
 QUASI-EMPIRICAL AND SPATIO-TEMPORAL VULNERABILITY MODELING OF 

ENVIRONMENTAL RISKS POSED TO A WATERSHED 

 

 

 

 

A Dissertation 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Papia Faustina Rozario 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Major Program: 

Environmental and Conservation Sciences 

 

 

 

 

March 2017 

 

 

 

 

Fargo, North Dakota 

 

 

 



North Dakota State University 

Graduate School 
 

Title 
  

QUASI-EMPIRICAL AND SPATIO-TEMPORAL VULNERABILITY 

MODELING OF ENVIRONMENTAL RISKS POSED TO A WATERSHED 

  

  

  By   

  

Papia Faustina Rozario 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  

    

  
 Dr. Peter G. Oduor 

 

  Chair  

  
Dr. Stephanie S. Day 

 

  
Dr. G. Padmanabhan 

 

  
 Dr. Saleem Shaik 

 

    

    

  Approved:  

   

  3/31/2017    Dr. Craig Stockwell   

 Date  Department Chair  

    

 

 

 

  



iii 

ABSTRACT 

Water quality assessment is crucial in investigating impairment within agricultural 

watersheds.  Seasonal and spatial variations on land can directly affect the adjoining riverine 

systems.  Studies have revealed that agricultural activities are often major contributors to altering 

water quality of surface waters.  A common means of addressing this issue is through the 

establishment and monitoring the health of riparian vegetation buffers along those areas of stream 

channels that would be most susceptible to the threat.  Remote sensing and Geographic 

Information Systems (GIS) offer a means by which impaired areas can be identified, so that 

subsequent action toward the establishment of riparian zones can be taken.  Modeling the size and 

rate of land use and land cover (LULC) change is an effective method of projecting localized 

impairment. 

This study presents an integrated model utilizing Analytical Hierarchical Process (AHP), 

Markov Chain Monte Carlo (MCMC) simulations, and geospatial analyses to address areas of 

impairment within the Pipestem Creek watershed, a part of the Missouri Watershed James Sub-

region of North Dakota, USA.  The rate and direction of LULC change was analyzed through this 

model and its impact on the ambient water and soil quality was studied.  Tasseled Cap Greenness 

Index (TCGI) was used to determine the loss of forested land within the watershed from 1976 to 

2015.  Research results validated temporal and spatial relations of LULC dynamics to nutrient 

concentrations especially those that would be noted at the mouth of the watershed.  It was found 

that the levels of Total Dissolved Solids (TDS) were much higher for the years 2014 to 2016 with 

a discernible increased localized alkalizing effect within the watershed.  Fallow areas were seen to 

produce significant amounts of sediment loads from the sub-watershed.  LULC distribution from 

2007 to 2015 show that it is possible to project future land use change patterns.  About 89.90% 
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likelihood of increment in agricultural land leading to a 77.44% likelihood of decrement in 

forested land in the area was noted for years 2007 to 2015.  TCGI generated higher values for 

years 1976 to 2000 and it gradually reduced for 2000 to 2011 indicating loss of forested land. 
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CHAPTER 1. INTRODUCTION 

1.1. Natural vegetation of North Dakota 

North Dakota’s natural vegetation can be divided into three categories namely the forests, 

grasslands and the wetlands (Kotchman, 2010).  An area saturated by surface water or 

groundwater for a long period of time such that it supports vegetation adaptive to that region is 

called a wetland (Wikum et al., 1974).  These wetlands can be permanent or temporary in terms 

of holding water. North Dakota has a large area under wetlands.  Areas with a higher water 

density, in central North Dakota, are called the prairie potholes region (Seelig, 2009; Wikum et 

al., 1974).  The grasslands, also called the native prairies, are found extensively and comprises of 

mainly three different types - tall grass, mixed grass and short grass (Burns et al., 1990).  Tall 

grass is concentrated along the Red River valley, mixed grass is found in the western part of 

North Dakota and short grass is found in the elevated areas of Missouri region of North Dakota 

(Madurapperuma, 2013).  The forests are mainly of riparian origin and occur along the rivers in 

narrow strips (Rozario et al., 2016).  Aspen and oak forests along with Juniper forests are found 

widespread (Kotchman, 2010). 

1.2. North Dakota soil  

North Dakota has a general soil type known as Williams named after Williams County, 

North Dakota.  It is a loamy soil, which has a high content of organic matter.  The soil is also 

naturally fertile supporting cultivation of various crops (Seelig, 2009).  Soil use in North Dakota 

is generally dominated by field crop and native grass production. In addition, soils are used for 

waste disposal, construction material, building sites, recreational sites and wildlife habitat 

(Sweeney, 2009).  Because of its unique properties, a soil exhibits various levels of suitability for 

different uses (Foth, 1978). 
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1.3. North Dakota watersheds 

North Dakota has 52 watersheds spread over its 53 counties (EPA Web Portal).  

According to the Watershed Boundary Dataset, a surface water drainage is determined using 

topography and hydrographic principles and not on the county or the political boundaries (North 

Dakota State Water Commission, 2011).  Any drainage area of no particular size is called a 

Hydrologic Unit (HU) as part of the hydrologic unit hierarchy and all units are given a code 

called the Hydrologic Unit Code or HUC (Laitta et al., 2004).  A digit is assigned after each 

HUC, which signifies the level or subset (North Dakota State Water Commission, 2011).  

Watershed models are used to fill in the gaps in our understanding of watershed hydrology, the 

effects of human influence on the landscape, and identify nutrient sources (Ma et al., 2000).  

Physical watershed models require data from multiple sources, including meteorology, 

hydrology, water quality, permitted effluent discharges, and even satellite imagery of soils, land 

use and topography (Moriasi et al., 2007).  Model calibration and validation are critical steps in 

model application, producing a representation of the watershed being assessed and predicting 

water quality based on the criteria of the study (Moriasi et al., 2007). 

1.4. Background of land use and land cover change assessment 

The natural environment of North Dakota has been modified to create built environments.  

This is reflected as a change in land use.  According to the National Agricultural Statistics 

Service (NASS, 2012), 90% of the forested land in North Dakota has been converted into 

farmland.  Land cover transition at such a large scale over a period creates environmental issues 

such as water pollution, soil degradation and erosion and this transition needs to be monitored 

and analyzed (Matson et al. 1997).  Land cover generally refers to the biophysical material on the 

Earth’s surface such as forest and urban areas while land use refers to the human use of the land 
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at a particular point in time and examples of this will include wheat farms, and wild life parks 

(Van Lier et al., 2011).  Deforestation, agriculture, expanding farmlands and urban centers are a 

few of the ways in which man is changing the world’s landscape (Foley et al., 2005).  Although 

these activities vary from one place to the other, their impact on the earth’s surface is usually the 

same and combined; these activities paint a picture of man’s contribution in degrading the 

environment (Alemayehu et al., 2009).  Conversion of forestlands to agricultural lands has been 

identified as the major form of land cover modification (Matson et al. 1997).  The quest to 

develop better means of using natural resources and at the same time understand their impact on 

the environment has, over the years led to the development and improvement of maps and other 

methods of landscape analysis.  Our ever-increasing use of the Earth’s resources have led to both 

short and long term effects on the environment, and for decades remote sensing has played a 

major role in the understanding of the consequences of man’s actions (Makhamreh et al., 2011).  

Change detection (monitoring changes in pixel value between images of a given location 

acquired at different times) using remote sensing has been considered of great importance in the 

monitoring of the Earth’s well-being (Van Oort P.A.J., 2007).  Change detection analyses are 

used to monitor the dynamic nature of biophysical and anthropogenic features on the Earth’s 

surface.  As aforementioned, it is important that such changes be monitored so that their 

contribution to global environmental change can be fully understood (Morawits et al., 2006).  

Change detection analysis is performed using multi-date imagery (Singh, 1989).  Single date 

imagery show the land uses and land covers for a particular point in time but multi-date imagery 

show the land use and the land cover of a particular place at different points in time, (t1, t2….tn) 

(Jensen, 2005).  Land use like commercial, residential, transportation, utilities, cadastral, and 

land cover mapping have been especially improved over the years by the use of multi-date 
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imagery, which have been used in cases of progressive or gradual environmental changes such as 

erosion or reforestation for which more than one image may be necessary (Le Hegarat-Mascle 

and Seltz, 2004; Jensen, 2005).  Of the many different change detection techniques that exist, 

two main categories can be identified.  One category involves techniques that first detect change 

and then assign classes to the detected change (e.g., principal component analysis and image 

differencing) (Singh, 1989).  A second category of techniques first assigns classes and then 

detects the changes between the different classes (Singh, 1989).  An example of this second 

category of techniques is the post classification method of change detection (Van Oort P.A.J, 

2007).  Change detection analysis takes into consideration image characteristics such as spatial 

(and look angle), radiometric, temporal and spectral resolutions (Madurapperuma et al., 2015).  

For the most part, the type of land use or land cover to be studied and the level of detail needed 

in the study, determines the type of sensor to be used like, Landsat 5 -5 band image , Landsat TM 

-7 band image , SPOT, or Landsat Enhanced Thematic mapper (ETM) among others (Jensen, 

2005).  Visual change detection analysis (comparing the difference between two or more image 

visually, without any band analysis) is a basic form of change detection, cannot be grouped 

under any of the above categories, and has been successfully used by the National Wetlands 

Inventory (Wilkie and Finn, 1996).  Unfortunately, visual change detection is time consuming 

and tedious, thus making automated (software driven) change detection analysis a more widely 

used procedure (Wilkie and Finn, 1996).  Our ability to monitor successional changes in the 

environment has been made more practical since the launch of Earth resource sensing satellites.  

Change detection analysis, may be enhanced through anniversary date synchronization 

(Lillesand and Kiefer 2000).  Using anniversary date images (images from same month but 

different year) ensures that the sun’s angle of incidence is the same on both days of image 
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capture (Lillesand et al., 2004).  In the case of post-classification change detection analysis, it is 

necessary that both images have high classification accuracy and accuracy assessment 

determines how well the classified image corresponds with what actually exists on the Earth 

surface (Jensen, 2005).  A Confusion Matrix is way of assessing accuracy of a classification 

model that contains information about actual and predicted classifications done by a 

classification system (Provost and Kohavi, 1998).  The term confusion relates to the true 

positives, true negatives, false positives and false negatives that are associated with this matrix.  

True positive is the proportion of positive cases that were correctly identified (Provost and 

Kohavi, 1998).  For example, if the Confusion Matrix is used to predict change in forested areas 

to non-forested areas from 1976 to 1991, the cases in which the model predicts yes and there is 

actual change, then it is a true positive.  Similarly, the case in which the matrix predicts no and 

there is no actual change then it is said to be a true negative.  True negative is defined as the 

proportion of negative cases that were classified correctly (Provost et al., 1998).  False positive is 

the proportion of negative cases that were incorrectly classified as positive whereas false 

negative is the proportion of positive cases that were incorrectly classified as negative (Provost et 

al., 1998).  Accurate spatial registration, similar acquisition sensors same spatial, spectral and 

radiometric resolutions, of the images are all necessary for an effective change detection analysis 

to be performed (Jensen, 2005).  In most cases, the above factors depend on the feature under 

study like lake levels, tidal stage (affected mostly by the moon), wind and soil moisture, might 

also be important in change detection analysis (Lillesand et al., 2004). 

1.5. Geographic Information Systems (GIS) and Remote Sensing (RS) 

A geographic information system (GIS) lets us visualize, question, analyze, and interpret 

data to understand relationships, patterns, and trends (Burrough, 1986).  Remote Sensing (RS) 



6 

and Geographic Information Systems (GIS) help us in understanding how land use and land 

cover change over time and space, to understand the relationships between anthropogenic and 

natural phenomena and to make proper land management decisions (Kamusoko and Aniya 

2006).  The output of a remote sensing system is usually an image representing the scene being 

observed.  Geographic Information Systems and Remote Sensing provide ideal platforms for 

monitoring and analyzing the spatio-temporal change in land use and land cover (Rozario et al., 

2016).  Studying the spatial pattern of land use gives us an idea of the underlying human 

activities at work in that particular region.  Georegistered multi temporal remote sensing data 

helps determine the change associated to land use and Land cover.  Collaborating field data with 

remotely sensed data can give us an inexpensive and faster way of assessing such change. In situ 

soil samples and water samples would reflect the increase or decrease in the nutrients present.  

This would enable us determine whether the water or the soil of that region is contaminated and 

to what extent. 

1.6. Title justification 

Quasi – empirical methods are a way of gaining knowledge by means of direct and 

indirect observation (Patton, 1990).  Collecting field data and using it in research is a quasi – 

empirical approach used in this research.  A Bayesian Markov Chain Monte Carlo model is an 

example of such a model.  This research proposes a vulnerability model, that is, an index of the 

ability to produce clean water (IAPCW) which generated a composite score of the watershed 

highlighting areas of impairment within the watershed.  The IAPCW model was able to predict 

areas within the watershed that were vulnerable to nutrient and sediment loading.  The hybrid 

watershed model developed in this research is a spatial-temporal model since the preliminary 
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data was collected across time as well as space and spatial dependence of variables were 

analyzed. 

1.7. Description of study area 

The Missouri River sub-basin is approximately 635,500 acres, spreading over four 

counties of North Dakota namely Foster, Kidder, Stutsman, and Wells in the Missouri Region – 

James River Sub-Region of North Dakota.  James River, Maple River, Pipestem Creek, Beaver 

Creek and Spring Creek are located in this sub basin.  Of the 635,500 acres, Stutsman County 

contains 65%, Wells 22%, Foster 8%, and Kidder 5 % (NRCS, 2007).  There are approximately 

450 farms in the sub-basin.  These farmlands produce commodities ranging from soybeans, 

wheat, barley, corn, canola, sunflowers, and field peas to beef cattle, swine, poultry, and bees.  

This region is mostly converted to agricultural land from forested land (NRCS, 2007).  Thin 

buffers of riparian forests exist along the rivers.  Figure 1.1. shows the map of the study area-

Pipestem Stem creek along with James River.  Pipestem Creek starts from the Pipestem Dam 

downstream to its confluence with the James River, which is about 5.6 miles.  The mean annual 

precipitation is from 13 to 22 inches and mean elevation ranging from 1,280 to 2,560 feet.  The 

type of soil found at this location is Williams–Bowbells loams which is a well-drained, non-

saline clay loam with calcium carbonate of about 20%.  Figure 1.2. shows a part of the watershed 

near Pingree, North Dakota, which was one of the sampling locations.  Figure 1.3. shows a view 

of the watershed from Sykeston, North Dakota.  Human activities like construction of 

impervious surfaces affect watersheds.  Urban areas are appropriate examples of such surfaces.  

The amount of runoff is thus increased to foster surface erosion.  This could be prevented if a 

buffer of forests is present in the areas in question.  Most forest cover are of riparian origin and 

are found scattered along riverbanks.  Table 1.1. shows the Land cover percentage within the 
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Missouri Watershed James subregion where the percentage area allotted for cultivated crops is 

much higher that the forest covers.  Table 1.2. shows the Agricultural Land Suitability within the 

Missouri Watershed James subregion in North Dakota indicating a high suitability for grassland. 

 

Figure 1.1. Map of study area depicting Pipestem Creek watershed and James River in North 

Dakota.  Data for the boundaries of the watershed, county boundary and river were downloaded 

from the North Dakota GIS Hub Data Portal (http://www.nd.gov/gis/).  Accessed: January 26, 

2011.  Vegetation, hillshade, shallow water and bare soil cover were derived from Landsat 

images, downloaded from EarthExplorer portal (http://earthexplorer.usgs.gov).  Accessed: 

January 26, 2011. 
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Figure 1.2.  An image of the Pipestem Creek watershed from Pingree in North Dakota, 

which was one of the sampling locations.  Picture was taken on July 18, 2011. 

 

Figure 1.3. An image of the Pipestem Creek watershed from Sykeston in North Dakota, 

which was one of the sampling locations.  Evidence of eutrophication can be seen here. 
Picture was taken on July 18, 2011. 
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Table 1.1. Land cover percentage within the Missouri Watershed James subregion.  Data was 

acquired from the NRCS database 2007 (https://www.nrcs.usda.gov).  Accessed: March 28, 

2011. 

