GENETICS OF DROUGHT TOLERANCE IN HARD RED SPING WHEAT IN THE

NORTHERN UNITED STATES OF AMERICA

A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science

By

Shah Mohammad Hisam Al Rabbi

In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Department: Plant Sciences Option: Breeding and Molecular Genetics

March 2017

Fargo, North Dakota

North Dakota State University Graduate School

Title

DROUGHT TOLERANCE QTL IDENTIFICATION IN SPRING WHEAT IN THE NORTHERN UNITED STATES OF AMERICA

By

Shah Mohammad Hisam Al Rabbi

The Supervisory Committee certifies that this disquisition complies with North Dakota

State University's regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Elias M. Elias

Chair

Dr. Mohamed Mergoum

Dr. Edward L. Deckard

Dr. Steven Xu

Dr. Jane Schuh

Approved:

04/06/2017

Date

Dr. Harlene Hatterman-Valenti

Department Chair

ABSTRACT

Drought affects about 50% of wheat (Triticum aestivum L.) globally and is a major threat for sustainable wheat production. This dissertation discusses three studies carried out to dissect drought tolerance in hard red spring wheat (HRSW) in the northern United States of America (USA). The first study used a bi-parental mapping approach with a recombinant inbred line (RIL) population developed from a cross between a drought-tolerant cultivar, 'Reeder' (PI613586), and a drought-susceptible cultivar, 'Albany.' The RILs were evaluated in different locations in North Dakota (ND) over three years. Data were collected on plant height (PH), days to heading (DH), yield (YLD), test weight (TW), and thousand kernel weight (TKW). A highdensity genetic map was constructed using Illumina's Infinium 90K single nucleotide polymorphism (SNP) genotypic data. In the second study, the same RIL population was evaluated for PH, DH, YLD, TKW, number of tillers (TIL), number of spikes (SPK), canopy dry weight (CDW), and wilting score (WS) in the greenhouse rather than the field. The third study used association mapping (AM) approach with an association panel comprised of \geq 350 genotypes which were evaluated for PH, DH, YLD, TW, and TKW in different locations in ND. The bi-parental mapping study identified a total of 38 QTL each in the field and the greenhouse experiment. Among those, a total of six and eight QTL respectively, were identified under drought conditions. A total of five and eight QTL respectively were identified for both control and drought conditions. Besides this, the bi-parental mapping study identified six QTL for Drought susceptibility index (DSI) in the greenhouse experiment. In contrast, AM study identified a total of 69 QTL where 16 QTL were identified under drought conditions and 50 QTL were identified under both drought and control conditions. Further, 12 genomic regions associated with drought tolerance were repeated across two and sometimes all three studies. Ten

novel QTL on chromosomes 2D, 3D, 4A, 4D, 5B, 7A, and 7B were identified. The QTL identified exclusively under drought conditions, under both drought and normal conditions and for DSI could be helpful for developing drought-tolerant wheat cultivars through marker-assisted selection (MAS).

ACKNOWLEDGEMENTS

I would like to express my gratitude and heartfelt thanks to my advisor, Dr. Elias M. Elias, for all of his support and guidance throughout my studies. The same gratitude and thanks go to my initial advisor, Dr. Mohamed Mergoum, for all of his suggestions and guidance during my research. And, I am thankful to the rest of my graduate committee members, Dr. Edward L. Deckard, Dr. Steven Xu, and Dr. Jane Schuh, and to Dr. Shahryar Kianian, who was initially a member.

My special thanks go to Dr. Ajay Kumar for his profound help during this research, especially during the data analysis stage. Also helpful with their support and guidance at that stage were Dr. Zahirul Talukder, Dr. Raed Seetan, and the departed Dr. James J. Hammond, whom I fondly remember for his kindness to me. I am so grateful to Dr. Shiaoman Chao for helping me with the difficult task of genotyping. I humbly convey my gratitude to Dr. Andrew Green and Dr. Richad Horsley for their support and guidance during different phases of my research.

A thank you goes to all of the members and ex-members of the NDSU Hard Red Spring Wheat Breeding and Genetics projects for their help with my research, including: Jesse Underdahl, Matthew Abdallah, Adam Walz, Brad Schmidt, Justin Hegstad, Sepehr Mohajeri Naraghi, Ahmed El-Fatih ElDolfey, and Morgan Echeverry-Solarte. I thank my friends Muhammad Arif-Uz-Zaman, Shah Mohammad Limon, Debjit Roy, Sayed Pirseyedi, Atena Oladzadabbasabadi, Marina Dobrydina, Evan Salsman, Jose Rivera, Samantha Hostad, and Emma Kaehler. For their encouragement, I also thank Sally Mann, Megan Shawgo, and Stanley Stancyk.

V

I express my gratitude to my mother, Mrs. Hasina Begum, and brother, Dr. Md. Abdullah Al Bari, for their constant encouragement. I offer endless gratitude to the departed soul of my father, Md. Afaz Uddin Shah, for so many inspirational memories. My special thanks go to my wife, Israt Nadia, for enduring many hardships during my studies, allowing me to complete this thesis. And, last but not least I thank my sister, Romiza Fariz, and sister-in-law, Afsana Noor, for their kind support and encouragement.

DEDICATION

This dissertation is dedicated to my father, Md. Afaz Uddin Shah, and my mother, Mrs. Hasina

Begum.

PREFACE

This dissertation has five chapters. Chapter1 provides the general introduction to and objectives of the study. Chapter 2 contains the literature review. Chapters 3, 4, and 5 present three articles written for submission to the appropriate journals. Each article has its own abstract, introduction, material methods, results, discussions, conclusions, and references. A general abstract at the start of the dissertation and a general conclusions section and appendices at the end are also included.

ABSTRACT	iii
ACKNOWLEDGEMENTS	v
DEDICATION	vii
PREFACE	viii
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDIX TABLES	XX
CHAPTER 1. INTRODUCTION	1
1.1. General Introduction	1
1.2. Objectives	2
1.2.1. General objective	2
1.2.2. Specific objectives	2
1.3. References	
CHAPTER 2. LITERATURE REVIEW	5
2.1. Bread Wheat	5
2.1.1. Evolution of wheat	5
2.1.2. The wheat classes of the USA	6
2.1.2.1. Hard red winter wheat (HRWW)	6
2.1.2.2. Hard red spring wheat (HRSW)	6
2.1.2.3. Soft red winter wheat (SRWW)	6
2.1.2.4. Soft wheat	6
2.1.2.5. Durum wheat	7
2.1.3. The wheat genome	7

TABLE OF CONTENTS

2.2. Drought
2.2.1. Importance of drought tolerance7
2.2.2. Plant strategies for drought tolerance
2.2.2.1. Morphological mechanisms
2.2.2.2. Physiological mechanisms
2.3. Studies on Drought Tolerance
2.3.1. Historical background
2.3.2. Complexity of the study 10
2.3.2. Traits which can be considered for drought tolerance study
2.4. Modern Approaches 12
2.4.1. Recent roles of molecular markers
2.4.2. QTL mapping
2.4.3. SNP markers
2.5. References
CHAPTER 3. IDENTIFYING QTL FOR DROUGHT TOLERANCE IN SPRING WHEAT IN SPRING WHEAT IN THE NORTHERN USA USING FIELD EXPERIMENTS
3.1. Abstract
3.2. Introduction
3. 3. Materials and Methods
3.3.1. Plant materials
3.3.2. Field experiments
3.3.3. Data collection
3.3.4. Phenotypic data analysis
3.3.5. Genotyping
3.3.6. Map construction

3.3.7. QTL mapping	
3.4. Results	
3.4.1. Phenotypic analyses	
3.4.2. Genetic linkage map	
3.4.3. QTL analysis	
3.4.3.1. QTL for DH	
3.4.3.2. QTL for PH	
3.4.3.3. QTL for yield	
3.4.3.4. QTL for TW	
3.4.3.5. QTL for TKW	
3.4.4. Co-localized or pleiotropic QTL	
3.4.5. The QTL important for drought tolerance	
3.5. Discussion	
3.5.1. Linkage map	
3.5.2. Use of secondary data to assess drought conditions	63
3.5.3. Use of agronomic data to assess drought tolerance	63
3.5.4. QTL for DH	64
3.5.5. QTL for YLD	65
3.5.6. QTL for PH	66
3.5.7. QTL for TKW	67
3.5.8. QTL for TW	68
3.5.9. Pleiotropic QTL	69
3.5.10. QTL for drought tolerance	69
3.6. Conclusions	
3.7. References	

CHAPTER 4. IDENTIFYING QTL FOR DROUGHT TOLERANCE IN SPRING W IN THE NORTHERN USA USING A GREENHOUSE EXPERIMENT	VHEAT 85
4.1. Abstract	85
4.2. Introduction	86
4. 3. Materials and Methods	87
4.3.1. Plant materials	87
4.3.2. Greenhouse experiment	87
4.3.3. Data collection	88
4.3.4. Phenotypic data analysis	88
4.3.5. Genotyping	89
4.3.6. Map construction	89
4.3.7. QTL mapping	90
4.4 Results	90
4.4.1. Phenotypic analyses	
4.4.2. Genetic linkage map	
4.4.3. QTL analysis	100
4.4.3.1. QTL for DH	100
4.4.3.2. QTL for PH	100
4.4.3.3. QTL for YLD	101
4.4.3.4. QTL for CDW	101
4.4.3.5. QTL for TKW	101
4.4.3.6. QTL for SPK	101
4.4.3.7. QTL for TIL	102
4.4.4.8. Co-localized or pleiotropic QTL	
4.5. Discussion	118

4.5.1. Linkage maps	
4.5.2. QTL for DH	
4.5.3. QTL for PH	
4.5.4. QTL for YLD	121
4.5.5. QTL for CDW	
4.5.6. QTL for TKW	
4.5.7. QTL for SPK	
4.5.8. QTL for TIL	123
4.6. Conclusions	123
4.7. References	124
CHAPTER 5. GENOME-WIDE ASSOCIATION MAPPING FOR DROUGHT TOLERANCE IN SPRING WHEAT IN THE NORTHERN USA	134
5.1. Abstract	
5.2. Introduction	
5. 3. Materials and Methods	136
5.3.1. Plant materials	
5.3.2. Field experiments	
5.3.3. Data collection	
5.3.4. Phenotypic data analysis	
5.3.5. Genotyping	
5.3.6. Association analysis	
5.4 Results	140
5.4.1. Phenotypic analyses	
5.4.2. Analysis of SNP markers	
5.4.3. Association analysis	

5.4.3.1. QTL for DH	142
5.4.3.2. QTL for PH	142
5.4.3.3. QTL for YLD	144
5.4.3.4. QTL for TW	147
5.4.3.5. QTL for TKW	148
5.5. Discussion	148
5.5.1. Association analyses	148
5.5.2. Use of secondary data to assess drought conditions	149
5.5.3. Use of agronomic data to assess drought tolerance	150
5.5.4. DH	150
5.5.5. PH	151
5.5.6. YLD	152
5.5.7. TW	153
5.5.8. TKW	153
5.6. Conclusions	153
5.7. References	154
CHAPTER 6. GENERAL CONCLUSIONS	161
APPENDIX	163

LIST OF TABLES

Tabl		Page
3.1.	Soil types, plant-available water (water-holding capacity of soil), and total rainfall for nine environments.	25
3.2.	Analysis of variance for the agronomic traits in nine environments.	32
3.3.	Phenotypic performances of Reeder and Albany, RIL population and checks in different environments (Env.).	33
3.4.	Correlation coefficients between five agronomic traits in the RIL population (Reeder \times Albany) in different environments (Env.) and the overall mean across environments (M)	35
3.5.	Distribution of markers across linkage groups in the genetic map developed using the Reeder \times Albany RIL population	36
3.6.	QTL identified for the agronomic traits in a RIL population derived from the cross between Reeder and Albany.	41
3.7.	QTL for drought tolerance in a RIL population derived from the cross between Reeder and Albany.	44
4.1.	Analysis of variance (ANOVA) for the agronomic traits	92
4.2.	Mean phenotypic performances of Reeder and Albany, their RIL population, and checks in different water regimes.	97
4.3.	Correlation coefficients between five agronomic traits in the RIL population (Reeder × Albany) in different environments (Env.) and overall mean across environments (M)	98
4.4.	Distribution of markers across linkage groups in the genetic map developed using the Reeder \times Albany RIL population	99
4.5.	QTL identified for the agronomic traits in a RIL population derived from the cross between Reeder and Albany.	. 103
5.1.	Soil types, plant-available water (water-holding capacity of soil), and total rainfall for eight environments	. 138
5.2.	Analysis of variance for agronomic traits in nine environments	. 141
5.3.	Distribution of markers in wheat chromosomes and genomes based on the 90k SNP consensus map (Wang et al., 2014).	. 143

5.4. Number of principal components (PC) with Eigen values and the proportion of variations they explained.	144
5.5. Traits and associated QTL along with QTL region, chromosome number, position, associated traits, water regimes, and p and R2 values.	145

LIST OF FIGURES

Figure	<u>Page</u>
3.1. Frequency distribution of the agronomic traits of 149 RILs of the cross of Reeder and Albany	29
3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps	: 45
4.1. Frequency distribution of the agronomic traits for 149 RILs of the Reeder and Albany mapping population	93
4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany	105

LIST OF ABBREVIATIONS

AM	Association mapping
ANOVA	Analysis of variance
CDW	Canopy dry weight
CI	Confidence interval
CIM	Composite interval mapping
cM	Centi-Morgan
CV	Coefficient of variation
DH	Days to heading
DSI	Drought susceptibility index
GS	Genome studio
GWAS	Genome-wide association study
HRSW	Hard red spring wheat
К	Kinship
LOD	Log of odds
LSD	Least significant difference
MLM	Mixed linear model
MTA	Marker-trait association
ND	North Dakota
NDAWN	North Dakota Agricultural Weather Network
NDSU	North Dakota State University
PC	Principal component
РН	Plant height

PV	Phenotypic variation
QTL	Quantitative trait loci
RCBD	Randomized complete block design
RIL	Recombinant inbred line
SAS	Statistical analysis system
SNP	Single nucleotide polymorphism
SPK	Number of spikes
SSD	Single seed descent
SSR	Simple sequence repeat
TIL	Number of tillers
TKW	Thousand kernel weight
TW	Test weight
WS	Wilting score
YLD	Yield

LIST OF APPENDIX TABLES

Table	Page
A1. Germplasms used in the AM panel for 2012.	. 163
A2. Additional germplasms used in the AM panel for 2013 and 2014.	. 173

CHAPTER 1. INTRODUCTION

1.1. General Introduction

Wheat (*Triticum aestivum* L.) has an evolutionary history spanning 50-70 million years (Inda et al., 2008), which after a series of hybridizations, natural selections, artificial selections, and mutations, became the present bread wheat (*T. aestivum*, 2n = 6x = 42, genome AABBDD) (Huang et al., 2002; Dvorak and Akhunov, 2005). Currently, bread wheat can be categorized into five different types. They are: hard red winter wheat (HRWW), hard red spring wheat (HRSW), soft red winter wheat (SRWW), soft white wheat, and durum wheat (Vocke and Ali, 2013). Among these types, HRSW, which represents 25% of total wheat production in the USA (Vocke and Ali, 2013), is especially important for the state of North Dakota (ND). This state accounts for about half of the total HRSW production in the USA. HRSW has great importance to the growers of ND as the wheat is exported to more than 70 countries and used for making some of the world's finest baked goods due to its higher protein content and superior overall quality (ND Wheat Commission, 2016).

HRSW experiences drought frequently in ND, especially in the semi-arid western part of the state, causing enormous economic loss (Climate change and the economy, 2008). Even in the larger global context, drought is a very critical issue, affecting about 50% of the world HRSW production area regularly (Pfeiffer et al., 2005). However, the development of HRSW cultivars with drought tolerance can save this cash crop and even make its cultivation more profitable. Both drought and drought tolerance should be addressed to go to the direction of developing HRSW cultivars with drought tolerance.

Drought refers to the reduction of accessible water in the soil and atmospheric conditions that cause plants to lose water by transpiration or evaporation. In contrast, drought tolerance means the ability of the plant to grow, reproduce satisfactorily, and give a harvestable yield under short-term or prolonged water-deficient conditions (Turner, 1979). Developing wheat cultivars with improved drought tolerance will be a sustainable and economically-viable approach to resolving drought problems. Understanding the genetics of drought tolerance in wheat is a prerequisite to achieving this goal.

Drought tolerance in crop plants is associated with a wide range of morpho-physiological traits, with the genetics of drought tolerance having a quantitative inheritance (Blum, 1988). Each trait associated with drought tolerance is controlled by many genes or gene complexes; a number of these traits are identified as heritable. These traits have additive variance and show continuous variation, indicating a good scope to improve drought tolerance (Tuberosa and Salvi, 2006). Genomic locations controlling drought tolerance can be identified through the analysis of quantitative trait loci (QTL).

1.2. Objectives

1.2.1. General objective

The general objective of this study is to understand the genetics of drought tolerance in HRSW in the northern USA.

1.2.2. Specific objectives

The specific objectives of this study are to:

- Identify QTL for drought tolerance in HRSW in the northern USA through bi-parental mapping using field experiments.
- Identify QTL for drought tolerance in HRSW of in the northern USA through bi-parental mapping using greenhouse experiments.

Identify QTL for drought tolerance in HRSW in the northern USA through association mapping.

1.3. References

Blum, A. 1988. Plant breeding for stress environments. CRC Press, Boca Raton.

Climate change and the economy. 2008. Natl. Conf. State Legis. Available at

http://www.ncsl.org/print/environ/ClimateChangeND.pdf (verified 15 December 2016).

- Dvorak, J., and E. Akhunov. 2005. Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 17: 323–332.
- Huang, S., A. Sirikhachornkit, X. Su, J. Faris, B. Gill, R. Haselkorn, and P. Gornicki. 2002.
 Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polypoid wheat. Proc. Natl. Acad. Sci. USA. 99: 8133–8138.
- Inda, L.A., J.G. Segarra-Moragues, J. Müller, P.M. Peterson, and P. Catalán. 2008. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol. Phylogenet. Evol. 46(3): 932–957.
- North Dakota Wheat Commission. 2016. Build bigger better Mark. Available at http://www.ndwheat.com/buyers/default.asp?ID=294 (verified 15 December 2016).
- Pfeiffer, W.H., R.M. Trethowan, M.V. Ginkel, M.I. Ortiz, and S. Rajaram. 2005. Breeding for abiotic stress tolerance in wheat. pp. 401–489. *In* Harris, M.A. and P.J.C. (eds.), Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. The Haworth Press, NY, USA.

- Tuberosa, R., and S. Salvi. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11(8): 405–412.
- Turner, N.C. 1979. Drought resistance and adaptation to water deficits in crop plants. pp. 343–372. *In* H. Mussell, C.R.S. (eds.), Stress physiology in crop plants. John Wiley & Sons, NY, USA.
- Vocke, G., and M. Ali. 2013. U.S. Wheat production practices, costs, and yields: Variations across regions. Economic information bulletin (116). Economic Research Service, United States Department of Agriculture.

CHAPTER 2. LITERATURE REVIEW

2.1. Bread Wheat

2.1.1. Evolution of wheat

The evolution of the family Poaceae (grasses) occurred around 50 to 70 million years ago (Kellogg, 2001; Huang et al., 2002). The sub-family Pooideae, which includes wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and oats (Avena sativa), diverged from Poaceae around 20 million years ago (Inda et al., 2008). Around 300,000 to 500,000 years before present (BP), wild emmer wheat (*T. dicoccoides*, 2n = 4x = 28, genome AABB) was produced after a hybridization event between wild diploid wheat (T. urartu, 2n = 2x = 14, genome AA) and goat grass (*Aegilops speltoides*, 2n = 2x = 14, genome BB) (Huang et al., 2002; Dvorak and Akhunov, 2005). Hunters started to cultivate wild emmer wheat about 10,000 BP. They engaged in plant selection subconsciously until a more developed cultivated emmer wheat emerged (T. dicoccum, 2n = 4x = 28, genome AABB). This cultivated emmer wheat hybridized spontaneously with another goat grass (*Ae. tauschii* (2n = 2x = 14, genome DD) around 9,000 BP, producing an early spelt wheat (*T. spelta*, 2n = 6x = 42, genome AABBDD). The ears of both emmer and early spelt wheat were changed to easily-threshed types by a natural mutation about 8,500 bp; these types then evolved into free-threshing type (*T. durum*, 2n = 4x = 28, genome AABB) and bread wheat (*T. aestivum*, 2n = 6x = 42, genome AABBDD) (Fig. 2.1).

2.1.2. The wheat classes of the USA

Wheat can be categorized into five major classes (Vocke and Ali, 2013), which are described in the following five subsections:

2.1.2.1. Hard red winter wheat (HRWW)

This type of wheat comprises about 40% of total USA production and is mainly grown in the Great Plains (from Texas in the south through Montana in the north). Hard red winter wheat is high in protein, which makes it suitable for bread flour.

2.1.2.2. Hard red spring wheat (HRSW)

This type of wheat comprises about 25% of the total USA production and is mainly grown in the Northern Plains (ND, Montana, Minnesota, and South Dakota). Hard red spring wheat has high protein levels and is primarily used for making specialty bread and pasta and for blending with lower-protein HRWW.

2.1.2.3. Soft red winter wheat (SRWW)

This type of wheat accounts for 15 to 20% of the total USA production and is grown primarily in states along the Mississippi River and in the East. Soft red winter wheat flour is used for making cakes, cookies, crackers, and other wheat products made from low-protein flour.

2.1.2.4. Soft wheat

This type of wheat, which accounts for 10 to 15% of the total USA production, is grown in Washington, Oregon, Idaho, Michigan, and New York. Flour from this wheat is used for making cakes, cookies, crackers, and other wheat products made from low-protein flour.

6

2.1.2.5. Durum wheat

This type of wheat, accounting for 3 to 5% of the total USA production, is grown primarily in ND and Montana and is used to make pasta.

2.1.3. The wheat genome

The genome size of hexaploid wheat (*T. aestivum* L., 2n=42, AABBDD) is approximately 1.7×10^{10} bp, which is about a hundred times bigger than that of the Arabidopsis genome, forty times than that of rice, and about six times than that of maize (Bennett and Smith., 1976; Amuruganathan and Earle, 1991). The wheat genome is big because of polyploidy and extensive duplication. To illustrate the latter wheat has an over 80% DNA sequence repetition (Smith and Flavell, 1974). The average wheat chromosome measures around 810 MB, which is about 25 times bigger than the average rice chromosome. Studies indicate that wheat has approximately 30,000 genes, only a few hundred of which have been identified, mapped, and their primary and pleiotropic effects described (Farag, 2004).

2.2. Drought

2.2.1. Importance of drought tolerance

Drought, which often corresponds with high temperatures, is the main natural hazard threatening wheat production in many parts of the world (Araus et al., 2008). It regularly affects about 50% of the wheat production area worldwide (Pfeiffer et al., 2005) and represents a potential threat to plant growth and development by stressing plants. Drought stress affects species differently, and even affects members within species differently. Long-term data show that drought is becoming more common in some areas. For example, droughts in Morocco used to occur once every decade at the start of the 20th century, but now occur every other year (Forester et al., 2004). It is predictable that droughts may get even worse in many areas due to

diminishing water availability and global climatic changes. Irrigation has thus become a widelyused method to reduce the impact of drought. The Food and Agriculture Organization of the United Nations (FAO) has predicted a 14% increase in water use for irrigation between 2002 and 2030 in developing countries. This increase will contribute to water shortages in one out of five developing countries during that time frame (FAO, 2002). In addition to its impact on water supplies, irrigation has many other associated costs, including fuel costs. Further, irrigation might add salts to the soil, making it saline and hence less suitable for crop production (Rhoades and Loveday, 1990). Treatment of that soil would further increase the cost of production. To conclude, changes in weather patterns will ultimately lead to less available water for irrigated wheat production. Given these expected conditions, a better understanding of drought tolerance could be helpful to select or develop adapted varieties of wheat with better productivity under water-stress conditions. However, breeding for extreme drought is difficult and not practical.

2.2.2. Plant strategies for drought tolerance

2.2.2.1. Morphological mechanisms

Different types of morphological responses that plants can exhibit under drought conditions are described below:

Drought escape: Plants shorten their life cycle to reproduce before acute dryness occurs. Flowering time is very important for plant adaptation to drought as a plant with a short life cycle that flowers early can escape terminal drought (Araus et al., 2002). Therefore, the development of short-duration varieties has been very useful for minimizing yield loss from terminal drought (Kumar and Abbo, 2001). However, the shorter life cycle may reduce yield due to a corresponding reduction in photosynthates. Drought avoidance: Some plants can control transpiration loss through stomatal tissue and maintain a high tissue-water potential to resist drought. Also, such plants have extensive and prolific root systems to uptake more water (Turner et al., 2001). Glaucousness and waxy bloom on leaves also help plants to maintain a high tissue-water potential (Richards, 1986).

Phenotypic flexibility: Plants shorten the number of leaves and leaf surface area to cope with drought, saving on water loss and, ultimately, yield loss (Schuppler et al., 1998). Hairy leaves increase the degree of light reflection and reduce leaf temperatures and transpiration (Sandquist and Ehleringer, 2003), and thick and proliferated root systems could allow plants to capture more water and hence could be a key factor in drought resistance (Kavar et al., 2007).

2.2.2.2. Physiological mechanisms

Osmotic adjustment: The overproduction of low-molecular-weight, highly soluble, nontoxic compounds even at high cytosolic concentrations (e.g., soluble sugars, sugar alcohols, glycine betaine, organic acids, calcium, potassium, and chloride ions) lower the cell's osmotic potential and attract water into the cell. Osmoregulators can maintain the turgor pressure of plant cells and minimize the harmful effects of drought (Morgan, 1990; Serraj and Sinclair, 2002).

Plant growth regulators: Plant growth regulators, or phytohormones, play a major role in drought tolerance. Drought decreases the endogenous content of auxins, gibberellins, and cytokinins and increases abscisic acid and ethylene (Nilsen and Orcutte, 1996). This change favors stomatal closure and minimizes transpiration during drought (Morgan, 1990). Also, increased abscisic acid changes the relative growth rates of various plant parts, such as increasing the root-to-shoot dry weight ratio and inhibiting leaf area development and the production of prolific and deeper roots (Sharp et al., 1994).

9

2.3. Studies on Drought Tolerance

2.3.1. Historical background

Breeders have been trying to improve drought tolerance in wheat for decades, starting in Australia in the late 1800s. At that time, cultivars commonly used in England were not performing well in the more arid regions of Australia. Breeders started visually selecting for traits such as earliness to avoid stress: this ultimately improved yield under drought conditions. They also selected for some morphological traits, such as short straw, smaller leaf area, and fewer tillers (Marshall, 1987). Decreasing whole plant surface minimizes transpiration, and it also minimizes the amount of vegetative biomass, which is correlated with yield (Babu et al., 2003).

2.3.2. Complexity of the study

Breeders have debated whether to select for yield potential to increase yield under drought tolerance (Alexander et al., 2012). They have also debated whether the selection is more effective in stressed or unstressed conditions (Alexander et al., 2012). Much research has been done to try to answer these questions, but breeders have not come to a consensus (Srivastava, 1987). The quantitative nature of drought-stress tolerance with its low heritability and high genotype × environment (G × E) interaction has contributed to the lack of consensus.

Breeding for drought tolerance is complicated further by the fact that several types of abiotic stresses can challenge crop plants at the same time. The remedy for one stress may have the opposite effect under a different abiotic stresses. For example, some plants avoid heat stress by increasing transpiration, and in effect, creating their own evaporative cooling systems. This mechanism increases water loss, and makes a plant drought-susceptible. An opposite effect is when the stomata closes to help to decrease water loss and maintain turgor under less-available soil moisture (Fleury et al., 2010). The problem arises when high temperatures and drought occur simultaneously and the two mechanisms oppose each other. Osmo-protectant amino acid proline is another example of when a similar conflict can occur. This compound is good for drought tolerance, but has a toxic effect under heat stress. Therefore, it may not offer an appropriate tolerance mechanism in field conditions when heat and drought stresses occur at the same time (Rizhsky et al., 2004).

Further, plant morphology sometimes makes the selection confusing, as with the traits plant height (PH) and tillering. Small plants with fewer tillers can show higher water-use efficiency (WUE) than tall multi-tillered plants (Fleury et al., 2010). Therefore, the selection for high WUE may lead to smaller plants with a lower yield under drought conditions (Blum, 2005).

2.3.2. Traits which can be considered for drought tolerance study

Many morphological characteristics, such as root length, tillering, spike number per m², grain number per spike, the number of fertile tillers per plant, one thousand grain weight, peduncle length, spike weight, stem weight, awn length, and grain weight per spike can affect wheat tolerance to drought (Blum, 2005). However, yield stability and relative yield performance under both drought-stressed and favorable environments have been proposed for effective selection of drought-tolerant genotypes (Pinter et al., 1990). Stability of grain yield for each genotype can be estimated by the drought-susceptibility index (DSI), which measures the yield difference between stressed and non-stressed environments (Blum et al., 1989). Passioura (2007) indicated that floral sterility caused by water stress could be a promising target trait for improvement. However, no QTL studies for this trait have been published so far for wheat.

Along with yield components, root traits should not be ignored as they have a crucial role in harvesting water from the soil (Tuberosa and Salvi, 2006). A simulation analysis of root system modification indicated that an extra one mm of water extracted during grain filling of wheat would increase yield by 55 kg per ha in Australia (Manschadi et al., 2006). Yet, the root has not attracted much attention in genetic studies (Fleury et al., 2010). No QTL/genes controlling root architecture under drought conditions have been discovered in wheat to date.

Leaf wilting could be considered a fundamental indicator of drought response, which would also make the drought-tolerance evaluation of crops easier. This is because the International Board on Plant Genetic Resources (IBPGR) developed a straightforward 1-9 scale for scoring leaf wilting. According to the scale, 1 indicates normal and 9 indicates dead and dry plants under moisture stress (IBPGR, 1983). This scale has been used to screen drought-tolerant germplasms (Nkouannessi, 2005).

2.4. Modern Approaches

2.4.1. Recent roles of molecular markers

Marker-assisted selection (MAS) provides a very useful tool to improve the efficiency of transferring traits, especially quantitative traits, to desired genotypes. Marker assisted selection uses identified QTL and allows breeders to select desirable germplasms without field testing. Quantitative trait loci have been studied for drought-tolerant traits in many species, including rice (*Oryza sativa*), barley, maize (*Zea mays*), and wheat (Alexander et al., 2012). Recently, some studies focused on identifying QTL for yield and its components under drought conditions. Among these, Kirigwi et al. (2007) identified one QTL on chromosome 4 AL for yield and yield components under drought stress in spring wheat. Alexander et al. (2012) identified a new QTL for drought tolerance on chromosome 7B. But, any major QTL for drought tolerance in spring wheat in the northern USA have yet to be discovered. As different regions have different types of drought, most likely different types of drought-tolerance mechanisms have to be discovered.

Therefore, drought-tolerance QTL could be different for different regions. To discover the target QTL for drought tolerance in a given region, the adapted drought-tolerant wheat germplasm of that region should be used as the plant materials for the study.

2.4.2. QTL mapping

Quantitative trait loci can be identified using bi-parental QTL mapping or association mapping (AM). The principle of bi-parental QTL mapping is to associate the phenotypic traits with molecular markers using statistical tools. The detection and location of the loci underlying quantitative trait variation include three basic steps. The first step is the creation of a bi-parental population and its characterization with molecular markers. This will lead to the construction of a genome-wide genetic map of the population. The second step is a phenotypic evaluation of the same population for the traits of interest. The final step is analyzing the association of the molecular markers with the phenotypic trait data using appropriate statistical methods. Whereas, AM is an alternative approach to QTL mapping for identifying an association between genotype and phenotype (Yu and Buckler, 2006). Association mapping is based on linkage disequilibrium (LD). Association mapping detects correlations between genotypes and phenotypes in a sample of unrelated individuals. In contrast to bi-parental mapping, AM exploits a broader population and consequently samples multiple alleles and maps at a higher resolution (Yu and Buckler, 2006).

2.4.3. SNP markers

Among the different kinds of molecular markers available, single nucleotide polymorphisms (SNP) can be used for QTL mapping as SNPs are highly abundant and distributed throughout the genome in various species, including plants (Garg et al., 1999; Drenkard et al., 2000; Nasu et al., 2002). The abundance of these polymorphisms in plant genomes makes the SNP marker system an attractive tool for mapping, marker-assisted breeding, and map-based cloning (Batley et al., 2003). Abundantly available genome sequence information of wheat has led to the discovery of thousands of SNPs, like in many other species, including *Arabidopsis thaliana* (Schmid et al., 2003), soybean (Hyten et al., 2008), and maize (McMullen et al., 2009).

2.5. References

- Alexander, L.M., F.M. Kirigwi, A.K. Fritz, and J.P. Fellers. 2012. Mapping and quantitative trait loci analysis of drought tolerance in a Spring wheat population using amplified fragment length polymorphism and diversity array technology markers. Crop Sci. 52(1): 253–261.
- Amuruganathan, E., and E.D. Earle. 1991. Nuclear DNA content of some important plants species. Plant Mol. Biol. Rep. 9: 208–218.
- Araus, J.L., G.A. Slafer, M.P. Reynolds, and C. Royo. 2002. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 89(SPEC. ISS.): 925–940.
- Araus, J.L., G. a. Slafer, C. Royo, and M.D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. CRC. Crit. Rev. Plant Sci. 27(6): 377–412.
- Babu, R.C., B.D. Nguyen, V. Chamarerk, P. Shanmugasundaram, P. Chezhinan, P. Jeyaprakash, and E. Al. 2003. Genetic analysis of drought resistance in rice by molecular markers:Association between secondary traits and field performance. Crop Sci. 43: 1457–1469.
- Batley, J., R. Mogg, D. Edwards, H. O'Sullivan, K.J. Edwards, and M. Zoric. 2003. A highthroughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Mol. Breed. 11: 111–120.
- Bennett, M.D., and J.B. Smith. 1976. Nuclear DNA amounts in angiosperms. Phil. Trans. Roy. Soc. Lond. B. 274: 227–274.

Blum, A. 1988. Plant breeding for stress environments. CRC Press, Boca Raton.

- Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56: 1159–1168. Available at www.publish.csiro.au/journals/ajar.
- Drenkard, E., B.G. Richter, S. Rozen, L.M. Stutius, N.A. Angell, M. Mindrinos, R.J. Cho, P.J. Oefner, R.W. Davis, and F.M. Ausubel. 2000. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol. 124: 1483–1492.
- Dvorak, J., and E. Akhunov. 2005. Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 17: 323–332.
- FAO. 2002. World agriculture 2030: Main findings. Available at http://wwwfao.org/english/newsroom/news/2002/7833-en. html (verified 22Sept 2011). Rome, Italy.
- Fleury, D., S. Jefferies, H. Kuchel, and P. Langridge. 2010. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 61(12): 3211–3222.
- Forester, B.P., R.P. Dllis, J. Moir, V. Talame, M.C. Sanguineti, R. Tuberosa, D. This, and et al. 2004. Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann. Appl. Biol. 144: 157–168.
- Garg, K., P. Green, and D.A. Nickerson. 1999. Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Res. 9(206): 1087–1092.

- Huang, S., A. Sirikhachornkit, X. Su, J. Faris, B. Gill, R. Haselkorn, and P. Gornicki. 2002.
 Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polypoid wheat. Proc. Natl. Acad. Sci. USA. 99: 8133–8138.
- Hyten, D., Q. Song, and I. Choi. 2008. High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor. Appl. Genet. 116: 945–952.
- IBPGR. 1983. Descriptors for cowpea. Rome, Italy: International Board for Plant Genetic Resources.
- Inda, L.A., J.G. Segarra-Moragues, J. Müller, P.M. Peterson, and P. Catalán. 2008. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol. Phylogenet. Evol. 46(3): 932–957.
- Kavar, T., M. Maras, M. Kidric, J. Sustar-Vozlic, and V. Meglic. 2007. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed. 2: 159–172.
- Kellogg, E.A. 2001. Evolutionary history of the grasses. Plant Physiol. 125: 1198–1205.
- Kirigwi, F.M., M. Van Ginkel, G. Brown-Guedira, B.S. Gill, G.M. Paulsen, and A.K. Fritz.
 2007. Markers associated with a QTL for grain yield in wheat under drought. Mol. Breed.
 20(4): 401–413.
- Kumar, J., and S. Abbo. 2001. Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments. Adv. Agron. 72: 107–138.
- Manschadi, A.M., J. Christopher, P. Devoil, and G.L. Hammer. 2006. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct. Plant Biol. 33(9): 823–837.
- Marshall, D.R. 1987. Australian plant breeding strategies for rainfed areas. pp. 89–99. *In*Srivastava, J.P., Al., E. (eds.), Drought tolerance in winter cereals: Proc. Int. Workshop,Capri, Italy. 27-31 October 1985. John Wiley & Sons, Chishester, West Sussex, UK.
- McMullen, M., S. Kresovich, and H. Villeda. 2009. Genetic properties of the maize nested association mapping population. Science 325: 737–740.
- Morgan, P.W. 1990. Effects of abiotic stresses on plant hormone systems. pp. 113–146. *In* Stress Responses in plants: Adaptation and acclimation mechanisms. Wiley-Liss, Inc.
- Nasu, S., J. Suzuki, R. Ohta, K. Hasegawa, R. Yui, N. Kitazawa, L. Monna, and Y. Minobe. 2002. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza satva, Oryza rufipogon) and establishment of SNP markers. DNA Res. 9: 163–171.
- Nilsen, E.T., and D.M. Orcutte. 1996. Phytohormones and plant responses to stress. pp. 183–198.*In* Nilsen, E., Orcutte, D. (eds.), Physiology of plant under stress: Abiotic factors. JohnWiley and Sons, New York, NY.
- Nkouannessi, M. 2005. The genetic, morphological and physiological evaluation of African cowpea genotypes. Dissertation.
- Passioura, J. 2007. The drought environment: Physical, biological and agricultural perspectives.J. Exp. Bot. 58: 113–117.
- Pfeiffer, W.H., R.M. Trethowan, M.V. Ginkel, M.I. Ortiz, and S. Rajaram. 2005. Breeding for abiotic stress tolerance in wheat. pp. 401–489. *In* Harris, M.A. and P.J.C. (eds.), Abiotic stresses: Plant resistance through breeding and molecular approaches. The Haworth Press, New york, NY.

- Pinter, J.P.J., G. Zipoli, R.J. Reginato, R.D. Jackson, and S.B. Idso. 1990. Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric.
 Water Manag.: 18:35–48.
- Rhoades, J.D., and J. Loveday. 1990. Salinity in irrigated agriculture. pp. 1089–1142. *In* Stewart,
 B.A., Nielsen, D.R. (eds.), Irrigation of agricultural crops. Agron. Monogr. 30. ASA, CSSA,
 SSSA, Madison, WI.
- Richards, R.A. 1986. Defining selection criteria to improve yield under drought. Plant Growth Regul. 20: 157–166.
- Rizhsky, L., H.J. Liang, J. Shuman, V. Shulaev, S. Davletova, and R. Mittler. 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134: 1683–1696.
- Sandquist, D.R., and J.R. Ehleringer. 2003. Population- and family-level variation of brittlebush (Encelia farinosa, Asteraceae) pubescence: Iits relation to drought and implications for selection in variable environments. Am. J. Bot. 90: 1481–1486.
- Schmid, K., T.R. Sorensen, O. Stracke, T. Torjek, T. Altmann, M.I Olds, and B. Weisshaar.
 2003. Large scale identification and analysis of genome wide single nucleotide
 polymorphisms for mapping in Arabidopsis thaliana. Genome Res. 13: 1250–1257.
- Schuppler, U., P.H. He, P.C.L. John, and R. Munns. 1998. Effects of water stress on cell division and cell-division-cycle-2-like cell-cycle kinase activity in wheat leaves. Plant Physiol. 117: 667–678.
- Serraj, R., and T.R. Sinclair. 2002. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 25: 33–341.

- Sharp, R.E., Y. Wu, G.S. Voetberg, I.N. Soab, and M.E. LeNoble. 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot. 45: 1743–1751.
- Srivastava, J.P. 1987. Barley and wheat improvement for moisture limiting areas in West Asia and North Africa. pp. 65–78. *In* Srivastava, J.P., Al., E. (eds.), Drought tolerance in winter cereals: Proc. Int. Workshop, Capri, Italy. 27-31 Oct. 1985. John Wiley & Sons, .
- Tuberosa, R., and S. Salvi. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11(8): 405–412.
- Turner, N.C. 1979. Drought resistance and adaptation to water deficits in crop plants. pp. 343–372. *In* H. Mussell, C.R.S. (eds.), Stress physiology in crop plants. John Wiley & Sons, New York, NY.
- Turner, N.C., G.C. Wright, and K.H.M. Siddique. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 71(September 2016): 193–231.
- Vocke, G., and M. Ali. 2013. U.S. wheat production practices, costs, and yields: Variations across regions. Economic Information Bulletin(116). Economic Research Service, United States Department of Agriculture.
- Yu, J., and E.S. Buckler. 2006. Genetic association mapping and genome organization of maize.Curr. Opin. Biotechnol. 17: 155–160

CHAPTER 3. IDENTIFYING QTL FOR DROUGHT TOLERANCE IN SPRING WHEAT IN THE NORTHERN USA USING FIELD EXPERIMENTS 3.1. Abstract

Drought can potentially hinder plant growth and development, causing a significant decrease in wheat productivity and quality. Understanding the genetics of drought tolerance in wheat is a prerequisite for developing drought-tolerant cultivars. Here, the genetics of drought tolerance in spring wheat in the USA was analyzed using a population of 149 RILs (Recombinant inbred lines) developed from a cross between a drought-tolerant cultivar, 'Reeder' (PI613586), and a drought-susceptible cultivar, 'Albany.' The RIL population was evaluated at three locations for three years, and phenotypic data was collected for plant height (PH), days to heading (DH), yield (YLD), test weight (TW), and thousand kernel weight (TKW). The RIL population was genotyped using Illumina's Infinium 90K SNP (single nucleotide polymorphism) assay. A whole genome high-density genetic map was produced using 10,657 polymorphic SNP markers, with an average density of 1 marker per 0.36 cM. The markers were mapped onto 28 linkage groups representing 21 wheat chromosomes. These markers represented 2,057 unique loci. A total of 11 consistent important QTL for drought tolerance were identified. Among these QTL, six QTL were exclusively identified in drought-prone environments, and five QTL were constitutive QTL (QTL present both in drought and non-drought conditions). One major QTL located on chromosome 7B was identified exclusively in drought environments and explained 13.6% of YLD. Two major QTL located on chromosomes 7B and 2B were identified in droughtprone environments. They controlled 14.86% and 13.94% of phenotypic variation (PV) for TW and YLD, respectively. By comparison, the constitutive QTL contributed 13.44 to 38.36% of PV for associated traits, and their Log of odds (LOD) scores ranged from 5.43 to 20.17. One novel

QTL with drought tolerance was identified on chromosome 2D. All these QTL, with significant drought tolerance could assist in marker-assisted selection (MAS) for drought tolerance in spring wheat in the Northern Plains. Also, they can be a starting point for map-based cloning of the QTL/genes for drought tolerance.

