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ABSTRACT

Graphene is a new promising material with unique electrical, mechanical, optical and ther-

mal characteristics. The use of graphene in the design of an antenna and other electromagnetic

passive devices would be beneficial for miniaturization, efficient dynamic tuning, monolithic inte-

gration with graphene RF nano-electronics, and even transparency, mechanical flexibility, and reli-

ability. However, there are some challenges to fabricate and design an antenna with pure graphene

embedded in the layout. Here, an advanced study on the electrical and mechanical properties of

graphene-based conductive material (not pure graphene), and how this material can be utilized

in developing a first-ever graphene-based conformal antenna array for wireless communication sys-

tems has been done. More specifically, the important factors for antenna design, such as electrical

and mechanical properties, will be studied here to ensure an effective and efficient design. Next,

a graphene-based antenna array on a planar surface will be designed to validate the electrical and

mechanical properties, and finally the trade-off of the graphene-based antenna array on a confor-

mal surface is investigated. To mitigate the challenges of designing a graphene-based conformal

antenna array, proper care is needed to achieve the optimal performance of the antenna array

system. These new mechanisms of the graphene-based conformal antenna arrays will bring new

possibilities in conformal antenna usage and wearable antenna applications for the first time.
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1. INTRODUCTION

1.1. Background

Recently Graphene has attracted tremendous interest in different research areas because

of its unique electrical and mechanical properties [1]. These unique properties of graphene have

led to a plethora of applications such as the development of high-speed devices based on field

effect transistors and frequency multipliers [2]. However, the use of graphene in antennas has

been less investigated, though there is some interesting work on graphene-based antennas in higher

frequency band [3]. The capability of using conformal antennas opens up many applications such

as placement on: (1) vibrating surfaces, (2) the skin of an aircraft, (3) a high speed moving vehicle

and (4) wearable units (i.e., spacesuit) where a unique antenna is required [23, 4, 5]. In wireless

communications, conformal antenna arrays are gaining popularity due to their superior performance

and the ability to be implemented on complex geometries. Introducing a new graphene-based

conformal antenna array will be extremely beneficial as advantages of both graphene and conformal

antenna arrays can be utilized in the design. For the purpose of this research, the commercially

available flexible graphene-based conductive material shown in Figure 1.1 was used to develop a

redundancy mechanism for antenna and antenna array applications both on flat and conformal

surfaces.

The following sections define and briefly discusses the properties of antenna arrays and

conformal antennas. The discussion on these properties has laid the foundation for this research.

Previous work on graphene, antenna arrays and conformal antennas are also presented to under-

stand the background resources to conduct this research.

1.1.1. Graphene material, antenna arrays and conformal antennas

1.1.1.1. Pure Graphene Material

Graphene, the world’s first two-dimensional material, is 1 million times thinner than a

strand of hair, but 200 times stronger than steel [6]. The two physicists who discovered it in 2004,

Andre Geim and Konstantin Novoselov [1], each earned a Nobel Prize and knighthoods from the

Queen of England. Graphene is a single layer of carbon atoms arranged in a hexagon. It looks like

a honeycomb under a microscope, as shown in Figure 1.2. This unique structure is the secret to
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its incredible strength and is of interest for this research [6]. Because of its unique two-dimensional

structure, the graphene material exhibits exceptionally high crystal and electrical qualities. Over-

all, one-atom-thick fabric of carbon is uniquely combined so that it has many capabilities such as

extreme mechanical strength, exceptionally high electronic and thermal conductivities, imperme-

ability to gases, as well as many other attractive properties, all of which make it highly attractive

for numerous practical applications.

Figure 1.1. Commercially available flexible graphene-based conductive material.

Figure 1.2. Graphene: a single layer of carbon atoms arranged in a hexagon.
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1.1.1.2. Antenna Arrays

An antenna array is a set of individual antennas, used for transmitting and/or receiving

radio waves, whose individual currents maintain a specified amplitude and phase relationship. The

invention of the Yagi-Uda antenna array in 1926 opened up a new arena in array technology research

followed by the mechanically steered and phased arrays around the World War II era. The world

observed a paradigm shift in the design of antenna arrays by the invention of electronic phase

shifters. The two most commonly used techniques in designing low profile printed antenna arrays

are series-fed and parallel-fed. These feed techniques are shown in Figure 1.3 [7].

Figure 1.3. a) Microstrip series-fed antenna array. b) Microstrip parallel-fed antenna array.

In order to obtain directive characteristics in a radiation pattern, the antenna elements are

arranged in a certain geometrical and electrical configuration. One such configuration is shown in
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Figure 1.4 where the N antenna elements are arranged along the z-axis.

Figure 1.4. Far-field geometry of N-element linear array.

Let us assume that all elements have the same amplitudes and a progressive phase shift of

Φo. The array factor expression for this uniform linear array is given by [7]:

AF =

N
∑

n=1

ej(n−1)ψ (1.1)

4



and ψ is given by,

ψ = kd cosθ +Φo (1.2)

where θ is the angle from broadside, d is the inter-element spacing and Φo represents the progressive

phase shift. The normalized closed form array factor for a N-element linear array is given by:

AF =
1

N
× (

sinNψ2
sinψ2

). (1.3)

When the value of ψ is zero or ±2nπ, the array generates a broadside radiation pattern. Here, the

scan angle of a uniform linear array is given by [7]:

ScanAngle = sin−1(−
Φo
kd

). (1.4)

For series-fed antenna arrays, the spacing between array elements is uniform but excitation

amplitude distribution is not uniform. In this case, the normalized array factor for an even number

of array elements becomes [7]:

AFeven =

M
∑

n=1

an cos(
(2n − 1)

2
kd cos θ). (1.5)

And for odd numbers of array elements the normalized array factor is given by [7]:

AFodd =

M+1
∑

n=1

an cos((n − 1) kd cos θ) (1.6)

where an is the amplitude coefficient of the antenna array. An example of a microstrip patch

antenna array is shown in Figure 1.5 [7].

1.1.1.3. Conformal antennas

An antenna placed on a conformal or curved surface is called a conformal antenna. Modern

wireless communication systems are being required to operate in even more complicated environ-

ments. This is because these systems are being applied to problems that (I) involve surfaces that

change shape with time, (II) include wearable networks and/or (III) are subjected extreme envi-

ronmental temperature/pressure changes [8]. Because of the wireless nature of these systems, the
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Figure 1.5. A microstrip patch antenna array.

antenna is a major part of the design, and conformal antennas have the potential to overcome some

of the aforementioned difficulties. An example of a graphene-based conformal antenna is shown in

Figure 1.6.

1.1.2. Previous works on graphene-based antennas

The applications of the unique properties of graphene have become quite popular. There

are many of possible applications of graphene antennas but we have much more works to do to

develop them. An initial investigation of pure graphene patch antennas at microwave frequencies

was reported in [9] and later discussed in [10]. Moreover, the status and prospect of graphene was

discussed by its inventor A. K. Geim [11]. Advanced mechanical properties of graphene paper was

also explored in [12]. The use of graphene-based materials, having structural strength and high

electrical conductivity, has hence been increasing to fill this developmental gap. As pure graphene

is a carbon monolayer and we need sophisticated tools to work with pure graphene, we used 97%

carbon content graphene-based conductor (GBC) in this research. GBC is flexible, commercially

available, and provides good electrical conductivity [13]; therefore, it is considered in this research

to be a good candidate for conformal antenna applications. Furthermore, the use of GBC as an

alternative to copper for antenna designs on a conformal surface was initially explored in [14].
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Figure 1.6. An example of graphene-based conformal antenna

1.1.3. Previous works on antenna arrays

High directivity is achieved through the use of antenna arrays. In the early days linear arrays

were formed using cascaded microstrip half-wave resonators. Many different types of microstrip

arrays, developed in the 1950s, 1960s, and early 1970s, can be classified as the first generation of

antenna arrays. Four different independent solutions for lightweight and inexpensive arrays have

been referred to in previous works on antenna arrays: the monolithic microstrip array developed

by Munson [15, 16], the etched broadside and endfire arrays purposed by Fubini [17, 18], narrow

line radiators proposed by James and Wilson [19], and multi-layer arrays proposed by Collings

[20, 21, 22]. These arrays, having different bandwidths and radiation characteristics, provided a

solid foundation for further work in antenna array technology.

1.1.4. Previous works on conformal antennas

There are many applications where unique antenna placement is required. Examples in-

clude: the integration of an antenna on a vehicle or aircraft [23, 24, 25, 26, 27], circular arrays for

wider coverage than planar antennas [28, 29, 30], textile antennas for systems being integrated into

a wearable wireless network [31, 32, 33, 34] or unique composites for embedding the antenna into a
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structure for load-bearing purposes [35]. These conformal antennas that have been developed have

provided us with a solid foundation to understand the diverse applications of conformal antennas.

But copper conductors, widely used for such applications, commonly crack or break under itera-

tive bending events. Therefore it is essential that new designs and techniques be developed that

eliminate the problem of cracking conductors.

1.2. Current Work on Conformal Antenna Arrays and the Use of Graphene-based

Conductors

A broadband conformal phased array antenna on a spherical surface [36], conformal array

with high gain and low SLL [37], an autonomous self-adapting conformal array for cylindrical sur-

faces [38] and Bezier curves used to design self-adapting conformal phased-array antennas [39] were

presented in the respective cited works. Different techniques are utilized to design the conformal

array on different surfaces. Some work has been done for teraherz applications using graphene and

graphene stack [40, 41, 42, 43]. This research on the graphene-based conformal array was based

on all of the aforementioned work bringing together arrays, redundancy stratified conductors, and

graphene-based conductors for the first time.
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2. RESEARCH TASKS

Chapter 1 has illustrated that the study of graphene, antenna arrays, and conformal anten-

nas involves many areas of research. The information presented in this dissertation, while summary

of all the work conducted in the past four decades, also attests to a much larger scope for the sig-

nificant research to be conducted.

2.1. Properties of Interest and Research Questions

The conformal antenna array is gaining interest because of its diverse applications. From

the previous discussion, we know that graphene has unique properties. We have recounted the

previous work on graphene, antenna arrays and conformal antennas. We noted that copper is

currently the most common and widely used material in these antenna applications.

In this chapter, the concepts of graphene, antenna arrays and conformal antenans are pre-

sented. To introduce this research, we have to consider the 97% carbon content graphene-based

conductive materials to design the conformal antenna array with redundancy properties. Many

flexible substrates can be used to achieve the desired performance. Therefore, in this work, the

research combined the benefits of 97% carbon content graphene-based conductive materials and

the conformal antenna array. Thus this research focused on the following two questions.

� How can the electro-mechanical properties of the 97% carbon content graphene-based material

be beneficial in applied electro-magnetism?

� How can the unique properties of graphene-based materials be used to improve the perfor-

mance of conformal antennas? Or, what’s the trade-off of using graphene-based conducive

materials in conformal antenna applications?

2.2. Methodological Approach and Technical Objectives

This research is divided into three phases. The block diagram and the phases of the 97%

carbon content graphene-based conformal antenna array system are shown in Figure 2.1

� Phase I: This phase deals with the study of the electrical and mechanical properties of the

graphene-based conductive material, as well as with the fabrication challenges of the antenna

with graphene-based conductive material embedded into the design.
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Figure 2.1. Block diagram and the phases of the proposed graphene-based conformal antenna array
system.

