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ABSTRACT 

In recent years, bike-sharing programs have become more prevalent. Bicycle usage can 

be affected by different factors, such as nearby events, road closures, and on-campus traffic 

policies. The research presented here analyzed the effect of weather (average temperature, total 

daily precipitation, average wind speed, and weather outlook), day of the week, 

holiday/workday, month, and season on the use of the Great Rides Bike Share program in Fargo, 

North Dakota, U.S.A. This study also focused on predicting the 2016 rental demand for the Great 

Rides Bike Share program using Bayesian methods and decision trees. Further, the order of 

importance among the causal attributes was assessed. It was found that decision trees worked 

well to predict the 2016 demand. 
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1. INTRODUCTION 

Today, more than 500 cities in 49 countries host bike-sharing programs. Urban transport 

advisor Peter Midgley notes that “bike sharing has experienced the fastest growth of any mode of 

transport in the history of the planet” [1]. Modern bike-sharing systems have greatly reduced the 

theft and vandalism that hindered earlier programs by using easily identified specialty bicycles 

with unique parts that would have little value to a thief, by monitoring the cycles’ locations with 

radio frequency or GPS, and by requiring credit-card payment or smart-card-based membership 

to check out bikes. With most systems, after paying a daily, weekly, monthly, or annual 

membership fee, riders can pick up a bicycle that is locked to a well-marked bike rack or 

electronic docking station for a short ride (typically an hour or less) at no additional cost and can 

return it to any station in the system. Riding longer than the program’s specified amount of time 

generally incurs additional fees to maximize the number of available bikes. 

Bike-sharing programs are becoming popular for the following reasons [2]: 

• They decrease greenhouse gases and improve public health. 

• They increase transit use due to the new bike transit trips, the improved connectivity 

to other modes of transit because of the first-mile/last-mile solution that bike-sharing 

helps solve, and the decreased number of personal vehicle trips. 

Due to the increased popularity of these bike-sharing programs across the world, it is 

increasingly becoming important to analyze these systems from different perspectives. Figure 1 

shows the growth of these bike-sharing programs over the last decade. In this paper, I focus on 

predicting the 2016 bike-rental demand for the Great Rides Bike Share system based in Fargo, 

North Dakota. Fargo’s Great Rides is an 11-station, 101-bicycle seasonal system. In 2015, there 

were 143,000 trips and an average of 6-7 rides per bike per day, more usage per bike than in 
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New York; Washington, D.C.; or Paris [3]. The main reason for the program’s success is the 

integration with student IDs; the Great Rides seasonal pass is included as part of the mandatory 

student-activity fees at North Dakota State University (NDSU). 

 
Figure 1. Number of countries with bike-sharing programs [1]. 

The goal of this analysis is to predict the total demand for the Great Rides Bike Share in 

2016 and to compare the prediction with the actual demand for validation. This study involves 

finding a model which predicts the demand with a small error rate by combining the historical 

usage patterns with the related information about weather, workday/holiday, temperature, wind, 

precipitation, day of the week, season, and month. This study did not include details about each 

customer’s usage pattern or each docking station’s activity. This study helps program managers 

with system planning and with making informed decisions, such as when to perform 

maintenance. 



 

3 

Multiple tools, such as SQL Server, Excel, Weka, and SAS, were used during the study 

for data pre-processing, developing predictive models, and visualizing demand predictions with 

different models (Naïve Bayes, Bayesian Network, and C4.8). 

In this paper, the second chapter reviews the attempts made by other authors in order to 

predict the demand for bike-sharing programs. The third chapter explains the data preprocessing 

and methodology that are used to handle the problem, the reasoning for choosing the Bayesian 

and decision-tree algorithms to build models, the evaluation method used to calculate the 

accuracy of the aforementioned models, and the implementation in Weka. The fourth chapter 

shows the accuracies and predictions of the statistical (Bayesian)  logic-based (decision tree) 

models [4] as well as the relative importance of the demand prediction’s attributes. Finally, the 

fifth chapter concludes the study with the results and outlines the different directions where this 

work can be extended and improved. 
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2. LITERATURE REVIEW 

Almost all the studies were done used the Capital Bikeshare program’s data set which is 

available on the Kaggle website [5]. Capital Bikeshare is the name of bike-sharing program in 

Washington, D.C. This bike-share dataset has 12 features, and they are similar to the Fargo Great 

Rides’ features except for few, such as atemp (feels like temperature) and humidity. The Fargo 

Great Rides Bike Share dataset is explained, in detail, in the next chapter. Godavarthy et al. [6] 

have studied the operational aspect, travel behavior, and travel mode shift due to Great Rides 

Bike Share program in Fargo, North Dakota, and found that introduction of bike share program 

in the Fargo has increased the bicycling behavior for North Dakota State University (NDSU) 

students and Fargo residents. Further, significant number of NDSU students and Fargo residents 

are also willing to use bike share program during cold winters if available [7]. Several studies 

attempted to solve a similar problem, and this section briefly reviews those studies in comparison 

with the approach used for this paper.  

In the study done by M. Alhusseini, two approaches were used with the hourly data for 

the Capital Bikeshare program [8]. With the first approach, demand was modeled as a numeric 

attribute and was predicted using support vector machines. For the second approach, demand 

was modeled as a categorical attribute with five ordinal class labels; the demand was predicted 

using SoftMax regression and support vector machines. In my study, demand was modeled as a 

categorical attribute, which is like Alhusseini’s second approach except that there are only two 

class labels due to the limitations with feasible accuracy when using a small dataset. Here, 

Decision trees and Bayesian Classifiers are used for classification. Also, the demand in my study 

is calculated together for casual users and registered users, unlike in Alhusseini’s study. 
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In the study done by J. Du et al. [9], hourly data for the Capital Bikeshare were used to 

predict the hourly demand, expressed as the number of rides. An important part of their study 

was that they generated different data subsets for training from the altered original data and that 

they applied ensemble methods along with other regression models. They used stacking, 

generalized boosted models (GBM) and Random Forest for the ensemble methods as well as 

generalized linear models with elastic net regularization (GLMNet), principal component 

regression (PCR), support vector regression (SVR), and conditional inference trees (Ctree) for 

the regression models. In this paper, demand is predicted as a category due to the small size of 

the data set. Unavailability of hourly data is the reason for small data set, which increases the 

dataset size exponentially. 

In the study done by C. Lee et al., the feature set is modified such that every categorical 

attribute is binary (has two possible values). The rest of the attributes, such as numeric and 

categorical, with two possible values were used as is [10]. For categorical attributes with 

multiple possible values, a new feature was created for each possible label under it such that each 

label has a separate column. Lee et al. used a Poisson regression model, Neural Network, and 

Markov model to predict the number of rides. In this paper, demand was predicted as a 

categorical attribute, and daily data were used, unlike the hourly data in Lee’s study. The reason 

for doing this is the unavailability of reliable hourly data for attributes such as humidity, 

precipitation, and temperature to prepare a data set. This unavailability of hourly data resulted in 

a daily data set which is smaller (236 training instances). 

In the study done by W. Wang [11], the Citibike data set was used. Citibike is the bike-

share program in New York. Unlike other studies, he prepared a dataset. His data preparation 

involved collecting information from three sources: one for historical weather data, one for 
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individual ride information, and one for official holidays in New York. He used multiple Linear 

regression, Neural Networks, Decision trees, and Random forests to predict the system’s hourly 

demand. The main aspect of this study was that he focused on the “Random forest” ensemble 

method to improve accuracy. He created multiple trees by adding new independent attributes, 

improving the quality of each independent attribute, and transforming the dependent variable. In 

this paper, dataset preparation is done by collecting information from the national oceanic and 

atmospheric administration (NOAA) and the Great Rides Bike Share websites. Because the 

demand is predicted as a categorical attribute, important attributes for predicting demand were 

assessed. 
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3. METHODOLOGY 

This chapter presents the data preparation and data pre-processing that were done in order 

to apply different machine-learning schemes, selection of learning schemes, slection of 

evaluation methods for the models and Implementation. 