 

Land cover Area (hectares) Percentage 

Developed open space 28758.24 0.148883 

Developed Low intensity 106.65 0.000552 

Developed Medium Intensity 924.57 0.004787 

Barren Land 53494.38 0.276943 

Deciduous Forest 257179.5 1.331431 

Evergreen Forest 30946500 0.016021 

Mixed Forest 514.08 0.002661 

Shrub land 503344.26 2.605837 

Grassland/Herbaceous 5776106.58 29.90318 

Cultivated Crops 6242172.75 32.31603 

Small Grains 4432623.48 22.94791 

Fallow Land 1424838.87 7.376459 

Urban Grasses 13927.68 0.072104 

Forested wetlands 21897.45 0.113364 

Emergent wetlands 557043.48 2.883841 

Total 50259431.97 100 
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Table 1.2. Agricultural Land Suitability within the Missouri Watershed James subregion.  Data 

was acquired from the NRCS database 2007 (https://www.nrcs.usda.gov).  Accessed: March 28, 

2011. 

 

Land cover Area (hectares) Percentage 

Shrub land 566090.37 45.6379 

Grassland/Herbaceous 649650.6 52.37448 

Forested wetlands 24654.24 1.987612 

Total 1240395.21 100 

 

1.8. Dissertation layout 

The dissertation consists of five chapters including an introduction, three chapters, which 

stem from published papers and the last chapter focusing on general conclusions and future 

work.  Chapter 1 is a general introduction on the natural vegetation, soils and watersheds of 

North Dakota.  It also highlights a literature review of the various methods of assessing land use 

and land cover change and the role of Remote Sensing and GIS in it.  The details of the study 

area – Pipestem Creek watershed in North Dakota is included in this chapter, along with the 

conclusions drawn from this study.  Chapter 2 discusses about developing a spatial model using 

Analytical Hierarchical Process (AHP).  Several input parameters such as forest cover, riparian 

buffers, agricultural land, soil erodibility factor, road density and housing density were processed 

as independent datasets and then weights were assigned for each dataset.  These datasets were 

modeled on a GIS platform to derive a single dataset showing areas of impairment within the 

watershed.  An Index called the index of the ability to produce clean water (IAPCW) was generated 

for the watershed.  This model was then compared to a distributed model, AnnAGNPS, and 
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results showed that fallow areas produced significant amount of sediment loads from the sub-

watershed.  The same locations generated a low IAPCW.  This chapter also explains the water 

quality and soil chemistry results acquired from the impaired areas within this watershed.  

Therefore, this model ascertains the increase in sediment load within the watershed indicating a 

change in LULC.  Chapter 3 includes a comparison of the land use change detection statistics 

with a stochastic model such as the Markov Chain Monte Carlo Model.  Changes from forested 

land to non-forested land was quantified for the years 2007 to 2015.  The results showed 

concomitancy between the two methods.  The Markov Chain Monte Carlo Model however had 

higher accuracy and was able to project future change.  The combination of the spatial model 

discussed in chapter 2 and the stochastic model discussed in chapter 3 proved to be a good fit to 

assess LULC change and determine areas of impairment within a watershed.  Chapter 4 

discusses the implementation of a remote sensing technique - Tasseled Cap Transformation, and 

a geostatistical technique - Exponential Kriging interpolation to assess the intensity and direction 

of LULC change within the watershed.  This model also studies the spatial structure within the 

watershed.  The final chapter concludes the dissertation and proposes future work that can be 

done as an extension on this research. 

1.9. Conclusion 

This research addresses two key questions: (1) What amount of change has occurred in 

land use and land cover within the particular agricultural watershed? (2) How much change will 

take place in the future and in what direction?  In relation to the stated questions, our four central 

objectives were met: (1) to create map overlays that will help quantify forest cover, open water 

areas and developed areas, (2) to develop indicators that will help prioritize areas that could be 

designated as areas for conservation within this watershed, (3) to analyze the direction, rate, and 
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spatial pattern of land use change within the watershed using a transition model, e.g. Markov 

Chain Monte Carlo (MCMC) Simulation, and, (4) to use a validation and prediction model such 

as Kriging to evaluate the change.  This research project contributes to the growing field of work 

on land use change and its implications on riverine systems by introducing a new technique of 

incorporating Markov chain models in land use change maps.  This will broaden our 

understanding of anthropogenic activities affecting land use change. GIS, RS and land use 

pattern metrics were coupled to quantitatively characterize the LULC change within an 

agricultural watershed.  Changes quantified using remote sensing technologies provide 

observations which may show critical adverse and undesirable environmental impacts, hence 

requiring crucial sustainable land management policies and practices to avoid the endangering of 

the environment and sustainable development.  This research presents geostatistical and 

deterministic methods to model uncertainties in image-derived estimates of the areal extent of 

developing land use policies.  These uncertainties have a spatial attribute concerning the size of 

land use and proportion of land use.  The spatial model using AHP utilized fewer parameters 

compared to other distributed models and was successful in replicating similar results.  The 

Markov-CA model performance in predicted LULC distribution reveals the potential and the 

merit of using this approach for projecting land use change in similar agricultural areas.  The 

simulated potential distribution of the LULC classes indicated that the changes the landscape has 

experienced in the recent past are likely to continue. 
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CHAPTER 2. QUANTIFYING SPATIOTEMPORAL CHANGE IN LAND USE AND 

LAND COVER AND ASSESSING WATER QUALITY: A CASE STUDY OF MISSOURI 

WATERSHED JAMES SUB-REGION, NORTH DAKOTA, USA1 

2.1. Abstract 

Spatial causal effects on water quality are essential in identification of vulnerable 

watersheds.  Modeling land use variables is an effective method of projecting localized 

impairment. This study presents an integrated index, designed to gauge the ability of an 8-digit 

Hydrologic Unit Code watershed in its ability to produce clean water.  This index, IAPCW, can be 

successfully applied on a geospatial platform.  In this study we utilized IAPCW to address forest 

cover dynamics of an impaired watershed, that is, Missouri Watershed James Sub-region in 

North Dakota. Specific parametric functions were analysed and combined within a customized 

GIS interface to provide a multi-faceted structured technique to derive IAPCW.  These included 

ambient forest cover, housing density, agricultural land, soil erodibility and road density; it can 

be lucidly ascertained that where a prevailing forest cover undergoes conversion processes, the 

secondary effect may spur an exponential increase in water treatment costs. These parameters 

when projected statistically validated temporal and spatial relations of land use/land cover 

dynamics to nutrient concentrations especially those that would be noted at the mouth of the 

watershed.  In this study, we found that the levels of Total Dissolved Solids (TDS) were much 

higher for the years 2014 to 2016 with a discernible increased alkalizing effect within the 

                                                           

1 The material in this chapter was co-authored by Papia F.Rozario, Dr.Peter Oduor, Larry Kotchman and Michael 

Kangas (Published in Journal of Geographic Information System, 8, 663-682. 

https://doi.org/10.4236/jgis.2016.86053).  Papia F. Rozario had primary responsibility for conducting this research 

including collecting field samples.  Papia F. Rozario was the primary developer of the conclusions that are advanced 

here.  Papia F. Rozario also drafted and revised all versions of this chapter.  Dr.Peter Oduor served as proofreader 

and checked the math in the statistical analysis conducted by Papia F. Rozario. 

https://doi.org/10.4236/jgis.2016.86053).%20%20Papia
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watershed.  When IAPCW was compared to Annualized Agricultural Nonpoint Source 

(AnnAGNPS), the spatial distribution generated by the AnnAGNPS study showed that fallow 

areas produced significant amounts of sediment loads from the sub-watershed.  These same 

locations in this study generated a low IAPCW. 

2.2. Introduction 

Water and sediment supply, and their management, are critical to many hydraulic project 

operations.  Trend analysis of water quality data is an essential environmental diagnosis of a 

stream allowing evaluation of how the water body has responded to change in land use over a 

period of time (Sadoddin et al., 2012).  They directly impact sustainable use of reservoirs, water 

quality, and riparian habitat (Youg G. Lai, 2005).  However, we are limited by the tools and 

methodology available to understand the future impacts on a larger scale.  Water and sediment 

supply has been measured only at limited locations and over a limited time period.  Thus we 

need a predictive model that provides a viable alternative.  Sekar and Randhir (2007) developed 

prioritization maps to characterize conjunctive water harvesting potential that is based on 

benefits and costs.  The results of their study demonstrate that a spatially variable harvesting 

strategy can be used to minimize runoff loss and to augment water supplies. 

Changes in the composition of soil take place due to change in Land Use Land Cover 

(LULC).  LULC is an integrated term that includes both categories of LULC and analysis of 

changes is of prime importance to understand many social, economic and environmental 

problems (Pelorosso et al., 2008).  Land use (LU) and Land cover (LC) are the two fundamental 

components describing the terrestrial environment in relation to both natural and anthropogenic 

processes (Jansen and di Gregorio, 2002; Bender et al., 2005; Mendoza et al., 2010, 2011).  

Environmental modifications worldwide are mostly caused due to LULC changes, thus it 
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emerges as a key research question (Xiao et al., 2006).  Quantifying landscape patterns enable us 

to identify and evaluate temporal changes and enable the study of the effects of pattern on 

ecological processes (Turner 1989).  Jensen (2005) in his investigation of urban landscape 

perceived land use as a way by which human beings utilize land while land cover exists as a 

natural environmental system.  Remote sensing and Geographic Information Science (GIS) 

techniques have been effectively utilized to identify and quantify periodic change in the 

landscape and its consequent environmental impacts (Madurapperuma et al., 2015).  Land cover 

is an important parameter for monitoring agricultural, hydrological and watershed modeling 

which constitute necessary tools for development, planning and management of natural resources 

in a particular region (Madurapperuma et al., 2015).  Past research has shown that increase in 

agricultural land use has direct consequence on sedimentation, nutrients, and pesticides in 

streams (Osborne and Wiley, 1988; Soranno et al., 1996).  Land use change detection is therefore 

a critical requirement for the assessment of potential environmental impacts and developing 

effective land management and planning strategies (Leh et al., 2011).  Surface water bodies are 

the potential recipients of the contaminations contained in surface runoff from their catchments 

(Chin, 2006). This makes surface water quality monitoring an important parameter.  There are 

limited resources available for conservation that can be allocated to the erosion susceptible areas.  

These areas can be highlighted through mapping, monitoring and prioritizing (Fei et al., 2010).  

Erosion risk mapping of the area can enable the decision makers to prioritize the susceptible 

areas for conservation measures in accordance with their level of vulnerability (Iqbal et al., 

2014).  According to USDA Forest Service, protecting and managing forests in source 

watersheds is an essential part of future strategies for providing clean safe drinking water thus an 

Index of the Ability to Produce Clean water (IAPCW) can be generated through GIS overlay 
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Analysis to prioritize impaired watersheds. Spatial Multi Criteria Decision Making (MCDM) has 

also become one of the most useful methods for land use and environmental planning, as well as 

water and agricultural management (Davidson et al., 1994; Ahamed et al., 2000; Joerin et al., 

2001; Ceballos-Silva and López-Blanco, 2003; Sicat et al., 2005; Chen et al., 2007). As a result, 

the request for GIS models and tools supporting collaborative decisions has increased over the 

last decade (Kollias and Kalivas, 1998; Karnatak et al., 2007; Reshmidevi et al., 2009; Chen et 

al., 2009).  GIS-based MCDM involves a set of geographically defined basic units (e.g. polygons 

in vectors, or cells in rasters), and a set of evaluation criteria represented as map layers or 

attributes.  Based on a particular ranking schema, it ultimately informs a spatially complex 

decision process by deriving a utility of these spatial entities through overlaying the criterion 

maps according to the attribute values and decision maker’s preferences using a set of weights.  

Therefore, besides criteria selection, criteria weight severely impacts the results of the MCDM 

(Chen Y. et al, 2010).  Nutrients in a water body such as nitrogen and phosphorus are considered 

to be pollutants when these nutrient concentrations become excessive, causing some organisms 

to proliferate at the expense of others (Davis and Masten, 2004).  The situation is significantly 

multiplied by eutrophication, which is caused by excessive algae growth in a water body from 

surrounding agricultural watersheds due to the excessive presence of the necessary growth 

nutrients and ambient conditions that promote algal blooms.  This enhanced plant growth reduces 

the dissolved oxygen levels when the plants decompose, potentially hindering the survival of fish 

and other aquatic life that depend on pristine conditions (Ritter and Shirmohammadi, 2001).  

These physical and chemical changes may interfere with the recreational and aesthetic uses of 

the water body, while both taste and odor problems may make the water less desirable for water 

supply and human consumption (Ritter and Shirmohammadi, 2001).  Thus, it is essential to 
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estimate and qualify nutrient contaminations within the watershed.  The objectives of this current 

study are to assess and analyze the LULC changes and to prepare a risk map through weighted 

overlay of influencing factors such as vegetation, rainfall, LULC, soil data and water quality 

data.  Figure 2.1. shows the sampling sites within the Pipestem Creek watershed. In the process, 

we also identified the potential areas showing levels of vulnerability to change in soil and water 

quality. 

Figure 2.1. Pipestem Creek in North Dakota, USA depicting sampling locations around the 

watershed.  Data for the boundaries of the watershed, county boundary, towns and river were 

downloaded from the North Dakota GIS Hub Data Portal (http://www.nd.gov/gis/).  Accessed: 

January 26, 2011.  
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2.3. Materials and methods 

2.3.1. Data processing and GIS analysis 

Historic data of Pipestem Creek was used to perform a spatial analysis and identify 

localised areas of impairment within the watershed.  Forest Cover including riparian forests and 

agricultural land use data was acquired from United States Department of Agriculture National 

Agricultural Statistics Service (NASS).  Soil erodibility dataset was acquired from United States 

Department of Agriculture National Resources Conservation Service (NRCS).  Road network 

data and year 2000 Housing Density data was acquired from the North Dakota GIS Hub.  The 

land use and land cover was classified using the Anderson classification system (Anderson, 

1976).  NLCD data, a raster dataset was imported to ArcMap®9.3, a GIS software, where only 

the study area was clipped.  Each attribute dataset was processed individually to produce a raster 

grid.  To summarize forest cover, the “Tabulate Areas” function was used in ArcMap®9.3, to 

calculate the acreage of forested land for the watershed.  The percent of the watershed that is 

forested was calculated by dividing the acreage of forested land by the total watershed land 

acreage (Barnes et al., 2009).  The results were saved to the attribute field of this shapefile, 

which was then converted to a 30 m raster dataset (Figure 2.3.).  The percent forest was 

reclassified into the four categories.  Category break points were entered as half integers between 

the intervals.  For example, a value of 24.5 was the break point for percent forest land scored as 

low or moderate.  The results were saved in the corresponding attribute field.  Agricultural land 

was summarized using grid values from the NLCD 2001 dataset of North Dakota.  The same 

method was replicated to tabulate the areas under agricultural land.  The percent agricultural land 

was reclassified into the four categories summarized in Table 2.1.  Category break points were 

entered as half integers between the intervals.  For example, 30 was the threshold for percent 
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agricultural land scored as low.  The results were saved in the attribute field of this shapefile 

which was then converted to a 30 m raster dataset (Figure 2.4.).  For riparian forest cover, the 

acreage of riparian forested land was divided by the total acreage of riparian buffer in the 

watershed.  The percent riparian forest cover was reclassified into the four categories 

summarized in Table 2.1.  Category break points were entered as half integers between the 

intervals.  A value of 29 was the break point for percent riparian forest scored as low.  The 

results were saved in the attribute field of this shapefile which was then converted to a 30 m 

raster dataset (Figure 2.2.).  The North Dakota national roads dataset was split into east and west 

portions using the county boundary shapefiles.  The “Repair geometry” tool for the east and west 

roads dataset was used to repair self-intersecting lines.  The “multipart to single part” tool on 

each dataset was used to join multipart lines.  Each road shapefile was converted to a coverage 

arc.  A “Simplify Line” tool was run on each layer to remove excessive vertices.  The 

simplification tolerance was set to 10m.  A “Line Density” function was applied on each of the 

resulting coverage.  Parameters were set as cell size to be 30m, search radius to be 565 m (to 

equal a search area of approximately 1 km2) and the units were set as square kilometre.  Finally, 

the East and West line density raster was merged into one raster dataset (Figure 2.5.).  The 

results were sorted into four quartiles, and reclassified with values 1-4 as shown in table 2.1.  To 

summarize the soil erodibility map, first, the soil dataset was clipped to the watershed boundary. 

