, t/to, LOS, and v/c ratio measures. All of these measures are the direct outcomes of 

highway capacity oriented inputs. One of the example would be the last step of a TDM is 

highway assignment, which require calculation of accurate capacity estimation in the network 

data preparation stage. Therefore, this study aims to develop a new traffic flow prediction model 

for freeway so that it may capture the non-linear flow characteristics. Results shows that the 

proposed methodology are highly potential and considerably a good candidate for capacity 

approximation and flow prediction. This study brings a new knowledge of non-linear logistic 

quantile function into the traffic flow prediction and capacity estimation.  

5.2. Introduction 

Branston has defined the capacity of a link as the maximum steady-state flow on that link 

(Branston, 1975). This capacity is also known as the steady state capacity (Branston, 1975). 

Another capacity term is practical capacity. Branston (1975, p.226) has defined the practical 

capacity as, “the maximum number of vehicles that can pass a given point on a roadway or in a 

designated lane during one hour without the traffic density being so great as to cause 

unreasonable delay, hazard, or restriction to the driver’s freedom to manoeuvers under prevailing 

                                                
4 This Chapter is ongoing manuscript for potential publication with supporting author Dr. Matthew L. Stone at North 

Dakota State University and Babak Mirzazadeh at Upper Great Plains Transportation Institute. Both the supporting 

authors helped in proof reading. Main contribution of Babak Mirzazadeh portion was a part of review of literature, 

which is not included in this Chapter.  
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roadway and traffic conditions”. According to that paper, practical capacity is a single value 

capacity. A single value capacity cannot represent different operating condition and LOSs 

(Branston, 1975). Therefore, LOS concept was added in 1965 HCM and capacity was defined as 

service volume (Branston, 1975). Branston also stated that practical capacity is more often used 

in capacity formations than in steady-state capacity. He indicated that practical capacity and 

services is very subjective and confusing. According to his study, it is preferable to use steady-

state capacity in the formulation in link capacity functions.  

The HCM 2010 (TRB, 2010; TRB 2000) is the state-of-the-art of best practices for 

roadway capacity estimation. HCM 2010 includes numerous factors such as FFS, ramp density, 

percentage of heavy vehicles, peak hour factor, and v/c ratio that can affect the freeway capacity 

estimation. Estimating capacity from HCM is a subjective nature because it incorporates the LOS 

or v/c ratio. Molla (2016) has presented a case study of FMMPA area on implications of highway 

capacity manual on freeway measure of effectiveness. His study presented how the new HCM 

2010 can be different than old HCM 2000 based on LOS or v/c ratio. Utilization of HCM has 

significant effect on estimation of performance measure of freeway (Molla, 2016). In volume 

delay function formulations, researchers are using various percentile flow to represent capacity. 

Mtoi and Moses (2014) used 99th percentile flow as the practical capacity for volume delay 

function postulation.  

There are several issues that need proper attention to the researchers, practitioners, and 

policy makers. First, the subjectivity of the practical capacity is well addressed by many studies. 

When capacity estimation comes to transportation planning stage, estimations of capacity are 

mostly practical capacity and subjective in nature for a given link. Second, highway capacity 

manuals provide very good guidance in estimating capacity. But this guidance is heavily 
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concentrating on an operational aspect. When it comes to planning, numerous types of 

assumptions are necessary to replicate the operational condition into the planning model. These 

assumptions are coming from different sources. The variety of assumptions in capacity 

estimation is cumbersome, which may lead the practitioner to adopt a simple methodology.  

The aforementioned issues are mostly general problems and there are more traffic flow 

characteristics that need to be included while approximating capacity. Traffic flow mean and 

variance of each hour are varying considerably making the traffic flow prediction erroneous if a 

LM is used because it might lead to higher errors in prediction. In this regard, a non-linear 

logistic growth model has been developed.  

An ordinary non-linear model may exhibit various flow characteristics in different 

quantile of the observations. To find a more robust model that include comprehensive analysis of 

the prediction variability, quantile regression has been considered as well. 

As this literature review reveals, earlier studies did not addressed suitably the logistic 

function or quantile regression knowledge in traffic flow studies. Therefore, the primary 

objective of this research is to provide an integrated model for capacity estimation and traffic 

flow prediction. In this regard, a mathematical non-linear logistic function was developed based 

on sigmoid curve fitting technique. Furthermore, a quantile regression analysis was performed 

for the proposed logistic model. The results were compared to different statistical measures, 

existing methodology, and capacity values found in the literature.  

5.3. Methodology 

The research methodology includes three major components: 1) start value selection; 2) 

logistic growth modeling; and 3) non-linear quantile regression.  
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5.3.1. Start Value Selection 

The overall goal of this research section is to predict the traffic flow (say random variable 

y) using Verhulst (Wikipedia, 2016) logistic growth function conditioning hours of a day (say x-

th hour of the day). In order to fit the logistic growth function, an initial start value with three 

parameters of logistic function including: 1) curve maximum saturation parameter (l), 2) 

steepness of the curve (k), and 3) the sigmoid midpoint (xo) are required. A well-defined 

explanation of logistic growth modeling and its parameters estimation can be understood from 

Meyer (1994) study. The initial value was achieved in such a way that the cumulative 

distribution pattern of the observed data and the model data could be similar pattern.  

It was required to normalize the observed data using a suitable method. Since it was 

aimed to predict the traffic flow (v), normalization with maximum mean hourly flow (vmax) using 

Equation 55 is acquired. Here vi is the mean hourly flow from random observations, vmax is the 

maximum hourly flow, and yi is the normalized flow for an individual observation. This ratio 

indicates how much the weight of each observation is compared to the vmax. Cumulative 

summation of the random observation y was then obtained. Given a sequence y1 to yn, of 

estimated elements can be summed as, such as presented in Equation 56 and 57. cn represents the 

cumulative summation of n-item, and N represents the natural number. 

𝑦𝑖 =
𝑣𝑖

𝑣𝑚𝑎𝑥
− 1 

 

 (Equation 55) 

 

𝑐𝑛 = 𝑦1 + 𝑦2 + ⋯ 𝑦𝑛 ,   𝑛 ∈ 𝑵 
 

 (Equation 56) 

 

 𝑐𝑛 𝑖𝑡𝑒𝑚𝑠 = ∑ 𝑦𝑛

𝑛

𝑖=1

 
 (Equation 57) 
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The initial cumulative growth pattern of sigmoid growth plot was then established over 

the observed data using the generalized logistic function presented in Equation 58. Root sum 

squared error was then optimized (minimized) using non-linear Generalized Reduced Gradient 

(GRG) algorithm. A corresponding statistical coefficient of determination (R-Squared) or other 

desired measures can be considered to select the trial value of the non-linear logistic function 

parameters. Then predicted observations were computed using Equation 59.  

𝑓(𝑥) =
𝑙

1 + 𝑒[−𝑘(𝑥−𝑥0)]
 

 

 (Equation 58) 

𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) =
𝑙

1 + 𝑒[−𝑘(𝑥−𝑥0)]
−

𝑙

1 + 𝑒[−𝑘(𝑥−𝑥0−1)]
 

 

 (Equation 59) 

 

In Equation 59, l is the curve maximum saturation parameter, k is the steepness of the 

curve, xo is the sigmoid midpoint, x is hour of the day, and f(x) is the cumulative prediction of an 

observation. Once the start values of the model parameters are estimated, the model functions as 

a responsive system which normalizes the predicted values. In this case, it is just mathematical 

reformulation of Equation 55, which is expressed in Equation 60.  

𝑣𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
𝑣𝑚𝑎𝑥

𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) + 1
 

 

 (Equation 60) 

5.3.2. Non-Linear Logistic Growth Modeling 

Up to this point, the initial coefficient (start value) for the logistic function for the hourly 

mean observed data was estimated. With taking all random observations into consideration, the 

following formal flow relationship proposed in Equation 61 depending on hour of the day is then 

proposed and optimized to reduce the root sum squared error and then logistic parameters were 

estimated. vpredicted is the predicted flow before the quantile analysis and ϵ is the random error 

portion of the model.  
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𝑣𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
𝑣𝑚𝑎𝑥

1 +
𝑙

1 + 𝑒[−𝑘(𝑥−𝑥0)]  −  
𝑙

1 + 𝑒[−𝑘(𝑥−𝑥0−1)]

+ 𝜖 

 

  (Equation 61) 

5.3.3. Quantile Logistic Function 

Theory of quantile functions are well defined by Koenker (2016). Moreover, proposed 

formal traffic flow model was then analyzed for different quantile or percentile functions. The 

final non-linear logistic quantile function is presented in Equation 62. Each parameters 

coefficient was presented by p-th (percentile) value and ϵi indicates the random error generated 

by each quantile functions.  

𝑣𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑖) =
𝑣𝑚𝑎𝑥

1 +
𝑙(𝑝)

1 + 𝑒[−𝑘(𝑝)(𝑥𝑖−𝑥0
(𝑝)

)]
−

𝑙(𝑝)

1 + 𝑒[−𝑘(𝑝)(𝑥𝑖−𝑥0
(𝑝)

−1)]

+  𝜖𝑖
(𝑝)

 

 

 (Equation 62) 

 

5.4. Traffic Flow Data Characteristics  

Five-minute interval flows were converted to an hourly basis in order to find the capacity 

per hour per lane. The data for the study location has been presented over the hours of the day in 

the top left section of Figure 17. This Figure indicates the total hourly flow as vehicles per hour 

(vph) of the link for different hours. Figure 17 indicates non-linear relationship between flow and 

hours of a day.  
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Figure 17. Hourly Flow Characteristics 

 

 

Figure 18. Sys Plot of Hourly Flow 
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Figure 19. Box Plot of Hourly Flow 

 

Figure 18 presents how the observations deviate from the 50th- percentile or median 

value. Furthermore, data was categorized by hourly basis, which has been presented in Figure 19. 

Statistical tests proved that the flow distribution, mean, and variance of each hour is significantly 

different from those of other hours.  

5.5. Results and Discussions 

5.5.1. Integrated Quantile Logistic Growth Model 

A suitable startup value for three parameters of the logistic growth function was selected 

based on root sum squared error and R-squared value. For the case study, the starting value of 

three parameters (l = 20, k = 1, xo = 5) were optimized to l = 18.12, k = 1.07, xo= 3.09 with the 

root sum squared error of 4.55 and R-squared value of 95.08 percent. Figure 20 displays how the 

initial logistic fitting has been approximated compared to the observed cumulative condition. 