3.1. Data Preparation 

In this study, the data sets were prepared by aggregating information from two websites: 

Great Rides Bike Share and the NOAA [3, 12]. The dataset that is available on the Great Rides 

website is for the 2015 season. Each ride has the following attributes:  

• Checkout Station 

• Return Station 

• Checkout Date 

• Return Date 

• Checkout Time 

• Return Time 

Although these attributes do not reveal anything about the circumstances associated with 

any given ride, the attributes can be used to deduce the circumstances. Our goal was to predict 

the demand for a given day based on a set of attributes associated with that day. Therefore, rides 

were grouped by date. There were 236 unique dates in the 2015 bike-share data set. This 

grouping gives the number of rides that occurred for each date. This grouping was done by 

importing the raw data from the Great Rides website into SQL Server as a table. The following 

query (Figure 2) was used to group the rides according to the date. 
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Figure 2. SQL query for grouping the 2015 bike-share records by date. 

Data from the above query were used in combination with the following attributes for 

analysis. For each date in the query’s result set, the corresponding attributes were collected. 

Daily data from the NOAA website were used because there were no reliable hourly data 

available for precipitation, temperature, and wind speed. 

• Workday/Holiday: The reason for considering this attribute was that it helps to 

determine if people are using bike rides for their commute to work/school or for 

recreational purposes. Possible values for this column were workday and holiday. 

Workday was assigned to days from Monday through Friday, and Holiday was 

assigned to weekends and public holidays [13]. 

• Day of the week: This factor was useful when determining the use type. Also, it 

helped the model to capture usage variations during the weekdays. The main purpose 

of this attribute was to determine if class schedules had any effect on the demand. 

Possible values for this column were MWF (Monday, Wednesday, Friday), TR 

(Tuesday, Thursday) and SS (Saturday, Sunday). Each day was assigned to its 

corresponding group. 

• Season: This attribute helped to capture the effect of seasonality on bike usage. 

Possible values for this column were Winter, Spring, Summer, and Fall. Each day 

was assigned to its season according to the date. Seasonal information was based on 

information from United States Naval Observatory (USNO) website [14]. 
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• Month: This attribute gave more granularity for the season. Possible values for this 

column were 1 through 12. 

• Precipitation: People tended to skip a bike ride because of precipitation. This 

attribute helped to determine the extent to which precipitation affects the rider’s 

choice of riding or not. Historical precipitation data were collected from the NOAA 

website and entered manually. The NOAA website reported the total amount of 

precipitation for a given day. Each day was assigned a category according to the total 

amount of precipitation over the entire day (Table 1). Because the range of numeric 

values for precipitation was not large, discretization helped to better capture the 

change in the values [15]. 

Table 1. Precipitation. 

Label 
Precipitation in 

inches 

No-Rain 0 

Drizzle/light rain: 0.01-0.1 

Moderate: 0.1 to 1.0 

Heavy: >= 1 

Possible categorical values for precipitation 

• Average temperature: Temperature plays a major rule in the bike usage. Its 

relationship with bike usage is not linear. Choosing this attribute helped to determine 

people’s bike-usage preferences. Temperature data were collected from the NOAA 

website and entered manually [15]. The average temperature for the entire day was 

used for preparing the data. This attribute was discretized into 6 bins using 16.66 

percentiles in a SAS program to make it a categorical variable. Table 2 shows the 

intervals used for discretization. 
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Table 2. Average temperature. 

Label 

Temperature 

intervals in 

fahrenheit 

Bin1 21-44 

Bin2 44-54 

Bin3 54-61 

Bin4 61-67 

Bin5 67-73 

Bin6 73-85 

Possible categorical values for temperature 

• Average wind speed: Because wind makes it difficult to pedal a bike, we can use this 

attribute to help determine if people are really concerned about wind. Similar to 

temperature and precipitation, wind speed data were collected from the NOAA 

website [15]. This attribute was discretized into seven bins using the Beaufort Scale 

as shown in Table 3 [16]. 

Table 3. Average wind-speed categories. 

Average wind speed in mph Label 

>=32 High wind 

>=25 Strong breeze 

>=19 Fresh breeze 

>=13 Moderate breeze 

>=8 Gentle breeze 

>=4 Light breeze 

>=1 Light air 

< 1 Calm 

 

• Weather conditions: This attribute helped capture the effect of weather outlook on 

rider’s behavior. Data were collected from the NOAA website and organized in the 

Weather Conditions column. This column had a value from the list shown in Figure 3 

for each day, depending on the weather outlook [15]. In order to capture a bicyclist’s 
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perspective, these weather conditions were grouped according to Table 4. This 

categorization was based on assumptions about how a bicyclist perceives weather in 

relation to using a bicycle. These values were assigned to each day, depending on the 

day’s actual weather outlook. Table 4 shows the discretization in detail. 

 
Figure 3. Weather-column values [15]. 

Table 4. Weather conditions. 

Numbers Label 

1 (Fog) and 2 (Fog reducing visibility) Sub-optimal 

8 (Smoke) Manageable 

X (Tornado), 9 (Blowing snow), 7 (Dust storm), 6 (Drizzle), 

and 5 (Hail) 
Impossible 

3 (Thunder) and 4 (Ice pellets) Inclement 

Nothing optimal 

Possible categorical values for weather conditions 

• Number of rides: This numerical attribute had values ranging from 1 to 1924. 

Initially, the column was divided into 10 different classes from 1 (lowest) to 10 

(highest) using the 10th percentile and 3 different classes from 1 (lowest) to 3 

(highest) using the 33.3 percentile to predict with more granularity and to eliminate 

the class-imbalance problem. However, this grouping gave a maximum test accuracy 

of 33% and 67%, respectively. In an attempt to obtain better accuracy, the 
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classification labels were reduced to 2 labels (below average and above average); 

these labels allowed for a larger error margin in the model. The average number of 

rides for the 2015 season was 607. The number of rides column was separated into 

two categories using this average value. 

Table 5. Number of rides. 

Number of Rides Label 

Greater than 607 MorethanAverage 

Less than 607 LessthanAverage 

Possible categorical values for Number of rides 

Deducing these factors was the crux of the data preparation. These attributes were crucial 

to apply the machine learning techniques because they helped the model learn what conditions 

were associated with high, moderate, and low demands. There were literature studies which 

focused on generating the feature set from the base set of attributes by using constructor 

functions that employed a predefined set of arithmetic and logic operators [17]. It is one 

approach that can be employed to extend feature engineering.  

3.1.1. Discretization of Numerical Attributes 

In the data-preparation process, numerical attributes, both outcome and predictors, are 

discretized for the following reasons: 

• The number of examples is 236, which is very small for a machine-learning training data 

set [18]. Discretization helps to reduce the number of possible combinations across the 

attribute set, thus reducing the learning space. 

• The number of attributes in the training set is 8, which is closer to 6, the accepted number 

of attributes in the literature for calling a dataset small [18]. 

Table 6 illustrates the records from the prepared data. The complete data are provided in 

Appendix A. 
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Table 6. Training set for machine-learning algorithms. 