3.2. Introduction

Hard red spring wheat (HRSW), comprising about 25% of the total USA wheat production, is unique for its high protein content (Vocke and Ali, 2013). But this important crop often experiences drought, which is one of the main natural hazards harming wheat production worldwide (Araus et al., 2008). It regularly affects about 50% of wheat producing areas (Pfeiffer et al., 2005). Drought refers to reduced accessible water in the soil and atmospheric conditions that cause plants to wilt or even die by losing water through transpiration. However, drought tolerance enables plants to yield satisfactorily under limited or periodic water-deficient conditions (Turner, 1979). Therefore, developing wheat cultivars with improved drought tolerance is the key to resolving drought problems.

Drought tolerance in wheat can be achieved through developing cultivars capable of maintaining high water potential in drought conditions (Turner et al., 2001). Also, plants could escape from late-season drought through the development of early wheat cultivars (Araus et al., 2002). Understanding the genetics of drought tolerance in wheat is a prerequisite to achieving it. Past observations indicate that drought tolerance in crop plants is quantitatively inherited, or controlled by many genes or gene complexes (Blum, 1988), which can in turn be traced through QTL mapping methods.

Breeders have frequent debates over the appropriate phenotypic approaches for QTL analysis (Alexander et al., 2012). Many morphological traits, such as root length, tillering, spike

number per m², grain number per spike, number of fertile tillers per plant, one thousand grain weight, peduncle length, spike weight, stem weight, awn length, and grain weight per spike, can be affected by drought (Blum, 2005). However, yield stability under both drought-stressed and favorable environments has been proposed for the effective selection of drought-tolerant genotypes (Pinter, et al., 1990). From a breeder's perspective, yield and yield-related traits comprise the best morphological traits to screen for in drought-tolerant plants.

An efficient tool for genotyping is needed as most of the QTL mapping studies on drought tolerance in wheat have been conducted using low-resolution maps composed of only several hundred molecular markers (Kirigwi et al., 2007; Muchero et al., 2009; Peleg et al., 2009; Sayed, 2011; Alexander et al., 2012; Ibrahim et al., 2012a; Kumar et al., 2012; Malik et al., 2015). Because of the size of the bread wheat genome (~17 Gb), greater marker coverage is also needed to generate a dense genetic linkage map, which could help to identify tightly-linked markers associated with traits of interest. This is very important for the successful introgression of target loci in MAS programs. Precise identification of QTL will also facilitate easier positional cloning of those QTL (Kumar et al., 2016). The recently-developed Infinium iSelect 90K assay, with 81,587 transcriptome-based SNPs (Wang et al., 2014), can be an excellent tool for investigating the genetic basis of drought tolerance in wheat. Therefore, in this study, an attempt was made to decipher the genetics of drought tolerance in spring wheat using the Infinium iSelect 90K assay.

3. 3. Materials and Methods

3.3.1. Plant materials

The cultivars 'Reeder' (PI613586) and 'Albany' were used to develop a population of 149 RILs. Reeder is a drought-tolerant HRSW cultivar released by the North Dakota Agricultural Experiment Station at North Dakota State University (NDSU) in 1999. It is a semi-dwarf cultivar best adapted to western North Dakota (ND), a semi-arid region of the state. Reeder has good milling and baking qualities and also possesses resistance to the Upper Midwest races of stem and leaf rusts. The other parent, Albany, developed by Trigen Seed LLC, is a very high yielding, semi-dwarf HRSW cultivar adapted to intensive-input management and better adapted to the eastern area of the Northern Plains spring wheat region, where drought is not prevalent. A single seed descent (SSD) method was used to advance the RIL populations to the F_8 generation. The study also included the checks, 'Glenn' (Mergoum et al., 2006), 'SY Tyra' (Agripro[®] wheat variety, USA), 'Faller' (Mergoum et al., 2008), 'Steele-ND' (Mergoum et al., 2005), 'Alsen' (Frohberg, et al., 2006), 'Mott,' 'Elgin,' 'RB07' (Anderson et al., 2009), 'Dapps' (Mergoum et al., 2005), 'Prosper' (Mergoum et al., 2013), 'ND901CLPlus' (Mergoum et al., 2009) (PI655233), 'Velva' (Mergoum et al., 2014), 'SY Soren' (Agripro[®] wheat variety, USA), 'Duclair' (Lanning et al., 2011), 'ND819' (experimental line), 'Polaris,' 'Saturn,' and 'Granite' (PI619072). The checks ND819, Dapps, and Steele-ND are tolerant to drought stress. The genotypes SY Soren, Glenn, Alsen, ND901CLPlus, Saturn, and Velva show moderate tolerance, whereas Granite, Elgin, RB07, Duclair, Prosper, Mott, Faller, and SY Tyra show susceptibility to drought.

3.3.2. Field experiments

The evaluation of agronomic performances of the RIL, their parents, and 18 checks was carried out under non-irrigated field conditions at different locations in ND. The plant materials were evaluated in: Prosper, Carrington, and Minot in 2012; Prosper, Carrington, and Williston in 2013; and Prosper, Carrington, and Hettinger in 2014. Prosper is located in the eastern region of ND (46.9630° N, 97.0198° W). Carrington is located in the east-central region of ND (47.4497°

N, 99.1262° W). Minot sits between semi-arid grassland in the west and central ND's sub-humid grassland (48.2330° N, 101.2923° W). Williston is located in northwestern ND (48.1470° N, 103.6180° W), and Hettinger in southwestern ND (46.0014° N, 102.6368° W). The total rainfall in Prosper during the 2012, 2013, and 2014 growing periods (seed sowing to ripening) was 120.1 mm, 269.9 mm, and 176.8 mm, respectively (Table 3.1). Carrington had total rainfall of 171.2 mm, 159.8 mm, and 190.5 mm during the 2012, 2013, and 2014 growing periods, respectively. And, during the same growing periods, Minot, Williston, and Hettinger had total rainfall of 162.2 mm, 320.4 mm, and 200.3 mm, respectively (Table 3.1) (NDAWN, 2015). The available soil moisture of the experimental sites based on soil types is presented in Table 3.1 (Frazen, 2003). Each experiment was conducted in a randomized complete block design (RCBD) with two replicates. In 2012 and 2013, each genotype was planted in a 2.44 m × 1.22 m plot containing seven rows with a 15.24 cm gap between rows. The plot size was slightly large in 2014, at 2.44m × 1.42m, with the same number of rows (seven), but a larger gap of 17. 78 cm between them.

Environments	Soil type	Plant-available water	Rainfall
		(mm water/30.48 cm soil)	(mm)
Prosper 12	Fine silty loam	45.72-63.5	120.1
Carrington 12	Coarse loamy	19.09-31.75	171.2
Minot 12	Fine sandy loam	31.75-45.72	162.2
Prosper 13	Fine silty loam	45.72-63.5	269.9
Carrington 13	Coarse loamy	19.05-31.75	159.8
Williston 13	Fine sandy loam	31.75-45.72	320.4
Prosper 14	Fine silty loam	45.72-63.5	176.8
Carrington 14	Coarse loamy	19.05-31.75	190.5
Hettinger 14	Fine sandy loam	31.75-45.72	200.3

Table 3.1. Soil types, plant-available water (water-holding capacity of soil), and total rainfall for nine environments.

3.3.3. Data collection

Each year, the phenotypic data were recorded for DH, PH, YLD, TW, and TKW at each site. The heading data were taken when more than 50% of the plants in the plot were heading. Plant height was measured from base to tip excluding the awn for plants in the middle of the plot. Yield per plot was converted to yield/ha for further analysis. Similarly, Kg/0.5 pint cup was converted to Kg/m³ as the TW for further analysis. A thousand kernels were counted using a seed counter (Model U, International Marketing and Design Co.) and weighed.

3.3.4. Phenotypic data analysis

The statistical analysis system used for analyzing the phenotypic data was ANOVA Proc MIXED (SAS Institute, 2004). The RILs, their parents, and the checks were considered as fixed effects, whereas environments and blocks were considered as random effects. The mean values were separated using the *F*-protected least significant difference (LSD) value at the $P \le 0.05$ level of significance. Pearson correlations between traits for each environment were calculated using the SAS's CORR procedure (SAS Institute, 2004). Only the locations whose data exhibited a low coefficient of variation (CV) value and a significant difference among entries are reported in this study.

3.3.5. Genotyping

Genomic DNA from each genotype was isolated from lyophilized young leaves using the DNeay Plant Mini Kit (Qiagen, Valencia, CA, cat. no. 69106). This DNA was run on 0.8% agarose gel to check its quality. The NanoDrop 1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE) was used to check DNA concentration. The RIL population, parents, and checks were genotyped using the Illumina 90K iSelect wheat SNP assay in the Small Grains Genotyping Lab, USDA-ARS, Fargo, ND. The genotyping module GenomeStudio V2011.1 (www.illumina.com, verified 18 Dec. 2015) was used to analyze the SNP data.

3.3.6. Map construction

The Illumina iSelect 90K assay (Wang et al., 2014) produced data for 81,587 SNPs. Out of these markers, 12,151 SNP polymorphic markers between parental genotypes were identified. Out of those polymorphic loci, 1,391 markers were discarded because they had 1) an allele frequency of <0.4 for any of the parental genotypes, 2) inconsistent results in five replicates of each parental genotype, 3) overlapping clusters for RILs, and 4) >20% missing data. The remaining 10,760 markers were used for map construction using a combination of MapMaker 3.0 (Lander and Botstein, 1989) and CarthaGène v.1.2.3R (de Givry et al., 2005) software. At first, five to nine polymorphic markers from each chromosome covering the whole genome were selected as anchors based on available mapping information in multiple populations (Wang et al., 2014). Using MapMaker 3.0 (Lander and Botstein, 1989) and the nine anchor markers, 10,657 polymorphic markers were placed onto 21 wheat chromosomes using a minimum LOD score of 5.0 and a maximum distance of 40 cM. The linkage maps were then developed using CarthaGène V.1.2.3R (de Givry et al., 2005). Kosambi's mapping function (Kosambi, 1944) was used to determine the genetic distance among markers on the linkage groups.

3.3.7. QTL mapping

Composite interval mapping (CIM) was used to identify QTL for each trait in each environment as well as across environments (AE) using QTL Cartographer V2.5_011 (Wang et al., 2012). In QTL Cartographer, Model 6 (standard model), forward and backward regression, five control markers (co-factors), window size of 10 cM, and walk speed of 1 cM were used. A total of 1000 permutations were used to determine the LOD threshold for identifying the significant QTL. Confidence intervals (CI) were estimated by \pm 2 LOD (from the peak) method. The QTL with overlapping CIs or QTL located within 10 cM regions were considered as the same QTL. Only the significant QTL detected (those above the threshold LOD score) were included in this study. If any such QTL were identified with an LOD score below the threshold, but >2.5 in other environments, the QTL were also included in the results as supporting information. The QTL identified in at least two environments or associated with at least two traits were also reported in this study. The QTL regions were drawn using the Mapchart 2.3 program (Voorrips, 2002). Map locations of the associated markers were used to see if the QTL identified in this study have been reported in earlier studies.

3.4. Results

3.4.1. Phenotypic analyses

In the 2012 and 2014 field trials, significant differences among genotypes for most of the agronomic traits were found. The genotypes did not show any significant differences for the agronomic traits in the 2013 trials (Table 3.2). Therefore, given the criteria described earlier, only the data from the six environments planted in 2012 and 2014 were used for analysis in this

study. The data on DH from Carrington in 2014 did not show a significant difference (Table 3.2), and thus, was not used for further analysis.

The RIL population showed continuous variation for all of the agronomic traits (Fig. 3.1). The parent Reeder showed a higher PH, and Albany had delayed heading in all six locations. Albany had a higher YLD in all of the environments except for Prosper in 2012, and again in 2014. Albany had a greater TW in Carrington in 2012 and 2014, and in Prosper in 2012, whereas Reeder had a greater TW in Minot in 2012, Hettinger in 2014, and Prosper in 2014. Reeder had a greater TKW in all of the environments in both 2012 and 2014. Transgressive segregations in both directions were also observed for all of the traits (Table 3.3).

The heading date had a highly significant negative correlation with YLD, TW, and TKW in all of the environments. Late-heading plants tended to be taller in two of the environments and also with the mean value of all the environments. Plant height did not show any significant association with any of the traits except DH. The higher yielding plants gave a higher TW in every environment. Also, higher-yielding plants had a higher TKW in all of the environments except Carrington in 2014. Again, the plants with a higher TW tended to have a higher TKW in all of the environments except Carrington in 2014 (Table 3.4).

Fig. 3.1. Frequency distribution of the agronomic traits of 149 RILs of the cross of Reeder and Albany (a. days to heading, b. plant height).

Fig. 3.1. Frequency distribution of the agronomic traits of 149 RILs of the cross Reeder and Albany (c. yield, d. test weight) (continued).

Fig. 3.1. Frequency distribution of the agronomic traits of 149 RILs of the cross of Reeder and Albany (e. thousand kernel weight) (continued).

3.4.2. Genetic linkage map

Out of the 10,760 markers (see materials and methods section for details) selected for linkage mapping, 10,657 markers were mapped onto 28 linkage groups found on 21 wheat chromosomes (Table 3.5). The 10,657 markers represented 2,057 unique loci (19.3%), and 8,600 markers (80.7%) co-segregated with other loci. The B-genome contained the most number of markers, followed by the A-genome and the D-genome (Table 3.4). The number of markers on individual linkage groups ranged from five (1D1, 5D2) to 1,221 (2B), while for individual chromosomes, the number of markers ranged from 48 (chromosome 3D) to 1,221 (chromosome 2B) (Table 3.4). The average number of markers mapped per chromosome was 507.48, while the average number of unique loci per chromosome was 97.95.

Environment and sources' dI HD' PH ^s YLD ¹	TW [#] TKW [#]
Carrington 2012	
Treatment 168 17.51*** 4.41*** 8.52*** 13	9.52***
Error 168 0.53 12.07 52396 1	24.22 0.93
CV% 1.11 4.52 8.12	1.51 4.04
Minot 2012	
Treatment 168 11.5*** 2.11*** 3.49***	8*** 4.31***
Error 168 0.92 41.07 167980 1	58.39 2.43
CV% 1.51 7.7 13.56	1.69 5.51
Prosper 2012	
Treatment 168 18.67*** 1.65*** 2.49*** 13	3.6*** 10.5***
Error 168 1.49 39.67 131705 2	.97.05 0.88
CV% 2.285 9.74 12.13	2.35 3.56
Carrington 2013	
Treatment 167 0.88 1.36* 1.09	0.74 0.96
Error 155 8.21 20.82 273310 3	61.09 8.12
CV% 5.15 6.27 10.96	2.2 9.19
Williston 2013	
Treatment 168 1.24 0.97 1.13	0.78 1.07
Error 168 10.1 68 334357 1	.82.46 6.83
CV% 5.12 14.7 22	1.64 8.67
Prosper 2013	
Treatment 168 0.91 1.3* 1.14	0.7 0.74
Error 168 16.88 50.79 1577173 3	842.73 8.81
CV% 7.93 9.63 26.6	2.28 9.08
Carrington 2014	
Treatment 168 0.93 2.38*** 1.75*** 7.	.58*** 5.09***
Error 168 12.75 22.7 553814 e	65.75 2.78
CV% 5.89 5.47 13.44	1.03 4.78
Hettinger 2014	
Treatment 168 3.91*** 4.38*** 4.31*** 10	0.24*** 8.05***
Error 168 4.97 16.11 187916 5	51.83 2.11
CV% 3.701 4.361661 11.1163 0.9	917296 4.629367
Prosper 2014	-
Treatment 168 5.49*** 4.49*** 8.85*** 9.	.18*** 7.34***
Error 168 9.4 12.89 259910 9	95.36 2.6
CV% 5.66 3.83 11.32	1.27 5.35

Table 3.2. Analysis of variance for the agronomic traits in nine environments.

*Significant at 0.05, ***Significant at 0.001 probability level

 $^{*}HD = days$ to heading, $^{\$}PH = height$, $^{\$}YLD = yield$, $^{\#}TW = test$ weight, $^{*}TKW = thousand$ kernel weight

	Parental lines			RIL population			
Env. ⁺	Reeder	Albany	Min	Max	Mean	Checks	LSD (0.05)
			Plant he	ight, cm			
1	77.47	68.58	67.31	97.79	76.82	78.32	6.81
2	87.63	80.01	67.31	115.57	83.10	84.53	12.56
3	62.23	57.15	52.07	77.47	64.19	69.36	12.34
4	83.82	83.82	76.20	104.14	86.79	86.22	9.34
5	92.71	88.90	80.01	119.38	92.07	91.86	7.87
6	95.25	90.17	81.28	106.68	93.83	93.20	7.04
М	83.19	78.11	74.30	101.39	82.80	83.91	9.33
		D	ays to heading	ng, days			
1	63.00	65.50	59.50	71.00	65.23	64.22	1.42
2	61.50	64.00	57.50	69.50	63.27	63.00	1.88
3	50.50	54.50	46.50	64.00	53.58	51.28	2.39
4							
5	56.50	60.50	54.00	72.00	60.48	58.50	4.37
6	50.50	55.50	45.50	87.50	54.59	50.47	6.01
М	56.40	60.00	53.80	67.90	59.43	57.49	3.21
			Yield	l, Kg/ha			
1	2657.17	2984.96	1664.03	3913.01	2823.10	2793.97	448.65
2	2864.88	2915.50	1761.58	4072.12	3043.44	2840.95	803.31
3	2773.05	2558.44	1920.18	4121.90	2996.84	2996.80	711.31
4	4490.20	6080.77	3650.85	7016.44	5457.19	5026.72	1458.61
5	3791.92	3881.20	1610.86	5366.24	3864.81	4194.71	849.65
6	4886.96	4384.69	654.42	6078.55	4416.39	5225.90	999.23
М	3577.36	3800.93	2562.57	4461.78	3766.96	3846.51	878.46
			Test v	veight, Kg/m ³			
1	722.47	747.17	662.17	798.93	733.79	750.45	21.85
2	773.14	747.53	690.14	807.10	743.76	757.54	24.67
3	748.62	773.87	501.81	790.76	731.27	753.48	33.78
4	780.59	799.66	743.54	827.45	794.53	794.64	15.89
5	799.84	784.95	720.84	818.91	784.07	790.59	14.11
6	785.67	783.86	687.06	809.65	769.87	785.99	19.14
М	768.39	772.84	678.61	803.02	759.55	772.11	21.57

Table 3.3. Phenotypic performances of Reeder and Albany, RIL population and checks in different environments (Env.).

	Parental lines			RIL population			
Env ⁺	Reeder	Albany	Min	Max	Mean	Checks	LSD (0.05)
		Thous	and kernel	weight, g			
1	25.25	22.00	18.00	29.00	23.71	25.56	1.89
2	32.25	24.00	23.25	34.25	28.10	29.79	3.05
3	27.00	25.50	20.75	32.00	26.18	28.26	1.84
4	35.00	25.50	27.25	40.00	35.12	35.56	3.27
5	35.00	29.50	21.00	38.00	31.09	33.47	2.85
6	33.75	29.00	22.25	37.00	29.80	33.25	3.16
М	31.38	25.92	22.63	34.38	29.00	30.98	2.68

Table 3.3. Phenotypic performances of Reeder and Albany, RIL population, and checks in different environments (Env.) (continued).

⁺1 = Carrington 2012, 2 = Minot 2012, 3 = Prosper 2012, 4 = Carrington 2014, 5 = Hettinger 2014, 6 = Prosper 2014, 7 = Mean across environments

The 10,657 (2,057 loci) markers mapped in this study covered a total genetic map length of 3,793.1 cM, with an average distance of 0.36 cM between any two markers (Table 3.4). The A-genome chromosomes covered a total length of 1,542.2 cM, with an average distance of 0.37 cM between two markers. The B-genome had a total map length of 1,259.1 cM, with an average distance of 0.35 cM between two markers. The D-genome covered a total map length of 991.8 cM, with an average distance of 1.52 cM between two markers. Individually, chromosome 5A was the longest, with a total map length of 299 cM. Chromosome 6D was the shortest, with a total map length of 51.5 cM. Overall, observed marker order was consistent when compared with earlier published genetic maps (Wang et al., 2014).

Trait [*] and Env. [*]	PH	DH	YLD	TW
DH				
1	0.04 ns			-
2	0.32***			-
3	0.07 ns			-
4				-
5	0.13 ns			-
6	0.31***			-
Μ	0.24**			-
YLD				
1	0.00 ns	-0.58***		-
2	-0.03 ns	-0.47***		-
3	0.18*	-0.38***		_
4	0.29***	· _		_
5	0.06 ns	-0.44***		_
6	-0.27***	-0.68***		_
Ň	-0.07 ns	-0.59*** -		-
TW				
1	-0.02 ns	-0.62***	0.62***	-
2	-0.05 ns	-0.57***	0.53***	-
3	-0.19*	-0.72***	0.51***	-
4	0.029 ns		0.18* _	_
5	0.01 ns	-0.33***	0.29***	_
6	-0.21**	-0.55***	0.61***	_
M	-0.14 ns	-0.6***	0.49*** -	-
TKW				
1	0.17*	-0.45***	0.56***	0.47***
2	0.2**	-0.33***	0.34***	0.45***
3	0.2*	-0.28***	0.23**	0.29***
4	0.19*		0.12 ns	0.03 ns
5	0.08 ns	-0.48***	0.25**	0.36***
6	-0.06 ns	-0.5***	0.47***	0.52***
M	0.13 ns	-0.4***	0.29***	0.30***

Table 3.4. Correlation coefficients between five agronomic traits in the RIL population (Reeder × Albany) in different environments (Env.) and the overall mean across environments (M).

*Significant at p<0.05, **Significant at p<0.01, ***Significant at p<0.001 level *PH = Plant height, DH = Days to heading, YLD = Yield, TW = Test weight, TKW = Thousand kernel weight ⁺1 = Carrington 2012, 2 = Minot 2012, 3 = Prosper 2012, 4 = Carrington 2014, 5 = Hettinger 2014, 6 = Prosper 2014, 7 = Mean across environments

Linkage groups	No. of markers	No. of unique loci	Map length	Average	Average map density
				map	
				density	aM/loans
1.4	5.67	126	174.00	CM/marker	
	567	126	174.90	0.31	1.39
2A 2A	439	101	223.50	0.51	2.21
3A	659	123	213.90	0.32	1.74
4A	560	114	218.90	0.39	1.92
5A	605	163	299.00	0.49	1.83
6A	590	117	176.70	0.30	1.51
7A	905	168	235.30	0.26	1.40
1B	629	86	107.50	0.17	1.25
2B	1221	160	181.80	0.15	1.14
3B	1115	213	250.20	0.22	1.17
4B	244	78	120.90	0.50	1.55
5B1	565	125	209.40	0.37	1.68
5B2	25	8.00	18.00	0.72	2.25
6B	426	101	158.10	0.37	1.57
7B	723	134	213.20	0.29	1.59
1D1	5	2	0.30	0.06	0.15
1D2	254	40	87.80	0.35	2.20
1D3	91	26	126.10	1.39	4.85
2D	653	46	180.40	0.28	3.92
3D	48	18	162.90	3.39	9.05
4D	53	23	129.90	2.45	5.65
5D1	25	8	47.50	1.90	5.94
5D2	5	4	24.90	4.98	6.23
5D3	130	21	31.50	0.24	1.50
6D1	10	5	3.00	0.30	0.60
6D2	23	19	44.50	1.93	2.34
6D3	22	6	4.00	0.18	0.67
7D	65	22	149.00	2.29	6.77
A genome	4,325	912	1,542.20	0.37	1.72
B genome	4,948	905	1,259.10	0.35	1.52
D genome	1,384	240.00	991.80	1.52	3.84
Whole genome	10,657	2,057	3,793.10	0.36	1.84

Table 3.5. Distribution of markers across linkage groups in the genetic map developed using the Reeder \times Albany RIL population.

3.4.3. QTL analysis

3.4.3.1. QTL for DH

Composite interval mapping (CIM) for DH identified nine QTL located on five different chromosomes. These QTL explained from 4.12 to 38.36% of phenotypic variation (PV) (Table 3.6; Fig 3.2). Four QTL explained >10% of PV, and therefore, can be considered as major QTL. The QTL with the greatest and consistent effect for DH was identified on chromosome 5A in all of the environments except one and explained up to 38.36% of PV. The second major QTL was identified on chromosome 5D in all of the environments except one and explained 17.4% of PV and was identified on 7B in all of the environments. The fourth major QTL was identified on chromosome 4A in all of the environments except one and explained up to 13.44% of PV. The alleles for reduced DH on 5A and 4A were contributed by the parent Reeder, while the alleles for reduced DH on the other two major QTL were contributed by the parent Albany.

3.4.3.2. QTL for PH

Eight QTL identified for PH were located on seven different chromosomes (Table 3.6; Fig.3.2). Two of them were considered major QTL (PV>10%). The QTL found on chromosome 2D had the largest effect, explaining up to 17.2% of PV. This QTL was identified in three different environments and in the overall mean. The second major QTL found on chromosome 6A was also identified in three different environments and explained up to 11.37% of PV. Besides these, three more QTL explained almost 10% of PV. Two of them were identified on chromosome 7B, and another one on chromosome 5B. The QTL in the QTL region 26 of chromosome 7B was identified in three environments and in the overall mean. Another QTL in the QTL region 24 of chromosome 7B was identified in two of the environments and in the overall mean. The QTL on chromosome 5B was identified in two environments only. The alleles for reduced PH for the above-mentioned QTL on chromosomes 2D, 6A, and 7B were contributed by the parent Albany. The allele for reduced PH on chromosome 5B was contributed by the parent Reeder (Table 3.5).

3.4.3.3. QTL for yield

The six QTL identified for yield were located on six different chromosomes (Table 3.6; Fig.3.2). Four of these QTL explained greater than 10% of PV and were considered as major QTL. The major QTL located on chromosome 2B had a PV (Phenotypic variation) up to 13.94%; that on 5A had a PV up to 22.35%; and that on 5D had a PV up to 22.83%. All three QTL were identified in three of the environments and in the overall mean, and thus, could be considered as consistent or stable QTL. The fourth major QTL on chromosome 7B was identified in one location and in the overall mean, explaining up to 13.6% of PV. The alleles for higher yield for the QTL on chromosomes 5D, 2B, and 7B were contributed by the parent Albany, whereas the allele for the major QTL on chromosome 5A was contributed by the parent Reeder (Table 3.6).

3.4.3.4. QTL for TW

Seven QTL located on six different chromosomes were identified for TW (Table 3.6; Fig.3.2). Five QTL among them were considered as major QTL. The QTL with the greatest effect (PV of up to 24.47%) was located on chromosome 5D and identified in two different environments and in the overall mean. The second major QTL, with up to 17.79% PV, was on chromosome 5A and identified in two of the environments. The major QTL on chromosome 2B had the third greatest and consistent effect as it was identified in four different environments, with a PV of up to 16.5%. The fourth major QTL was located on 2A (with a PV of up to 15.93%) and was identified in three of the environments and in the overall mean. A fifth major QTL on chromosome 7B, explaining up to 14.86% of PV, was identified in three different environments and in the overall mean. The alleles for a higher test weight for the major QTL on chromosomes 5D, 2B, 2A, and 7B were contributed by the parent Albany. The allele for the remaining major QTL on chromosome 5A was contributed by the parent Reeder (Table 3.6).

3.4.3.5. QTL for TKW

The eight QTL identified for TKW were located on seven different chromosomes (Table 3.6; Fig.3.2). The QTL with the largest phenotypic effect (with a PV of up to 15.22%) was located on chromosome 6A; it also had a consistent effect as it was identified in five different environments and in the overall mean. The second major QTL was located on chromosome 4A, explaining 14.18% of PV, but it was identified in only a single environment. Another QTL explaining up to 9.66% of PV was located on chromosome 2A and identified in two different environments and in the overall mean. The alleles for increased TKW for the major QTL on 6A were contributed by the cultivar Reeder (Table 3.6).

3.4.4. Co-localized or pleiotropic QTL

Co-localized QTL could be used for the simultaneous improvement of more than one trait when the desirable alleles come from the same parent. A total of 38 QTL were identified in this study for five agronomic traits (Table 3.6; Fig.3.2). Many of those QTL had overlapping confidence intervals (CI). The QTL with overlapping CI or located within 10 cM of each other were considered as the same QTL region. Overall, these 38 QTL were located in 26 different genomic regions on 13 different chromosomes. A total of 21 co-localized or pleiotropic QTL were located in nine genomic regions. Individual genomic regions were associated with two to three traits. Genomic region 7 was associated with DH, YLD, and TW. The QTL for YLD (QYL.ndsu.2B) and TW (QTW.ndsu.2B) had a major effect, whereas that for DH

(*QDH.ndsu.2B.2*) had a minor effect. The genomic region 20 located on chromosome 5D also harbored major QTL for the same three traits. The desirable alleles in both regions (7 and 20) were contributed by the parent Albany. Genomic region 17 on chromosome 5A also harbored major QTL (*QDH.ndsu.5A.3, QYL.ndsu.5A*, and *QTW.ndsu.5A*) for the same three traits, where Reeder contributed the desirable alleles.

Six QTL regions harbored QTL for two traits. QTL region 12 harbored QTL for TKW (*QTKW.ndsu.4A*) and DH (*QDH.ndsu.4A.1*). The QTL for DH had a minor effect, whereas the QTL for TKW had a major effect. Reeder contributed the desirable alleles in both cases. QTL region 13 harbored QTL for DH (*QDH.ndsu.4A.2*) and TW (*QTW.ndsu.4A*). The QTL for DH was a major QTL, while that for TW was minor. Desirable alleles for both traits were contributed by Reeder. QTL region 25 was also associated with DH (*QDH.ndsu.7B*) and TW (*QTW.ndsu.7B*). Both QTL had major effects, with the desirable alleles contributed by Albany. The QTL for PH (*QPH.ndsu.2D*) and TKW (*QTKW.ndsu.2D.2*) were associated with QTL region 9. The QTL for PH had a major effect, while that for TKW had a minor effect. Desired alleles from the QTL were contributed by different parents. QTL region 24 harbored QTL for PH (*QPH.ndsu.7B.2*) and YLD (*QYL.ndsu.7B*), where both QTL had major effects and the desired alleles came from Albany. QTL region 3 harbored QTL for TW (*QTW.ndsu.2A.2*) and TKW

QTL and trait	QTL	Other	Env. [‡]	Position [§]	LOD¶	Additive	R ² (%)
	region	associated traits ⁺				effect	
Days to heading		futts					
QDH.ndsu.2B.1	6	_	1, 2*,3*	26.81-30.11	3.82	0.78	5.2
~ QDH.ndsu.2B.2	7	YLD, TW	1	76.11	4.25	0.52	5.74
QDH.ndsu.4A.1	12	TKW	2	47.51	4.56	-0.66	8.24
QDH.ndsu.4A.2	13	TW	1, 2, 3, 5, 6	133.91-	9	-1.66	13.44
				143.11			
QDH.ndsu.5A.1	15	_	1*, 6	109.51-	3.48	-0.61	4.12
ODH nday 54 2	16		1*0.2	112.61	4.00	0.02	6 22
QDH.nusu.JA.2	10	_	1,2,5	131.91-	4.09	-0.92	0.22
QDH.ndsu.5A.3	17	YLD, TW	1, 3,4, 5, 6,	205.71-	20.17	-2.84	38.36
				208.31			
QDH.ndsu.5D2	20	TW, YLD	2, 3, 4, 5, 6	11.91-20.91	15.16	2.29	29.93
QDH.ndsu.7B	25	TW	1, 2, 3, 4,	27.41-31.11	10.25	1.43	17.41
Plant height			5,0				
OPH.ndsu.2A	5		1.4*	128.41-	3.60	1.49	7.68
£1 11.00.50.211	C	_	-, -	133.11	0.00	1117	100
QPH.ndsu.2D	9	TKW	1, 3, 4, 7	151.11-	7.31	2.04	17.2
OPH ndsu 3B	10		3 6* 7*	165./1 184.31-	1 33	1 53	8 55
Q1 11.nusu.5D	10	_	5, 0 , 7	187.71	4.55	1.55	0.55
QPH.ndsu.4A	14	_	2*, 7*	175.01-	3.23	-1.70	6.73
				176.01			
QPH.ndsu.5B1	18	_	5,6	32.41-33.21	4.5	-1.81	9.01
QPH.ndsu.6A	22	_	2*, 3, 4	85.51-90.61	5.28	1.83	11.37
QPH.ndsu.7B.1	26	_	1, 3*, 6, 7	129.41-	4.94	1.54	9.44
OPH ndsu 7B 2	24	VID	/* 5 7*	130.31	3 69	1.81	936
Test weight	24	TLD	4,3,7	24.21-20.21	5.09	1.01	9.50
OTW ndsu 2A 1	4		1 2 5	100 71	1 53	773	8 16
Q1 W.nusu.2A.1	4	_	1, 2, 5	104.31	4.55	-1.15	0.10
QTW.ndsu.2A.2	3	TKW	4, 5, 6*,7*	80.11-82.11	7.14	-6.45	15.93
QTW.ndsu.2B	7	YLD, HD	1, 2, 5, 6, 7	84.31-95.61	8.02	-12.25	16.5
QTW.ndsu.4A	13	DH	6	139.91	3.79	5.8	7.22
QTW.ndsu.5A	17	YLD, DH	3, 6	207.01	9.43	20.77	17.79
QTW.ndsu.5D2	20	DH, YLD	3, 6, 7	11.91	12.38	-25.22	24.47
QTW.ndsu.7B	25	DH	1, 2, 3, 7	29.11-40.11	8.95	-13.28	14.86

Table 3.6. QTL identified for the agronomic traits in a **RIL** population derived from the cross between Reeder and Albany.

QTL and trait	QTL region	Other associated	Env. [‡]	Position [§]	LOD¶	Additive effect	R ² (%)
Thousand kernel w	eight	uaitsi					
OTKW.ndsu.1A	1		4*.6*	87.61-94.01	3.43	-0.77	7.08
Z OTKW.ndsu.2A	3	– TW	3,4,7	76.51-78.21	4.36	0.82	9.66
~ QTKW.ndsu.2D.1	8	_	2, 3*,7*	110.21- 111.21	3.73	0.63	7.69
QTKW.ndsu.2D.2	9	РН	1,4	155.31- 155.61	4.06	0.72	8.47
QTKW.ndsu.4A	12	DH	3	58.81	6.82	0.84	14.18
QTKW.ndsu.5B1	19	_	1*, 5*	152.01- 153.01	2.72	-0.69	5.61
QTKW.ndsu.6A	21	_	1, 2, 3, 4*, 5, 7	65.41-68.21	5.43	0.89	15.22
QTKW.ndsu.7A	23	_	1*, 3*	53.71	2.58	0.49	5.36
Yield							
QYL.ndsu.1B	2	_	3,5*,7*	64.21-71.91	3.99	-259.69	8.57
QYL.ndsu.2B	7	TW, HD	1,2, 3*,7	81.31-83.31	7.22	-209.44	13.94
QYL.ndsu.3B	11	_	4*,7*	202.21- 213.81	3.17	-189.99	7.3
QYL.ndsu.5A	17	DH, TW	3, 6, 7	198.61- 206.51	11.12	192.14	22.35
QYL.ndsu.5D2	20	TW, DH	3, 5*, 6,7	11.91-14.91	10.49	-466.60	22.83
QYL.ndsu.7B	24	PH	1,2*	22.21-25.21	5.87	-178.75	13.6

Table 3.6. QTL identified for the agronomic traits in a RIL population derived from the cross between Reeder and Albany (continued).

^tPH = Plant height, DH = Days to heading, YLD = Yield, TW = Test weight, TKW = Thousand kernel weight

*Env. = environment, 1 = Carrington 2012, 2 = Minot 2012, 3 = Prosper 2012, 4 = Carrington 2014, 5 = Hettinger

2014, 6 = Prosper 2014, 7 = Mean across environments

[§]Position represents the peak point of the QTL interval

[¶]For log of odds (LOD) score

* The QTL in that environment was detected above a 2.5 LOD score, but below the threshold score.

(*QTKW.ndsu.2A*). Both had major effects, but the desired alleles were contributed by different parents (Table 3.6; Fig.3.2).

3.4.5. The QTL important for drought tolerance

A total of 11 consistent QTL important for drought tolerance were identified. Among

these, six QTL were exclusively for drought-prone environments (Table 3.7; Fig. 3.2). The QTL

QTW.ndsu.7B, which is also associated with DH, had a major effect on TW and a LOD score of

up to 8.95. The QTL QYL.ndsu.2B and QYL.ndsu.7B had major effects on yield. Surprisingly, the

desired alleles from these three major QTL were contributed by the parent Albany, which was

considered the susceptible parent. The QTL *QDH.ndsu.2B.1*, which had a LOD score of up to 3.82, controlled 5.2% of PV for DH. In this QTL, the desirable allele was also contributed from the parent Albany. Another minor QTL for DH, *QDH.ndsu.5A.2*, had an LOD score of up to 4.09; the desired allele was contributed by the resistant parent Reeder. The third minor QTL, *QTKW.ndsu.2D.1*, controlled TKW up to 7.69% with a LOD score of up to 3.73; Reeder contributed the desired allele. Five major constitutive QTL identified in both water regimes were very consistent across locations (Table 3.7).

QTL	Trai	QTL	Other associated	Env. [‡]	Position [§]	LO	Additive	\mathbb{R}^2
	ť	region	traitsi			D¶	effect	(%)
QDH.ndsu.2B .1	DH	6	_	1, 2*, 3*	26.81- 30.11	3.82	0.78	5.2
QDH.ndsu.4A .2	DH	13	TW	1, 2, 3, 5, 6	133.91- 143.11	9	-1.66	13.4 4
QDH.ndsu.5A .2	DH	16	-	1*, 2, 3	131.91- 142.01	4.09	-0.92	6.22
QDH.ndsu.5A .3	DH	17	YLD, TW	1, 3, 4, 5, 6	205.71- 208.31	20.1 7	-2.84	38.3 6
QDH.ndsu.5 D2	DH	20	TW, YLD	2, 3, 4, 5, 6	11.91- 20.91	15.1 6	2.29	29.9 3
QTW.ndsu.2B	TW	7	YLD, HD	1, 2, 5, 6, 7	84.31- 95.61	8.02	-12.25	16.5
QTW.ndsu.7B	TW	25	DH	1, 2, 3, 7	29.11- 40.11	8.95	-13.28	14.8 6
QTKW.ndsu.2 D.1	TK W	8	_	2, 3*,7*	110.21- 111.21	3.73	0.63	7.69
QTKW.ndsu.6 A	TK W	21	-	1, 2, 3, 4*, 5, 7	65.41- 68.21	5.43	0.89	15.2 2
QYL.ndsu.2B	YL	7	TW, HD	1,2, 3*,7	81.31- 83.31	7.22	-209.44	13.9 4
QYL.ndsu.7B	YL	24	РН	1,2*	22.21- 25.21	5.87	-178.75	13.6

Table 3.7. QTL for drought tolerance in a RIL population derived from the cross between Reeder and Albany.

[†]PH = Plant height, DH = Days to heading, YLD = Yield, TW = Test weight, TKW = Thousand kernel weight

*Env. = environment, 1 = Carrington 2012, 2 = Minot 2012, 3 = Prosper 2012, 4 = Carrington 2014, 5 = Hettinger

2014, 6 = Prosper 2014, 7 = Mean across environments

[§]Position represents the peak point of the QTL interval

[¶]For log of odds (LOD) score

* The QTL in that environment was detected above a 2.5 LOD score, but below the threshold score.

1A (1))	1A	(2)	
0.0 0.3 0.6 0.9 1.2 1.9 1.2 1.9 1.2 1.9 1.2 1.9 1.2 1.9 1.2 1.9 1.2 1.9 1.2 1.9 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Excalibur_c35316_154 Excalibur_c58555_110 tplb0025b13_150 CAP12_c3074_192 Excalibur_c248139_55 Excalibur_c2868_486 Kukri_c1794_1044 Tdurum_contig43943_56 Kukri_c5715_141 BobWhite_c18592_327 RAC875_c16352_326 wsnp_Ex_c1137_2182795 IACX9458 Excalibur_c25891_1402 Kukri_c2121_1936 BobWhite_c48447_529 GENE-0249_161 TA005995-0488 Tdurum_contig30956_537 Kukri_c18434_200 Ex_c3941_906 RAC875_c16820_419 wsnp_Ku_c11896_19337444 Excalibur_c7026_2635 Kukri_c22508_119 BobWhite_c4499_153 Kukri_c46010_146 Excalibur_c7026_2635 Kukri_c46010_146 Excalibur_c7237_1208 RAC875_c89908_105 TA003773-0807 Excalibur_c20_1664 BS00012210_51 wsnp_Ex_c3253_5994376 wsnp_Ex_c324686_33942264 BS00027437_51 GENE-0491_632 Excalibur_c713489_867 tplb059e14_515 BS00021719_51 GENE-0431_573 GENE-0431_573 GENE-0431_673 HAV5535 Tdurum_contig32437_257 BobWhite_c38987_641 TA00375-0348 Excalibur_c13489_867 tplb0595-1138 HAC875_c46551_339 Excalibur_c38427_257 BobWhite_c38987_641 TA003955-1138 HACX5793 Kukri_c18413_168 BS00067742_51 Kukri_c18413_1673 HAC875_c46551_339 Excalibur_c38429_652 RAC875_c60514_90 GENE-0511_403 BS00067742_51 Kukri_c18413_1673 HAC875_c60514_90 GENE-0511_403 BS00067742_51 Kukri_c18413_1673 HAC6234 wsnp_Ex_c1997_3757415 wanp_Ex_c1997_3757415	94.0 118.9 119.9 120.2 120.5 120.8 121.1 122.4 122.7 123.0 123.6 124.9 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 128.9 129.6 130.9 131.5 132.8 133.4 133.4 133.4 133.4 144.8 144		Tdurum_contig57101_742 wsnp_Ex_c6563_11378915 Kukri_c45512_193 BS00012042_51 Kukri_c69463_154 BS0002239_51 Kukri_c67770_705 BS00081002_51 RAC875_c6798_467 RAC875_c56690_320 BS00081002_51 GENE-0069_468 BobWhite_c16206_317 BobWhite_c23632_322 Excalibur_c25353_1171 Kukri_c7119_392 IAAV544 Ra_c110766_321 RFL_Contig5334_831 BS00095510_51 IACX7789 Tdurum_contig63715_235 RAC875_c5016_314 Kukri_c63924_203 BobWhite_rep_c65812_710 Excalibur_c23598_1502 Kukri_c64895_88 Ra_c8027_1021 Kukri_c67703_174 Tdurum_contig8224_378 Excalibur_c66_147 RFL_Contig3683_1784 BS00043441_51 Ex_c3201_1046 wsnp_Ex_c48407_53323483 wsnp_Ex_c48407_53323483 wsnp_Ex_c48407_53323483 wsnp_Ex_c48407_53323483 wsnp_Ex_c48407_53323483 wsnp_Ex_c48407_53323483 wsnp_Ex_c48407_53323483 Wsnp_Ex_c48607_52108070 Kukri_c18608_729 Kukri_c18608_729 Kukri_c18608_729 Kukri_c18608_729 Kukri_c18608_729 Kukri_c18608_729 Kukri_c18608_729
93.0 -	- wsnp_ru_cz3012_32893918			

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps.