Then this dataset was converted to a raster format using kffact field as the grid value.  The kffact 

field is the k factor in the soil which contains the erodibility values in the dataset.  The grid 

(Figure 2.6.) was then reclassified as shown in table 2.1.  The raw housing data file was 

reclassified into 15 classes to reduce the file size.  The classification used was based on 2000 

U.S. Census Bureau block (SFI) data developed by the Natural Recourse Ecology Lab (Barnes et 
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al., 2009).  Each of the 15 classes was assigned a range of housing density, for example, class 5 

ranged from 32 to 49.  To summarize the housing density data, the raw 2000 housing density 

data was clipped to the watershed area and resampled from a 100 m grid to a 30 m grid (Figure 

2.7.).  The raw grid values in units per hectare were converted to acres/unit using the relation 

(Barnes et al., 2009) in equation 2.1. 

((units/ha)/1,000) * 1 ha/2.47 acres = units/acre (invert) = acres/unit, (2.1.) 

Table 2.1. (a) Percent forest cover reclassification; (b) Percent agricultural land reclassification, 

(c) Percent riparian forest cover reclassification; (d) Road density reclassification; (e) Soil 

erodibility reclassification; (f) Housing density reclassification. 

(a) 

Attribute 

Rating for 30-meter grid cell  

Low 

(1 point) 

Moderate 

(2 points) 

High 

(3 points) 

Very High 

(4 points) 

Percent forest land (F) 0 – 24 25 – 49 50 – 75 >75 

(b) 

Attribute 

Rating for 30-meter grid cell  

Low 

(1 point) 

Moderate 

(2 points) 

High 

(3 points) 

Very High 

(4 points) 

Percent agricultural land (A) >30 21 – 30 10 – 20 <10 
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Table 2.1. (a) Percent forest cover reclassification; (b) Percent agricultural land reclassification;  

(c) Percent riparian forest cover reclassification; (d) Road density reclassification; (e) Soil 

erodibility; (f) Reclassification and Housing density reclassification (continued). 

(c) 

Attribute 

Rating for 30-meter grid cell  

Low 

(1 point) 

Moderate 

(2 points) 

High 

(3 points) 

Very High 

(4 points) 

Percent riparian forest cover (R) 0 – 29 30 – 50 51 – 70 >70 

(d) 

Attribute 

Rating for 30-meter grid cell  

Low 

(1 point) 

Moderate 

(2 points) 

High 

(3 points) 

Very High 

(4 points) 

Road density (D, quartiles) 
75 – 100th 

percentile 

50 – 74th 

percentile 

25 – 49th 

percentile 

0 – 24th 

percentile 

 (e) 

Attribute 

Rating for 30-meter grid cell  

Low 

(1 point) 

Moderate 

(2 points) 

High 

(3 points) 

Very High 

(4 points) 

Soil erodibility (S, k factor) >0.34 0.28 – 0.34 0.2 – 0.28 0 – 0.2 

 

  



27 

Table 2.1. (a) Percent forest cover reclassification; (b) Percent agricultural land reclassification;  

(c) Percent riparian forest cover reclassification; (d) Road density reclassification; (e) Soil 

erodibility; (f) Reclassification and housing density reclassification (continued). 

(f) 

Attribute 

Rating for 30-meter grid cell  

Low 

(1 point) 

Moderate 

(2 points) 

High 

(3 points) 

Very High 

(4 points) 

Housing density (H, acres per 

housing unit in 2000) 

< 0.6 

acre/unit 

0.6 – 5.0 

acres/unit 

5.0 – 20.0 

acres/unit  

> 20.0 

acres/unit  

This generated a new reclassified dataset with 15 classes.  The 15 value classes were categorised 

into four housing density classes: rural, exurban, suburban, and urban where rural ranged from 1 

to 8 and assigned a reclassified value of 4; exurban was 9 to 10 assigned a value of 3; suburban 

was 11 to 12 which was assigned a value of 2 and for the urban class, ranging from 13 to 15 

assigned a value of 1.  So weightage was assigned based on this as shown in table 2.1.  Using raster 

calculator add function for the six raster, resulted in a grid output with values ranging from 6 to 

24 for each 30 m grid cell.  Using ArcMap® 9.3 Spatial Analyst, a weighted overlay was performed 

using the data that included forested land, riparian cover, agricultural land suitability, soil 

erodibility, road density and housing density data.  Equation 2.2 shows the underlying concept in 

a weighted overlay process. 

𝐼𝐴𝑃𝐶𝑊 = 𝑅 + 𝐹 + 𝑆 + 𝐴 + 𝐷 + 𝐻                                                          (2.2.) 

where, F = forest land (percent); A = agricultural land (percent); R = riparian forest cover 

(percent); D = road density (quartiles); S = soil erodibility (k factor); H = housing density (acres 

per housing unit in 2011). 
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Figure 2.2. GIS weighted scoring showing percentage change in riparian forests within the 

Pipestem Creek watershed.  Riparian forest cover was derived from NASS datasets.  Data 

for the watershed boundary was downloaded from the North Dakota GIS Hub Data Portal 

(http://www.nd.gov/gis/).  Accessed: January 26, 2011. 

 

 

Figure 2.3. GIS weighted scoring showing percentage change in other forests within the 

Pipestem Creek watershed.  Forest cover was derived from NASS datasets.  Data for the 

watershed boundary was downloaded from the North Dakota GIS Hub Data Portal 

(http://www.nd.gov/gis/).  Accessed: January 26, 2011. 
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Figure 2.4. GIS weighted scoring showing percentage of agricultural land within the Pipestem 

Creek watershed.  Percentage of Agricultural land was derived from NLCD.  Data for the 

watershed boundary was downloaded from the North Dakota GIS Hub Data Portal 

(http://www.nd.gov/gis/).  Accessed: January 26, 2011. 

 

 

Figure 2.5. GIS weighted scoring showing percentage of road density within the Pipestem Creek 

watershed.  Road Density was derived from datasets acquired from the North Dakota GIS Hub 

Data Portal.  Data for the watershed boundary was also downloaded from the North Dakota GIS 

Hub Data Portal (http://www.nd.gov/gis/).  Accessed: January 26, 2011. 
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Figure 2.6. GIS weighted scoring showing soil erodibility within the Pipestem Creek watershed.  

Soil erodibility data was derived from NRCS datasets.  Data for the watershed boundary was 

downloaded from the North Dakota GIS Hub Data Portal (http://www.nd.gov/gis/).  Accessed: 

January 26, 2011. 

 

 

Figure 2.7. GIS weighted scoring showing percentage of housing density within the Pipestem 

Creek watershed.  Housing Density was derived from datasets acquired from the North Dakota 

GIS Hub Data Portal.  Data for the watershed boundary was also downloaded from the North 

Dakota GIS Hub Data Portal (http://www.nd.gov/gis/).  Accessed: January 26, 2011. 
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IAPCW is the Index of the Ability to Produce Clean Water.  All the variables were 

classified into four classes: low, moderate, high and very high.  This was done to maintain an 

equal influence.  The weighted overlay tool generated a final raster dataset, which was a mean 

composite score by watershed.  Figure 2.8 shows the map of the study area with the IAPCW.  The 

IAPCW was originally used in a study conducted by Barnes et al., in 2009 where the index was 

generated for a watershed at a regional level. 

2.3.2. Analysis of soil data 

Soil samples were collected from the top soil layer (0-6) inch to capture leachable ions in 

2011 within Pipestem Creek watershed.  The sampling sites were selected such that they 

incorporated the entire study area.  Areas that depicted a low composite score in the map of the 

IAPCW (Figure 2.8) were kept in consideration while choosing the sampling points.  Soil testing 

was done to analyze 12 different elements, which included Sodium, Potassium, Calcium, 

Magnesium, Copper, Chlorine, Nitrate, Phosphate, Zinc, Iron, Manganese and sulphur.  Nitrate 

Electrode Method was used to read the Nitrate concentration in the soil where 20g of the soil 

sample was added to 50ml of an extracting solution. The suspension was stirred with a magnetic 

stirrer and then read on a pH/ion meter.  Chlorides were also estimated using a pH/ion meter.  

The Olsen Test was used to detect Phosphorus levels in the soil where the colorimeter is used to 

produce an intensity and standard curve to determine phosphorus concentration in the soil.  

Estimates of available Potassium (K) in the soil were done by Atomic adsorption/emission 

Spectrometer which gives a standard curve for K by emission.  The result was multiplied by 10 

to give ppm in a soil (mg K/kg).  Estimates of exchangeable calcium and magnesium were also 

acquired using Atomic adsorption/emission Spectrometer by adsorption and Sodium estimates by 

emission. Inductively coupled plasma (ICP) was used to measure sulphate levels in solution, as 
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well as organic and inorganic S.  The advantage of ICP is in its low standard errors.  

Micronutrients such as Zinc, Iron, Manganese and Copper were estimated using an Atomic 

absorption spectrophotometer. 

 

Figure 2.8. Index of the ability to produce clean water (IAPCW) within the study area.  The 

composite score shows areas within the watershed having higher or lower ability to produce 

clean water. 

2.3.3. Analysis of water quality data 

Water samples were collected from 8 different sites along the Pipestem Creek-James 

subregion of the Missouri river in 2011 and 2016.  Again, areas that depicted a low composite 

score in the map of the IAPCW (Figure 2.8.) were kept in consideration while choosing the 

sampling points.  These were independently tested in an EPA certified laboratory (Fargo Cass 

Public Health Environmental Laboratory in North Dakota) using standard EPA methods, sound 

Colorimetric and Ion Chromatography (IC) principles.  The EPA 300.0 method (Pfaff, 1993) was 

used to analyse Nitrate-Nitrite, Sulphate, Chloride and fluoride amounts in the water.  All 

samples that contained particles larger than 0.45 microns and reagent solutions that contain 
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particles larger than 0.20 microns were filtered prior to any IC analysis.  This method involves 

introducing 2-3 ml of the water sample to an Ion Chromatograph where the anions of interest are 

separated, measured, using a system comprised of a guard column, analytical column, suppressor 

device, and conductivity detector.  A 1 mL of concentrated eluent (7.3 100X) to l00 mL of each 

standard and sample was added for presence of negative peaks near the fluoride peak can usually 

be eliminated by the addition of the equivalent.  The EPA 200.7 method (Martin et al., 1992) was 

used to quantify amounts of Calcium, Iron, Manganese, Magnesium, Sodium, Potassium and 

total hardness.  This method involves multi-elemental determinations by an Inductively Coupled 

Plasma Atomic Emission Spectroscopy (ICP-AES) using sequential or simultaneous instruments.  

The instruments measure characteristic atomic-line emission spectra by optical spectrometry.  

SM2320 B Titration Method was used for carbonates, bicarbonates, hydroxides and total 

alkalinity where a pH meter was used (APHA, 1915).  This method involves hydrolysis of 

solutes that react with the addition of standard acid whereas alkalinity would depend on the pH 

used.  The amount of Total Dissolved Solids (TDS) was analysed using the SM2540C method 

where a well-mixed sample is filtered through a standard glass fiber filter, and the filtrate is 

evaporated until dry in a weighed dish to constant weight at 180°C.   The increase in dish weight 

represents the total dissolved solids (Brown, 1979). 

2.4. Results and discussion 

GIS Weighted Overlay scoring (Figure 2.8) on a 30-meter grid generated an index that 

ranked (high to low) the watershed based on its ability to produce clean water.  Results generated 

were primarily driven by affiliated land use.  Areas that are darker with a high composite score 

from 25 to 30 represent areas within the watershed having a higher ability to produce clean water 

which corresponds to high riparian cover, high forest cover, low soil erodibility, low agricultural 
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land, low road density and low housing density.  Similarly, areas that are lighter in colour, with a 

low composite score from 5 to 15, are areas that have a very low ability of producing clean water 

corresponding to low riparian cover, low forest cover, high soil erodibility, high agricultural 

land, high road density and high housing density. 

Table 2.2. In situ water sample data from the sampling locations collected within the Pipestem 

Creek watershed in 2011 showing the sediment load. 

 

This indicates a direct geographic connection between forests, water and people.  Forest 

cover (Figure 2.3) on the southern part of the watershed is almost negligible as most of the 

agricultural fields lie there.  This region shows a very low IAPCW.  The entire watershed has a very 

low riparian buffer (Figure 2.2) to protect the streams from the adjacent land use. Soil erosion 

ability within the watershed is shown in figure 2.6. where the darker areas depict very high soil 

erosion probability whereas the lighter areas show very low soil erosion probability.  This 

Site 

number 

Total Dissolved Solids (TDS) 

mg/l 

Total Hardness 

(TH) 

mg/l 

Total Alkalinity 

(TA) 

mg/l 

1 852 474 245 

2 628 336 163 

3 1020 493 292 

4 408 186 176 

5 383 206 104 

6 345 264 62 

7 637 381 46 

8 532 310 87 
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indicates a direct geographic connection between forests, water and people.  Forest cover (Figure 

2.3) on the southern part of the watershed is almost negligible as most of the agricultural fields 

lie there.  Figure 2.4 shows the percentage of agricultural land.  Darker areas signify higher 

percentage of fallow land whereas lighter areas signify less agricultural practice.  Figures. 2.5 

and 2.7 show road density and housing density information consecutively.  These variables do 

not depict vivid information due to the fact that the study area is predominantly an agricultural 

watershed with very few residential land and proper metalled roads. 

Table 2.3. In situ water sample data from the sampling locations collected within the Pipestem 

Creek watershed in 2011 showing anion content. 

 

  

Site 

number 

Nitrate-Nitrite as N 

(mg/l) 

Phosphate 

(mg/l) 

Chloride 

(mg/l) 

Sulphate 

(mg/l) 

Bicarbonate 

(mg/l) 

1 0.2 1.14 15.9 411 245 

2 0.2 0.9 5.63 317 163 

3 0.2 2.15 12.8 503 292 

4 0.1 2.2 8.39 533 176 

5 0.2 0.41 13.5 169 104 

6 0.1 1.8 3.55 96 62 

7 0.2 0.91 11.2 284 46 

8 0.2 0.98 10.9 208 87 
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Table 2.4. In situ water sample data from the sampling locations collected within the Pipestem 

Creek watershed in 2011 showing cation content. 

The tables display the data from the water samples collected.  The presence of Total 

Dissolved Solids (TDS) in large amounts ranging from 852 mg/l to 1020 mg/l can be seen (Table 

2.2).  Higher levels of Sulphate (SO4) were seen ranging from 96mg/l to 533 mg/l (Table 2.3).  

Recommended limits of Sulphate in water for water used as a domestic water supply are below 

250 mg.  Although such high levels are not toxic to humans directly, they are an indicator of 

non-point source pollution within a watershed (Xia et al.,2016).  Bicarbonates were present in 

the water ranging from 87mg/l to 250mg/l in most sites (Table 2.3).  Thus, the total hardness of 

water was very high ranging from 150 to 500mg/l, in turn raising the alkalinity of water.  Nitrate, 

Phosphate and Chloride levels were not significant to be studied.  The soil samples contained 

soluble salts such as sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+) along 

Site number Calcium 

(mg/l) 

Iron 

(mg/l) 

Magnesium 

(mg/l) 

Manganese 

(mg/l) 

Potassium 

(mg/l) 

Sodium 

(mg/l) 

1 77.6 0.02 67.9 0.042 17.7 73.8 

2 61.1 0.228 44.5 0.03 10.4 59.8 

3 86.9 0.055 67 0.087 12.4 121 

4 41.1 0.316 20.3 0.135 8.13 50.8 

5 37.8 0.02 27.2 0.351 8.07 33.8 

6 52.9 0.02 31.9 0.09 15 12.5 

7 73 0.035 48.3 0.095 11.8 60.4 

8 62.1 0.02 37.7 0.425 12.2 53.4 
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with anions chloride (Cl-), sulphate (SO4
2-), nitrate (NO3

-), bicarbonate (HCO3
-) and carbonate 

(CO3
2-).  Out of these, Calcium was found in very high levels ranging from 2,000 ppm to 2,900 

ppm followed by magnesium and sodium.  Since the watershed is enclosed within agricultural 

lands, fertilizer residues washed out from the adjoining fields could attribute to these higher 

levels of nutrients.  Agricultural land use within watersheds have been linked to increased 

nutrient concentrations in river waters via wastewater, fertilizer use, cultivation of N fixing 

crops, and atmospheric deposition (Xia et al., 2016).  The cation content (Table 2.4) in water 

showed presence of calcium ranging from 37 to 87mg/l, Sodium ranging from 53 to 122mg/l and 

Magnesium ranging from 20 to 68 mg/l which is not significantly high but they can accumulate 

leading to a high Sodium Absorption Ratio in the water. 