Figure 21 displays how the initial logistic fitting has been approximated compared to the 
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observed condition. The R-squared values were considerably good and the pattern distribution 

was approximately similar to the observed data. It can be observed from the top right portion of 

Figure 21, after around 1 post meridiem (PM), the flow becomes stable. Figure 21 indicates that 

the freeway reached steady-state flow condition rapidly from 6 after meridiem (AM) to 1 PM 

The quantile, q, was chosen from q= 0.05 to q = 1.00, by 0.05 increments. The overall 

fitted model has been presented in Figure 22. Figure 21 shows the predicted flow conditioning on 

hours of a day and each quantile. It also includes non-linear least square (NLS), median, 95 

percent confidence interval band, and other quantile predicted values. From these Figures, it 

might be inferred that at 0.025, 0.05 and 0.10 quantile, the model predicted value is almost linear 

but above 0.10 quantile, the flow rate per lane follows the pattern of a non-linear logistic growth 

model. It might be inferred that at or below 0.10 quantile, the flow rate is different than other 

quantile. In addition, lowest flow rate has been observed from 12 AM to 6 AM After 6 AM it 

increases rapidly and becomes stable during the rest of the day. Plus, after 6 PM, the predicted 

change of flow for all the quantile seems to be similar.  

 

Figure 20. Cumulative Plot of Initial Value 
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Figure 21. Mean Hourly Flow Rate of Initial Fit 

 

 

Figure 22. Quantile Model Function Characteristics 
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5.5.2. Parameters and Test Statistics 

Various statistical tests were performed in order to identify the best suitable stable 

portion of the fitted model so that it could find the steady-state capacity. Three parameters l, k, x0, 

and standard error, t-value and p-value corresponding to each quantile are presented in Table 14. 

It can be seen that at or below the 10th percentile, the saturation parameter l becomes so high 

compared to other quantile.  

Table 14. Model Parameters and Test Statistics of Proposed Model 

    Curve Maximum Saturation (l) Steepness of the Curve (k) Sigmoid Midpoint (x0) 

Qu.   Coeff.   
Std. 

Error 

t-

value 

p-

value 
Coeff.   

Std. 

Error 

t-

value 

p-

value 
Coeff.   Std. Error 

t-

value 

p-

value 

5 ** 292.06 * 0 - 0 -0.26  72.284 0.0 0.997 -54.95  14351.293 0.0 0.997 

10 ** 573.89 * 0 - 0 -0.18  21.361 0.0 0.993 -78.77  9069.201 0.0 0.993 

15 ** 37.75 * 0.348 108.50 0 0.6 * 0.005 131.1 0 2.97 * 0.049 60.7 0 

20 ** 32.48 * 0.252 128.66 0 0.67 * 0.004 155.0 0 3.11 * 0.028 111.1 0 

25 ** 28.95 * 0.22 131.40 0 0.73 * 0.005 147.4 0 3.08 * 0.025 124.9 0 

30 ** 25.86 * 0.215 120.02 0 0.84 * 0.008 101.5 0 3.01 * 0.021 145.4 0 

35 ** 23.76 * 0.164 144.88 0 0.97 * 0.011 92.0 0 2.98 * 0.013 225.6 0 

40 ** 22.48 * 0.166 135.39 0 1.06 * 0.01 103.4 0 2.98 * 0.015 196.7 0 

45 ** 21.43 * 0.149 144.18 0 1.13 * 0.012 92.2 0 2.99 * 0.013 225.1 0 

50 ** 20.27 * 0.158 128.43 0 1.18 * 0.011 103.1 0 3 * 0.014 219.0 0 

55 ** 19.1 * 0.147 129.99 0 1.22 * 0.012 105.1 0 2.99 * 0.014 218.4 0 

60 ** 17.92 * 0.154 116.23 0 1.27 * 0.015 85.7 0 2.99 * 0.016 182.3 0 

65 ** 16.55 * 0.147 112.77 0 1.31 * 0.012 113.6 0 3 * 0.013 223.2 0 

70 ** 15.26 * 0.147 103.52 0 1.35 * 0.013 104.9 0 3.02 * 0.015 201.2 0 

75 ** 13.68 * 0.164 83.23 0 1.4 * 0.014 102.6 0 3.04 * 0.015 204.3 0 

80 ** 11.9 * 0.179 66.34 0 1.43 * 0.014 100.9 0 3.06 * 0.014 218.2 0 

85 ** 10.09 * 0.176 57.25 0 1.44 * 0.015 97.2 0 3.07 * 0.015 201.3 0 

90 ** 8.01 * 0.163 49.25 0 1.45 * 0.016 90.7 0 3.08 * 0.02 151.9 0 

95 ** 6.13 * 0.071 86.41 0 1.6 * 0.02 80.0 0 3.22 * 0.016 195.9 0 

99 ** 5.52 * 0.193 28.55 0 1.44 * 0.067 21.5 0 3.11 * 0.041 75.9 0 

    * Significantly different from zero (5 percent significance) 

    ** Significantly different from non-linear least square method (5 percent significance) 

 

Above 10th percentile all three parameters coefficients and t-values are positively 

significant. There were two hypotheses tested against the model. The first hypothesis was tested 

to examine the significance of each quantile coefficient against zero. This test results are 
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indicated by single asterisk (*) symbol. Test results also indicate each quantile parameter 

coefficient has significant effect on flow prediction. Second hypothesis was that whether each 

quantile analysis was significantly different than NLS regression model. The test results were 

presented by double asterisk (**) symbol. Test results suggest that all the quantile model is 

significantly different than the NLS model. Therefore, it might be inferred that non-linear model 

is robust compared to the non-linear least square method.  

5.5.3. Model Sensitivity 

Furthermore, each parameter sensitivity or response pattern against each quantile was 

simulated. Figure 23 presented sensitivity of three statistical coefficient parameters over different 

quantile or as a function of q.  

The rate of change of curve maximum saturation point l has been centered approximately 

at its 60th percentile of the flow, therefore, it estimates the quantile function of traffic flow 

depending on 60th percentile flow. Because at this percentile, saturation parameters are not 

significantly different than the NLS saturation parameters. However, steepness of the quantile 

function does not vary significantly from the NLS method at around 40th percentile value. Then, 

to find the best model either 40th percentile model or 60th percentile model should be selected. 

This is why the capacity value should indicate its confidence level or range. But Figure 23 shows 

that the rate of change of the third parameters is robust for different quantile. One may consider a 

different quantile function to identify the tolerance value of capacity. Considering this case, the 

capacity value might be cut off and approximated from 40th percentile to 60th percentile of the 

traffic flow observed for the case study location. 
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Figure 23. Rate of Change of Quantile Function Parameters 
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5.5.4. Capacity Estimation 

After approximation and establishment of a non-linear quantile logistic function for the 

flow prediction conditioning hours of a day and τ, the next step is to approximate the capacity 

from this model. Figure 24 shows the first and second derivative for the 40th and 60th percentile 

quantile function. It is evident that the model first derivative converges to zero around hour 3:47 

of the day which is a local maximum for both 40th and 60th percentile function. First derivative 

cannot converge to zero after the hour 3:47 of the day for both cases. But using the second 

derivative, global maxima and main point of inflation can be observed at hour 6:59 of the day for 

40th percentile and hour 6.08 of the day for 60th percentile. The stable capacity might be observed 

after hour 13:00 of the day. For example, both 40th and 60th percentile of the non-linear quantile 

logistic function at hour 13 would generate around 1,550 vph per lane, which might be identify 

as the steady-stated capacity.  

 

Figure 24. Quantile Simulation of Proposed Model 
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5.5.5. Validation 

The results have been compared to several smaller to larger public agencies freeway 

capacity values which are presented in Figure 25. It can be seen that the proposed model predicts 

low capacity on freeways. Freeway capacity has been observed in other public agencies ranged 

from 1,700 to 2,250 vph per lane (Figure 25). The used capacity of various organizations is 

collected from the published report of each organization. But the proposed model in this research 

predicts 1,550 vph. The proposed model generates significantly different capacity values 

compared to the than mean capacity of the reported organizations (with p-value of 0.00012).  

 

Figure 25. Capacity among MPOs 
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Figure 26. R-Square by Percentiles 

 

 

Figure 27. Simulated Error of Modeling Errors 
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In addition, simulation for the R-squared value and mean absolute error (MAE) were 

conducted. Results are presented in Figures 26-27 for each quantile function. These figures 

reflect how the R-squared value has been changed over each quantile. At quantile above 0.10, the 

R-squared values are strong and positively correlated with a range of 82.62 to 95.78 percent. At 

quantile below 0.10, the R-squared values indicate strong negative correlation. Negative R-

square indicates that at or below 0.10 quantile, the model does not follow the trend of the 

observed data. A horizontal fitted line will be more reasonable in that case. It can be inferred that 

even though the model is generating significantly different results in compared to the reported 

capacity values of different organizations, this model is more robust in predicting traffic flow 

and capacity in each quantile function. It was observed that at or below the 15th percentile 

quantile function, model MAE is high; however, above the 15th percentile function, the error is 

not so significant and always remains below 36. It can be inferred that traffic flow has very 

distinguished characteristics at or below 15th percentile function. It may also be inferred that 

model is more robust and strong in predicting traffic flow above 15th percentile. It could be stated 

that model has a good capability of predicting any kind of non-linearity formation of traffic flow 

characteristics. 
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6. INVESTIGATION OF FREE-FLOW SPEED MODEL  

6.1. General 

TRB (2000, p.5-6) defined FFS as “(1) The theoretical speed of traffic, in kilometers per 

hour, when density is zero, that is, when no vehicles are present; (2) the average speed of 

vehicles over an urban street segment without signalized intersections, under conditions of low 

volume; (3) the average speed of passenger cars over a basic freeway or multilane highway 

segment under conditions of low volume.” Wang and Huegy (2014, p.3) said, “free-flow speed is 

the theoretical speed of traffic as density approaches zero, so it is the basis for speed estimation 

and should also be determined carefully.”  

6.2. Introduction 

With travel demand modeling, FFS has an important role. This speed is used to calculate 

the initial FFT and the congested travel time for highway-assignment steps. Motuba (2012) 

stated that the wrong FFS may affect the TDM’s output. In the absence of local data, the FFS are 

calibrated based on national averages, area types, and available data for similar roadways. 