Workday/Holiday 
Day of the 

week 
Month Season Precipitation 

Average 

temperature 

Average 

wind speed 

Weather 

conditions 
Number of rides 

Holiday GroupSS 3 winter No Rain Group6 
Gentle 

breeze 
optimal LessthanAverage 

Workday GroupMWF 3 winter Heavy Rain Group6 Light breeze Sub-optimal LessthanAverage 

Workday GroupMWF 3 Spring Light Rain Group6 Fresh breeze Manageable LessthanAverage 

Holiday GroupSS 3 Spring 
Moderate 

Rain 
Group6 Fresh breeze Sub-optimal MorethanAverage 

Workday GroupMWF 4 Spring No Rain Group5 
Moderate 

breeze 
optimal MorethanAverage 

Holiday GroupSS 4 Spring No Rain Group6 Light breeze optimal LessthanAverage 

Workday GroupTR 4 Spring 
Moderate 

Rain 
Group6 

Gentle 

breeze 
Sub-optimal LessthanAverage 

Workday GroupMWF 4 Spring Heavy Rain Group6 
Gentle 

breeze 
Sub-optimal MorethanAverage 

Workday GroupMWF 4 Spring No Rain Group4 Fresh breeze optimal MorethanAverage 

Workday GroupTR 4 Spring Heavy Rain Group5 
Gentle 

breeze 
optimal MorethanAverage 

Only a few training examples are shown in the table. 
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Demand values for the bike-sharing system were expressed in two ways. For the first 

method, the number of rides was expressed as a proportion of the total number of rides possible 

per day for the bike-share system. The maximum possible utilization can be calculated using the 

following approach: 

• The average time for a single ride was calculated using all 143,354 records in the 

2015 bike-share data set. The result was 16 minutes. 

• The total time available for each bike was 60 minutes times 18 hours (6 AM to 

12AM) which equals 1080 minutes. 

• The total number of possible rides for each bike was the total available time divided 

by the average ride time, which equals 67 (1080/16). 

• The total number of rides possible for the bike-share program was the number of 

bikes in the system times the possible number of rides for a bike, 6,817 (67*101).  

With the second method, the number of rides was expressed as below or above average 

compared to the daily average of 607 rides in the 2015 season. 

This study used the second method for following reasons: 

• Demand prediction was handled as a classification problem. 

• All the attributes, including outcome, were categorical in the training examples. 

• Discriminant models built in this study predicted categories instead of actual numbers 

because the training examples were categorical. 

The first method is useful when the problem is handled as a regression problem, i.e., 

when the outcome column is numerical. 
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3.2. Modeling Algorithms’ Selection 

The data set was modeled as a multi-class classification problem (i.e., The outcome 

variable “Number of rides” has multiple class labels for values.) in the beginning, and different 

multi-class classification algorithms were used upfront in the analysis. Because the accuracy for 

those models was small, granularity was reduced by decreasing the number of class labels to 

two. 

We asserted that no learning algorithm can uniformly outperform other algorithms for all 

data sets. Therefore, our approach was to empirically calculate the accuracy of the candidate 

algorithms for the problem and to select the one that provides the highest accuracy [19]. The 

following algorithms were selected to build models with the 2015 bike-sharing dataset. The 

reasons for choosing them are explained below in the corresponding subheadings. 

• Naïve Bayes 

• Bayes Network 

• C4.8 

3.2.1. Simple Naïve Bayes 

Naïve Bayes is a common statistical learning algorithm that is used for classification. 

Like other statistical approaches, Naïve Bayes assumes an underlying probability model that 

provides the probability that an instance belongs in each class, rather than a simple classification 

[4]. A Simple Naïve Bayes classifier is easy to implement, and its accuracy tends to be good. It 

assumes that all the attributes are equally important and statistically independent [20]. It 

calculates the prior probabilities for each class-attribute value and updates the values by 

calculating the posterior probabilities based on the examples. The reasons for selecting the Naïve 

Bayes classifier are as follows: 



 

16 

• The Naïve Bayes method needs a relatively small data set when compared to neural 

networks and Support Vector Machines. Because the bike-share data set is small, the 

method is suitable for this scenario [4]. 

• The Naïve Bayes approach works well when all the causal/predictor attributes and the 

dependent attribute are categorical[4, 21], which is the case for this study. 

• The Naïve Bayes algorithm train very quickly because it  requires only a single pass 

of the data either to count the discrete variables’ frequencies or to compute the normal 

probability density function for continuous variables under normal assumptions[4]. 

• The Naïve Bayes method is transparent and can be easily grasped by users [4]. 

3.2.2. Bayesian Network 

A Bayesian Network is a graphical model for concisely representing probability 

relationships among a set of variables [22]. A Bayesian Network structure is a directed acyclic 

graph with nodes that are in one-to-one correspondence with the features. The arcs represent 

casual influences among the features while the lack of possible arcs encodes conditional 

independencies. Figure 4 shows a sample Bayesian Network. Each node could have one to many 

parents, depending on the relationship between the attributes. Moreover, a feature node is 

conditionally independent from its non-descendants given its parents. In Figure 4, X1 is 

conditionally independent from X2 given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of 

X1,X2,X3. 
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Figure 4. Structure of a Bayes network [22]. 

 

A Bayesian Network is constructed in two steps: 1) a function for evaluating a given 

network based on the data and 2) a method for searching through the space of possible networks. 

In this study, the K2 algorithm was used to construct the Bayesian Network. The Bayesian 

Network method was chosen for the following reasons: 

• A Bayesian Network is suitable for data sets with fewer attributes[23]. Because there are 

eight attributes, this method was suitable for this study. 

• A Bayesian Network works well when all the attributes in an instance are categorical and 

there are no missing values [23]. 

• A Bayesian Network can capture complex, conditional probability distributions for the 

class attribute better than the Naïve Bayes method, given the values of other casual 

attributes [22]. 

3.2.3. C4.8 Decision Tree 

Decision trees are one of the logic-based techniques used for classification. Decision 

trees try to find the attributes’ hierarchy based on the training data that show the importance of 

individual attributes when classifying a new instance [24]. 
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Decision trees classify instances by sorting them based on feature values. Each node in a 

decision tree represents an instance feature to classify, and each branch represents a value that 

the node can assume. Instances are classified by starting at the root node and are sorted based on 

their feature values. Figure 5 is an example of a decision tree. 

 

Figure 5. Decision tree [24]. 

 

Using the decision tree depicted in Figure 5 as an example, the instance (at1=a1, at2=b2, 

at3=a3, at4=b4) would sort to the nodes at1; at2; and, finally, at3, which would classify the 

instance as being positive (represented by the “Yes” values). The feature best divides the training 

data would be the root node of the tree. Constructing optimal binary decision trees is an NP-

complete problem. 

C4.8 is the flagship decision-tree algorithm to build trees; it is well known in the 

literature. It is the last open-source algorithm that was written by John Ross Quinlan [25]. All 



 

19 

later versions are proprietary. J48 is the name given to the implementation of C4.8 in the Weka 

data-mining tool. The following reasons are why it was chosen for this study. 

• Decision trees are more suitable for classification problems with small data sets [26]. 

Because the bike-share data set for this study is small, it is excellent for the problem. 

• Decision trees have a very good combination of error rate and speed when compared to 

other learning algorithms such as neural networks [27]. 

• Decision trees are a logic-based technique that supports a good understanding of the 

concept underlying the data (i.e., good transparency) [24]. 

• Logic-based methods, such as decision trees, tend to perform better when dealing with 

discrete/categorical variables [4]. 

3.3. Evaluation of the Methods 

This study used a tenfold, stratified cross-validation in Weka to evaluate the learned 

models’ accuracy [28]. The difference between a regular n-fold cross validation and a stratified 

cross validation is that each one of the n-parts will have correct representation for class labels 

like the original data set in terms of proportions. By default, Weka uses stratified cross-

validation. The following reasons are given for choosing stratified cross-validation over 

percentage split and regular n-fold cross-validation. 

• When we randomly partition data into two parts (2/3rd for training and 1/3 for 

testing) using a percentage split. There is a chance to obtain more examples from one 

class type in the training set, and it could lead to a prediction error because the model 

will not train on other class types. Also, there is a chance to have all instances of one 

season in the training set and another season in the testing set.  
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• When we use regular n-fold cross-validation, it evens out the seasonality. For 

example, if we go with a tenfold cross-validation for 236 examples (8 months) from 

the 2015 bike-share data set, there is a chance that the other nine training parts will 

have all the records from 7 months and only few records from one month because the 

process is random for the worst-case scenario. Choosing a stratified cross-validation 

will ensure that each part is identical to others in the class representation. 