1]	B (1)
0.0 1		BS00029539_51
0.3		BS00022429_51
0.6		IAAV3403
0.9		RAC875_C24163_155
1.2		BS00022504_51
1.8		IAAV3683
2.1		r Kukri_c44369_131
2.8		r Kukri_c8211_401
13.9		Excalibur_rep_c93160_539
17.6		KU_C8505_1424
19.0		BS00065737 51
20.0		Tdurum_contig55639_241
22.8		RAC875_c49924_324
33.0		Kukri_c45137_137
40.4		RAC8/5_C51813_182
40.7	N 11	RAC875_c6789_838
42.7		BS00044869 51
43.4	W 14	r Tdurum_contig42289_936
43.7	e	Excalibur_c20228_135
44.0	N=N	KUKII_rep_c111213_148
44.5	N 11	Excalibur c109123 462
45.3		RAC875_c21598_248
47.4		r Ex_c11539_279
47.7	1 - 1	RAC875_c864_88
48.4		BS00010352_51
55.61		RAC875 c21842 1647
56.0	M-N	wsnp_Ex_c9979_16421462
56.9	(k k)	r IAAV1869
57.3	∭—N	r IACX184
57.0	Ø=0	wspp BE403956B Ta 2 3
58.2	WHW	Tdurum_contig42217_127
59.2		/ IAAV3905
60.6	▓▋▓	/ BS00069723_51
60.9 -	X	~ GEINE-0505_443 ~ BobW/bite_c30111_117
61.9		LAV2287
62.6	M-	[\] BS00034925_51
62.9	// = W	wsnp_Ex_c5388_9527189
63.2		RAC875_C87890_234
65.6		GENE-0091 426
67.0		BS00022742_51
69.7 ⁻		Tdurum_contig42016_333
70.1		BS00011973_51
70.5	N N	RAC075_07074_034
71.9		Excalibur c8613 1266
72.2	1 1	Kukri_c9593_381
72.5		Excalibur_c30955_479
73.4		Excalibur_c52120_132
74.5		GENE-0120 397
74.9		RAC875_c95548_156
75.2		wsnp_JD_c6331_7499499
81.2		BS00039740_51
81.5		BSUUU65217_51 Kukri c7770 176
83.2		BS00062880 51
83.9		wsnp_Ex_c9577_15857465
84.2		wsnp_Ex_rep_c107911_91350866
84.5		wsnp_Ex_c7585_12957020
00.01 85.5		BS00055866 51
50.0		

1B (2)

85.8 1	ر Kukri_c51864_225
86.5	BS00078029_51
86.8 1	/ Kukri_c1932_624
88.2 ╢	RAC875_c1136_363
88.5 ╢ _	/ Ex_c69066_186
88.9 🕀	wsnp_Ex_rep_c67299_65844168
92.8 🔪 🗍	CAP7_c1137_53
93.5 — 📜	RAC875_c39401_277
94.2 -⁄/=	► IACX7705
96.1 🛙	RAC875_c61512_173
97.6 게	RAC875_c64190_212
98.5 /	RFL_Contig2826_614
99.0 ^J /	Excalibur_c40808_585
05.9 🖉	Tdurum_contig49651_227
06.2 /	D_GBUVHFX01API9H_416
06.5	BS00022249_51
07.5 ^J	^L Tdurum_contig57927_460

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

1D1	1D2	1D3
0.0 BS00094793_51 0.3 Kukri_rep_c102231_265	0.0 1.0 3.1 4.1 12.0 15.8 15.8 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 Kukri_c3365_1192 9.9 Excalibur_c20462_128 10.2 D_contig08028_419 10.9 Excalibur_c17937_1157 11.9 wsnp_BE591290B_Ta_2_7
	17.3 Excalibur_c24303_1145 17.7 CAP8_c1305_148 20.5 Wsnp_BF473056D_Ta_2_1 20.8 D_F5XZDLF01A85DT_301 22.9 Kukri_c33670_261 28.1 GENE-3348_203 32.9 BobWhite_c555_1485 33.2 BS00034563_51	33.8 BS00048032_51 36.3 Kukri_c13952_550
	33.5 BS00100990_51 33.8 Ku_c9864_772 34.5 BS00063799_51 39.1 RAC875_c14137_994 40.3 RAC875_rep_c69721_835 43.3 wsnp_BE424100D_Ta_1_1 46.7 TA003808-0996 50.3 BS00110144_51 50.7 BS00060042_51 52.0 wsnp_Ku_c53270_57959459	82.2 86.5 86.9 89.7 90.0 91.7 92.4 96.8 96.8 97.1 8500094562_51 8500028476_51 7durum_contig75731_537 GENE-0129_214 90.032039_51 92.4 GENE-0063_68 96.8 Kukri_rep_c102001_420 97.1
	57.6 D_contig14507_369 59.8 BS00066446_51 64.3 wsnp_BE517805D_Ta_1_1 66.1 RAC875_c25212_173 70.2 wsnp_Ku_c5560_9853214 70.5 BS00014671_51 71.5 wsnp_Ex_c3293_6072122	97.8 98.4 98.4 100.5 100.5 100.8 100.8 100.8 117.2 BS00063511_51 117.9 124.7 RAC875_c4047_115 wsnp_Ex_c4436_7981188 BS00063511_51 BS00063512_51 124.7 RAC875_c102886_73 125.8 Tdurum_contin29915_167
	71.8 73.2 73.2 73.2 73.5 73.8 74.8 75.6 75.7 70.7 70.138381	126.1 Tdurum_contig44851_927

Fig. 3.2 Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

47

2 A	\ (1	l)				2A (2)	
0.0 0.3 0.6 0.9 1.8 2.7 3.0 4.0 4.7 14.4 15.1 39.6 55.3 55.0 61.5 65.2 65.5 65.2 65.5 77.2 80.1 90.3 100.7 57.6 100.3 100.7 101.0 93.4 100.3 100.7 101.0 101.3 100.7 113.4 117.4 122.0 122.3 122.0 122.3 122.1 125.4		BS00022393_51 Kukri_c22152_730 Ex_c19516_3687 Ex_c19516_1184 wsnp_Ex_rep_c67619_66272209 Kukri_c17467_2711 Excalibur_c29231_905 Excalibur_c12980_2621 BobWhite_c48552_673 Tdurum_contig10785_1669 wsnp_Ex_c770_1514612 BS00021706_51 Kukri_c27040_309 Ex_c9327_1196 BobWhite_c8085_498 Ku_c23118_149 RAC875_c14944_555 Tdurum_contig11803_935 wsnp_Ex_c5412_9564346 Kukri_c17269_1349 BS00044274_51 wsnp_Ex_c35331_43499339 Excalibur_c51876_189 BS00068196_51 RAC875_c4015_2175 BS00001107_51 r Tdurum_contig66015_346 BobWhite_c9564_587 rIACX5910 RAC875_rep_c105312_95 r Tdurum_contig560_297 r Tdurum_contig560_297 r Tdurum_contig560_297 r Tdurum_contig560_297 r Tdurum_contig560_297 r Tdurum_contig560_297 r Tdurum_contig560_297 r Tdurum_contig560_297 r Tdurum_contig561_51 BS00021739_51 wsnp_Ex_rep_c68113_66877517 BS00021739_51 wsnp_Ex_c1767_3341220 Excalibur_c51281_802 BS0004008_51 RAC875_rep_c72237_351 BS00011035_51 BS00011035_51 BS00011035_51 BS0001036_51 r ACX87_rep_c72237_351 BS0001036_51 r ACX87_rep_c72237_351 BS000128_51 BS0001036_51 r ACX817 BS0009128_51 BS000128_51 BS000128_51 BS000128_51 BS00022896_51 CAP7_c1862_460 wsnp_Ex_c24064_2095 IACX8817 BS00022896_51 CAP7_c1862_460 wsnp_Ex_c1908_331 BS00022896_51 CAP7_c1862_460 wsnp_Ex_c1908_331 BS00022896_51 CAP7_c1862_460 wsnp_Ex_c1908_331 BS00022896_51 CAP7_c1862_460 wsnp_Ex_c1908_331 BS00022896_51 CAP7_c1862_460 wsnp_Ex_c1908_331 BS00065366_51 RAC875_c104160_61	QTKW.ndsu.2A	QTW.ndsu.2A.2	QTW.ndsu.2A.1	191.3 191.6 191.9 192.2 193.6 194.6 196.0 196.7 197.0 202.2 202.5 207.5 207.2 207.5 207.2 207.5 207.2 207.5 207.2 207.5 207.8 208.4 208.7 209.4 212.2 215.4 215.5 215.4 219.9 221.5 215.4 219.9 221.5 215.4 219.9 221.5 223.5 208.8 219.1 219.9 221.5 223.5 209.4 219.9 221.5 223.5 209.4 219.9 221.5 223.5 209.4 219.9 221.5 223.5 209.4 219.9 221.5 223.5 209.4 219.9 221.5 223.5 209.4 219.9 221.5 215.5 215.4 219.9 222.5 223.5 209.4 219.9 221.5 223.5 23 23.5 23.5	Kukri_c25978_561 BS00077788_51 BobWhite_c6573_142 Kukri_c31117_93 Tdurum_contig31185_456 Excalibur_c8009_325 tplb0060h04_139 Tdurum_contig49145_914 BS00066317_51 IACX4345 CAP7_c4056_108 Excalibur_c62415_288 Tdurum_contig54056_501 Tdurum_contig93604_336 Ex_c36309_435 Kukri_c53501_305 BS00031097_51 wsnp_Ra_c17622_26522072 Excalibur_c923_837 Tdurum_contig8350_350 RAC875_rep_c83950_222 GENE-0762_631 BS00091763_51 Excalibur_rep_102984_157 Kukri_c81100_105 BS00021676_51 wsnp_Ex_c63909_62932437 RFL_Contig2972_2285 Kukri_c1947_70 Excalibur_c12971_253 Ex_c6937_1992 wsnp_Ex_c53729_56868062 BS00101944_51

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

2B (1)			2B	(2))
0.0	DahW/hita a17047 200			92.2		BS00035894_51
0.0	BODW NITE_C1/04/_268			95.0		KUKII_C9281_71
4.7	Excalibur c39493 251			95.3		BobW/bite c892 73
5.0	CAP7 c2441 492			96.3		RFL Contig356 812
5.4	RAC875 c25628 180			97.0		Ra c6700 406
7.4	Excalibur_c10406_1949			99.5		Kukri_c6830_572
8.4	BS00023068_51			100.5		Tdurum_contig20589_247
9.1	r wsnp_Ex_c326_636368			100.8		Kukri_c3096_1411
9.4	RAC875_rep_c115433_378			101.1		wsnp_Ex_c4218_7618252
9.71	Kukri_rep_c68159_218			101.8		EX_C66545_1078
11.7	RobWhite c7145 1011			102.1		wsnp_Ex_rep_c69928_68889412
12.1	BS00022126 51			107.3		Ba c15365 530
12.7	r Kukri c98858 299			111.6		RFL Contig4718 1269
13.4	IAAV8167			112.0	1	Tdurum_contig26542_281
14.1	r Tdurum_contig48835_437			112.4		BobWhite_c26981_66
14.4	BobWhite_c13736_59			114.3 1		TA001450-1081
14.7	Kukri_c23564_79			115.4		BobWhite_rep_c48906_121
15.4	GEINE-1000_1444			115.71	0 N	r KUKII_C55688_361
17.1	Excalibut_c30107_331			116.4		BAC875 c36614 344
17.4	/ IAAV7308			117.0	P	Excalibur c11587 340
17.8	BS00061979_51			117.3		Excalibur_c52972_213
18.2	/ Excalibur_c42558_255			120.1		Excalibur_c30728_218
18.6	<pre>/ wsnp_Ex_c13686_21480826</pre>	-		122.2		BS00010567_51
20.6	wsnp_JD_c10389_11059599	B		122.7		Kukri_c75902_132
23.4	- RAC875_C38003_164	Ŧ		123.2	\blacksquare	BODWhite_rep_c50458_213
28.0	\sim WSND Ex c19371 28311667	lg .		123.51		GENE-0910 153
29.3	BS00010318 51	ü.		123.0		AAV5674
29.7	wsnp_Ra_c4321_7860456	B		124.4 -	J	- Tdurum contig25423 72
30.1	^L Kukri_c3067_398	4		125.3 -	諅	- Kukri_c97631_275
30.5	BS00011149_51			125.8 -		- Kukri_c46361_295
30.9	BobWhite_c9843_117			126.1		BS00111363_51
31.6	BS00011466_51			126.4		CENE 1300 185
33.7	CAP11 c585 134			128.5		BobWhite c1072 593
34.1	BS00082127 51			130.9	᠓╡₩	wsnp Ex rep c71983 70544041
34.5	Excalibur_c47288_232			131.4	▓╡▓	wsnp_Ku_c28467_38394907
38.0	Kukri_c53810_315	0		131.9	M = M	Excalibur_c76665_98
38.3	wsnp_Ra_c19083_28215239	Ĕ		132.2		BobWhite_c2410_175
49.6	RAC675_C15644_346	t.n	0	132.5		BODWNITE_C18540_351
61.8	BobWhite c8734 91	- dsi	ž	132.9		- B300035276_51
69.6	Excalibur c6502 397	1.2	2	139.8		Excalibur c2484 2113
70.3	Excalibur_c10376_313		-st	141.9		Tdurum_contig45370_324
71.0	RAC875_c26469_363	V.n	.2E	142.2		RAC875_rep_c106542_272
73.1	Kukri_rep_c101093_572	dsi		142.5		BS00110721_51
75.8	Kukri c18931 /9/	1.2		142.8		- RAC875_rep_c109891_156
75.6	Kukri_c6949_303	u		143.1		Tdurum contig12959 425
77.8	RAC875 c86069 65			143.7		Tdurum contig77036 338
78.6	Ku_c68678_924			144.0		wsnp_Ex_c4024_7278036
79.9	RFL_Contig996_818			144.3		BS00022295_51
81.3	Excalibur_c6111_411			147.5		Excalibur_c10637_515
86.9	Excalibur_c22315_894			148.0		Excalibur_c91034_141
87.21	BS00070001_51			148.5		KUKII_C29052_75
87.8	Tdurum contig94806 361			140.0		GENE-0862 110
88.3	RAC875 c27716 720			149.8		Excalibur c42146 266
88.8	BS00065418_51			150.5		BS00011483_51
89.3	D_contig07894_190			150.8		BS00063236_51
89.6	RFL_Contig1563_1180			152.9		BS00067828_51
89.9	wsnp_Ex_c45094_50985067			153.9		KUKILC55909_1109
90.2	Ku c7740 879			154.2		KAU875_C98387_130
91.5	BS00041921 51			154.0		RAC875 c18063 497
50				155.1		Excalibur c73027 267
				155.8		RAC875_rep_c102485_468
				157.9 ^J		Tdurum_contig76550_1261

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

2B (3) 158.2 159.6

H

159.9 160.2 165.1 165.4 165.7 170.2 172.7 173.0 175.1

175.8 175.8 177.4 178.2 178.5 178.5

179.1 179.8 180.1 180.8 181.5 181.8

Ex_c52711_584

Ex_c52711_584 Excalibur_rep_c109577_698 Excalibur_c5438_274 BobWhite_rep_c64068_241 wsnp_Ex_c34303_42642389 Excalibur_c16329_1216 RAC875_c19685_944 tplb0030f06_593 BS00004413_51 wsnp_Ex_c298_580660 T durum_contig10295_374 BS00100118_51 = Excalibur_c12675_1789

- Excalibur_c12675_1789 - Excalibur_c21117_300

Excalibur_c21117_300 Kukri_c38413_121 CAP12_c3254_366 tplb0042a21_1091 Excalibur_c25043_1221 BS00011599_51 RFL_Contig2324_884 tplb0042o21_560

2D	3 A (1)				1)	3A (2)					
0.01	D GB5Y7EA02HSMR1 278		0.0 1	- (r wsnp Ex c7780 13254349	94.5	(-	wsnp_Ex_c11877_19055556			
0.3	D_contig17313_245		2.1		RAC875_c1666_126	95.2		r Ra_C5262_460 wsnn Ku c44716 51926415			
6.8	BobWhite_c15073_502		2.4		Excalibur_c6816_373	101.3		wsnp_rtd_c447.10_01020410 wsnp_Ex_c11297_18254062			
9.6	BS00004040_51		2.9		RAC875_rep_c77067_347	102.0	. 1	RAC875 c9500 1770			
10.3	BS00047901_51		3.4		Excalibur_c32653_553	102.7		wsnp_RFL_Contig2699_2402527			
10.6	RAC875_c48703_148		3.7		D_contig30400_369	110.4		Kukri_c33640_640			
11.3	D_F1BEJM002GB942_188		4.01		r WSNP_Ra_C32108_41215276	110.8	N 1	Excalibur_c60581_62			
15.9	BS00067046 51		7.5		BS00071422 51	124.7		wsnp_Ex_c8517_14315660			
34.9	/ BS00022276 51		7.9		RFL_Contig2582_455	125.1	N 11	Excalibur_056240_200			
47.5	RAC875_c7319_195		8.2		BobWhite_c2570_781	125.5	e	BS00065840_51			
49.2	wsnp_CAP12_c1503_764765		9.6		FExcalibur_c85173_190	127.9	N_//	RAC875 c14684 1128			
75.2	Excalibur_c1944_1017		14.3		r Kukri_c49280_230	130.4		RAC875_rep_c81701_424			
75.5	Excalibur_c15048_488		16.9		Excalibur_rep_c80735_81	131.1		IAAV8170			
76.9	wspp Ex c6400 11123059		20.0		BobWhite c9249 564	132.1		Kukri_rep_c103783_1380			
97.3 JH	Kukri c16277 87		26.4		BS00022746 51	132.4		BS00083279_51			
98.3	r Ku c42623 838		27.1		RFL_Contig1896_1236	132.7		REL Contig/97 111/			
101.2	Kukri_rep_c110868_147		27.5	M ()	F BS00049032_51	148.5	♥■♥	r Excalibur c2340 1190			
101.9	r IAAV8184		27.8		r wsnp_BE497169B_Ta_2_1	170.0 1	14/	BS00097265_51			
110.2	BS00018028_51		37.5	W 8	r Kukri_c18068_438	170.3	NLI/	r Kukri_rep_c89509_83			
112.2	Excalibur_c31302_230		44.0		RAC875 c/7976 /11	171.0	\ /	BS00067224_51			
114.8	$k_{\rm wspn}$ Ex rep c68555 67394261	Q	45.3	NĦ	RAC875 c37084 107	171.3	N VI	BS00081475_51			
121 8	Kukri c54059 654	Ż	55.0	M≡N	wsnp Ex c4094 7399975	176.9		KUKII_IEP_C102151_697			
122.1	/ Kukri_c26676_225	N.	55.3	M_N	RFL_Contig4946_315	179.01		BS00065734 51			
123.9	/ BS00011109_51	•ds	57.4	M-M	FExcalibur_rep_c101767_219	180.4		Tdurum contig42038 1770			
129.4	/ Excalibur_c24307_739	su.	61.8		wsnp_Ex_c21950_31124594	181.1		GENE-1833_70			
130.1	RAC875_rep_c73531_335	2D.	62.1	₩₽	r Kukri_c28917_96	181.4	8L1Ø	CAP11_c1022_117			
152.7	_ tolb0055a23_988	-	67.2	AN 11	wsnp Ex rep c102478 87635370	182.1		/ Kukri_rep_c106620_208			
154 1	/ tplb0021c10_951		67.5	M_//	Jagger c791 62	182.8		r tpib003605_182			
154.4	Excalibur c5619 208	<u>କୁ</u> କୁ	68.9	M 10	RĂČ875_c10430_672	194.2 -		- BobWhite c3356 442			
154.7	wsnp_Ex_c29382_38422739	E .a	69.6	MHM	r Ku_c103671_362	184.6 -		JD c48734 1188			
155.0	wsnp_Ex_c5856_10275959	ds.	69.9		wsnp_Ex_c15036_23203474	185.3 /		Excalibur_rep_c69287_280			
155.3	Kukri_c209_477	".2 i2	73.9	W-W	BobWhite c35303 192	188.0 [/]		BS00030652_51			
155.0	TA002913-0806	D N	74.5		wsnp Ku rep c71761 71496470	191.6		BS00048633_51			
156.9	RAC875 c29079 177		74.8		Excalibur_c40694_473	193.0		BS00075598_51			
161.7	Kukri_c92104_87		75.1	N=#	/ Ex_c17586_108	197.8	M-W	RAC875 c3084 415			
173.0	BS00083623_51		75.4 ~	∛⊒₽	~ RAC875_c37491_239	198.5	P	RAC875_c28721_290			
173.3	CAP8_c2833_325		76.1 -		~ BS00066800_51	198.9	W	wsnp_Ex_rep_c104141_88935451			
173.6	KUKII_C498_2381		70.8		Ex c105530 1213	200.7	W	CAP8_c8360_186			
173.9	Excalibur c3004 733		78.2	//≡≬	Ku c3602 325	202.4	1 1	Excalibur_c77321_69			
180.4	RAC875 c29056 299		78.9		Kukri_c5422_1953	204.5	I V	WSNP_KU_C217_430915			
			79.2		BS00066475_51	207.7		RAC875 c35074 486			
			81.3		Ex_c45438_377	210.1		RAC875 c53037 181			
			82.0		wsnp_BE443995B_1a_2_2	210.4		RAC875_c65573_410			
			82.7		BS00090405_51	213.6		wsnp_Ex_c24085_33332723			
			84.4		wsnp Ex c12850 20377830	213.9 ⁻		BobWhite_c5246_474			
			85.1		Tdurum_contig68855_91						
			85.4		RAC875_c13895_763						
			86.4		Ra_c5515_2396						
			86.7		tpib0050n15_1287						
			87.0		wspn Ex ren c66907 65324299						
			87.6		Kukri_c80104_809						
			87.9		BS00009657_51						
			88.2 -		Tdurum_contig61010_621						
			88.5		BS00076631_51						
			88.8		$EXCallDUF_C26754_433$						
			90.5		HAV242						
			90.8		CAP8_c1393_327						
			91.1		wsnp_Ku_c32404_42016343						
			91.4		wsnp_Ra_c27831_37346894						
			92.1		Kukri_rep_c87640_135						
			92.0		Kukri c41296 172						
			0-1.2								

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

3B (1)

0.0 1	r RAC875 rep c111781 179	85	.9 ı
0.7	CAP12 c3789 177	86	4
12	Kukri c1771 715	00	1
1.2		00	21
1.71	1AAV2929	88	.4 1
3.1	Idurum_contig7623_695	88	.7 -
3.4	r Kukri_c17082_378	90	.4 -
3.7 1	BobWhite c4864 326	91	.1
4.0 -	Kukri c12817 59	01	1
4.2	Tdurum contig77551 586	01	·7.
4.51		91	.1
5.0 1	RFL_Contig2549_565	93	.8 -
6.7	r RAC875_c39793_452	94	.5 1
7.0	rRAC875 c101155 64	95	.2
77	Excalibur c57482 242	95	9-
10.5	PAC975 c14606 360	00	6
14.0	RobWhite 02452 252	90	
11.21	B00W1111e_02403_203	97	.01
11.5	Jagger_c8905_84	97	.9
19.3	r BobWhite_c9711_71	98	.2 -
20.2	RFL Contig2585 1174	100	1.3
20.6	wsnn CAP11 c3742 1796552	100	6-1
21.0	RAC875 c4389 1412	101	3
21.0	DC00010040 51	101	.5
23.1	B300010849_31	101	.0 1
23.6	r BS00019919_51	103	i.0 - 1
24.1	r Excalibur_c63353_204	103	i.3 🖞
24.6	r Kukri_c10505_346	103	i.6 √
27.8	Jagger c342 119	104	1.3 -1
20 3	Kukri c96747 274	104	6.1
21.1	Excelibur c46345 100	104	0.0
31.1	Excalibut_040345_100	104	.9 \
31.5	Excalibur_rep_c87664_233	105	.6 -
33.7 📲	/ IACX6214	105	.9 ·
34.1 \	/ BS00090324_51	106	i.2 /
37.3 \	/ Tdurum contig97656 120	107	.o //
37.6	Tdurum contig47635 876	107	8/
27.0	- wenn Ex c1558 2076128	109	. ~ J
37.3 A	Nonp_Ex_01000_2070120	100	. <u>~</u> /
38.2	Ka_C10565_1109	108	.5
38.5	r IAAV3924	109	.9 -
39.2	RFL_Contig3591_1832	110	1.2
40.2 //	CAP12 c680 202	110	1.5
423	BS00104107 51	111	2
47 1	RAC875 c60169 200	111	0
	R\$00000651 51	111	.9
47.01	B300069031_31	112	-21
48.5	wsnp_RFL_Contig2177_1500201	112	.51
50.3 // =	^L Ku_c30806_235	112	8
62.6	BobWhite_rep_c66224_103	113	.5 -
64 0	BobWhite c23887 134	113	9-
64.3	BS00065934_51	11/	3
64.6	PAC975 c5700 224	116	7
04.0	OFNE 4774 544	110	
65.0	GENE-1771_541	117	.0 1
66.7	BobWhite_s67413_216	117	.31
67.0	wsnp_Ra_c26083_35644783	117	.6 -
67.3	GENE-2732 162	117	.9 -
68.7	RFL Contig29 1062	118	.8-
70.1	BS00022242 51	110	3
70.4	wenn Ex c/7079 52202205	113	
70.4	- wshp_ex_c47076_52595295	119	.0
72.11	Excalibur_C35645_587	122	.4
72.4 1	Idurum_contig31379_183	122	
72.7	JD_c14460_122	123	.0
73.0 1	BobWhite rep c55395 200	123	i.3 -
77.8	Kukri c46948 558	123	6-
78.5	wspp Ex c447 876091	123	ă
20.2	Ku c108703 229	123	6
00.2	R4_0100133_220	124	.01
dU.5 1	TAC6/5_IEP_C09316_1516	125	.31
80.8 -	Excalibur_c2820_889	132	.2
81.2 -	Excalibur_c36626_228	132	.5 -
81.6 -	BobWhite_rep_c50834_145	133	.5 -
82.5	BobWhite rep c63085 120	133	8
82.8	Tdurum contig51993 52	12/	1
02.0	ween Ex c11246 19101221	104	
03.1	WSHP_EX_011240_10191331	134	-41
83.4	1 aurum_contig13263_643	134	.7
83.7	IAAV6689	135	.5
84.4	BS00109808_51	135	.9
84.7	wsnp_Ex_c40250 47352047	136	i.7 -
85.0 ^J	wsnp BE498786B Ta 2 1	137	.0
	· - · - ·		-

3B (2)

F 0		Evolibur 049269 217
5.9 J		Excalibur_048368_217
6.4		wsnp_Ex_c16304_24782232
8.1		BobWhite_c62885_215
8.4		Kukri_rep_c74178_178
8.7 -		wsnp JD c8629 9593995
0.4		Excalibur c34554 312
1 1		Excalibur c7742 2189
		PEL Contig2090 1400
1.4		RFL_C01102900_1409
1.7 1		RAC675_029373_463
3.8		RAC875_c29981_62
4.5		IAAV8368
5.2		Kukri_c21759_1035
59		Excalibur rep c107483 324
6.6		Kukri c18900 146
7.6		Tdurum contig55496 773
7.0		DebW/bite e20070 475
7.91		B000070454 54
8.2		BS00072151_51
0.3		BS00003522_51
0.6		Excalibur_c45968_83
1.3		BobWhite c1499 59
16		wsnp Ex c10717 17456391
3.0 -	Ø 18.	IAA\/4105
2.2		BobWhite c609 1239
0.0	W — W	DEL CantinE750 757
3.61	W - W	KFL_CONUS756_757
4.3 r	X = V/	wsnp_CAP11_rep_c8708_3760250
4.6 \		RAC875_c95993_265
4.9 ~	NEV/	BS00052423_51
5.6 -	×	wsnp JD c1843 2562950
59-		BobWhite rep c61884 158
6.2 -		BS00073305_51
701		Excelibur c61285 135
7.0	$\emptyset = \emptyset$	PEL Contig2616 1422
7.8	N - N	RFL_CONU2010_1422
8.2	(- 1)	BS00059525_51
8.5		BobWhite_c5095_634
9.9		Ex_c24059_707
0.2		Excalibur c18060 449
0.5		BS00005265 51
12	1	Kukri c62139 373
1 0	1	Excelibur c30527 515
1.9		Licalibur_00027_010
2.21		WSHP_KU_013311_21233420
2.5		IAAV3838
2.8		Excalibur_c3096_1699
3.5		Excalibur_c25678_337
3.9		BobWhite_c1093_494
4.3		Kukri c7087 896
67		BobWhite c17191 297
704		Excalibur c21604 247
7.0		Tdurum contig70056 255
1.3		DEL Cartist 201 200
7.61		RFL_Conug1291_309
7.91		RAC875_C44986_127
8.8		wsnp_Ku_c50833_56310208
9.3		IAAV4560
9.6		Kukri_c2306_333
2.4		RFL Contig5871 1771
27		BobWhite c40087 93
20		Excalibur c34069 487
3.0		
3.3		KAC675_010026_500
3.61		wshp_Ex_c10499_17163260
3.9		wsnp_Ex_c21418_30554998
4.6		wsnp_Ex_c2639_4899517
5.3		wsnp_Ex_c21924_31095740
2.2		BobWhite_c40861_320
2.5		wsnp_BQ167580B_Ta 2 1
35		Ku c12345 328
3.8		RAC875 c36987 1045
1 1		wenn Ev ren c608/5 6990//56
4.1		RE00030420 E1
4.4		DOUUU3942U_D1
4.7		Kukri_c63447_148
5.5		RAC875_c17269_645
5.9		wsnp_Ex_c15047_23217632
6.7		wsnp_Ex_c39124_46489956
7.0	l	BobWhite c22794 470

3B (3)

137.3 ₁	r CAP8_c1113_199	
137.6	IAAV5855	
137.9	Excalibur_c12735_380	
138.6	wsnp_Ex_c13154_20784321	
139.6 1	wsnp_Ex_c64005_62987067	
139.9 1	wsnp_Ex_rep_c66893_65301351	
140.6	Ku_C13676_1074	
140.91	Excalibur_c2/120_789	
141.31	r Taurum_conug28748_239	
143.01	BS00070018 51	
144.7	wspp Ex c3130 5789888	
145.4	Tdurum contig31334 416	
145.7	Ra c14132 2930	
146.4	wsnp Ex rep c101457 86817938	
146.7	Tdurum_contig93431_485	
148.8	CAP12_c3551_85	
149.1 🤺	Tdurum_contig55751_406	
149.4	GENE-4927_542	
150.1	Tdurum_contig32277_121	
150.4	Excalibur_c50230_107	
151.1	7 RAC875_C62223_86	
151.8	- RS00007374 51	
154.2	- BS00097374_31	
154.5	Excalibur c21708 555	
156.2	AC875 c24504 119	
158.7	wsnp Ex c13217 20858366	
160.1	TA002070-0603-w	
161.2	^L Kukri_c35451_2016	~
168.8	^L Kukri_rep_c104399_156	Ř
169.5	Jagger_c528_56	Ŧ
169.8	Kukri_c119_295	ğ
170.5	Excalibur_c50953_96	Ë
177.0	BS00007335_51	ß
177.3	BS00022861 51	Q
183.3	JD c4539 892	12
184.0	GENE-0293 346	nd.
184.3	RAC875_c9930_191	Ľ.
187.1	IAAV1677	ЗB
187.4	[.] Kukri_c24041_273	
187.7	Kukri_c2227_583	
188.0	RFL_Contig4792_379	
188.3	BS00023017_51	
189.31	WSNP_CAP12_C2297_1121142	
102.4	Kukri rep c68685 795	
192.4	GENE-1662 108	
195.7	BobWhite c22016 155	
198.4	RAC875 rep c77832 143	
198.7	BobWhite_c15763_205	
200.1	RAC875_c2340_616	
202.2	BS00076457_51	
202.5	Kukri_c22748_211	
202.8	1 durum_contig63460_144	
205.3	RAU8/5_rep_c/22/5_185	
∠00.01 212.9	wenn Ra ren c72670 70826420	
229.7	BS00078572 51	
230.7	RAC875 c13406 65	
233.9	RAC875_c66953 100	
234.2	Kukri_c42669_583	
237.0	Tdurum_contig10458_460	
239.5	Kukri_c29615_377	
241.2	IACX5852	
241.5	BSUU1041//_51	
241.8	Excalibur_c52023_321	
200.2	- Tuurum_conug10408_1548	

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

3D	4A (1))				4A (2)
0.0- Evolibur c8316 570	0.0	tplb0043j11_1190				152.7
0.0 Excalibut_c6316_579	10.8	BS00069271_51				154.8
	20.2	Ex c864 653				155.1
	20.5	Ra_c27961_818				157.6 i F
	20.8	BS00043286_51				157.91
	26.0	BS00022177_51 wspp Ba c14920 23225219				167.9 h
	34.8	Ex c7626 444				170.4
	35.1	Ra_c74035_586				171.1 F
46.0 D_GBF1XID02GHPCU_167	36.5	BS00036493_51				174.3
	43.9	BS00089283_51				176.0
	44.5	Kukri c16916 1073				177.4 • E
85.8 1 / wsnp_Ex_c2258_4232538	45.5	r Kukri_c10501_313				178.1 v 🗸 E
88.3 \\ / CAP11_c766_319	53.4	BobWhite_c23619_138				178.4
91.9 wsnp_Ex_c18250_27065775	53.7	Excalibur_C39621_358				187.6 1
92.6 Excalibur_rep_c114833_645	56.1	Excalibur c44026 470				188.0 - E
94.4 Ku_c22692_1021	56.8	r Kukri_c46421_168				188.3 🖷 🗸 v
95.2 Kukri_c43208_335	58.5	r wsnp_Ex_c6044_10590220				190.4
95.6 wsnp_Ex_c54003_57045475	58.8	r wsnp_Ex_rep_c69890_68851948				191.8
96.0 J Excalibur_c22852_401	60.2	wsnp Ex c5979 10480527				192.5 V
100.1 BobWhite c27541 67	61.9	r IAAV6309	Q			196.9 🔨 🗖 / v
104.9 // tplb0029j24_2118	62.6	wsnp_Ex_c11663_18779609	모			197.9
118.0 ⁷ wsnp_Ex_rep_c101732_87042471	62.9	Ra_c30013_483	nd	Q		198.2 198.5
	63.5	wsnp_ex_c2266_4247520 wsnp_Ku_c10224_16965872	su.	Z		199.2 E
	64.2	/ BobWhite_c48455_818	4A.	.n		201.3
	65.9	- BS00075740_51	1	dsı		201.6 - E
162.6 Wsnp_Ex_c12369_19/30/65	68.7	- wsnp_Ex_c1563_2987002		1.44		201.9
102.9 0747_00205_010	69.7	AC875 c27704 420		-		209.5 E
	71.1	wsnp_Ex_c1373_2628597				210.9 - E
	86.3	~ wsnp_Ku_c1205_2398925				211.2
	86.6	<pre>% KUKII_C7791_99 % BS00092859 51</pre>				211.51
	87.6	BobWhite c20909 243				212.5 ·
	119.9	Excalibur_c30378_673				213.5 ·
	137.1	Kukri_c59705_167				214.2 · · E
	137.8	Excalibur c25699 113		0		210.3
	138.4	f Tdurum contig22511 355		ğ	Q	217.3
	138.7	/ IAAV8190		12	W.	217.6
	139.0	- Tdurum_contig47858_908		dsu	nds	218.1
	139.3	wsnp Ex c2288 4293430		.44	SU.4	218.0 [F
	139.9	Excalibur_c5624_845		Ň	A	210.0
	142.4	Excalibur_c10696_3390				
	143.1	Excalibur_rep_c104570_201				
	143.8	Excalibur c9370 966				
	145.8	RAC875_c17197_504				
	146.1	Kukri_rep_c109167_89				
	147.1	Excalibur_c82040_91				
	147.6	BS00072157 51				
	149.5	wsnp_Ex_c2352_4405961				
	149.8	BS00039147_51				
	150.5	RAC 875 c220 1354				
	151.1	Kukri c48943 1149				
	151.4	RAC875_c7978_81				
	151.7	Excalibur_c3988_1660				
	152.0 -	 tpipU040d24_613 				

RAC875_c12996_2320 Kukri_c17417_571 Kukri_c17417_291

Kukri_c17417_291 Kukri_c17417_407 RAC875_c40654_206 rKu_c24957_677 rD_GDEEGVY02HXD2T_88

Ruki_c19764_441 BS00070327_51 PS00064494_51 r BobWhite_rep_c49916_403 r Jagger_c2200_347 r Kukir_c25115_740 Decoratio_f4

BS00075048_51 wsnp_CAP7_c254_138937 BobWhite_c25234_418 BS00110926_51 Excalibur_c39447_143 BS00108169_51 wsnp_Ku_c20949_30631810 BS0001921_51

BobWhite_c17524_242 BS00065030_51 Excalibur_c2023_345 GENE-4592_471 Ra_c14178_182

RFL_Contig2531_969 wsnp_Ex_c11474_18507872 BS00076452_51 BS00010887_51

TA001522-0900 BobWhite_c15215_550 BS0009674_51 Excalibur_c50999_269 Excalibur_cep_c101560_2243 BS00110758_51 Tdurum_contig8712_129 Excalibur_c41533_321 Tdurum_contig14112_802 RAC875_c39551_656 BobWhite_c33799_145 Excalibur_c1904_2824 RFL_Contig8621_947

BS00080927_51 Kukri_c46302_194 Excalibur_c7897_600 Ex_c1246_1162 BS00056087_51 Kukri_c19784_441

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).
4B (1)	4B (2)	4D
0.0 0.3 1.0 2.4 2.7 8.5 8.5 8.8	RAC875_c68719_352 Kukri_rep_c104277_1326 Tdurum_contig49608_1323 BS00011148_51 CAP11_rep_c4893_84 Tdurum_contig10322_1908 BobWhite_c7400_334 wspn Ra_c9755_16199734	109.6 110.0 110.4 110.4 HS00022366_51 111.3 112.0 120.2 HAV7394 120.9 HAV7394 120.9 HAV7394 120.9 HAV7394	0.0 0.4 BS00022283_51 3.2 Kukri_c15720_884 8.5 Kukri_rep_c106474_293
10.6 12.0 13.4 16.4 16.7 17.0 24.2 24.9 25.6 26.3 26.5	Kukri_c66885_230 IACX3386 RFL_Contig2277_1446 Excalibur_c7581_1266 IACX8647 tplb0024a16_411 Tdurum_contig10984_210 Kukri_c80544_61 wsnp_Ku_c8075_13785546 Excalibur_c5010_1002		38.2 Kukri_rep_c68594_530 38.5 RAC875_c6922_291 51.9 53.7 71.5 CAP8_rep_c5023_658 RAC875_rep_c105718_304 IAAV1324 Excalibur_rep_c108030_260 Ra_c350_837 73.1 wsnp_Ex_rep_c70752_69640246 wsnp_BF202706D_Ta_1_1 D_F5XZDLF01AS2U4_253
26.6 1 26.9 1 31.3 1 32.3 1 34.4 1 36.1 1 40.5 1 40.8 1 41.5 1 41.8 1	rwsnp_Ex_c30695_39579408 rdurum_contig41902_1524 rD_GA8KES402IFV6C_200 rdurum_contig64772_417 rwsnp_BE442666B_Ta_2_1 rbs00065688_51 rkukri_rep_c109150_333 rbdvy971		75.5 BS00094770_51 76.2 Kukri_c20631_614 80.6 Ex_c41034_812 112.9 RAC875_rep_c91682_90 121.6 CBAC875_c60522_1278
48.3 48.6 49.3 50.7 56.3 56.6 56.9 58.3 58.6 60.0	/ Jagger_c1432_289 / IAAV5117 / tplb0043114_1189 / RFL_Contig3563_1130 / wsnp_Ex_c72198_70679871 / wsnp_Ex_c37437_45183236 / BobWhite_c4311_148 / Ra_c10455_3226 - D_contig70241_426 / tplb0026015_1634		126.8 Excalibur_rep_c71254_415 127.1 Excalibur_c33923_592 127.8 Kukri_c60913_155 129.9 BS00073670_51
60.4 60.8 61.2 61.6 61.9 62.9 63.6 63.9	Kukri_c36207_91 GENE-2719_49 BS00030571_51 RAC875_c56040_263 BS00003421_51 BobWhite_c17220_314 RAC875_c1357_860 BS00076033_51 RAC875_c14455_1148		
64.2 1 64.5 - 70.0 1 70.4 1 72.1 - 72.5 1 73.2 - 73.6 - 81.4 1 83.9 -	BobWhite_c27751_206 Excalibur_c19547_128 JD_c11606_1380 Ra_c5508_706 Excalibur_c20063_318 Excalibur_c1706_1413 BS00012006_51 RAC875_rep_c119568_203 BS00023179_51		
84.9 J 94.6 J 94.9 J 95.6 J 96.6 J 97.7 J 101.2 J 101.5 J 101.5 J	AAV2725 BS00064278_51 RAC875_c202_474 Kukri_c19909_809 Excalibur_rep_c96193_483 wsnp_Ra_rep_c74879_7265146 wsnp_CAP12_c4769_2174195 BobWhite_c27801_429 wsnp_Ku_c10515_17368422 Tchore actication to 202	2	
102.5 105.5 105.9 108.5 108.9	r uarrum_contig22643_137 wsnp_Ex_rep_c67136_6561752 BobWhite_c4818_173 Ra_c19259_1814 wsnp_BG604404B_Ta_2_1	0	