Based on the current HCM 2010 (TRB, 2010), the freeway’s FFS can be determined with 

Equation 63. Here FFS is the free-flow speed (mph), fLW is the adjustment for lane width, fLC is 

the adjustment for the right-side clearance, and TRD is the total ramp density (ramps per mile). 

Wang and Huegy (2014) indicated that FFS can be reasonably obtained from the HCM with 

calibration for the regional TDM. Their literature review indicated how FFS is being utilized for 

regional travel demand, mostly by using a look-up table.  

 

𝐹𝐹𝑆 = 75.4 − 𝑓𝐿𝑊 − 𝑓𝐿𝐶 − 3.22 𝑇𝑅𝐷0.84              (Equation 63) 
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Using Equation 63, it is easier to calculate the FFS. The question is whether this 

generalized formula can be applied to congested places such as Los Angeles. HCM are widely 

used, recognized, applicable, acceptable, and recommended guidelines for FFS estimation. By 

definition and theoretically, the FFS formulation should relate to the traffic-flow speed while the 

density is zero. The transportation industry may address this issue with FFS estimation. There are 

many speed-density models are available. Wang et al. (2009) presented and investigated some 

deterministic approaches and developed a stochastic process to model speed-density relationship. 

They included how different deterministic models are criticized over one another. Moreover, 

each model had its own success or failure story. The speed-density model can be managed with 

different perspectives (single-regime or multi-regime models). Multi-regime models were based 

on traffic-flow characteristics for the free-flow portion and the congested portion of the speed-

density curve.  The modeling partition of multi-regime speed-density models depended on 

density. Wang et al. (2009) observed that that Edie’s two regime models’ cut-off density was less 

than or equal to 50, the modified Greenberg model’s cut-off density is less than or equal to 35, 

and May’s two-regime model is less than or equal to 65. It might be inferred that free-flow 

regimes are addressed by different threshold values of density, which ranges from 35-65. Using 

such a high value showed that the LOS for FFS is from E to F (TRB, 2010). In that sense, 

estimating FFS based on the current multi-regime model would be questionable. Free-flow 

conditions should represent the LOS A, where density is less than or equal to 11 (TRB, 2000), 

which is a free-flow operation. Mtoi and Moses (2014) used 10 passenger cars per hour per mile 

per lane for the uninterrupted flow facilities’ free-flow estimation. Moses et al. (2013) used 

density 5 as the cut-off level. They were not certain which percentiles’ (50th, 85th, and 90th) speed 

would be useable to compute the FFS. Their studies addressed how speed limit, access-point 
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density, median type, curve presence, segment length, the number of lanes, and area type had a 

significant influence on the FFS estimation.  

Considering these issues, there are certain aspects that need to be incorporated into the 

speed-density model. 

 The free-flow regime cut-off or threshed-density value for FFS estimation should 

incorporated LOS A.  

 The existing deterministic speed-density model should merit an investigation which 

overcomes the aforementioned first issue.  

 A statistically sound and reasonable quantile model might be established.  

Therefore, this study aimed to investigate the current deterministic speed-density model 

and proposed a modified model to explain speed-density model with different quantile and to 

compute the FFS accordingly. 

6.3. Methodology 

The research methodology included three major components: 1) investigating the single-

regime model, 2) investigating the multi-regime model, and 3) proposing the most suitable, 

quantile speed-density model. All three sections are discussed in this section. 

At first, a comparative investigation was performed using Greenshields, Greenberg, 

Underwood, Northwestern, and Drake’s models. The dataset was utilized to develop those five 

models. To find the FFS, the formal relationship was modified in a simpler form (Table 15). A 

more formal definition for each relationship is presented in Wang et al. (2009) study. 
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Table 15. Single-Regime Models 

Model Relationship Source 

Greenshields 𝑦 = 𝑏 − 𝑎𝑥    Wang et al. (2009) 

Underwood 𝑦 = 𝑒𝑥𝑝(𝑏 + 𝑎𝑥)    Wang et al. (2009) 

Greenberg 𝑦 = 𝑎 𝑙𝑜𝑔 (
1

𝑥
+ 𝑏)     Wang et al. (2009) 

Northwestern 𝑦 = 𝑒𝑥𝑝 (𝑏 −
𝑎

2
𝑥2)     Wang et al. (2009) 

Drake 𝑦 = 𝑒𝑥𝑝 (𝑏 +  
𝑎

2
𝑥2)     Wang et al. (2009) 

where y is the speed, x is the density, and a and b are parameters.  

 

At the second stage, two regime models were investigated and compared among the 

Greenshields, Greenberg, Underwood, Northwestern, Drake, Edie’s two-regime, May’s two-

regime, and the modified Greenburg models which are presented in Wang et al. (2009). 

Interested readers are referred to Wang et al.’s (2009) paper. Two regimes (the free-flow and 

congested regimes) considered the LOS A which indicates that the density is less than or equal to 

10 vehicles per hour per mile per lane. To find the FFS, the formal relationship was modified in a 

simpler form and presented in Table 16. More formal definitions for each relationship is 

presented in Wang et al. (2009). In this study, Edie, two-regime, and modified Greenberg models 

were considered based on the cut-off level at density 10 instead of the formal cut-off levels.  

Best candidate model using the single-regime or multi-regime modeling approach was 

identified. Later, speed-density model was then analyzed for different quantile or percentile for 

the best candidate model. Finally, based on statistical measures, a suitable model was proposed 

and FFS was computed.  
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Table 16. Multi-Regime Models 

Model Free-Flow Regime Congested Regime Source 

Greenshields 𝑦 = 𝑏 − 𝑎𝑥   (where x≤10) 𝑦 = 𝑏 − 𝑎𝑥   (where x >10) Proposed 

Underwood 
𝑦 = 𝑒𝑥𝑝(𝑏 + 𝑎𝑥)   (where x≤10) 

 
𝑦 = 𝑒𝑥𝑝(𝑏 + 𝑎𝑥)   (where x >10) Proposed 

Greenberg 𝑦 = 𝑎 𝑙𝑜𝑔 (
1

𝑥
+ 𝑏)    (where x≤10) 𝑦 = 𝑎 𝑙𝑜𝑔 (

1

𝑥
+ 𝑏)    (where x >10) Proposed 

Northwestern 𝑦 = 𝑒𝑥𝑝 (𝑏 −
𝑎

2
𝑥2)    (where x≤10) 𝑦 = 𝑒𝑥𝑝 (𝑏 −

𝑎

2
𝑥2)    (where x >10) Proposed 

Drake 𝑦 = 𝑒𝑥𝑝 (𝑏 +  
𝑎

2
𝑥2)    (where x≤10) 𝑦 = 𝑒𝑥𝑝 (𝑏 +  

𝑎

2
𝑥2)    (where x >10) Proposed 

Edie 𝑦 = 54.9 𝑒𝑥𝑝 (
−𝑥

163.9
)   (where x≤50) 𝑦 = 26.8 𝑙𝑛 (

162.5

𝑥
)   (where ≥50) 

Wang et al. 

(2009) 

Two-regime 𝑦 = 60.90 − 0.515𝑥   (where x≤65) 𝑦 = 40 − 0.265𝑥   (where ≥65) 
Wang et al. 

(2009) 

Mod. Greenberg 𝑦 = 48   (where x≤35) 𝑦 = 32 𝑙𝑛 (
145.5

𝑥
)    (where ≥35) 

Wang et al. 

(2009) 

where y is the speed, x is the density, and a and b are parameters. 

 
6.4. Results and Discussions 

6.4.1. Data Characteristics 

Five-minute interval speeds were analyzed in order to see how the speed data are 

distributed daily. The study location’s speed data are presented for the day’s hours in Figure 28. 

This figure indicates the link’s total hourly speed (mph) for different hours. Figure 28 illustrates 

the non-linear relationship between speed and the day’s hours. Statistical tests proved that the 

speed distribution, mean, and variance for each hour is significantly different from those data for 

other hours. From midnight to 2:00 PM, a normal day may contain many outliers which are 

outside the inter-quartile range. Until 6 AM in the morning, the speed’s mean and variance seem 

to be constant, but later, these two parameters’ variation is significant. The quantile-quantile (Q-

Q) plot in Figure 29 represents how the speed distribution over the day’s hours deviated from a 

straight line. The figure basically shows that the distribution is skewed. This statement can be 

supported with the bi-modal distribution of speed that is presented in Figure 30. Figure 31 
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illustrates how the observations deviate from the 50th percentile, the median value. The figure 

shows how the speed distribution is multiplicative in nature.  

 

Figure 28. Box Plot of the Hourly Speed Distribution 

 

 

Figure 29. Q-Q Plot of the Hourly Speed 
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Figure 30. Density of the Hourly Speed 

 

 

Figure 31. Speed-Data Characteristics 

Later, the speed (mph) over density (vehicles per hour per mile per lane) data were 

analyzed. Figure 32 shows how the relationship would look. With a deterministic approach, these 
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relationships were developed in different settings: 1) single regime and 2) multi regime. 

Regardless of the regime, the relationship could be linear, log-normal, log-transformed, 

exponential, etc. The Greenshields, Greenberg, Underwood, Northwestern, Drake, Edie’s two-

regime, May’s two-regime, and modified Greenburg model are representations of this 

relationship. 

The first goal is to see which model better replicates the overall data if there is a single-

regime model. The second goal is to see whether the two-regime model is better. To create a 

two-regime model, speed data were extracted from the study area where the density was less than 

or equal to 10. These criteria were chosen based on the LOS A. In Figure 32, the bottom-left side 

shows the free-flow regime, and the bottom-right side shows the congested regime.  
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Figure 32. Speed-Density Scatter Plot 

6.4.2. Investigate Single-Regime Model 

The single-regime model was investigated; it is reported in Table 17. The results indicate 

that, for each model, both parameters are statistically significant. The expected sign for each of 
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the model’s coefficient parameters is positive, which happens in every model except the 

Underwood model. The Underwood model shows anomaly for the coefficient estimate’s sign. 

The fitted speed-density model is presented in Figure 33. The Northwestern and Drake models 

are complement of each other.  