• Another reason is that the data set is small, making it unusable for other model-

validation methods. 

3.4. Implementation 

Weka 3.8 a well-known data-mining tool that is used to build models [28]. The weka is a 

bird that is endemic to New Zealand. The Weka workbench contains a collection of visualization 

tools and algorithms for data analysis and predictive modeling, together with graphical user 

interfaces, for easy access to this functionality. Weka supports several standard data-mining 

tasks, more specifically data preprocessing, clustering, classification, regression, visualization, 

and feature selection. All the Weka techniques are predicated on the assumption that the data are 

available as a single flat file or relation, where each data point is described by a fixed number of 

attributes (normally numeric or nominal attributes, but some other attribute types are also 

supported). Weka provides access to SQL databases using Java Database Connectivity and can 

process the result returned by a database query. It is not capable of multi-relational data mining, 

but there is separate software to convert a collection of linked database tables into a single table 

that is suitable for processing using Weka. Another important area that is currently not covered 

by the algorithms included with the Weka distribution is sequence modeling. 
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3.4.1. Configuration Used for the Naïve Bayes Model 

The Weka tool has different classifiers, and they are grouped together depending upon 

their similarities. Naïve Bayes is available under the “bayes” group of classifiers in the Weka 

explorer. The Bayes group has all the classifiers that are based on Bayesian methods. Figure 6 

shows the configuration used with the Weka tool for the Naïve Bayes method. 

 

Figure 6. Naïve Bayes configuration panel. 

 

Table 7 explains the purpose of different fields in the Naïve Bayes configuration panel 

that was shown in Figure 4. 
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Table 7. Naïve Bayes configuration panel. 

Field Use 

batchSize It allows to choose the preferred number of 

instances to process if batch prediction is 

being performed. 

debug It outputs additional information to the 

console if it is set to true. By default, it is 

False. 

usekernelEstimator It is utilized when a kernel estimator has to be 

used for numerical attributes rather than a 

normal distribution. 

useSupervisedDiscretization This filter is used when numerical attributes 

have to be converted to nominal attributes. 

Fields in the Naïve Bayes configuration panel 

3.4.2. Configuration Used for the Bayesian Network Model 

Similar to Naïve Bayes, the Bayesian Network is available the “bayes” group of 

classifiers in Weka because it was based on probabilities. Figure 7 shows the configuration used 

for the Bayesian Network in the Weka tool. 
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Figure 7. Bayesian network configuration panel. 

 

Table 8 explains the purpose of the different fields for the Bayesian network 

configuration panel that is shown in Figure 5. 
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Table 8. Bayesian network configuration panel. 

Fields in the Bayesian network configuration panel 

3.4.3. Configuration Used for the C4.8/J48 Model 

J48 is the Weka name for algorithm C4.8. It is available under the “trees” group. Figure 8 

shows the Weka configuration used for J48. Most fields are left to have the default values 

because they are associated with the C4.8 algorithm. 

Field Use 

batchSize It allows to choose the preferred number of 

instances to process if a batch prediction is 

being performed. 

debug It outputs additional information to the 

console if it is set to true. By default, it is 

False. 

estimator The SimpleEstimator is used for 

approximating the conditional probability 

tables of a Bayes network once the structure 

is learned. 

searchAlgorithm This Bayes network learning algorithm uses a 

hill-climbing algorithm that is restricted by an 

order on the variables. 
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Figure 8. C4.8/J48 configuration panel. 

 

Table 9 explains the purpose of different fields in the J48 configuration panel that was 

shown in Figure 6. 



 

26 

Table 9. C4.8 configuration panel. 

Fields in the C4.8 configuration panel 

  

Field Use 

batchSize It allows to choose the preferred number of 

instances to process if a batch prediction is 

being performed. 

binarySplits It allows the use of binary splits on nominal 

attributes when building the trees. 

Collapse tree It allows removing the parts that do not 

reduce the training error. 

Confidence factor It is the amount of factor used for pruning. 

minNumObj Number of instances per leaf 

Unpruned It allows for pruning of the tree being built. 
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4. RESULTS 

This chapter discusses, in detail, the accuracies of the different candidate models that 

were selected to capture the concept underlying the 2015 Great Rides Bike Share data set and to 

predict bike-rental demand for the 2016 bike-sharing season using these models. The chapter 

also covers the order of importance among the attributes that were used for predicting the 

demand with decision trees. 

4.1. Accuracy of Models 

Tenfold stratified cross-validation was used to calculate the models’ accuracy. The 

following subheadings detail the confusion matrices and other metrics that corresponding to each 

model discussed in the Methodology chapter. 

4.1.1. Naïve Bayes 

The accuracy of this model on the 2015 Great Rides Bike Share data set (the training set) 

was 76.69% {(126+55/236)*100} using the confusion matrix presented in Table 10. Of the 145 

less-than-average demand days, 127 days were correctly predicted by this model, and of the 91 

more-than-average demand days, 55 days were correctly predicted by the model. The accuracy 

for the model was calculated by using the diagonal elements in Table 10 because they represent 

the correct predictions.  

Table 10. Confusion matrix for Naïve Bayes 

 LessthanAverage MorethanAverage Total 

LessthanAverage 126 19 145 

MorethanAverage 36 55 91 

 

Table 11 shows the Naïve Bayes class-level accuracies using measures such as true 

positive rate, false positive rate, precision, recall, f-measure, area under ROC curves, and recall-

precision curves. The following list gives the meaning for each measure: 
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• True Positive Rate: This measure tells us about the proportion of positive instances 

that are classified correctly. An optimal classifier has this measure approaching one. 

• False Positive Rate: This measure tells us about the proportion of negative instances 

that are incorrectly classified as positives. 

• Precision: This measure tells us about the proportion of instances that are truly of a 

class among the total instances that are predicted as that class. 

• Recall: Like the true positive rate, this measure tells us about the proportion of 

instances that are classified as a given class divided by the actual total in that class. 

• F-measure: It is a combined measure for precision and recall. It is equal to 

2*recall*precision/(recall+precision). 

• ROC Curve: The larger the area under the curve, the better the model is. The ROC 

area represents the area under the curve, and an ideal classifier will have values 

approaching one. 

• PRC Curve: This curve is similar to lift charts and ROC curves. It is ideal to have 

this value close to one. 

 

Table 11. Detailed accuracy by class for Naïve Bayes 

Class TP 

Rate 

FP 

Rate 

Precision Recall F-

Measure 

ROC 

Area 

PRC 

Area 

LessthanAverage 0.869 0.396 0.778 0.869 0.821 0.781 0.816 

MorethanAverage 0.604 0.131 0.743 0.604 0.667 0.781 0.687 

 

4.1.2. Bayesian Network 

The accuracy for this model on the 2015 Great Rides Bike Share data set (training set) 

was 80.93% {(128+63/236)*100} using the confusion matrix presented in Table 12. Of the 145 

less-than-average demand days, 128 were predicted correctly by this model, and of the 91 more-
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than-average demand days, 63 were predicted correctly by model. The model’s accuracy was 

calculated by using the diagonal elements in Table 12 because they represent the correct 

predictions. 

Table 12. Confusion matrix for the Bayesian network 

 LessthanAverage MorethanAverage Total 

LessthanAverage 128 17 145 

MorethanAverage 28 63 91 

 

Table 13 shows the Bayes Network class-level accuracies using measures such as true 

positive rate, false positive rate, precision, recall, f-measure, area under the ROC curves, and 

recall-precision curves. 