A comparison of the water quality data was done within this study to verify and quantify 

the water quality data (Table 2.3 and 2.4).  Excessive nutrient loading causes eutrophication of 

lakes and streams (Chislock et al., 2013).  Increased nutrient and algae concentration can lead to 

water quality problems when these concentrations reduce water clarity, harm wildlife and reduce 

recreational uses (Carpenter et al., 1998).  Decaying algae decreases dissolved oxygen 

concentration making the streams and lakes unable to support fish and other aquatic life 

(Carpenter et al., 1998).  A higher concentration of Total Dissolved solids (TDS) was noted 

along with Total Hardness (TH) and Total Alkalinity (TA) (Table 2.2).  Field data from 2011 and 

USGS field data from 2013 to 2016 from Pingree in North Dakota were compared which 

produced extremely high levels of TDS ranging from 1130mg/L to 1340mg/L along with Total 

Hardness ranging from 618mg/L to 1130mg/L (Table 2.5 and 2.6).  The EPA Secondary 

Regulations advise a maximum contamination level (MCL) of 500mg/L for TDS (Regulations, 

2012).  Generally, high levels of TDS are caused by the presence of potassium, chlorides and 

http://www.epa.gov/safewater/mcl.html#sec
http://www.epa.gov/safewater/mcl.html#sec
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sodium which is evident from the data collected within the Pipestem Creek.  Sulphate salts are a 

major contaminant in natural waters.  Results from the field data have shown that sulphate 

content in the watershed is very high.  Problems caused by sulphates are most often related to 

their ability to form strong acids which changes the pH (DeZuane, 1997).  Sulphate ions also are 

involved in complexing precipitation reactions which affect solubility of metals and other 

substances (DeZuane, 1997).  High sodium concentrations found in water samples indicate a 

high pH, lack of oxygen inadequate nutrients in the water.  This region has noticeable excessive 

algal bloom. High levels of bicarbonate are found which has increased the Sodium Adsorption 

Ratio (SAR) Index of the water.  The SAR is a ratio that measures the relative concentration of 

sodium to calcium and Magnesium.  This Index is indicative of the alkalizing effect within the 

watershed (Clark et al., 2006).  The FAO Document Repository states that excessive sodium in 

water promotes soil dispersion and structural breakdown, which can result in water infiltration 

problem due to soil dispersion and plugging and sealing of the surface pores similar to water 

with low alkalinity (Ayers et al., 1985).  Intensive agricultural activities affect ecological and 

environmental quality and affect water quality (Hosono et al., 2007).  One of the most significant 

impacts is from increased non-point source pollution loading, which has caused serious water 

pollution problems in recent decades (Ouyang et al., 2016).  Soil samples generated similar 

results showing that the soil was excessively alkaline with presence of large amounts of soluble 

salts.  These may be the effects of land use, which include irrigation patterns such as using 

excess salts on agricultural fields or use of excessive fertilizers.  This watershed can be termed as 

impaired owing to the fact that it is a source of Non-point source pollution resulting from the 

extensive agricultural fields (Ouyang et al., 2016).  The surface geology of this region is 

composed of glacial till which is mostly clay, naturally occurring aluminium silicate (NRCS, 
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2005).  Clay imparts plasticity and is relatively impermeable to water making this region aptly 

facilitate surface runoff, letting nutrients to flow into the stream. 

Table 2.5. Comparison of year-wise water quality data for the Pipestem Creek outlet at Pingree 

in North Dakota.  Data was acquired from USGS Data portal (https://waterdata.usgs.gov). 

Accessed on August 15, 2016. 

 

 

 

 

 

 

Table 2.6. Comparison of year-wise water quality data for the Pipestem Creek outlet at Pingree 
in North Dakota.  Data was acquired from USGS Data portal (https://waterdata.usgs.gov). 

Accessed on August 15, 2016. 

 

  

Year Nitrate (mg/l) Phosphate (mg/l) Sulphate (mg/l) 

2013 0.03 0.121 573 

2014 0.016 0.172 802 

2015 0.33 0.07 408 

2016 0.12 0.09 612 

Year Bicarbonate 

(mg/l) 

Calcium 

(mg/l) 

Sodium 

(mg/l) 

Potassium 

(mg/l) 

Manganese 

(mg/l) 

Magnesium 

(mg/l) 

TDS 

(mg/l) 

TH 

(mg/l) 

2013 337 125 115 13.9 138 71.4 1130 689 

2014 826 232 206 16.8 270 97.1 1870 1130 

2015 619 146 122 9.61 575 69.9 1110 678 

2016 543 167 143 11.4 256 121 1340 817 
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2.5. Comparison to a distributed model 

The Annualized Agricultural Non-Point Source Model (AnnAGNPS) is used to evaluate 

non-point source pollution in impaired watersheds.  It is currently used by many USA agencies 

to investigate non-point source pollution problems.  The distributed parameter feature of the 

model allows spatial simulation (Pease et al., 2010).  Pease et al. (2010) used the AnnAGNPS 

model to determine the nutrient status of the Pipestem Creek in North Dakota, USA.  It was also 

used to predict the total runoff.  The effectiveness of the model relies on the fact that it could 

only be effectively applied for a large agricultural watershed.  Runoff predicted by the 

AnnAGNPS model for the Pipestem creek watershed between 2004 and 2006 showed a 

coefficient value of 3.17.  This relatively low coefficient value indicated that the AnnAGNPS 

model predicted runoff from the watershed satisfactorily (Pease et al., 2010).  To further validate 

the present study, the AnnAGNPS model, which is a distributed model, was compared to our 

spatial model in predicting impaired areas within the watershed. A Boolean ‘And’ operation was 

executed using 3D Analyst in ArcMap 10.4.1.  The mathematical operation generated an output 

value of one, if both the input values were found true.  The average annual sediment load data 

from the AnnAGNPS model was combined with the IAPCW  score data to generate a new raster 

dataset.  The new dataset was clipped in ArcMap so that the image showed the same areal extent 

used in the AnnAGNPS model.  Figure 2.9 shows the resultant image where areas of high 

sediment load overlap with a low IAPCW.  The data was sorted into a frequency distribution table 

where the class interval was kept three for the first two classes.  This was done to create a 

comparison scale between IAPCW and sediment load within the area that categorises the sediment 

load into high, moderate and low regions.  Within the Pipestem Creek, areas yielding less 

cropland correspond to areas with increased sediment load.  Sediment predicted by the 
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AnnAGNPS model showed limited values, but comparing average annual sediment loads to the 

land use data layer, it appeared that non-cropland areas did not significantly contribute to any 

sediment loads.  The spatial distribution generated by the AnnAGNPS study showed fallow areas 

produce significant amounts of sediment loads from the watershed.  These same locations in this 

study generated a low IAPCW.  Nitrogen and Phosphorus levels were not compared since the model 

predicted low nutrient levels due to surface runoff.  AnnAGNPS is a distributed model which 

uses explicit data thus it is not compatible with small watersheds (Yu et al., 2013). 

 

Figure 2.9. Comparative study with ANNAGNPS model: Part of the Pipestem Creek watershed 

(dark brown) showing highlighted areas of increased average annual sediment load.  Sediment 

load data was derived from Pease et al., 2010. 

2.6. Conclusion 

The levels of TDS are much higher in the data of years 2014 to 2016 compared to the 

year 2011 which points out to the fact that the alkalizing effect within the watershed has 

increased.  The goal of the study was used to identify NPS Pollution areas under limited data 



42 

conditions which to be practical and credible.  Considering the costs incurred and time 

constraints in monitoring a watershed, this provides a cost effective preliminary method to 

identify impairment within a small agricultural watershed such as the Pipestem Creek.  This 

paper combined geographic and anthropogenic variables to locate impaired areas within a 

watershed.  We can adduce that the method employed in this study can be applied to a small 

watershed albeit the model is limited to data type and does not take into account a temporal 

component.  The fusion of real time data within ArcGIS environment has improved the 

reliability of the Index of the ability to produce clean water output, and extended existing GIS 

functionalities.  The implementation of the tool enables decision makers to follow a 

comprehensive yet easy-to-use procedure to examine weight sensitivity in both criteria and 

geographic space.  The Pipestem reservoir is listed as having a high Total Maximum Daily Load 

(TMDL) for nutrients and eutrophication.  Conservation practices that can be used to address 

these water quality issues include grazing management, erosion control, nutrient and pest 

management, as well as, agricultural waste management, and riparian buffers. 
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CHAPTER 3. TRANSITION MODELING OF LAND-USE DYNAMICS IN THE 

PIPESTEM CREEK, NORTH DAKOTA, USA2 

3.1. Abstract 

Significant land use changes in North Dakota have been reported and are widespread 

over the entire state.  Such changing patterns may portend localized impairment to agricultural 

watersheds.  In this study, Land Use Land Cover (LULC) change was modeled using 

geostatistics.  The study area was within the Pipestem Creek watershed, a part of the Missouri 

Watershed James Sub-region of North Dakota, USA. Landsat Thematic mapper images from the 

years 2007, 2011, and 2015 were used as preliminary data.  LULC information for these datasets 

were acquired from the Global Land cover facility and Landsat Program.  Data analysis, spectral 

classification and post classification techniques were applied on the datasets.  A transition matrix 

was derived using a Markov chain Monte Carlo (MCMC) model.  This study demonstrates that 

the integration of satellite remote sensing, GIS and statistics may be an effective approach for 

analyzing the direction, rate, and spatial pattern of land use change. 

3.2. Introduction 

Over the last decade, a range of models of land use change have been developed to meet 

land management needs, and to better assess and project the future role of LULC change in the 

functioning of the Earth system.  Modeling, especially if done in a spatially explicit, integrated 

and multi-scale manner, is an important technique for the projection of alternative pathways into 

                                                           

2 The material in this chapter was co-authored by Papia F. Rozario, Dr.Peter Oduor, Larry Kotchman and Michael 

Kangas (Published in Journal of Geoscience and Environment Protection, 5(03), p.182. https://doi.org 

10.4236/gep.2017.53013). 

Papia F. Rozario had primary responsibility for conducting this research including collecting field samples.  Papia F. 

Rozario was the primary developer of the conclusions that are advanced here.  Papia F. Rozario also drafted and 

revised all versions of this chapter.  Dr.Peter Oduor served as proofreader and checked the math in the statistical 

analysis conducted by Papia F. Rozario. 
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the future, for conducting experiments that test our understanding of key processes, and for 

describing the latter in quantitative terms (Velkamp et al., 2001; Lambin et al., 2000; Lambin et 

al., 2001).  Satellite remote sensing, in conjunction with geographic information systems (GIS), 

has been widely applied and been recognized as a powerful and effective tool in detecting LULC 

change (Ehlers et al., 1990; Meaille and Ward, 1990; Treitz et al., 1992; Westorland and Stow 

1992; Harris and Ventura, 1995; Yeh and Li, 1996; Yeh and Li, 1997; Yeh and Li, 1999).  

Multispectral satellite data is cost effective and the information obtained from them can be used 

as inputs to build LULC datasets.  GIS technology provides a flexible environment for spatial 

and statistical analyses coupled with modeling.  Satellite imagery has been used to monitor 

discrete land cover types by spectral classification or to estimate biophysical characteristics of 

land surfaces via linear relationships with spectral reflectance or indices (Weng, 2002; 

Steininger, 1996).  With easy accessibility of upgraded remote sensing software and readily 

available satellite imagery, the change in LULC can be assessed over a period of time 

(Madurapperuma et al., 2015).  Particularly for applications that link remote sensing with human 

activity, this differentiation is important because land use emphasizes the functional role of land 

in economic activities while land cover does not (Kamusoko et al., 2009).  Therefore, 

confounding land cover with land use may generate biased results in these studies (Seto et al., 

2002).  The models of LULC change process fall into two groups: regression-based and spatial 

transition-based models (Weng, 2001).  The majority of research utilizes regression-based 

approach, which relates the locations of LULC change to a set of spatially explicit variables, and 

uses models such as logistic (Landis, 1994; Turner et al., 1996; Wear et al., 1998), and hedonic 

price models (Geoghegan et al., 1997).  Cellular automaton simulation models are a type of 

spatial transition based models, which allow for predicting future land development based on 
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probabilistic estimates with Monte Carlo or other methods (Acevedo et al., 1995; Kokkinos and 

Maras, 1997).  One crucial limiting factor to the development of process models is the lack of 

smart modeling tools for change processes in most software platforms.  Equally important is the 

issue of data availability (Baker, 1989).  Very few studies have attempted to link satellite remote 

sensing and GIS to stochastic modeling methods in LULC change studies.  This paper presents a 

method that combines satellite remote sensing, GIS, and MCMC modeling to analyze and predict 

LULC changes in the Pipestem Creek, a part of the Missouri Watershed James Sub-region in 

North Dakota, USA between 2007 and 2015. 

MCMC models are used to examine the stochastic nature of the LULC change data and 

to prioritize areas of impairment within an agricultural watershed.  It is used as a descriptive and 

interrogative tool to quantify the change in land use occurring over a human - dominant 

landscape (Muller and Middleton, 1992).  MCMC simulation models of LULC change aid in the 

understanding and analysis of interaction between impacts and natural resource management 

strategies (Brown et al., 2000; Oduor et al., 2012).  Markov analysis of vegetation types tends to 

focus on a small area of less than a few hectares or on a single small plot (Jahan, 1986).  When a 

few hundred hectares of land are involved, data sampling is usually applied to limit the workload 

to scattered plots or transects (Turner and Meyer, 1991).  On the other hand, land use studies 

using MCMC models tend to focus on a much larger spatial scale, and involve both urban and 

non-urban covers (Drewett, 1969; McCauley, 2007; Bell and Hinojosa, 1977; Robinson, 1978; 

Jahan, 1986).  Most of the studies utilizing MCMC models have used the first order of MCMC 

which was studied to be most suitable.  MCMC have several assumptions.  A primary 

assumption is to consider LULC change as a stochastic process (Bell and Hinojosa, 1977).  

Different categories are the states of the change which is defined as a stochastic process having 
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the property that the value of the process at time t, Xt, depends only on its value at time t-1, Xt-1, 

and not on the sequence of values Xt-2, Xt-3,… ,X0 that the process passed through in arriving at Xt-

1 (Hunter, 2016; Weng, 2001).  For {Xn,n≥0} and P{Xt=i|Xt-1=j}∀ i,j∈S where S={1,2,…,m} 

then P = [pij] (Hunter, 2016; Weng, 2001; Weng, 2002).  Weng (2001) regarded the change 

process to be discrete for convenience with incremental time t (t = 0, 1, 2, 3,…) values.  

Likewise, P{Xt=aj│Xt-1=ai} is the transitional probability that makes the transition from state ai 

to state aj in one period of time .  The MCMC Model used in this study was of first order 

homogeneous type.  Therefore, P{Xt = i|Xt-1 = j}= pij can be applied (Wu et al., 2006; Yang et al., 

2014).  Here, pij can be calculated from observed data by estimating the number of times the 

particular observed data went from state i to j by adding the number of times the former state 

occurred.  LULC change in itself is very dynamic, thus we cannot expect stationarity in it.  

However, stationary and discrete time has been used in various studies involving forest stands.  

Thus, MCMC models assumes two factors namely time stationarity/homogeneity and time 

independence.  The concept of time stationarity or time homogeneity implies that equal interval 

in time or consistency between two states is considered within the timeline.  Within a stationary 

MCMC and a set order, the transitional probabilities can be set through maximum likelihood 

estimation.  The probabilities estimated are obtained by maximizing this function (Anderson et 

al., 1957).  This estimate is just the relative frequency of transitions observed over the entire 

time.  If the land use change sequence is a Markov process of order 0, the probability of the 

random variable X being in state j at time t can be determined.  If the MCMC is of order 1, the 

probability of the random variable X being in state j at time t depends only on the last movement 

as aforementioned (Wu et al., 2006).  Thus, testing Markov property is equivalent to testing that 
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the Markov process is of order 1.  There are two steps in the testing procedure.  First, the null 

hypothesis that the MCMC is of order 0 versus order 1 is tested; then the order 1 versus order 2 

is tested. If the test of order 0 against order 1 is rejected, and the test of order 1 against order 2 is 

accepted, the process then may be assumed to be of order 1 (Anderson et al.,1957; Wu et al., 

2006).  In this study, spectral image classification and stochastic methods were utilized to 

address LULC changes by employing a finite first-order MCMC with stationary transition 

probabilities. 