Table 17. Single-Regime Model Comparisons 

Model Coefficient Estimate Std. Error t-value Pr(>|t|) 

Underwood 
a -0.01 0.00006 -234.2 <2e-16 *** 

b 4.39 0.00131 3358.8 <2e-16 *** 

Greenshields 
a 0.85 0.00213 397.8 <2e-16 *** 

b 78.37 0.06245 1255 <2e-16 *** 

Greenberg 
a 14.08 0.08639 163 <2e-16 *** 

b 98.42 0.25387 387.7 <2e-16 *** 

Northwestern 
a 0.00 0.00000 389.3 <2e-16 *** 

b 4.28 0.00053 8089 <2e-16 *** 

Drake 
a 0.00 0.00000 -389.3 <2e-16 *** 

b 4.28 0.00053 8089 <2e-16 *** 

Significance level: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ and 1 

 

The R-square value and the residual standard error (RSE) are included in Table 18. The 

Northwestern and Drakes models show a maximum R-square value of 93.97 percent with the 

lowest RSE at 4.034. On the other hand, the Greenberg model has the lowest R-square value of 

54.02 percent with the highest standard error at 11.14.  

Table 18. R-Square Value for a Single-Regime Models 

Model R-Square RSE 

Underwood 79.63 7.414 

Greenshields 87.5 5.808 

Greenberg 54.02 11.14 

Northwestern 93.97 4.034 

Drake 93.97 4.034 
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Figure 33. Single-Regime Model Fittings 

6.4.3. Investigating Multi-Regime Model 

The multi-regime model, which includes the free-flow model and the congested regime 

model, was developed and reported in Table 19. The results indicated that, for each model, both 

parameters are statistically significant.  

In the free-flow model, the sign of the coefficient estimates is positive for every case 

except the Greenshields, Greenburg, Northwestern, and Edie models. However, with the 

congested regime, all parameters are positive, except Underwood model parameters. The fitted 

speed-density model is presented in Figures 34 and 35.  
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Table 19. Multi-Regime Model Comparisons 

 Free-flow Regime Congested Regime 

Model Coef Estimate Std. Error t-value Pr(>|t|)  Estimate Std. Error t-value Pr(>|t|)  

Underwood 
a 0.002021 0.0002326 8.692 <2e-16 *** -0.02233 6.93E-05 -322.3 <2e-16 *** 

b 4.213833 0.0014139 2980.275 <2e-16 *** 4.61700 1.66E-03 2778.7 <2e-16 *** 

Greenshields 
a -0.138320 0.01593 -8.683 <2e-16 *** 1.01950 0.002027 503 <2e-16 *** 

b 67.610970 0.09657 700.102 <2e-16 *** 85.50897 0.06964 1228 <2e-16 *** 

Greenberg 
a -0.720300 0.08611 -8.364 <2e-16 *** 33.25553 0.09766 340.5 <2e-16 *** 

b 67.196480 0.14749 455.594 <2e-16 *** 163.44622 0.32193 507.7 <2e-16 *** 

Northwestern 
a -0.000329 0.0000378 -8.689 <2e-16 *** 0.00069 1.68E-06 413.8 <2e-16 *** 

b 4.219308 0.0008502 4962.808 <2e-16 *** 4.32700 6.65E-04 6507.3 <2e-16 *** 

Drake 
a 0.000329 0.0000378 8.689 <2e-16 *** -0.00069 1.68E-06 -413.8 <2e-16 *** 

b 4.219308 0.0008502 4962.809 <2e-16 *** 4.32700 6.65E-04 6507.3 <2e-16 *** 

Edie 

a 0.002021 0.0002326 8.692 <2e-16 *** 33.25553 0.09766 340.5 <2e-16 *** 

b 4.213833 0.0014139 2980.275 <2e-16 *** 163.44622 0.32193 507.7 <2e-16 *** 

Two Regime 

a -0.138320 0.01593 -8.683 <2e-16 *** 1.01950 0.002027 503 <2e-16 *** 

b 67.610960 0.09657 700.102 <2e-16 *** 85.50897 0.06964 1228 <2e-16 *** 

Modified Greenburg 

      33.25553 0.09766 340.5 <2e-16 *** 

      163.44622 0.32193 507.7 <2e-16 *** 

Significance level:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ and 1 

 

 

 

Figure 34. Free-Flow Regime Model 
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Figure 35. Congested Flow Regime 

 

The R-square value and the RSE are included in Table 20. The Northwestern and Drake 

models show a maximum R-square value of 96.17 percent with the lowest RSE at 3.519 in the 

congested regime model. However, in the free-flow regime model, the R-square exhibit very low 

as 1.17 percent, which clearly indicates that the free-flow regime model is not a good fit for the 

aforementioned models. 

Table 20. R-Square Value for the Multi-Regime Model 

 Free-flow Regime Congested Regime 

Model R-Square RSE R-Square RSE 

Underwood 1.17 2.641 92.18 5.025 

Greenshields 1.17 2.641 93.96 4.416 

Greenberg 1.08 2.642 87.71 6.302 

Northwestern 1.17 2.641 96.17 3.519 

Drake 1.17 2.641 96.17 3.519 

Edie 1.17 2.641 87.71 6.302 

Two-Regime 1.17 2.641 93.97 4.416 

Modified Greenburg - - 87.71 6.302 
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6.4.4. Quantile Formulation of Free-Flow Regime Model  

With a single-regime model, the model considers the data’s overall fit. With a multi-

regime model, different regions are considered based on the cut-off level’s subjective nature. 

Because the multi-regime model depends on the cut-off level, the results are theoretically biased 

or subjective. In a broader perspective, integrating some established threshold/cut-off level, 

which is widely accepted or applied, such as a LOS, would leverage researchers to select the 

multi-regime model as the better option. The speed-density model clearly shows two 

distinguished characteristics: free-flow and congested. The free-flow regime is linear and is 

decreasing very slowly in nature, or stable; on the other hand, the congested regime may exhibit 

either linear or non-linear relationship, rapidly decreasing in nature. In every case, the 

Northwestern and Drake models perform better for both the single regime and multi-regime 

(congested regime part). Based on these discussions, the Northwestern model is chosen for 

further quantile analysis.  

The quantile analyses for the single-regime and multi-regime models (free-flow and 

congested regime) are portrayed in Figures 36-38. The figures illustrate how the speed can be 

observed, depending on the traffic density and quantile functions.  

The R-square value was simulated for different quantile for both model types based on 

the Northwestern model presented in Figure 39. The multi-regime model, especially in the 

congested portion, was better for predicting speed depending on the density. The multi-regime 

model generated a higher R-square value than single regime model. Results indicated that the 

Northwestern congested-regime and single-regime models were robust and accurate. However, 

the free-flow model was very sensitive, depending on each quantile. This sensitivity is presented 

in Figure 39.  
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Figure 36. Free-Flow Regime Quantile 

 

 

Figure 37. Congested Regime Quantile 
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Figure 38. Single-Regime Quantile  

 

 

Figure 39. Simulated R-Square by Percentile 
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6.4.5. Sensitivity and Selection of Free-Flow Speed 

Furthermore, the model parameters’ sensitivity was investigated by each quantile (Figure 

40). In the 45th percentile of the free-flow regime model, the FFS-coefficient estimation 

parameter (a) for Northwestern model was not significantly different than the least-square 

method. Northwestern model was also significantly different than zero.  

Based on existing knowledge, it was not possible to find any suitable guidelines to 

choose the best quantile congested-regime model. Estimated FFS based on the single-regime and 

multi-regime models presented in Figure 41. It can be suggested that the FFS is increasing in 

nature with the conditioning percentile. For a given percentile, the single-regime model 

generated a higher FFS value than the multi-regime model.  

Based on the previous discussion in this chapter, 45th quantile on Northwestern model 

can be suggested to find the FFS value. This study showed that for 45th quantile on Northwestern 

model, FFS can be observed 68 and 72 mph for multi-regime and single regime model 

respectively. FFS value of 68 mph was chosen for this study. In order to make conservative 

estimation of t/to prediction, the lower value of FFS was used for this study. This value has been 

used for all over the analysis for this research. The question is why this research incorporated 

45th percentile or why not 85th percentile because at 45th percentile, the FFS prediction is not 

significantly different than the NLS method. At 45th percentile, the traffic flow represents the 

average conditions of traffic flow. In practice, 85th percentile is being widely used by the 

practitioner. However, in this case at 85th percentile, the FFS prediction would be significantly 

different than the NLS method or average conditions. In addition to this, based on the study of 

Mtoi and Moses (2014), it is not certain that which percentiles’ (50th, 85th, and 90th) speed would 

be useable to compute the FFS.  
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Figure 40. Multi-Regime Quantile Sensitivity 
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Figure 41. FFS Computation 
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7. BAYESIAN MODELING UPDATE 

This chapter discusses several sections of the research: 

i. Stochasticity of Traffic-Flow Characteristics 

ii. Prior-Information Parameters’ Estimation 

iii. Likelihood and Posterior Parameters’ Estimation  

7.1. Stochasticity of Traffic-Flow Characteristics 

Before explaining the stochasticity of the traffic-flow characteristics, the overall 

characteristics of the data was examined. The characteristics of traffic flow, speed, t/to ratio, and 

v/c ratio by different category are described. Later, variables correlation is presented. 

7.1.1. Daily and Hourly Flow Characteristics  

In Chapter 5, it was shown that the traffic-flow distribution, mean, and variance for each 

hour were significantly different than the values for other hours. Five-minute interval flows were 

converted to an hourly basis in order to find the capacity per hour per lane. The data for the study 

location are presented for the day’s hours in Figure 17. This figure indicates the link’s total 

hourly flow for different hours. Figure 17 illustrates the non-linear relationship between the flow 

and the day’s hours. Figure 18 presents how the observations deviate from the 50th percentile, the 

median value. Furthermore, data are categorized by hour, which is presented in Figure 19. 

Statistical tests proved that the flow distribution, mean, and variance for each hour were 

significantly different than the values for other hours.  

7.1.2. Daily and Hourly Speed Characteristics  

In Chapter 6, five-minute interval speeds were analyzed to see how the speed data are 

distributed daily. The speed distribution indicates a non-linear relationship between the speed 

and the day’s hours. Statistical tests proved that each hour’s speed distribution, mean, and 
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variance were significantly different than the values for other hours. From midnight to 2:00 PM, 

a normal day may contain many outliers which are outside the inter-quartile range. Until 6 AM 

in the morning, the speed’s mean and variance seems to be constant, but later, these two 

parameters’ variation is significant. The Q-Q plot in Figure 29 represents how the speed’s 

distribution for the day’s hours deviate from a straight line. The Figure basically shows how the 

distribution are skewed. Figure 31 illustrates how the observations deviate from the 50th 

percentile, the median value. The figure shows how the speed’s distribution is multiplicative in 

nature. 