Table 13. Detailed accuracy by class for the Bayesian network 

Class TP 

Rate 

FP 

Rate 

Precision Recall F-

Measure 

ROC 

Area 

PRC 

Area 

LessthanAverage 0.883 0.308 0.821 0.883 0.850 0.851 0.904 

MorethanAverage 0.692 0.117 0.788 0.692 0.737 0.851 0.750 

 

4.1.3. C4.8 Decision Tree 

This model’s accuracy with the 2015 Great Rides Bike Share data set (training set) was 

79.23% {(127+60/236)*100} using the confusion matrix presented in Table 14. Of the 145 less-

than-average demand days, 127 were predicted correctly by this model, and of the 91 more-than-

average demand days, 60 were predicted correctly by model. The model’s accuracy was 

calculated by using the diagonal elements in Table 14. 

Table 14. Confusion matrix for the C4.8 decision tree 

 LessthanAverage MorethanAverage Total 

LessthanAverage 127 18 145 

MorethanAverage 31 60 91 
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Table 15 shows the C4.8 decision-tree class-level accuracies using measures such as true 

positive rate, false positive rate, precision, recall, f-measure, area under the ROC curves, and 

recall-precision curves. 

Table 15. Detailed accuracy by class for the C4.8 decision tree 

Class TP 

Rate 

FP 

Rate 

Precision Recall F-

Measure 

ROC 

Area 

PRC 

Area 

LessthanAverage 0.876 0.341 0.804 0.876 0.838 0.785 0.798 

MorethanAverage 0.659 0.124 0.769 0.659 0.710 0.785 0.688 

 

4.2. Predicting the 2016 Bike-Rental Demand for the Great Rides Program 

To predict the demand on a given day accurately, the values for all the casual attributes 

need to be fed into the model. Not all the attributes used by the model can be deduced by the 

calendar date for a given day because the set of attributes has few based on daily weather. Thus, 

at the time of this study, the only possible way to obtain values for the weather-based attributes 

was with the assumption that weather during the 2016 bike-sharing season was going to be 

similar to the weather during the 2015 bike-sharing season. 

To access accuracy, the predictions made by these trained models were then compared 

with the actual rides that happened during the 2016 season. Because the predictions from these 

models were categorical (i.e., above average or below average) for a given day, the actual 

number of rides column for the 2016 bike-share data had to be discretized for comparison.  

Similar to the 2015 bike-sharing data set, number of rides for each day in the 2016 season 

was calculated by using the SQL statement shown in Figure 9 with the 2016 bike-sharing data 

that were available online [29]. Result set from this query shows the number of rides for every 

date in the season. 
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Figure 9. SQL query for grouping the 2016 bike-share records by date. 

Before comparison, the number of rides column in 2016 season was discretized using the 

average number of rides from the 2015 season: 607. The number of rides corresponding to every 

day in the 2016 season was compared with 607 and assigned a “LessthanAverage” label if they 

were less than 607 and a “GreaterthanAverage” label if they were greater than 607. 

Table 16 shows the prediction accuracies of different models for 2016 bike-sharing 

season, and subsequent pages have the visualizations that help to understanding each model’s 

predictions. The total number of operational days during the 2016 Great Rides season was 218. 

The accuracy for each model was calculated by dividing the number of days which were 

correctly predicted by total number of days in the season. 

Table 16. Prediction accuracies for the models 

Model Accuracy in percentage 

Naïve Bayes 70 

Bayes Network 72 

C4.8 73 

 

4.2.1. Visualization for the Naïve Bayes Prediction 

A needle plot was used to visualize the prediction errors. The graph in Figure 10was 

generated in a SAS program, and the code is provided as Appendix B. The graph has a time line 

on the x-axis, ranging from March 28, 2016, to October 31, 2016, and a class label on the y-axis. 

For a day on the x-axis, there is a bar either below the reference line or above the reference line. 

A bar is displayed below the reference line when the number of rides was below the daily 
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average of 607 during the 2015 season and above the reference line when the number of rides 

was above the daily average of 607 from the 2015 season. 

 
Figure 10. Naïve Bayes prediction. 

In Figure 10 the red lines correspond to the Naïve Bayes prediction, and the black lines 

correspond to the actual 2016 data. 

4.2.2. Visualization for the Bayes Network Prediction 

Similar to Naïve Bayes, a needle plot was used to show the differences between the class 

labels predicted by the Bayesian network and the actual class labels from the 2016 bike-share 

data. If a day has a more-than-average number of rides, a bar is on top of the reference line, and 

if a day has a less-than-average number of rides, there is a bar at the bottom. Ideally, for a model, 
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both the red and black lines should coincide across the time line. The SAS code for the graph in 

Figure 11 is provided as Appendix C. 

 

Figure 11. Bayesian network prediction. 

4.2.3. Visualization for the C4.8 Tree Prediction 

The graph in Figure 12 shows the prediction errors for the decision tree built by C4.8. 

This model has more accuracy when compared to other models. The SAS code for the graph is 

attached as Appendix D. 
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Figure 12. C4.8 decision-tree prediction. 

 

4.3. Order of Importance Among the Causal Attributes 

Because the decision tree that was built by the C4.8 algorithm has a higher accuracy for 

predicting demand, it was logical to use decision trees when determining the important attributes. 

To find the hierarchy among causal attributes, different trees were built by eliminating the 

attribute on root node in the original tree that was learned from the 2015 Great Rides data set. 

Figure 13 shows the original tree that was built using the C4.8 algorithm. It was used to 

deduce the important attributes on which the model was relying to predict the demand for a given 

day. From the tree in Figure 13 we can make following inferences: 
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• Month was at the top of the decision structure, meaning that the model relied heavily 

on the month while predicting the demand. Thus, month is the first important 

attribute. 

• The next attribute used by model was dependent upon the month. If month was 

greater than 9, the second attribute used by the model was weather conditions. If it 

was less than 5, the next attribute used by the model was temperature. In a way, this 

order translated to the season of the year. 
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Figure 13. C4.8 decision tree learned from the 2015 season data set. 
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The second tree was built by removing the month attribute from 2015 Great Rides data 

set. Figure 14 shows the tree that was learned by using the C4.8 algorithm. From Figure 14, we 

can make the following inferences: 

• While assessing the demand, the decision-tree model relied on the season attribute in 

the absence of month attribute. Thus, season was the second-most important attribute 

for the entire set of attributes. 

• The day’s average temperature was the next attribute on which the model relied. 

• The final attribute that model used was the weather outlook. 
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Figure 14. C4.8 decision tree learned from the 2015 season dataset without a month column. 
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The third tree was built by removing both the month and season attributes from 2015 

Great Rides data set to find the third important attribute. From Figure 15, we can make the 

following inferences: 

• The model primarily used average temperature in the absence of the month and season 

attributes while forecasting the demand. Thus, average temperature is the third-most 

important attribute for the set of attributes. 

• The next attribute used by model was dependent upon the average-temperature class 

label. If average temperature was in group 5, it used the weather outlook for prediction, 

and if it was in group 4, it used precipitation and average wind speed for prediction. 
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Figure 15. C4.8 decision tree learned from the 2015 season dataset without the month and season columns. 
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5. CONCLUSION 

The aim of this project was to forecast bike-rental demand of Fargo’s Great Rides 

program for the 2016 season. There are many factors that will affect bicycle users’ behavior, for 

example, an event at the Fargo Dome, a marathon near campus, road closures near campus, or a 

short-term policy related to on-campus traffic. Because it is impossible to consider all factors in 

one study, this project focused on the bike-share program’s daily demand prediction that was 

based on the available attributes for weather conditions (outlook), average temperature, average 

wind speed, total daily precipitation, workday/holiday, day of the week, month, and season. 