� Phase II: In this phase, a graphene-based planar antenna array was designed and used to

validate the electrical and mechanical properties on a flat surface.

� Phase III: Finally, in this phase, we discuss a mechanism for designing a conformal antenna

array and trade-off of using graphene-based conductive materials for this purpose.

In summary, the development of a new graphene-based conformal antenna array the utilizes all the

advantages of graphene-based materials and conformal antennas, opens up a completely new area

of research.

10



3. DEVELOPMENT OF NEW MANUFACTURING

TECHNIQUES WITH 97% CARBON CONTENT

GRAPHENE-BASED CONDUCTIVE MATERIALS FOR

ANTENNA APPLICATIONS

For this work, the potential of using 97% carbon content graphene-based conductors that

are commercially available at Graphene Laboratories Inc. (part number: GRAPH-SHEET- 8×8-10)

[44] and much thicker than a single layer for printed antenna purposes was explored.

(a) (b)

37.6 mm

2
9

.1
 m

m

16.4 mm
conductive

epoxy

Figure 3.1. (a) Photograph of the commercially available flexible graphene-based conducting ma-
terial and (b) a photograph of the prototype (with dimensions) of the fabricated graphene-based
patch antenna.

3.1. The Manufacturing Process

Several steps are required to prepare the graphene-based conductor material in Figure 3.1(a)

for manufacturing of a conformal microstrip antenna. Initially, the temporary spray adhesive (Sulky

KK 2000 [45]) shown in Figure 3.3 is applied to the top surface of a 100 µm thick sheet of paper [46]

and bonded to the bottom surface of the graphene-based conducting material (Figure 3.2). Next,

the same spray adhesive is applied to the bottom surface of a 100-µm thick transparency film and

bonded to the top surface of the graphene-based conducting material (also shown in Figure 3.2).

As a result, the three layers are bonded together for manufacturing, giving the 3-layer structure
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shown in Figure 3.2. The 3-layer structure is then placed on the adhesive cutting mat shown in

Figure 3.3. The graphene-based conducting layer is now ready for cutting out the shape of the

microstrip patch. It should be noted that the three layers were pressed together by hand and the

temporary adhesive was cured at room temperature for 2 - 3 minutes before cutting. This allowed

for the separation of the three layers after the cutting process was completed. Finally, the layout

of the patch is defined in the software included with the micro-cutter, which is discussed at the end

of this section.

Bottom Paper 

layer

Graphene-based

conducting

material

Adhesive cutting mat

Transparency !lm layer

Top side with 

adhesive

Bottom side 

with adhesive

Figure 3.2. Photograph of the flexible graphene-based conductors placed in between different layers
to fabricate the antenna.

3-Layers bonded together 

with the spray adhesive

Spray adhesive

Adhesive 

cutting mat

Micro-cutting 

edge

Figure 3.3. Photograph of the commercial micro-cutter [47] and the temporary adhesive spray [45].
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Copper conductor

Graphene-based conductor

Figure 3.4. (top) Printed microstrip transmission line on a TMM4 substrate with a copper conduc-
tor and (bottom) printed microstrip transmission line on a TMM4 substrate with graphene-based
conductors.

3.2. Extracting the Conductivity of the 97% Carbon Content Graphene-based Mate-

rials and Validation

3.2.1. Microstrip transmission line prototypes

For this extraction, the two geometrically similar printed microstrip TLs shown in Figure

3.4 were designed and evaluated in a manner to determine the conductivity of the graphene-based

conductors. The top TL consisted of a printed copper conductor and the bottom TL had the copper

conductor removed and replaced by the graphene-based conductors material in Figure 3.1(a). The

SMA connectors were edge mounted, and wire glue conductive epoxy [48] (item number 0400) was

used to attach the center pin to the surface of the graphene-based conductors. The top TL had

0.5-oz copper, and the thickness of the graphene-based conductors was measured to be 25 µm.

Both TL prototypes have the same geometry (conductor width W = 3.0 mm and length L = 41.0

mm). The substrate is a 1.27 mm thick TMM4 material (εr = 4.5 and tan δ = 0.002), and both

prototypes have identical copper ground planes on the bottom side. By choosing two geometrically

similar designs, the attenuation constant of the graphene-based conductors could be determined in

a well-known environment. Finally, it should be mentioned that the prototype TL with the copper

conductor in Figure 3.4(top) was designed in ADS to have a characteristic impedance of Zo = 50

Ω and the graphene-based conductor was attached to the TMM4 substrate with double-sided tape.
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Figure 3.5. Simulated and measured |S11| values of the copper microstrip TL.

3.2.2. Conductivity extraction

First, the insertion loss introduced by the graphene-based conductors was demonstrated

by comparing the measured S-parameters of the prototypes in Figure 3.4. The results from these

measurements are shown in Figures 3.5 - 3.8. For both prototypes, the |S11| measurements in

Figures 3.5 and 3.7 show a -10 dB BW from 100 MHz to 4.0 GHz. Next, of particular interest is

the comparison between the |S21| values of the copper and graphene-based conductors TLs. The

measurements in Figure 3.6 show that |S21| < 0.5 dB for the copper TL and that |S21| < 1.0 dB

for the graphene-based TL. Using this additional 0.5 dB of loss over the band of interest, and the

known length and width of the TL, the attenuation constant was computed to be αc = 1.5 Np/m

[49]. Then using sheet resistance,

Rs = αcZoW (3.1)

and

Rs =
√

ωµ0/2σ, (3.2)

the conductivity was determined to be σ = 1.94 ×105 S/m.
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Figure 3.6. Simulated and measured |S21| values of the copper microstrip TL.

Next, using the conductivity extracted from analytical computations and measurements, the

graphene-based TL was modeled in ADS. The simulated results for both the copper and graphene-

based TLs are also shown in Figures 3.5 - 3.8. The simulation results in Figure 3.8 compute the

extra 0.5 dB of loss introduced by the graphene-based conductors; indicating a good model in ADS.

3.2.3. Microstrip patch antenna prototoypes

Two prototype microstrip patch antennas for operation at 2.57 GHz were designed (on

the same grounded 0.5 oz copper TMM4 substrate as the TLs) to further validate the extracted

conductivity of the graphene-based conductors. In a manner similar to the TLs, a prototype with a

copper conductor and a geometrically similar patch with graphene-based conductors was designed

in ADS, manufactured and tested. The prototype antennas are shown in Figure 3.9. Again, by

using similar geometries, the introduction of the graphene-based conductors into the design could

be examined. The main properties of interest for these experiments were the |S11| values and the

gain at 2.57 GHz. The simulated and measured |S11| values are shown in Figures 3.10 and 3.11

for the copper and graphene-based conductors conductors, respectively. Good agreement is shown

overall.
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Figure 3.7. Simulated and measured |S11| values of the graphene-based conductors microstrip TL.

Then, the gain of the prototype antenna with the graphene conductor was computed in ADS

and compared to the measured gain in the full anechoic chamber. The simulated gain was Gsim =

2.87 dBi and measured to be Gmeas = 2.5 dBi. A good comparison validated the graphene-based

conductor model in ADS.

3.3. Design and Evaluation of the Prototype Microstrip Patch Antenna

To develop the patch antenna in Figure 3.1, the conductive properties of the graphene-

based material [44] were determined by measuring the S-parameters of a known printed microstrip

transmission line that used the graphene-based conductors instead of copper. The conductivity was

determined to be σ = 1.94×105 S/m for a thickness of 25 µm. Next, this thickness and conductivity

were used in the commercial simulation software ADS [50] to determine the geometry of the patch

antenna shown in Figure 3.1(b). The simulated S-parameters are shown in Figure 3.13. The

resonant frequency was predicted to be 2.4 GHz and the grounded FR4 substrate was 1.5 mm thick

with εr = 4.5 (the bottom layer of the FR4 was 0.5 oz copper). Then, this geometry was drawn

in the software included with the micro-cutter and used to cut out the graphene-based conducting

layers shown in Figure 3.12. As a final step, the graphene-based conducting patch was removed
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Figure 3.8. Simulated and measured |S21| values of the graphene-based conductors microstrip TL.

from the 3-layer structure and attached to the FR4 substrate. The result was the manufactured

prototype shown in Figure 3.1(b). The center conductor of the SMA connector was attached to the

patch with conductive epoxy. Next, the |S11| values of the prototype were measured in an anechoic

chamber and are shown in Figure 3.13. The resonant frequency was 2.6 GHz.

3.4. Discussion

Several comments can be made about the results in Figure 3.1(b) and 3.13. Closer obser-

vation of the edges in Figure 3.1(b) shows that the micro-cutter blade tends to wobble slightly

during cutting, which may be the cause of the differences in the S-parameters in Figure 3.13. This

behavior could be due to the blade depth setting and further exploration has been planned for the

near future. On the other hand, the results in Figure 3.13 show that a new patch antenna can be

developed using this flexible graphene-based material, which may otherwise be difficult to otherwise

manufacture with the existing PCB techniques.
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Copper conductor Graphene conductor

Figure 3.9. (left) Printed microstrip patch antenna on a TMM4 substrate with a copper conduc-
tor and (right) printed microstrip patch antenna on a TMM4 substrate with a graphene-based
conductor.
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Figure 3.10. Measured and simulated |S11| values of the prototype microstrip patch antenna with
the copper conductor.
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Figure 3.11. Measured and simulated |S11| values of the prototype microstrip patch antenna with
the graphene conductor.

Figure 3.12. Fabrication step to separate the flexible graphene-based conducting layer of the patch
from the protected layers.
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Figure 3.13. Measured and simulated |S11| values of the prototype graphene-based antenna.
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4. DETERMINING PROPAGATION CHARACTERISTICS

OF THE 97% CARBON CONTENT GRAPHENE-BASED

CONDUCTORS

Microstrip antennas are the promising candidates for microwave applications, where the

emphasis is on reducing the volume and weight, especially when conformal antenna arrays are

needed. These antenna arrays, however, show gain and efficiency limitations due to ohmic and

dielectric losses in the feed network caused by the unwanted coupling within it, and due to surface

wave excitation in the dielectric substrate [51, 21]. This unwanted coupling between TLs in the

long and complicated feed network has been a serious design issue as the efficiency limitations are

most severe in large arrays due to high losses at high frequencies. As reported in [52], reducing the

losses in the feed network of these antenna arrays significantly improves the gain and overall effi-

ciency. Copper microstrip TLs have been the preferred choice when designing the feed network for

antenna arrays, but, besides other drawbacks, they tend to fail and crack in conformal applications

[8]. The demand for various new composite materials with structural strength and high electrical

conductivity has hence been increasing to fill this gap. The 97% carbon content graphene-based

conducting (GBC) sheet is flexible and provides good electrical conductivity [13]; therefore it is

considered to be a good candidate for conformal applications 1.

4.1. Flat Transmission Line(TL) Comparison

Here, replacing the copper conductors with 97% carbon content graphene-based conductors

(GBC) [44] as shown in Figure 4.1(a) for TLs has been investigated. Also the coupling between a

conventional copper microstrip and a GBC TL, as well as two parallel GBC TLs manufactured on

the same substrate have been studied and analyzed. The results show that the GBC TLs can be

used as an alternative to copper TL with some limitations but are more flexible, light weight, and

give better results for unwanted coupling at high frequencies.