3.3. Materials and methodology 

3.3.1. Image classification 

Landsat 7 ETM+ images (Worldwide Reference System 2, row 027 and path 031) of the 

study area were acquired from the Global Land cover Facility and the Landsat Program.  These 

images covered a span of three different years - 2007, 2011, and 2015.  This freely available data 

has a ground resolution of 30 m.  A thematic RGB band combination of bands 7, 4, and 2 was 

used.  Data obtained was in the form of individual bands ranging from 1 to 7.  Layer stacking 

created a new multiband file from the input bands which were resampled and re-projected.  

These datasets were resampled using the nearest neighbor algorithm so that their pixel brightness 

values were preserved.  Upon layer stacking of the Landsat scenes; they were georeferenced to 

UTM Zone 14 North, WGS-84 Datum, then data calibration was applied which converted the 

digital numbers of the image to reflectance as a way of preprocessing the data.  Supervised 

classification was performed using Maximum Likelihood algorithm.  We used supervised 

classification because the data of the study area was available and we had a prior knowledge of 

the study area.  Training site data was derived using digitization, which was then converted to 

polygonal training data.  A total of 50 training sites were chosen for each image to ensure that all 
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spectral classes constituting each LULC category were adequately represented in the training 

statistics.  Ten training sites for each of the five classes were chosen as ROIs (regions of 

interest).  The reference data was collected from existing LULC maps that had been field-

checked.  Change detection statistics was performed on a remote sensing platform to generate a 

change matrix for the years 2007-2011, 2011-2015, and 2007-2015.  The statistics are presented 

in a cross tabulation format that compares the change between the two maps, that is, the base 

map and the final map.  We generated change matrices for years 2007 to 2011, 2011 to 2015, and 

2007 to 2015.  Pixel count and areal extent data for each class within each period was also 

generated.  The maps generated from the change detection statistics were used as inputs to 

generate confusion matrices as a measure of accuracy assessment.  The final change images were 

overlain with a vector file of the study areas and final maps were generated. 

3.3.2. Spatial analyses 

Reclassified images of 2007-2011, 2011-2015, and 2007-2015 were imported as raster 

datasets.  The datasets were converted to ASCII using the raster conversion tool to generate the 

attribute table containing cell values.  To estimate the land use transition from forested land to 

non-forested land, the datasets were reclassified using Spatial Analyst.  The USGS Anderson 

Land Classification Scheme (Anderson, 1976) was used to classify all the remotely sensed 

datasets into new values.  The categories included: (1) bare soil or barren land, (2) open waters, 

(3) cropland, (4) forested land, and (5) urban/built-up area.  Tables 3.1, 3.2, and 3.3 represent the 

areal extent of change within each land use class for the study period 2007 to 2015.  The amount 

of positive or negative change for each land use class is shown in the tables.  Figures 3.1, 3.2, 

and 3.3 are graphical representations of the confusion matrix generated for the years 2007 to 

2015. 
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Table 3.1. Land use/cover change matrix of Pipestem Creek from years 2007 to 2011 (in square 

km).  Data was generated from Landsat imagery on a remote sensing platform, downloaded from 

EarthExplorer portal (http://earthexplorer.usgs.gov).  Accessed: August 26, 2016. 

 

Table 3.2. Land use/cover change matrix of Pipestem Creek from years 2011 to 2015 (in square 

km).  Data was generated from Landsat imagery on a remote sensing platform, downloaded from 

EarthExplorer portal (http://earthexplorer.usgs.gov).  Accessed: August 26, 2016. 

 Bare soil Open water Cropland Forested land Urban built-up 2015 total 

Bare soil 829.5 4640.4 27829.5 2619.6 35520.4 35702.7 

Open water 3385.5 2794.6 220.1 2341.7 8542.0 8542.3 

Cropland 1055.1 453.2 4473.1 596.4 2177.8 2178.8 

Forested land 1766.5 1490.1 14.9 1144.4 4415.9 4416.0 

Urban built-up 261.7 34.1 233.0 16.0 544.7 1602.5 

2011 total 468.8 617.7 6699.1 4573.6 5241  

Change % +4.09 -9.24 +71.17 -34.27 +2.04  

 Bare soil Open water Cropland Forested land Urban built-up 2011 total 

Bare soil 29371.9 1107.3 3475.2 546.5 162.8 34663.6 

Open water 6848.2 558.1 1740.2 260.5 4.7 9411.7 

Cropland 432.7 19.0 82.5 17.4 220.5 772.1 

Forested land 2288.3 446.9 1414.3 265.4 0.1 4415.1 

Urban built-up 2872.5 1013.6 2182.8 644.7 4.4 6718.0 

2007 total 39925.3 2698.2 7486.7 1469.5 1227.4  

Change % -13.18 +28.81 +89.69 -77.16 +1.16  
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Table 3.3. Land use/cover change matrix of Pipestem Creek from years 2007 to 2015 (in square 

km).  Data was generated from Landsat imagery on a remote sensing platform, downloaded from 

EarthExplorer portal (http://earthexplorer.usgs.gov).  Accessed: August 26, 2016. 

 

 

Figure 3.1. Change matrix data of Pipestem Creek for years 2007 to 2011.  The peak signifies the 

change from forested land to agricultural land. 

 Bare soil Open water Cropland Forested land Urban built-up 2015 total 

Bare soil 920.2 944.5 30020.2 6543.7 281.9 35312.1 

Open water 139.8 99.0 5880.5 520.0 0.6 8539.9 

Cropland 1192.6 204.8 2641.9 138.3 1.1 2178.7 

Forested land 2288.3 446.9 1414.3 265.4 0.1 4415.1 

Urban built-up 625.4 2.9 28.3 2.1 943.6 1602.3 

2007 total 1166.3 298.2 9486.7 1469.5 1227.4  

Change % -9.84 -6.50 +89.90 -77.44 +10.55  
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Figure 3.2. Change matrix data of Pipestem Creek for years 2011 to 2015.  The peak signifies the 

change from forested land to agricultural land. 

 

Figure 3.3. Change matrix data of Pipestem Creek for years 2007 to 2015.  The peak signifies the 

change from forested land to agricultural land. 

3.3.3.  Markov analysis 

The MCMC process was used for describing and projecting land use information within 

the watershed from satellite imagery.  Data compatibility, stationarity and statistical 

independence were analyzed using the aforementioned MCMC process.  The ASCII data 

generated for each year in the ArcGIS interface was imported into SemGRID 1.6.1 interface as a 
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layer. SemGRID 1.6.1 was used to generate the transitional probabilities of LULC data for years 

2007 to 2011, 2011 to 2015, and finally 2007 to 2015.  These probabilities were projected as 3D 

mesh plots using SigmaPlot® 10.0. 

The testing of statistical independence hypothesis involved a procedure that compared the 

expected change with the actual change.  If the number of LULC categories is M, then the 

statistic to be computed is Pearson’s χ2 with (M-1)2 degrees of freedom (Mondal et al., 2016). 

According to the MCMC hypothesis, the transition probability matrix governing the period 

2007–2015 can be obtained by multiplying the 2007–2011 and 2011–2015 matrices.  Table 3.4 

shows the subset areal extent derived from the Markov Chain model where transition from each 

class is quantified in hectares as well as percentage value.  Transition probability data derived is 

shown in Tables 3.5, 3.6 and 3.7.  Kappa coefficient of agreement was derived based on (Jensen, 

2005; Oduor et al., 2012).  Reclassified Landsat datasets from the years 2007, 2011, and 2015 

were combined using the combine function in ArcGIS-Spatial Analyst. Datasets from 2007 and 

2011, 2011 and 2015, and finally 2007 and 2015 were combined.  The attribute table for each 

dataset contained the pixel count information for each land use class.  These attribute tables for 

each datasets were then exported to a database table file in MS-Excel.  These were converted to 

text files and imported into MS-Assess where a crosstab query was performed to format and 

compress the data such that the row and column headings had the same class description as the 

reclassified datasets (Oduor et al.,2012).  These tables were imported into Excel to derive the 

Kappa coefficients of agreement for each dataset. 
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Table 3.4. Subset of areal extent of Pipestem Creek in North Dakota generated by the Markov 

Chain Monte Carlo (MCMC) model. 

State 

(from, 

to) 

2007 to 2015 2011 to 2015 2007 to 2015 

Area 

(%) 

# of 

cells 

Area (ha) Area 

(%) 

# of 

cells 

Area 

(ha) 

Area 

(%) 

# of cells Area (ha) 

1,1 9.8 16163 1454.67 3.8 8362 752.58 5.5 26642 4247.10 

1,2 11.7 19286 1735.74 3.7 8142 732.78 4.9 8008 811.35 

1,3 12 19730 1775.70 4.0 8755 662.22 4.5 7496 674.64 

1,4 9.4 15505 1395.45 6.9 14965 1346.85 6.7 10988 988.92 

1,5 13.8 22701 2043.09 15.7 13412 3071.34 1.2 9015 2397.78 

2,1 10.7 26899 2420.91 14.5 23708 3337.20 2.2 13946 5007.51 

2,2 12.8 31944 2874.96 16.2 67118 6040.62 3.5 47190 788.31 

2,3 13.3 33315 2998.35 10.9 53521 4816.89 11.4 27135 2578.14 

2,4 17.7 44438 3999.42 10.3 26314 2368.26 11.8 28646 2654.73 

2,5 9.4 23535 2118.15 2.9 7358 662.22 10.8 60232 1255.14 

3,1 10.2 29155 2623.95 13.7 7004 3758.58 4.9 5639 3886.11 

3,2 11.1 31810 2862.90 16.2 65581 7151.67 8.4 9372 3918.96 

3,3 9.2 26289 2366.01 21.6 79463 5902.29 1.2 24651 6853.05 

3,4 14.9 42715 3844.35 9.5 41762 630.36 10.6 183108 5420.88 

3,5 13.2 37905 3411.45 2.3 28829 3164.40 11.0 53764 843.48 

4,1 9.3 20957 1886.13 12.5 35160 6728.85 4.2 43179 2218.59 
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Table 3.4. Subset of areal extent of Pipestem Creek in North Dakota generated by the Markov 

Chain Monte Carlo (MCMC) model (Continued). 

 

Table 3.5. Transition probabilities matrix for states 1 to 5 for years 2007 to 2011 generated by 

the Markov Chain Monte Carlo (MCMC) model 

 1 2 3 4 5 

1 0.02999 0.01 0.4801 0.01 0.12 

2 0.1044 0.01271 0.43 0.1785 0.106 

3 0.101 0.1119 0.25517 0.1201 0.01153 

4 0.0141 0.0014 0.323101 0.1643 0.1101 

5 0.0751 0.0908 0.1623 0.1417 0.2301 

State 

(from, 

to) 

2007 to 2015 2011 to 2015 2007 to 2015 

Area 

(%) 

# of 

cells 

Area 

(ha) 

Area 

(%) 

# of cells Area 

(ha) 

Area 

(%) 

# of 

cells 

Area (ha) 

4,2 11.3 25353 2281.77 20.6 74765 5619.96 11.0 22613 2658.06 

4,3 14.4 25541 2298.69 22.3 4876 1992.42 13.1 47241 4838.76 

4,4 10.9 38070 3426.30 7.9 22138 5268.24 23.9 86292 2170.17 

4,5 11.5 25753 2317.77 1.5 4323 11552.31 19.2 2090 4251.69 

5,1 7.5 47417 4267.53 12.6 58536 9847.98 3.6 29534 16479.72 

5,2 9.1 57342 5160.78 17.6 12835 3078.63 7.5 9372 7766.28 

5,3 8.6 54554 4909.86 13.6 10942 389.07 13.7 2465 18815.22 

5,4 11.8 93284 8395.56 7.4 34207 438.84 33.1 1831 2035.17 

5,5 10.5 97990 8819.10 1.0 62444 12541.1 29 53764 4251.69 
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Table 3.6. Transition probabilities matrix for states 1 to 5 for years 2011 to 2015 generated by 

the Markov Chain Monte Carlo (MCMC) model. 

 1 2 3 4 5 

1 0.0392 0.1387 0.0455 0.1568 0.2198 

2 0.0375 0.0496 0.0419 0.1773 0.0537 

3 0.0109 0.1019 0.2295 0.1259 0.0318 

4 0.0393 0.0114 0.4371 0.5001 0.1121 

5 0.0331 0.2025 0.0321 0.197 0.0353 

 

Table 3.7. Transition probabilities matrix for states 1 to 5 for years 2007 to 2015 generated by 

the Markov Chain Monte Carlo (MCMC) model. 

  1 2 3 4 5 

1 0.1174 0.0699 0.1095 0.2744 0.1288 

2 0.1515 0.00198 0.2051 0.2025 0.2211 

3 0.0583 0.0701 0.1401 0.1659 0.0656 

4 0.0499 0.1487 0.4127 0.0889 0.1998 

5 0.2309 0.1488 0.0101 0.2301 0.2801 

3.4. Results and discussion 

 3.4.1. LULC change statistics 

The overall accuracy values based on the post classified images generated for 2007 - 

2011, 2011 – 2015, and 2007 - 2015 using change detection statistics in ENVI 4.5® were 91.59 

percent, 88.30 percent, and 89.43 percent respectively.  Table 3.1 shows a representation of 

LULC change matrix from 2007 to 2011 where a likelihood of increment in 89.69% cropland, 
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28.81% open waters, and 1.16% urban area was prominent.  The likelihood of decrement in 

forested land appeared to be at 77.16% along with a decrement of 9.06% for bare soil or barren 

land.  Figure 3.1 shows the graphical representation of LULC change matrix from 2007 to 2011. 

Table 3.2 represents the data showing LULC change matrix from years 2011 to 2015 where a 

likelihood of increment in cropland, urban area and bare soil or barren land at 71.17%, 4.09%, 

and 2.04% respectively was noted.  A net negative change in forested land and open waters was 

observed at 34.27% and 9.24% respectively.  Forested land to non-forested land transition was 

found to be high for 2007 to 2011 period but was slightly lower from 2011 to 2015 period.  

Positive change in croplands was noted and could be a probable cause to the growing demand for 

food grains and agricultural products in this area.  Figure 3.2 is a graph showing LULC change 

matrix from 2011 to 2015.  Table 3.3 represents the data for change matrix from 2007 to 2015.  

About 89.90% likelihood of increment in agricultural land leading to a 77.44% likelihood of 

decrement in forested land in the area was noted.  Figure 3.3 represents the graph for change 

matrix from 2007 to 2015. 

3.4.2.  Validation of LULC change process using Markov Chain 

Markov Chain simulations for the Pipestem Creek watershed showed continuity between 

the trends in change from forested land to other land use classes, which was similar to the study 

results generated by Oduor et al., (2012).  The range of forested land to cropland change was 

significant.  Table 3.5. represents the transition probabilities of years 2007 to 2011 derived by 

Markov chain simulation.  It represents cropland to cropland transition at 0.36 and forested land 

to cropland transition at 0.52.  Figure 3.4 is graphical representations of the transition probability 

from the year 2007 to 2011 showing significant peak for categories 3 followed by 4 which 

represent cropland and forested land respectively.  Urban or built-up land generated a low 
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transition probability of 12% from barren land.  Table 3.6. represents the transition probabilities 

of years 2011 to 2015 derived by Markov chain simulation.  Transition from forest to cropland 

was 44% and cropland to cropland was approximately 50%.  Forested land transiting to cropland 

was relatively higher than that exhibited for the years 2007 to 2011.  Barren land to urban area 

transition probability was high at 22%.  Open waters did not show much transition throughout 

2007 to 2015.  Figure 3.5 is a visual representation of the tabular data from 2011 to 2015 where 

the only significant peak that can be seen is for cropland.  Table 3.7 represents the transition 

probability data for years 2007 to 2015.in LULC over a period of 9 years where a significant 

transition probability from forested land to cropland was 41%.  Figure 3.6 is a graphical 

representation of the same data where cropland showed up as a significant peak followed by 

forested land and urban land, indicating a likelihood of increment.  The Kappa coefficients of 

agreement for the datasets were at 53.28% for the years 2007 to 2011, 55.74% for the years 2011 

to 2015 and 60.24% for the years 2007 to 2015. 

 

Figure 3.4. Transition probabilities for states 1 to 5 for years 2007 to 2011.  The peak signifies 

the change from forested land to agricultural land within Pipestem Creek watershed. 
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Figure 3.5. Transition probabilities for states 1 to 5 for years 2011 to 2015.  The peak signifies 

the change from forested land to agricultural land within Pipestem Creek watershed. 

 

Figure 3.6. Transition probabilities for states 1 to 5 for years 2007 to 2015.  The peak signifies 

the change from forested land to agricultural land within Pipestem Creek watershed. 