The decision-tree model built by J48 worked well to predict the demand for the 2016 

season, and the accuracy attained by this decision-tree structure was 73%. Accuracies for the 

Bayes Network and Naive Bayes were 72% and 70%, respectively. Therefore, we can conclude 

that decision trees capture the structural pattern in Great Rides Bike Share program better than 

other models. The order of importance among the causal attributes was month, season, average 

temperature, weather conditions, precipitation, and average wind speed. Different models were 

built with J48 to understand the order of importance among attributes. J48 tree used only six 

from the total set of attributes that were employed to predict demand. 

5.1. Future Work 

There are multiple ways to improve and extend the study. The following list provides 

some of the different directions in which the study could be extended.  

• Hourly weather data can be obtained from reliable sources for the 2015 and 2016 

bike-sharing season and combined to have a bigger training set which is granular 

enough to make hourly predictions. 
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• Station-level demand prediction can be done by incorporating station-specific 

attributes in the set of independent attributes with separate training sets for each 

station. 

• Attributes can be modeled to predict the demand between different origin-destination 

pairs that were created from different bike-docking stations. 

• Models based on neural networks and support vector machines (SVM) can be used to 

build a model from the data by keeping the features continuous/numerical. SVM and 

neural networks (sub-symbolic or numeric learning) perform better when dealing with 

continuous features and multiple dimensions [30, 31].  

• An ensemble of classifiers can be generated in the following ways, and their 

predictions can be combined using voting and weighted voting [32].  

o The bagging technique [33] and the boosting technique [34] can be used to 

create an ensemble of classifiers with a single learning method for 

achieving more accuracy. To do that, responsiveness to changes in the 

training data by the classifier is important [33]. 

o Different learning methods can be employed with the same training set in 

order to create an ensemble of classifiers.  

o An ensemble of classifiers can be created with a single learning method by 

using a set of feature subsets that are generated by using random selection. 

This technique is called the random subspace method [35]. 

• Another way to improve classification accuracy is to use hybrid techniques. For 

example, hybrid trees, such as the NBTree, contain the General Naïve Bayes 

classifier on the leaf nodes and regular, univariate splits on the internal nodes [36]. 
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APPENDIX A. 2015 GREAT RIDES TRAINING DATASET 
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Workday/

Holiday 

Day of the 

Week 

Month Season Precipitation Discretized 

Temperatur
e Bins 

Average Wind 

Speed 
Discretized 

Weather 

conditions 
discretized 

Number of 

Rides(Binary) 

Holiday GroupSS 3 winter No Rain Group6 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 3 winter No Rain Group6 Gentle breeze optimal LessthanAverage 

Workday GroupTR 3 winter No Rain Group6 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 3 winter No Rain Group6 Gentle breeze Manageable LessthanAverage 

Holiday GroupSS 3 winter No Rain Group6 Gentle breeze Sub-optimal LessthanAverage 

Holiday GroupSS 3 winter No Rain Group4 Moderate breeze optimal LessthanAverage 

Workday GroupMWF 3 winter Light Rain Group6 Moderate breeze optimal LessthanAverage 

Workday GroupTR 3 winter No Rain Group6 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 3 winter Heavy Rain Group6 Light breeze Sub-optimal LessthanAverage 

Workday GroupTR 3 winter Heavy Rain Group6 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 3 winter Heavy Rain Group6 Gentle breeze Manageable LessthanAverage 

Holiday GroupSS 3 Spring No Rain Group6 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 3 Spring Heavy Rain Group6 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 3 Spring Heavy Rain Group6 Moderate breeze optimal LessthanAverage 

Workday GroupTR 3 Spring Heavy Rain Group6 Fresh breeze Manageable LessthanAverage 

Workday GroupMWF 3 Spring Light Rain Group6 Fresh breeze Manageable LessthanAverage 

Workday GroupTR 3 Spring Heavy Rain Group6 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 3 Spring Heavy Rain Group6 Light breeze optimal LessthanAverage 

Holiday GroupSS 3 Spring Heavy Rain Group6 Fresh breeze optimal MorethanAverage 

Holiday GroupSS 3 Spring Moderate Rain Group6 Fresh breeze Sub-optimal MorethanAverage 

Workday GroupMWF 3 Spring No Rain Group6 Light breeze optimal MorethanAverage 

Workday GroupTR 3 Spring No Rain Group6 Light breeze optimal MorethanAverage 

Workday GroupMWF 4 Spring No Rain Group5 Moderate breeze optimal MorethanAverage 

Workday GroupTR 4 Spring No Rain Group6 Fresh breeze optimal LessthanAverage 

Workday GroupMWF 4 Spring No Rain Group6 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 4 Spring No Rain Group6 Light breeze optimal LessthanAverage 

Holiday GroupSS 4 Spring No Rain Group6 Moderate breeze optimal LessthanAverage 

Workday GroupMWF 4 Spring No Rain Group6 Moderate breeze optimal LessthanAverage 

Workday GroupTR 4 Spring Moderate Rain Group6 Gentle breeze Sub-optimal LessthanAverage 

Workday GroupMWF 4 Spring No Rain Group6 Gentle breeze optimal MorethanAverage 
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Weather 
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Workday GroupTR 4 Spring No Rain Group5 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 4 Spring Heavy Rain Group6 Gentle breeze Sub-optimal MorethanAverage 

Holiday GroupSS 4 Spring No Rain Group5 Moderate breeze Manageable MorethanAverage 

Holiday GroupSS 4 Spring No Rain Group5 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 4 Spring No Rain Group5 Moderate breeze optimal MorethanAverage 

Workday GroupTR 4 Spring No Rain Group5 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 4 Spring No Rain Group4 Fresh breeze optimal MorethanAverage 

Workday GroupTR 4 Spring Heavy Rain Group5 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 4 Spring No Rain Group5 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 4 Spring No Rain Group5 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 4 Spring Moderate Rain Group5 Moderate breeze Sub-optimal LessthanAverage 

Workday GroupMWF 4 Spring Light Rain Group6 Fresh breeze Sub-optimal LessthanAverage 

Workday GroupTR 4 Spring Heavy Rain Group6 Fresh breeze Sub-optimal LessthanAverage 

Workday GroupMWF 4 Spring No Rain Group6 Moderate breeze optimal MorethanAverage 

Workday GroupTR 4 Spring Light Rain Group6 Light breeze optimal MorethanAverage 

Workday GroupMWF 4 Spring Moderate Rain Group6 Moderate breeze optimal LessthanAverage 

Holiday GroupSS 4 Spring No Rain Group5 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 4 Spring No Rain Group5 Light breeze optimal MorethanAverage 

Workday GroupMWF 4 Spring Heavy Rain Group5 Gentle breeze optimal MorethanAverage 

Workday GroupTR 4 Spring Moderate Rain Group5 Gentle breeze Sub-optimal MorethanAverage 

Workday GroupMWF 4 Spring No Rain Group5 Light breeze optimal MorethanAverage 

Workday GroupTR 4 Spring Light Rain Group4 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 5 Spring Light Rain Group4 Light breeze Sub-optimal MorethanAverage 

Holiday GroupSS 5 Spring Light Rain Group3 Moderate breeze optimal MorethanAverage 

Holiday GroupSS 5 Spring No Rain Group4 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 5 Spring No Rain Group5 Light breeze optimal MorethanAverage 

Workday GroupTR 5 Spring No Rain Group4 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 5 Spring Moderate Rain Group4 Moderate breeze Manageable LessthanAverage 

Workday GroupTR 5 Spring Moderate Rain Group5 Moderate breeze Sub-optimal MorethanAverage 

Workday GroupMWF 5 Spring No Rain Group6 Moderate breeze optimal LessthanAverage 
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Weather 
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Holiday GroupSS 5 Spring No Rain Group6 Moderate breeze Manageable MorethanAverage 

Holiday GroupSS 5 Spring Moderate Rain Group6 Moderate breeze Sub-optimal LessthanAverage 

Workday GroupMWF 5 Spring Moderate Rain Group6 Fresh breeze Sub-optimal LessthanAverage 