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

5Δ	(1)	
JA	(1)	ļ

011(1)		129.5
0.0 1	wspp Ex c6209 10838852		130.2
0.3	BobWhite c12016 88		131.6
0.6	GENE-3572_70		131.9
17.4	IAAV2776		132.3
18.4	BS00072264_51		135.4
18.7	BS00066403_51		136.5
23.9	BobWhite_rep_c60372_388		140.1
24.3	BS00080090_51		140.4
24.0	wsnp BE399966A Ta 2 3		141.7
27.8	wsnp Ex c11992 19213872		142.0
40.5	Tdurum_contig42309_627		143.4
41.2	Excalibur_rep_c115510_314		144.1
41.6	r Kukri_c18268_79		145.8
42.0	wsnp_Ex_rep_c69526_68472665		140.5
42.7 1	WSNP_EX_C5013_8914160		140.0
44.2	BS00040033 51		148.8
44.0	Excalibur rep c95828 165		149.1
47.2	BS00021708 51		153.5
50.4	r Kukri_c24642_426		153.8
52.5 r	Excalibur_c51706_263		154.1
53.9 ⁻	rwsnp_CAP11_c951_572693		155.5
69.1 i	rKu_c102710_1055		156.2
72.7	r wsnp_Ex_c10231_16783750		165.5 -
73.0	BSUUU29347_51		165.8 -
73.8	wsnp_EX_c19692_26910730		167.2
74.7	Excalibur rep c69282 651		167.9 -
75.4	wsnp_BE500291A_Ta_2_1		173.1 -
76.1	Excalibur_c11167_1207		173.4 -
77.8 🗤 🗖	wsnp_Ex_c16317_24795290		174.1 -
78.1	wsnp_Ku_c11110_18216209		174.8
78.8	BobWhite_rep_c49979_373		186.8 -
79.6	BODWNITE_FEP_C49700_452		187.1 -
80.4	BS00056248 51		191.9 -
81 2	wsnp Ra c18755 27856508		192.8 -
81.5	- CAP8 s9855 165		193.3 -
81.8	RAC875_c12507_531		194.7 -
82.5 //	RAC875_rep_c73524_82		195.4
83.9	BS00022683_51		196.6
93.6	wsnp_Ku_c30743_40542247	В	198.6
101.9	- Bobwnite_C17440_130	Ĭ	201.4
102.9	BS00076256 51	nd.	201.7
105.3	LAAV9057	su.	202.0
106.0	Kukri c27691 226	БĄ	202.7
106.5	Tdurum_contig102312_245		203.0
107.0	BS00043474_51		203.3
109.5	Tdurum_contig62767_426		204.0
111.2	4 JD_c64219_207		205.7
112.6	r Excalibur_c24638_380		200.0
114.7	GENE-3101 137		207.0
115.7	Tdurum contia43874 1129		207.3
118.2	Tdurum_contig4567_1467		210.1
118.5	RAC875_rep_c91954_175		210.5
119.2	^L wsnp_Ex_c19647_28632894		210.9
119.9	BS00064242_51		211.2
120.6	Kukri_c41797_393		211.0
120.9	DOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		212.5
123.0	Ex c19057 965		212.8
126.1	BobWhite rep c61813 322		221.8
126.8	RAC875 c232 1895		
127.5	CAP11_c528_76		
128.5	GENE-3528_61		
128.8 [」]	LACX5879		

5A (2)

129.5 1	f Tdurum_contig49187_601	
130.2	Tdurum contig11933 1503	
131.6	Ra c9938 1299	
101.0	14027000	
131.9	IACA7020	
132.3	Ra_c9938_1294	
135.4	wsnp_Ex_c7168_12311649	
136.5	wsnp Fx c1279 2451582	
140.1	Kukri 025296 190	
140.11	Rukii_C35360_169	
140.4 1	BS00094343_51	
141.4	r Excalibur_c1208_72	
141.7	wsnp Ku c15816 24541712	
142.0 -	Ku c4925 624	
142.0	WODD Ex 010127 16625220	
143.4 1	wshp_Ex_c10127_10035320	
144.1	r Excalibur_c54514_248	
145.8	r RAC875_c31670_389	
146.5	r BS00065313 51	
146.8	RAC875 c8690 446	
147.1	Ra 06020 1752	
147.11	Ra_00930_1755	
148.8	r BS00000648_51	
149.1 👔	r Excalibur_c12332_161	
153.5	wsnp_Ex_c19519_28487099	
153.8	wsnp CAP11 c1740 947838	2
154 1	LAAV/1179	ę
154.1	Worp Ex 21014 40647870	15
155.5 W=	Wshp_Ex_C31914_40047870	Į ĝ
156.2	BS00096758_51	Ĕ
157.2	Tdurum_contig30558_109	্য
165.5	BobWhite_rep_c63943_76	5
165.8	wsnp Ex c18941 27840933	
167.2	BobWhite c43981 90	
167.0	BS00011235_51	
107.9	D000011233_31	
1/3.1	BS00067676_51	
173.4	/ BS00065292_51	
174.1 - 📜	 BobWhite_c9117_593 	
174.8	wsnp_BE399939A_Ta_2_1	
186.1	/ BS00062729 51	
186.8	- RAC875 c60522 1342	
187 1	Ra c22700 943	
	Excelibur rop 071254 241	~
191.9	Excalibul_lep_c/1234_241	Ř
192.8	wsnp_Ra_c29586_38941694	Ĭ
193.3	Excalibur_c472_914	.5
194.7	Kukri_c28080_887	۱ ⁸
195.4	Tdurum contia71499 211	5
196.6	LAAV8258	Ä
109.6	REL Contig3730 2135	ώ
190.0	Rite_0011193733_2133	
199.4	- Bobwnile_C40643_370	
201.4 1	r Ku_c19858_2078	
201.7	^L Tdurum_contig86202_175	
202.0	^k wsnp_Ex_c11120_18022932	
202.7	wsnp Ex c37943 45584325	
203.0	wsnp Ra c12183 19587379	
203.3	Kukri c29560 455	
203.3	Nukii_029300_433	
204.0	r wshp_Ku_c3064_6769632	
205.7 1	Excalibur_rep_c103747_193	
206.0	BS00098062_51	
206.5	BS00110365_51	
207.0	RAC875_c30566 230	
207.3	Kukri c28077 282	
210.1	Excalibur c26671 282	
210.5	Webp Ku 6077 12070701	
210.5	Waip_Ru_009/7_120/0/91	
210.91	Excalibur_cz4051_1028	
211.2	JD_c15758_288	
211.5	BS00100510_51	
211.8	tplb0044j06_689	
212.5	Tdurum contia29286 319	
212.8	Excalibur c49550 97	
221.8		
221.0	1747 100	

QTW.ndsu.5A

5A(3)

(-)
rwsnp_Ex_c40019_47165575 ر
r Ex_c6479_750
BobWhite_rep_c64315_180
Excalibur_c92705_94
/ IACX2539
∬ _∫ IAAV7827
// _/ BS00028356_51
//r IAAV3527
// wsnp_Ku_c3953_7233359
RAC875_c59520_130
r Kukri_c63809_99
Excalibur_c61241_109
wsnp_Ex_rep_c107017_90850230
Excalibur_c60150_107
∭r BS00024230_51
/// Excalibur_c8647_141
₩ _/ BS00089076_51
// wsnp_Ex_c54211_57168122
RAC875_c24767_132
✓ RAC875_c11904_945
wsnp_Ku_c7078_12236807
RAC875_c11904_813
BS00075379_51
RAC875_c32639_395
BobWhite_rep_c50013_65
BS00023070_51
^k Kukri_c31705_105
^L Ku_c19516_384

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

5B1 (1)

ן 0.0	1	BS00068027_51
0.3		RAC875_c39430_181
0.6	- 1	Ra_c68425_1406
1.31		RFL_CONUG4724_627
6.1		RAC075_039204_91
15.5		BS00067550 51
15.8		wsnp Ex c56629 58677561
16.1		tplb0029e02 1186
16.4		Excalibur rep c71621 501
18.6		RAC875_c103396_446
22.1		IAAV731
22.8		Excalibur_c29975_333
30.6		RAC875_c10387_685
30.9		Kukri_rep_c109397_59
31.21		- TAU14012-0744 RobW/bite rep c5/139 273
32.4	N M	wenn $BE499835B$ Ta 2.5
37.0	A N.	IAAV2618
39.2		BS00049719 51
39.6		CAP8_c909_312
40.4		wsnp_Ex_c26252_35497729
43.9	M≡N	BS00068393_51
44.2	N-N	RAC875_rep_c74170_236
45.2	91 M	wsnp_Ex_c214_421541
49.2		IAAV8607
49.61		- Excalibur_rep_c69396_1234
50.61		PAC875 rep c117234 313
52.0		wsnp Fx c13468 21202450
52.9	MI	BobWhite c41725 430
53.4	M-N/	Kukri c6717 2903
55.4		RFL_Contig3340_716
56.6	▓Ħ₩	BS00067028_51
56.9		Excalibur_c7286_975
57.4 \	NEV/	·Ku_c4349_1791
57.9~	濐	Wsnp_Ku_c11980_19464222
58.2		- BS00007437 51
60 0 J	∥∟ℕ	wsnn Fx c48257 53217539
60.7		RAC875 c25020 1286
61.1		IAAV2526
61.5		RAC875_c31482_513
67.8 ^J		 wsnp_RFL_Contig3811_4130639
68.2		- IAAV2255
68.9		wsnp_Ku_c20701_30355248
69.3		· BS00089969_51
70.0		· wshp_be497620b_1a_2_2
71.6		Tdurum contig31131 198
72 4		tplb0033f11 1381
73.2		BS00035899 51
74.7		BS00023081_51
75.4		tplb0021f14_984
76.1		wsnp_Ex_c3817_6937184
76.8		- TA004924-0669
77.1		Excalibur_c8082_478
11.4		- DOUUUI JO04_01 PAC 875 c25756 270
10.0 70 1		RS00108019 51
79 8		wsnp Ex c113235 94249366
81.5		wsnp Ex c6548 11355524
83.6		Jagger_c9262_223
85.2		IAĂV7207
86.8		IAAV6342
87.5		Excalibur_c10336_335
88.2		Tdurum_contig13784_824
88.5		wsnp_Ex_c16963_25554152
88.8 J		wsnp_⊏x_c33455_41940691

5B1 (2)

90.9 91.2 91.7 92.2 92.5 92.8 94.2 94.2 94.2 96.3 96.6 100.3 103.6 106.2 106.5 106.9 108.9 122.9 130.9 127.5 130.9 140.1 155.9 177.4 168.1 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 179.5 191.8 192.7 193.0 193.0 193.7 194.0 193.7 194.0 196.8 202.0 203.8 209.4	wsnp_Ex_c709_1395347 BS00094480_51 Kukri_c805_325 Excalibur_c25661_1177 RAC875_c32768_440 Tdurum_contig31341_455 BS00066138_51 BS00066138_51 BS00066138_51 Excalibur_c9846_458 BobWhite_c11861_557 BobWhite_c18687_106 Excalibur_rep_c115624_180 Excalibur_efp_c115624_180 Excalibur_c16987_106 wsnp_Ku_c2185_4218722 Kukri_c52_1639 Excalibur_c17055_1451 wsnp_Ex_c33431_41918732 Kukri_c52_1639 Excalibur_c17055_1451 BS00096774_51 CAP8_c2687_128 tplb0060e5_1182 BobWhite_c3552_1303 RAC875_c31614_450 BS0009719_51 Excalibur_c529_1335 BS00065128_51 RFL_C0ntig539_1789 BobWhite_c11495_120 BS0002673_51 RAC875_c43383_483 Kukri_c5685_1066 BobWhite_c28333_454 GENE-2689_215 Tdurum_contig98569_290 BS00049213_51 Excalibur_rep_c106165_238 tplb0021612_768 Tdurum_contig98353_296 Kukri_c1508_438 Kukri_c1508_510 FAC875_rep_c91630_132 Excalibur_c12395_467 wsnp_BE403211A_Td_2_1 Tdurum_contig5017_993 RAC875_rep_c109658_211 wsnp_Ex_c21875_31045200 TA015506-0388 IAAV4395 BS00029540_51	QTKW.ndsu.5B1
--	--	---------------

5B2

0.0 <	/ Excalibur_c5120_938
0.3 - 🏹	- Ex_c9543_935
4.2	— Kukri_c1214_948
5.6	BS00060460_51
6.0 //H	\ Kukri_c1214_1488
6.3 [/] /	\ ^L Jagger_c4951_122
11.1 ⁷ H	[\] Ku_c36367_203
18.0 -⁄	[\] RAC875_c37988_243

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

6A	(1)			6A	(2)
ן 0.0		f GENE-3775_326			109.8 1		f Tdurum_contig27888_760
0.3		BobWhite_c15849_189			110.1		Ex_c5868_1113
0.6		Kukri_c11737_1241			110.4		wsnp_Ex_rep_c68010_66754534
0.9		BobWhite_c344_317			110.7		Kukri_c19878_4002
1.2		Excelibur c15851 500			111.4		wsnp_Ex_c11439_18459047
2.2		Kukri rep c97145 758			112.1		TAAV3009
3.2		Excalibur c12085 276			125.5		Tdurum contig16839 373
3.5		Excalibur_c31801_752			128.7		Tdurum contig29357 338
3.8		r Ra_c22558_437			129.4		Excalibur_c29639_65
4.1		BS00109922_51			131.1		wsnp_Ra_c2270_4383252
4.4		r Excalibur_c431_1323			131.4		BS00099074_51
4.7		Tourum contig63703 1305			136.5	N	WSNP_EX_C20457_29526260
7.1		BS00082191 51			141 6		RAC875 c103443 475
23.0		RAC875_c6137_562			142.0		Kukri rep c111369 53
23.7		r Jagger_c3477_441			148.8		GENE-4118_142
24.4		Kukri_c3986_94			149.1 🖌		BobWhite_c27145_731
33.2	þ	r RAC8/5_C4/2/8_818			149.4		RAC875_c1998_1744
36.7	目	wspp Ex c1050 2008598			151.5		BS00096240_51
40.7	H	Excalibur c18333 175			153.0	ΞM	Excalibur c25390 2483
41.4		Excalibur_c18333_711			157.6		RFL Contig2765 2274
68.2	1 1	r BS00054054_51			158.1	HN	Excalibur_rep_c103170_504
69.2		wsnp_Ex_c3913_7100986			158.6 🖷		IAAV40
69.5	NĦN	RAC8/5_C29850_102			158.9		Excalibur_c83216_190
09.0 70.1	N	BS00011607 51			160.6	Ħ	/ WSNP_JD_C//95_8868122
70.1	H	RAC875 c52118 68			166.1		RAC875 c27781 591
79.5	Н	r IACX5971			166.5 \	F/	r tplb0037a05 913
82.0 ·	H	RAC875_c7560_398			167.4	Ľ/	- ĊAP8_c2210_66
82.4		BS00065633_51			167.8		Excalibur_rep_c69054_960
82.8		BS00005019_51 BS00010780_51			168.5		Ex_c69054_723
83.51		BS00028263 51	~		169 1		BODWINE_C10343_320
86.2	1 1	r Ku_c9262_902	Ę		169.4		Excalibur_c54765_156
86.6		wsnp_Ex_c15268_23489498	Ę		169.7		BS00042709_51
87.3	H	r Ra_c11/21_631	la		170.7		Ku_c110290_1118
89.1		Ku_C21399_112 Kukri c65887_282	su.		1/2.1		RAC875_C10731_2038
89.6		CAP12_c118_95	6A		173.1		RAC875 c6429 88
90.7 \		Excalibur_rep_c111263_307		Q	173.8		Excalibur_c18265_399
91.1		/ Kukri_c51266_439		Ĩ.	174.5		BS00065028_51
91.4	ً₽	/ BS00065082_51		ds	174.8		GENE-3965_551
93.5 <	漸	~ wsnp JD c22766 19622512		<i>u</i> .6	175.11		1AAV3443 Kukri c37301 385
94.3		wsnp_Ex_c51820_55631329		Α	176.1		BS00053588 51
94.8		wsnp_Ku_c14219_22455933			176.4		Excalibur_c5053_707
95.5	Ħ	GENE-4086_115			176.7 ^J		^L Excalibur_c12835_2524
96.6	11	Excelibur c8784 869					
99.2	11	Kukri c34083 349					
99.5		GENE-3904_72					
100.2		Tdurum_contig60549_1021					
101.2		Kukri_c11073_954					
101.5		BS00065700_51					
103.1		wsnp BE495143A Ta 2 1					
103.5		Excalibur_c17050_570					
103.8		wsnp_Ex_rep_c105594_89968727					
104.1		RAC875_c77113_57					
104.4		LACX4309					
105.7		CAP7 rep c11162 75					
106.0		BobWhite_s67148_292					
106.3		BobWhite_c26503_61					
107.0		Kukri_rep_c69627_954					
107.7		* r.u_0004_700					

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

6B (1)
0.0 1	[Ku_c5002_1541
0.3	Ex_c66287_325
0.6	Excalibur c36398 69
1.2	Tdurum_contig81191_342
1.5	Tdurum_contig61178_618
4.7 -	RAC875 c18689 1870
12.4	TA004132-0670
12.9 - 13.8 -	Excalibur_c19747_53 Excalibur_rep_c114123_366
14.3	r CAP7_c2260_110
14.8	r RAC875_c29816_75 • Excalibur_c94362_397
15.8	RAC875_c37759_711
16.6	wsnp_Ra_c30621_39857295
18.6 1 18.9 1	r Excalibur_039830_862 r Kukri c8239 141
19.2 -	BobWhite_c604_388
19.6 1 24 8 1	r Excalibur_c39569_79 r Excalibur_c100270_78
25.1	wsnp_Ex_c4815_8597064
25.4	Tdurum_contig54917_597
26.2	/ BS00007135_51
26.7	RAC875_c20222_875
33.2	/ Rukri_rep_c104879_103 / BobWhite c21678 328
34.2	- Tdurum_contig42823_2238
34.5	RAC875_rep_c107929_375 RAC875_c6837_468
47.1	∕ Kukri_c17622_298
47.8	GENE-4142_601
48.1	GENE-0221 350
49.1	RAC875_c23251_624
49.8	BS00064333_51
51.1	BS00022823_51
51.4	BobWhite_rep_c64102_331
53.1	BS00066799_51
56.9	RAC875_c3222_1735
60.8	GENE-3798_88
61.3	Tdurum_contig62040_1253
65.5	BS00074041 51
93.3	BS00028997_51
94.3	RAC875_013216_111 Kukri c20412_212
96.7	Excalibur_c31379_71
97.7	Kukri_c78348_266
102.1	Ra_c69293_781
103.1	Tdurum_contig41142_267
104.11	wsnp Ex c19874 28891457
105.3	GENE-4093_178
106.2 - 107 6 -	BS00037933 51
107.9	wsnp_Ex_c12433_19827016
108.2 1 108 9 1	Excalibur_c36774_106
111.4	tplb0021a17_853
111.7	Tdurum_contig32579_121
112.01	wsnp_Ex_c1383_2652398
114.4	wsnp_Ex_c7713_13153321
122.0 123.8	RFL Contig2206 1694

6B (2)

- ()
124.1	Fxcalibur_c58410_729
126.6	r Kukri_c9406_337
127.3	r RFL_Contig196_518
128.3	Ex_c17379_1425
128.6	r Ex_c17379_1431
130.1	RFL_Contig435_979
133.6	Ra_c2557_2531
141.9	Excalibur_c64024_119
144.4	wsnp_Ex_rep_c69373_68311942
144.7	Jagger_c5597_332
145.0	GENE-4021_65
145.3	FExcalibur_c96749_512
146.3	RAC875_c5413_1237
146.6	Excalibur_rep_c109798_389
146.9 🔨	FExcalibur_rep_c107705_351
147.6 🗸 🗖	/ BS00011409_51
149.0 📲	- IAAV1771
149.3	 Excalibur_c7041_988
150.3	RAC875_c57692_88
151.3	^L BobWhite_c27364_296
152.2	Kukri_c38002_757
152.7	Kukri_c80163_295
153.4	BS00062736_51
153.7	BS00076101_51
154.0	BS00110786_51
154.4	Excalibur_c35871_956
157.2	^L Ku_c16162_2453
157.5	Kukri_c373_673
157.8	^l Kukri_c373_916
158.1 ^J	^L Tdurum_contig42489_768

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

7A	(1)
	· ·

ן 0.0	BS00026702_51		100.6	
0.3	BS00109912_51		102.7	
0.6	Excalibur_c20311_240		103.01	
3.8	EXCalibur_062100_325		104.0	
4.0	Tdurum contig42424 291		104.5	
5.8	RFL Contig1460 693		104.9	
6.1	IAAV649		105.6	
6.4	BobWhite_c8796_307		105.9 1	
6.7	Excalibur_c24593_1217		106.9	
7.0	r Excalibur_c22708_625		107.2 -	
11.0	r tplb0022c16_494		107.9	
12.0	Tdurum_contig49158_617		108.2	
12.7	r RAC875_c21165_1058		108.5	
13.01	r Kukii_074599_05		100.0	
13.5	AAV/7217		109.4	
13.9	BS00068863 51		109.7	1
14.2	RAC875 c23310 217		110.7	
17.8	Kukri_c12113_837		111.4	8
18.8	RAC875_rep_c114991_394		111.7	
19.5 📲	BS00099611_51		112.0	% =
19.8 📲	Excalibur_c1254_257		112.4	WE
20.8	GENE-0689_601		114.2	V
21.1	BS00047220_51		121.9	1/1
21.6	BS00076344_51 BS00076344_51 BAC875 c2333 263		122.0 \	
22.0	RAC875_c13722_326		123.6~	V_
23.9	Kukri c79627 494		123.9 -	ł
26.0	\ [\] IAAV6131		125.3	
31.6	[\] wsnp_BG313770A_Ta_2_3		126.0	
35.6	Excalibur_c25335_306		126.3	∥=
35.9	Excalibur_c31383_82	Q	126.6	
36.9	wsnp_CAP11_rep_c4066_1921894	ź	127.3	
38.6	PS00078250_51	Ň	127.0	X.
38.9	BS00076359_51	nd	127.5	
42.5	Kukri c12461 2357	su.	128.9	Ŭ
43.2	BobWhite c40535 218	ΖA	129.2	
43.5	Excalibur_c12849_228		129.5	
44.9	BobWhite_c55017_267		130.9	
45.9	BobWhite_c7712_327		131.6	-
53.7	BS00023055_51		132.3	
55.1	1 durum_contig45437_1667		132.01	
56 5	tph0024209 2028		133.6	
56.8	BS00063549 51		134.6	
60.4	RAC875 c23339 236		134.9	
64.0	Excalibur_rep_c68004_182		135.2	
64.7	BS00025303_51		135.5	
69.9	Excalibur_c60194_66		135.8	ľ
71.6	Kukri_rep_c110670_553		142.3	
75.2	RAC875_C4889_1393		142.61	
75.51	Kukri c38300 218		143.0	
77.2	tplb0062k22 1152		144.6	
78.6	Tdurum contig11827 216		147.8	
79.3	GENE-4632_183		148.5	
80.0	Kukri_c27306_162		149.2	
80.3	RAC875_c17861_199		150.2	
85.5	Tdurum_contig82510_556		151.2	
86.2	Excalibur_C1402_210		152.21	
00./	BS00024786 51		187.2	
94.3	wsnp Ex c42653 49180485		187.5	
95.7	Kukri rep c101532 1046		187.8	
96.0	wsnp_Ku_c26530_36497050		188.1	
98.5	IACX9283		188.8	
99.9 ^J	LIAAV6043		189.1	
			190.8	
			1 Mn / 2	

7 4	(2)
IA	(4)

	(=)
00.6	FBS00099804_51
02.7	GENE-5000_606
03.0	wsnp_Ex_c20062_29096408
04.0	RAC875_c52124_90
04.3 1	RFL_Contig3425_378
04.6 1	r Kukri_c15594_386
04.9 1	r Tdurum_contig10932_1060
05.6 1	r Excalibur_rep_c114786_178
05.9 1	r wsnp_Ku_c6065_10682531
06.9 -	RAC875_c100339_541
07.2 -	r Kukri_c2737_89
07.9	BS00093895_51
08.2	F I durum_contig43052_3851
08.5 -	FIACX247
08.81	wsnp_Ex_c2360_4422599
09.1	BODVV hite_c24760_142
09.4	RAC875_C13221_1017
09.7	r BS00061151_51
10.7	F Excalibur_C36808_228
11.4 🛛	Kukfi_C24337_416
11.7	
12.0	GENE-1029_105
12.4	CAPTI_C1048_99
14.2	Ra_C32003_420
21.9	EX_C9556_2547
22.6	Wsnp_Ex_C1395_2672002
22.9	TA002505 0922
23.0	P 1A003005-0633
23.9	BS00005250_51
25.3	BODWIIIIe_044762_162
20.0	PS00024610 51
20.3	TA003458-0086
20.0	Wepp Ex c2277 4267788
27.5	Excelibur c12016 123
27.0	= IAAV942
28.2	
28.0	wsnp Ex c39119 46485649
20.3	BS00021668 51
29.5	Kukri c49530 704
30.9	wsnp BQ171683A Ta 2 1
31.6	IAAV491
32.3	Excalibur c96483 520
32.6	BS00092631 51
33.3	Jagger c8331 69
33.6	wsnp Ku c34643 43968242
34.6	CAP7 c3782 133
34.9	IACX5974
35.2	RAC875_c1265_1564
35.5	wsnp_JD_c3225_4227048
35.8	BS00093156_51
42.3	BobWhite_c5235_710
42.6	Excalibur_c3298_533
43.0	wsnp_Ra_c42862_49716715
44.3	wsnp_Ra_c8394_14242358
44.6	• Tdurum_contig83837_251
47.8	Tdurum_contig8615_230
48.5 -	 BobWhite_c12859_257
49.2 ·	Excalibur_c22219_254
50.2	+ wsnp_BQ160404A_Ta_1_1
51.2	Excalibur_c60995_109
52.2	RAC875_c43295_135
69.4	IACX/848
87.21	B200009995_51
87.51	BSUU065529_51
87.81	Excalibur_c30/30_1503
88.1	BS00022237_51
88.8	BSUUU9U/46_51
89.1	NUKII_CIDIDI_249
90.8	- πΑυδ/5_019332_645
90.2	wsnp_ku_c30992_40773238

7A(3)

/11(0)				
200.3	Ku_c30941_113			
202.1	Tdurum_contig31699_300			
203.1	r IACX11130			
203.4	wsnp_Ex_c9971_16412345			
203.7	wsnp_Ex_c9971_16412615			
209.3	r Kukri_c78515_441			
210.0	r IAAV2580			
210.3	r Kukri_c57593_79			
210.6	r tplb0032g12_1241			
212.0	BobWhite_c13400_229			
212.4	r BS00003676_51			
218.0	/ Kukri_c40353_179			
218.7	7 Tdurum_contig28368_89			
219.0	- Ku_c19745_892			
219.3	- IACX13137			
219.6	Excalibur_rep_c73544_223			
219.9	wsnp_Ex_c6142_10746442			
220.2	^L Tdurum_contig59633_56			
220.9	^L RAC875_c90330_82			
221.2	BS00068032_51			
222.2	BS00061911_51			
223.4	wsnp_CAP11_c639_424059			
223.8	wsnp_CAP11_c298_250917			
224.2	GENE-4895_101			
225.9	BobWhite_c55693_396			
228.4	^L BS00023003_51			
233.6	^L RAC875_c1499_568			
235.3	^L BS00068055_51			

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

7 R	(1)			7B	B (2	2)		7D
7B 0.0 0.3 0.6 5.4 17.2 27.4 29.1 153.8 54.1 55.4 55.7 57.0 1 59.8 1 55.7 57.0 1 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55	(1) BS00022562_51 RFL_Contig6075_618 Tdurum_contig57324_104 Excalibur_c21252_227 wsnp_Ex_c13244_20891347 BobWhite_c41356_62 GENE-4833_102 Kukri_c24895_402 wsnp_Ku_rep_c101472_574 Kukri_c24895_402 wsnp_Ku_rep_c102842_89723861 BS00064344_51 Jagger_c9314_100 Tdurum_contig4572_643 Excalibur_c5909_3749 Kukri_c26605_854 Excalibur_c5909_3749 Kukri_c26605_854 Excalibur_c25645_249 BS00021695_51 CAP11_rep_c8279_82 Kukri_c14766_1050 BobWhite_c14812_828 Tdurum_contig68347_605 BobWhite_c14812_828 Tdurum_contig68347_605 BobWhite_c14812_828 Tdurum_contig68347_605 BobWhite_c14812_828 Tdurum_contig68347_605 BobWhite_c14812_828 Tdurum_contig68347_605 BobWhite_c14812_828 Tdurum_contig68347_605 BobWhite_c14812_828 Tdurum_contig68347_605 BobWhite_c20290_226 BS0007362_51 wsnp_Ex_c1819_3430060 BS0005761_51 Kukri_c9538_2131 Ra_c11164_740 Ku_c7257_926 Kuc566_203 Kukri_c24422_423 RAC875_c26171_81 Tdurum_contig11727_274 BobWhite_rep_c4339_455 Kukri_c24422_423 RAC875_c26834_204 (IAAV2037 (IAAV3720 Kukri_c4560_110	OYL. <mark>ndsu. 78</mark> OPH.n <u>d</u> su. 78.2	ODH. <u>ndsu</u> .7B	7B 122.1 127.7 129.1 129.4 129.7 129.7 130.0 130.3 130.6 130.6 131.1 131.6 135.8 136.1 137.4 135.4 135.4 155.7 155.4 155.4 155.4 155.6 155.8 166.8 166.8 166.8 166.8 166.8 166.8 166.8 167.2 177.5 179.5 1		2) Excalibur_c13444_235 Excalibur_c32038_566 wsnp_Ku_c17161_26193994 Kukri_c24366_104 BS0006484_51 BS0006484_51 GENE-4473_398 IACX5924 Tdurum_contig13930_254 Ku_c25310_843 P_GA8KES401CSA2F_120 BOWWhite_c8890_279 tpb0062h23_1362 Tdurum_contig10677_529 BS00085566_51 Tdurum_contig10677_529 BS00085566_51 Tdurum_contig15255_769 RAC875_rep_c99145_938 wsnp_Ku_rep_c103690_90365429 Tdurum_contig15734_221 BS0008505_51 Kukri_c87702_530 Ku_c10430_887 wsnp_Kx_c19_38763 RAC875_c4682_646 BS00066479_51 TA005127-0595 IACX7721 Excalibur_c1055_565 BS00022166_51 wsnp_Ex_c323_629461 Kukri_c93758_111 BS002694_51 wsnp_A_23394_47110214 wsnp_BM137749D_Ta_2_1	OPH.ndsu 7B. 1 1	7D 0.0 Excalibur_c27950_459 0.0 Excalibur_c27950_459 0.0 Excalibur_c27950_459 0.0 Excalibur_c136 0.0 Excalibur_c136 0.0 Excalibur_c13084_521 0.0 Excalibur_c13084_523 0.0 Excalibur_c13084_523
60.5 1 60.8 1 74.2 1	r Kukri_c14766_1050 r BobWhite_c20266_115 r BobWhite_c14812_828			157.0 + 159.1 + 159.8 +		- Tdurum_contig12525_769 - RAC875_rep_c99145_938 - wsnp Ku rep c103690 90365429	Q	89.5 D_contig55386_313 92.0 wsnp_Ex_c145_285194
76.7 + 81.1 + 83.9 +	r Tdurum_contig68347_605 r BobWhite_c20290_226 r BS00073602_51	QYL.n	QD	160.8 161.8 162.1		r Tdurum_contig15734_221 BS00081841_51 BS00068305_51	PH.nds	24.1 a BobWhite c23455 184
84.2 + 84.5 + 84.8 +	r wsnp_Ex_c1819_3430060 r BS00055761_51 r Kukri_c13040_323	dsu.7B dsu.7B.:	H.ndsu.	162.8 167.2 171.6	Ħ	r Kukri_c87702_530 r Ku_c10430_887 r wsnp Ex c19 38763	u, 71 1. 1. 1.	24.4 RAC875_c16367_81 24.7 D_contig31161_94
85.3 + 85.8 + 86.1 +	r Ku_c9598_2131 r Ra_c11164_740 r Ku_c17257_926	N	7B	175.6 175.9 176.6		r RAC875_c4682_646 r BS00066479_51 r TA005127-0595	1	49.0 - RAC875_c18487_1346
86.4 86.7 87.0	r Ku_c5666_203 r Kukri_rep_c72574_284 r Kukri_c9353_642			176.9 177.2 177.5		r IACX7721 r Excalibur_c1055_565 r BS00022933_51		
87.3 1 87.6 1 88.3 1	r RAC875_c26171_81 r Tdurum_contig11727_274 r BobWhite_rep_c49390_455			179.2 179.5 179.8 -	¥	/ BS00023166_51 / wsnp_Ex_c8400_14157060 - wsnp_Ex_c323_629461		
90.4 94.1 94.5	r RAC875_c28634_204 r IAAV2037 r IAAV3720			180.1 ³ 180.4 ³ 180.7 ³	A	BS00026694_51 wsnp_Ra_c39394_47110214		
94.9 95.3 96.4	/ Kukri_c4560_110 - wsnp_Ex_rep_c103688_88578459 ∖ IAAV3414			186.0 186.3 186.6		Kukri_c55780_296 Kukri_c55780_296 Kukri_c351_689415 Kukri_c351_689415		
97.5 98.2 98.6	wsnp_Ku_c21752_31528824 Kukri_rep_c101980_524 BobWhite_rep_c49910_432			186.9 187.6 188.6		wsnp_JD_c17128_16056425 RFL_Contig5898_807 tplb0035h03_1251		
99.0 ¹ 99.3 ¹ 99.6 ¹	BobWhite_c30662_274 BS00053286_51 RAC875_rep_c70325_76			188.9 189.6 191.7		• RAC875_c41276_236 • RAC875_c76318_145 • BS00066404_51		
99.9 1 01.3 02.3	* Kukn_c12317_179 * RAC875_rep_c118145_157 * wsnp_Ex_c27323_36528037 # Excelibur_c18877_543			193.1 - 199.6 - 206.1 -		BS00108630_51 BobWhite_c16907_477 Excalibur_c31405_159		
05.8 07.8 09.4	• RAC875_c60161_281 • RAC875_c41055_395 • Tdurum contia90488_115			206.4 207.1 207.4 207.4		Excalibut_023777_74 wsnp_Ex_c3930_7127883 Excalibur_c9179_2416 BS00066342_51		
09.8 10.9 14.3	Excalibur_c42113_453 IAAV7912 Tdurum_contig43966_1107			207.7 208.0 209.0		• GENE-1728_107 • RFL_Contig4993_700 • Excalibur c4484 985		
14.6 16.0 18.1	BobWhite_rep_c49523_266 Excalibur_c6738_2072 BobWhite_c3541_152			209.6 209.9 210.2		RAC875_c42647_153 Kukri_c98722_550 wsnp_Ku_c39152_47653863		
18.4 18.7 19.0	RAC875_c21795_966 wsnp_JD_c2701_3626787 Kukri_c9405_379			210.9 211.2 211.5		BS00071025_51 BS00050320_51 Tdurum_contig52096_330		
21.8 '	' TA003316-1486			212.9 213.2		Excalibur_c5851_1661 RAC875_rep_c114781_165		

Fig. 3.2. Complete genetic linkage maps of the RIL population derived from the cross of Reeder and Albany. The location of the QTL associated with various agronomic traits is shown with a line on the right side of the linkage maps (continued).

3.5. Discussion

3.5.1. Linkage map

High-density single nucleotide polymorphism (SNP) genotyping arrays explore genomic diversity and marker-trait associations very efficiently (Wang et al., 2014). The Infinium iSelect 90K assay (Wang et al., 2014) uses > 81,000 gene-associated SNPs to assess polymorphism in allohexaploid and allotetraploid wheat populations (Wang et al., 2014; Wu et al., 2015; Kumar et al., 2016; Liu et al., 2016). Use of this genotyping tool offers a higher genome coverage and resolution in the dissection of wheat's agronomic traits than those used in previous studies (Kirigwi et al., 2007; Muchero et al., 2009; Sayed, 2011; Alexander et al., 2012; Ibrahim et al., 2012b; Kumar et al., 2012; Milner et al., 2016). The marker density (0.36cM/marker) or unique locus density (1.84 cM/locus) and genetic map length (3,793.1 cM) found in this study corresponded to the studies that used the 90K Infinium iSelect assay for genome mapping (Wang et al., 2014; Kumar et al., 2016). The A genome was found to be the longest, while the D genome was the shortest, which also corresponds with previous studies (Kumar et al., 2016). The marker order strongly corresponded with several linkage maps developed using the Infinium iSelect 90K SNP assay, as well (Desiderio et al., 2014; Russo et al., 2014; Wang et al., 2014; Kumar et al., 2016).

Four of the chromosomes (1D, 5B, 5D, and 6D) had more than one linkage group. Chromosome 5B had two, and chromosomes 1D, 5D, and 6D had three linkage groups. Probable reasons for the fragmentation could be the repeated elements that reside between gene-rich regions or the use of stringent mapping parameters (LOD score > 5 and distance < 40 cM) (Kumar et al., 2016). This fragmentation mostly occurred on the D-genome chromosomes as the Infinium iSelect 90K assay had a poor representation of the D genome (Wang et al., 2014). Further, the D genome is the newest inclusion in the hexaploid wheat genome (dating to around 10,000 years ago) and exhibits fewer polymorphisms than the other genomes (Dubcovsky and Dvorak, 2007).

3.5.2. Use of secondary data to assess drought conditions

According to Lanceras et al. (2004), drought can be assessed by variables like weather conditions, soil moisture, and crop conditions over a particular growing season. Rainfall data, which impacts soil moisture, was collected to assess drought conditions for this study. It was obtained from the NDAWN database. The total amount of rainfall was collected from the date of planting to the date of plant physiological maturity. The date of physiological maturity was calculated by adding 30 days to DH (Simmons, 1914). The year 2012 had less rainfall than 2014 in all of the environments (the details are in the materials and methods section). Comparatively, the conditions in 2012 can be considered as drought, whereas, those in 2014 can be considered as normal. The yield data also support this categorization as all of the environments in 2012 had a smaller yield than in 2014.

3.5.3. Use of agronomic data to assess drought tolerance

Several studies suggested that drought tolerance can be incorporated into a breeding program most effectively by identifying QTL for YLD or YLD-related traits (Lanceras et al., 2004; Alexander et al., 2012). The agronomic traits used in this study are DH, PH, YLD, TW, and TKW. Yield is the trait of ultimate interest to breeders. In this study, YLD had a negative significant correlation with DH and a positive significant correlation with the rest of the traits. In general, more DH gives a plant the opportunity to produce more photosynthates (the product of photosynthesis) and hence a greater YLD. However, in this study, we observed that YLD was higher with reduced DH. This may be due to terminal drought in the experimental environments. As snow is a major source of soil moisture in this region, and this soil moisture depletes with time. Therefore, the plants with more DH were affected by drought, which resulted in reduced YLD. Except for PH, increased values were desirable for the rest of the agronomic traits as they have a positive correlation with YLD. A bigger plant has the potential to produce more photosynthates, and therefore, should give more yield, but it often tends to lodge and compromises yield.

3.5.4. QTL for DH

The QTL for heading date has been identified in many studies (Kato et al., 1999; Sourdille et al., 2000; Shindo et al., 2003; Xu et al., 2005; Griffiths et al., 2009; Alexander et al., 2012; Kamran et al., 2013; Bogard et al., 2014; Zanke et al., 2014a; Guedira et al., 2016; Milner et al., 2016). According to these studies, the genetic factors controlling DH are vernalization sensitivity, photoperiod sensitivity, and earliness *per se* (Shindo et al., 2003). Generally, vernalization divides wheat cultivars into two groups. Winter wheat needs cold temperatures (vernalization) to initiate flowering, while spring wheat does not need cold temperatures. Wheat is usually photosensitive and a long-day plant. Therefore, ear emergence is very late unless a plant experiences long days. However, some genotypes can flower even with short days. On the other hand, earliness *per se* is the only environment-independent genetic factor controlling earliness (Shindo et al., 2003).

The present study revealed several major and minor QTL controlling the traits that confirm the quantitative nature of inheritance. Four major QTL (*QDH.ndsu.5A.3*, *QDH.ndsu.5D2*, *QDH.ndsu.7B*, and *QDH.ndsu.4A.2*) were found consistently in both drought and non-drought conditions. The earliness *per se* QTL *QEet.ocs.5A.2* (Kato et al., 1999) on chromosome 5AL and the QTL in this study, *QDH.ndsu.5A.3* at 205.71-208.31 cM, could occupy

the same location and represent the same QTL. The QTL *QDH.ndsu.4A.2* on chromosome 4A corresponded with the QTL reported by McCartney et al., (2005). However, a relatively minor QTL, *QDH.ndsu.4A.1*, was identified at 47.51 cM, which could be comparable to *QFlt.dms-4A.1* (Kamran et al., 2013). Sourdille et al. (2000) reported a QTL for earliness *per se* on chromosome 7BS, explaining 7.3 to 15.3% of PV, and the QTL identified in this study on chromosome 7B could represent the same QTL due to their sharing the same genomic region. Sourdille et al. (2000) reported a QTL on the long arm of chromosome 5D for earliness *per se*, which coincided with the QTL *QDH.ndsu.5D2* identified in this study.