Figures 3.7 to 3.9 represent LULC maps of the Pipestem Creek in North Dakota for the 

years 2007-2011, 2011-2015, and 2007-2015 respectively.  The western parts of Stutsman and 

Wells County showed significant transition from forest to cropland.  The southeastern part of 

Stutsman County showed a significant increase in urban or built-up land attributing to the 
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location of small towns like Jamestown.  Oduor et al., (2012) used error matrices to study 

similarity between two datasets.  A Kappa coefficient value would determine the similarity or 

dissimilarity between two images (Oduor et al., 2012).  As such, low Kappa value may be 

indicative of low similarities between the datasets, which could also imply significant transition 

between various LULC classes.  This prediction assumes spatial independence of the area units 

(Cabral and Zamyatin, 2009).  Although Markov chains constitute a good tool for describing and 

projecting LULC quantities, they are insufficient for spatially explicit LULC predictions, 

because they also assume statistical independence of spatial units.  In a similar study made by 

Cabral and Zamyatin (2009), it was suggested that Markov transitions can be used coupled with 

spatially explicit models like cellular automata and/or linear extrapolation models.  The 

methodology presented in this study incorporated a spatial element along with a temporal model.  

The projections of future LULC changes on the basis of a MCMC model showed a continuing 

trend of increase in urban and agriculture land acreages, and the decline in forests and other 

natural vegetation covers.  A similar study was conducted by Oduor et al., 2012, of statewide 

North Dakota, which depicted greater likelihood of forest to non-forested land transition 

especially along north central North Dakota.  The prioritization map of North Dakota derived in 

Oduor et al., 2012 showed that part of the Pipestem creek watershed was a high priority area for 

Forest Stewardship Program.  The MCMC model transition probabilities estimated from 2007 to 

2015 showing change from forested land to other land use classes depicted a probability of future 

change and loss of forest acreage.  The test of time homogeneity was performed to see that the 

process of land use change was stable throughout the full study period.  This was done by 

comparing the data from each sub-period transition matrix i.e. 2007 to 2011, 2011, to 2015 to the 

full period transition matrix and then comparing the full period of 2007 to 2015. 
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Figure 3.7. LULC map of the Pipestem Creek in North Dakota for years 2007 to 2011.  Data was 

derived from Landsat imagery downloaded from EarthExplorer portal 

(http://earthexplorer.usgs.gov).  Accessed: August 26, 2016. 

The test of time dependence in this dataset is evident in Tables 3.5, 3.6, and 3.7 where the 

change from forested land to agricultural land was significant from the base year to the 

transitioning year.  The transition probabilities estimated from the full study period with an 

interval of 4 years was assumed to be time-stationary Markov transition matrix.  This may be 

used to predict the future land use category distribution to provide answers to management 

problems as in Hall et al., (1991) study.  Hall et al., (1991) also points out that early MCMC 

models were parameterized using data observed and measured from field surveys and air 

photography. 
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Figure 3.8. LULC map of the Pipestem Creek in North Dakota for years 2011 to 2015.  Data was 

derived from Landsat imagery downloaded from EarthExplorer portal 

(http://earthexplorer.usgs.gov) .  Accessed: August 26, 2016. 

These data tended to be biased and costly.  The use of satellite remote sensing has 

enabled us to calculate less biased training sites from the full extent of the landscape as in 

Peterson et al., (2009).  Thus, the issue of obtaining observed training sites is crucial (Peterson et 

al., 2009).  The Markov chain models have shown the capabilities of descriptive power and 

simple trend projection for LULC change, regardless of whether or not the trend actually 

persists.  The analysis can serve as an indicator of the direction and magnitude of change in the 

future as well as a quantitative description of change in the past.  However, there are several 

limitations in LULC change applications.  First, the model may vary with spatial resolution of 

the datasets and can be by rescaled (Santosh et al., 2017). Second, higher order models that, for 
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instance, include j2 states instead of j states in a first-order model would generate results that are 

less accurate (Mubea et al., 2011). 

 

Figure 3.9. LULC map of the Pipestem Creek in North Dakota for years 2007 to 2015.  Data was 

derived from Landsat imagery downloaded from EarthExplorer portal 

(http://earthexplorer.usgs.gov).  Accessed: August 26, 2016. 

Eastman et al., (2005) shows a method to conditioning changes to the initial states in 

different sites, as well as in the final states, and therefore introduces spatial dependence into 

Markov modeling.  So higher ordered effects can be studied once the spatial adjustments are 

made.  Table 3.4. shows results generated with transition states which was corroborated in the 

transition matrix shown in Tables 3.5, 3.6, and 3.7 for years 2007 to 2015.  Overall, areas used 

for all forms of agriculture increased by more than 50% of its original level at the first stage.  
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The built-up areas doubled in area compared to the initial stage.  The Markov probabilities 

estimated from the full study period proved to be useful to analyze and predict the distribution of 

land use categories, though the land use change process cannot always be assumed static because 

of its dynamic nature (Eastman et al., 2005; Bell, 1974).  The MCMC model, combined with the 

geospatial analysis proved to capacitate trend projections of the changing land use just like 

Sathees et al., (2015) study.  This spatio-temporal model provides not only a quantitative 

description of change in the past but also the direction and magnitude of change in LULC in the 

future (Nurmiaty and Arif, 2014; Han et al., 2015; Vazquez-Quintero et al., 2016). 

In terms of the quantitative accuracy, error rates for forest and agricultural land are 

particularly low indicating that nonparametric models can be successfully implemented in a 

further study of similar agricultural watersheds.  In terms of the spatial accuracy for forest, and 

agricultural land, a confusion matrix generated low accuracy assessment as discussed earlier 

which were acceptable indicators.  This indicates that the MCMC model can predict land use 

patterns objectively. 

3.5. Conclusion 

The MCMC model performance in predicting LULC distribution from 2007 to 2015 

showed that it is possible to project land use change patterns with small deviations within 

acceptable limits.  This study integrated land use pattern changes, MCMC model for the 

simulation of land use change.  Landscape patterns depict complexities of spatial heterogeneity, 

and researchers have shown that these patterns can influence a variety of ecological phenomena.  

This methodology combines MCMC model and integrates it with post classification remote 

sensing techniques.  We were able to predict LULC changes from 2007 to 2015.  Future research 

includes the experimentation of spatially explicit models to better understand the LULC 
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dynamics of this area.  When facing such severe and rapid LULC changes, one requirement for 

resource managers is to be able project future changes under certain assumptions to increase the 

awareness of ecological consequences.  The MCMC model performance reveals the potential 

and the merit of using this approach for assessing future land use change in similar arid regions.  

Future analysis studies are recommended to use more detailed socio-environmental variables to 

improve the understanding of trends of LULC changes within such agricultural watersheds. 
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CHAPTER 4. SPATIAL DEPENDENCE OF LAND USE/COVER PREDICTIONS 

WITHIN PIPESTEM CREEK, NORTH DAKOTA, USA 

4.1. Abstract 

A major threat to biodiversity in North Dakota is the conversion of forested land to 

cultivable land, especially those that act as riparian buffers.  To reverse this trend of 

transformation, a validation and prediction model is necessary to assess the change.  Spatial 

prediction within a Geographic Information System (GIS) using Kriging is a popular stochastic 

method.  The objective of this study was to predict spatial and temporal transformation of a small 

agricultural watershed - Pipestem Creek in North Dakota; USA using satellite imagery from 

1976 to 2015.  To enhance the difference between forested land and non-forested land, a spectral 

transformation method - Tasseled Cap’s Greenness Index (TCGI) was used.  To study the spatial 

structure present in the imagery within the study period, semivariograms were generated.  The 

Kriging prediction maps were post-classified using Remote Sensing techniques of change 

detection to obtain the direction and intensity of forest to non-forest change.  TCGI generated 

higher values from 1976 to 2000 and it gradually reduced from 2000 to 2011 indicating loss of 

forested land. 

4.2. Introduction 

Sustainable use of riverine systems and riparian habitats are directly affected by changing 

land use patterns (Rozario et al., 2016).  Modeling land use patterns is an important technique for 

the projection of alternative pathways into the future (Veldkamp et al., 2001; Lambin et al., 

2000; Lambin et al., 2001).  Geographic Information Systems (GIS) combined with satellite 

remote sensing has varied application and has been recognized as a powerful tool in detecting 

land use and land cover change (LULC) (Ehlers et al., 1990; Méaille and Wald, 1990; Treitz et 

http://www.sciencedirect.com/science/article/pii/S0167880901001992#BIB15
http://www.sciencedirect.com/science/article/pii/S0167880901001992#BIB15
http://www.sciencedirect.com/science/article/pii/S0167880901001992#BIB16
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al., 1992; Westmoreland and Stow, 1992; Harris and Ventura, 1995; Yeh and Li, 1996, 1997, 

1999; Weng, 2001).  Satellite data is cost effective and the information obtained from them can 

be used as inputs to build land use and land cover datasets (Singh, 1989).  Spatial representation 

of the LULC change is essential for regional planners and management (Piccini et al., 2014).  To 

elucidate the optimal use of land and to provide input data for watershed models, it is necessary 

to have information on existing LULC change patterns (Madurapperuma et al., 2015). 

Geostatistics deals with problems pertaining to spatial serial data, mapping and 

interpolation of the data on a statistical platform that are related to a time analysis (Ripley 1981).  

It has an ability of distinguishing the continuous nature of LULC and is able to detect random 

variations during modeling, dependent on the spatial correlation within the ecosystem 

(McBratney et al., 2003).  Prediction using sample points is carried out by the spatial behavior 

and spatial distribution of parameters to minimize the error while doing any type of image 

classification (Eldeiry and Garcia, 2010).  Inverse Distance Weighting and Splines are 

deterministic interpolation methods to analyze change in land use patterns but these methods 

tend to oversimplify the results, as the spatial autocorrelation of the data is not considered 

(Robinson and Metternicht, 2006).  A geostatistical method is usually preferred where sample 

data points can be transformed into continuous surfaces to understand the spatial autocorrelation 

within the data (McBratney et al., 2003).  The parameters used for any analysis can be 

aggregated from pixels to object class representation using image segmentation (Wang et al., 

2004). 

Kriging Interpolation is a very popular geostatistical method (Huang and Chen, 2007; 

Mishra et al., 2009).  Ordinary Kriging estimates the mean as a constant in the searching 

neighborhood (Isaacs and Srivastava, 1989).  The Kriging technique has recently become very 
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common for analyzing spaceborne data (Oliver et al., 2000).  The values of unsampled locations 

are estimated by Kriging models using weighted averaging of the known sampled locations, 

which provide a correlation among the neighboring values that can be modelled as a function of 

the geographical distances between each location across the study area within the variogram 

(Miller et al. 2007; Eldeiry and Garcia, 2010).  Global and local information in predictions can 

be obtained from Kriging, but the ability of the variogram in describing spatial dependence is a 

function of the quality and quantity of the data samples (Miller et al. 2007; Eldeiry and Garcia, 

2010).  According to a study by Robertson (1987), exponential models are often best-fitted 

semivariogram models as they use the weighted least-squares method.  Curran (1988) and 

Woodcock et al. (1988a, b) introduced the semivariogram to remote sensing and discovered that 

the parameters of the variogram can be directly related to a feature in an image.  The primary 

assumption of a geostatistical analysis when assuming spatial continuity is that samples that are 

located close to each other are similar than samples that are far apart (Matheron, 1971).  This 

variation in geographic data or the spatial relation can be analyzed from a semivariogram model.  

An ideal semivariogram has associated features such as the lag, nugget, range and sill.  The 

direction and distance are commonly referred to as the lag, the nugget is variability at zero 

distance and represents sampling and analytical errors, the range of influence in a semivariogram 

designates the extent beyond which autocorrelation between sampling sites is very less or zero 

and the sill represents the variability of spatially independent samples (Bohling, 2005). 

An effective way of mapping vegetation and analyzing LULC change is using the 

Tasseled Cap transformation (Jin and Sader, 2005; Bauer et al., 1993; Cohen & Spies, 1992; 

Cohen et al., 1995; Collins & Woodcock, 1996; Dymond et al., 2002; Fiorella & Ripple, 1995a, 

1995b; Franklin et al., 2002; Skakun et al., 2003).  The Tasseled-Cap Transformation is a 
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conversion of the original bands of an image into a new set of bands with defined interpretations 

that are useful for vegetation mapping (Watkins, 2005).  The term tasseled cap comes from the 

shape of the plot of the data that resembles a cap.  A tasseled-cap transform is performed by 

taking “linear combinations” of the original image bands - similar in concept to principal 

components analysis (Watkins, 2005).  Tasseled Cap reduces the volume of the data without any 

loss of information and its spectral features are directly related to land features (Jin and Sader, 

2005; Crist & Cicone, 1984; Crist & Kauth, 1986; Crist et al., 1986).  This transformation in 

remote sensing is the conversion of the readings in a set of data into composite values that is the 

weighted sums of separate data readings (Dymond et al., 2002).  One of these weighted sums 

measures roughly the brightness or greenness of each pixel in the scene (Dymond et al., 2002).  

Cohen et al. (1995) reported that the composite values are linear combinations of the values of 

the separate data readings, but some of the weights are negative and others are positive.  The 

composite values represent the degree of greenness of the pixels or the degree of yellowness of 

vegetation or perhaps the wetness of the soil (Cohen et al., 1995).  Usually there are just three 

composite variables listed within a remote sensing interface.  The Tasseled Cap transformation 

of Landsat thematic mapper (TM) consists of six multispectral features, all of which could be 

potentially differentiated in terms of stability and change in a multitemporal dataset (Collins and 

Woodcock, 1996; Crist and Kauth, 1986; Crist, 1985; Jin and Sader, 2005).  The first three 

features, which are brightness index, greenness index, and wetness index, respectively usually 

account for the most variation in a single-date image (Collins and Woodcock, 1996; Crist and 

Kauth, 1986; Crist, 1985; Jin and Sader, 2005).  Collins and Woodcock (1996) analyzed Landsat 

data for environmental studies and found the Tasseled Cap transformation to be a consistent 

indicator of assessing forest change as it captures Shortwave Infrared (SWIR).  Tasseled Cap 
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Greenness Index (TCGI) would ideally identify forest cover but it is less sensitive to any 

topographic effect (Collins and Woodcock, 1996).  Cohen and Spies (1992) led a study to 

distinguish old growth and mature forests in the Pacific Northwest using Landsat datasets.  In 

their study, the Tasseled Cap - brightness index did not separate old growth and mature forests 

due to their sensitivity to topography but the greenness and the wetness index were able to 

identify forest disturbances. 

The primary objectives of this study were: (1) to apply Ordinary Kriging (OK) 

Interpolation technique to smooth TCGI values, extracted from 30 m to 60 m spatial resolution 

Landsat images in order to assess spatio-temporal transformations; (2) to apply change detection 

techniques to the interpolated prediction maps to yield the intensity of the LULC change. 

4.3. Materials and methodology 

4.3.1. Image processing 

Image classification and processing was done on a remote sensing platform - ENVI®4.5.  

Six Landsat images (Table 4.1) covering the study site were downloaded from the Global Land 

Cover Facility (GLCF, 2017).  The images were acquired by different sensors (MSS, TM, and 

ETM+) and were from six different time periods, as listed in Table 4.1.  The Landsat images 

were processed by applying a dark object subtraction and then converting the image digital 

numbers to reflectance values.  Dark object subtraction was applied to remove shadows, 

scattering and electrical gains within the datasets (e.g. Chavez, 1996).  This was done to obtain a 

sound quantitative analysis of the images.  Reflectance values were used to calculate several 

vegetation indices for each image subset.  These include the Normalized Difference Vegetation 

Index (NDVI) and Tasseled Cap indices.  NDVI was calculated in ENVI® 4.5 using the equation 

NDVI = (NIR-Red)/(NIR+Red) (Weier and Herring, 2000).  Band 3 was used as red and band 4 
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was used as near IR to generated NDVI and the output datasets were saved as floating point data 

type.  Tasseled Cap was calculated in ENVI®4.5 using the Transform tool where the reflectance 

images of years 1976 to 2015 were used as inputs.  The output image generated four bands – 

Brightness index, Greenness index (TCGI), Wetness index and a null or Non-index.  These 

individual bands were displayed and linked to acquire regions of interest (ROI) representing 

forested areas.  30 training sites were acquired.  Spectral separability analysis was performed 

using ROI Separability tool on NDVI and TCGI, incorporating mean and standard deviation 

values of extreme classes in each scene, to analyze the most suitable index for differentiating 

between forested areas and non-forested areas using methodologies of Kaufman and Remer 

(1994) and Lasaponara (2006).  The ROI statistical results displayed univariate statistics such as 

minimum value, maximum value, mean, standard deviation among other values.  Since the 

resolution of MSS and TM/ETM+ are different, for the MSS image, a 3x3 pixels window was 

selected and for the TM/ETM+ images, 6x6 pixels window was selected.  The window values 

were averaged to generate new pixel values using raster calculator in ArcMap® 10.4.  Thus, the 

resolution of the images was reduced by factors of 3 and 6, to specifically fit the MSS and 

TM/ETM+ images respectively. 