Workday GroupTR 5 Spring Light Rain Group6 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 5 Spring Moderate Rain Group5 Moderate breeze Sub-optimal LessthanAverage 

Workday GroupTR 5 Spring Moderate Rain Group5 Moderate breeze Sub-optimal LessthanAverage 

Workday GroupMWF 5 Spring Light Rain Group5 Light breeze Sub-optimal LessthanAverage 

Holiday GroupSS 5 Spring No Rain Group4 Moderate breeze optimal LessthanAverage 

Holiday GroupSS 5 Spring Heavy Rain Group5 Moderate breeze Sub-optimal LessthanAverage 

Workday GroupMWF 5 Spring Moderate Rain Group6 Fresh breeze Sub-optimal LessthanAverage 

Workday GroupTR 5 Spring No Rain Group6 Light breeze manageable LessthanAverage 

Workday GroupMWF 5 Spring No Rain Group5 Light breeze optimal LessthanAverage 

Workday GroupTR 5 Spring No Rain Group5 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 5 Spring No Rain Group4 Light breeze optimal LessthanAverage 

Holiday GroupSS 5 Spring No Rain Group4 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 5 Spring No Rain Group4 Light breeze optimal LessthanAverage 

Holiday GroupMWF 5 Spring Moderate Rain Group4 Light breeze Sub-optimal LessthanAverage 

Workday GroupTR 5 Spring No Rain Group4 Light breeze Sub-optimal LessthanAverage 

Workday GroupMWF 5 Spring No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupTR 5 Spring Moderate Rain Group2 Gentle breeze Sub-optimal LessthanAverage 

Workday GroupMWF 5 Spring Moderate Rain Group5 Fresh breeze Sub-optimal LessthanAverage 

Holiday GroupSS 5 Spring No Rain Group6 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 5 Spring No Rain Group5 Gentle breeze Manageable LessthanAverage 

Workday GroupMWF 6 Spring No Rain Group4 Moderate breeze optimal LessthanAverage 

Workday GroupTR 6 Spring Heavy Rain Group3 Moderate breeze optimal LessthanAverage 

Workday GroupMWF 6 Spring No Rain Group4 Gentle breeze Manageable LessthanAverage 

Workday GroupTR 6 Spring No Rain Group3 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 6 Spring No Rain Group3 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 6 Spring Moderate Rain Group3 Gentle breeze Sub-optimal LessthanAverage 

Holiday GroupSS 6 Spring Heavy Rain Group3 Gentle breeze Sub-optimal LessthanAverage 
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Workday GroupMWF 6 Spring Light Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupTR 6 Spring Light Rain Group2 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 6 Spring No Rain Group4 Light breeze Manageable LessthanAverage 

Workday GroupTR 6 Spring No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupMWF 6 Spring No Rain Group3 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 6 Spring No Rain Group3 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 6 Spring Moderate Rain Group4 Gentle breeze Sub-optimal LessthanAverage 

Workday GroupMWF 6 Spring No Rain Group4 Gentle breeze optimal LessthanAverage 

Workday GroupTR 6 Spring Moderate Rain Group5 Light breeze Sub-optimal LessthanAverage 

Workday GroupMWF 6 Spring No Rain Group4 Light breeze optimal LessthanAverage 

Workday GroupTR 6 Spring Heavy Rain Group4 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 6 Spring Light Rain Group3 Moderate breeze Sub-optimal LessthanAverage 

Holiday GroupSS 6 Spring Moderate Rain Group3 Gentle breeze Sub-optimal LessthanAverage 

Holiday GroupSS 6 Summer Moderate Rain Group3 Light breeze Sub-optimal LessthanAverage 

Workday GroupMWF 6 Summer Moderate Rain Group3 Gentle breeze inclement LessthanAverage 

Workday GroupTR 6 Summer No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupMWF 6 Summer Moderate Rain Group3 Light breeze Sub-optimal LessthanAverage 

Workday GroupTR 6 Summer No Rain Group3 Light air Sub-optimal LessthanAverage 

Workday GroupMWF 6 Summer No Rain Group3 Light breeze Sub-optimal LessthanAverage 

Holiday GroupSS 6 Summer Light Rain Group2 Gentle breeze inclement LessthanAverage 

Holiday GroupSS 6 Summer No Rain Group3 Gentle breeze Manageable LessthanAverage 

Workday GroupMWF 6 Summer No Rain Group3 Gentle breeze Manageable LessthanAverage 

Workday GroupTR 6 Summer No Rain Group3 Light air Manageable LessthanAverage 

Workday GroupMWF 7 Summer No Rain Group3 Light breeze Sub-optimal LessthanAverage 

Workday GroupTR 7 Summer No Rain Group3 Gentle breeze optimal LessthanAverage 

Holiday GroupMWF 7 Summer No Rain Group2 Light breeze Manageable LessthanAverage 

Holiday GroupSS 7 Summer No Rain Group2 Gentle breeze Manageable LessthanAverage 

Holiday GroupSS 7 Summer No Rain Group2 Gentle breeze Manageable LessthanAverage 

Workday GroupMWF 7 Summer No Rain Group4 Moderate breeze Manageable LessthanAverage 

Workday GroupTR 7 Summer No Rain Group4 Light breeze optimal LessthanAverage 
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Weather 
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discretized 
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Workday GroupMWF 7 Summer Moderate Rain Group4 Gentle breeze Sub-optimal LessthanAverage 

Workday GroupTR 7 Summer No Rain Group3 Light breeze Manageable LessthanAverage 

Workday GroupMWF 7 Summer No Rain Group2 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 7 Summer No Rain Group2 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 7 Summer Heavy Rain Group2 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 7 Summer Light Rain Group2 Light breeze Sub-optimal LessthanAverage 

Workday GroupTR 7 Summer Heavy Rain Group2 Light breeze Sub-optimal LessthanAverage 

Workday GroupMWF 7 Summer Light Rain Group2 Light breeze optimal LessthanAverage 

Workday GroupTR 7 Summer Moderate Rain Group2 Light breeze Sub-optimal LessthanAverage 

Workday GroupMWF 7 Summer Moderate Rain Group2 Light breeze inclement LessthanAverage 

Holiday GroupSS 7 Summer No Rain Group3 Moderate breeze Sub-optimal LessthanAverage 

Holiday GroupSS 7 Summer No Rain Group2 Moderate breeze optimal LessthanAverage 

Workday GroupMWF 7 Summer No Rain Group3 Gentle breeze optimal LessthanAverage 

Workday GroupTR 7 Summer No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupMWF 7 Summer Moderate Rain Group2 Gentle breeze Sub-optimal LessthanAverage 

Workday GroupTR 7 Summer Light Rain Group2 Moderate breeze optimal LessthanAverage 

Workday GroupMWF 7 Summer Heavy Rain Group2 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 7 Summer Light Rain Group2 Gentle breeze Manageable LessthanAverage 

Holiday GroupSS 7 Summer No Rain Group2 Light breeze Manageable LessthanAverage 

Workday GroupMWF 7 Summer No Rain Group2 Gentle breeze optimal LessthanAverage 

Workday GroupTR 7 Summer Moderate Rain Group2 Fresh breeze Sub-optimal LessthanAverage 

Workday GroupMWF 7 Summer No Rain Group2 Fresh breeze optimal LessthanAverage 

Workday GroupTR 7 Summer No Rain Group3 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 7 Summer No Rain Group3 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 8 Summer No Rain Group2 Light breeze optimal LessthanAverage 

Holiday GroupSS 8 Summer Heavy Rain Group3 Gentle breeze Manageable LessthanAverage 

Workday GroupMWF 8 Summer No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupTR 8 Summer No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupMWF 8 Summer Heavy Rain Group3 Gentle breeze optimal LessthanAverage 

Workday GroupTR 8 Summer Light Rain Group3 Light breeze optimal LessthanAverage 
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Workday GroupMWF 8 Summer Moderate Rain Group2 Light breeze inclement LessthanAverage 