1A part of the materials in this chapter was co-authored by Sayeed Z. Sajal. He was involved with this work and

he was responsible for the fabrication, simulation and measuring the prototype. Sayeed Sajal was the one of the key

developers of this work and some of his ideas were implemented in this work.
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Figure 4.1. (a) Commercially available graphene-based conducting material, (b) conventional mi-
crostrip transmission line (TL) and (c) graphene-based conductors (GBC) TL.

4.1.1. Prototypes of the conventional copper and graphene-based conductors (GBC)

transmission lines (TLs) on a flat surface

As illustrated in Figure 4.1(b) and (c), two similar 50 Ω TLs (a conventional microstrip

and a GBC) were first fabricated on TMM4 substrate (εr ≈ 4.5, tan δ= 0.0020 and thickness, Ts

= 1.52 mm) with copper ground plane on the bottom side. The S-parameters of the microstrip TL

were first simulated using commercially available full-wave simulator Keysight’s Advanced Design

System (ADS) [50] and later measured in an anechoic chamber with a calibrated vector network

analyzer, E5071C. Simulated and measured results agreed well with the simulations and served as

a reference in designing the GBC TL. The manufacturing process of GBC TL was adapted from

the method reported in [53]. A 2.86-mm wide and 120-mm long graphene-based conductor was first

glued on the top surface of the substrate and then connected to the 50-Ω SMA connector using

conductive epoxy.
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Figure 4.2. Detailed pictures of (a) two 50-Ω microstrip TLs, (b) a microstrip Cu and a GBC TL,
(c) and two GBC TLs.

For the comparison of unwanted coupling measurements, three prototypes as shown in

Figure 4.2(a), (b) and (c), were manufactured and tested. Similar geometries were used on the

same substrate (with copper ground plane) for all the prototypes to investigate the unwanted

coupling.

In order to measure the near-end coupling, port 2 and 4 were terminated with the 50 Ω load,

while the other two ports (1 and 3) were connected with the network analyzer for measurements.

Similarly, far-end coupling was measured by terminating ports 2 and 3, while measurements were

taken at ports 1 and 4.

4.1.2. Results and discussion

Results of the matching performance and wave propagation of microstrip and GBC TLs

are shown in Figure 4.3 and Figure 4.4, respectively. Compared to the microstrip TL, it can be

observed from Figure 4.3 that the GBC TL also has a good matching performance up to 8.5 GHz.

Figure 4.4 shows the wave propagation of the simulated and measured microstrip TLs and the

measured GBC TL. As illustrated, the −3 dB point (50% power loss)of the GBC TL was at 7 GHz,

which shows its limitations at high frequencies.

Figure 4.5 shows the comparison of the simulated and measured near-end coupling between

the two microstrips TLs, measured microstrip−GBC TLs as well as the two GBC TLs. It was

23



0 1 2 3 4 5 6 7 8 9

-80

-60

-40

-20

0

f (GHz)

|S
11

| (
dB

)

 

 

Simulated Copper TL
Measured Copper TL
Measured Graphene TL

Figure 4.3. Matching performance (|S11|(dB)) of the microstrip Cu and GBC TLs.
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Figure 4.4. Magnitude of forward transmission (|S21|(dB)) of the microstrip Cu and GBC TLs.

observed that the two parallel GBC TLs have better isolation up to 8.5 GHz, which is much better

than the two equally spaced conventional microstrip TLs and conventional microstrip−GBC TLs.

The far-end coupling in terms of |S41| (dB) for the prototypes was depicted in Figure

4.6. This result shows that the far-end coupling does not exhibit any oscillations for the case of

microstrip−microstrip TLs, microstrip−GBC TLs and the two parallel GBC TLs. In the case

of two parallel microstrip TLs, the magnitude of the sine function is not large enough to cause

oscillations [54], this phenomenon may occur for two parallel GBC TLs too. Hence it is argued

that the microstrip−GBC TLs and the two parallel GBC TLs exhibit similar behavior to that of

the two parallel microstrip TLs.
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Figure 4.5. Magnitude of near-end coupling (|S31|(dB)) between the microstrip Cu and GBC TLs.
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Figure 4.6. Magnitude of |S41|(dB) (far-end crosstalk) of microstrip Cu and GBC TLs.

Carbon microfiber TLs were investigated for feed network in arrays [55], but it was observed

that GBC TLs have better potential to be used as an alternative to the conventional TLs for

conformal feed network applications. Finally, the DC resistances of the fabricated microstrip and

GBC TLs, as shown in Figure 4.1 (b) and (c) have been measured using a GW Instek-819 LCR

meter and found to be 0.0471 Ω and 1.44 Ω, respectively.

4.2. Conformal Transmission Line(TL) Comparison

Graphene-based conformal TL behavior was investigated in an experimental study [56].

Here, the near-field and far-field coupling were investigated on any conformal shapes of a microstrip

copper TLs and 97% carbon content graphene-based TLs.
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4.2.1. Prototypes of the conventional copper and graphene-based conductors (GBC)

transmission lines (TLs) on a conformal surface

The conformal transmission line prototype was fabricated on a flexible Rogers RT duroid

6002 substrate (thickness = 0.508 mm; εr ≈ 2.94; tan δ = 0.0012) with 35 µm copper cladding on

both sides. 50-Ω TL is designed for both copper and 97% carbon content graphene-based conductive

(GBC) materials. Then, both the TLs were fabricated using LPKF [57], and the GBC trace was

precisely cut using the technique mentioned in [53]. Then the GBC trace was glued on the flexible

substrate using conductive glue [45], and an SMA connector was connected using conductive epoxy

[48]. The designed length and width of the TL are 78 mm and 1.3 mm. The fabricated prototype

is shown in Figure 4.7.

Figure 4.7. Detailed pictures of (a) two 50-Ω microstrip copper TLs on a conformal surface, (b) a
microstrip copper and a GBC TL on a conformal surface.

4.2.2. Results and discussion

Here, the S-parameters of the TLs were measured on conformal shapes using a calibrated

vector network analyzer (VNA). Results of the matching performance and wave propagation of

copper microstrip TL and GBC TLs on a corformal surface are shown in Figure 4.8 and Figure 4.9,
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respectively. Comparing to the microstrip TL, it can be observed from Figure 4.3 that the GBC

TL also has a good matching performance from 100 MHz to 4 GHz. Figure 4.9 shows the wave

propagation of the simulated and measured microstrip TLs and also the measured GBC TL on a

conformal surface. As illustrated, it were almost identical except in the 2.5 GHz to 3 GHz range.
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Figure 4.8. Matching performance (|S11|(dB)) of the microstrip copper and GBC TLs on a confor-
mal surface.
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Figure 4.9. Magnitude of forward transmission (|S21|(dB)) of the microstrip copper and GBC TLs
on a conformal surface.

Figure 4.10 shows the comparison of the simulated and measured near-end coupling between

the two microstrip copper TLs, measured microstrip copper−GBC TLs. It can be seen that the
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results did not match completely, but did follow a similar trend.

The far-end coupling in terms of |S41| (dB) for the prototypes on a conformal surface is

depicted in Figure 4.11. This result shows that the far-end coupling did not exhibit any oscillations

in the case of copper−copper TLs and copper−GBC TLs. The results are only around 5 dB off

from each other. It is hence argued that the copper−copper TLs and microstrip copper−GBC

TLs exhibited similar behavior on a conformal surface. Overall, in both cases (flat TLs and con-

formal TLs), 97% carbon content graphene-based conductive material exhibited superior elecrical

properties compared to copper.

f (GHz)
0.5 1 1.5 2 2.5 3 3.5 4

|S
31

| (
dB

)

-60

-40

-20

0

Two Copper TL
A copper TL and a GBC TL

Figure 4.10. Magnitude of near-end coupling (|S31|(dB)) between the microstrip copper and GBC
TLs.
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Figure 4.11. Magnitude of |S41|(dB) (far-end crosstalk) of microstrip copper and GBC TLs.
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5. MECHANICAL PROPERTIES OF 97% CARBON

CONTENT GRAPHENE-BASED CONDUCTORS

Though many flexible substrates are being developed, conductive materials tend to be fragile

and unable to withstand repetitive bending. Therefore, understanding the bending characteristics

of different conductive materials is an important area to study. Here, the study of bending charac-

teristics of different conductive materials in particular copper, aluminum, and 97% carbon content

graphne-based conductive materials as transmission lines is presented. A fixture was developed

to experimentally determine the bending characteristics of different TLs. In the experiment cop-

per, aluminum, and ghaphene-based conductive materials were tested. The results were that on

average, after 57 iterations the aluminum connection failed; after 74 iterations the copper connec-

tion failed; but no failure was observed in the graphene-based conductors even after 750 iterations

which demonstrates the additional mechanical benefits of the graphene-based conductors. It was

also shown that all the materials agreed on S-parameters in full wave simulation. Graphene-based

conductive materials showed its superior reliability without compromising the performance on the

TL.

5.1. Motivation

Conformal transmission lines, as well as conformal antennas, have been used for many

years when needed on surfaces that are not flat [58, 59, 60, 61, 62, 63, 64]. Bending is present

for any conformal application such as wearables [65, 66]. One of the challenges of the conformal

transmission line, or antenna, is to ensure flexible substrates and conductive materials. Much

research has been done to investigate flexible substrates [67, 68]. But bending on a specific spot

could degrade the quality of connections in a transmission line. To test the bending characteristics,

it is very important to study the reliability of the connections on transmission lines with different

conductive materials. Here to understand and demonstrate the capabilities of a conformal surface,

three materials ( aluminum, copper, and graphene-based) have been studied. A full-wave simulation

was also used to validate the transmission quality of the three conductive materials.
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Figure 5.1. Layout of the TL on paper for bending experiment.

5.2. Simulation Results on Transmission Lines

Here we studied the three conductive materials as a transmission line (TL) shown in Figure

5.1. To study the transmission line S-parameters, Rogers TMM4 [69] was used as the substrate

(ǫ= 4.5 and tan δ= 0.002). Three different conductive materials such as aluminum ( σ =3.69×107

S/m, thickness of 25 µm), copper( σ =5.85×107 S/m, thickness of 25 µm) and graphene-based [44]

( σ =1.94×105 S/m, thickness of 25 µm) were used to show the S-parameter agreement. These

transmission lines were modeled in ADS [50]. The |S11|, |S12|, |S21|, |S22| values of the TLs using

different conductive materials are shown in Figures 5.2, 5.3, 5.4 and 5.5, respectively. The length

of the TL was 65 mm and width was 2.86 mm. The frequency sweep was performed from 500 MHz

to 4.5 GHz. It was found that all the S-parameter results agreed well. In the S-parameter analysis,

the graphene-based and aluminum overlapped in a way that we hardly can see three lines for three

conductive materials.

5.3. Development of Test Fixture and Measurement Results

The mechanical properties of the three conductors were experimentally studied. A text

fixture was developed for bending experiments, consisted of two planar surfaces connected on one

edge with a pivoting hinge, as shown in Figure 5.6. Next, three samples made of aluminum, copper

and the graphene-based conductors were attached to the test fixture. The length of each sample
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Figure 5.2. A comparison of |S11| values of the 50-Ω transmission line on three different conductive
materials (aluminum, copper and graphene-based) using full-wave simulations in ADS.

was 65 mm and the width was 2.86 mm. The thickness of all conductive layers was 25 µm. The

angle θ was varied from 0 to 110 degrees at a rate of approximately 37 bends/min. The experiment

was conducted on 3 samples. On average, after 57 iterations, the aluminum connection failed, as

shown in Figure 5.7; after 74 iterations, the copper connection failed, as shown in Figure 5.8. Then,

the fixture conducted 750 iterations on the graphene-based conductors and no failure was observed;

showing the additional mechanical benefits of the graphene-base conductors.