4.3.2. Geostatistical analysis 

To better understand the spatial structure of the imagery on a given date and location, an 

empirical semivariogram model such as Ordinary Kriging was applied to the sampled data.  The 

six transformed datasets corresponding to the six years were imported to ArcMap® 10.4 where 

they were clipped to the watershed boundary shapefile.  Geostatistical Analyst was used to 

perform OK on each dataset for each model type: Gaussian, Exponential, J-Bessel, K-Bessel, 

Circular, and Spherical (Appendix C).  To consider the model that best fitted the study, certain 
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parameters were considered - (1) Cross-validation scatter plot where the measured and predicted 

values were compared by using the difference between them, (2) Mean estimation error where 

the difference between the estimated and the known point values were considered and (3) Mean 

standardized squared estimation error.  These parameters were generated in ArcMap® 10.4.1 

using Geostatistical Analysis (Appendix C).  Based on these parameters, among other Kriging 

models, the Exponential model was found to be the best fit for this study. 

Table 4.1. Landsat time series scenes for years 1976 to 2015 used in the study, downloaded from 

EarthExplorer portal (http://earthexplorer.usgs.gov).  Accessed: October 15, 2016. 

 

*Path/row of the MSS image is listed according to Worldwide Reference 

System-1 (WRS-1) while those of TM and ETM+ are according to WRS - 2. 

 

A smoothing factor of 0.2 was applied to the search neighborhood type for all the 

datasets.  The scatterplots derived from the model for each datasets is shown in Fig.4.3.  The 

resultant interpolation images are shown in Fig.4.2.  Isotropic distribution was assumed in all 

cases, similar to the study by Friedland et al., (2016). 

  

Satellite/Sensor Location Date Path/row* 

Landsat - 2 MSS North Dakota 06/08/1976 34/27 

Landsat - 4 TM North Dakota 31/08/1991 31/27 

Landsat - 7 ETM+ North Dakota 30/08/2000 31/27 

Landsat - 7 ETM+ North Dakota 18/08/2005 31/27 

Landsat - 7 ETM+ North Dakota 22/08/2011 31/27 

Landsat - 8 ETM+ North Dakota 19/08/2015 31/27 
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4.4. Results and discussion 

4.4.1. Image processing analysis 

Figure 4.1 is the visual representation of TCGI for the Pipestem creek watershed.  The 

greener areas represent forest cover and the light green to white areas represents non - forests to 

barren areas.  TCGI is high for the years1976 to 1991 and it gradually decreases from 2000 to 

2015.  The images generated for NDVI for years 1976 to 2015 (Appendix C1) showed similar 

results to TCGI when compared visually, but the separability values were better than that for 

NDVI.  TCGI efficiently determined each class on what it resembled most in the base image.  

TCGI was originally designed to examine vegetation properties, its advantage lies in its ability to 

compare different sensors with different spectral bands, as it subsets different spectral bands to 

one normalized layer of TCGI values (Crist and Cicone, 1984; Huang et al., 2002; Kauth and 

Thomas, 1976). 

4.4.2. Semivariogram analysis 

All six TCGI images were used for the geostatistical analysis.  First, empirical 

semivariograms for the six periods were established.  The rationale for using a semivariogram 

model was the similarity in spatial structure of most of its variables, gradually increasing or 

decreasing as a function of the increasing distance from the river until the boundary of the 

watershed, and the typical shape of the variogram.  In the current case, the presence or absence of 

sill may be an indicator of presence or absence of forested areas.  The level of sill may be related 

to the level of spatial correlation within the watershed.  Therefore, if semi-variance reaches its 

maximum point (sill), beyond that, the data may not be correlated.  The range may be the 

defining boundary of the watershed since it incorporates all the pixel values within the image 

that are correlated.  Results of the cross-validation analyses of the exponential model are 



84 

presented in Table 4.2.  For an ideal model, the Mean prediction error should be near 0 (this 

investigates bias), Root Mean Square (RMS) prediction error should be small, average standard 

error should be close to RMS error, Mean-standardized prediction error should be near 0 and 

RMS standardized prediction error should be near 1, indicating that the estimated prediction 

uncertainty is consistent (Stein, 2012).  In the current study, the RMS ranged from 0.017 to 

0.031, average standard error ranged from 0.016 to 0.063, which is quite close to the RMS 

values.  Mean-standardized prediction error values ranged from 0.007 to 0.041.  RMS 

standardized prediction error values were closer to 1 ranging from 0.591 to 0.681.  The slope 

coefficient was very close to unity and the intercept coefficient was very close to zero, proving 

the ability of the chosen exponential model to reproduce the observed values (Oliver et al., 

2000).  The least-squares measure of fit was used, incorporating exponential models, as shown in 

Fig 4.2.  All semivariograms were processed with 20 lags of 1,000 m each.  Because of the 

irregular distribution of forests and non-forests, data values exactly separated by 1,000 m could 

not be expected, thus the range of 1,000 m to 20,000 m was selected.  Lag values were 

determined by trial and error process to optimize the above-mentioned criteria.  OK interpolation 

maps were produced based on the exponential models with the parameters presented in Table 

4.2.  Figure 4.3 shows the scatterplots generated for cross validation of the model.  These graphs 

show the spatial correlation of the data.  Most of the data values lie along the line in the 

scatterplots indicating how closely related the data is.  During groundtruthing and field 

observations, no evidence was found to support an anisotropic pattern, as in Friedland et al., 

(2016) study, that may explain the direction of forest reduction or the direction in which the 

agricultural lands are increasing.  So, isotropic distribution was assumed in all cases.  Figure 4.2 

depicts the final results for the distribution of the TCGI values for the six periods. 
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Figure 4.1. TCGI images of Pipestem Creek watershed for years 1976 to 2015.  Data was 

generated from Landsat imagery downloaded from the Global Land Cover Facility 

(http://www.landcover.org).  Accessed: February 12, 2016. High TCGI values depict areas with 

dense forest cover and lower values of TCGI depict areas devoid of forests. 

The dark-red areas in the images are related to forested areas.  The surrounding light red 

and yellow belts represent a mixed zone where forested areas and non-forested areas overlay 

each other or create a stable spectral balance.  The zone colored by blue tones is considered to be 

non-forested areas that include mostly agricultural land.  Forested areas are more concentrated in 

the 1976 image and is gradually seen to reduce for the rest of the images through 2015. 
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Table 4.2. Semivariogram parameters for the exponential model fitting the TCGI products for the 

Pipestem Creek watershed (Nugget = 0; Lag = 1,000m) for years 1976 to 2015.  Data was 

generated from TCGI images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Conclusion 

TCGI was selected to describe the spatial surface patterns since it produced the best 

contrast in terms of separability among the spectral indices.  It produced the best contrast in 

terms of separability among all examined spectral indices.  TCGI was able to compare between 

the different sensors with different spectral bands, as it reduced their different spectral bands to 

one normalized layer of TCGI values.  The semivariance analysis was found to be a suitable 

method for gaining insight to the spatial structure present in the imagery for a given date and 

location.  The similarity between the shape of the semivariogram and the directional change of 

the environmental variables is a logical reason for using this method.  The Kriging interpolation 

 1976 1991 2000 2005 2011 2015 

Sill 0.0015 0.0012 0.0007 0.0011 0.0008 0.0010 

Range (m) 742.5 762.5 797.9 1030.7 1079.1 1101 

Root-mean-

square 

(RMS) 

0.031 0.038 0.017 0.017 0.028 0.023 

Average 

standard 

error 

0.062 0.056 0.016 0.060 0.063 0.054 

Mean 

standardized 

0.041 0.033 0.021 0.027 0.007 0.015 

Root-mean-

square-

standardized 

0.591 0.681 0.657 0.613 0.672 0.651 
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technique was used as a smoothing filter in which each pixel was being replaced with the 

solution for the semivariogram equation (exponential model in the current case) calculated from 

all other pixels in the image.  As a result, it reduced spatial errors and fine scale variability and 

helped to better identify the transition from forest to non-forested areas. 

 

Figure 4.2. Kriging Interpolation maps of Pipestem Creek watershed based on TCGI values for 

years 1976 to 2015.  Data was generated from Landsat imagery downloaded from the Global 

Land Cover Facility (http://www.landcover.org).  Accessed: February 12, 2016 
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Figure 4.3. Cross validation scatterplots of the semivariogram model of Pipestem Creek 

watershed datasets for years 1976 to 2015.  The red dots are the data points.  The graphs 

show that the data are highly correlated as the predicted values and the measured values are 

close to each other. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTION 

5.1. Future direction 

More studies to document the expected impacts of these changes are needed.  These 

could use more detailed socio - environmental variables to improve the understanding of the 

causes, locations, and trends of land use changes within such watersheds.  The AHP model 

combined with MCMC may be used to assess larger watersheds combining more parameters.  

Creating a database of prediction maps of LULC for all the impaired watersheds could be a 

beneficial asset for policymakers. 
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APPENDIX A. WATER AND SOIL DATA FROM PIPESTEM CREEK 

Table A1. Soil analysis data of Pipestem Creek for year 2011. 
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Table A2. Soil analysis data of Pipestem Creek for year 2016. 
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Table A3. In situ water sample data from sampling locations within the study area for year 2016. 
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Table A4. In situ water sample data from sampling locations within the study area for year 2016 

showing the sediment load. 

 

 

 

 

 

 

 

 

 

 

 

  

Site 

number 

Total 

Dissolved 

Solids 

(TDS) 

mg/l 

Total 

Hardness 

(TH) 

mg/l 

Total 

Alkalinity 

(TA) 

mg/l 

1 1840 830 250 

2 2060 898 115 

3 2410 895 200 

4 916 370 232 

5 572 285 154 

6 444 268 168 

7 610 320 112 

8 485 297 103 
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APPENDIX B. DATA GENERATED FROM SEMGRID FOR THE MARKOV CHAIN 

MONTE CARLO MODEL FOR YEARS 2007 TO 2015 

B1. Data generated by SemGrid for years 2007 to 2011 

SemGrid 1.6.1 

 Date : 07-12-2016, 16:00:18 

 Folder: E:\Pipestem landsat images 

>> dataset not declared 

. import ascrec2007.txt as(ArcGis) gen(ascrec2007) type(float) 

> no dataset in use 

> ascrec2007 layer imported from file ascrec2007.txt 

. import ascrec2011.txt as(ArcGis) gen(ascrec2011) type(float) 

> ascrec2011 layer imported from file ascrec2011.txt 

markest ascrec2007 ascrec2011 saving(markov) 

States of variable ascrec2007 

 ------------------------------------------------------ 

  state       nobs      freq %     cumul.freq %     

 ------------------------------------------------------ 

1         164855        5.36           5.36 

2         250360        8.13          13.49 

3         286689        9.31          22.80 

4         224694        7.30          30.10 

5         631724       20.52          50.62 

------------------------------------------------------ 

Total     3078178      100.00         100.00 

States of variable ascrec2011 

 ------------------------------------------------------ 
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  state         nobs      freq %     cumul.freq %     

 ------------------------------------------------------ 

1         217809        7.08           7.08 

2         255709        8.31          15.38 

3         303734        9.87          25.25 

4         280609        9.12          34.37 

5         464566       15.09          49.46 

  ------------------------------------------------------ 

Total        3078178      100.00         100.00 

Transitions from states of    2007      to     2011 

 ------------------------------------------------------------ 

from    to state      %       n.of cells      area (ha)   

 ------------------------------------------------------------ 

  1       1          9.8        16163         1454.67 

  1       2         11.7        19286         1735.74 

  1       3         12.0        19730         1775.70 

  1       4          9.4        15505         1395.45 

  1       5         13.8        22701         2043.09 

   ---------------------------------------------------------- 

  2       1         10.7        26899         2420.91 

  2       2         12.8        31944         2874.96 

  2       3         13.3        33315         2998.35 

  2       4         17.7        44438         3999.42 

  2       5          9.4        23535         2118.15 

 ------------------------------------------------------------ 

  3       1         10.2        29155         2623.95 

  3       2         11.1        31810         2862.90 
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  3       3          9.2        26289         2366.01 

  3       4         14.9        42715         3844.35 

  3       5         13.2        37905         3411.45 

 ------------------------------------------------------------ 

  4       1          9.3        20957         1886.13 

  4       2         11.3        25353         2281.77 

  4       3         11.4        25541         2298.69 

  4       4         16.9        38070         3426.30 

  4       5         11.5        25753         2317.77 

 ------------------------------------------------------------ 

  5       1          7.5        47417         4267.53 

  5       2          9.1        57342         5160.78 

  5       3          8.6        54554         4909.86 

  5       4         14.8        93284         8395.56 

  5       5         15.5        97990         8819.10 

 ------------------------------------------------------------ 

Transition probabilities from states of 2007 to 2011. 

 ------------------------------------------------------- 

row->col    1        2        3        4        5            

 ------------------------------------------------------- 

  1        0.1170   0.1197   0.0941   0.1377   0.2204 

  2        0.1074   0.1276   0.1331   0.1775   0.0940 

  3        0.1017   0.1110   0.0917   0.1490   0.1322 

  4        0.0933   0.1128   0.1137   0.1694   0.1146 

  5        0.0751   0.0908   0.0864   0.1477   0.1551 

> markov.tpm transition matrix saved 

markest help 
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markest - Markov chain transition probability matrix estimation 

---------------------------------------------------------------------------  

Purpose: estimates transition probability for first order Markov chains 

Syntax: markest varname1 [varname2] [saving(filename)] 

[replace] [help] 

Options: 

varname# names of variables (or layer) to estimate trasition matrix. 

saving declares the filename for saving transition matrix. If the filename 

extension is not declared, the default extension is tpm. 

replace the transition matrix file, without asking. 

Remarks: 

markest calculates the transition matrix for a first order Markov chain. 

There are two ways to prepare input data: by observation, by variables. 

By observation: if only varname1 is declared, the state transition 

is calculated considering the variable as a time series. It is to be 

used for a single element, changing its state in time. 

By variables: when varname2 is also declared. the transition  

probabilities are calculated from each observation of the first variable 

with respect to the corresponding observation of the second one. It is 

to be used for a multiple elements, changing their states between two 

times. An example is the change of a raster of land cells from one 

year to another. 

 Examples: 

 . markest RainStatus saving(transmat)     transition matrix from RainStatus 

 . markest LandUse1990 LandUse2000 saving(changeuse)   

 See also: marksim 

---------------------------------------------------------------------------  
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 marksim help 

 marksim - Markov chain simulation 

---------------------------------------------------------------------------  

 Purpose: generate random values by a first order markov chain. 

 Syntax:  

marksim [istate(varname|#)] transp(filename) gen(varname2) 

             [nstep(#)] [help] 

Options: 

istate initial state for markov chain. This is to be a number for series or 

a variable name for transition between variables. If a value is declared, 

the time sequence is generated on a single variable. If a varname is 

declared, the time sequence is generated in varname2, after a number 

of time step indicated in the nstep option. If not declared, the  

initial state is the first state in the list, in alphabetic order. 

transp declares the transition matrix file (*.tpm) to be used for simulation. 

gen declares the varname to be generated with the simulated values. 

nstep declares the number of calculation step for simulation (only with the 

option istate(varname)). The default value is 1.) 

Remarks: 

 - Uses the transition matrix generated by the command markest. 

 - The transition probability matrix is to be saved in a file with tpm as name 

extension and dct format. The first column contains the initial state, the 

second the states after transition, and the third the probability. 

Probability matrix data are arranged in one column, row by row, from left to right. 