7.1.3. Daily and Peak-Hour Characteristics  

First, let examine how the overall data appear in scatter plot (Figure 42) and a Q-Q plot 

(Figure 43). The scatter plot shows the delay ratio on vertical axis and the v/c ratio on the 

horizontal axis. In normal traffic conditions, the scatter plot indicates how the delay’s mean and 

variation would look and their trends. Neither the scatter plot nor any suitable mathematical 

transformations would generate the specific trends for this functions. It is not certain whether the 

function would be increasing and decreasing. Therefore, this uncertainty should incorporate the 

probabilistic method to capture these scenarios. The Q-Q plot in Figure 43 displays how the 

delay has a relationship with the v/c ratio. Figure 43 clearly indicates that the delay does not have 

a linear relationship with the v/c ratio. Figures 44-46 present box plots for the delay variations 

that occur daily, and during the AM and PM peak hours.  
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Figure 42. Scatter Plot of the Travel-Time Delay 

 

 

Figure 43. Q-Q Plot of the Travel-Time Delay 
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Figure 44. Box Plot of the Daily Delay Ratio 

 

 

Figure 45. Box Plot of the AM Peak-Hour Delay  
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Figure 46. Box Plot of the PM Peak-Hour Delay 

Overall, the statistics presented in Table 21 indicate that the minimum-observed v/c ratio 

is 0.006 while the maximum v/c ratio is 1.28. Within this range, the t/to ratio is observed as 

0.8564, and the maximum delay ratio is 21.93 for a normal day. The maximum delay ratio (t/to) 

is 21.93 indicates that the travel time might be reached 21.93 times faster than the free-flow 

conditions.  

Table 21. Summary Statistics for the Overall Data 

Item t/to   v/c  

Minimum  0.8564    0.0060   

1st Quartile  0.9869    0.3890   

Median  1.0287    0.8230   

Mean 1.3746   0.6981   

3rd Quartile 1.1258   0.9590   

Maximum 21.9355   1.2840   

 

Later, the overall delay’s normality was tested and reported in Table 22. Normality tests 

included Anderson-Darling, Cramer-von Mises, Pearson Chi-Square, and the Shapiro-Francia 
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test for the daily as well as the AM and PM peak-hour t/to. All four methods proved that the 

overall time delay is not normality distributed for all three cases (daily, AM peak hour, and PM 

peak hour). The AM peak hour was considered to be 6:00 AM to 9:00 AM, and the PM peak 

hour was considered to be 4:00 PM to 7:00 PM.  

Table 22. Overall Data Normality Test 

Normality Test by Overall Data  

 Daily AM Peak Hour PM Peak Hour 

Anderson-Darling  A = 4215.9, p-value < 2.2e-16 A = 718.87, p-value < 2.2e-16 A = 30.999, p-value < 2.2e-16 

Cramer-von Mises W = 880.24, p-value = 7.37e-10 W = 147.6, p-value = 7.37e-10 W = 4.4371, p-value = 7.37e-10 

Pearson Chi-Square P = 183320, p-value < 2.2e-16 P = 12541, p-value < 2.2e-16 P = 1655.9, p-value < 2.2e-16 

Shapiro-Francia Sample size too high W = 0.2752, p-value < 2.2e-16 W = 0.9056, p-value < 2.2e-16 

 

The Pearson Chi-Square Normality test was checked for each v/c category and reported 

in Table 23. The test results showed that the daily t/to was not normally distributed from v/c 

category 0.15 to 1.25. During the AM peak hour, data from v/c category 0.50 to 1.25 were not 

normally distributed. In the PM peak hour, data from v/c category 0.70 to 1.10 were not normally 

distributed. It might be inferred that, for a majority of the cases, the travel-time ratio was not 

normally distributed. Because the delay was not normally distributed, a formulation for t/to 

functions with the least-square curve-fitting technique would include uncertainty.  

Because the t/to was not normally distributed in most cases, the test was investigated to 

find each category’s exact distribution. To confirm the distribution, Cullen and Frey’s graph was 

plot and analyzed to see the exact distribution. Figures 47-49 show that the daily delay 

distribution might fall between the log-normal and gamma distribution. The AM peak-hour 

distribution clearly showed a beta distribution, and the PM peak hour distribution was log-

normal distribution. Because the beta distribution can explain all kinds of distributions with its 

shape parameters, considering the beta distribution would be most reasonable for this analysis.  
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Table 23. Pearson Chi-Square Normality Test by v/c Category 

Pearson Chi-Square Normality Test by v/c 

v/c Daily AM Peak Hour PM Peak Hour 

0.00 P = 0, p-value = NA P = 0, p-value = NA P = 0, p-value = NA 

0.05 P = 1, p-value = NA P = 0, p-value = NA P = 0, p-value = NA 

0.10 P = 6.3048, p-value = 0.789 P = 0, p-value = NA P = 0, p-value = NA 

0.15 P = 100.53, p-value = 5.113e-11 P = 0, p-value = NA P = 0, p-value = NA 

0.20 P = 329.97, p-value < 2.2e-16 P = 2, p-value = 0.1573 P = 0, p-value = NA 

0.25 P = 16440, p-value < 2.2e-16 P = 3.087, p-value = 0.6866 P = 0, p-value = NA 

0.30 P = 257.75, p-value < 2.2e-16 P = 3.65, p-value = 0.7239 P = 0, p-value = NA 

0.35 P = 9242.2, p-value < 2.2e-16 P = 14.557, p-value = 0.06835 P = 0, p-value = NA 

0.40 P = 12493, p-value < 2.2e-16 P = 9.7966, p-value = 0.2796 P = 0.6, p-value = 0.4386 

0.45 P = 11248, p-value < 2.2e-16 P = 13.825, p-value = 0.08645 P = 3.6667, p-value = 0.05551 

0.50 P = 8179.1, p-value < 2.2e-16 P = 292.49, p-value < 2.2e-16 P = 4, p-value = 0.1353 

0.55 P = 3474.6, p-value < 2.2e-16 P = 366.33, p-value < 2.2e-16 P = 8, p-value = 0.04601 

0.60 P = 4258.8, p-value < 2.2e-16 P = 13.8, p-value = 0.1296 P = 4.5556, p-value = 0.336 

0.65 P = 7369.6, p-value < 2.2e-16 P = 18.373, p-value = 0.0186 P = 12.571, p-value = 0.02774 

0.70 P = 9436.1, p-value < 2.2e-16 P = 398.34, p-value < 2.2e-16 P = 23.822, p-value = 0.008087 

0.75 P = 11427, p-value < 2.2e-16 P = 692.49, p-value < 2.2e-16 P = 58, p-value = 1.194e-07 

0.80 P = 11137, p-value < 2.2e-16 P = 252.59, p-value < 2.2e-16 P = 116.81, p-value < 2.2e-16 

0.85 P = 9897.1, p-value < 2.2e-16 P = 937.09, p-value < 2.2e-16 P = 210.94, p-value < 2.2e-16 

0.90 P = 11298, p-value < 2.2e-16 P = 1011.9, p-value < 2.2e-16 P = 222.14, p-value < 2.2e-16 

0.95 P = 12736, p-value < 2.2e-16 P = 1463, p-value < 2.2e-16 P = 308.98, p-value < 2.2e-16 

1.00 P = 11006, p-value < 2.2e-16 P = 2004.7, p-value < 2.2e-16 P = 434.7, p-value < 2.2e-16 

1.05 P = 6205.8, p-value < 2.2e-16 P = 1111.2, p-value < 2.2e-16 P = 434.7, p-value < 2.2e-16 

1.10 P = 2247.8, p-value < 2.2e-16 P = 872.29, p-value < 2.2e-16 P = 31.391, p-value = 5.265e-05 

1.15 P = 566.85, p-value < 2.2e-16 P = 306.67, p-value < 2.2e-16 P = 1, p-value = 0.3173 

1.20 P = 93.273, p-value < 2.2e-16 P = 82, p-value = 1.379e-15 P = 0, p-value = NA 

1.25 P = 1, p-value < 2.2e-16 P = 1, p-value < 2.2e-16 P = 0, p-value = NA 

1.30 P = 1, p-value = NA P = 1, p-value = NA P = 0, p-value = NA 
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Figure 47. Cullen and Frey’s Diagram of Daily Data 

 

 

Figure 48. Cullen and Frey’s Diagram of the AM Peak-Hour Data 
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Figure 49. Cullen and Frey’s Diagram of the PM Peak-Hour Data 

 

7.1.4. Stochasticity 

The stochastic process deals with uncertainty using a probabilistic model. This 

uncertainty can originate from the developed model. Any statistical model has two parts: 1) 

structural portion and 2) random-error portion, which can be further designated with Equation 

64.  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑀𝑜𝑑𝑒 = 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑃𝑜𝑟𝑡𝑖𝑜𝑛 + 𝑅𝑎𝑛𝑑𝑜𝑚 𝐸𝑟𝑟𝑜𝑟𝑠 
(Equation 64) 

Random errors might be influenced by several factors, such as driving behavior, road 

conditions, traffic conditions, area type, weather conditions, and any major events. A fitted 

model would generate this random error. For better predictions, the random errors must be 

normally distributed, and must be independent and identically distributed. Violating these 

assumptions will create a stochastic process. In this regard, several existing, popular volume-

delay models (BPR and Spiess) were utilized by using the least-square method with a 
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minimizing residual-sum square error; further random errors were tested to see whether the 

random error violated the normality assumption for the overall data.  

The normality test was performed using the Anderson-Darling, Craver-von Mises, and 

Pearson Chi-Square method for the proposed method, BPR method, and Spiess functions for the 

overall data. In every case (Table 24), the residual errors were not normally distributed, violating 

the assumption of normality. It can be inferred that the generated errors were uncertain with 

these three methods and that uncertainty needed to be incorporated into the modeling 

formulations. Normality test results are presented in Figures 50-52.  