5.4. Discussion

In this chapter, we investigated three different conducive materials to study the bending

characteristics. We found that all three conductive materials (aluminum, copper, and graphene-

based) agreed on S-parameter results. In bending experiments, we found that graphene-based

material is more than 13 times reliable compared to aluminum and 10 times more reliable than

copper in terms of bending iterations. Overall, the electrical performance of the graphene-based

conductor was comparable to that of the aluminum conductor and the copper conductor for the

designs investigated in this work, indicating that the graphene-based conductors have the potential

to be used in the development of more robust conformal antennas without the trade-off of electrical

performance. This opens the door to investigate many applications where we can use the superior

reliability of graphene-based conductors as an alternative to aluminum and copper conductors.
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Figure 5.3. A comparison of |S12| values of the 50-Ω transmission line on three different conductive
materials (aluminum, copper and graphene-based) using full-wave simulations in ADS.
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Figure 5.4. A comparison of |S21| values of the 50-Ω transmission line on three different conductive
materials (aluminum, copper and graphene-based) using full-wave simulations in ADS.
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Figure 5.5. A comparison of |S22| values of the 50-Ω transmission line on three different conductive
materials (aluminum, copper and graphene-based) using full-wave simulations in ADS.

Figure 5.6. Developed test fixture for bending experiment.
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Figure 5.7. Breakdown of aluminum after 57 bending iterations.

Figure 5.8. Breakdown of copper after 74 bending iterations.
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6. STUDY OF ANTENNA ELEMENTS ON FLEXIBLE

SUBSTRATES OF CONFORMAL ARRAY

APPLICATIONS

6.1. Design of a Conformal Monopole Antenna on a Paper Substrate Using the Prop-

erties of 97% Carbon Content Graphene-Based Conductors

Two key components, among several, in the design of a conformal antenna are planar con-

ductors and flexible substrates. In this chapter, a new approach using graphene-based conductors

instead of copper conductors in the design of a conformal antenna is presented. As shown earlier,

to determine the conductivity properties of a graphene-based conductor, the copper conductors

in a well-known micro-strip transmission line (TL) and microstrip antenna were replaced with

graphene-based conductors and were analytically evaluated, simulated in a full-wave simulation

software and experimentally tested. Overall, it was shown that these graphene-based conductors

have a conductivity high enough for designing a useful micro-strip TL and micro-strip antenna. In

particular, a conductivity of σ = 1.94 × 105 S/m for a 25-µm thick graphene-based conductor was

determined from 100 MHz to 4.0 GHz. Finally, the conformity of graphene-based conductors was

demonstrated using a mechanical test fixture and by designing a monopole antenna on a 100-µm

thick paper substrate. In summary, the results in this chapter show that the graphene-based con-

ductors provide an alternative to the more fragile copper conductors traditionally used to design

conformal antenna elements.

6.1.1. Motivation

Conformal antennas are gaining popularity because they can enable the embedding of wire-

less systems into the design of complex geometries. This is because in certain scenarios, such as

aircrafts and wearable garments, there may be little opportunity to place an antenna on a flat

surface. Furthermore, this antenna placement can be complicated by the fact that the surface on

which the antenna is placed could be vibrating or changing shape with time [8, 25, 60, 70]; and

one of the drawbacks of conformal antennas is that the copper conductors used to fabricate the

antenna tend to fail and crack as the surface changes shape [8, 60]. Recently, new composite ma-
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terials with structural strength and high electrical conductivity have been designed by embedding

graphene-based materials into them [13, 71]. Antenna fabrication [53] and related graphene-based

materials studies [72, 73, 74, 75, 76] have been investigated where graphene-based conductors were

used as conducting materials. The graphene-based materials [44] provide the electrical conductivity

in these composites and when isolated they are very flexible, making them possible for conformal

antenna applications. Therefore, the objective of this section is to develop the modeling approach

of using graphene-based materials in the design of a conformal antenna element instead of cop-

per conductors. In this work, replacing the copper conductors with graphene-based conductors

in the conformal monopole antenna design shown in Figure 6.1(a) is studied. In particular, the

conductors of the monopole design consist of the graphene-based materials shown in Figure 6.1(b)

and the layout was chosen for operation at 2.57 GHz on a paper substrate. Initially though, the

conductivity of the graphene-based materials in Figure 6.1(b) was determined by evaluating the

well-known geometry of a printed micro-strip transmission line (TL) that used the graphene-based

materials as the TL conductor instead of copper. By analyzing the micro-strip TL first, analytical

computations, ADS simulations [50] and measurements were each used to extract the conductivity

of the graphene-based materials. Then, this conductivity was used to design a micro-strip patch an-

tenna prototype in ADS that used the graphene-based materials as the conductor for the radiating

portion of the design (i.e., top layer conductor). The prototype was manufactured and measured

for accuracy in a full anechoic chamber for further conductivity validation. Once the conductivity

of the graphene-based materials was determined and validated with two known designs, the new

conformal monopole antenna in Figure 6.1(a) was designed on a paper substrate with the con-

ductors made of the graphene-based material in Figure 6.1(b). The simulation and experimental

results show that the much more robust graphene-based conductors can be used to manufacture

more reliable conformal antennas.

The work reported here differs from the research in [72, 73, 74] by (1) presenting the new de-

sign of conformal monopole antennas on paper substrates using 97% carbon content graphene-based

conductors (2) showing the mechanical benefits of 97% carbon content graphene-based conductors

over traditional copper conductors. These conductors can be applied to load bearing antennas,

wearable antennas, conformal antennas affixed to the sides of military equipment and aircraft

[8, 25, 60, 70, 71, 13]. and related works on paper substrate [75, 76, 77].
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Figure 6.1. (a) Topology of the conformal monopole design on the paper substrate (g = 16.0 mm,
h = 10.0 mm, L = 39.0 mm, W = 2.2 mm and s = 1.1 mm). and (b) photograph of the graphene
sheet used as the conductors in the conformal monopole antenna design.

Therefore, the objective of this work is to develop an approach of using 97% carbon con-

tent graphene-based conductors in the design of a conformal antenna instead of copper conduc-

tors. Introducing this new material into the design of conformal antennas is beneficial because the

graphene-based conductors are not as prone to cracking as copper based conductors are.

(a)            (b)       (c)

Graphene-based 

conductorGraphene-based 

conductor

Graphene-based 

conductors

Figure 6.2. (a) Manufactured prototype conformal monopole antenna on a paper substrate and
graphene-based conductors conductors, and (b) and (c) photographs illustrating the conformal
properties of the monopole.
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Figure 6.3. Photograph of the prototype conformal monopole being measured in the full anechoic
chamber.

6.1.2. The conformal 97% carbon content graphene-based monopole antenna on paper

substrate

6.1.2.1. Prototype design

Next, to illustrate the conformal properties of the graphene-based conductors, the design of

the conformal monopole antenna shown in Figure 6.1(a) is presented. Again, instead of copper, the

graphene-based conductors material in Figure 6.1(b) was used in the design for the conductors. The

extracted conductivity was used in ADS to model the graphene-based conductors, and the monopole

was designed on a 100-µm thick paper substrate (εr = 3.0). A picture of the manufactured prototype

is shown in Figure 6.2(a). The pictures in Figures 6.2 (b) and (c) illustrate the conformal properties

of the design.

6.1.2.2. Simulation and measurement results

To measure the |S11| and gain values, the prototype was placed in a full anechoic chamber

shown in Figure 6.3. The measured |S11| of the conformal monopole is shown in Figure 6.4 and the

gain was determined to be - 0.1 dBi. For comparison, the simulated |S11| values in ADS are also

shown in Figure 6.4 and the gain was computed to be 1.0 dBi, which is slightly deviated from the

measured gain of a monopole; however, it still compares well with the measured gain. This design
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Figure 6.4. Measured and simulated |S11| values of the prototype conformal monopole with the
graphene-based conductors.

further validates the ADS model of graphene-based conductors. It also illustrates the benefits of

using graphene-based conductors for conformal antenna designs.

6.1.3. On the mechanical properties of the 97% carbon content graphene-based con-

ductors for antennas

Finally, a comparative study on the mechanical properties of the graphene-based and cop-

per conductors was experimentally conducted. The test fixture consisted of two planar surfaces

connected on one edge with a pivoting hinge, as shown in Figure 6.5. Next, two samples made of

copper and the graphene-based conductors were attached to the test fixture (also shown in Fig-

ure 6.5). The length of each sample was 75 mm and the width was 5.0 mm. The thickness of

both was 25 µm. The angle θ was varied from 0 to 110 degrees at a rate of approximately 37

bends/min. The experiment was conducted on 3 samples. On average, after 74 iterations, the

copper connection failed, as shown in Figure 6.6. Then, the fixture conducted 750 iterations on the

graphene-based conductors and no failure was observed; showing the additional mechanical benefits

of the graphene-based conductors. Though this experiment was done separately, the results are
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very similar to the results mentioned in chapter 5. It should be mentioned that a further study on

these mechanical properties would be beneficial and that will help future research.

Figure 6.5. An illustration of the test fixture used to compare the mechanical properties of the
graphene-based and copper conductors.

6.1.4. Results and discussion

Amethod for implementing graphene-based conductors as conductors in a conformal monopole

on a paper substrate was presented in this section. The conductivity of the graphene-based conduc-

tors was determined by analytically evaluating, simulating and measuring microstrip transmission

lines and microstrip antennas on a TMM4 substrate; which are well known problems and use-

ful for extracting conductivity. It was shown that a conductivity of σ = 1.94 × 105 for 25 µm

thick graphene-based conductors from 100 MHz to 4.0 GHz could be used to model the graphene-

based conductors in ADS. Overall, the electrical performance of the graphene-based conductors

was comparable to the copper conductor for the designs investigated in this work, indicating that

graphene-based conductors have the potential to develop more robust conformal antennas without

the trade-off of electrical performance.
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Figure 6.6. A photograph of the breakage of the copper conductor at the pivot point.

6.2. A Conformal Antenna on a Passive UHF RFID Tag Using 97% Carbon Content

Graphene-Based Conductors and Paper Substrates

Passive UHF radio frequency identification (RFID) systems are being applied to many

different industries. Because of this, these systems are now increasingly required to operate in

complex electromagnetic environments. This may require tags to operate on different surface types

or time varying shapes. This section presents a conformal antenna design that can be used on a

passive UHF RFID tag with a paper substrate. More specifically, instead of copper conductors

for the antenna, commercially available 97% carbon content graphene-based material is used to

mitigate conductor failure; which has been observed in copper-based conformal antenna designs.

Simulations and read-range measurements(2.1 meters) of this prototype UHF passive RFID tag
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with graphene-based conductors are competitive to commercially available copper-based RFID.

Moreover, the overall dimensions and size are also competitive.

6.2.1. Motivation

A passive radio frequency identification (RFID) tag typically consists of three major com-

ponents, namely an IC, antenna and substrate. There has been extensive research conducted on

different ICs [78], antenna layouts (i.e., compact designs) for different applications [79], and dif-

ferent thin substrates for attachment to various conformal surfaces [80]. However, in much of the

earlier work reported on RFID antenna designs, the material used was copper. It is well known

that copper is a good conductor; however, the properties of this material can be altered if it is

attached to a conformal surface that changes shape with time [81]. The objective of this section

is to present the new design shown in Figure 6.7 that uses graphene-based conductors instead of

copper as a method to develop a conformal antenna on a passive UHF RFID tag with a paper

substrate. A graphene-based conductor has been shown in previous chapters of this dissertation to

be less vulnerable to surface changes and is a material that can be used in UHF antenna designs

on conformal surfaces.