3.5.5. QTL for YLD

Grain YLD is considered to be the most significant trait to plant breeders. It is the result of all the phases of vegetative and reproductive development. It is also influenced by edaphic and aerial environments (Quarrie et al., 2006). Yield QTL in wheat have been reported in several studies (McCartney et al., 2005; Quarrie et al., 2006; Kirigwi et al., 2007; Li et al., 2007, 2015; Maccaferri et al., 2008; Azadi et al., 2014; Cui et al., 2014; Edae et al., 2014; Narjesi et al., 2015; Gao et al., 2015; Milner et al., 2016). This study revealed six QTL for yield, both major and minor, indicating their quantitative nature of inheritance. The QTL *QYL.ndsu.2B* on chromosome 2B at 81.31-83.31 cM identified in all the drought-prone environments could be the same QTL (*QGy.ubo-2B*) that Milner et al. (2016) identified. This QTL can be called a drought-tolerant QTL as it contributed to YLD in all of the environments with less rainfall. Narjesi et al. (2015) reported a YLD QTL at 8.5 cM on chromosome 5D. However, the QTL *QYL.ndsu.5D2* identified in this study on the same chromosome, but at 11.91-12.91 cM on the second linkage group, seemed to be a different one. Considering the gaps between the linkage groups on the chromosome, the position of the QTL should be around the middle of the chromosome.

Maccaferri et al. (2008) identified a YLD QTL (*QYld.idw-7B*) at 0 cM on chromosome 7B that could be the same QTL as *QYL.ndsu.7B* identified at 22.21-25.21 cM on the same chromosome. The closest reported QTL of *QYL.ndsu.1B* on chromosome 1B at 64.21-71.91 cM was *QYd-1B.1*, identified on the same chromosome at 23-28 cM (Cui et al., 2014). The QTL *QYld.abrii-3B.4* (Azadi et al., 2014) identified on chromosome 3B at 92.3 cM seemed to be different than the QTL *QYL.ndsu.3B* in this study. Also, the QTL *QYL.ndsu.5D2* and *QYL.ndsu.5A* were most likely to be novel QTL as no reported QTL were found around their positions.

3.5.6. QTL for PH

Plant height is crucial in wheat breeding programs as it relates to lodging resistance and a high harvest index. For example, the dwarfism gene from Nonglin-10 played a vital role in wheat breeding programs during the Green Revolution of the 1960s (Liu et al., 2011). This study showed that PH had a positive correlation with DH, whereas DH had a negative correlation with YLD. Therefore, it could be stated that reduced PH is desirable for higher YLD. Quantitative trait loci for PH have been reported in several studies (McCartney et al., 2005; Pushpendra et al., 2007; Liu et al., 2011; Huang et al., 2012; Zanke et al., 2014b; Gao et al., 2015; Li et al., 2015; Narjesi et al., 2015; Milner et al., 2016; Singh et al., 2016). Eight QTL were identified in this study for PH, similar to Huang et al. (2012), who identified seven QTL for the trait. The QTL they identified on chromosomes 2D at 144 cM and 5B at 64.67 cM could represent the same QTL identified in this study on chromosome 2D at 151.11-165.71 cM (QPH.ndsu.2D) and on chromosome 5B at 32.41-33.21 cM (*QPH.ndsu.5B1*), respectively. The QTL *QPH.ndsu.2D* for PH was identified in two drought-prone environments, indicating its potential to tolerate drought. Milner et al. (2016) identified a QTL (*Qph.ubo-7B*) for PH on chromosome 7B at 138.4 cM, which could be same QTL (QPH.ndsu.7B.1) identified in this study on the same chromosome at

129.41-130.31 cM. This QTL was expressed in the drought-prone environments and thus could be useful for drought tolerance. Zanke et al. (2014b) identified a QTL for PH at 93.5 cM on chromosome 6A that could be comparable with this study's *QPH.ndsu.6A* at 85.51-90.61 cM on the same chromosome. This QTL was also identified in the two drought-prone environments. Zanke et al.(2014b) identified another QTL at 36 cM on chromosome 7B for the same trait that could be comparable to QTL *QPH.ndsu.7B.2* identified in this study on the same chromosome at 24.21-26.21 cM. They identified a QTL at 176.5 cM on chromosome 3B for PH, whereas this study identified a QTL at 184.31-187.71 cM for it on the same chromosome. They also identified a QTL at 117.2 cM on chromosome 2A, whereas this study identified the QTL *QPH.ndsu.2A* on the same chromosome at 128.41-133.11 cM.

3.5.7. QTL for TKW

Thousand kernel weight is one of the three major components of YLD; it is important for grain quality as larger and uniformly-sized kernels are visually attractive and command a higher market price (Ramya et al., 2010). Several studies have reported QTL related to wheat TKW (McCartney et al., 2005; Huang et al., 2006; Breseghello and Sorrells, 2007; Kuchel et al., 2007; Li et al., 2007, 2015; Zhang et al., 2008; Sun et al., 2009; Ramya et al., 2010; Azadi et al., 2014; Wei et al., 2014; Simmonds et al., 2014; Tadesse et al., 2015; Zanke et al., 2015). This study revealed eight QTL having both major and minor effects for the trait, indicating its quantitative nature of inheritance. McCartney et al. (2005) identified the QTL *QGwt.crc-2A* occupying the same position as the QTL *QTKW.ndsu.2A*. The QTL *qTgw2A* (Wei et al., 2014) and *QTgw.abrii-4A.2* (Zhang et al., 2008) also occupied the same location. The QTL *QTgw.abrii-2D1.3* (Azadi et al., 2014) and *QTKW.ndsu.2D.2* seemed to be the same QTL, occupying the same position on chromosome 2D. Also, the QTL *QTgw.abrii-4A.2* (Azadi et al., 2014) and *QTKW.ndsu.4A*

occupied the same location on chromosome 4A. The QTL *QTKW.ndsu.6A* was identified in all of the drought-prone environments, indicating its tolerance to drought; it occupied the same location as the QTL*qTgw6A2* (Wei et al., 2014). Another QTL, *QTKW.ndsu.7A*, was also identified in the two drought-prone environments and could be comparable to *qTgw7A* (Wei et al., 2014) due to their proximity. The QTL *QTKW.caas-1A.1* (Li et al., 2015) and *QTKW.ndsu.1A* were most likely to be the same QTL since they were found in the same genomic region. No reported QTL corresponded with the QTL *QTKW.ndsu.2D.1* and *QTKW.ndsu.5B1*, indicating the probability that they were novel QTL. The QTL *QTKW.ndsu.2D.1*, could be very important for drought-tolerance breeding as it was identified in two of the drought-prone environments.

3.5.8. QTL for TW

Test weight is an important trait to wheat breeders as it impacts flour yield during milling (Rustgi et al., 2013). Quantitative trait loci for TW were reported in several studies (McCartney et al., 2005, 2007; Huang et al., 2006; Narasimhamoorthy et al., 2006; Breseghello and Sorrells, 2007; Kuchel et al., 2007; Zhang et al., 2008; Sun et al., 2009; Rustgi et al., 2013; Hill et al., 2015; Tadesse et al., 2015). This study revealed seven QTL with both major and minor effects, indicating their quantitative nature of inheritance. The QTL identified in this study on chromosome 7B (*QTW.ndsu.7B*) at 29.11-40.11 cM was identified in all of the drought-prone environments, indicating its potential for drought tolerance. This QTL seemed to be the same QTL Sun et al. (2009) identified (*QTw.sdau-7B*). McCartney et al. (2005) identified a QTL, *QTwt.crc-2B*, linked with the marker *Xbarc183* at 96.7 cM on chromosome 7B that, according to the GrainGenes database, seemed to be the same as the QTL *QTW.ndsu.2B* identified in this study at 84.31-95.61 cM. This QTL was identified in two of the drought-prone environments.

McCartney et al. (2005) identified another QTL, (*QTwt.crc-5D*), between SSR markers *Xgdm63–Xwmc765* and positioned between 95-214.26 cM, according to the GrainGenes database. The QTL in this study, *QTW.ndsu.5D2*, could be the same as their QTL as it is also located in the same genomic region. The nearest reported QTL to *QTW.ndsu.5A* was *QTw.hwwgr-5AS* (Li et al., 2016), which seemed to be a different QTL. The QTL *QTw.sdau-2A* (Sun et al., 2009) located between SSR markers *Xwmc181a-Xubc840c* seemed to be the same QTL as the QTL *QTW.ndsu.2A.2* identified in this study. No reported QTL corresponded with the QTL *QTW.ndsu.4A*.

3.5.9. Pleiotropic QTL

The associations between traits in correlation studies could be justified by the colocalized or pleiotropic QTL (Table 3.4). These co-localized QTL could be of great value to breeders if the desirable alleles come from the same parent. Desirable alleles from three genomic regions (7, 20, and 25) came from parent Albany (Table 3.6; Fig.3.2). These QTL primarily have a major effect on YLD and YLD-related traits, making them even more important to breeders. The parent Reeder contributed all of the desirable alleles in three genomic regions (13, 17, and 24) (Table 3.6; Fig.3.2). Most of these QTL also had the major effect on YLD and YLD-related traits. The remaining co-localized QTL from three genomic regions did not contain desirable alleles from the same parents.

3.5.10. QTL for drought tolerance

The QTL identified on chromosome 7B (*QTW.ndsu.7B*) at 29.11-40.11 cM seemed to have drought tolerance as it was identified in all of the environments with drought conditions (Table 3.7). This QTL seemed to be the same QTL that Sun et al. (2009) identified (*QTw.sdau-7B*). The putative drought-tolerant QTL, *QYL.ndsu.7B*, was identified very close to another

major QTL, *QTW.ndsu.7B*, which also had drought tolerance, indicating the potential of this genomic region to control drought tolerance. This finding corresponds with Alexander et al. (2012), who found a QTL, *Qdt.ksu-7B*, located on chromosome 7B at 34.7 cM with significant drought tolerance. Another putative major QTL, *QYL.ndsu.2B*, corresponded with the QTL *QCrs-* (Ibrahim et al., 2012a), which was reported to deteriorate the trait of interest under both drought and control conditions. In the current study, however, the QTL was identified only in the environments with drought conditions. The QTL *QDH.ndsu.5A.2* occupied the same location as the QTL *QHea+* (Ibrahim et al., 2012b). In the latter study, the QTL *QHea+* improved the trait of interest in both well-watered and drought conditions. However, in the current study, *QDH.ndsu.5A.2* improved the trait of interest only under drought conditions. Ibrahim et al. (2012a) reported four QTL on chromosome 2D around 50 cM that improved the trait of interest under drought conditions. However, none of these reported QTL seemed to correspond with the QTL *QTKW.ndsu.2D.1* identified in this study.

The QTL for DH, *QDH.ndsu.5A.3*, could be a constitutive QTL for drought tolerance since it was identified consistently in both drought and non-drought condition environments. This QTL could occupy the same genomic region as the earliness *per se* QTL, *QEet.ocs.5A.2* (Kato et al., 1999). Another constitutive QTL for drought tolerance, *QDH.ndsu.5D2*, corresponded with a QTL for earliness *per se* located on the long arm of chromosome 5D (Sourdille et al., 2000). A constitutive QTL for drought tolerance through TKW was identified on chromosome 6A, which most likely represents the QTL *qTgw6A2* (Wei et al., 2014). Also, a constitutive drought-tolerant QTL, *QTW.ndsu.2B*, was identified for TW, which could be the same QTL as *QTwt.crc-2B* (McCartney et al., 2005).

3.6. Conclusions

Understanding the genetic basis of drought tolerance in wheat is of immense value for developing drought-tolerant wheat varieties. In this study, a high-density SNP-based genetic map was developed and used to elucidate the genetic factors involved in the control of drought tolerance in HRSW in the northern USA. Secondary data were used to assess drought conditions, and agronomic data on YLD and related traits were used to determine the QTL associated with drought tolerance.

Nine QTL for DH, eight QTL for PH, seven QTL for TW, eight QTL for TKW, and six QTL for YLD were identified in this study. Among these, 11 consistent QTL important for drought tolerance were identified; these included six QTL exclusively for drought environments and five constitutive QTL. The QTL identified on chromosomes 7B, 2B, 5A, 5D, and 6A had the greatest effect on drought tolerance. One novel QTL for drought tolerance was identified on chromosome 2D.

The closely-linked markers associated with the major QTL identified in this study could be immensely valuable in marker-assisted breeding programs aimed at improving drought tolerance in wheat. The high-density maps that were developed also offer a better starting platform for the fine mapping and ultimately map-based cloning of major and stable loci identified in this study. Further studies directed towards cloning these important QTL will help breeders to gain a greater understanding of the traits studied. More importantly, desirable alleles for several major loci were found to be contributed by the parent that was apparently susceptible to drought. This event suggests the potentiality of exploring drought susceptible germplasms in the development of drought-tolerant cultivars.

3.7. References

Alexander, L.M., F.M. Kirigwi, A.K. Fritz, and J.P. Fellers. 2012. Mapping and quantitative trait loci analysis of drought tolerance in a Spring wheat population using amplified fragment length polymorphism and diversity array technology markers. Crop Sci. 52(1): 253–261.

Anderson, J.A., G.L. Linkert, R.H. Busch, J.J. Wiersma, J.A. Kolmer, Y. Jin, R. Dill-Macky, J.
V. Wiersma, G.A. Hareland, and D. V. McVey. 2009. Registration of "RB07" Wheat. J.
Plant Regist. 3(2): 175. Available at https://www.crops.org/publications/jpr/abstracts/3/2/175.

- Araus, J.L., G.A. Slafer, M.P. Reynolds, and C. Royo. 2002. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 89(SPEC. ISS.): 925–940.
- Araus, J.L., G. A. Slafer, C. Royo, and M.D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. CRC. Crit. Rev. Plant Sci. 27(6): 377–412.
- Azadi, A., M. Mardi, E.M. Hervan, S.A. Mohammadi, F. Moradi, M.T. Tabatabaee, S.M.
 Pirseyedi, M. Ebrahimi, F. Fayaz, M. Kazemi, S. Ashkani, B. Nakhoda, and G.
 Mohammadi-Nejad. 2014. QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol. Biol. Report. (April 2014).
- Blum, A. 1988. Plant breeding for stress environments. CRC Press, Boca Raton, FL.
- Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56: 1159–1168. Available at www.publish.csiro.au/journals/ajar.

- Bogard, M., C. Ravel, E. Paux, J. Bordes, F. Balfourier, S.C. Chapman, J. Le Gouis, and V.Allard. 2014. Predictions of heading date in bread wheat (Triticum aestivum L.) usingQTL-based parameters of an ecophysiological model. J. Exp. Bot. 65(20): 5849–5865.
- Breseghello, F., and M.E. Sorrells. 2007. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. F. Crop. Res. 101(2): 172–179.
- Cui, F., X. Fan, C. Zhao, W. Zhang, M. Chen, and J. Li. 2014. A novel genetic map of wheat: Utility for mapping QTL for yield under different nitrogen treatments. BMC Genet. 15: 57–73.
- Desiderio, F., D. Guerra, D. Rubiales, L. Piarulli, M. Pasquini, A.M. Mastrangelo, R. Simeone, A. Blanco, L. Cattivelli, and G. Vale. 2014. Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession. Mol. Breed. 34(4): 1659–1675.
- Dubcovsky, J., and J. Dvorak. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316 (5833): 1862–1866. Available at http://science.sciencemag.org/content/316/5833/1862.abstract.
- Edae, E.A., P.F. Byrne, S.D. Haley, M.S. Lopes, and M.P. Reynolds. 2014. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 127(4): 791–807.
- Frazen, D.W. 2003. North Dakota soil and fertilizer handbook. NDSU Extension Service, North Dakota State University, Fargo, ND.
- Frohberg, R.C., R.W. Stack, T. Olson, J.D. Miller, and M. Mergoum. 2006. Registration of "Alsen." Crop Sci. 46: 2311–2312.

- Gao, F., W. Wen, J. Liu, A. Rasheed, G. Yin, X. Xia, X. Wu, and Z. He. 2015. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 6(December): 1099. Available at http://www.ncbi.nlm.nih.gov/pubmed/26734019\nhttp://www.pubmedcentral.nih.gov/arti clerender.fcgi?artid=PMC4683206.
- de Givry, S., M. Bouchez, P. Chabrier, D. Milan, and T. Schiex. 2005. CARTHAGENE: Multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics 21: 1703–1704.
- Griffiths, S., J. Simmonds, M. Leverington, Y. Wang, L. Fish, L. Sayers, L. Alibert, S. Orford, L. Wingen, L. Herry, S. Faure, D. Laurie, L. Bilham, and J. Snape. 2009. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor. Appl. Genet. 119(3): 383–395.
- Guedira, M., M. Xiong, Y.F. Hao, J. Johnson, S. Harrison, D. Marshall, and G. Brown-Guedira.
 2016. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major
 developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLoS One 11(5):
 e0154242. Available at http://dx.plos.org/10.1371/journal.pone.0154242.
- Hill, C.B., J.D. Taylor, J. Edwards, D. Mather, P. Langridge, A. Bacic, and U. Roessner. 2015.
 Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci. 233: 143–154. Available at http://dx.doi.org/10.1016/j.plantsci.2015.01.008.
- Huang, X.Q., S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys, J.S. Noll, D.J. Somers, and P.D. Brown. 2006. Molecular detection of QTLs for agronomic and quality traits in a

doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 113(4): 753–766.

- Huang, B.E., A.W. George, K.L. Forrest, A. Kilian, M.J. Hayden, M.K. Morell, and C.R. Cavanagh. 2012. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol. J. 10(7): 826–839.
- Ibrahim, S.E., A. Schubert, K. Pillen, and J. Léon. 2012a. QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat. 2(July): 619–629.
- Ibrahim, S.E., A. Schubert, K. Pillen, and J. Léon. 2012b. Comparison of QTLs for drought tolerance traits between two advanced backcross populations of spring wheat. Int. J. AgriScience 2(3): 216–227.
- Kamran, A., M. Iqbal, A. Navabi, H. Randhawa, C. Pozniak, and D. Spaner. 2013. Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population. Theor. Appl. Genet. 126(8): 1965–1976.
- Kato, K., H. Miura, and S. Sawada. 1999. Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breed. 118(5): 391–394.
- Kirigwi, F.M., M. Van Ginkel, G. Brown-Guedira, B.S. Gill, G.M. Paulsen, and A.K. Fritz.
 2007. Markers associated with a QTL for grain yield in wheat under drought. Mol. Breed.
 20(4): 401–413.
- Kosambi, D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175.

- Kuchel, H., K.J. Williams, P. Langridge, H.A. Eagles, and S.P. Jefferies. 2007. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor. Appl. Genet. 115(8): 1029–1041.
- Kumar, A., E.E. Mantovani, R. Seetan, A. Soltani, M. Echeverry-Solarte, S. Jain, S. Simsek, D. Doehlert, M.S. Alamri, E.M. Elias, S.F. Kianian, and M. Mergoum. 2016. Dissection of genetic factors underlying wheat kernel shape and size in an Elite × Nonadapted cross using a high density SNP linkage map. Plant Genome 9(1): 1-22. Available at https://dl.sciencesocieties.org/publications/tpg/abstracts/9/1/plantgenome2015.09.0081.
- Kumar, S., S.K. Sehgal, U. Kumar, P.V.V. Prasad, A.K. Joshi, and B.S. Gill. 2012. Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186(1): 265–276.
- Lanceras, J., G. Pantuwan, B. Jongdee, and T. Toojinda. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology 135(May): 384–399. Available at http://www.plantphysiol.org/content/135/1/384.short.
- Lander, E.S., and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
- Lanning, S.P., G.R. Carlson, P.F. Lamb, D. Nash, D.M. Wichman, and K.D. Kephart. 2011. Registration of "Duclair" hard red spring wheat. J. Plant Regist. 5: 349–352.
- Li, C., G. Bai, S. Chao, B. Carver, and Z. Wang. 2016. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat. Cj 4: 1–11. Available at http://dx.doi.org/10.1016/j.cj.2015.10.002.

- Li, S., J. Jia, X. Wei, X. Zhang, L. Li, H. Chen, Y. Fan, H. Sun, X. Zhao, T. Lei, Y. Xu, F. Jiang,H. Wang, and L. Li. 2007. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breed. 20(2): 167–178.
- Li, X., X. Xia, Y. Xiao, Z. He, D. Wang, R. Trethowan, H. Wang, and X. Chen. 2015. QTL mapping for plant height and yield components in common wheat under water limited and full irrigation environments. Crop Pasture Sci. 8: 660–670. Available at http://www.publish.csiro.au/view/journals/dsp_journals_pip_abstract_Scholar1.cfm?nid= 40&pip=CP14236.
- Liu, S., S.O. Assanga, S. Dhakal, X. Gu, C.T. Tan, Y. Yang, J. Rudd, D. Hays, A.M.H. Ibrahim,
 Q. Xue, S. Chao, R. Devkota, C. Shachter, T. Huggins, S. Mohammed, and M.P.
 Fuentealba. 2016. Validation of chromosomal locations of 90K array single nucleotide
 polymorphisms in US wheat. Crop Sci. 56: 364-373.
- Liu, G., S.B. Xu, Z.F. Ni, C.J. Xie, D.D. Qin, J. Li, L.H. Lu, J.P. Zhang, H.R. Peng, and Q.X. Sun. 2011. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chinese Sci. Bull. 56(18): 1897–1903.
- Maccaferri, M., M.C. Sanguineti, S. Corneti, J.L.A. Ortega, M. Ben Salem, J. Bort, E.
 DeAmbrogio, L.F.G. Del Moral, A. Demontis, A. El-Ahmed, F. Maalouf, H. Machlab, V.
 Martos, M. Moragues, J. Motawaj, M. Nachit, N. Nserallah, H. Ouabbou, C. Royo, A.
 Slama, and R. Tuberosa. 2008. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178(1): 489–511.

- Malik, S., T.A. Malik, and G. Engineering. 2015. Genetic mapping of potential Qtls associated with drought tolerance in wheat. 25(4): 1032–1040.
- McCartney, C.A., D.J. Somers, G. Fedak, R.M. DePauw, J. Thomas, S.L. Fox, D.G. Humphreys,
 O. Lukow, M.E. Savard, B.D. McCallum, J. Gilbert, and W. Cao. 2007. The evaluation
 of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol.
 Breed. 20(3): 209–221.
- McCartney, C.A., D.J. Somers, D.G. Humphreys, O. Lukow, N. Ames, J. Noll, S. Cloutier, and B.D. McCallum. 2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x'AC Domain.' Genome 48(5): 870–883. Available at http://www.ncbi.nlm.nih.gov/pubmed/16391693.
- Mergoum, M., R. Frohberg, J. Rasmussen, T.L. Friesen, G.A. Hareland, and S. Simsek. 2009. Breeding for CLEARFIELD herbicide tolerance: Registration of "ND901CL" spring wheat. J. Plant Regist. 3: 170–174.
- Mergoum, M., R.C. Frohberg, R.W. Stack, T. Olson, T.L. Friesen, and J.B. Rasmussen. 2006. Registration of "Glenn" wheat. Crop Sci.: 46:473–474.
- Mergoum, M., R.C. Frohberg, R.W. Stack, J.W. Rasmussen, and T.L. Friesen. 2008. Registration of "Faller" spring wheat. J. Plant Regist. 2(3): 224–229. Available at <Go to ISI>://CCC:000268932600013\nhttp://www.crops.org.
- Mergoum, M., R.C. Frohberg, R.W. Stack, S. Simsek, T.B. Adhikari, J.W. Rasmussen, M.S. Alamri, P.K. Singh, and T.L. Friesen. 2013. "Prosper": A high-yielding hard red spring wheat cultivar adapted to the North Central Plains of the USA. J. Plant Regist. 7: 75–80.
- Mergoum, M., R.C. Frohberg, J.D. Miller, T. Olson, and J.B. Rasmussen. 2005a. Registration of "Dapps" wheat. Crop Sci. 45: 420–421.

- Mergoum, M., R.C. Frohberg, J.D. Miller, and R. Stack. 2005b. Registration of "Steele-ND" wheat. Crop Sci. 45: 1163–1164.
- Mergoum, M., S. Simsek, S. Zhong, M. Acevedo, T.L. Friesen, P.K. Singh, T.B. Adhikari, M.S.
 Alamri, and R.C. Frohberg. 2014. "Velva" spring wheat: An adapted cultivar to North-Central Plains of the United States with high agronomic and quality performance. J. Plant Regist. 8(1): 32. Available at https://www.crops.org/publications/jpr/abstracts/8/1/32.
- Milner, S.G., M. Maccaferri, B.E. Huang, P. Mantovani, A. Massi, E. Frascaroli, R. Tuberosa, and S. Salvi. 2016. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnol. J. 14(2): 735–48. Available at http://www.ncbi.nlm.nih.gov/pubmed/26132599.
- Muchero, W., J.D. Ehlers, T.J. Close, and P.A. Roberts. 2009. Mapping QTL for drought stressinduced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.].Theor. Appl. Genet. 118(5): 849–863.
- Narasimhamoorthy, B., B.S. Gill, A.K. Fritz, J.C. Nelson, and G.L. Brown-Guedira. 2006. Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theor. Appl. Genet. 112(5): 787–796.
- Narjesi, V., M. Mardi, E.M. Hervan, and A. Azadi. 2015. Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (*Triticum aestivum* L.) Under normal and salt- stress conditions. Plant Mol Biol 33:2030–2040.
- Peleg, Z., T. Fahima, T. Krugman, S. Abbo, D. Yakir, A.B. Korol, and Y. Saranga. 2009. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant, Cell Environ. 32(7): 758–779.

- Pfeiffer, W.H., R.M. Trethowan, M.V. Ginkel, M.I. Ortiz, and S. Rajaram. 2005. Breeding for abiotic stress tolerance in wheat. pp. 401–489. *In* Harris, M.A. and P.J.C. (eds.), Abiotic stresses: Plant resistance through breeding and molecular approaches. The Haworth Press, New York, NY.
- Pinter, J.P.J., G. Zipoli, R.J. Reginato, R.D. Jackson, and S.B. Idso. 1990. Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric. Water Manag: 18: 35–48.

Pushpendra, K.G., S.B. Harindra, L.K. Pawan, K. Neeraj, K. Ajay, R.M. Reyazul, M. Amita, and K. Jitendra. 2007. QTL analysis for some quantitative traits in bread wheat. J. Zhejiang Univ. Sci. B 8(11): 807–14. Available at

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2064952&tool=pmcentrez&r endertype=abstract.

- Quarrie, S.A., S. Pekic Quarrie, R. Radosevic, D. Rancic, A. Kaminska, J.D. Barnes, M. Leverington, C. Ceoloni, and D. Dodig. 2006. Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J. Exp. Bot. 57(11): 2627–2637.
- Ramya, P., A. Chaubal, K. Kulkarni, L. Gupta, N. Kadoo, H.S. Dhaliwal, P. Chhuneja, M. Lagu, and V. Gupta. 2010. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J. Appl. Genet. 51(4): 421–429.
- Russo, M.A., D.B.M. Ficco, G. Laidò, D. Marone, R. Papa, A. Blanco, A. Gadaleta, P. De Vita, and A.M. Mastrangelo. 2014. A dense durum wheat × T. dicoccum linkage map based on SNP markers for the study of seed morphology. Mol. Breed. 34(4): 1579–1597.

- Rustgi, S., M.N. Shafqat, N. Kumar, P.S. Baenziger, M.L. Ali, I. Dweikat, B.T. Campbell, and K.S. Gill. 2013. Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: Bridging gaps between QTLs and underlying genes. PLoS One 8(7).
- Sayed, M.A.E.A.E. 2011. QTL analysis for drought tolerance related to root and shoot traits in barley (Hordeum vulgare L.). PhD Thesis Bonn Universitäts-und Landesbibliothek Bonn: 165.
- Shindo, C., H. Tsujimoto, and T. Sasakuma. 2003. Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity (Edinb.). 90(1): 56–63.
- Simmonds, J., P. Scott, M. Leverington-Waite, A.S. Turner, J. Brinton, V. Korzun, J. Snape, and C. Uauy. 2014. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 14: 191. Available at

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4105860&tool=pmcentrez&r endertype=abstract.

- Simmons, S.R., E.A. Oelke, and P.M. Anderson. 1914. Growth and development guide for spring wheat. Agricultral Extension Service University of Minnesota, AG-FO-2547.
- Singh, A., R.E. Knox, R.M. DePauw, A.K. Singh, R.D. Cuthbert, S. Kumar, and H.L. Campbell.
 2016. Genetic mapping of common bunt resistance and plant height QTL in wheat.
 Theor. Appl. Genet. 129(2): 243–256. Available at "http://dx.doi.org/10.1007/s00122-015-2624-8.
- Sourdille, P., J.W. Snape, T. Cadalen, G. Charmet, N. Nakata, S. Bernard, and M. Bernard. 2000. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-

haploid population. Genome 43(3): 487–494. Available at http://www.nrcresearchpress.com/doi/abs/10.1139/g00-013\nhttp://www.nrcresearchpress.com/doi/abs/10.1139/g00-013#.U80ianKYNko\nhttp://www.nrcresearchpress.com/doi/pdfplus/10.1139/g00-013.

- Sun, X.Y., K. Wu, Y. Zhao, F.M. Kong, G.Z. Han, H.M. Jiang, X.J. Huang, R.J. Li, H.G. Wang, and S.S. Li. 2009. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165(3): 615–624.
- Tadesse, W., F.C. Ogbonnaya, A. Jighly, M. Sanchez-Garcia, Q. Sohail, S. Rajaram, and M. Baum. 2015. Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS One 10(10): 1–18.
- Turner, N.C. 1979. Drought resistance and adaptation to water deficits in crop plants. pp. 343–372. *In* H. Mussell, C.R.S. (ed.), Stress physiology in crop plants. John Wiley & Sons, New York, NY.
- Turner, N.C., G.C. Wright, and K.H.M. Siddique. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 71(September 2016): 193–231.
- Vocke, G., and M. Ali. 2013. U.S. wheat production practices, costs, and yields: Variations across regions. Economic Information Bulletin(116). Economic Research Service, United States Department of Agriculture.
- Voorrips, R. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered 93: 77–78.

Wang, S., C.J. Basten, and Z.B. Zeng. 2012. Windows QTL Cartographer 2.5_011.

Wang, S., D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, M. Maccaferri, S. Salvi, S.G. Milner, L. Cattivelli, A.M. Mastrangelo, A. Whan, S. Stephen, G. Barker, R. Wieseke, J.

Plieske, M. Lillemo, D. Mather, R. Appels, R. Dolferus, G. Brown-Guedira, A. Korol,
A.R. Akhunova, C. Feuillet, J. Salse, M. Morgante, C. Pozniak, M.C. Luo, J. Dvorak, M.
Morell, J. Dubcovsky, M. Ganal, R. Tuberosa, C. Lawley, I. Mikoulitch, C. Cavanagh,
K.J. Edwards, M. Hayden, and E. Akhunov. 2014. Characterization of polyploid wheat
genomic diversity using a high-density 90 000 single nucleotide polymorphism array.
Plant Biotechnol. J. 12(6): 787–796.

- Wei, L., S. Bai, J. Li, X. Hou, X. Wang, H. Li, B. Zhang, W. Chen, D. Liu, B. Liu, and H.Zhang. 2014. QTL positioning of thousand wheat grain weight in Qaidam Basin. (June): 239–244.
- Wu, Q.H., Y.X. Chen, S.H. Zhou, L. Fu, J.J. Chen, Y. Xiao, D. Zhang, S.H. Ouyang, X.J. Zhao, Y. Cui, D.Y. Zhang, Y. Liang, Z.Z. Wang, J.Z. Xie, J.X. Qin, G.X. Wang, D.L. Li, Y.L. Huang, M.H. Yu, P. Lu, L.L. Wang, L. Wang, H. Wang, C. Dang, J. Li, Y. Zhang, H.R. Peng, C.G. Yuan, M.S. You, Q.X. Sun, J.R. Wang, L.X. Wang, M.C. Luo, J. Han, and Z.Y. Liu. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 x Beinong6. PLoS One. 10 (2): 1-17.
- Xu, X., G. Bai, B.F. Carver, and G.E. Shaner. 2005. A QTL for early heading in wheat cultivar Suwon 92. Euphytica 146(3): 233–237.

Zanke, C., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, S. Beier, M.W. Ganal, and M.S. Röder. 2014a. Genetic architecture of main effect QTL for heading date in European winter wheat. Front. Plant Sci. 5(May): 217. Available at

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4033046&tool=pmcentrez&r endertype=abstract.

Zanke, C.D., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, F. Neumann, A. Eichhorn, A. Polley, C. Jaenecke, M.W. Ganal, and M.S. Röder. 2015. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front. Plant Sci. 6(September): 1–14. Available at

http://journal.frontiersin.org/article/10.3389/fpls.2015.00644.

- Zanke, C.D., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, K. Neumann, M.W. Ganal, and M.S. Röder. 2014b. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L). PLoS One 9(11).
- Zhang, W., S. Chao, F. Manthey, O. Chicaiza, J.C. Brevis, V. Echenique, and J. Dubcovsky. 2008. QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor. Appl. Genet. 117(8): 1361–1377.

CHAPTER 4. IDENTIFYING QTL FOR DROUGHT TOLERANCE IN SPRING WHEAT IN THE NORTHERN USA USING A GREENHOUSE EXPERIMENT 4.1. Abstract

Drought (water stress) is one of the major threats for wheat (*Triticum aestivum* L.) production in the northern USA, which necessitates the development and release of droughttolerant cultivars. This study attempts to dissect the genetics of drought tolerance in spring wheat in the northern USA using QTL analysis. A population of 149 RILs was developed from a drought-tolerant cultivar, 'Reeder' (PI613586), and a drought-susceptible cultivar, 'Albany.' The RIL population was evaluated in the greenhouse with a randomized complete block design (RCBD) with factorial arrangements. Control and drought water regimes were maintained, and data were collected on days to heading (DH), plant height (PH), the number of tillers (TIL), the number of spikes (SPK), canopy dry weight (CDW), wilting score (WS), yield (YLD) and thousand kernel weight (TKW). The population was genotyped using Illumina's Infinium 90K SNP assay. The QTL analysis identified 38 QTL. Of these, eight QTL were specific to the drought water regime, six for the susceptibility index (DSI), and eight were constitutive QTL (identified under both water regimes). Among the QTL identified for the drought water regime, two had major effects (PV \ge 10%), and explained 12.97 and 11.43% of phenotypic variation (PV). Both were associated with TKW and were found on chromosomes 5A and 5B. Three QTL identified for DSI had major effects which were located on 4D, 5D and 7B chromosomes. These QTL were associated with TKW and SPK. All the constitutive QTL had major effects. Three novel QTL were identified in this study, including two with major effects. The findings of this study can assist breeders in developing drought-tolerant cultivars using marker-assisted selection (MAS).

4.2. Introduction

The USA ranks fourth in world wheat production, producing 55.14 million metric tons of the total global wheat production of 729 million metric tons in 2014 (FAOSTAT, 2016). In terms of acreage, wheat surpasses all other crops worldwide, whereas in the USA, it ranks third after maize and soybeans (FAOSTAT, 2016). Hard red spring wheat (HRSW) is one of the five wheat classes grown in the Northern Plains (North Dakota (ND), Montana, South Dakota, and Minnesota). On average, ND produces over 50% of the total HRSW in the USA. It is considered to be the aristocratic class of wheat because of its high protein content (13 to 16%) and is used for making some of the world's best bread, hard rolls, and bagels. Due to its high quality, the HRSW grown in the USA is exported to over 70 countries, making it an economically important crop (North Dakota Wheat Commission, 2016).

The climate in ND can be severe, with periods of drought, especially in the semi-arid conditions of the western half of the state, which has a tendency to experience cyclical drought. Drought damages crops and causes immense economic losses, including statewide losses of \$223 million in 2002, and \$425 million in 2006 (Climate change and the economy, 2008). However, the drought of 2012 was the most serious agricultural disaster in the USA since the 1950s, costing many billions of dollars in losses across the country (Rippey, 2015). Hard red spring wheat production has been hindered in some years because of drought. Therefore, understanding the genetics of drought tolerance in spring wheat in the northern USA is a prerequisite for developing drought-tolerant HRSW cultivars. In this study, an attempt was made to identify drought-tolerant QTL in HRSW in the northern USA.

4. 3. Materials and Methods

4.3.1. Plant materials

A population consisting of 149 RILs was developed from a cross between cultivars 'Reeder' (PI613586) and 'Albany' by the HRSW and germplasm enhancement program at NDSU. Reeder, released by the North Dakota Agricultural Experiment Station at NDSU in 1999, is a semi-dwarf HRSW variety. It is best adapted to western ND, which is a semi-arid region requiring drought-tolerant cultivars. It has acceptable milling and baking qualities and possesses resistance to the Upper Midwest races of stem and leaf rust. Albany was developed by Trigen Seed LLC. It is a very high yielding, semi-dwarf HRSW cultivar adapted to intensive input management. This cultivar is susceptible to drought and better adapted to the eastern areas of the Northern Plains. A single seed descent method was used to advance the RIL population to the F₈ generation. The checks used in the study were 'Glenn' (Mergoum et al., 2006), 'Faller' (Mergoum et al., 2008), and 'Alsen' (Frohberg et al., 2006). Glenn and Alsen show moderate drought tolerance, whereas, Faller shows drought susceptibility.

4.3.2. Greenhouse experiment

The RIL population, their parents, and three checks were evaluated in the greenhouse in 2012. The experimental design was RCBD with three replicates. A factorial arrangement was followed using two factors. The first factor was water regimes (control and drought) and the second factor was the RILs under evaluation. Each 20.32-cm diameter pot containing five plants of each genotype was considered as the experimental unit. The planting soil consisted of Sunshine Mix #1 (Sun Gro Horticulture, Agawam, MA, USA) augmented with 20 g Osmocote® slow-release fertilizer (Scott's Company LLC, Marysville, OH). The control water regime was applied by maintaining the soil moisture at field capacity (about 50% moisture by volume). The

drought stress was imposed on the plants when the majority of the plants started to flower. The soil of the pots was allowed to dry up to about 15% moisture by volume, and then the pots were watered to saturate the soil. The stress was continued until the plants were harvested. The available soil moisture was measured using a soil-moisture meter (Spectrum technologies, Inc.).

4.3.3. Data collection

Data were collected on DH (days), PH (cm), TIL, SPK, CDW (g), WS, YLD (g/pot) and TKW (g). The DH of each genotype was collected when about 50% of the plants were heading. Plant height was measured from plant base to tip excluding the awn. The harvested plants from each pot were dried in the oven at 80^o C for 48 hours and then CDW was measured. Wilting scores (1-9) were recorded at the end of the drought period, where 1 indicated no drought symptoms and 9 indicated all plants to be dry. A thousand kernels were counted using a seed counter (Model U, International Marketing and Design Co.) and were weighed to obtain TKW.

4.3.4. Phenotypic data analysis

Drought susceptibility for each trait was measured by a 'drought susceptibility index' (DSI) according to Fischer and Maurer(1978) as:

$$DSI = \frac{1 - (Y_{dry}/Y_{wet})}{1 - (X_{dry}/X_{wet})}$$

where Y_{dry} and Y_{wet} indicate mean performances of a specific genotype for a specific trait under respective water regimes, and X_{dry} and X_{wet} indicate mean performances of all genotypes for a specific trait under respective water regimes.

The proc anova procedure of the statistical analysis system was used to analyze the phenotypic data ("SAS Institute," 2004). Both factors were considered as fixed effects. The mean values were separated using the least significant difference (LSD) value at the $P \leq 0.05$ level of
significance. Pearson correlations between traits were calculated for a single water regime using the CORR procedure of SAS ("SAS Institute," 2004). Only the traits with a low coefficient of variation (CV) value and showing significant differences among the entries were reported in this study.

4.3.5. Genotyping

Young leaves were lyophilized and the genomic DNA of each genotype was extracted using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, cat. no. 69106). The quality of the DNA was checked using 0.8% agarose gel, and the DNA concentration was checked using a NanoDrop 1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE). The samples were genotyped using Illumina's Infinium 90K iSelect wheat SNP assay in the Small Grains Genotyping Lab, USDA-ARS, Fargo, ND, and the data were analyzed using the genotyping module GenomeStudio V2011.1 (www.illumina.com, verified 18 December 2015).

4.3.6. Map construction

A total of 81,587 SNP markers were produced using Illumina's Infinium iSelect 90K assay (Wang et al., 2014). Among those, 12,151 SNP markers were polymorphic between parental genotypes. The polymorphic markers showing 1) allele frequency <0.4 for any of the parental genotypes, 2) inconsistent results in five replicates of each parental genotype, 3) overlapping clusters for RILs, and 4) >20% missing data, were discarded. MapMaker 3.0 (Lander and Botstein, 1989) and CarthaGène v.1.2.3R (de Givry et al., 2005) software programs were used for constructing linkage maps using the remaining 10,760 polymorphic markers. Available map information from multiple populations (Wang et al., 2014) was used to select five to nine anchor markers from each chromosome. MapMaker 3.0 (Lander and Botstein, 1989) and the anchor markers were used to place 10,657 polymorphic markers onto 21 wheat chromosomes

using a minimum LOD score of 5.0 and a maximum distance of 40 cM. The linkage maps were then developed using CarthaGène V.1.2.3R (de Givry et al., 2005). Kosambi's mapping function (Kosambi, 1944) was used to determine the genetic distance among markers on the linkage groups.

4.3.7. QTL mapping

Composite interval mapping (CIM) was used to identify QTL for each trait in each water regime using QTL Cartographer V2.5_011 (Wang et al., 2012). In QTL Cartographer Model 6 (the standard model), forward and backward regression, five control markers (co-factors), a window size of 10 cM, and a walk speed of 1 cM were used. Significant QTL were identified by the LOD threshold determined by 1000 permutations. Confidence intervals for the QTL (CI) were estimated by the \pm 2 LOD (from the peak) method. The QTL were considered to be the same if their CIs overlapped or they were located within 10 cM regions. Only significant QTL detected (above the threshold LOD score) were reported in this study. If any such QTL was identified with an LOD below the threshold, but >2.5 in other water regimes, the QTL were also included in the results as supporting information. The Mapchart 2.3 program (Voorrips, 2002) was used to draw the QTL regions. Map locations of the associated markers were used to determine if the identified QTL was novel.

4.4 Results

4.4.1. Phenotypic analyses

The genotypes (RILs and parents) had significant differences for all of the agronomic traits (Table 4.1). However, the CV of the WS was high (22.83), and therefore, was not included in this study. The RIL population showed continuous variation for all of the traits (Fig.4.1). Transgressive segregations were observed in both directions for all of the traits as well (Fig.

4.1), indicating that both parents had favorable alleles important for drought tolerance. The parent Reeder took more DH in the control water regime, whereas Albany took more DH in the drought water regime. Albany had a higher PH in both water regimes, while Reeder had a higher TIL and SPK in both. Albany had a greater CDW in the control water regime, while Reeder had a greater CDW in the drought water regime. Similar results were found for YLD and TKW (Table 4. 2).