Table 24. Normality Test by Model 

Testing Method Proposed BPR Spiess 

Anderson-Darling A = 1685.4, p-value < 2.2e-16 A = 3205.2, p-value < 2.2e-16 A = 1075.4, p-value < 2.2e-16 

Cramer-von Mises W = 291.76, p-value = 7.37e-10 W = 644.31, p-value = 7.37e-10 W = 183.72, p-value = 7.37e-10 

Pearson Chi-Square P = 39405, p-value < 2.2e-16 P = 49950, p-value < 2.2e-16 P = 19700, p-value < 2.2e-16 

 

 

Figure 50. Proposed Method’s Diagnostic Results 
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Figure 51. Modified BPR Method’s Diagnostic Results 

 

 

Figure 52. Spiess Method’s Diagnostic Results 

7.1.5. Correlation and Dependency of Variables 

The overall Pearson correlation coefficient was observed 19.92 percent between the t/to 

ratio and the v/c ratio. The Pearson correlation test with a p-value < 2.2e-16 suggested that, at a 

95 percent confidence interval, these two variables were not correlated. The Pearson coefficient 
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supported that these two variables were not linearly related. Because the coefficient was very 

low, the linear relationship would be very weak.  

The Pearson correlation coefficient for each v/c group category was evaluated (Table 25). 

The results showed that, in a v/c group, t/to was weakly, linearly related. This coefficient did not 

represent any strong, positive correlation. Therefore, it might be inferred that a non-linear 

relationship exists. 

Table 25. Pearson Correlation Coefficient 

Pearson Correlation Coefficient  

v/c Overall AM Peak Hour PM Peak Hour 

0.00 NA  NA  NA 

0.05 NA  NA  NA 

0.10 -0.0092  NA  NA 

0.15 -0.0560  NA  NA 

0.20 -0.0501 -0.0799  NA 

0.25 0.0235 0.1201  NA 

0.30 -0.0445 0.0484  NA 

0.35 0.0037 -0.0310  NA 

0.40 0.0340 -0.4279 0.1354 

0.45 0.0225 0.0916 -0.5611 

0.50 0.0599 -0.0008 0.2586 

0.55 0.0682 0.1475 0.3817 

0.60 -0.0049 0.0639 -0.2749 

0.65 0.0326 -0.1033 -0.0846 

0.70 0.0152 0.0303 -0.1397 

0.75 0.0692 0.0477 -0.1330 

0.80 -0.0347 0.0451 -0.1827 

0.85 -0.0257 -0.1061 -0.1364 

0.90 -0.0772 -0.0310 -0.1657 

0.95 -0.0253 -0.0228 -0.2186 

1.00 -0.0509 -0.0169 -0.1690 

1.05 -0.0566 0.0905 0.0066 

1.10 -0.1512 -0.1074 -0.1199 

1.15 -0.1690 0.0032 -0.6244 

1.20 0.1391 0.2043  NA 
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7.2. Prior-Information Parameter Estimation 

Prior information about the t/to parameters for a given v/c ratio needed to be learned 

before the Bayesian model update or experiment was conducted. Using historical data for the 

completed year 2013, Bayesian prior was estimated. The PERT method was applied to estimate 

the prior information. It was expected that PERT would have the capability to estimate most 

likely mean travel time for a given v/c based on the historical optimistic, pessimistic, and most 

likely mean t/to. In this study, the maximum t/to was considered as optimistic; the minimum t/to 

was considered to be the pessimistic t/to parameters’ estimation. 

Uncertainity about the prior information was estimated in a sequential and systematic 

way. As a probabilistic method, PERT can captured the uncertainity with the prior information. 

The Bayesian modeling technique required the distribution of prior information. The results 

indicated that the PDF for a given, random t/to conditioning v/c are beta distribution. This study 

reported the cumulative density function (CDF) of the t/to for a given v/c ratio as presented in 

Figure 53.  

Results showed that, for a v/c from zero to 0.40 and from 1 to 1.25, both shape 

parameters are greater than 1, which represents a uni-modal distribution. For a v/c from 0.45 to 

0.95, parameter α was less than 1, and parameter β was greater than or equal to 1, indicating a 

reversed J-shaped distribution. The only exceptions were observed while the v/c was 0.85 and 

1.10, where both beta-distribution parameters were equal, representing a systematic uni-modal 

distribution.  
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Figure 53. Prior-Information Distribution 

Using the above distribution and the proposed methodology, the expected mean and 

variance for the t/to, conditioning v/c were estimated. The results are presented in Figure 54. The 

PERT method’s mean was significantly different than observed mean of t/to with a p-value of 

0.006196878. The PERT mean is not different than the beta mean’s theoretical distribution. The 

PERT method captured the most likelihood of the delay ratio. The observed mean lacks to 

replicate this modal peaks (Figure 54). Most likely, each v/c’s delay is higher than observed in 

most cases. 
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Figure 54. Prior-Information Characteristic’s Curve 

Prior information suggests that the expected, most likely t/to decreases in nature until v/c 

is 1 (See Figure 54). At v/c of 1.05 and 1.25, the maximum expected, most likely t/to was 

observed. The simple statistical mean showed the opposite characteristic, which is increasing in 

nature until the v/c is 0.80. Later, the trend was decreasing in nature. The t/to cannot always be 

increasing in nature which does not support a congested place such as Los Angeles. When the 

most likely travel-time delay matters, the assumption of the always-increasing characteristic for 

the t/to functions should be outperformed and needs to be revised.  

7.3. Likelihood and Posterior Parameters’ Estimations 

The likelihood and posterior distribution, as well as its parameters about the t/to for a 

given v/c ratio, was approximated using the method described in Chapter 3. The historical data 

for the complete 2014 year were considered for this purpose. For each v/c ratio, prior information 

was considered as a uniform beta distribution for the likelihood and posterior estimation.  

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

T
/T

0

V/C

PERT (T/T0) Beta Mean (T/T0) Observed Mean (T/T0)



 

153 

 

The likelihood function (likelihood) for the t/to conditioning v/c is the function of the 

model’s parameters with given data. The likelihood is proportional to the Bayesian prior. The 

Bayesian posterior is proportional to the prior * likelihood function. Therefore, the assumption 

about the prior distribution leads to the posterior distribution’s outcomes. The following Figure 

55 with v/c at 1.0 would exemplify for further. 

 

Figure 55. Bayesian Inference when v/c=1 

Figure 55 represents the expected, mean t/to for different models on the horizontal axis 

and model mean parameters’ probabilities on the vertical axis. In Figure 55, solid line with cross 

represents the prior distribution; a solid circle represents equivalent likelihood, and a solid 

triangle represents the posterior probabilities. While v/c at 1, the prior probabilities of a given, 

expected mean (t/to) are always higher than the likelihood and posterior probabilities. The 

posterior probabilities are higher than the likelihood probabilities. Because the prior distribution 
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was assumed to be a uniform beta distribution, the likelihood and posterior distribution follow 

the same distribution. 

Figure 55 illustrates that the maximum equivalent likelihood (L*) for a mean delay ratio 

of 1.26 is 0.222; the prior probability of 0.5677 for this mean increases, by a factor of about 

0.222, to about 0.12. A similar analysis has been done for all other v/c ratio.  

Furthermore, using the proposed method with the given v/c and posterior distributions 

observed above, the expected mean was computed. Figure 56 portrays this estimation. The top 

portion of Figure 56 includes the observed points. The bottom portion of Figure 56 does not 

show the observation. 

It might be inferred that the Bayesian posterior trends and most likelihood trends 

followed a similar pattern which opposed the delay’s mean observed trends with respect to the 

v/c ratio. The t/to functions might not be always increasing in nature. With a p-value of 0.9877, 

the likelihood and posterior estimates are not significantly different. With a p-value of 0.015 at 

the 95 percent confidence interval, the posterior distribution is statistically different than the 

most frequently observed mean.  
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Figure 56. Predicated Trends of Different Approximation 
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8. LOGISTIC GROWTH MODELING 

This chapter describes the proposed logistic growth model, explains its three parameters, 

simulates the parameters’ sensitivity, and validates the model. The primary objective of this 

dissertation are discussed in this chapter.  

8.1. Logistic S-Curve Formation 

The logistic S-curve was formed from the Bayesian, predicted, expected, cumulative 

mean t/to for each given v/c ratio and the most frequently observed, cumulative mean t/to for each 

given v/c ratio. Figure 57 shows variation for the growth of the cumulative delay functions. In 

addition, Figure 58 shows the cumulative percentage of growth.  

 

Figure 57. Logistic S-Curve Formation 
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Figure 58. Cumulative Percentage of Growth for the Travel-Time Delay 

Figures 58 and 59 show that, when using Bayesian predicted data, the cumulative growth 

is higher at the beginning then reduces slowly. The growth rate is faster and steep at first, and 

then slows down. Using the Bayesian prediction model, the maximum growth of 18.53 percent 

happens while the v/c ratio is between 0.20 and 0.25. In contrast, using the most-frequent 

method, the maximum growth of 12.53 percent happens while the v/c ratio is between 0.75 and 

0.80. The growth-pattern trends after v/c= 0.80 are similar for both the Bayesian and simple 

statistical mean methods. The most frequent method indicates that the growth rate is increasing 

until the v/c ratio reaches 0.80, and then, the growth rate decreases. The Bayesian methods 

indicate that the growth rate is heavily fluctuating until the v/c ratio is 0.35; immediately after the 

v/c ratio is 0.35, the growth rate decreases.  
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Figure 59. Change for the Growth Percentage in the S-Curve 

8.2. Logistic Model Parameters’ Estimation 

To fit this type of system, a cumulative, logistic growth modeling that used the proposed 

method, as described in Chapter 3, was applied. The first aspect of the logistic function was to 

produce a system so that it could capture the system’s natural, cumulative growth rate of growth. 

The second aspect of the logistic function was to make a system such that the growth rate 

follows the system’s capacity. Using the simple logistic method and Loglet Lab software, three 

parameters were approximated: 1) k is the curve’s growth rate; 2) l is the saturated maximum 

capacity that a given system can sustain; and 3) xo is a location parameter.  

The fitted model showed a 43.34 percent correlation with the observed data. The 

cumulative fitted models are shown in Figures 60-62. The results showed that the expected value 

of the saturation parameter was 16 (t/to) with a 95 percent confidence interval of (15.3, 16.4). 

-5

0

5

10

15

20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

G
ro

w
th

 P
er

ce
n
ta

g
e

v/c

Bayesian Observed



 

159 

 

These parameters confidence interval were observed based on Bootstrap random sampling with 

replacement. The second parameter’s growth time was 11.4 with a 95 percent confidence interval 

(9.6, 12.9), indicating that the characteristic growth of the function would lie between 9.6 and 

12.9. The third parameter midpoint, or location parameter, was 8, which was equivalent to the v/c 

ratio at 0.45, indicating that the inflation point observed at v/c equals to 0.45. At the 95 percent 

confidence interval, the mid-point would lie when the v/c ratio was from 0.43 to 0.475.  