6.2.2. Development of the graphene-based conductor antenna

The layout of the proposed antenna is shown in Figure 6.7(a). A meandering line design

was chosen to reduce the overall size of the antenna [79] and hence the tag. Then, instead of using

copper, the commercially available 97% carbon content graphene-based material shown in Figure

6.7(b) was used as a conductor.

6.2.2.1. Simulations of the graphene-based antenna

Initially, the antenna was modeled in HFSS [82] on a 0.1 mm thick paper substrate with

εr = 2.19 and tan δ = 0.035. The dielectric properties of the paper substrate were measured

using a RF Impedance/Material Analyzer E4991A (1MHz-3GHz) [83]. According to the data

sheet, the thickness of the graphene-based layer was 25 µm and had conductivity of σ = 1.94 ×

105 determined earlier in chapter 3. For the prototype, an Alien Higgs 2 IC [84] was chosen for

demonstration purposes only. At 915 MHz, the input impedance of the IC was 13.8 − j143.6 Ω.

With the dimensions shown in Figure 6.7(a), the input impedance computed in HFSS was 8.61 +

j143 at 915 MHz. The real and imaginary parts of the simulated values are shown in Figure 6.8.

It should also be noted that a pattern similar to a dipole was observed.
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Figure 6.7. (a) Topology and dimensions of the antenna on the UHF RFID tag; (b) Photograph
of the commercially available 97% carbon content graphene-based material used for the antenna
and (c) Photograph of the prototype UHF RFID tag with graphene-based conductors and a paper
substrate.

6.2.2.2. Measurements of the prototype

Next, a prototype of a passive RFID tag with the design in Figure 6.7(a) was manufactured.

This was done using the procedure reported in [53]. In summary, the antenna manufacturing

technique consisted of a three-layer structure. The bottom layer was 0.1 mm thick paper, the middle

layer was the graphene-based material shown in Figure 6.7(b) and the top layer was transparency

film. The graphene material was lightly adhered to the paper layer and the transparency film was

used to hold down the graphene-based material during cutting. Then, a micro-cutter [47] was used

to cut out the shape of the antenna. The cutter went through all three layers. Then, the paper

and transparent layers were removed by hand and the graphene-based material in the shape of the

antenna remained. This antenna was then attached to the paper substrate to form the prototype

passive tag shown in Figure 6.7(c). The Higgs 2 IC was attached to the port using conductive silver

epoxy.
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Figure 6.8. Simulated input impedance of the antenna with graphene-based conductors.

Then, the read range of the prototype was measured in a full anechoic chamber. An Alien

9780 reader [84] (with a maximum output power of 1 W) connected to a CP antenna with a gain of

6 dBi was used for these measurements as shown in Figure 6.9(a). The prototype tag was attached

to a styrofoam block and is shown in the chamber in Figure 6.9(b). The read-range was found by

moving the tag away from the reader antenna until reading ended. It was shown that a read-range

of 2.1 m could be achieved and verified the simulation results in Figure 6.8.

6.2.3. Results and discussion

An antenna design that uses commercially available 97% carbon content graphene-based

conductors instead of copper for passive UHF radio frequency identification (RFID) tags has been

presented in this section. It has been demonstrated that the conducting properties and additional

benefit of conformality of graphene-based conductors could be used to develop a passive UHF RFID

tag. Measurements show that useful read-ranges of 2.1 meters could be achieved for tags on thin

conformal paper substrates.
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Figure 6.9. (a) Photograph of the antenna on the RFID reader in the full anechoic chamber during
read-range measurements and (b) photograph of the read-range of the prototype tag being measured
in the full anechoic chamber.

6.3. Design of a coplanar waveguide fed (CPW-fed) Graphene-Based Conformal Monopole

on a Paper Substrate

Here, a coplanar waveguide fed (CPW-fed) conformal monopole antenna was designed on a

flexible low-cost multi-purpose paper substrate with a thickness of 0.1 mm, and flexible graphene-

based conductive material shown in Figure 6.10(b) was used as an alternative to copper. The

antenna was designed for 3.6 GHz applications with a size of 24 mm × 6 mm. The design shown in

Figure 6.10(a), was simulated in HFSS, a full-wave simulation tool; a prototype was manufactured

using a micro-cutter; and measured in a full anechoic chamber. Overall, it was shown that the
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S-parameter simulations agreed well with the measurements, and that the electrical benefits of

the flexible graphene-based conductor can be utilized to design a CPW-fed conformal monopole

antenna.

Figure 6.10. (a) Dimension of the conformal graphene-based monopole antenna; (b) Photograph
of the graphene-based material from [44]; (c) Photograph of the manufactured prototype antenna
with flexible graphene-based materials on a paper substrate and (d) Photograph illustrating the
conformal properties of the prototype (b = 2.0 mm, d = 1.0 mm, g = 1.0 mm, X = 6.0 mm and Y
= 24.0 mm).

6.3.1. Simulation of CPW-fed graphene-based conformal monopole

A CPW 50-Ω graphene-based microstrip transmission line (TL) was used for the feed net-

work on a 0.1 mm thick paper substrate. A conductivity of σ = 1.94×105 S/m [14] (for a thickness

of 25 µm) for the graphene-based conductive material as determined in section 3.2.2 was used in

the HFSS [82] simulations. The relative permittivity (εr ≈ 2.19) and loss tangent (tanδ ≈ 0.035)
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of the 0.1 mm thick paper substrate were measured with the help of a RF Impedance/Material

Analyzer E4991A (1MHz-3GHz) [83]. The graphene-based conductive material was precisely cut

using the Cricut Explore Air [47] following the procedure reported in [53].
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Figure 6.11. Measured and simulated |S11| values of graphene-based antenna prototype.

6.3.2. Results and discussion

The HFSS simulation results of the CPW-fed graphene-based conformal monopole are shown

in Figure 7.4 and an image of the HFSS geometry is shown in Figure 6.12(a). The resonant frequency

was 3.6 GHz, which was designed in simulation. Next, a prototype of the CPW-fed graphene-based

monopole on paper was manufactured, and is shown in Figure 6.10(c). An illustration of the

conformal nature of the prototype is also shown in Figure 6.10(d). Conductive glue was used to

attach the SMA connector. The |S11| values of the prototype were then measured in a full anechoic

chamber and agreed well with the simulations as shown in Figure 7.4. The measured resonant

frequency was 3.45 GHz, a 4.16 % deviation from simulation results. Finally, the total gain of the

prototype was simulated in HFSS and determined to be 1.9 dB at 3.6 GHz. These values are shown

in Figure 6.12(b) and a pattern similar to a monopole was achieved.

A CPW-fed graphene-based monopole antenna was simulated in HFSS using the graphene-

based material, and a prototype was manufactured and measured in a full anechoic chamber.

Overall, good agreement with small deviations between the |S11| values were observed, and it was

shown that a good gain can be achieved using graphene-based conductors and a low-cost paper

substrate.
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Figure 6.12. (a) Model in HFSS and (b) simulated total gain.

This will open up a new avenue for conformal antenna designs on paper substrates, which,

in addition to being flexible are also, in many cases, affordable.
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7. ANALYSIS OF AN ARRAY WITH 97% CARBON

CONTENT GRAPHENE-BASED CONDUCTORS

In this chapter, an array with graphene-based conductive material and an array with the

same layout with traditional copper were studied and compared. More specifically, the antenna

array with graphene-based conductors shown in Figure 7.1 was designed, simulated, and fabricated

for the first time. Both the copper and graphene-based antenna array prototypes were designed

and simulated at 1.99 GHz. A Rogers TMM4 substrate ( thickness = 1.52 mm; εr ≈ 4.5; tan δ =

0.002 ) was used for both cases. Next, both the prototypes were measured in an anechoic chamber

and the performance (i.e; gain, S-parameters) of both prototypes was analyzed. The simulation

and measurement results in both cases were found to be in good agreement. Thus graphene-based

conductors have the potential to be a better alternative to copper-based conductors, especially for

conformal designs.

7.1. Motivation

Antenna design on graphene-based materials has been progressive because of its unique

properties. To mention a few among the many breakthroughs, S. Stankovich and his team devel-

oped graphene-based composite materials [13], and J. Y. Kim and his team developed transparent

material with high dielectric values [85]. The comparison between graphene-based transmission

lines (TL) and traditional copper TLs also were investigated in previous work [73]. Furthermore,

Ignacio Llatser and his team developed graphene-based nano-patch antennas for terahertz radiation,

photonics and nano-structures [43].

7.2. Design, Simulation and Fabrication

To develop the graphene-based antenna array in Figure 7.1, the conductive properties of the

graphene-based material were utilized from section 3.2.2. A conductivity of σ = 1.94×105 S/m for

a thickness of 25 µm was used in the simulation [14]. For the copper antenna array, the conductive

properties of copper ( σ = 5.8×107 S/m for a thickness of 17.5 µm) were used in simulation.

The effect of the SMA connector was not considered in the simulation and the S-parameters were

determined in ADS [50] for the both designs. The frequency ranged from 1.5 GHz to 2.5 GHz. In
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Figure 7.1. First prototype of a graphene-based antenna array.

both cases, the double sided Rogers TMM4 [69] substrate (thickness = 1.52 mm; εr ≈ 4.5; tan δ

= 0.002) was used as a dielectric material. In the case of copper, a LPKF Model S63 [57] milling

machine was used to mill the copper antenna array, and mill one side of the double sided Rogers

TMM4 to attach the graphene layer on the empty surface of the dielectric substrate.

Again, the graphene layer was fabricated separately using a Cricut Expression [47] printer.

The fabrication process was reported in [53]. The connection between the graphene layer and SMA

connector was made using conductive glue [48]. The dimensions of the antenna array are shown in

Figure 7.2. The flexible graphene-based sheet after fabrication process is shown in Figure 7.3.

7.3. Results and Discussions

The ADS simulation of the graphene-based conductor(GBC) antenna array as well as the

copper antenna array are shown in Figure 7.4. Next, the fabricated copper array shown in Figure

7.2 and the GBC array shown in Figure 7.1 were measured in an anechoic chamber using a network

analyzer Agilent E5071C [86]. The measurement results are also shown in Figure 7.4. We found

that the resonant frequency of the fabricated copper antenna array was 1.94 GHz and GBC antenna

array was 1.99 GHz. Simulation and measurement results agree for the GBC array antenna, whereas

the copper array measures are below the simulations by 2.5%. The gains of both the antenna arrays

were measured in an anechoic chamber as well. The gain was 9.04 dBi for the copper antenna array

at 1.94 GHz, and 8.72 dBi for the GBC antenna array at 1.99 GHz.
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Figure 7.2. The dimensions of the copper antenna array (107.26 mm X 58.62 mm).

Figure 7.3. Flexible 97% carbon content graphene-based sheet after fabrication.