Days to heading had a highly significant positive correlation with TIL, but a highly significant negative correlation with YLD. Late heading plants tended to be taller than early-heading plants in the drought water regime. Also, late-heading plants had a higher TKW in the control water regime, with the opposite effect in the drought water regime. The plants with more tillers also had more spikes in both water regimes. The plants with fewer tillers had a higher TKW in the drought water regime. The plants with more spikes had a lower CDW in the control water regime, but in drought conditions, they had a higher CDW. The plants with more spikes also had a higher YLD in the drought water regime. The plants with a greater CDW were taller and tended to give a higher YLD in both water regimes. Also, CDW was positively associated with TKW in the control conditions. The high-yielding plants also had a greater TKW in both water regimes. The taller plants were higher yielding, with a higher TKW in the control water regime (Table 4.3).

					,	0			
Sources [*]	df	DH^{\dagger}	PH§	TIL¶	SPK [#]	CDW [#]	$WS^{\#}$	YLD§§	TKW¶¶
А	1	1.79	495***	281.28***	478.12***	2103.45***	17731.6***	1180.5***	169.93***
В	153	11.67***	4.64** *	9.19***	5.49***	5.22***	6.7***	5.58***	3.68***
A*B	153	1.31**	1	3.24***	2.57***	3.06***	6.7***	3.81***	2.18***
CV%		5.5	7.81	12.22	12.75	13.31	22.83	18.74	10.91

Table 4.1. Analysis of variance (ANOVA) for the agronomic traits

*Significant at 0.05, **Significant at 0.01, and ***Significant at 0.001 probablity level

^{*}A = water regime, B = RIL, [†]DH = Days to heading, [§]PH= Plant height, [¶]TIL = Number of tillers, [#]SPK = Number of spikes, [#]CDW = Carbon dry weight, [#]WS = Wilting score, ^{§§}YLD = Yield, [¶]TKW = Thousand kernel weight

4.4.2. Genetic linkage map

A total of 10,657 markers, represented by 2,057 unique loci (19.3%), were mapped onto 28 linkage groups belonging to 21 wheat chromosomes (Table 4.4). The maximum number of markers were located on the B-genome, followed by the A-genome and the D-genome (Table 4.4). The linkage groups 1D1 and 5D2 contained the minimum number of markers (5), while 2B contained the maximum (1,221). Chromosome 3D contained the minimum number of markers (48), and chromosome 2B contained the maximum (Table 4.4). On average, 507.48 markers and 97.95 unique loci were mapped per chromosome. The average distance between two markers on the linkage map was 0.36 cM (Table 4.4). The total length of the A-genome was 1,542.2 cM, with an average distance of 0.37 cM between two markers, whereas the B-genome had a total map length of 1,259.1 cM, with an average distance of 0.35 cM between two markers. By comparison, the D-genome had a total map length of 991.8 cM, with an average distance of 1.52 cM between two markers. The longest chromosome was 5A, with a total map length of 299 cM, while the shortest chromosome was 6D, with a total map length of 51.5 cM (Table 4.4).

Fig. 4.1. Frequency distribution of the agronomic traits for 149 RILs of the Reeder and Albany mapping population (a. Days to heading, b. Number of tillers).

Fig. 4.1. Frequency distribution of the agronomic traits for 149 RILs of the Reeder and Albany mapping population (c. Number of spikes, d. Canopy dry weight) (continued).

Fig. 4.1. Frequency distribution of the agronomic traits for 149 RILs of the Reeder and Albany mapping population (e. Yield, f. Thousand kernel weight) (continued).

Fig. 4.1. Frequency distribution of the agronomic traits for 149 RILs of the Reeder and Albany mapping population (g. Plant height) (continued).

	Parent	tal lines	R	RIL population			Checks			
Trait and	Reeder	Albany	Min	Max	Mean	Glenn	Faller	Alsen	LSD	
Env. ⁺									(0.05)	
DH, days										
Control	61.33	53.33	48	79	57.46	53.67	55.67	56	3.57	
Drought	59	63.67	46.33	72	57.13	56	54.67	52.67		
PH, cm										
Control	91.44	105.83	83.82	122.77	102.2	115.15	100.75	105.83	8.55	
Drought	82.13	83.82	76.2	110.91	91.28	91.44	91.44	89.75		
TIL										
Control	37	28.33	21.33	56.67	34.22	23.33	26.67	29.33	4.42	
Drought	35.67	26	20.33	43.33	29.64	38.67	28.33	36.67		
SPK										
Control	28	24	19.33	38.67	27.02	20.67	22.67	20.33	3.56	
Drought	25.33	22.33	15.33	32	22.3	28.67	20.67	25.67		
CDW										
Control	49.5	60.23	31.3	84.07	60.24	68.77	70.07	42.67	7.56	
Drought	38.03	30.33	28.97	51.63	40.16	36.33	40.13	38.39		
YLD										
Control	21.9	30.13	10.8	37.43	24.89	30.63	36.37	15.37	4.36	
Drought	15.7	12.67	6.47	24.5	16.25	11.77	18.77	14.5		
TKW										
Control	45.33	48	32.67	55.83	43.67	47.5	49.33	40.33	5.14	
Drought	42.17	40.17	26.92	49.67	39.54	44.33	43.67	39		

Table 4.2. Mean phenotypic performances of Reeder and Albany, their RIL population, and checks in different water regimes.

^{*}DH = Days to heading, PH= Plant height, TIL = Number of tillers, SPK = Number of spikes, CDW = Canopy dry weight, WS = Wilting score, YLD = Yield, TKW = Thousand kernel weight

Trait and water regimes ⁺	DH	TIL	SPK	CDW	Yield	РН
TIL						
Control	0.45***					
Drought	0.27***					
М	0.44***					
SPK						
Control	0.15ns	0.8***				
Drought	-0.1ns	0.56***				
М	0.5ns	0.74***				
CDW						
Control	0.70ns	0.14ns	-0.17**			
Drought	0.40ns	0.13ns	0.29***			
М	0.11ns	0.14ns	0.11 ns			
YLD						
Control	-0.19*	0.04ns	-0.07ns	0.72***		
Drought	-0.37***	-0.08ns	0.2**	0.62***		
М	-0.28***	-0.1ns	-0.03ns	0.7***		
РН						
Control	0.05ns	-0.13ns	-0.19ns	0.41***	0.39***	
Drought	0.21***	0.03ns	-0.15ns	0.36***	0.06ns	
М	0.03ns	0.01ns	-0.05ns	0.09ns	0.16*	
TKW						
Control	0.21***	0.06ns	-0.04ns	0.18*	0.26***	0.17*
Drought	-0.46***	-0.17*	-0.09ns	0.11ns	0.55***	-0.02ns
М	-0.22***	-0.14ns	-0.13ns	0.12ns	0.4***	0.05ns

Table 4.3. Correlation coefficients between five agronomic traits in the RIL population (Reeder × Albany) in different environments (Env.) and overall mean across environments (M).

^tHD = Days to heading, PH= Plant height, TIL = Number of tillers, SPK = Number of spikes, CDW = Canopy dry weight, WS = Wilting score, YLD = Yield, TKW = Thousand kernel weight

*Significant at 0.05, **Significant at .01, ***Significant at 0.001 probability level

Linkage groups	No. of markers	No. of unique loci	Map length	Average	Average map density
		_		map density	
				cM/marker	cM/locus
1A	567	126	174.90	0.31	1.39
2A	439	101	223.50	0.51	2.21
3A	659	123	213.90	0.32	1.74
4A	560	114	218.90	0.39	1.92
5A	605	163	299.00	0.49	1.83
6A	590	117	176.70	0.30	1.51
7A	905	168	235.30	0.26	1.40
1B	629	86	107.50	0.17	1.25
2B	1221	160	181.80	0.15	1.14
3B	1115	213	250.20	0.22	1.17
4B	244	78	120.90	0.50	1.55
5B1	565	125	209.40	0.37	1.68
5B2	25	8.00	18.00	0.72	2.25
6B	426	101	158.10	0.37	1.57
7B	723	134	213.20	0.29	1.59
1D1	5	2	0.30	0.06	0.15
1D2	254	40	87.80	0.35	2.20
1D3	91	26	126.10	1.39	4.85
2D	653	46	180.40	0.28	3.92
3D	48	18	162.90	3.39	9.05
4D	53	23	129.90	2.45	5.65
5D1	25	8	47.50	1.90	5.94
5D2	5	4	24.90	4.98	6.23
5D3	130	21	31.50	0.24	1.50
6D1	10	5	3.00	0.30	0.60
6D2	23	19	44.50	1.93	2.34
6D3	22	6	4.00	0.18	0.67
7D	65	22	149.00	2.29	6.77
A genome	4,325	912	1,542.20	0.37	1.72
B genome	4,948	905	1,259.10	0.35	1.52
D genome	1,384	240.00	991.80	1.52	3.84
Whole genome	10,657	2,057	3,793.10	0.36	1.84

Table 4.4. Distribution of markers across linkage groups in the genetic map developed using the Reeder \times Albany RIL population.

4.4.3. QTL analysis

4.4.3.1. QTL for DH

Six QTL located on five different chromosomes were identified for DH using composite interval mapping (CIM). These QTL explained from 7.08 to 41.08% of phenotypic variation (PV) (Table 4.5; Fig.4.2). Only one QTL among them, *QDH.ndsu.2B*, was identified for the drought water regime along with the mean. This QTL (*QDH.ndsu.2B*) had a minor effect, and the desired allele was contributed by Albany. Three major constitutive QTL (present in both water regimes) were identified, where the QTL with the largest effect was on chromosome 5A and explained up to 41.08% of PV. The second major QTL was on chromosome 4A, explaining up to 18.85% of PV. The third major QTL was on chromosome 5D and explained 13.03% of PV. The desired alleles from the QTL on chromosomes 4A and 5A were contributed by Albany (Table 4.5).

4.4.3.2. QTL for PH

Four major QTL located on four different chromosomes were identified for PH (Table 4.5; Fig.4.2). Only one QTL among them, *QPH.ndsu.5A*, was identified for DSI, indicating stability of performance across water regimes. This QTL explained up to 9.41% of PV, with the desired allele (reduced PH) contributed by Albany. Two QTL were constitutive, with the QTL having the largest effect and explaining up to 11.99% of PV identified on chromosome 2B. The second major QTL was identified on chromosome 7B, explaining up to 10.56% of PV. The desired allele from the QTL on chromosome 2B was contributed by Reeder, and the desired alleles from the QTL on chromosome 7B were contributed by Albany (Table 4.5).

4.4.3.3. QTL for YLD

Four QTL located on four different chromosomes were identified for YLD (Table 4.5; Fig.4.2). Three minor QTL located on chromosomes 5A, 1A, and 4B were identified exclusively in the drought water regime. Reeder contributed the desirable alleles from all these loci (Table 4.5).

4.4.3.4. QTL for CDW

Two QTL from two different chromosomes were identified for CDW (Table 4.5; Fig.4.2). One of these QTL identified on chromosome 7B was constitutive and considered a major QTL, explaining up to 16.52% of PV. Albany contributed the desired allele for this QTL (Table 4.5).

4.4.3.5. QTL for TKW

Seven QTL located on seven different chromosomes were identified for TKW (Table 4.5; Fig.4.2). The QTL *QTKW.ndsu.5A* and *QTKW.ndsu.5B1* were identified exclusively in the drought water regime. Both QTL had a major effect, with Albany contributing the desirable alleles for both loci .Three QTL, *QTKW.ndsu.4D.2, QTKW.ndsu.5D2*, and *QTKW.ndsu.4A*, were identified for DSI, with the first two having major effects. The desirable alleles for *QTKW.ndsu.4D.2* and *QTKW.ndsu.4A* were contributed by Albany (Table 4.5).

4.4.3.6. QTL for SPK

Seven QTL were identified for SPK, but only one of these, *QSPK.ndsu.1A*, was identified in the drought water regime. It explained up to 9.6% of PV, with Reeder contributing the desirable allele. Also, two QTL, *QSPK.ndsu.7B* and *QSPK.ndsu.4A.2*, were identified for DSI. The first QTL explained up to 10.57% of PV, with Albany contributing the desirable allele, whereas the second QTL explained up to 9.37% of PV, with Reeder contributing the desirable allele (Table 4.5).

4.4.3.7. QTL for TIL

Eight QTL located in eight different genomic regions were identified for TIL. Only one QTL among them, *QTL.ndsu.5A.3*, was identified as constitutive. The remaining QTL were identified in the control water regime. The constitutive QTL explained up to 20.68% of PV, where the desirable allele (more TIL) was contributed by Albany (Table 4.5).

4.4.4.8. Co-localized or pleiotropic QTL

Co-localized QTL enable simultaneous improvement for more than one trait when the desirable alleles are contributed by the same parent. A total of 38 QTL located on 15 different chromosomes were identified in this study (Table 4.5; Fig. 4.2). The QTL with overlapping CI or located within 10 cM of each other were considered as having the same QTL region. A total of 22 co-localized or pleiotropic QTL located on 11 QTL regions were identified. The individual genomic regions were associated with two to four traits. Genomic region 27 was associated with DH, PH, YLD, and CDW. The QTL for PH (*QPH.ndsu.7B*), YLD (*QYL.ndsu.7*), and CDW (*QCDW.ndsu.7B*) had major effects, with the desired alleles contributed by Reeder. Another QTL associated with this QTL region had a minor effect, with Albany contributing the desired allele. The genomic region 18 was associated with DH (*QDH.ndsu.5A*), YLD (*QYL.ndsu.5A*), and TIL (*QTL.ndsu.5A.3*), where the desired alleles for DH and YLD were contributed by Reeder. The genomic region 23 was associated with PH (*QPH.ndsu.6A*) and TKW (*QTKW.ndsu.6A*) where both QTL had major effects and the desired alleles were contributed from Reeder (Table 4.5; Fig.4.2).

QTL and trait	QTL region	Other associated traits ¹	Env. [‡]	Position [§]	LOD¶	Additive effect	R ² (%)
Canopy dry weight							
QCDW.ndsu.7A	25	-	3	219.61	3.53	1.7	7.28
QCDW.ndsu.7B	27	DH, PH, YLD	1, 2, 3	27.41- 35.11	7.2	4.21	16.52
Days to heading							
QDH.ndsu.2B	4	-	2,3	7.41-17.11	4.36	1.12	7.08
QDH.ndsu.4A	8	SPK	1, 2, 3	132.91- 148.51	9.41	-1.84	18.85
QDH.ndsu.5A	18	YLD, TIL	1, 2, 3, 4	195.41- 206.01	19.8	-3.54	41.08
QDH.ndsu.5D2	21	TKW	1, 2, 3	1.01-13.91	8.04	1.99	13.03
QDH.ndsu.5D3	22	-	1, 3	11.91	8.04	1.99	13.03
QDH.ndsu.7B	27	CDW, PH, YLD	1, 2*, 3	28.41- 32.11	4.51	1.24	7.39
Plant height							
QPH.ndsu.2B	5	-	1*, 2*, 3	99.51- 110.01	5.81	-2.16	11.99
QPH.ndsu.5A	17	-	4	106.01		0.19	9.41
QPH.ndsu.6A	23	TKW	1, 3	82.41	5.09	2.56	10.04
QPH.ndsu.7B	27	DH, CDW, YLD	1, 2*, 3	25.21- 27.41	5.46	2.41	10.56
Number of spikes							
QSPK.ndsu.1A	2	TIL	2*, 3	55.11- 63.11	4.2	0.95	9.6
QSPK.ndsu.2D	6	TIL	1,4	112.21- 122.11	7.23	-0.27	15.6
QSPK.ndsu.3B	7	-	1,3*	223.81- 224.81	4	-1.37	10.21
QSPK.ndsu.4A.1	8	DH	2*, 3*	147.81	3.11	0.79	6.49
QSPK.ndsu.4A.2	10	-	4	198.51- 211.21	4.2	0.23	9.37
QSPK.ndsu.5A.1	15	TIL	1	41.21- 56.91	4.12	-1.28	8.53
QSPK.ndsu.7B	26	-	4	0.31	4.7	-0.25	10.57
Number of tillers							
QTL.ndsu.1A	2	SPK	3	57.81	5.04	1.46	8.84
QTL.ndsu.1D2	3	-	3	20.81	3.77	1.25	6.5
QTL.ndsu.2D	6	SPK	3	127.91	3.66	-1.31	7.08
QTL.ndsu.5A.1	15	SPK	1, 3*	59.91- 61.91	4.76	-2.3	12.8

Table 4.5. QTL identified for the agronomic traits in a RIL population derived from the cross between Reeder and Albany.

QTL and trait	QTL region	Other associated traits ^t	Env. [‡]	Position [§]	LOD¶	Additive effect	R ² (%)
QTL.ndsu.5A.2	16	-	1, 3	74.71- 77.81	3.8	-1.73	7.23
QTL.ndsu.5A.3	18	YLD, DH	1, 2, 3	198.61- 206.01	10.76	-2.53	20.68
QTL.ndsu.5A.4	19	TIL	1	219.81	5.83	-2.51	15.71
QTL.ndsu.7A	24	YLD	1	132.31	3.35	-1.71	7.14
Thousand kernel	weight						
QTKW.ndsu.4A	9	-	4	173.11	3.7	-0.43	8.95
QTKW.ndsu.4D.1	12	-	1	71.51	5.5	1.54	11.74
QTKW.ndsu.4D.2	13	-	4	126.81	6.71	-0.58	15.64
QTKW.ndsu.5A	14	-	2	9.61- 18.71	4.06	-1.75	12.97
QTKW.ndsu.5B1	20	DH	2, 3	154.01- 155.01	5.29	-1.39	11.43
QTKW.ndsu.5D2	21	DH	4	15.91	3.72	0.48	10.78
QTKW.ndsu.6A	23	РН	1, 3*	86.21- 99.51	4.5	1.51	11.2
Yield							
QYL.ndsu.1A	1	-	2	14.41	3.5	0.48	8.21
QYL.ndsu.4B	11	-	2, 3*	81.41	3.49	0.9	7.69
QYL.ndsu.5A	18	TIL, DH	2	194.71	3.77	0.9	8.35
QYL.ndsu.7B	27	PH, CDW, DH	1, 3*	27.41	4.66	2.05	10.78

Table 4.5. QTL identified for the agronomic traits in an RIL population derived from the cross between Reeder and Albany (Continued).

₁DH = Days to heading, PH = Plant height, YLD = Yield, TW = Test weight, TKW = Thousand kernel weight,

CDW =Canopy dry weight, SPK= Number of spikes, TIL = Number of tillers

[†]Env. = environment, 1 = Control water regime, 2 = Drought water regime, 3 = Overll mean, 4 = DSI

[§]Position represents the peak point of the QTL interval

For lot of odds (LOD) score, additive effect, and R^2 , the highest values across environments were reported in this table.

* The QTL in that environment was detected above 2.5 LOD score, but below the threshold score.

QTL-2 (1A)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany.

105

QTL-3 (1D2)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

QTL-9 (4A)

QTL-10 (4A)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

QTL-15 (5A)

QTL-16 (5A)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

QTL-17 (5A)

QTL-18 (5A)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

QTL-20 (5B1)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

QTL-23 (6A)

QTL-24 (7A)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

QTL-25 (7A)

QTL-26 (7B)

Fig. 4.2. Partial genetic linkage maps showing genomic regions harboring QTL for the agronomic traits in the RIL population derived from the cross of Reeder and Albany (continued).

4.5. Discussion

4.5.1. Linkage maps

The Infinium iSelect 90K assay (Wang et al., 2014) explored >81,000 gene-associated SNPs, revealing polymorphism in allohexaploid and allotetraploid wheat populations (Russo et al., 2014; Wang et al., 2014; Wu et al., 2015; Kumar et al., 2016; Liu et al., 2016). Higher genomic coverage and resolution in QTL mapping were achieved using this genotypic tool. The marker density (0.36 cM/marker), or unique locus density (1.84 cM/locus), and genetic map length (3793.1 cM) identified in this study corresponded other studies that used the 90K Infinium iSelect assay for genome mapping (Russo et al., 2014; Wang et al., 2014; Kumar et al., 2016). The A-genome was found to be the longest, while the D-genome was the shortest, which also corresponds with the results of previous studies. The marker orders identified in this study were also in harmony with several linkage maps developed using the Infinium iSelect 90K SNP assay (Cabral et al., 2014; Desiderio et al., 2014; Russo et al., 2014; Wang et al., 2014; Kumar et al., 2016).

Chromosome 5B had two linkage groups, whereas chromosomes 1D, 5D, and 6D had three linkage groups. The fragmentation could be the result of repeat elements located between gene-rich regions. Another reason could be the use of stringent mapping parameters (LOD score > 5 and distance < 40 cM) (Kumar et al., 2016). Most of the fragmentations were identified on the D-genome chromosomes and resulted from their very weak representation in the Infinium iSelect 90K assay (Wang et al., 2014).

4.5.2. QTL for DH

Quantitative trait loci mapping for DH has been done in many past studies (Kato et al., 1999; Sourdille et al., 2000; Bullrich et al., 2002; Shindo et al., 2003; Xu et al., 2005; Griffiths et

al., 2009; Alexander et al., 2012; Kamran et al., 2013; Bogard et al., 2014; Zanke et al., 2014a; Guedira et al., 2016; Milner et al., 2016). These studies indicated that the genes regulating DH can be divided into three major categories: photoperiod responsive genes, vernalization responsive genes, and 'earliness *per se*' genes. The photoperiod responsive genes regulate DH in response to day length for photosensitive wheat genotypes. The vernalization-responsive genes regulate DH in winter wheat, where the genes are activated under exposure to vernalization (cold temperatures). Finally, earliness *per se* stands for the only environment-independent genetic factor controlling earliness (Shindo et al., 2003).

The major QTL in this study *QDH.ndsu.5A* is associated with YLD and TIL and could correspond with the major earliness *per se* QTL*QEet.ocs.5A.2* (Kato et al., 1999). By reducing DH (additive value -3.54), this QTL saved the plant from the drought conditions. The second major constitutive QTL, *QDH.ndsu.4A*, occupied the same location as the early maturity QTL, *QMat.crc-4A* (McCartney et al., 2005). The third major constitutive QTL, *QDH.ndsu.5D2*, was also associated with TKW and corresponded with the QTL reported by Sourdille et al. (2000). The QTL *QDH.ndsu.2B*, identified under the drought condition, may be a possible locus controlling drought tolerance. This QTL corresponded with the QTL between the markers *wpt7200* and *wpt664520* reported earlier for DH (Narjesi et al., 2015). Also, a QTL for days from heading to maturity achieved under drought condition (Peleg et al., 2009) corresponded with the position of the QTL *QDH.ndsu.2B*, indicating the potential of this QTL for drought tolerance.

4.5.3. QTL for PH

Plant height is very important in wheat breeding as it is related to lodging resistance and a high harvest index. For example, the dwarfism gene from Nonglin-10 played a vital role in the

Green Revolution of the 1960s (Liu et al., 2011). In contrast, our study showed that PH had a positive correlation with DH in the drought water regime, while DH had a negative correlation with YLD. Therefore, it could be stated that reduced PH is desirable for higher YLD. Several studies on the QTL for PH have been conducted in the past (McCartney et al., 2005; Pushpendra et al., 2007; Liu et al., 2011; Huang et al., 2012; Zanke et al., 2014b; Gao et al., 2015; Li et al., 2015; Narjesi et al., 2015; Milner et al., 2016; Singh et al., 2016). The first major constitutive QTL, QPH.ndsu.2B, indicated that this locus provided a PH-reducing allele from Reeder that helped with drought tolerance. This locus corresponded to the SNP marker BobWhite rep c64068 241 associated with PH (Zanke et al., 2014b). Also, Peleg et al. (2009) identified a QTL at this locus for maturity under dry condition, which further indicated the association of this locus with drought tolerance. Likewise, the second constitutive QTL, QPH.ndsu.7B, contributing to drought tolerance corresponded with the QTL QHt-7B-1 (Liu et al., 2011). The association of this locus with drought tolerance was further supported by the findings of Peleg et al.(2009), who identified a QTL for DH and maturity under dry conditions at 20 cM on chromosome 7B. Also, Alexander et al. (2012) identified a major QTL for drought tolerance (QDt.ksu-7B) located at 34.7 cM on chromosome 7B. The QTL for stability (DSI) of PH, QPH.ndsu.5A, reduced the differences in PH across water regimes and hence improved drought tolerance. This locus occupied the same position as the SNP marker wsnp_Ex_c23795_33033959, which was reported earlier for PH (Zanke et al., 2014b). The same locus also corresponded with a QTL for the carbon isotope ratio achieved under dry condition, which verified that the locus was associated with drought tolerance (Peleg et al., 2009).

4.5.4. QTL for YLD

Grain YLD is the trait of ultimate interest to breeders as it reflects all of the plant processes, ranging from the vegetative to the reproductive stages, and hence, it possesses very complex genetic mechanisms (Quarrie et al., 2006). Yield QTL in wheat were reported in several studies (McCartney et al., 2005; Quarrie et al., 2006; Kirigwi et al., 2007; Li et al., 2007, 2015; Maccaferri et al., 2008; Azadi et al., 2014; Cui et al., 2014; Edae et al., 2014; Narjesi et al., 2015; Gao et al., 2015; Milner et al., 2016). In this study, the YLD QTL QYL.ndsu.5A was identified exclusively in the drought condition, indicating that it could augment drought tolerance, thereby allowing a better yield. The QTL OYL.ndsu.1A also could improve drought tolerance as it was identified exclusively in the drought conditions. This locus coincided with the QTL QYld.abrii-1A1.2 (Azadi et al., 2014) and QGY.caas-1A (Li et al., 2015). Likewise, the QTL QYL.ndsu.4B was likely to improve drought tolerance, but it did not resemble any reported QTL for YLD, instead it occupied the same location as a QTL for total dry matter under dry conditions (Peleg et al., 2009). Ibrahim et al. (2012a) also found a QTL, QAvd+, around this locus that was important for drought tolerance. This locus was reported to control average root diameter (ARD) under both water regimes.

4.5.5. QTL for CDW

The QTL *QCDW.ndsu.7B* was a constitutive QTL for CDW and was also associated with DH, PH, and YLD; it improved drought tolerance through improving associated traits under the drought conditions. This locus is very important for drought tolerance as Peleg et al.(2009) also identified a QTL around this location for DH and maturity under dry treatment. Alexander et al. (2012), too, identified *QDt.ksu-7B*, a major QTL for drought tolerance that spanned at 34.7 cM.

4.5.6. QTL for TKW

Thousand kernel weight is associated with yield and quality, as larger and uniformlysized kernels are visually attractive, claim a higher market price, and indicate a higher yield (Ramya et al., 2010). Several studies on the QTL of wheat TKW have been reported in the past (Campbell et al., 1999; McCartney et al., 2005; Huang et al., 2006; Breseghello and Sorrells, 2007; Kuchel et al., 2007; Li et al., 2007, 2015; Zhang et al., 2008; Sun et al., 2009; Ramya et al., 2010; Azadi et al., 2014; Wei et al., 2014; Simmonds et al., 2014; Tadesse et al., 2015; Zanke et al., 2015). The QTL OTKW.ndsu.4D.2, identified for DSI stabilized TKW in drought conditions, rendering the plant drought tolerant. This locus did not correspond with any reported QTL for TKW or any other traits for drought tolerance, suggesting that this QTL could be novel. The QTL QTKW.ndsu.5A was important for drought tolerance as it was identified for TKW in both water regimes and corresponded with the QTL QTgw.abrii- 5A (Azadi et al., 2014). Another constitutive QTL, QTKW.ndsu.5B1, improved drought tolerance. No previously reported QTL was identified nearby, indicating its novelty. . QTKW.ndsu.5D2 was another QTL giving stability across water regimes. It could correspond to the QTLQRv+ and Qsra+, which improved root volume and surface root area, respectively, and were identified under both water regimes (Ibrahim et al., 2012a). The minor QTL, QTKW.ndsu.4A being identified for DSI, stabilized the change in TKW due to drought condition. This QTL was in the same location as *QTgw.abrii- 4A.2* for TKW reported earlier (Azadi et al., 2014).

4.5.7. QTL for SPK

The QTL *QSPK.ndsu.7B* was identified for DSI and hence stabilized the SPK due to the drought condition and improved drought tolerance. This locus was also reported for YLD under the dry treatment (Peleg et al., 2009). Another QTL, *QSPK.ndsu.1A*, identified under the drought

conditions, enhanced drought tolerance by increasing the number of spikes when experiencing drought. This locus could be the same QTL reported earlier for SPK (Li et al., 2007). Another QTL, *QSPK.ndsu.4A.2*, associated with stability in the number of SPK under drought conditions, seemed to be novel as it did not correspond with any reported QTL.

4.5.8. QTL for TIL

One major constitutive QTL, *QTL.ndsu.5A.3*, corresponded with the QTL reported by Kato et al. (1999).

4.6. Conclusions

Drought-tolerant wheat cultivars can strengthen food security as drought often poses a threat to wheat production in the northern USA and across the world. Understanding the genetic basis of drought tolerance in wheat is important for developing tolerant varieties. In this study, an attempt was made to elucidate the genetic factors of drought tolerance in HRSW in the northern USA. A high-density SNP-based genetic map was developed, and QTL analysis was carried out. Seven agronomic traits were evaluated in a greenhouse experiment under both control and drought water regimes.

A total of 22 QTL important for drought tolerance were identified. Among these QTL, eight were identified for the drought water regime, eight were constitutive, and six were identified for DSI. Besides those, 11 QTL were identified for the control conditions and four QTL for the mean. The QTL present on chromosomes 4D, 5D, 5A, 5B, 2B, and 4A had a maximum effect for drought tolerance.

The identified QTL could be very helpful in marker-assisted breeding programs aimed at improving drought tolerance. Also, the high-density maps could provide a better starting platform for the fine mapping and ultimately map-based cloning of major loci. More interestingly, some of the desirable alleles were contributed by the parent Albany, which is apparently susceptible to drought. This resulted in the transgressive segregants combining desirable alleles from both parents, which could also be extremely useful for drought-tolerance breeding.

4.7. References

- Alexander, L.M., F.M. Kirigwi, A.K. Fritz, and J.P. Fellers. 2012. Mapping and quantitative trait loci analysis of drought tolerance in a Spring wheat population using amplified fragment length polymorphism and diversity array technology markers. Crop Sci. 52(1): 253–261.
- Azadi, A., M. Mardi, E.M. Hervan, S.A. Mohammadi, F. Moradi, M.T. Tabatabaee, S.M.
 Pirseyedi, M. Ebrahimi, F. Fayaz, M. Kazemi, S. Ashkani, B. Nakhoda, and G.
 Mohammadi-Nejad. 2014. QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol. Biol. Report. (April 2014).
- Bogard, M., C. Ravel, E. Paux, J. Bordes, F. Balfourier, S.C. Chapman, J. Le Gouis, and V.Allard. 2014. Predictions of heading date in bread wheat (Triticum aestivum L.) usingQTL-based parameters of an ecophysiological model. J. Exp. Bot. 65(20): 5849–5865.
- Breseghello, F., and M.E. Sorrells. 2007. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. F. Crop. Res. 101(2): 172–179.
- Bullrich, L., M.L. Appendino, G. Tranquilli, S. Lewis, and J. Dubcovsky. 2002. Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor. Appl. Genet. 105(4): 585–593.
- Cabral, A.L., M.C. Jordan, C. A. McCartney, F.M. You, D.G. Humphreys, R. MacLachlan, and C.J. Pozniak. 2014. Identification of candidate genes, regions and markers for pre-harvest
sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Biol. 14: 340. Available at

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4253633&tool=pmcentrez&r endertype=abstract.

- Campbell, K.G., C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, G. Hareland, R.G. Fulcher, M.E. Sorrells, and P.L. Finney. 1999. Quantitative trait loci associated with kernel traits in a soft x hard wheat cross. Crop Sci. 39(4): 1184–1195.
- Climate change and the economy. 2008. Natl. Conf. State Legis. Available at http://www.ncsl.org/print/environ/ClimateChangeND.pdf (verified 15 December 2016).
- Cui, F., X. Fan, C. Zhao, W. Zhang, M. Chen, and J. Li. 2014. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet. 15: 57–73.
- Desiderio, F., D. Guerra, D. Rubiales, L. Piarulli, M. Pasquini, A.M. Mastrangelo, R. Simeone,
 A. Blanco, L. Cattivelli, and G. Vale. 2014. Identification and mapping of quantitative
 trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum
 accession. Mol. Breed. 34(4): 1659–1675.
- Edae, E.A., P.F. Byrne, S.D. Haley, M.S. Lopes, and M.P. Reynolds. 2014. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 127: 791–807.
- FAOSTAT. 2016. Available at http://faostat3.fao.org/faostat-gateway/go/to/home/E (verified 15 December 2016). FAO, Rome, Italy.

- Fischer, R., and R. Maurer. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 29: 897. Available at http://www.publish.csiro.au/?paper=AR9780897.
- Frohberg, R.C., R.W. Stack, T. Olson, J.D. Miller, and M. Mergoum. 2006. Registration of 'Alsen.' Crop Sci. 46: 2311–2312.
- Gao, F., W. Wen, J. Liu, A. Rasheed, G. Yin, X. Xia, X. Wu, and Z. He. 2015. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 6 (December): 1099. Available at http://www.ncbi.nlm.nih.gov/pubmed/26734019\nhttp://www.pubmedcentral.nih.gov/arti

clerender.fcgi?artid=PMC4683206.

- de Givry, S., M. Bouchez, P. Chabrier, D. Milan, and T. Schiex. 2005. CARTHAGENE: Multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics 21: 1703–1704.
- Griffiths, S., J. Simmonds, M. Leverington, Y. Wang, L. Fish, L. Sayers, L. Alibert, S. Orford, L. Wingen, L. Herry, S. Faure, D. Laurie, L. Bilham, and J. Snape. 2009. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor. Appl. Genet. 119: 383–395.
- Guedira, M., M. Xiong, Y.F. Hao, J. Johnson, S. Harrison, D. Marshall, and G. Brown-Guedira.
 2016. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major
 developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLoS One 11(5):
 e0154242. Available at http://dx.plos.org/10.1371/journal.pone.0154242.

- Huang, X.Q., S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys, J.S. Noll, D.J. Somers, and P.D. Brown. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 113: 753–766.
- Huang, B.E., A.W. George, K.L. Forrest, A. Kilian, M.J. Hayden, M.K. Morell, and C.R. Cavanagh. 2012. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol. J. 10: 826–839.
- Ibrahim, S.E., A. Schubert, K. Pillen, and J. Léon. 2012. QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat. 2: 619–629.
- Kamran, A., M. Iqbal, A. Navabi, H. Randhawa, C. Pozniak, and D. Spaner. 2013. Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population. Theor. Appl. Genet. 126: 1965–1976.
- Kato, K., H. Miura, and S. Sawada. 1999. Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breed. 118(5): 391–394.
- Kirigwi, F.M., M. Van Ginkel, G. Brown-Guedira, B.S. Gill, G.M. Paulsen, and A.K. Fritz.
 2007. Markers associated with a QTL for grain yield in wheat under drought. Mol. Breed.
 20: 401–413.
- Kosambi, D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175.
- Kuchel, H., K.J. Williams, P. Langridge, H.A. Eagles, and S.P. Jefferies. 2007. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor. Appl. Genet. 115(8): 1029–1041.

- Kumar, A., E.E. Mantovani, R. Seetan, A. Soltani, M. Echeverry-Solarte, S. Jain, S. Simsek, D. Doehlert, M.S. Alamri, E.M. Elias, S.F. Kianian, and M. Mergoum. 2016. Dissection of genetic factors underlying wheat kernel shape and size in an Elite × Nonadapted cross using a high density SNP linkage map. Plant Genome 9: 1-22. Available at https://dl.sciencesocieties.org/publications/tpg/abstracts/9/1/plantgenome2015.09.0081.
- Lander, E.S., and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
- Li, S., J. Jia, X. Wei, X. Zhang, L. Li, H. Chen, Y. Fan, H. Sun, X. Zhao, T. Lei, Y. Xu, F. Jiang,H. Wang, and L. Li. 2007. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breed. 20(2): 167–178.
- Li, X., X. Xia, Y. Xiao, Z. He, D. Wang, R. Trethowan, H. Wang, and X. Chen. 2015. QTL mapping for plant height and yield components in common wheat under water limited and full irrigation environments. Crop Pasture Sci. 8: 660–670. Available at http://www.publish.csiro.au/view/journals/dsp_journals_pip_abstract_Scholar1.cfm?nid= 40&pip=CP14236.
- Liu, S., S.O. Assanga, S. Dhakal, X. Gu, C.T. Tan, Y. Yang, J. Rudd, D. Hays, A.M.H. Ibrahim,
 Q. Xue, S. Chao, R. Devkota, C. Shachter, T. Huggins, S. Mohammed, and M.P.
 Fuentealba. 2016. Validation of chromosomal locations of 90K array single nucleotide
 polymorphisms in US wheat. Crop Sci. 56: 364-373.
- Liu, G., S.B. Xu, Z.F. Ni, C.J. Xie, D.D. Qin, J. Li, L.H. Lu, J.P. Zhang, H.R. Peng, and Q.X. Sun. 2011. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chinese Sci. Bull. 56(18): 1897–1903.

Maccaferri, M., M.C. Sanguineti, S. Corneti, J.L.A. Ortega, M. Ben Salem, J. Bort, E.
DeAmbrogio, L.F.G. Del Moral, A. Demontis, A. El-Ahmed, F. Maalouf, H. Machlab, V.
Martos, M. Moragues, J. Motawaj, M. Nachit, N. Nserallah, H. Ouabbou, C. Royo, A.
Slama, and R. Tuberosa. 2008. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178(1): 489–511.

- McCartney, C.A., D.J. Somers, D.G. Humphreys, O. Lukow, N. Ames, J. Noll, S. Cloutier, and B.D. McCallum. 2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x 'AC Domain.' Genome 48(5): 870–883. Available at http://www.ncbi.nlm.nih.gov/pubmed/16391693.
- Mergoum, M., R.C. Frohberg, R.W. Stack, T. Olson, T.L. Friesen, and J.B. Rasmussen. 2006. Registration of "Glenn" wheat. Crop Sci.: 46:473–474.
- Mergoum, M., R.C. Frohberg, R.W. Stack, J.W. Rasmussen, and T.L. Friesen. 2008. Registration of "Faller" Spring Wheat. J. Plant Regist. 2(3): 224–229. Available at <Go to ISI>://CCC:000268932600013\nhttp://www.crops.org.
- Milner, S.G., M. Maccaferri, B.E. Huang, P. Mantovani, A. Massi, E. Frascaroli, R. Tuberosa, and S. Salvi. 2016. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnol. J. 14(2): 735–748. Available at http://www.ncbi.nlm.nih.gov/pubmed/26132599.
- Narjesi, V., M. Mardi, E.M. Hervan, and A. Azadi. 2015. Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivum L.) under normal and salt- stress conditions. Plant Mol Biol 33: 2030–2040.

- North Dakota Wheat Commission. 2016. Building bigger better Mark. Available at http://www.ndwheat.com/buyers/default.asp?ID=294 (verified 15 December 2016).
- Peleg, Z., T. Fahima, T. Krugman, S. Abbo, D. Yakir, A.B. Korol, and Y. Saranga. 2009. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant, Cell Environ. 32(7): 758–779.
- Pushpendra, K.G., S.B. Harindra, L.K. Pawan, K. Neeraj, K. Ajay, R.M. Reyazul, M. Amita, and K. Jitendra. 2007. QTL analysis for some quantitative traits in bread wheat. J. Zhejiang Univ. Sci. B 8(11): 807–14. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2064952&tool=pmcentrez&r

endertype=abstract.

- Quarrie, S.A., S. Pekic Quarrie, R. Radosevic, D. Rancic, A. Kaminska, J.D. Barnes, M. Leverington, C. Ceoloni, and D. Dodig. 2006. Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J. Exp. Bot. 57(11): 2627–2637.
- Ramya, P., A. Chaubal, K. Kulkarni, L. Gupta, N. Kadoo, H.S. Dhaliwal, P. Chhuneja, M. Lagu, and V. Gupta. 2010. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J. Appl. Genet. 51(4): 421–429.

Rippey, B.R. 2015. The U.S. drought of 2012. Weather Clim. Extrem. 10: 57–64.

Russo, M.A., D.B.M. Ficco, G. Laidò, D. Marone, R. Papa, A. Blanco, A. Gadaleta, P. De Vita, and A.M. Mastrangelo. 2014. A dense durum wheat × T. dicoccum linkage map based on SNP markers for the study of seed morphology. Mol. Breed. 34(4): 1579–1597. SAS Institute. 2004. SAS Online Doc, v. 9.1.2. SAS Inst., Cary, NC.

Shindo, C., H. Tsujimoto, and T. Sasakuma. 2003. Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity (Edinb.). 90(1): 56–63.

Simmonds, J., P. Scott, M. Leverington-Waite, A.S. Turner, J. Brinton, V. Korzun, J. Snape, and C. Uauy. 2014. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 14: 191. Available at

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4105860&tool=pmcentrez&r endertype=abstract.

Singh, A., R.E. Knox, R.M. DePauw, A.K. Singh, R.D. Cuthbert, S. Kumar, and H.L. Campbell. 2016. Genetic mapping of common bunt resistance and plant height QTL in wheat. Theor. Appl. Genet. 129(2): 243–256. Available at "http://dx.doi.org/10.1007/s00122-015-2624-8.

Sourdille, P., J.W. Snape, T. Cadalen, G. Charmet, N. Nakata, S. Bernard, and M. Bernard. 2000.
Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43(3): 487–494. Available at http://www.nrcresearchpress.com/doi/abs/10.1139/g00-013\nhttp://www.nrcresearchpress.com/doi/abs/10.1139/g00-013#.U80ianKYNko\nhttp://www.nrcresearchpress.com/doi/abs/10.1139/g00-013#.U80ianKYNko\nhttp://www.nrcresearchpress.com/doi/abs/10.1139/g00-013.

Sun, X.Y., K. Wu, Y. Zhao, F.M. Kong, G.Z. Han, H.M. Jiang, X.J. Huang, R.J. Li, H.G. Wang, and S.S. Li. 2009. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165(3): 615–624.