Holiday GroupSS 8 Summer Moderate Rain Group2 Light breeze Sub-optimal LessthanAverage 

Holiday GroupSS 8 Summer Heavy Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupMWF 8 Summer No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupTR 8 Summer No Rain Group3 Light breeze optimal LessthanAverage 

Workday GroupMWF 8 Summer No Rain Group2 Moderate breeze optimal LessthanAverage 

Workday GroupTR 8 Summer No Rain Group2 Light breeze optimal LessthanAverage 

Workday GroupMWF 8 Summer No Rain Group2 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 8 Summer Light Rain Group2 Moderate breeze Manageable LessthanAverage 

Holiday GroupSS 8 Summer Light Rain Group3 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 8 Summer No Rain Group4 Light air optimal LessthanAverage 

Workday GroupTR 8 Summer Moderate Rain Group4 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 8 Summer Light Rain Group4 Gentle breeze optimal LessthanAverage 

Workday GroupTR 8 Summer No Rain Group4 Light breeze optimal LessthanAverage 

Workday GroupMWF 8 Summer No Rain Group2 Moderate breeze optimal LessthanAverage 

Holiday GroupSS 8 Summer Moderate Rain Group3 Moderate breeze Manageable LessthanAverage 

Holiday GroupSS 8 Summer Light Rain Group4 Fresh breeze Sub-optimal MorethanAverage 

Workday GroupMWF 8 Summer No Rain Group4 Moderate breeze optimal MorethanAverage 

Workday GroupTR 8 Summer No Rain Group4 Light breeze optimal MorethanAverage 

Workday GroupMWF 8 Summer No Rain Group4 Light breeze optimal MorethanAverage 

Workday GroupTR 8 Summer No Rain Group3 Light breeze optimal MorethanAverage 

Workday GroupMWF 8 Summer No Rain Group2 Moderate breeze Sub-optimal MorethanAverage 

Holiday GroupSS 8 Summer No Rain Group2 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 8 Summer No Rain Group2 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 8 Summer No Rain Group3 Gentle breeze Manageable MorethanAverage 

Workday GroupTR 9 Summer No Rain Group2 Light breeze Sub-optimal MorethanAverage 

Workday GroupMWF 9 Summer No Rain Group2 Gentle breeze Sub-optimal MorethanAverage 

Workday GroupTR 9 Summer No Rain Group2 Moderate breeze Manageable MorethanAverage 

Workday GroupMWF 9 Summer Light Rain Group2 Gentle breeze Sub-optimal MorethanAverage 

Holiday GroupSS 9 Summer Moderate Rain Group2 Light breeze Sub-optimal LessthanAverage 
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Holiday GroupSS 9 Summer Moderate Rain Group3 Light breeze Sub-optimal MorethanAverage 

Holiday GroupMWF 9 Summer Heavy Rain Group4 Light breeze optimal MorethanAverage 

Workday GroupTR 9 Summer No Rain Group4 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 9 Summer Heavy Rain Group4 Light breeze optimal MorethanAverage 

Workday GroupTR 9 Summer No Rain Group5 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 9 Summer No Rain Group5 Light breeze optimal MorethanAverage 

Holiday GroupSS 9 Summer No Rain Group4 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 9 Summer No Rain Group3 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 9 Summer No Rain Group3 Gentle breeze optimal MorethanAverage 

Workday GroupTR 9 Summer No Rain Group2 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 9 Summer No Rain Group3 Gentle breeze optimal MorethanAverage 

Workday GroupTR 9 Summer Light Rain Group4 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 9 Summer Light Rain Group5 Light breeze optimal MorethanAverage 

Holiday GroupSS 9 Summer No Rain Group4 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 9 Summer No Rain Group3 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 9 Summer No Rain Group2 Moderate breeze optimal MorethanAverage 

Workday GroupTR 9 Summer Heavy Rain Group4 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 9 Fall Moderate Rain Group5 Light breeze Sub-optimal MorethanAverage 

Workday GroupTR 9 Fall No Rain Group3 Light air Manageable MorethanAverage 

Workday GroupMWF 9 Fall No Rain Group3 Gentle breeze Manageable MorethanAverage 

Holiday GroupSS 9 Fall No Rain Group2 Moderate breeze optimal MorethanAverage 

Holiday GroupSS 9 Fall No Rain Group3 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 9 Fall No Rain Group5 Gentle breeze optimal MorethanAverage 

Workday GroupTR 9 Fall No Rain Group5 Light breeze optimal MorethanAverage 

Workday GroupMWF 9 Fall No Rain Group4 Moderate breeze optimal MorethanAverage 

Workday GroupTR 10 Fall No Rain Group4 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 10 Fall No Rain Group5 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 10 Fall No Rain Group5 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 10 Fall Light Rain Group5 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 10 Fall No Rain Group4 Gentle breeze optimal MorethanAverage 
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discretized 
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Workday GroupTR 10 Fall No Rain Group5 Light breeze Manageable MorethanAverage 

Workday GroupMWF 10 Fall Light Rain Group5 Gentle breeze optimal MorethanAverage 

Workday GroupTR 10 Fall No Rain Group5 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 10 Fall No Rain Group5 Light breeze optimal MorethanAverage 

Holiday GroupSS 10 Fall No Rain Group3 Gentle breeze optimal MorethanAverage 

Holiday GroupSS 10 Fall Heavy Rain Group2 Gentle breeze Manageable MorethanAverage 

Holiday GroupMWF 10 Fall Light Rain Group5 Fresh breeze Sub-optimal MorethanAverage 

Workday GroupTR 10 Fall No Rain Group6 Light breeze optimal MorethanAverage 

Workday GroupMWF 10 Fall No Rain Group5 Gentle breeze optimal MorethanAverage 

Workday GroupTR 10 Fall No Rain Group6 Moderate breeze optimal MorethanAverage 

Workday GroupMWF 10 Fall No Rain Group6 Light breeze optimal MorethanAverage 

Holiday GroupSS 10 Fall No Rain Group6 Light air optimal LessthanAverage 

Holiday GroupSS 10 Fall No Rain Group5 Moderate breeze optimal LessthanAverage 

Workday GroupMWF 10 Fall No Rain Group4 Gentle breeze Manageable MorethanAverage 

Workday GroupTR 10 Fall No Rain Group4 Gentle breeze optimal MorethanAverage 

Workday GroupMWF 10 Fall No Rain Group5 Moderate breeze optimal MorethanAverage 

Workday GroupTR 10 Fall No Rain Group5 Light breeze optimal MorethanAverage 

Workday GroupMWF 10 Fall Moderate Rain Group5 Moderate breeze Sub-optimal LessthanAverage 

Holiday GroupSS 10 Fall No Rain Group5 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 10 Fall No Rain Group6 Light breeze Sub-optimal LessthanAverage 

Workday GroupMWF 10 Fall Heavy Rain Group6 Gentle breeze Manageable MorethanAverage 

Workday GroupTR 10 Fall Heavy Rain Group5 Moderate breeze Manageable MorethanAverage 

Workday GroupMWF 10 Fall Moderate Rain Group6 Fresh breeze impossible LessthanAverage 

Workday GroupTR 10 Fall No Rain Group6 Gentle breeze optimal LessthanAverage 

Workday GroupMWF 10 Fall No Rain Group6 Gentle breeze optimal LessthanAverage 

Holiday GroupSS 10 Fall Light Rain Group5 Fresh breeze Sub-optimal LessthanAverage 

Training data set. 
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APPENDIX B. SAS CODE FOR THE NAÏVE BAYES PREDICTION GRAPH 
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APPENDIX C. SAS CODE FOR THE BAYESIAN NETWORK PREDICTION GRAPH 
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APPENDIX D. SAS CODE FOR THE C4.8 PREDICTION GRAPH 

 



 

62 

 