An initial investigation to compare the graphene-based antenna array with a copper an-

tenna array was performed in this chapter. The design was simulated in ADS using extracted

material properties, both the prototypes were fabricated following different fabrication processes,

and tested in an anechoic chamber. Overall, good agreement between the |S11| values and gain

were observed. It was demonstrated that using graphene-based conductors in an antenna array can

achieve performance similar to a copper antenna array design.
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Figure 7.4. Measured and simulated |S11| values of graphene-based antenna array and copper
antenna array.
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8. MODEL ON THE 97% CARBON CONTENT

GRAPHENE-BASED CONDUCTIVE MATERIALS WITH

ADHESIVE LAYER FOR REDUNDANCY

APPLICATIONS

8.1. Motivation

Becasue of the additional benefits of 97% carbon content graphene-based conductive(GBC)

materials, we can use graphene-based material for antenna development. We can use 97% carbon

content graphene-based conductive materials in many applications such as ultra wideband antennas

[87] and MIMO planar antennas [88]. In this chapter, a model has been shown and redundancy

[89, 90, 91, 92] techniques were implemented using graphene-based materials.

8.2. Model Development

To develop a model, the single patch antenna shown in Figure 8.1 was initially designed

using a full wave simulator HFSS [82] and Rogers TMM4 [69] substrate (thickness = 1.52 mm;

εr ≈ 4.5; tanδ = 0.002). It was simulated with copper conductive materials only. Then, a split was

made on the feeding transmission line of the antenna. Next, 97% carbon content graphene-based

conductors were precisely cut according to [53] and adhered to the top of the broken transmission

line like a band aid. An expanded view of the connection is shown in Figure 8.2 and the HFSS

simulation setup is shown in Figure 8.3.

8.3. Results

Next, two samples were fabricated using the LPKF milling machine [57]. One sample was

made of only Copper conductive materials and other sample was developed with an extra layer

of 97% carbon content graphene-based conductor on the top of the broken copper layer. The

graphene-based conductors were cut precisely using a Cricut micro-cutter [47] before adhering on

the copper transmission lines. A picture of the two samples before the graphene-based conductor

addition is shown in Figure 8.4 where (a) is a single antenna with no breakage or cracking, and

(b) is a single antenna with breakage or cracking. Again, the picture of the two samples after the

graphene-based conductor addition is shown in Figure 8.5 where (a) is a single antenna with no
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Figure 8.1. The dimension of the antenna simulated in HFSS.

breakage or cracking, and (b) is a single antenna with breakage or cracking covered by graphene-

based layer.All the S-parameters and gain measurement were determined in an anechoic chamber

as shown in Figure 8.6 and with a calibrated network analyzer. The |S11| values of the antenna

were shown in Figure 8.7 based on five different scenarios as mentioned below.

(a) Copper TL with a break

(b) Only Copper TL without GBC layer

(c) Only Copper TL without GBC layer (HFSS)

(d) Copper TL with a break covered by GBC TL

(e) Copper TL with a break covered by GBC TL (HFSS)

To measure the gain, one horn antenna and one sample patch antenna were set-up at a

distance of 158 cm. The horn antenna acted as a reference for all the measurements. The horn

antenna was at position 1 and the patch antenna samples were on position 2. The |S21| values were
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Figure 8.2. Expanded view of connection between 97% carbon content graphene-based conductors
on copper.

measured using an Agilent E5071C network analyzer [86] and the results were shown in Figures

8.8. The frequency was swept from 100 MHz to 4.5 GHz. It was determined that the gain of the

antenna, in both cases, was measured to be 4.0 dBi at 3.7 GHz. In HFSS simulations, the gain was

computed as 7.3 dBi at 3.7 GHz in both cases.

8.4. Discussion

It was found that adding a layer over the broken section of copper was a great redundancy

technique without impacting the S-parameters and gain of the antenna. We can use similar models

on flat, conformal applications and commercial applications. This will open-up new avenues for

creating redundancy antennas that do not compromise performance.
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Figure 8.3. Full wave HFSS simulation of the antenna.

Figure 8.4. Before adding the graphene-based layer: (a) A single antenna with no breakage or
cracking (b) A single antenna with breakage or cracking.
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Figure 8.5. After adding the graphene-based layer: (a) A single antenna with no breakage or
cracking (b)A single antenna with breakage or cracking covered by graphene-based layer.

Figure 8.6. |S11| values and gain measurement in an anechoic chamber.
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Figure 8.7. Simulated and measured |S11| values of the antenna.
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Figure 8.8. Measured |S21| values in order to calculate gain of the antenna.

58



9. ANALYSIS ON CONFORMAL 97% CARBON CONTENT

GRAPHENE-BASED ANTENNA ARRAY ON ITERATIVE

BENDING EVENTS

9.1. Motivation

There are many benefits of using antenna arrays [15, 16, 17, 18, 19, 20, 21]. These benefits

will be negatively impacted when the conductive materials of the antenna arrays experience break-

age or cracking on the transmission lines or antenna radiators due to iterative bending applications.

Copper has been most commonly used but copper has been shown to be prone [75] to breakage

or cracking when several iterative bending actions occur on a specific point of the antenna array.

Here, analysis on conformal 97% carbon content graphene-based (GBC) antenna array are studied

on iterative bending events.

9.2. Simulation, Fabrication and Measurement

A 2 × 1 antenna array design was simulated using a full wave simulator ADS [50]. A thin

Rogers RT/duroid 6002 [69] substrate (thickness = 0.508 mm; εr ≈ 2.94; tan δ = 0.0012) was

used to design this conformal 2 × 1 antenna array. The antenna array dimensions are shown in

Figure 9.1. Next, the antenna array was manufactured using a LPKF S63 milling machine [57].

An SMA connector was attached to the antenna array at the port and the fabricated conformal 2

× 1 antenna array is shown in Figure 9.2. The |S11| and gain of manufactured antenna array was

measured in an anechoic chamber shown in Figure 9.3. The simulated and measured |S11| values

of the manufactured antenna array are shown in Figure 9.4. The simulated gain was 6.6 dBi at 2.5

GHz and the measured gain was 5.5 dBi.

9.3. Iterative Bending Experiment

To study the iterative bending experiment, the 2 × 1 antenna array was bent iteratively

on two specific spots ( right and left)of the antenna array. These spots are shown in Figures

9.5 and 9.6. Only after 5 iterations on the right side of the antenna array, the copper layer was

broken. The broken copper is shown in Figure 9.5. Next, only the left side of the antenna array

was bent iteratively and the copper broke on the left side after just 6 iterations. The broken
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Figure 9.1. The dimension of the 2 × 1 antenna array.

copper is shown in Figure 9.6. In both cases, the discontinuity of the conductive layer was checked

using a digital multimeter. Then, the 97% carbon content graphene-based layer was precisely cut

applying the process mentioned in [53] and adhered on top of the broken copper layer. Part of the

adhesive process is shown in Figure 9.7. After 60 iterations, the second layer of 97% carbon content

graphene-based conductive TL was added on top of the copper layer. Then 130 bending iterations

were performed to investigate the impact of the extra layers of graphene-based conductors. 1 layer

and 2 layers of the 97% carbon content graphene-based conductors are shown in Figure 9.8 and

Figure 9.9, respectively.

9.4. Results and Discussion

|S11| values of the 2 × 1 antenna array at 8 different bending iterations were plotted and

shown in Figure 9.10. The 8 different scenarios are given below.

(a) 0 GBC layer (5 iterations and Cu broke on right side)

(b) 0 GBC layer (6 iterations and Cu broke on left side)

(c) 1 GBC layer (6 iterations)
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Figure 9.2. The conformal 2 × 1 antenna array.

(d) 1 GBC layer (30 iterations)

(e) 1 GBC layer (60 iterations)

(f) 2 GBC layer (90 iterations)

(g) 2 GBC layer (120 iterations)

(h) 2 GBC layer (130 iterations)

Based on this plot, we observed that, after 5 and 6 iterations, both the right and left side

of the antenna array were broken. After close observation, after 5 iterations, the antenna array

was resonating at 2.5 GHz (approx) and after 6 iteration on the left side, the antenna was not

resonating at all, because the feed network was disconnected from both sides of the antenna array

radiators. Then, the additional 1 layer and 2 layers of the 97% carbon content graphene-based

conductor on top of the copper layers made the antenna array immune to the iterative bending

events. It acted as a reliable antenna array as we used the additional layers of graphene-based

conductor as redundancy techniques in sensitive antenna array applications.
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Figure 9.3. S-parameter and gain measurement in an anechoic chamber.
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Figure 9.4. Simulated and measured |S11| values of the 2 × 1 antenna array.
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Figure 9.5. The break on the right side of the 2 × 1 antenna array.

Figure 9.6. The break on the left side of the 2 × 1 antenna array.

63



Figure 9.7. Adhesion process of 97% carbon content graphene-based conductor on copper TL.

Figure 9.8. 1 layer 97% carbon content graphene-based conductor on copper.
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Figure 9.9. 2 layer 97% carbon content graphene-based conductor on copper.
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Figure 9.10. |S11| values of the 2 × 1 antenna array at 8 different bending iterations.
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10. IMPLEMENTATION OF REDUNDANCY TECHNIQUES

USING 97% CARBON CONTENT GRAPHENE-BASED

CONDUCTORS

10.1. Motivation

In this chapter, a technique where 97% carbon content graphene-based conductors that can

be used redundantly [89, 90, 91, 92] is shown for the first time. It was studied in chapter 5 of this

dissertation and was found that graphene-based conductors are more than 10 times more reliable

[75] than traditional copper conductors which are widely used in transmission lines and antenna

radiators. Here, conductor failure was imitated on both flat and conformal surfaces to investigate

the advantages of using 97% carbon content graphene-based conductors.

10.2. Antenna on a Flat Surface

A patch antenna was designed on a Rogers 5880 [69] substrate (thickness = 1.575 mm; εr ≈

2.2; tan δ = 0.004) and simulated in HFSS [82] at 2.45 GHz. The antenna dimensions are shown

in Figure 10.1. Four patch antennas are fabricated using a LPKF S63 [57] milling machine. The

fabricated four antennas are shown in Figure 10.2. The purpose of using four antennas was to

investigate the breaking or cracking on the radiator part of the antenna. All four antennas were

measured in an anechoic chamber and measurements were compared.

To understand the impact of cracking on the radiator surface of the antenna, a crack or break

was made manually using a exacto blade at a 10 mm distance from the top of the radiator surface.

A digital multimeter was used to ensure the discontinuation of the radiator surface. Similar cracks

or breaks were made on two out of the four samples. The graphene layer [44] was cut according to

the size of the radiator using the method described in [53] and was adhered on top of the copper

surface of the radiator of the two samples (one with crack or break and another without crack and

break) using an adhesive material [48]. The assembly part of the process is shown in Figure 10.3.

An expanded view is drawn in Figure 10.4.

Next, four samples were manufactured for the experiment. The samples are described below

in (a) to (d) and the fabricated antennas are shown in Figure 10.5.
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Figure 10.1. The dimension of the antenna.

(a) Single patch antenna with a copper only layer without break.

(b) Single patch antenna with a copper only layer with a break.

(c) Single patch antenna with both copper and graphene-based layers without a break.

(d) Single patch antenna with both copper and graphene-based layers with a break.

10.2.1. Results

All the four antennas were measured next in an anechoic chamber using a network analyzer

Agilent E5071C [86]. The measurement results are also shown in Figure 10.6. The frequency was

swept from 100 MHz to 4.5 GHz. It was found that the resonant frequency of the fabricated samples

(a), (c) and (d) were 2.45 GHz and sample (b) was resonated at 3.15 GHz.