 

Figure 60. Saturation Parameters at 95 percent Confidence Interval  
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Figure 61. Growth Time Parameters at 95 Percent Confidence Interval 

 

 

Figure 62. Midpoint Parameter at 95 Percent Confidence Interval  
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8.3. Validations of Proposed Model 

The cumulative-growth function was fed back into the system to compute the t/to with 

respect to the v/c ratio. Figure 63 shows how the predicted model was fitted with the observed 

conditions. The proposed model generated an R-squared value of 41.69 percent, indicating that 

the proposed model can explain approximately 41.69 percent of the variation. Validation of the 

proposed model with the modified BPR, Spiess Conical function, or modified Davidson model 

was performed.  

 

Figure 63. Predicted Value for the Different Fitted Models 

The proposed model shows a better approximation for this case-study area. Existing 

models generate a very low R-square value, less than 7 percent in every case. Therefore, based 

on this case-study area, it might be inferred that the proposed, integrated Bayesian and logistic 

growth models performed better in t/to predictions. 
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8.4. Sensitivity of Logistic Parameters 

The three parameters’ sensitivity was simulated. Each parameter’s sensitivity was 

measured by holding the remaining parameters constant. The results showed that the first 

parameter (saturation parameter) was sensitive, i.e., t/to higher with an increase for this 

parameter. Visualization of the results is presented in Figures 64-66. The simulation was done 

for parameter values of 5, 10, 50, 100, and 150. When the saturation parameter was 5, then the 

corresponding simulation results were presented by the Fitted5 line. The Fitted1 line illustrated 

the results obtained by the logistic function for the case-study area or the proposed model. For 

example, if the saturation parameter was 150 when holding the other two parameters constant, 

then the t/to would be 16 times higher than the free-flow condition.  

 

Figure 64. Saturation Parameter Sensitivity 
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A similar analysis was performed for the other two parameters. The model was not very 

sensitive with increased midpoint parameter. However, above a midpoint value of 40, which 

indicated an equivalent v/c ratio at or higher than 2.05, was straight line. In this case, the 

observed condition did not have sufficient data to justify this case, and practically, observation 

with the v/c ratio equal to or higher than 2.05 was impossible. Similarly, the growth-rate 

parameter was not highly sensitive compared to the saturation parameters.  

 

Figure 65. Midpoint Parameter Sensitivity 
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Figure 66. Growth Time Parameter Sensitivity 
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9. CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes and describes the research conclusions, the research’s 

significance and contributions, recommendations for the transportation industry, 

recommendations for further study, and research limitations.  

9.1. Summary of Virtual Sensor Method and Crowdsourcing 

The VSM and crowdsource applications using OpenStreetMap services for smaller to 

heavier congested place in different State in the United States was tested. The results showed that 

this method is not suitable to achieve the research goals. In addition to this, NPMRDS travel time 

data was investigated for the Fargo-Moorhead Metropolitan area in the state of North Dakota and 

Minnesota. Validation using NPMRDS and VSM data with smartphone and test vehicle was 

conducted. But results showed that NPMRDS is very noisy. Since it’s a new program through 

FHWA, this data source has never been evaluated comprehensively about the usability of this 

source for this purpose. Then Florida DOT’s STEWARD programs concurrent data which 

includes traffic counts and travel time was utilized. But data was not available for consecutive 

years, which was required for this study. FDOT’s Sample size was not sufficient enough to 

conduct this research as well. 

Later, concurrent data in Chicago through (TravelMidWest program) was tested. Suitable 

format of data was not available. Then the data was collected from Mid Region of Council of 

Governments in New Mexico. One of the problem with this data is that sample size was not 

sufficient enough. Extracting data was tedious and not a suitable method to use this purpose. 

Subsequently, numerous efforts was made to collect concurrent data.  

Finally, collecting concurrent data through CalTrans PEMS program was performed for 

this research. The case study area for this research included Los Angeles in California.  
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This research investigated the proximity of OpenStreetMap Services to collect the real-

time or near-real-time travel time. The study validated the methodology against the NPMRDS 

datasets which are probe-vehicle information programed by the Federal Highway 

Administration.  

Travel-time data using OpenStreetMap services indicated a great potential for the 

transportation industry. This study suggested that the crowdsource travel time through 

OpenStreetMap was significantly different than the real-time or near-time travel time. The 

reason for these significant difference might be the OpenStreetMap services’ update frequency. 

However, it can be inferred that OpenStreetMap had the ability to replicate the observed trends 

in a corridor-level analysis.  

The research’s outcomes and developed tools will enrich the transportation industry’s 

national transportation issues, contribute to the literature’s needs, provide support for the national 

demand mandated by the Federal 21st Century Act Moving Ahead for Progress (MAP) 21. The 

smaller- and medium-size transportation agencies with vivid resource constraints might get 

substantial help when using OpenStreetMap.  

Based on the findings and results, OpenStreetMap could be recommended as an 

alternative choice for the travel-time data-collection techniques, especially for agencies with 

resource constraints. Link, corridor, or O-D analysis can be performed very well with this 

method. There is a strong, potential opportunity to apply crowdsourcing technology, which needs 

due consideration by the engineers, policy makers, planners, researchers, practitioners, and the 

appropriate government or business entities, in the transportation field.  
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9.2. Summary of Location-Enabled Smartphone Applications 

Travel-time data using web-mapping services indicated great potential for the 

transportation industry. This research investigated the proximity of replicating the real-time or 

near-real-time travel time by utilizing OpenStreetMap services. This study validated the 

proximity using a GPS-enabled smartphone and a test vehicle. During the research period, in 

addition to investigating the manually collected travel-time data with web-mapping service, the 

research investigate the suitability of a free app that can be used to collect the travel time. This 

research developed a geoprocessing tool which can automatically store and process the GPX file 

in a database with a single workflow.  

The study revealed that collecting the travel time from web-mapping service had some 

issues. First, for the same origin and destination, the service may show different locations and 

direction shifting than the actual location. Therefore, a manual operation is needed to solve the 

problem. Second, sometimes, web service do not allow routing to start in the middle of the 

freeway. Because, the web router services forced us to select the closest facilities, such as land, 

parking, businesses, housing, etc. Data collection using a GPS-location-enabled smartphone 

illustrated some drawbacks for these methodologies. During the data collection, the GPS signal 

may be lost frequently. Data may show a noisy location and travel path. Sometimes, the app may 

not allow people to send or store the system’s GPX data. Even if someone follows a random 

vehicle selection, the results may still have bias issues. 

Regardless of each methodology’s drawbacks, the results provided some interesting 

findings. At a 95 percent confidence interval, the probability of significance was greater than 

0.05 for many cases, indicating that the travel time obtained with a web-mapping service may 

indicate the real-time or near-real-time travel time. This finding will be helpful, especially for 
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smaller- or medium-size agencies where the travel time does not vary much for stable traffic 

area. The study suggested that the travel time is not significantly different than the observed 

condition for the average daily or peak-hour travel time. The OpenStreetMap services are 

complementary in replicating observed daily and peak-hour travel time. The study suggested that 

the AM and PM peak hours did not vary significantly on the freeway of smaller- or medium-size 

agencies. The study suggested OpenStreetMap as a potential candidate for the evolving 

crowdsource technology.  

9.3. Summary of Capacity Estimation Methodology 

It was very challenging to determine the highway capacity using existing knowledge. 

From local experience, there might be a question or doubt among the stakeholders about the 

capacity value borrowed from similar region and function class, or nationally default parameters. 

Therefore, different procedures were considered to utilize the existing knowledge for capacity 

estimation. 

Literature review was performed about the highway capacity values from smaller to 

larger transportation agencies travel demand modeling documents. Several agencies has 

documented default capacity value. Some of the agencies has adopted different factors and 

formulas to calculate capacity. This knowledge-based literature review indicated that there are 

remarkable anomaly in capacity value utilization from smaller to larger agencies. Therefore, later 

an investigation with capacity enhancement was performed, which is out of scope of this 

dissertation. Based on 18 smaller to larger transportation agencies specially MPOs, a combined 

knowledge based system with incorporating HCM 2010 was proposed. This method incorporated 

several factors to be considered for capacity value. However, from local expertise and 

discussion, this method would not be suitable especially for smaller/medium size agencies 
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because of the data unavailability. The definition of smaller to larger size agencies can be found 

in national co-operative highway research program (NCHRP) 716 report (TRB, 2012). 

Therefore, the enhanced method was further narrowed down by limiting influential factors which 

can be easily observed in online by the transportation agencies. But using this method, validation 

was challenging for capacity value. One of the biggest concern was that the collector road 

capacity value was less than the local road. The reason was the unavailability of capacity 

influential factors. Furthermore, simulation using varied softwares such as Synchro and VISSIM 

was performed for different classification of highway with 21 types of intersections based on 

number of lanes. Left-turn and right turn lane capacity was simulated using Synchro. This 

simulated results were further modeled to develop BPR speed-flow curve and find the capacity 

value. But one of the biggest problem with the simulation results was the shockwave of the 

traffic flow. It was evident that there were several reasons for not to using any existing capacity 

value. 

Therefore, this research proposed a new methodology for the capacity estimation. This 

dissertation developed a new traffic-flow prediction model with an integrated approach as well 

as knowledge about the non-linear logistic growth and quantile-regression theorems. Later, this 

study included guidelines or framework to approximate the capacity from the observed flow 

characteristics. This dissertation established a new formal relationship between traffic flow and 

hour of a day. Later, the developed model provides guidelines estimating the steady-state 

capacity of freeway. Furthermore, the results were validated using several statistical measures 

and the existing capacity values from several public agencies.  

Subjectivity for a region’s capacity estimation is very common. This study should 

eliminate the subjectivity of the freeway’s practical-capacity estimation. Even though this study 
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suggests tolerance values for capacity estimation, the proposed model works in such a way that a 

better, stable region for the flow characteristics can be observed in a more advanced way.  