Examples: 

markest RainStatus saving(transmat)              transition matrix from RainStatus 

marksim RstatusGen transp(transmat) 
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markest LandUse1990 LandUse2000 saving(changeuse)   

marksim istate(LandUse2000) transp(changeuse) nstep(10)  

See also: markest 

---------------------------------------------------------------------------  
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B2. Data generated by SemGrid for years 2011 to 2015 

SemGrid 1.6.1 

Date  : 07-12-2016, 16:58:31 

use ascrec2007.grp 

> loading file ascrec2007.grp   (2837952,2) 

>> grp file corrupted: n. of data different from Ncols*Nrows ( 0* 0<> 0) 

. import ascrec2007.txt as(ArcGis) gen(ascrec2007) type(float) 

> no dataset in use 

> ascrec2007 layer imported from file ascrec2007.txt 

. import ascrec15.txt as(ArcGis) gen(ascrec15) type(float) 

> ascrec15 layer imported from file ascrec15.txt 

. import ascrec2011.txt as(ArcGis) gen(ascrec2011) type(float) 

> ascrec2011 layer imported from file ascrec2011.txt 

. markest ascrec2011 ascrec15 saving(markov11to15) 

  States of variable ascrec2011 

 ------------------------------------------------------ 

  state        nobs      freq %     cumul.freq %     

 ------------------------------------------------------ 

  1         217809        7.08           7.08 

  2         255709        8.31          15.38 

  3         303734        9.87          25.25 

  4         280609        9.12          34.37 

  5         464566       15.09          49.46 

 ------------------------------------------------------ 

  Total     3078178      100.00         100.00 

  States of variable ascrec15 

 ------------------------------------------------------ 
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  state        nobs      freq %     cumul.freq %     

 ------------------------------------------------------ 

  1         113748        3.70           3.70 

  2         223630        7.27          10.96 

  3         111677        3.63          14.59 

  4         254117        8.26          22.84 

  5         402721       13.08          35.93 

 ------------------------------------------------------ 

  Total     3078178      100.00         100.00 

  Transitions from states of      2011      to     2015 

 ------------------------------------------------------------ 

  from    to state      %     n.of cells        area (ha)   

 ------------------------------------------------------------ 

  1       1          3.8         8362          752.58 

  1       2          3.7         8142          732.78 

  1       3          4.0         8755          787.95 

  1       4          6.9        14965         1346.85 

  1       5         15.7        34126         3071.34 

 ------------------------------------------------------------ 

  2       1         14.5        37080         3337.20 

  2       2         26.2        67118         6040.62 

  2       3         20.9        53521         4816.89 

  2       4         10.3        26314         2368.26 

  2       5          2.9         7358          662.22 

 ------------------------------------------------------------- 

  3       1         13.7        41762         3758.58 

  3       2         26.2        79463         7151.67 
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  3       3         21.6        65581         5902.29 

  3       4          9.5        28829         2594.61 

  3       5          2.3         7004          630.36 

 ------------------------------------------------------------- 

  4       1         12.5        35160         3164.40 

  4       2         26.6        74765         6728.85 

  4       3         22.3        62444         5619.96 

  4       4          7.9        22138         1992.42 

  4       5          1.5         4323          389.07 

 ------------------------------------------------------------- 

  5       1         12.6        58536         5268.24 

  5       2         27.6       128359        11552.31 

  5       3         23.6       109422         9847.98 

  5       4          7.4        34207         3078.63 

  5       5          1.0         4876          438.84 

 ------------------------------------------------------------ 

  Transition probabilities from states of 2011 to 2015 

 ---------------------------------------------------------------- 

  row->col    1       2        3         4       5        

 ---------------------------------------------------------------- 

  1        0.0384   0.0374   0.0402   0.1567   0.2855     

  2        0.0475   0.0883   0.0419   0.0738   0.0737  

  3        0.0437   0.1004   0.0413   0.0816   0.0969  

  4        0.0393   0.1099   0.0371   0.1052   0.0784  

  5        0.0384   0.1025   0.0375   0.0997   0.0353 

> markov11to15.tpm transition matrix saved. 

markest help 
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markest - Markov chain transition probability matrix estimation 

---------------------------------------------------------------------------  

Purpose: estimates transition probability for first order Markov chains. 
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B3. Data generated by SemGrid for years 2007 to 2015 

SemGrid 1.6.1 

 Date  : 07-12-2016, 16:50:02 

. import ascrec15.txt as(ArcGis) gen(ascrec15) type(float) 

> no dataset in use 

> ascrec15 layer imported from file ascrec15.txt 

. import ascrec2007.txt as(ArcGis) gen(ascrec2007) type(float) 

> ascrec2007 layer imported from file ascrec2007.txt 

. markest ascrec2007 ascrec15 saving(markov07to15) 

  States of variable ascrec2007 

 ------------------------------------------------------ 

  state       nobs      freq %     cumul.freq %     

 ------------------------------------------------------ 

  1         164855        5.36           5.36 

  2         250360        8.13          13.49 

  3         286689        9.31          22.80 

  4         224694        7.30          30.10 

  5         631724       20.52          50.62 

  ------------------------------------------------------ 

  Total     3078178      100.00         100.00 

States of variable ascrec15 

 ------------------------------------------------------ 

  state           nobs      freq %     cumul.freq %     

 ------------------------------------------------------ 

  1         113748        3.70           3.70 

  2         223630        7.27          10.96 

  3         111677        3.63          14.59 
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  4         254117        8.26          22.84 

  5         402721       13.08          35.93 

 ------------------------------------------------------ 

  Total        3078178      100.00         100.00 

 Transitions from states of 2007 to 2015 

 -------------------------------------------------------- 

  from    to state      %      n.of cells       area (ha)   

 -------------------------------------------------------- 

  1       1          5.5         9015          811.35 

  1       2          4.9         8008          720.72 

  1       3          4.5         7496          674.64 

  1       4          6.7        10988          988.92 

  1       5         16.2        26642         2397.78 

 --------------------------------------------------------- 

  2       1         22.2        55639         5007.51 

  2       2          3.5         8759          788.31 

  2       3         11.4        28646         2578.14 

  2       4         11.8        29497         2654.73 

  2       5         18.8        47190         4247.10 

 --------------------------------------------------------- 

  3       1          4.9        13946         1255.14 

  3       2          8.4        24113         2170.17 

  3       3         15.2        43544         3918.96 

  3       4         26.6        76145         6853.05 

  3       5         21.0        60232         5420.88 

 --------------------------------------------------------- 

  4       1          4.2         9372          843.48 
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  4       2         11.0        24651         2218.59 

  4       3         13.1        29534         2658.06 

  4       4         23.9        53764         4838.76 

  4       5         19.2        43179         3886.11 

 --------------------------------------------------------- 

  5       1          3.6        22613         2035.17 

  5       2          7.5        47241         4251.69 

  5       3         13.7        86292         7766.28 

  5       4         33.1       209058        18815.22 

  5       5         29.0       183108        16479.72 

 --------------------------------------------------------- 

Transition probabilities from states of 2007 to 2015 

 -------------------------------------------------------- 

  row->col    1        2        3       4        5          

 -------------------------------------------------------- 

  1        0.1616   0.2592   0.2021   0.1341   0.0277   

  2        0.2222   0.1178   0.1885   0.1475   0.0224   

  3        0.0584   0.0577   0.0841   0.1519   0.2656    

  4        0.0451   0.1417   0.0417   0.1314   0.2393     

  5        0.0309   0.0360   0.0358   0.3309   0.2899     

> markov07to15.tpm transition matrix saved 

markest help 

markest - Markov chain transition probability matrix estimation 

---------------------------------------------------------------------------  

Purpose: estimates transition probability for first order Markov chains 

Syntax: markest varname1 [varname2] [saving(filename)] 

[replace] [help]  
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APPENDIX C. IMAGE PROCESSING AND GEOSTATISTICAL ANALYSIS 

 

Figure C1. NDVI datasets for years 1976 to 2015 for Pipestem Creek watershed. 
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C1. Geostatistical analysis methods 

i) Gaussian Geostatistical Simulation model (GGS) 

This model first creates a grid of randomly assigned values from a standard distribution 

and then applies the covariance model to the input raster (Dietrich and Newsam, 1993; 

ArcGIS Help 10.4.1).  

Assumptions (Dietrich and Newsam, 1993; ArcGIS Help 10.4.1) 

 GGS assumes that the data is normally distributed. 

 Clustered data needs to be declustered so that the input histogram accurately 

represents the sampled population.  

 Gaussian process realizations are continuous. 

            Advantages 

 GCS replicates the mean, variance, and semivariogram of the data, on average 

(that is, averaged over many realizations) (Chiles and Delfiner, 1999). 

 Increased use of GGS follows a trend in geostatistical practice that emphasizes the 

characterization of uncertainty for decision and risk analysis, rather than producing 

the best unbiased prediction for each unsampled location (as is done with Kriging), 

which is more suited to showing global trends in the data (Deutsch and Journel 

1998; Goovaerts 1997). 

Disadvantage 

 GCS avoids discontinuities in the simulated surfaces due to changes in the local 

neighborhood used in Kriging (Aldworth, 1998; Gribov and Krivoruchko, 2004). 
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Table C1. Semivariogram parameters for Gaussian Geostatistical Simulation models fitting the 

Tasseled Cap Greenness Index (TCGI) products for the Pipestem Creek watershed (Nugget = 0; 

Lag = 1,000m). 

 

Discussion 

For an ideal model, the Mean prediction error should be near 0 (this investigates bias), Root 

Mean Square (RMS) prediction error should be small, average standard error should be close to 

RMS error, Mean-standardized prediction error should be near 0 and RMS standardized 

prediction error should be near 1, indicating that the estimated prediction uncertainty is 

consistent (Stein, 2012).  In Table C1, the RMS ranged from 0.051 to 0.088, average standard 

error ranged from 0.036 to 0.084, which is not very close to the RMS values.  Mean-standardized 

prediction error values ranged from 0.044 to 0.057.  RMS standardized prediction error values 

were greater than 1 for years 1976 to 1991, ranging from 1.690 to 1.721.  This model did not 

prove the ability to reproduce the observed values accurately. 

ii) Spherical and Circular Geostatistical Simulation model 

Gaussian model 1976 1991 2000 2005 2011 2015 

Sill 0.0023 0.0018 0.0021 0.0021 0.0024 0.0017 

Range (m) 765.5 762.5 797.9 1030.7 1079.1 1101 

Root-mean-square (RMS) 0.051 0.088 0.067 0.047 0.048 0.043 

Average standard error 0.052 0.066 0.036 0.070 0.073 0.084 

Mean standardized 0.044 0.043 0.041 0.057 0.047 0.045 

Root-mean-square-standardized 1.690 1.721 0.457 0.513 0.72 0.451 
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These models shows a progressive decrease of spatial autocorrelation (equivalently, 

an increase of semivariance) until some distance, beyond which autocorrelation is 

zero.  The spherical model is one of the most commonly used models (Matheron, 

1963). 

Assumption  

 Both models assume that the data is normally distributed (Matheron, 1963; 

ArcGIS Help 10.4.1). 

Advantage 

 These models are useful for phenomena within an enclosed boundary or perimeter 

(Matheron, 1963). 

Disadvantage 

 Datasets with irregular enclosures are not suited for these models since the spatial 

autocorrelation decreases with after a certain distance (Matheron, 1963). 

Table C2. Semivariogram parameters for Spherical Geostatistical Simulation models fitting the 

Tasseled Cap Greenness Index (TCGI) products for the Pipestem Creek watershed (Nugget = 0; 

Lag = 1,000m). 

Spherical model 1976 1991 2000 2005 2011 2015 

Sill 0.0015 0.0012 0.0007 0.0011 0.0008 0.0010 

Range (m) 700.5 766.5 799.9 1040.7 1099.1 1101 

Root-mean-square (RMS) 0.031 0.008 0.017 0.017 0.028 0.023 

Average standard error 0.002 0.056 0.016 0.060 0.063 0.054 

Mean standardized 0.021 0.003 0.001 0.027 0.007 0.015 

Root-mean-square-standardized 1.501 1.281 1.057 1.213 1.172 0.951 
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Table C3. Semivariogram parameters for Circular Geostatistical Simulation models fitting the 

Tasseled Cap Greenness Index (TCGI) products for the Pipestem Creek watershed (Nugget = 0; 

Lag = 1,000m). 

 

Discussion 

In Table C2, the RMS ranged from 0.008 to 0.031, average standard error ranged from 

0.002 to 0.056, which is not very close to the RMS values.  Mean-standardized prediction error 

values ranged from 0.001 to 0.021.  RMS standardized prediction error values were greater than 

1 for years 1976 to 2011, ranging from 1.057 to 1.501.  This model did not prove the ability to 

reproduce the observed values accurately. 

In Table C3, the RMS ranged from 0.017 to 0.038, average standard error ranged from 

0.002 to 0.054, which is not very close to the RMS values.  Mean-standardized prediction error 

values ranged from 0.001 to 0.033.  RMS standardized prediction error values were greater than 

1 for years 1976 to 2015, ranging from 1.591 to 1.681.  This model was not found to be a best fit. 

iii) J-Bessel and K-Bessel Geostatistical Simulation models 

J-Bessel and K-Bessel Geostatistical Simulation models are based on Bessel's equation.  This 

equation arises when finding separable solutions to Laplace's equation and the Helmholtz 

Circular model 1976 1991 2000 2005 2011 2015 

Sill 0.0015 0.0012 0.0007 0.0011 0.0008 0.0010 

Range (m) 700.5 762.5 797.9 1100.7 1079.1 1200.6 

Root-mean-square (RMS) 0.031 0.038 0.017 0.017 0.028 0.023 

Average standard error 0.002 0.006 0.016 0.060 0.013 0.054 

Mean standardized 0.001 0.033 0.021 0.017 0.007 0.015 

Root-mean-square-standardized 1.591 1.681 1.657 1.613 1.672 1.651 
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equation in cylindrical or spherical coordinates (Curran, 1988). Bessel functions are therefore 

especially important for many problems of wave propagation and static potentials (Curran, 

1988). 

Assumption  

 Both models assume that the data is normally distributed (Curran, 1988; 

Matheron, 1963; ArcGIS Help 10.4.1). 

 They also assume singularity at the origin (Curran, 1988). 

Table C4. Semivariogram parameters for J-Bessel Geostatistical Simulation models fitting the 

Tasseled Cap Greenness Index (TCGI) products for the Pipestem Creek watershed (Nugget = 0; 

Lag = 1,000m). 

 

  

J-Bessel model 1976 1991 2000 2005 2011 2015 

Sill 0.0009 0.0006 0.0008 0.0008 0.0003 0.0004 

Range (m) 842.5 762.5 797.9 1030.7 1079.1 1100 

Root-mean-square (RMS) 0.001 0.008 0.007 0.007 0.008 0.013 

Average standard error 0.012 0.066 0.056 0.070 0.073 0.024 

Mean standardized 0.011 0.053 0.051 0.007 0.007 0.005 

Root-mean-square-standardized 1.091 1.081 1.007 1.613 0.772 0.858 



121 

Table C5. Semivariogram parameters for K-Bessel Geostatistical Simulation models fitting the 

Tasseled Cap Greenness Index (TCGI) products for the Pipestem Creek watershed (Nugget = 0; 

Lag = 1,000m). 

 

Discussion 

In Table C4, the RMS ranged from 0.008 to 0.031, average standard error ranged from 

0.012 to 0.073, which is not very close to the RMS values.  Mean-standardized prediction error 

values ranged from 0.001 to 0.013.  RMS standardized prediction error values were greater than 

1 for some datasets, ranging from 0.772 to 1.613.  This model did not prove the ability to 

reproduce the observed values accurately. 

In Table C5, the RMS ranged from 0.001 to 0.128, average standard error ranged from 

0.010 to 0.042, which is not very close to the RMS values.  Mean-standardized prediction error 

values ranged from 0.005 to 0.033.  RMS standardized prediction error values were greater than 

1 for years 1976 to 2015, ranging from 1.001 to 1.672.  This model was not found to be a good 

fit. 

K-Bessel model 1976 1991 2000 2005 2011 2015 

Sill 0.0005 0.0002 0.0007 0.0001 0.000 0.000 

Range (m) 893.5 762.5 797.9 1030.7 1079.1 1002 

Root-mean-square (RMS) 0.001 0.018 0.027 0.117 0.128 0.123 

Average standard error 0.042 0.046 0.036 0.010 0.013 0.014 

Mean standardized 0.021 0.033 0.011 0.027 0.007 0.005 

Root-mean-square-standardized 1.001 1.001 1.105 1.214 1.672 1.651 
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Thus, the exponential model was chosen.  This model is usually applied when spatial 

autocorrelation decreases exponentially with increasing distance, disappearing completely 

only at an infinite distance (Curran, 1988). 
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