To measure the gain, one horn antenna and one sample patch antenna were set-up at a

distance 158 cm and the picture is shown in Figure 10.7. The horn antenna acted as a reference for

all the measurements. In the picture in Figure 10.7, the horn antenna was on position 1 and patch

antenna samples were on position 2. The |S21| was measured using a network analyzer Agilent

E5071C [86] and the results are shown in Figure 10.8. The frequency was swept from 500 MHz to
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Figure 10.2. Four different scenarios before the graphene-based layer was added; (a) only copper
layer without break; (b) only copper layer with a break; (c) only copper layer without a break; (d)
only copper layer with a break.

4 GHz. It was computed and found that the gain of all the three samples (a), (c) and (d) were

about 4.9 dBi at 2.45 GHz. The gain of the sample (b) was measured 1.3 dBi at 3.15 GHz.

10.3. Antenna on a Conformal Surface

A patch antenna was designed next on a flexible Rogers RT/Duroid 6002 [69] substrate

(thickness = 0.508 mm; εr ≈ 2.94; tanδ = 0.0012) and simulated in HFSS[82] at 2.45 GHz frequency.

The antenna dimension is shown in Figure 10.9. Two conformal patch antennas were fabricated

using a LPKF S63 [57] milling machine. The fabricated two antennas are shown in Figure 10.10.

The purpose of using two antennas was to investigate the breaking or cracking on the radiator part

of the antenna. Both of the antennas were measured in an anechoic chamber and measured results

were well matched with the simulation results. Both of the antennas resonated at 2.45 GHz.

To understand the impact of cracking on the radiator surface of the antenna, a crack or

break was made manually using a exacto blade at 10 mm distance from the top of the radiator

surface. A digital multimeter was used to ensure the discontinuation of the radiator surface. Similar

cracks or breaks were made on both of the samples. Next, the graphene layer [44] was cut according
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Figure 10.3. The part of the process of antenna fabrication.

to the size of the radiator using the method described in [53] and pasted on top of the copper surface

of both antennas. The part of the process is shown in Figure 10.11. The two antenna samples are

described below in (a) and (b). The fabricated antennas are shown in Figure 10.12

(a) Single conformal patch antenna with both copper and graphene-based layers with a break.

(b) Single conformal patch antenna with both copper and graphene-based layers without a break.

10.3.1. Results

Both antennas were measured again in an anechoic chamber using a network analyzer

Agilent E5071C [86]. The measurement results are also shown in Figure 10.13. The frequency was

swept from 100 MHz to 4.5 GHz. It was found that the resonant frequency of the fabricated sample

(a) was 2.45 GHz and sample (b) resonated at 2.5 GHz. A slight frequency shift was observed in

the |S11| results.

To measure the gain, one horn antenna and one sample patch antenna were set-up at a

distance of 158 cm as shown in Figure 10.14. The horn antenna acted as a reference of all the

measurements. In the picture in Figure 10.14, the horn antenna was at position 1 and the patch

antenna samples were on position 2. The |S21| was measured using a network analyzer Agilent

E5071C [86] and the results were shown in Figure 10.15. The frequency was swept from 500 MHz
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Figure 10.4. The extended view of the process of adhering graphene-based conductors.

to 4 GHz. It was computed that the gain of antenna (a) was measured to be -3.0 dBi at 2.45 GHz.

The gain of the antenna (b) was measured as -5.3 dBi at 2.5 GHz.

10.4. Discussion

With this experiment, the cracking or breakage on the reflector of the antennas was inves-

tigated in both the cases (flat and conformal antenna). A thicker substrate was used for the flat

antenna and a comparatively thin substrate was used for conformal application.

In the case of the flat antennas, only the antenna (b) with a break without graphene-based

layers behaved differently. Because of the cracking on the antenna conductive material, it shifted

the resonant frequency from 2.45 GHz to 3.15 GHz, which is expected according to antenna theory

[49]. All other three antenna samples behaved the same though they were constructed differently.

More specifically, in Figure. 10.5, the sample antenna (d) had a crack like (b) and one extra layer

of graphene-based conductor was added on top of the copper layer. This extra layer of graphene
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Figure 10.5. Four different scenarios after the graphene-based layer addition; (a) only copper layer
without break; (b) only copper layer with a break; (c) both copper and graphene-based layers
without a break; (d) both copper and graphene-based layers with a break.

mitigated the cracking and breaking effect of the iterative bending and acted in a similar manner

to the antenna without cracking or breakage.

In the case of the conformal antennas, one antenna had a break or crack and the other was

without any crack or break. When an extra layer of graphene-based conductive layer was added on

top of the copper layer, the |S11| results and Gain of the both cases were similar. This extra layer

made this conformal antenna mitigate the effect of repeated bending.

Overall, the graphene-based conductive material performed very well in relieving the prob-

lem of cracking or breaking in both flat and conformal antennas. It also served acted as a technique

to provide redundancy antenna applications where the likelihood of cracking or breaking degener-

ative is an important factor to be considered.
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Figure 10.6. Comparison of the |S11| parameters in 4 different scenarios.

Figure 10.7. The gain measurement setup in an anechoic chamber.
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Figure 10.8. Comparison of the antenna gain in 4 different scenarios.
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Figure 10.9. The dimension of the conformal antenna.

Figure 10.10. Two different scenarios before the graphene-based layer addition on conformal surface;
(a) Only copper layer without a break; (b) Only copper layer with a break.
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Figure 10.11. The part of the fabrication process on conformal antenna.

Figure 10.12. Two different scenarios after the graphene-based layer addition; (a) both copper and
graphene-based layers without a break; (b) both copper and graphene-based layers with a break.
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Figure 10.13. Comparison of the |S11| parameters in both scenarios on conformal surface.

Figure 10.14. The gain measurement setup in an anechoic chamber.

76



f (GHz)
0.5 1 1.5 2 2.5 3 3.5 4

|S
21

| (
dB

)

-100

-80

-60

-40

-20

0

Both layers (Cu and GBC )
Both layers (Cu and GBC) + a break

Figure 10.15. Comparison of the antenna gain in both scenarios on conformal surface.
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11. CONCLUSION

We have investigated the electrical and mechanical properties of 97% carbon content graphene-

based conductors (GBC).We determined the conductivity of the GBC is 1.94 ×105 S/m which is

less than Copper. But the S-parameter and gain results, which are the most important parameters

in antenna design, found in the experiments were very competitive. Additionally, we found that

GBC is at least 10 times more resilient to iterative bending than copper is. A unique process for

manufacturing graphene-based antennas was also presented.

It was found that 97% carbon content graphene-based conductors are an alternative to

traditional copper conductors. We constructed a conformal monopole antenna, a GBC RFID

antenna and a CPW-fed conformal antenna on paper utilizing competitive advantages of using

GBCs. We then tested them and found that all the simulated and measured results matched using

the determined conductivity of the GBC.

Finally, we introduced novel techniques for creating redundancy using the unique electrical

and mechanical properties of 97% carbon content graphene-based conductors. To do this, we

first developed a GBC model with an adhesive layer. Then we conducted an iterative bending

experiment on a conformal 2 × 1 array. We found the results to be as expected. Next, we

implemented redundancy techniques using 97% carbon content graphene-based conductors (GBC)

on flat and conformal antennas.

Overall, in order to implement the novel redundancy technique of using graphene-based

conductors on transmission lines and antenna radiator surfaces. This work focused on solving the

following technical challenges:

(a) How to fabricate GBC antenna

(b) How to obtain the benefits of GBC in antenna design

(c) How to merge the benefits of copper and GBC

(d) How to merge the benefits of GBC and conformal antennas

(e) How to know the trade-off for obtaining the benefits of redundancy techniques
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In closing, and to summarize, though much more work is yet to be done, the research

and techniques presented here show that 97% graphene-based conductors are a viable alternative

to copper in antenna and antenna array applications, and that they have much potential value

for redundancy in copper antenna applications where the antenna and/or the transmission line

is subject to repeated bending. Its competitive characteristics and its superior resiliency against

structural fatigue strongly suggest it as a functional and low-cost candidate for a multitude of

functions where wearability or conformity to irregular geometric surfaces is desirable. We envision

that upon further research and testing, production for a variety of these applications will lead us

to the next level in mobility and aesthetic electronic design.
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APPENDIX. MATLAB CODE

The following Matlab codes were used on the previous chapters of this dissertation.

Ch3SparaSimMeaCu.m: The code was used to find out the simulated and measured S-

parameters (S11, S21) results of copper microstrip TLs. [Figures 2.6 - 2.9].

clear all

close all

figure

importdata CuS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,' ks','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CuS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Copper (sim)','Copper (meas)',2)

ylim([−50 0])

xlim([0 4])
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figure

importdata CuS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,' ks','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CuS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}| (dB)')

grid on;

hold on;

h= legend ('Copper (sim)','Copper (meas)',2)

ylim([−10 0])

xlim([0 4])

figure

importdata GrS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,' ks','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata GrS11.xlsx
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fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Graphene−based (sim)','Graphene−based (meas)',2)

ylim([−50 0])

xlim([0 4])

figure

importdata GrS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,' ks','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata GrS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}| (dB)')

grid on;
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hold on;

h= legend ('Graphene−based (sim)','Graphene−based (meas)',2)

ylim([−10 0])

xlim([0 4])

Ch3SparaSimMeaGr.m: The code was used to find out S11 of copper and graphene-based

antennas. [Figures 3.10 - 3.11].

clear all

close all

figure

importdata CuAntennaS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,' ks','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CuAntennaS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Copper (sim)','Copper (meas)',2)

ylim([−20 0])

xlim([0 3.5])
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figure

importdata GrAntennaS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,' ks','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata GrAntennaS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Graphene−based (sim)','Graphene−based (meas)',2)

ylim([−20 0])

xlim([0 3.5])

Ch3S11AntennaManuGr.m: The code was used to find out S11 results of graphene-based

microstrip antenna. [Figure 3.13].

clear all

close all

figure

importdata GrAntennaManuS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

94



plot(fr1,r3,' −−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata GrAntennaManuS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Simulated','Measured',2)

ylim([−20 0])

xlim([0 3.5])

Ch4SparaFlatTL.m: The code was used to find out S-parameters (S11, S21, S31 and S41)

results of flat Copper-Copper TLs and Copper-GBC TLs [Figures 4.3 - 4.6].

clear all

close all

figure

importdata FS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;
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importdata FS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata FS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,':k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Simulated Copper TL','Measured Copper TL','Measured Graphene TL',2)

ylim([−90 0])

xlim([0.1 8.5])

figure

importdata FS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata FS21.xlsx

fr1=ans.data(:,1)./10ˆ9;
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r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata FS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,':k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}| (dB)')

grid on;

hold on;

h= legend ('Simulated Copper TL','Measured Copper TL','Measured Graphene TL',2)

ylim([−6.5 0])

xlim([0.1 8.5])

figure

importdata FS31.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata FS31.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);
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set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata FS31.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,':k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {31}| (dB)')

grid on;

hold on;

h= legend ('Simulated Copper TL','Measured Copper TL','Measured Graphene TL',2)

ylim([−90 0])

xlim([0.1 8.5])

figure

importdata FS41.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata FS41.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;
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hold on;

importdata FS41.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,':k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {41}| (dB)')

grid on;

hold on;

h= legend ('Simulated Copper TL','Measured Copper TL','Measured Graphene TL',2)

ylim([−90 0])

xlim([0.1 8.5])