Due to resource limitations, this research was not compared to the existing models, which 

could be considered as grounds for further research. It might be concluded that the model was 

advanced, strong, robust, and capable of replicating the natural trends of the traffic-flow 

characteristics for any condition. At the stable region of traffic flow, the proposed model 

converged to the maximum mean-hourly traffic-flow rate. Therefore, in future studies, the 

logistic growth model’s chaotic behavior could be considered, which might improve the 

proposed methodology.  

9.4. Summary of Free-Flow Speed-Estimation Methodology 

This Chapter investigated and reported various deterministic, speed-density traffic-flow 

characteristic models. This study also included multi-regime and single-regime models. The 

study proposed and modified the existing, deterministic speed-density model. It incorporated 

LOS A in a FFS computation and speed prediction. Furthermore, a detailed investigation with 

simulated quantile characteristics and FFS sensitivity was also included. This study concluded 

that FFS estimation based on the speed-density model should incorporate the LOS and quantile 

function. The research also suggested the multi-regime model as the better one, especially in 

congested portions, for predicting speed depending on the density. 

9.5. Summary of Bayesian Prediction  

In Chapter 7, how the stochasticity of the traffic-flow characteristics are incorporated has 

been demonstrated. Later, using the historical data and PERT, prior knowledge about the t/to 

condition’s v/c ratio was established. PERT was capable to represents the non-traditional 

characteristics of traffic flow.  Furthermore, likelihood and posterior, its parameters estimates 
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significantly capture the existing condition and demonstrated that strictly increasing function 

should not be considered in travel time delay functions.  

9.6. Summary of Logistic Growth Modeling 

Literature review showed that several issues with the existing t/to functions. First, existing 

methods that are in practice are always strictly increasing functions. This research proposed a 

new model, which can replicate the natural trends of the t/to behavior. 

Second, some of the models are linear in nature. The proposed model are non-linear and 

approximate the stochasticity of the t/to. Statistically, heavy congested place like Los Angeles 

cannot be well understood by the linear model. Therefore, considering the non-linearity issues, 

the proposed model would be considerably a better model instead of linear model.  

Third, some models have issues when traffic volume is above capacity respectively. 

Therefore, the proposed model is a single regime, which does not have this issues.  

Fourth, some models are very sensitive to the increase of its parameter. In the contrary, 

the proposed model parameters are not so sensitive. In a case where saturation parameter value is 

150, then t/to ratio could be less than 16. In reality, such a high value of saturation parameter 

might not be possible although study area’s maximum delay ratio was observed approximately 

22.  

Fifth, there are binding constraint issues with different models. The proposed model 

showed that the binding constraint should not be consider while utilizing any model.  

Sixth, the existing models, which produce scatter results. Study area cannot be well 

explained by existing model, which generates very low R-square value of less than seven 

percent. On the contrary, this model generates around 42 percent R-square value. On the 
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contrary, the proposed model was 35 percent better for performing accurate predictions in 

compared to the existing methods. 

Finally, this research incorporated better approximated steady-state capacity value and 

FFS value. In this way, the subjectivity of capacity selection and undefined FFS selection in 

practice can be eliminated.  

 In future studies, a better methodology might be considered to improve the coefficient of 

the determinations. However, this study incorporated the stochasticity for the t/to function by 

integrating the Bayesian and logistic methods. The results showed that the proposed model was 

considerably a good candidate for t/to predictions. The integrated model showed better in delay 

prediction than a single model using the overall data. It can be suggest that further improvement 

in stochasticity of t/to functions is necessary. Because this study suggested that the travel-time 

delay was very unlikely and uncertain, it was very difficult to predict precisely. This research 

moderately improved the travel-time delay functions; moreover, a chaos study about the 

stochastic uncertainty of this modeling error might be formulated and investigated with further 

study.  

9.7. Significances and Contributions 

There are certain contributions and significance for this study based on two perspectives: 

1) modeling perspective, and 2) data-collection perspective. First, significance and contribution 

on the modeling perspective are discussed. Second, significance and contributions with the data-

collection efforts are included.  

The research’s unique contribution was that it proposed a new, stochastic approximation 

for the freeway travel-time congestion function based on knowledge borrowed from logistic 

growth mapping’s market-adoption curve. This research provided a new scientific methodology 
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and theoretical foundation for the t/to prediction. This study developed an integrated approach to 

predict the travel time with Bayesian statistics and logistic growth mapping. The proposed 

methods were considerably a good candidates for t/to estimations. This method can be used to 

estimate the impact of travel time to the travel demand modeling and transportation planning and 

operation. Incorporating methods that can be used to verify how well models perform when 

forecasting future traffic in metropolitan TDM processes will help improve the TDMs.  

This study outperformed the traditional, strictly increasing functions’ (theoretical aspect) 

consideration for t/to predictions. A natural, multi-peak growth included delay rises as well as 

falls with respect to the v/c ratio and was been incorporated with delay predictions. The 

probabilistic method was incorporated to remove partially the random error generated by the 

existing model.  

One of the question is whether benefits worth the cost of this modeling or not. This 

proposed methodologies and models are computationally expensive and heavy resource 

intensive. However, in a heavy congested place, t/to are stochastic and uncertain. Existing models 

showed incapable of replicating this stochastic and uncertain nature of t/to prediction. The 

proposed method generates 35 percent better results than modified BPR and Spiess model. In 

addition to this, the proposed model overcome several issues, which has been discussed in 

Chapter 1. Therefore, considering the accurate and better results, the proposed methodologies 

and models benefits worth the costs. 

This study revisited the assumptions of forcedly fitting the curve by constraining the 

travel-time function at zero volume or the FFS and volume at ultimate capacity. This study also 

supported revising the binding constraint at the ultimate capacity and FFS.  
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This study proposed a new, robust and stable, capacity-estimations method that can 

eliminate the capacity estimation’s subjectivity. Investigation of different speed-density models 

by incorporating the LOS in speed density, modified the existing methods, compute FFS, and 

investigate sensitivity of FFS were completed. The capacity and FFS input parameters for 

developing the t/to function are undefined, subjective, and biased. Therefore, a formal procedure 

was formulated to develop a delay model. The outcomes for these two items were unique and 

should address quantile-investigation scenarios, a new area for the transportation industry.  

For the data-collection efforts, this study investigated different technologies, such as 

crowdsourcing, VSM, web applications, smartphone applications, test vehicles, and NPMRDS. 

The study also presented nationwide data needs for the t/to function’s development. Major 

contributions for data-collection efforts were extending knowledge about the VSM to collect 

travel-time data from crowdsource services. This study developed a web app, several tools, and 

an automated workflow to collect and analyze travel time; these items can useful in the 

transportation industry. The developed macro can be used for travel-time data collection and 

performance analysis of a transportation systems between unlimited number of origins and 

destinations (link level, route level, corridor level, O-D pair level, path level, and network level). 

Many critical scripts were written with R and SAS; the scripts can be utilized for data analysis 

and to develop a noise-cleaning algorithm from the data.  

9.8. Limitations and Future Study 

There were many challenges to overcome while conducting this study. The biggest 

challenge was to develop tools, macros, and writing codes as well as to collect data. The second 

challenge was to process data, including millions of records, overnight and to allocate a larger 

portion of the computer’s memory. The data-analysis process considered numerous scripts in the 



 

175 

 

R and SAS programming languages at different analysis stages. However, certain limitations and 

future directions were addressed in this study. 

This research only investigated the OpenStreetMap services. Other services can be 

utilized for further research. Therefore, this study welcomes other crowdsource services, such as 

Google, HERE, Bing, and MapQuest.  

Due to the resource limitations, the research’s capacity estimation was not compared to 

existing models, which could be considered grounds for further research. At the stable region of 

traffic flow, the proposed model converged to the maximum mean-hourly traffic-flow rate. In 

future studies, the growth model’s chaotic behavior could be considered, which might improve 

the proposed capacity-estimation methodology.  

This study included FFS estimation based on the existing speed-density models. For 

future study, a speed-density model can be developed, and the FFS sensitivity can be measured 

in a similar way.  

Prior-information inference includes the PERT techniques. Other techniques can be 

utilized for future study. The minimum and maximum observed delay were used as the 

optimistic and pessimistic delay respectively. Considering various methods may produce 

different results, further study might include other techniques.  

Validation methods for the Bayesian predictions are rare. Therefore, in future study, it is 

aimed to see if it is possible to find a validation testing methods for the Bayesian predictions of 

the t/to.  

Further improvements with the stochasticity of the t/to functions might be recommended. 

Because this study suggested that the t/to is random, non-linear, and stochastic in nature, the 

delay is very difficult to predict precisely. This research improved the t/to functions moderately 
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but better compared to the existing models. Moreover, a chaos study about the stochastic 

uncertainty of this modeling error might be formulated and investigated with further study.  

The model is sensitive to the maximum saturation parameter. Thus, chaos mapping might 

be necessary to incorporate this variation into the model. The future research intends to include 

several variable to evaluate the proposed model’s behavior. In a future research, it is aimed to see 

the effects of other variables, such as traffic incident, major events, construction detours, and 

weather, in this model.  

This method is computationally expensive. Therefore, it was aimed to develop 

software/tools that can be used by the transportation industry. Real-time ATIS and ATMS 

systems might be developed using this method which needs future consideration by the policy 

makers and decision-makers. Different highway-assignment algorithms might be investigated.  

Subsets of dataset interval was considered 0.05. Better model might be developed if the 

dataset interval was 0.01. Interval 0.01 was considered due to several reasons. First of all, it will 

be computationally expensive for this dissertation. Second, sample size becomes lower for each 

subset. It was expected to have at least 30 random samples, so that a normal distribution 

requirement might be checked. For example, see Figure A.1 and A.2. These Figures shows that if 

the subset were 0.01, then the sample size requirement for prior information using the year 2013 

data does not fulfill. However, in future study, it is aimed to see the difference of the results and 

model outcomes by comparing the subsets interval.  

This research mainly focused on freeway functional class of road network and congested 

place like Los Angeles in California. This method can be tested for different time periods, 

functional classes, or roadway elements. Since the proposed model was investigated utilizing one 

case study, the observed parameters should be different for different regions or other highway 
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functional class. In order to transfer or use the results and findings, the parameters needs to be 

calibrated before using it. Complete model needs to be tested before applying to other region or 

functional class. Therefore, transferability of this model outcomes would be considered for future 

depending on the suitability of data availability. 
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APPENDIX 

 

Figure A1. Number of Observation Rounded at v/c=0.01 

 

 

Figure A2. Number of Observation Rounded at v/c=0.05 
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