- Tadesse, W., F.C. Ogbonnaya, A. Jighly, M. Sanchez-Garcia, Q. Sohail, S. Rajaram, and M. Baum. 2015. Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS One 10(10): 1–18.
- Voorrips, R.. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered 93: 77–78.
- Wang, S., D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, M. Maccaferri, S. Salvi, S.G.
 Milner, L. Cattivelli, A.M. Mastrangelo, A. Whan, S. Stephen, G. Barker, R. Wieseke, J.
 Plieske, M. Lillemo, D. Mather, R. Appels, R. Dolferus, G. Brown-Guedira, A. Korol,
 A.R. Akhunova, C. Feuillet, J. Salse, M. Morgante, C. Pozniak, M.C. Luo, J. Dvorak, M.
 Morell, J. Dubcovsky, M. Ganal, R. Tuberosa, C. Lawley, I. Mikoulitch, C. Cavanagh,
 K.J. Edwards, M. Hayden, and E.
 - Akhunov. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12(6): 787–796.
- Wei, L., S. Bai, J. Li, X. Hou, X. Wang, H. Li, B. Zhang, W. Chen, D. Liu, B. Liu, and H.Zhang. 2014. QTL positioning of thousand wheat grain weight in Qaidam Basin. (June): 239–244.
- Wu, Q.H., Y.X. Chen, S.H. Zhou, L. Fu, J.J. Chen, Y. Xiao, D. Zhang, S.H. Ouyang, X.J. Zhao, Y. Cui, D.Y. Zhang, Y. Liang, Z.Z. Wang, J.Z. Xie, J.X. Qin, G.X. Wang, D.L. Li, Y.L. Huang, M.H. Yu, P. Lu, L.L. Wang, L. Wang, H. Wang, C. Dang, J. Li, Y. Zhang, H.R. Peng, C.G. Yuan, M.S. You, Q.X. Sun, J.R. Wang, L.X. Wang, M.C. Luo, J. Han, and Z.Y. Liu. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 x Beinong6. PLoS One. 10(2): 1-17.

- Xu, X., G. Bai, B.F. Carver, and G.E. Shaner. 2005. A QTL for early heading in wheat cultivar Suwon 92. Euphytica 146(3): 233–237.
- Zanke, C., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, S. Beier, M.W. Ganal, and M.S. Röder. 2014a. Genetic architecture of main effect QTL for heading date in European winter wheat. Front. Plant Sci. 5(May): 217. Available at

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4033046&tool=pmcentrez&r endertype=abstract.

- Zanke, C.D., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, F. Neumann, A. Eichhorn, A. Polley, C. Jaenecke, M.W. Ganal, and M.S. Röder. 2015. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front. Plant Sci. 6(September): 1–14. Available at
- Zanke, C.D., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M.

http://journal.frontiersin.org/article/10.3389/fpls.2015.00644.

- Hinze, K. Neumann, M.W. Ganal, and M.S. Röder. 2014b. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L). PLoS One 9(11).
- Zhang, W., S. Chao, F. Manthey, O. Chicaiza, J.C. Brevis, V. Echenique, and J. Dubcovsky. 2008. QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor. Appl. Genet. 117(8): 1361–1377.

CHAPTER 5. GENOME-WIDE ASSOCIATION MAPPING FOR DROUGHT TOLERANCE IN SPRING WHEAT IN THE NORTHERN USA

5.1. Abstract

Understanding the genetics of drought tolerance in hard red spring wheat (HRSW) in the northern USA is a prerequisite for developing drought-tolerant cultivars for this region. Association mapping (AM) could be a better option than QTL mapping to use the natural variations present in diverse germplasm panel and with a higher resolution. An AM study for drought tolerance in spring wheat in the northern USA was undertaken using \geq 350 wheat genotypes. The genotypes were evaluated in different locations of North Dakota (ND) for plant height (PH), days to heading (DH), yield (YLD), test weight (TW), and thousand kernel weight (TKW) in rain-fed conditions. Rainfall data for the experimental sites were collected from the North Dakota Agricultural Weather Network (NDAWN) website to assess drought conditions. The AM panel was genotyped using Illumina's Infinium 90K SNP (Single Nucleotide polymorphism) assay. A total of 14,816 SNP markers were used for the association, employing a mixed linear model (MLM) with (PC + K). A total of 66 consistent QTL involved with drought tolerance were identified, with $p \le 0.001$. The chromosomes 1A, 3A, 3B, 4B, 4D, 5B, 6A, and 6B were identified to harbor major QTL for drought tolerance. Six novel QTL were identified on chromosomes 3D, 4A, 5B, 7A, and 7B. The findings of this study can be used in marker-assisted selection (MAS) for drought-tolerant breeding in spring wheat.

5.2. Introduction

Drought poses a major threat for crop yield, highlighting the urgent need to develop drought-tolerant cultivars (Ergen and Budak, 2009). The majority of countries worldwide experience drought problems, even those in humid regions as they often have dry spells at some point. Obviously, drought is more severe in arid areas with minimal rainfall (Sun et al., 2006). North Dakota is the biggest producer of HRSW in the USA (North Dakota Wheat Commission, 2016). The state, especially the semi-arid western half experiences frequent droughts (Climate change and the economy, 2008). Consequently, HRSW, a major cash crop for ND and the USA, is regularly affected by drought in this region. Developing and releasing drought-tolerant HRSW cultivars is critical to counter ND drought conditions, but this cannot be done without understanding the genetics of drought tolerance for HRSW in the northern USA.

Quantitative trait loci analysis allows genetic dissection, which can be a sound approach for understanding the molecular basis of drought tolerance in HRSW. In the past, several QTL mapping studies for drought tolerance in wheat were conducted (Kirigwi et al., 2007; Peleg et al., 2009; Sayed, 2011; Alexander et al., 2012; Ibrahim et al., 2012a; b; Kumar et al., 2012; Malik et al., 2015). These studies have used different types of markers, including SSRs, EST-STS, and DArTs. However, almost all of these studies were based on low-resolution molecular maps consisting of 102 to 690 markers. The number of markers in the previous studies seems insufficient to saturate the wheat genome due to its large size of 17 gigabase-pairs (Brenchley et al., 2012). Also, drought tolerance is a quantitative trait adopting different mechanisms (Blum, 1988) and should have a number of QTL distributed throughout the whole genome. A high resolution map can provide a more complete genetic dissection of drought tolerance and also a successful application of associated molecular markers through marker-assisted selection (MAS) programs. The Infinium iSelect 90K assay (Wang et al., 2014), with more than 81,000 geneassociated SNPs to assess polymorphism in bread wheat, provides a better means to identify SNPs tightly linked to drought tolerance.

Bi-parental QTL mapping, even when using high-density linkage maps, suffers some limitations. The bi-parental population has fewer recombination events, and therefore, has low resolution. By comparison, association mapping (AM) exploits a broader population and multiple alleles and has a better resolution of the QTL (Yu and Buckler, 2006). A few AM studies on drought tolerance conducted in the past have used a small number of markers (Dodig et al., 2012; Edae et al., 2013, 2014), which seems insufficient to explore the variation in wheat efficiently. Dodig et al. (2012) used 46 SSR markers, and Edae et al. (2013) used 78 DArT markers. Also, to date, no study of drought-tolerant QTL has been done for HRSW in the northern USA. Therefore, an AM study was carried out for drought tolerance in HRSW in the northern USA using the Infinium iSelect 90K assay to dissect the genetics of this important trait and identify closely-linked markers for marker-assisted breeding.

5. 3. Materials and Methods

5.3.1. Plant materials

In 2012, a panel of 350 germplasms composed of HRSW inbred lines developed by the HRSW breeding program at North Dakota State University (NDSU) and different cultivars with varying drought tolerance, was used for this study (Appendix Table A1). Eleven more accessions were added for the experiments conducted in 2013 and 2014 (Appendix Table A2). These lines were developed over time from different crosses and pedigree selections for different purposes, such as drought tolerance, disease resistance, quality, yield, etc. Therefore, the AM panel represented a wide range of diversity.

5.3.2. Field experiments

The evaluation of agronomic performances of the AM panel was carried out under nonirrigated field conditions at different locations of ND. In 2012, the plant material was evaluated

at Prosper, Casselton, and Minot. In 2013, the evaluation was carried out in Prosper, Minot, and Williston. And in 2014, the plant material was evaluated in Prosper, Minot, and Hettinger. Prosper and Casselton are located in eastern ND, at 46.9630° N, 97.0198° W and 46.9° N. 97.210556⁰ W, respectively. Minot is located between western ND's semi-arid grassland and central ND's sub-humid grassland (48.2330° N, 101.2923° W). Williston is located in northwestern ND (48.1470° N, 103.6180° W), and Hettinger is in southwestern ND (46.0014° N, 102.6368° W). The total rainfall during the growing period (seed sowing to ripening) in 2012, 2013, and 2014 at Prosper was 119.6 mm, 269.7 mm, and 168.6 mm, respectively (Table 5.1). Minot had a total growing period rainfall of 168 mm in 2012, 159.8 mm in 2013, and 230.9 mm in 2014. And, Casselton, Williston, and Hettinger had a total rainfall of 122.8 mm (2012), 319.3 mm (2013), and 200.3 mm (2014), respectively (Table 5.1) during the growing season (NDAWN, 2015). The available soil moisture of the experimental sites (Table 5.1) was considered to assess the drought condition. The available soil moisture was achieved from the soil type of the experimental sites (Frazen, 2003). Each experiment was conducted in a randomized complete block design (RCBD) with two replicates in 2012, whereas a simple Lattice design was used in 2013 and 2014. The plots had an area of 2.44 m. \times 1.22 m and seven rows with a 15.24cm gap between them in 2012 and 2013. The plot size of $2.44m \times 1.42m$ was larger in 2014, but the number of rows was still seven with a bigger 17.78 cm gap between them.

Environments	Soil type	Plant-available water (mm water/30.48 cm soil)	Rainfall (mm)
Casselton 2012	Fine silty loam	45.72-63.5	120.1
Prosper 2012	Fine silty loam	45.72-63.5	119.6
Minot 2012	Fine sandy loam	31.75-45.72	168
Prosper 2013	Fine silty loam	45.72-63.5	269.7
Minot 2013	Fine sandy loam	31.75-45.72	442.3
Williston 2013	Fine sandy loam	31.75-45.72	319.3
Minot 2014	Fine sandy loam	31.75-45.72	230.9
Prosper 2014	Fine silty loam	45.72-63.5	168.6
Hettinger 2014	Fine sandy loam	31.75-45.72	200.3

Table 5.1. Soil types, plant-available water (water-holding capacity of soil), and total rainfall for eight environments

5.3.3. Data collection

The phenotypic data was collected on DH, PH, YLD, TW, and TKW. Heading date was recorded when more than 50% of the plants in the plot were starting to flower. Plant height was measured in the middle of the plot from plant base to tip excluding the awn. Yield per plot was converted to yield/ha for further analysis. Similarly, Kg/0.5 pint cup was converted to Kg/m³ as the TW for further analysis. A thousand kernels were counted using a seed counter and were weighed for TKW.

5.3.4. Phenotypic data analysis

The ANOVA Proc MIXED procedure was used (SAS Institute, 2004) to analyze the phenotypic data from 2012, whereas for 2013 and 2014, the Proc LATTICE was used. The accessions of the AM panel were considered as fixed effects, and environments and blocks were considered as random effects in the ANOVA Proc MIXED procedure. The mean values were separated using the *F*-protected least significant difference (LSD) value at the $P \leq 0.05$ level of significance. The phenotypic data with a low coefficient of variance (CV) value and significant differences among entries were used for further analysis. The locations that did not show

significant differences for most of the traits and with a high CV were not included for further analysis and reporting.

5.3.5. Genotyping

Genomic DNA was isolated from lyophilized young leaves of each genotype using the DNeay Plant Mini Kit (Qiagen, Valencia, CA, cat. no. 69106). The quality of the DNA was checked on 0.8% agarose gel. The NanoDrop 1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE) was used to check the DNA concentration. The accessions of the AM panel were genotyped using the Illumina 90K iSelect wheat SNP assay in the Small Grains Genotyping Lab, USDA-ARS, Fargo, ND. The genotyping module GenomeStudio V2011.1 (www.illumina.com, verified 18 December 2015) was used to analyze the SNP data.

5.3.6. Association analysis

The Illumina iSelect 90K assay (Wang et al., 2014) produced data for 81,587 SNPs. The clustering of the SNP alleles and calling of the genotypes were performed with GS v2011.1 (www.illumina.com, verified 18 December 2015). The minimum number of points used in the cluster was 10 (Wang et al., 2014). Monomorphic SNPs and SNPs having more than 20% missing genotypic data and 10% heterozygosity were excluded. The best linear unbiased prediction (iBLUP) method (Yang et al., 2014a) was used to impute the missing genotypic data for the remaining SNPs. A total of 17, 900 polymorphic SNPs were screened for their positions on the chromosomes based on the wheat consensus genetic map (Wang et al., 2014). An additional 2,756 SNPs were excluded for lacking map positions on the consensus maps. The software TASSEL v.5.0 was used for the AM study. The mixed linear model (MLM) with PC + Kinship (K) was used for AM, where the genotypic data were filtered for minor allele (\leq 5%) frequency. A total of 14,816 filtered SNPs were used for further AM study. The association was

analyzed using five principal components (PC), which captured 25% of variation (Table 5.4). The initial cut-off point for marker trait association (MTA) was considered at $p \le 0.001$. Then, this cut-off was subjected to Bonferroni-correction (Yang et al., 2014b) to get the threshold ($p \le 3.4 * 10^{-6}$). Only the markers identified to be associated in at least two environments were reported. The sequences of the markers showing MTAs were obtained from the GrainGenes database, and the NCBI BLAST database was used to check if the markers represented any candidate genes.

5.4 Results

5.4.1. Phenotypic analyses

A significant difference among genotypes was found in the environments of Casselton 2012, Prosper 2012, Minot 2012, Prosper 2013, Prosper and Minot 2013 and 2014, and Hettinger 2014 (Table 5.2). Williston 2013 did not show significant variation among genotypes (except for TW and TKW). Also, it had a very high CV% for the trait YLD, indicating less precision in that location. Minot 2014 had similar issues to Willison (Table 5.2). Therefore, data from these two environments were not analyzed further. The seeds of Minot 2013 could not be cleaned due to Fusarium head blight infection, and hence, YLD, TW and TKW could not be reported for that environment.

Environment df HD ¹ PH ¹ YLD [§] TW [¶]	TKW [#]
and sources	
Casselton, 2012	
Treatment 349 12.35*** 4.2*** 2.51*** 4.82**	* 4.08***
Error 0.48 18.69 155709 92.82	2.13
CV% 1.57 5.2 9.98 1.22	5.02
Prosper, 2012	
Treatment 349 11.23*** 4.71*** 2*** 5.87**	* 4.49***
Error 0.42 16.87 158617 131.65	2.85
CV% 1.38 4.63 11.15 1.51	5.86
Minot, 2012	
Treatment 8.75*** 4.44*** 2.26*** 3.95**	* 2.98***
Error 0.7 24.91 150677 264.68	3.37
CV% 1.36 5.34 11.73 2.13	6.75
Prosper, 2013	
Treatment 342 12.81*** 4.94*** 2.72*** 7.42**	* 8.62***
Error 0.63 13.76 135437 31.2	1.56
CV% 1.65 4.33 7.78 0.69	3.57
Williston, 2013	
Treatment 342 1.13 1.18 0.84 2.67**	* 5.41***
Error 5.24 75.79 520718 77.83	2.25
CV% 3.8 14.3 31.1 1.09	4.81
Minot, 2013	
Treatment 342 1.21* 1.51***	
Error 3.59 52.54	
CV% 3.67 9.66	
Minot, 2014	
Treatment 342 0.96 1.05 1.06 0.99	
Error 4.01 53.81 422853 58417	
CV% 3.78 7.21 13.18 29.17	
Prosper, 2014	
Treatment 342 15.67*** 1.34*** 4.42*** 7.96**	* .
Error 0.53 106.97 116745 42.2	
CV% 1.48 10.56 6.43 0.83	
Hettinger, 2014	
Treatment 342 1.52*** 2.55*** 1.54*** 11.49*	** .
Error 1.99 6.6 517964 38.89	
CV04 2.48 6.55 17.17 0.8	

Table 5.2. Analysis of variance for agronomic traits in nine environments

*Significant at 0.05, ***Significant at 0.001 probability level

^{*}HD = Days to heading, ^{*}PH = Plant height, ^{\$}YLD = Yield, [¶]TW = Test weight, [#]TKW = Thousand kernel weight

5.4.2. Analysis of SNP markers

Out of 14,816 SNP markers used in the association study, 7,848 were located on the Bgenome, 5,503 on the A-genome, and 1,465 markers on the D-genome. The D-genome had the lowest density of markers, with an average distance of 0.87 cM between two markers (Table 5.4). The number of markers on individual chromosomes ranked from 56 (4D) to 1,433 (2B). The average number of markers per chromosome was 705.52 (Table 5.3).

5.4.3. Association analysis

5.4.3.1. QTL for DH

Twenty QTL were identified to be associated with DH. These QTL explained from 5.6 to 11.33% of phenotypic variation (PV) (Table 5.5). Five QTL were identified to explain >10% of PV, and therefore were considered major QTL. Twelve of the QTL were identified to be constitutive, and eight of the QTL were identified exclusively in drought-prone environments (Table 5.5).

5.4.3.2. QTL for PH

A total of 20 QTL were identified to have an association with PH. These QTL explained from 4.54 to 48.01% of PV (Table 5.5). Seven QTL explained >10% of PV and can be considered major QTL. Sixteen QTL were identified as constitutive, three were identified in the control environments and one was identified in the drought environment (Table 5.5).

Chromosome	No. of markers	Map length	Average map density
			cM/marker
1A	785	156.3	0.2
2A	861	185.47	0.22
3A	661	197.2	0.3
4A	663	166.71	0.25
5A	783	148.3	0.19
6A	852	175.32	0.21
7A	898	244.16	0.28
1B	1197	173.62	0.15
2B	1433	188.27	0.13
3B	1139	154.48	0.14
4B	635	118.91	0.19
5B	1348	219.77	0.16
6B	1216	122.92	0.1
7B	880	188.64	0.21
1D	261	199.86	0.77
2D	476	152.84	0.32
3D	207	152.84	0.74
4D	56	170.43	3.04
5D	147	207.33	1.41
6D	170	160.5	0.94
7D	148	226.87	1.53
A genome	5,503	1,273.46	0.23
B genome	7,848	1,166.61	0.15
D genome	1,465	1270.67	0.87
Whole genome	14,816	3,710.74	0.25

Table 5.3. Distribution of markers in wheat chromosomes and genomes based on the 90k SNP consensus map (Wang et al., 2014).

PC	Eigen value	Proportion of individual PC	Cumulative proportion
0	138.17	0.06	0.06
1	106.88	0.05	0.11
2	89.08	0.04	0.15
3	76.52	0.04	0.19
4	65.57	0.03	0.22
5	63.14	0.03	0.25
6	50.93	0.03	0.28
7	45.58	0.02	0.3
8	42.6	0.02	0.32
9	40.83	0.02	0.34
10	34.81	0.02	0.36
11	30.72	0.02	0.38
12	29.16	0.01	0.39
13	27.74	0.01	0.4
14	27.18	0.01	0.41
15	26.39	0.01	0.42
16	26.09	0.01	0.43
17	23.49	0.01	0.44
18	23.04	0.01	0.45
19	21.94	0.01	0.46
20	21.13	0.01	0.47
21	20.31	0.01	0.48
22	19.29	0.01	0.49
23	18.65	0.01	0.5

Table 5.4. Number of principal components (PC) with Eigen values and the proportion of variations they explained.

5.4.3.3. QTL for YLD

Seventeen QTL were identified to be associated with YLD. These QTL explained 4.11 to 12.04% of PV (Table 5.5). Only one QTL, located on chromosome 4B, had a major effect. Sixteen QTL were identified as constitutive, and the remaining QTL was identified in the drought-prone experimental sites (Table 5.5).

QTL and trait	QTL	Other	Env. [†]	Water regime	Position [§]	p¶	R ²
	region	associated					(%)
Days to heading		traits					
QDH.ndsu.1B	5		1*, 2, 4*	Constitutive	90.26	4.83*10-7	8.96
~ QDH.ndsu.2A.2	10		1*, 2, 4*	Constitutive	113.30	1.92*10-6	8.07
~ QDH.ndsu.2B.2	14	PH, TKW	1*, 2, 4*, 6*,	Constitutive	99.8-	4.86*10-8	10.44
-			7*		104.39		
QDH.ndsu.2D	16		2*, 4	Constitutive	19.03	2.98*10-6	7.54
QDH.ndsu.3A.1	17	PH, TW	1*, 2, 6*, 7*	Constitutive	90.55	$1.25*10^{-8}$	11.33
QDH.ndsu.3B	21	TW, YLD	1*, 2, 3*, 4*,	Constitutive	70.09	1.44*10-8	11.24
QDH.ndsu.4A.1	25	TKW	1*, 2, 3*, 4*	Constitutive	51.97	1.83*10-6	8.10
QDH.ndsu.4B	28	TW, PH,	1*, 2*, 4*, 7*	Constitutive	64.03-	7.35*10-6	7.22
ODH ndsu AD	20	YLD	1* 2 /*	Constitutivo	75.64	3 11*10 ⁻⁸	10.74
QDII.nusu.4D	25		$1^{+}, 2, 4^{+}$ $1^{*}, 2^{*}, 2^{*}, 4^{*}$	Constitutive	94.22 100.64	5.11·10 7.67*10-6	7 10
QDH.nasu.3B.2	33		1*, 2*, 3*, 4*, 5*	Constitutive	100.64- 110.19	/.0/*10°	7.19
QDH.ndsu.6B	39	TKW,	1*, 2*, 6*, 7*	Constitutive	63.14-	2.97*10 ⁻⁵	6.34
ODH nday 7P	4.4	PH, YLD) * 2* 1*	Constitutive	71.76	0.19*10-5	5 60
QDH.nasu./B	44	ILD	2, 3, 4,	Constitutive	101.18	9.10.10	5.00
QDH.ndsu.2A.1	8	TW	1*, 2	Drought	25.02	4.95*10 ⁻⁸	10.43
QDH.ndsu.2A.3	11	YLD	1*, 2	Drought	141.66	$1.81*10^{-6}$	8.11
QDH.ndsu.2B.1	13	YLD	1*, 2	Drought	83.80	8.13*10-7	8.62
QDH.ndsu.3A.2	18	YLD	1*, 2	Drought	117.73	$1.58*10^{-7}$	9.68
QDH.ndsu.4A.2	26	TKW	1*, 2*, 3*	Drought	99.19-	3.69*10 ⁻⁵	6.21
ODH.ndsu.5A.1	30		1*.2	Drought	103.03 55.01	2.54*10 ⁻⁶	7.90
ODH ndsu 5A 2	31		1* 2* 3*	Drought	84.13	3 98*10 ⁻⁶	7.61
ODH ndsu 5B 1	33	TKW	1* 2	Drought	5 70	8 35*10 ⁻⁷	8.61
Plant height	55	111.00	1,2	Diougin	5.10	0.00 10	0.01
OPH.ndsu.1A	3		1*. 5. 6*	Constitutive	105.74	9.80*10 ⁻¹³	16.83
OPH ndsu 1B	4	YLD	2* 4* 7	Constitutive	76.89	3 2*10 ⁻⁷	7 73
OPH ndsu 2A 1	9	120	2* 3* 4* 7	Constitutive	98.43-	2.03*10 ⁻⁵	631
gi iiiiasa.211.1	,		2,3,1,7	constitutive	101.97	2.03 10	0.01
QPH.ndsu.2A.2	12		2*, 6*,7*	Constitutive	156.23-	2.4*10 ⁻⁵	6.25
QPH.ndsu.2B	14	TKW, DH	2*, 3*, 4*, 5, 7*	Constitutive	102.89	2.24*10 ⁻⁷	8.99
QPH.ndsu.3A.1	17	TW, DH	2*, 3*, 4*	Constitutive	77.57	1.68*10-4	5.13
QPH.ndsu.3A.2	19		2*, 6	Constitutive	128.64	6.08*10 ⁻⁷	8.46
QPH.ndsu.3A.3	20		3*, 4*, 6*	Constitutive	180.33	5.42*10-5	5.72

Table 5.5. Traits and associated QTL along with QTL region, chromosome number, position, associated traits, water regimes, and p and R2 values.

QTL and trait	QTL	Other	Env. [‡]	Water regime	Position [§]	p¶	R ² (%)
	region	traits ¹					
QPH.ndsu.3B	22		2*, 3*, 5*	Constitutive	102.54-	5.29*10-4	4.54
OPH nday 3D 1	23		0 * 5 * 7 *	Constitutivo	106.73	3 20*10-4	4 67
QF H. Masu. 3D. 1	23		$2^{\circ}, 3^{\circ}, 7^{\circ}$ $2^{*}, 3^{*}, 4^{*}$	Constitutive	0-4.40 66.00	$5.29^{\circ}10$ 1.62*10 ⁻⁴	4.07
QI II.nusu.JD.2	24	TW	$2^{\circ}, 3^{\circ}, 4^{\circ}$	Constitutive	56 10	$1.02 \cdot 10$ 3 70*10 ⁻¹⁴	10.07
QI 11.11.450.4D	28	YLD, DH	1, 2, 3, 4, 5°, 0, 7*	Constitutive	50.19	5.79.10	19.97
QPH.ndsu.5B	34	YLD	2*, 3*, 4*,5, 6, 7*	Constitutive	63.07	6.51*10 ⁻³¹	48.01
QPH.ndsu.6A.2	38		1, 5*	Constitutive	133.74	8.66*10 ⁻⁸	10.07
QPH.ndsu.6B.1	39	TKW, DH, YLD	3*, 4*, 5, 6*, 7	Constitutive	56.98	1.8*10 ⁻³⁰	47.15
QPH.ndsu.7A.2	43		2*, 3*, 4*	Constitutive	212.66	4.3*10-6	7.55
QPH.ndsu.6A.1	37		4,5	Control	82.38	4.61*10 ⁻¹⁰	12.85
QPH.ndsu.6B.2	40	YLD	5,7*	Control	108.86	$1.07*10^{-30}$	47.60
QPH.ndsu.6D	41		4*, 5, 6*, 7*	Control	22.92	1.56*10-7	9.21
QPH.ndsu.7A.1	42		1*, 2 *, 3*	Drought	61.36	3.38*10-4	4.83
Thousand kernel	weight						
QTKW.ndsu.2B.1	14	PH, DH	1*, 2*, 3*	Drought	106.56- 114.57	7.44*10 ⁻⁵	5.64
QTKW.ndsu.2B.2	15	YLD	2*, 3	Drought	155.41	9.33*10 ⁻⁷	8.55
QTKW.ndsu.4A.1	25	DH	1*, 2*, 3*	Drought	48.98- 51.97	1.74*10-4	5.22
QTKW.ndsu.4A.2	26	DH	1*, 2*, 3*	Drought	105.87- 108.72	1*10-4	5.59
QTKW.ndsu.4A.3	27		2, 3*	Drought	154.30	2.44*10-7	9.20
QTKW.ndsu.6B	39	PH, DH, YLD	1*, 2*, 3*	Drought	56.64- 64.82	1.79*10 ⁻⁴	5.20
QTKW.ndsu.5B	33	DH	1*, 3, 4*	Constitutive	17.48	1.98*10 ⁻⁶	6.92
Test weight							
QTW.ndsu.1A	1		1*, 2*, 6*	Constitutive	29.11- 38.11	4.39*10 ⁻⁴	4.63
QTW.ndsu.2A	8	DH	1*, 4*, 5*	Constitutive	20.26	7.12*10-4	4.07
QTW.ndsu.3A	17	PH, DH	1*, 2*, 5*	Constitutive	85.73	284*10-4	3.70
QTW.ndsu.3B	21	DH, YLD	1*, 3*, 4*, 5*	Constitutive	62.31- 69.53	3.83*10 ⁻⁶	7.58
QTW.ndsu.4B	28	PH, YLD, DH	1, 2*, 3, 4*, 5*, 6*	Constitutive	55.55	4.66*10-7	7.66
Yield							
QYL.ndsu.1A	2		1*, 3*, 5*	Constitutive	48.45- 56.81	1.49*10 ⁻⁵	6.77
QYL.ndsu.1B.1	4	PH	1*, 2*, 3*, 4	Constitutive	70.08	2.22*10-6	6.59
QYL.ndsu.1B.2	6		1*, 5*, 6*	Constitutive	112.07	3.68*10-5	6.20
QYL.ndsu.1D	7		1, 5*	Constitutive	3.40	2.89*10-6	7.80

Table 5.5. Traits and associated QTL along with QTL region, chromosome number, position, associated traits, water regimes, and p and R2 values (continued).

QTL and trait	QTL	Other	Env. [‡]	Water regime	Position [§]	p¶	R ² (%)
	region	associated traits ¹					
QYL.ndsu.2A	11	DH	1, 4*, 5*	Constitutive	144.41	$1.86*10^{-6}$	8.08
QYL.ndsu.2B.1	13	DH	1, 4*, 6*	Constitutive	88.93- 90.971	1.31*10 ⁻⁵	5.57
QYL.ndsu.2B.2	15	TKW	1, 3, 4, 5, 6	Constitutive	157.21	1.79*10-6	8.11
QYL.ndsu.3B	21	TW, DH	1*, 4*, 5*, 6*	Constitutive	62.31- 69.53	5.81*10 ⁻⁶	7.36
QYL.ndsu.4B	28	PH, DH, TW	1, 4*, 5, 6*	Constitutive	56.19	4.17*10 ⁻⁹	12.04
QYL.ndsu.5A	32		1*, 4*, 6*	Constitutive	116.35- 117.67	1.7*10-4	4.11
QYL.ndsu.5B	34	PH	1, 4*	Constitutive	68.36	1.94*10-6	6.91
QYL.ndsu.6A	36		1, 3*, 4*	Constitutive	12.48	1.52*10-6	8.21
QYL.ndsu.6B.1	39		1*, 4*, 5*	Constitutive	64.08- 64.71	6.08*10 ⁻⁶	7.33
QYL.ndsu.6B.2	40	PH	1, 3*, 4	Constitutive	115.25	1.38*10-6	7.12
QYL.ndsu.7B	44	DH	1*, 3*, 4*	Constitutive	89.82- 92.52	6.64*10-4	4.26
QYL.ndsu.7D	45		1*, 4*, 5*	Constitutive	128.15- 135.55	3.19*10 ⁻⁵	5.24
QYL.ndsu.3A	18	DH	1, 2*, 3*	Drought	109.95	1.52*10-6	8.21

Table 5.5. Traits and associated QTL along with QTL region, chromosome number, position, associated traits, water regimes, and p and R2 values (continued).

F DH = Days to heading, PH = Plant height, YLD = Yield, TW = Test weight, TKW = Thousand kernel weight.

 $^{+}1$ = Casselton 2012, 2 = Prosper 2012, 3 = Minot 2012, 4 = Prosper 2013, 5 = Prosper 2014, 6 = Hettinger 2014, 7 = Minot 2013, 8 = Mean across environments

[§]Position represents the peak point of the QTL interval. The position is based on consensus map of Wang et al. (2014).

* p less than 0.001 but above the threshold level.

5.4.3.4. QTL for TW

Five QTL were identified to have an association with TW. All of these QTL had minor

effects, explaining from 3.7 to 7.66% of PV. All of the QTL identified were constitutive (Table

5.5).

5.4.3.5. QTL for TKW

Seven QTL were identified for TKW, all of which had minor effects, explaining from 5.2 to 9.2% of PV. One QTL among them was constitutive, and the remaining six were identified in the drought-prone environments (Table 5.5).

5.5. Discussion

5.5.1. Association analyses

In this study, the iBLUP method (Yang et al., 2014a) was used to impute missing genotypic data as it was reported to tolerate a high rate of missing data especially for rare alleles, compared to the common imputation methods. High-density single nucleotide polymorphism (SNP) genotyping arrays explore genomic diversity and MTAs very efficiently (Wang et al., 2014). Infinium iSelect 90K assay, uses more than 81,000 gene-associated SNPs to reveal polymorphism in allohexaploid and allotetraploid wheat populations (Wang et al., 2014; Wu et al., 2015; Kumar et al., 2016; Liu et al., 2016). Higher genome coverage and resolution in the dissection of wheat's agronomic traits are possible using this genotypic tool (Kirigwi et al., 2007; Muchero et al., 2009; Sayed, 2011; Alexander et al., 2012; Ibrahim et al., 2012a; Kumar et al., 2016). The marker density found in this study (0.49cM/marker) was in agreement with the previous studies using the 90K Infinium iSelet assay (Wang et al., 2014; Ain et al., 2015; Kumar et al., 2016).

The MLM model used in this association study is a newly-developed model that is proving to be very efficient for genome-wise association studies (GWAS) (Li and Zhu, 2013). The MLM can be used with either structured (R) or principal component (PC). The utilization of MLM with PC was considered a better option because the structured association is more likely to give a false positive association due to the historical relationship (Larsson et al., 2013). However, the PCs are a smaller number of uncorrelated variables transformed from correlated variables. Among the PCs, the first PC captures the maximum variation, and the others follow in descending order of variation (Table 5.5). This study used five PCs, which captured 25% of the variation. Again, the MLM with PC can be without Kinship (K) or with K. The K is the "coefficient of relatedness," which minimizes spurious association (Khan, 2013). Therefore, The MLM (PC + K) was used for the association study.

Determining the threshold for the p-value is crucial. A liberal threshold will declare a false positive association (a type I error), whereas too stringent a threshold is likely to miss a true association (a type II error). Taking this into consideration, the initial cut-off was chosen as $p \le 0.001$, which was not very stringent. Then, the threshold ($p \le 3.4 * 10^{-6}$) was determined using the Bonferroni-correction (Yang et al., 2014b), which was very stringent. The MTAs identified at the initial cut-off and the threshold were reported if they were identified in at least at two environments. This repetition of the MTA further minimized any false associations.

5.5.2. Use of secondary data to assess drought conditions

Drought can be assessed by variable weather conditions, soil moisture, and crop conditions over a particular growing season (Lanceras et al., 2004). Therefore, rainfall data were collected, and the soil types of the experimental sites, which reflect soil moisture, were taken into consideration to assess drought conditions for this study. The total amount of rainfall was collected from planting date to plant physiological maturity. The dates for the physiological maturity of the plants were calculated by adding 30 days to DH (Simmons, 1914). Among the experimental locations, Casselton 2012, Prosper 2012, and Minot 2012 were considered to have drought conditions, whereas Prosper 2013, Minot 2013, Prosper 2014, and Hettinger 2014 were considered to have control conditions. Although Minot 2012 and Prosper 2014 had about the same amount of rainfall, the soil in Prosper had a better water-holding capacity. Therefore, Minot 2012 was considered to have drought conditions.

5.5.3. Use of agronomic data to assess drought tolerance

Several studies suggested that drought tolerance can be incorporated into a breeding program most effectively by identifying QTL for YLD or YLD-related traits (Lanceras et al., 2004; Alexander et al., 2012; Dodig et al., 2012; Besufekad and Bantte, 2013; Edae et al., 2014; Ain et al., 2015). The agronomic traits used in this study for identifying SNP markers associated with drought are DH, PH, YLD, TW, and TKW. Among those, YLD is the trait of ultimate interest to breeders.

5.5.4. DH

Several major and minor QTL were revealed for DH, which indicated the quantitative nature of the trait. The eight QTL for DH, identified exclusively under drought conditions, could play a vital role in drought tolerance. Also, the constitutive QTL can be used for drought tolerance breeding in wheat. Some of these QTL (exclusively for drought or constitutive) identified in this study corresponded with some already reported QTL associated with drought tolerance. Malik et al. (2015) identified three adjacent QTL on chromosome 2A for drought tolerance related to the photosynthetic rate, cell membrane stability, and relative water content. The QTL *QDH.ndsu.2A.1* in this study could represent one of those QTL. Two QTL identified in this study on the chromosome 3A, which were important for drought tolerance, *QDH.ndsu.3A.1* and *QDH.ndsu.3A.2* could represent the QTL,*QHea.T84-3A* (Ibrahim et al., 2012a) which was found to increase DH under both drought and non-drought conditions. Chromosomal arm 3AL also harbors a gene for earliness *per se* (Edae et al., 2014), gene for enhanced response to abscisic acid (*ERA1*) which gives drought tolerance (Edae et al., 2014). The gene *ERA1*, also

located on chromosome 3B, could represent the QTL *QDH.ndsu.3B* identified in this study. Kamran et al. (2013) identified a QTL, *QFlt.dms-4A.1*, for reduced DH at 4A 61.2 cM on chromosome 4A, which may represent the constitutive QTL *QDH.ndsu.4A.1* identified in this study. The constitutive QTL *QDH.ndsu.2B.2* corresponded with the QTL *QCrs-* (Ibrahim et al., 2012b), which was reported to deteriorate the number of root crossing in both water regimes. A QTL for drought tolerance on 4AL reported by Alexander et al. (2012) may represent the QTL *QDH.ndsu.4A.2*, which was identified exclusively for drought-prone environments in this study. The constitutive QTL *QDH.ndsu.6B* was located in the same genomic location as the QTL *QHea+*, which was reported to reduce DH in both water conditions (Ibrahim et al., 2012a). Huang et al. (2006) reported a QTL for days to maturity, *QDtm.crc-2D*, that corresponded with the constitutive QTL in this study, *QDH.ndsu.2D*, according to the GrainGenes database. No reported QTL, however were identified that could correspond with the QTL *QDH.ndsu.5B.2* and *QDH.ndsu.7B* identified in this study.

5.5.5. PH

The QTL *QPH.ndsu.5B* could represent the orthologos gene to the GA-insensitive dwarf gene, *GID1L2* in rice, indicating the syngenic relationship of rice and wheat (Zanke et al., 2014). The major QTL for PH, *QPH.ndsu.6B.1* and *QPH.ndsu.6B.2*, were also reported by Zanke et al. (2014). The major QTL *QPH.ndsu.4B* could represent the reduced height gene *Rht-B1* (Wilhelm, 2011), which was reported to be on the short arm of chromosome 4B. This gene encodes the DELLA protein that reduces a plant's sensitivity to gibberellin (GA), thereby reducing stalk length and making the plant semi-dwarf. The QTL *QPH.ndsu.1A*, *QPH.ndsu.2A.1*, *QPH.ndsu.6A.2*, and *QPH.ndsu.3A.3* could represent the QTL for PH reported by Zanke et al. (2014). The QTL *QPH.ndsu.3A.3* and *QPH.ndsu.3D.2* important for drought tolerance could be

the same as those reported by Ibrahim et al. (2012a). Liu et al. (2011) identified a QTL for PH, *QHt-3B*, which could occupy the same region as the QTL *QPH.ndsu.3B*. The QTL *QPH.ndsu.7A.1* coincided with the QTL *QHt.crc-7A* (McCartney et al., 2005). The QTL *QPH.ndsu.7A.2* and *QPH.ndsu.3D.1* in this study did not correspond with any reported QTL and hence could be novel.

5.5.6. YLD

In the past, Edae et al. (2014) reported a QTL for TKW on chromosome 1BL and a QTL for TW on chromosome 2BL that could correspond with the QTL QYL.ndsu.1B.1 and OYL.ndsu.2B.2, respectively. Ibrahim et al. (2012a) identified a QTL, OCrs.D84-2B, on chromosome 2B at 93.4 cM that deteriorates the number of root crossings under both water regimes and could represent the QTL QYL.ndsu.2B.1 found in this study. Ibrahim et al. (2012b) identified a YLD QTL, QYld.T84-3Bat, occupying the same location as the QTL QYL.ndsu.3B identified in this study. They identified another QTL, QYld. 784-3Bat 59.8, which deteriorated YLD under both water regimes and could coincide with the QTL QYL.ndsu.4B identified in this study. The QTL QYL.ndsu.5B and QYL.ndsu.6B.2 corresponded with QTL for TW and TKW (Edae et al., 2014). Also, the QTL QYL.ndsu.5B corresponded with the QTL QYld*, which was reported to improve YLD under drought stress (Ibrahim et al., 2012a). The QTL QYL.ndsu.1B.2 had the same genomic location as the constitutive QTL for green leaf area reported by Edae et al. (2014). Ibrahim et al. (2012a) reported a QTL, QTgw+, which improved thousand grain weight under both water conditions and could represent the QTL QYL.ndsu.1D. The QTL QYL.ndsu.2A could coincide with the YLD QTL QGY.caas-2A (Li et al., 2015). Huang et al. (2006) identified the QTL QTgw.crc-6A for TKW that seemed to correspond with this study's QTL QYL.ndsu.6A.

The QTL *QYL.ndsu.7D* corresponded with the QTL *QHi*+, which was reported to improve the harvest index under both water conditions (Ibrahim et al., 2012a).

5.5.7. TW

The QTL *QTW.ndsu.4B* was reported by Li et al. (2016) as they identified QTL for TW in this region. The QTL *QTW.ndsu.1A* corresponded with two QTL for YLD, *QYld.abrii- 1A1.2* (Azadi et al., 2014) and *QGY.caas-1A* (Li et al., 2015). The constitutive QTL *QTW.ndsu.2A* occupied the same genomic region as the QTL for drought tolerance related to photosynthetic rate reported by Malik et al. (2015). The QTL *QTW.ndsu.3B* corresponded with the YLD QTL *QYld.T84-3Bat* reported by Ibrahim et al. (2012b).

5.5.8. TKW

The QTL *QTKW.ndsu.4A.2* had the same genomic location as the QTL reported by Kirigwi et al. (2007) for YLD and YLD-related traits under drought stress. Ibrahim et al. (2012a) identified the QTL *QTgw-* for thousand grain weight in both water conditions, which seemed to represent the QTL *QTKW.ndsu.6B* identified in this study. The QTL *QTKW.ndsu.2B.1, QTKW.ndsu.2B.2,* and *QTKW.ndsu.4A.3* could be the same QTL for thousand grain weight reported by Zanke et al. (2015). The QTL *QTKW.ndsu.4A.1* and *QTKW.ndsu.5B* seem to be novel QTL as they do not correspond with any reported QTL.

5.6. Conclusions

This study revealed 69 QTL, which included 50 constitutive QTL, three QTL identified for the control water regime, and 16 QTL exclusively under the drought conditions. Of those 16 QTL, several could be used for developing lines suitable for drought conditions. Chromosome 5B, 6B, and 4B seemed to be very important for drought tolerance by reducing PH and increasing YLD and YLD-related traits. Several identified QTL occupied genomic regions reported for earliness *per se*, drought tolerance, and reduced height. The consistency of some QTL in the different environments indicated their validity. To conclude, this study could provide valuable information to breeders in their attempts to breed drought tolerant wheat cultivars.