Ch4SparaConformalTL.m: The code was used to find out S-parameters (S11, S21, S31 and

S41) results of conformal Copper-Copper TLs and Copper-GBC TLs [Figures 4.8 - 4.11].

clear all

close all

figure

importdata CS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);
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plot(fr1,r3,'b','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Two Copper TL','A copper TL and a GBC TL',2)

ylim([−50 0])

xlim([0.1 4.0])

figure

importdata CS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'b','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}| (dB)')

grid on;

hold on;

h= legend ('Two Copper TL','A copper TL and a GBC TL',2)
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ylim([−10 0])

xlim([0.1 4.0])

figure

importdata CS31.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CS31.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'b','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {31}| (dB)')

grid on;

hold on;

h= legend ('Two Copper TL','A copper TL and a GBC TL',2)

ylim([−70 0])

xlim([0.1 4.0])

figure

importdata CS41.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

101



grid on;

hold on;

importdata CS41.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'b','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {41}| (dB)')

grid on;

hold on;

h= legend ('Two Copper TL','A copper TL and a GBC TL',2)

ylim([−70 0])

xlim([0.1 4.0])

Ch5SparaMecha.m: The code was used to find out S-parameters (S11, S12, S21 and S22) re-

sults of transmission lines of three different conductive materials (alliminium, copper and graphene-

based) [Figures 5.2 - 5.5].

clear all

close all

figure

importdata MeS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'black:','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','bold')

grid on;

hold on;
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importdata MeS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'blue','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata MeS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,'red','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Aluminum','Copper','Graphene−based',2)

ylim([−80 −20])

xlim([0.5 4.5])

figure

importdata MeS12.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'black:','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','bold')

grid on;

hold on;

importdata MeS12.xlsx

fr1=ans.data(:,1)./10ˆ9;
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r3=ans.data(:,3);

plot(fr1,r3,'blue','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata MeS12.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,'red','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {12}| (dB)')

grid on;

hold on;

h= legend ('Aluminum','Copper','Graphene−based',2)

ylim([−1 0])

xlim([0.5 4.5])

figure

importdata MeS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'black:','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','bold')

grid on;

hold on;

importdata MeS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'blue','LineWidth',2.5);
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set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata MeS21.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,'red','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}| (dB)')

grid on;

hold on;

h= legend ('Aluminum','Copper','Graphene−based',2)

ylim([−1 0])

xlim([0.5 4.5])

figure

importdata MeS22.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'black:','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','bold')

grid on;

hold on;

importdata MeS22.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'blue','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;
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hold on;

importdata MeS22.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,'red','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {22}| (dB)')

grid on;

hold on;

h= legend ('Aluminum','Copper','Graphene−based',2)

ylim([−80 −20])

xlim([0.5 4.5])

Ch6S11CMono.m: The code was used to find out S11 of conformal graphene-based monopole

antenna [Figure 6.4].

clear all

close all

figure

importdata CMonoS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,' ks','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CMonoS11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);
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plot(fr1,r3,'−−k','LineWidth',4);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Simulated','Measured',2)

ylim([−20 0])

xlim([0 4])

Ch6ImpedanceReIm.m: The code was used to find out the real and imaginary part of the

antenna impedance [Figure 6.8].

clear all

close all

figure

importdata ReIm.csv

fr1=ans.data(:,1)*1000;

r2=ans.data(:,2);

plot(fr1,r2,'black:','LineWidth',2.5);

set(gca,'fontsize',18,'fontweight','normal')

grid on;

hold on;

fr1=ans.data(:,1)*1000;

r3=ans.data(:,3);

plot(fr1,r3,'blue:','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (MHz)')
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ylabel('Z {11}')

grid on;

hold on;

h= legend ('Real part','Imaginary Part',2)

ylim([0 175])

xlim([866 956])

Ch6Higgs2.m: The code was used to find out the input impedance of the Higgs2 IC at

particular frequency.

clear all;

r=1500;

c=1.2e−12;

f=860e6:1e6:960e6;

f1=915e6

Xc=1./(2.*j.*pi.*f.*c)

Z=(Xc.*r)./(r+Xc)

Imag=abs(imag(Z))

Real=real(Z)

figure;

[hAx,hLine1,hLine2]=plotyy(f/1e6,Real,f/1e6,Imag)

R=r/(1+4*pi*pi*f1*f1*c*c*r*r)

I=2*pi*f1*c*R*r

title('Frequency vs. IC Impedance')

xlabel('Frequency (MHz)')

ylabel(hAx(1),'Real | Z | ')

ylabel(hAx(2),'Imag | Z | ')

Ch6CPW.m: The code was used to find out S11 of CPW graphene-based monopole antenna

[Figure 6.11].

clear all

close all

figure

importdata S11 Sim.csv;
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fr1=ans.data(:,1);

r3=ans.data(:,2);

plot(fr1,r3,'k','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata S11 Measure.csv;

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'b','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Simulated','Measured',2)

ylim([−30 0])

xlim([2.5 4.5])

Ch7S11Array.m: The code was used to find out the simulated and measured S11 of copper

and graphene-based antenna array [Figure 7.4].

clear all

close all

figure

importdata CU SIM.csv

fr1=ans.data(:,1);

r3=ans.data(:,2);

plot(fr1,r3,'b*−','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;
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hold on;

importdata GR SIM.csv

fr1=ans.data(:,1);

r3=ans.data(:,2);

plot(fr1,r3,'go−','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata CU.csv

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'rv−','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata GR.csv

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'kˆ−','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

xlabel('Frequency (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Simulated Cu Array','Simulated GBC Array','Measured Cu ...

Array','Measured GBC Array',4)

ylim([−37 0])

xlim([1.5 2.5])

Ch8S11SimMeas.m: The code was used to find out the simulated and measured S11 of
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different combination of copper and graphene-based Tls [Figure 8.7].

clear all

close all

figure

importdata S11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'b*','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal')

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'−−k*','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal', 'Xlim',[0.5 4.5])

grid on;

hold on;

importdata S11HFSS.xlsx

fr1=ans.data(:,1);

r3=ans.data(:,2);

plot(fr1,r3,'−−go','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal', 'Xlim',[0.5 4.5])

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,':r','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal', 'Xlim',[0.5 4.5])

grid on;
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hold on;

importdata S11HFSS.xlsx

fr1=ans.data(:,1);

r3=ans.data(:,3);

plot(fr1,r3,':m','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal', 'Xlim',[0.5 4.5])

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Cu TL + break (measured)', 'Only Cu TL (measured)', 'Only Cu TL ...

(HFSS)','Cu TL + break + GBC TL (measured)', 'Cu TL + break + GBC TL (HFSS)',2)

Ch8S21MeasGain.m: The code was used to find out the measured S21 of different combi-

nation of copper and graphene-based Tls [Figure 8.8].

clear all

close all

figure

importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'black:','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal', 'XLim', [1 4])

grid on;

hold on;

importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'blue','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','XLim', [1 4])

112



grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}| Gain(dB)')

grid on;

hold on;

h= legend ('Copper TL','Copper TL + break + GBC TL',2);

Ch9S11SimMeasurement.m: The code was used to find out S11 (both simulation and mea-

surement) of 2 × 1 anetnna array [Figure 9.4].

clear all

close all

figure

importdata S11Mea.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,3);

plot(fr1,r3,'k:','LineWidth',2.5)

set(gca,'fontsize',40,'fontweight','normal','xlim',[0.5 4.5])

grid on;

hold on;

importdata S11Sim.xlsx

fr1=ans.data(:,1);

r3=ans.data(:,2);

plot(fr1,r3,'b−','LineWidth',2.5)

set(gca,'fontsize',40,'fontweight','normal','xlim',[0.5 4.5])

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Measurement','ADS Simulation',2)
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Ch9S11BendingIterations.m: The code was used to find out S11 of 2 × 1 anetnna array on

the event of 8 different bending iterations [Figure 9.10].

clear all

close all

figure

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,4);

plot(fr1,r3,'−k*');

set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,3);

plot(fr1,r3,'−g*');

set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,5);

plot(fr1,r3,'−b*');

set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,6);

plot(fr1,r3,'−kd');
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set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,7);

plot(fr1,r3,'−gd');

set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,8);

plot(fr1,r3,'−bd');

set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,9);

plot(fr1,r3,'−k*');

set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,10);

plot(fr1,r3,'−b*');
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set(gca,'fontsize',40,'fontweight','normal','Xlim',[1 4.5], 'Ylim', [−20,0])

grid on;

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('scenario a','scenario b','scenario c','scenario d','scenario ...

e','scenario f','scenario g','scenario h',2)

Ch10S11FlatAntenna.m: The code was used to find out S11 value of 4 different scenarios

of the flat antenna [Figure 10.6].

clear all

close all

figure

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,3);

plot(fr1,r3,'−k*','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0 4.5], 'Ylim', [−15,0])

grid on;

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,4);

plot(fr1,r3,'−bd','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0 4.5], 'Ylim', [−15,0])

grid on;

hold on;
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importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,5);

plot(fr1,r3,'−go','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0 4.5], 'Ylim', [−15,0])

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,2);

r3=ans.data(:,6);

plot(fr1,r3,'−rx','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0 4.5], 'Ylim', [−15,0])

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Only Cu layer','Cu layer + a break','Cu layer + GBC layer','Cu + GBC + ...

a break',2)

Ch10GainFlatAntenna.m: The code was used to find out the S21 value of 4 different sce-

narios of the flat antenna [Figure 10.8].

clear all

close all

figure

importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'−k*','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0.5 4], 'Ylim', [−60,0])

grid on;

hold on;
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importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−bd','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0.5 4], 'Ylim', [−60,0])

grid on;

hold on;

importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,4);

plot(fr1,r3,'−go','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0.5 4], 'Ylim', [−60,0])

grid on;

hold on;

importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,5);

plot(fr1,r3,'−rx','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0.5 4], 'Ylim', [−60,0])

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}|(dB)')

grid on;

hold on;

h= legend ('Only Cu layer','Cu layer + a break','Cu layer + GBC layer','Cu + GBC + ...

a break',2)

Ch10S11ConformAntenna.m: The code was used to find out S11 value of 4 different scenarios

of the conformal antenna [Figure 10.13].

clear all
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close all

figure

importdata S11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'−k*','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0 4.5])

grid on;

hold on;

importdata S11.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−bd','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0 4.5])

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {11}| (dB)')

grid on;

hold on;

h= legend ('Both layers (Cu and GBC )','Both layers (Cu and GBC) + a break',2)

Ch10GainConformAntenna.m: The code was used to find out S21 value of 4 different sce-

narios of the conformal antenna [Figure 10.15].

clear all

close all

figure

importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,2);

plot(fr1,r3,'−k*','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0.5 4],'Ylim',[−100 0])

grid on;
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hold on;

importdata Gain.xlsx

fr1=ans.data(:,1)./10ˆ9;

r3=ans.data(:,3);

plot(fr1,r3,'−bd','LineWidth',2.5);

set(gca,'fontsize',40,'fontweight','normal','Xlim',[0.5 4],'Ylim',[−100 0])

grid on;

hold on;

xlabel('f (GHz)')

ylabel(' | S {21}| (dB)')

grid on;

hold on;

h= legend ('Both layers (Cu and GBC )','Both layers (Cu and GBC) + a break',2)
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