5.7. References

- Ain, Q.U., A. Rasheed, A. Anwar, T. Mahmood, M. Imtiaz, X. Xia, Z. He, and U.M. Quraishi. 2015. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front. Plant Sci. 6(September): 743. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4585131&tool=pmcentrez&ren dertype=abstract.
- Alexander, L.M., F.M. Kirigwi, A.K. Fritz, and J.P. Fellers. 2012. Mapping and quantitative trait loci analysis of drought tolerance in a Spring wheat population using amplified fragment length polymorphism and diversity array technology markers. Crop Sci. 52(1): 253–261.
- Azadi, A., M. Mardi, E.M. Hervan, S.A. Mohammadi, F. Moradi, M.T. Tabatabaee, S.M.
 Pirseyedi, M. Ebrahimi, F. Fayaz, M. Kazemi, S. Ashkani, B. Nakhoda, and G.
 Mohammadi-Nejad. 2014. QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol. Biol. Report. (April 2014).
- Besufekad, Y., and K. Bantte. 2013. Evaluation and association mapping for drought tolerance in sorghum [Sorghum bicolor (L.) Moench]. Glob. J. Sci. Front. Res. Agric. Vet. 13(5).
- Brenchley, R., M. Spannagl, M. Pfeifer, G.L.A. Barker, R. D'Amore, A.M. Allen, N. McKenzie,
 M. Kramer, A. Kerhornou, D. Bolser, S. Kay, D. Waite, M. Trick, I. Bancroft, Y. Gu, N.
 Huo, M.-C. Luo, S. Sehgal, B. Gill, S. Kianian, O. Anderson, P. Kersey, J. Dvorak, W.R.
 McCombie, A. Hall, K.F.X. Mayer, K.J. Edwards, M.W. Bevan, and N. Hall. 2012.

Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426): 705–10. Available at

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3510651&tool=pmcentrez&ren dertype=abstract.

- Climate change and the economy. 2008. Natl. Conf. State Legis. Available at http://www.ncsl.org/print/environ/ClimateChangeND.pdf (verified 15 December 2016).
- Dodig, D., M. Zoric, B. Kobiljski, J. Savic, V. Kandic, S. Quarrie, and J. Barnes. 2012. Genetic and association mapping study of wheat agronomic traits under contrasting water regimes. Int. J. Mol. Sci. 13(5): 6167–6188.
- Edae, E.A., P.F. Byrne, S.D. Haley, M.S. Lopes, and M.P. Reynolds. 2014. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 127(4): 791–807.
- Edae, E. A., P.F. Byrne, H. Manmathan, S.D. Haley, M. Moragues, M.S. Lopes, and M.P. Reynolds. 2013. Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. Plant Gen. 6: Available at https://dl.sciencesocieties.org/publications/tpg/abstracts/6/2/.
- ErgenN, Z., and H. Budak. 2009. Sequencing over 13,000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Env. 32: 220–236.
- Frazen, D.W. 2003. North Dakota soil and fertilizer handbook. NDSU Extension Service, North Dakota State University, Fargo, ND.
- Huang, X.Q., S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys, J.S. Noll, D.J. Somers, and P.D. Brown. 2006. Molecular detection of QTLs for agronomic and quality traits in a

doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 113(4): 753–766.

- Ibrahim, S.E., A. Schubert, K. Pillen, and J. Léon. 2012a. Comparison of QTLs for drought tolerance traits between two advanced backcross populations of spring wheat. Int. J. AgriScience 2(3): 216–227.
- Ibrahim, S.E., A. Schubert, K. Pillen, and J. Léon. 2012b. QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat. 2(July): 619–629.
- Kamran, A., M. Iqbal, A. Navabi, H. Randhawa, C. Pozniak, and D. Spaner. 2013. Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population. Theor. Appl. Genet. 126(8): 1965–1976.
- Khan, M. 2013. Association mapping using TASSEL software. Plant Breed. Genomics. Available at http://articles.extension.org/pages/62755/association-mapping-using-tasselsoftware (verified 7 January 2017).
- Kirigwi, F.M., M. Van Ginkel, G. Brown-Guedira, B.S. Gill, G.M. Paulsen, and A.K. Fritz.
 2007. Markers associated with a QTL for grain yield in wheat under drought. Mol. Breed.
 20(4): 401–413.
- Kumar, A., E.E. Mantovani, R. Seetan, A. Soltani, M. Echeverry-Solarte, S. Jain, S. Simsek, D. Doehlert, M.S. Alamri, E.M. Elias, S.F. Kianian, and M. Mergoum. 2016. Dissection of genetic factors underlying wheat kernel shape and size in an Elite × Nonadapted cross using a high density SNP linkage map. Plant Genome 9(1): 1-22. Available at https://dl.sciencesocieties.org/publications/tpg/abstracts/9/1/plantgenome2015.09.0081.

- Kumar, S., S.K. Sehgal, U. Kumar, P.V.V. Prasad, A.K. Joshi, and B.S. Gill. 2012. Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186(1): 265–276.
- Lanceras, J., G. Pantuwan, B. Jongdee, and T. Toojinda. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology 135(May): 384–399. Available at http://www.plantphysiol.org/content/135/1/384.short.
- Larsson, S.J., A.E. Lipka, and E.S. Buckler. 2013. Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet. 9(2).
- Li, C., G. Bai, S. Chao, B. Carver, and Z. Wang. 2016. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat. Cj 4: 1–11. Available at http://dx.doi.org/10.1016/j.cj.2015.10.002.
- Li, X., X. Xia, Y. Xiao, Z. He, D. Wang, R. Trethowan, H. Wang, and X. Chen. 2015. QTL mapping for plant height and yield components in common wheat under water limited and full irrigation environments. Crop Pasture Sci. 8: 660–670. Available at http://www.publish.csiro.au/view/journals/dsp_journals_pip_abstract_Scholar1.cfm?nid=40 &pip=CP14236.
- Li, G., and H. Zhu. 2013. Genetic studies : The linear mixed models in genome-wide association studies. Open Bioinforma. J. 7(Suppl 1, M2): 27–33.
- Liu, S., S.O. Assanga, S. Dhakal, X. Gu, C.T. Tan, Y. Yang, J. Rudd, D. Hays, A.M.H. Ibrahim,
 Q. Xue, S. Chao, R. Devkota, C. Shachter, T. Huggins, S. Mohammed, and M.P.
 Fuentealba. 2016. Validation of chromosomal locations of 90K array single nucleotide
 polymorphisms in US wheat. Crop Sci. 56: 364-373.

- Liu, G., S.B. Xu, Z.F. Ni, C.J. Xie, D.D. Qin, J. Li, L.H. Lu, J.P. Zhang, H.R. Peng, and Q.X.
 Sun. 2011. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chinese Sci. Bull. 56(18): 1897–1903.
- Malik, S., T.A. Malik, and G. Engineering. 2015. Genetic mapping of potential QTLs associated with drought tolerance in wheat. 25(4): 1032–1040.
- McCartney, C.A., D.J. Somers, D.G. Humphreys, O. Lukow, N. Ames, J. Noll, S. Cloutier, and B.D. McCallum. 2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x'AC Domain.' Genome 48(5): 870–883. Available at http://www.ncbi.nlm.nih.gov/pubmed/16391693.
- Milner, S.G., M. Maccaferri, B.E. Huang, P. Mantovani, A. Massi, E. Frascaroli, R. Tuberosa, and S. Salvi. 2016. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnol. J. 14(2): 735–748. Available at http://www.ncbi.nlm.nih.gov/pubmed/26132599.
- Muchero, W., J.D. Ehlers, T.J. Close, and P.A. Roberts. 2009. Mapping QTL for drought stressinduced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.].Theor. Appl. Genet. 118(5): 849–863.
- North Dakota Wheat Commission. 2016. Building bigger better Mark. Available at http://www.ndwheat.com/buyers/default.asp?ID=294 (verified 15 December 2016).
- Peleg, Z., T. Fahima, T. Krugman, S. Abbo, D. Yakir, A.B. Korol, and Y. Saranga. 2009. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant, Cell Environ. 32(7): 758–779.

- Sayed, M.A.E.A.E. 2011. QTL analysis for drought tolerance related to root and shoot traits in barley (Hordeum vulgare L.). PhD thesis Bonn Universitäts-und Landesbibliothek Bonn: 165.
- Simmons, S.R., E.A. Oelke, and P.M. Anderson. 1914. Growth and development guide for spring wheat. Agricultural Extension Service University of Minnesota, AG-FO-2547.
- Sun, Y., S. Solomon, A. Dai, and R.W. Portmann. 2006. How often does it rain? J. Clim. 19(6): 916–934.
- Wang, S., D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, M. Maccaferri, S. Salvi, S.G.
 Milner, L. Cattivelli, A.M. Mastrangelo, A. Whan, S. Stephen, G. Barker, R. Wieseke, J.
 Plieske, M. Lillemo, D. Mather, R. Appels, R. Dolferus, G. Brown-Guedira, A. Korol, A.R.
 Akhunova, C. Feuillet, J. Salse, M. Morgante, C. Pozniak, M.C. Luo, J. Dvorak, M. Morell,
 J. Dubcovsky, M. Ganal, R. Tuberosa, C. Lawley, I. Mikoulitch, C. Cavanagh, K.J.
 Edwards, M. Hayden, and E. Akhunov. 2014. Characterization of polyploid wheat genomic
 diversity using a high-density 90 000 single nucleotide polymorphism array. Plant
 Biotechnol. J. 12(6): 787–796.
- Wilhelm, E. 2011. Genetic analysis of the Group IV Rht LOCI in wheat. (June). Available at https://ueaeprints.uea.ac.uk/49761/1/THESIS_EdWilhelm.pdf.
- Wu, Q.H., Y.X. Chen, S.H. Zhou, L. Fu, J.J. Chen, Y. Xiao, D. Zhang, S.H. Ouyang, X.J. Zhao, Y. Cui, D.Y. Zhang, Y. Liang, Z.Z. Wang, J.Z. Xie, J.X. Qin, G.X. Wang, D.L. Li, Y.L. Huang, M.H. Yu, P. Lu, L.L. Wang, L. Wang, H. Wang, C. Dang, J. Li, Y. Zhang, H.R. Peng, C.G. Yuan, M.S. You, Q.X. Sun, J.R. Wang, L.X. Wang, M.C. Luo, J. Han, and Z.Y. Liu. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 x Beinong6. PLoS One. 10 (2): 1-17.

- Yang, Y., Q. Wang, Q. Chen, R. Liao, X. Zhang, H. Yang, Y. Zheng, Z. Zhang, and Y. Pan.2014a. A new genotype imputation method with tolerance to high missing rate and rare variants. PLoS One 9(6).
- Yang, N., L. Yl, X. Yang, J. Huang, Y. Zhou, F. Ali, W. Wen, J. Liu, J. Li, and J. Yan. 2014b.
 Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9): e1004573.
- Yu, J., and E.S. Buckler. 2006. Genetic association mapping and genome organization of maize.Curr. Opin. Biotechnol. 17: 155–160.
- Zanke, C.D., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, F. Neumann, A. Eichhorn, A. Polley, C. Jaenecke, M.W. Ganal, and M.S. Röder. 2015. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front. Plant Sci. 6(September): 1–14. Available at http://journal.frontiersin.org/article/10.3389/fpls.2015.00644.
- Zanke, C.D., J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, K. Neumann, M.W. Ganal, and M.S. Röder. 2014. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L). PLoS One 9(11).
CHAPTER 6. GENERAL CONCLUSIONS

Genetic dissection of drought tolerance in wheat is very important for developing drought-tolerant wheat cultivars. Genomic locations controlling drought tolerance in wheat can be identified by bi-parental QTL mapping or association mapping (AM). Bi-parental mapping offers the opportunity to discover rare alleles, whereas AM offers the opportunity to discover common variants. Association mapping exploits a broader population, allowing for a higher resolution. Combining these approaches to find the genomic location controlling drought tolerance in wheat can be complementary and overcome any shortcomings of using only one approach. Therefore, a combined approach using both bi-parental QTL mapping and AM was taken to study the genetics of drought tolerance in hard red spring wheat (HRSW) in the northern USA.

A total of 11 consistent QTL giving drought tolerance were revealed in the field experiments using the bi-parental population. Chromosomes 7B, 2B, 5A, 5D, and 6A were found to have a maximum effect for drought tolerance in these experiments. A total of 22 QTL with drought tolerance were identified in the greenhouse experiment using the bi-parental population. Chromosomes 4D, 5D, 5A, 5B, 2B, and 4A were identified to have the most vital effects for drought tolerance in this experiment. The experiments using the AM panel revealed 66 QTL associated with drought tolerance. The marker-trait associations (MTAs) for drought tolerance were higher in chromosomes 1A, 3A, 3B, 4B, 4D, 5B, 6A, and 6B.

Twelve genomic regions were repeatedly identified to be associated with drought tolerance across two-three studies described in this dissertation. The genomic regions within 14.41-38.11 cM and 48.45-63.11cM on chromosome 1A were found to be associated with drought tolerance in the bi-parental QTL mapping study (greenhouse) and the AM study. The

genomic region within 7.41-30.11 cM on chromosome 2B was identified to give drought tolerance in both bi-parental studies (greenhouse and field). The genomic region within 81.31-110.01 cM on chromosome 2B was identified to be involved in drought tolerance in all three studies. Quantitative trait loci for drought tolerance were identified on chromosome 4A within 132.91 -154.3 cM in all three studies. The genomic region within 55.55-81.41 cM on chromosome 4B was involved in drought tolerance in the bi-parental QTL mapping study (greenhouse) and the AM study. Also, these two studies shared a common genomic region (94.22-126.81 cM) on chromosome 4D and (84.13-106.01) on chromosome 5A cM for drought tolerance. The genomic region within 116.35-142.01 cM on chromosome 5A was involved in drought tolerance in the bi-parental study. Quantitative trait loci were identified for drought tolerance in both bi-parental mapping studies on chromosome 5A at 194.71- 208.31 cM. The genomic region on the linkage group 5D2 at 1.01-20.91 cM was identified to be associated with drought tolerance in both bi-parental mapping studies. Also, chromosome 7B was involved in drought tolerance at 22.21-40.11 cM.

One novel QTL for drought tolerance was identified in the bi-parental mapping study (field), whereas the bi-parental mapping study (greenhouse) revealed three novel QTL for drought tolerance. Six novel QTL were identified for drought tolerance in the AM study. The QTL identified in these studies could be used in marker-assisted selections for developing drought-tolerant HRSW cultivars for the northern USA.

APPENDIX

Serial number	Germplasms used in the AM panel
1	Glenn
2	Frontana/W9207//Alsen/3/ND752/4/ND2857/Dapps
3	ND708/ND706//Alsen
4	Polaris/Glenn
5	Oklee/Reeder
6	ND2902/Parshall//ND751
7	ND709-9/ND2902
8	W9207/Grandin//Alsen/3/ND752
9	Traverse/Glenn
10	SD3618/Howard
11	Arina/Steele-ND//ND806
12	Granger/ND806
13	Glenn/ND735
14	Howard/Glenn
15	ND706/Parshall//Howard/3/Faller
16	Briggs/Glenn
17	WCB703/Alsen//ND744/ND721
18	Glenn/Reeder
19	Parshall/Howard
20	Dapps/Briggs
21	SD3870/ND807
22	9950146ES/Alsen
23	ND721*2/Tokai66//Glenn
24	Frontana/W9207//Alsen/3/ND2849/ND721/4/Granite
25	Faller
26	ND744/ND721//ND744/ND721/3/Briggs
27	Frontana/W9207//Alsen/3/ND756/4/Freyr
28	ND810/Alsen
29	9950146ES/Glenn
30	SD3936/Steele-ND
31	MN01NIL84-5-5-15/Alsen
32	SD3901/Alsen
33	SD3635/Barlow
34	ND2902/Reeder//ND716-21/3/ND804
35	ND818'S'/ND810
36	ND810/ND819'S'

Table A1. Germplasms used in the AM panel for 2012.

37 Velva/Bigg Red 38 ND802/Alsen//Dapps/3/Steele-ND/4/Glenn 39 Frontana/W9207//Alsen/3/ND721/Parshall/4/ND751 40 HJ98/Glenn 41 Frontana/W9207/ND748 42 ND822 'S' 43 K1157a1 44 P1350768/ND751//Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Steele-ND/ND806 48 Ada/Alsen 49 ND816'S'/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller <th>Serial number</th> <th>Germplasms used in the AM panel</th>	Serial number	Germplasms used in the AM panel
58 ND802/Alsen//Dapps/3/Steele-ND/4/Glenn 39 Frontana/W9207//Alsen/3/ND721/Parshall/4/ND751 40 HJ98/Glenn 41 Frontana/W9207/ND748 42 ND822 'S' 43 K1157a1 44 P1350768/ND751//Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Steele-ND/ND806 48 Ada/Alsen 49 ND816'S'/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND/ND806 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND816'S/Faller 64 ND802/MT0415/Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND	37	Velva/Bigg Red
59 Frontana/W9207//Alsen/3/ND721/Parshall/4/ND751 40 HJ98/Glenn 41 Frontana/W9207/ND748 42 ND822 'S' 43 K1157a1 44 Pl550768/ND751/Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Stecle-ND/ND806 48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND815/ND801 65 Steele-ND/ND815	38	ND802/Alsen//Dapps/3/Steele-ND/4/Glenn
40 HJ98/Glenn 41 Frontana/W9207/ND748 42 ND822 'S' 43 K1157a1 44 P1350768/ND751/Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Steele-ND/ND806 48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706ib//MT0416 62 Oklee/Howard 63 ND816/S/Faller 64 ND802/MT0415/Steele-ND/3/ND812 65 Steele-ND/XD815 66 ND816/S/ND806 67	39	Frontana/W9207//Alsen/3/ND721/Parshall/4/ND751
41 Frontana/W9207//ND748 42 ND822 'S' 43 K1157a1 44 P1350768/ND751//Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Steele-ND/ND806 48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Okce/Howard 63 ND816'S/Faller 64 ND802/MT0415/Skeele-ND/3/ND812 65 Steele-ND/NB15 66 ND815/ND803 67 Samson/ND812 68	40	HJ98/Glenn
42 ND822'S' 43 K1157a1 44 P1350768/ND751//Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Steele-ND//ND806 48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3(Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND815/ND706ib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 <	41	Frontana/W9207//ND748
43 K1157a1 44 P1350768/ND751//Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Stecle-ND/ND806 48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Stecle-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415/Stecle-ND/3/ND812 65 Stecle-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND815/NE083 61	42	ND822 'S'
44 PI350768/ND751//Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps 45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Steele-ND/ND806 48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glean 61 ND2813/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/NB03 67 Samon/ND812 68 ND2799/ND21 69 ND815/ND2055/ND729 70 <thnd735 steele-nd<="" th=""> 7</thnd735>	43	K1157a1
45 ND807/Alsen 46 Buck Pronto/Glenn 47 Arina/Steele-ND//ND806 48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)/ND2955/ND729	44	PI350768/ND751//Parshall/6/Tam107/TA749//Wrangler/3/2*Reeder/4/Parshall/5/Dapps
46 Buck Pronto/Glenn 47 Arina/Steele-ND//ND806 48 Ada/Alsen 49 ND8165/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/J/Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND8165/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND163/Siteel-ND 71 ND735/Steele-ND 72 Dapps/LDN(IC3A)/ND2955/ND729 73 ND817 S' 74 Alsen/Walworth/ND744	45	ND807/Alsen
47 Arina/Steele-ND//ND806 48 Ada/Alsen 49 ND816S/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND816/S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/NB083 67 Samson/ND812 68 ND2879/ND721 69 ND819 S' 70 ND736/Steele-ND 71 ND735/Steele-ND 72 Dapps/LDN(D1C3A)/ND2955/ND729 73 NB17 S' 74 Alsen/Walworth/ND744 75 Prosper	46	Buck Pronto/Glenn
48 Ada/Alsen 49 ND816'S/Faller 50 Barlow 51 Daps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND816'S'Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Daps/LDN(DIC3A)/ND2955/ND729 73 NB817 'S' 74 Alsen/Walworth/ND744 75 Prosper	47	Arina/Steele-ND//ND806
49 ND816'S'/Faller 50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S'/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Daps/LDN(DIC3A)/ND2955/ND729 73 NB817 'S' 74 Alsen/Walworth/ND744 75 Prosper	48	Ada/Alsen
50 Barlow 51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/NB806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2799/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	49	ND816'S'/Faller
51 Dapps/ND804 52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND735/Steele-ND 70 ND735/Steele-ND 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth/ND744 75 Prosper	50	Barlow
52 Briggs/Steele-ND 53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3/Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415/Steele-ND/3/ND812 65 Steele-ND/NB15 66 ND815/ND803 67 Samson/ND812 68 ND279/ND721 69 ND819'S' 70 ND726/ND2831 71 ND735/steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth/ND744 75 Prosper	51	Dapps/ND804
53 SD3618/Howard 54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/NB806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S'Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	52	Briggs/Steele-ND
54 Rush/Oklee 55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/NB806 60 SD3870/Glenn 61 ND2831/ND706sib/MT0416 62 Oklee/Howard 63 ND816'S'/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Daps/LDN(DIC3A)/ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	53	SD3618/Howard
55 SD3936/MT0415 56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Daps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	54	Rush/Oklee
56 9950146ES/ND806 57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth/ND744 75 Prosper	55	SD3936/MT0415
57 Barlow/Reeder 58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	56	9950146ES/ND806
58 ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415 59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	57	Barlow/Reeder
59 Tom/ND806 60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S'/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth/ND744 75 Prosper	58	ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/MT0415
60 SD3870/Glenn 61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S'/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	59	Tom/ND806
61 ND2831/ND706sib//MT0416 62 Oklee/Howard 63 ND816'S'/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	60	SD3870/Glenn
62 Oklee/Howard 63 ND816'S'/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	61	ND2831/ND706sib//MT0416
63 ND816'S'/Faller 64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	62	Oklee/Howard
64 ND802/MT0415//Steele-ND/3/ND812 65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	63	ND816'S'/Faller
65 Steele-ND/ND815 66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	64	ND802/MT0415//Steele-ND/3/ND812
66 ND815/ND803 67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	65	Steele-ND/ND815
67 Samson/ND812 68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	66	ND815/ND803
68 ND2879/ND721 69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	67	Samson/ND812
69 ND819 'S' 70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	68	ND2879/ND721
70 ND726/ND2831 71 ND735/Steele-ND 72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	69	ND819 'S'
71ND735/Steele-ND72Dapps/LDN(DIC3A)//ND2955/ND72973ND817 'S'74Alsen/Walworth//ND74475Prosper	70	ND726/ND2831
72 Dapps/LDN(DIC3A)//ND2955/ND729 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper	71	ND735/Steele-ND
 73 ND817 'S' 74 Alsen/Walworth//ND744 75 Prosper 	72	Dapps/LDN(DIC3A)//ND2955/ND729
74Alsen/Walworth//ND74475Prosper	73	ND817 'S'
75 Prosper	74	Alsen/Walworth//ND744
	75	Prosper

Table A1. Germplasms used in the AM panel for 2012 (continued).

Serial number	Germplasms used in the AM panel
76	Kuntz/Howard
77	Briggs//ND744/ND721
78	Frontana//W9207//2*Alsen/3/ND744
79	KS86WGRCO2//Len/Butte86/3/ND674/4/2*Parshall
80	ND2948/Parshall//Alsen
81	PI157593/Parshall//Alsen
82	Glenn/Briggs//ND753/3/Steele-ND
83	Granger/ND806
84	ND2902/Parshall//ND751
85	Glenn/Briggs//ND753/3/Steele-ND
86	Reeder*2/3/Altar84/AE.SQ//Opata
87	ND819'S'/3/SD8070/ND674//ND2831
88	ND721*2/Tokai66//ND803
89	Prosper/Ulen
90	Parshall/Howard
91	ND2891/ND721
92	Kadett/Bobwhitesib//Grandin/3/ND706/4/ND752
93	Frontana/W9207//2*Alsen/3/ND752/4/Steele-ND
94	ND2849/ND721//Goldfield/2*Alsen
95	McVey//Vance/MN2540W/4/ND2831//Parshall/ND706/3/ND721/5/Alsen
96	ND820 'S'
97	Frontana/W9207//2*Alsen/3/2*ND752
98	VERDE/3/BCN//DOY1/AE.SQUARROSA (447)
99	RB07/Faller
100	Velva
101	ND815/MULT757
102	Dapps/ND804
103	Granite/Faller
104	SS5/Alsen//XC03B-736/3/Alsen/4/Alsen
105	SS156/Alsen//Alsen
106	Glenn/ND740'S'
107	ND2849/ND721//ND735/3/Steele-ND
108	ND2849/ND721//ND735/3/Steele-ND
109	Walworth/Reeder//ND721
110	ND744/Glenn//Parshall
111	ND2948/Alsen//ND740
112	ND652/Parshall//Reeder/3/Steele-ND
113	ND740//ND2955/ND721
114	ND740//ND2955/ND721

Table A1. Germplasms used in the AM panel for 2012 (continued).

115 ND734/Knudson 116 Dapps/LDN(DIC3A)//ND2955/ND729 117 ND7355/Steele-ND 118 Grandin*4/F0.971 (WRT238)/Parshall/3/Dapps/4/Steele-ND 119 Kadetl/Bobwhitesib/Grandin/3/ND706/4/Dapps 120 ND748/ND706/Steele-ND 121 ND708/ND706/Steele-ND 122 Glenn/Steele-ND 123 ND726/ND2831 124 Knudson/Dapps 125 Reeder 126 Kuntz/Dapps 127 Alscn/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND735/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207/2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688/Grandin 137 HOsward Alsen/ND749/3/Steele-ND 138 Faller/Howard 140 Prosper/Ulcn 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/To	Serial number	Germplasms used in the AM panel
116 Dapps/LDN(DIC3A)//ND2955/ND729 117 ND735/Steele-ND 118 Grandin*/4/FO.971 (WRT238)//Parshalt/3/Dapps/4/Steele-ND 120 ND744/ND721//Faller'S' 121 ND706/ND2831 122 Glenn/Steele-ND 123 ND726/ND2831 124 Knudson/Dapps 125 Reeder 126 Kuntz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Forotana/W9207/2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 POSpr/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshal/NB03 <t< td=""><td>115</td><td>ND734/Knudson</td></t<>	115	ND734/Knudson
117ND735/Steele-ND118Grandin*4/F0.971(WRT238)/Pashall/3/Dapps/4/Steele-ND119Kadett/Bobwhitesib//Grandin/3/ND706/4/Dapps120ND744/ND721//FallerS'121ND708/ND706//Steele-ND122Glenn/Steele-ND123ND726/ND2831124Knudson/Dapps125Reeder126Kuntz/Dapps127Alsen/ND803128Briggs/Glenn129ND737/Reeder130Knudson/D721131ND753/Alsen132WCB713/Alsen133Granite/ND804134Frontana/W2071/2*Alsen/3/ND744135Faller/Howard136ND209/ND688/Grandin137Howard/Alsen/ND749/3/Steele-ND138Faller/Howard139ND807/Alsen140Prosper/Ulen141ND231/ND706//Dapps/3/Alsen143Staller/Howard144WCB716/Reeder//Alsen145ND221*2/Tokai66143Parshall/ND803144WCB716/Reeder//Alsen145ND271*2/Tokai66/Steele-ND146ND721*2/Tokai66/Steele-ND147Velva/Big Red148Howard/Faller149ND71*2/Tokai66/Steele-ND145ND2879/ND721//Steele-ND146ND721*2/Tokai66/Steele-ND147Velva/Big Red148Howard/Faller149ND71*2/Tokai66/Steele-ND145ND2879/ND721//Steele-ND146Howard/Faller147 <td>116</td> <td>Dapps/LDN(DIC3A)//ND2955/ND729</td>	116	Dapps/LDN(DIC3A)//ND2955/ND729
118 Grandin*4/F0.971 (WRT238)//Parshall/3/Dapps/4/Steele-ND 119 Kadett/Bowhitesib//Grandin/3/ND706/4/Dapps 120 ND744/ND721//Faller'S' 121 ND708/ND706/Steele-ND 122 Glenn/Steele-ND 123 ND726/ND2831 124 Knudson/Dapps 125 Reder 126 Knutz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Fontana/W9207/2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66/Steele-ND 143 Parshal/ND803 144 WCB716/Reeder/Alsen 145 ND2879/ND721//Steele-ND <t< td=""><td>117</td><td>ND735/Steele-ND</td></t<>	117	ND735/Steele-ND
119 Kadett/Bobwhitesib//Grandin/3/ND706/4/Dapps 120 ND744/ND721//Faller'S' 121 ND708/ND706//Steele-ND 122 Glenn/Steele-ND 123 ND726/ND2831 124 Knudson/Dapps 125 Reeder 126 Kuntz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND73/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 Glenn/ND804 133 Granite/ND804 134 Frontana/W9207//2* Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 141 ND283/ND706//Dapps/3/Alsen 142 ND721*2/Tokia66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokia66/Steele-ND 1	118	Grandin*4/FO.971(WRT238)//Parshall/3/Dapps/4/Steele-ND
120 ND744/ND721//Faller'S' 121 ND708/ND706//Steele-ND 122 Glenn/Steele-ND 123 ND726/ND2831 124 Knudson/Dapps 125 Reeder 126 Knut/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen/IND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66 147 Vavai6gged 148 Howard/Faller	119	Kadett/Bobwhitesib//Grandin/3/ND706/4/Dapps
121 ND708/ND706//Steele-ND 122 Glenn/Steele-ND 123 ND726/ND2831 124 Knudson/Dapps 125 Reeder 126 Kuntz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 ND283/ND706//Dapps/3/Alsen 141 ND283/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder/Alsen 145 ND2729/ND721/Steele-ND 146 ND721*2/Tokai66 147 Velva/Big Red 148 Howard/Faller 149 ND721*2/Tokai66	120	ND744/ND721//Faller'S'
122 Glenn/Steele-ND 123 ND726/ND2831 124 Knudson/Dapps 125 Reeder 126 Knutz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W207//2*Alsen/3/ND744 135 Faller/Howard 136 ND270/ND688//Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND283/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshal/ND7803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66/Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND2879/ND721//Steele-ND 147 Velva/Bigg Red	121	ND708/ND706//Steele-ND
123 ND726/ND2831 124 Kuudson/Dapps 125 Reeder 126 Kuutz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granic/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688/Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshal/ND803 144 WCB716/Reeder/Mlsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66/Steele-ND 148 Howard/Faller <td>122</td> <td>Glenn/Steele-ND</td>	122	Glenn/Steele-ND
124 Knudson/Dapps 125 Recder 126 Kuntz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontan/W9207/2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688/Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706/Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721/Steele-ND 146 ND721*2/Tokai66/Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66/Steele-ND 148 Howard/Faller 149 ND721*2	123	ND726/ND2831
125 Reeder 126 Kuntz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontan/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND68k/Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706/Dapps/3/Alsen 142 ND721*2/Tokaí66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokaí66/Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokaí66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	124	Knudson/Dapps
126 Kuntz/Dapps 127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66/Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S' </td <td>125</td> <td>Reeder</td>	125	Reeder
127 Alsen/ND803 128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706/Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Big Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	126	Kuntz/Dapps
128 Briggs/Glenn 129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder/Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66//Steele-ND 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Clu9445/2*Alsen 152 ND739'S' 153 ND823 S'	127	Alsen/ND803
129 ND737/Reeder 130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana//W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND279/ND721//Steele-ND 146 ND721*2/Tokai66 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	128	Briggs/Glenn
130 Knudson/ND721 131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana//W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/NB803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66/Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	129	ND737/Reeder
131 ND753/Alsen 132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	130	Knudson/ND721
132 WCB713/Alsen 133 Granite/ND804 134 Frontana/W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen/ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66/Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	131	ND753/Alsen
133 Granite/ND804 134 Frontana//W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	132	WCB713/Alsen
134 Frontana//W9207//2*Alsen/3/ND744 135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	133	Granite/ND804
135 Faller/Howard 136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	134	Frontana//W9207//2*Alsen/3/ND744
136 ND2709/ND688//Grandin 137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	135	Faller/Howard
137 Howard/Alsen//ND749/3/Steele-ND 138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	136	ND2709/ND688//Grandin
138 Faller/Howard 139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	137	Howard/Alsen//ND749/3/Steele-ND
139 ND807/Alsen 140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	138	Faller/Howard
140 Prosper/Ulen 141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	139	ND807/Alsen
141 ND2831/ND706//Dapps/3/Alsen 142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	140	Prosper/Ulen
142 ND721*2/Tokai66 143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	141	ND2831/ND706//Dapps/3/Alsen
143 Parshall/ND803 144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	142	ND721*2/Tokai66
144 WCB716/Reeder//Alsen 145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	143	Parshall/ND803
145 ND2879/ND721//Steele-ND 146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	144	WCB716/Reeder//Alsen
146 ND721*2/Tokai66//Steele-ND 147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	145	ND2879/ND721//Steele-ND
147 Velva/Bigg Red 148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	146	ND721*2/Tokai66//Steele-ND
148 Howard/Faller 149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	147	Velva/Bigg Red
149 ND721*2/Tokai66 150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	148	Howard/Faller
150 Traverse 151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	149	ND721*2/Tokai66
151 Cltr9445/2*Alsen 152 ND739 'S' 153 ND823 'S'	150	Traverse
152 ND739 'S' 153 ND823 'S'	151	Cltr9445/2*Alsen
153 ND823 'S'	152	ND739 'S'
	153	ND823 'S'

Table A1. Germplasms used in the AM panel for 2012 (continued).

Serial number	Germplasms used in the AM panel
154	ND810//ND2906/ND721
155	ND2902/Reeder//ND716-21/3/Glenn
156	Dapps/Briggs
157	Glenn/Howard
158	Arsenal//Kormorran/Rohau72-839/3/Parshall/4/ND706
159	W9207/Grandin//Alsen/3/ND752
160	MN00261-4/Prosper
161	Glenn/Howard
162	Reeder/SD3618
163	Granite/Faller
164	ND802/MT0415
165	ND804/SD3635
166	SD3635/Prosper
167	W9207/Grandin//Alsen/3/2*Howard/4/Dapps
168	Glenn/Briggs//ND753/3/Steele-ND
169	ND807/SD3635
170	Howard/Alsen
171	ND823 'S'
172	Tokai66/Parshall//Alsen
173	ND721*2/Tokai66
174	Howard/Alsen//ND749/3/Steele-ND/4/ND803
175	RB07
176	SD3635/Howard
177	Dapps/ND804
178	Glenn/ND810
179	Ember/Howard
180	Ember/Howard
181	Briggs/Glenn
182	Brick/Reeder
183	MN01333-A/ND744'S'
184	Dapps/2*Reeder/3/ND803
185	Tom/ND807//Glenn
186	Briggs/ND803//Granite
187	ND744'S'/MT0415//Steele-ND
188	Dapps/Prosper
189	ND802/Glenn
190	Glenn/Barlow
191	ND812/Steele-ND
192	ND815/Velva

Table A1. Germplasms used in the AM panel for 2012 (continued).

193 ND2948/Parshall/Alsen/3/Faller 194 Goldfield/2*Alsen//Glenn 195 Dandy/Dapps 196 Duo/Howard/Faller/3/Granite 197 Granite/ND807 198 Freyr/Velva 199 Ada/Velva 200 Glenn 201 SD3901/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen/Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen/Faller 206 Reeder/ND813 207 MN02522-A/Steele-ND 208 Kuntz/Glenn 210 Glenn/ND7405%/Howard 211 Barlow/Vantage 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/ND815 219 Daps/ND804 219 Daps/ND804 220 ND802/Traverse//Granite 221 SD368/MT0415/ND807 <	Serial number	Germplasms used in the AM panel
194 Goldfield/2*Alsen//Glenn 195 Dand/Dapps 196 Duo/Howard//Faller/3/Granite 197 Granite/IDS807 198 Freyr/Velva 199 Ada/Velva 200 Glenn 201 D39301/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen//Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen//Scele-ND//Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 210 Glenn/ND740'S'/Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen//Faller 216 Arina/Parshall/2817/J3/ND716-21/4/Faller 217 Albany/ND815 218 Albany/ND815 219 Dapps/ND804 220 SD366/MT0415//ND807 221 SD366/MT0415//ND807	193	ND2948/Parshall//Alsen/3/Faller
195 Dandy/Dapps 196 Duo/Howard/Faller/3/Granite 197 Granite/ND807 198 Freyt/Velva 199 Ada/Velva 200 Glenn 201 SD3901/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen/Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen/Stele-ND/Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kunz/Glenn 210 Glenn/ND740'S'/Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/ND806 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2811/3/ND716-21/4/Faller 217 Albany/ND815 218 Albany/ND815 219 Dapps/ND804 219 Dapps/ND804 210 ND80252-A/Steele-ND 221 SD3608/MT0415//ND807 222	194	Goldfield/2*Alsen//Glenn
196 Duo/Howard//Faller/3/Granite 197 Granite/ND807 198 Freyr/Velva 199 Ada/Velva 200 Glenn 201 SD3901/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen//Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen//Faller 206 Reeder/ND813 207 MN0252-A/Steele-ND//Parshall 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND7405%Howard 211 Barlow/Vantage 212 Barlow/Vantage 213 ND815/ND806 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/28173/ND716-21/4/Faller 217 Albany/ND815 218 Albany/ND815 219 Dapps/ND804 220 SD368/MT0415//ND807 221 SD368/MT045//ND807 222 SD368/MT045//ND807 223	195	Dandy/Dapps
197 Granite/ND807 198 Freyr/Velva 199 Ada/Velva 200 Glenn 201 SD3901/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen/Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen/Steele-ND/Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND7405%/Howard 211 Barlow/Kantage 213 ND815/NB806 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall 217 Albany/Parshall 218 Albany/ND815 219 Daps/ND804 219 Daps/ND804 219 Daps/ND804 219 Daps/ND804 219 Daps/ND804 212 SD368/MT0415//ND807 213 MN02252-A/Glean	196	Duo/Howard//Faller/3/Granite
198 Freyr/Velva 199 Ada/Velva 200 Glenn 201 SD301/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen/Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen/Steele-ND/Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740/St/Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/ND815 218 Albany/ND815 219 Dapps/NB804 220 ND802/Taverse//Granite 221 SD3618/ND803/Dapps 222 SD368/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 <	197	Granite/ND807
199 Ada/VcIva 200 Glenn 201 SD3901/Parshall 202 NB815/ND806 203 Goldfield/2*Alsen//Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen//Steele-ND//Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740'S//Howard 211 Barlow/Vantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/ND815 218 Albany/ND815 219 Dapfs/ND804 220 ND8027raverse//Granite 221 SD3618/ND803//Dapps 222 SD368/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 NS9-0241/Glenn 227	198	Freyr/Velva
200 Glenn 201 SD 3901/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen//Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen//Steele-ND//Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Bladc/Glenn 210 Glenn/ND740S//Howard 211 Barlow/Glenn 212 Barlow/Jantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen//Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/ND815 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD368/MD803/Dapps 222 SD368/MD803/Dapps 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227	199	Ada/Velva
201 SD3901/Parshall 202 ND815/ND806 203 Goldfield/2*Alsen/Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen/Steele-ND/Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740'S'/Howard 211 Barlow/Glenn 212 Barlow/Glenn 213 ND815/Faller 214 ND815/NB806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/J/ND716-21/4/Faller 217 Albany/NB806 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse/Granite 221 SD368/MT0415//ND807 222 SD368/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 </td <td>200</td> <td>Glenn</td>	200	Glenn
202 ND815/ND806 203 Goldfield/2*Alsen//Faller 204 Faller/Parshall/ND807 205 Goldfield/2*Alsen/Steele-ND//Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740'S'/Howard 211 Barlow/Vantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen//Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD368/MT0415/ND807 222 SD3868/MT0415/ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 ND941/Glenn 227 Steele-ND/Traverse 228 Barlow/M0252-A 229 Barlow/M02252-A <	201	SD3901/Parshall
203 Goldfield/2*Alsen/Faller 204 Faller/Parshall//ND807 205 Goldfield/2*Alsen/Steele-ND/Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740'S'/Howard 211 Barlow/Glenn 212 Barlow/Glenn 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 211 SD368/MT0415//ND807 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 ND363//Dapps 227 SD368/MT0415//ND807 228 Barlow/Goldfield/2*Alsen 229 Barlow/M0252-A 230 ND252-A/Glenn <t< td=""><td>202</td><td>ND815/ND806</td></t<>	202	ND815/ND806
204 Faller/Parshall//ND807 205 Goldfield/2*Alsen//Steele-ND/Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740'S//Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/ND815 218 Albany/ND815 219 Daps/ND804 220 ND802/Traverse//Granite 221 SD368/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Sb268/MT0415//ND807 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819S/Steele-ND	203	Goldfield/2*Alsen//Faller
205 Goldfield/2*Alsen//Steele-ND//Parshall 206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740'S'//Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen//Faller 216 Arina//Parshall/2817/3/ND716-21/4/Faller 217 Albany/ND806 218 Goldfield/2*Alsen/Faller 219 Goldfield/2*Alsen/Faller 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD368/MT0415//ND807 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn	204	Faller/Parshall//ND807
206 Reeder/ND813 207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glen/ND740'S'/Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD368/MT0415//ND807 222 SD3868/MT0415/ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 ND9-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/M02252-A 230 ND2879/ND721//Glenn 231 ND819S/Steele-ND	205	Goldfield/2*Alsen//Steele-ND//Parshall
207 MN02252-A/Steele-ND 208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740/S//Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/Faller 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Dashal 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/M02252-A 230 ND2879/ND721//Glenn 229 Barlow/M02252-A 230 ND289/Steele-ND	206	Reeder/ND813
208 Kuntz/Glenn 209 Blade/Glenn 210 Glenn/ND740'S//Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803/Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/M02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/steele-ND	207	MN02252-A/Steele-ND
209 Blade/Glenn 210 Glenn/ND740'S'//Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen//Faller 216 Arina//Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD368/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/steele-ND	208	Kuntz/Glenn
210 Glenn/ND740'S'//Howard 211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen//Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/M02252-A 230 ND2879/ND721//Glenn 231 ND819SV/Steele-ND	209	Blade/Glenn
211 Barlow/Glenn 212 Barlow/Vantage 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S/Steele-ND	210	Glenn/ND740'S'//Howard
212 Barlow/Vantage 213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 330 ND2879/ND721//Glenn 231 ND819S'/Steele-ND	211	Barlow/Glenn
213 ND815/Faller 214 ND815/ND806 215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S/Steele-ND	212	Barlow/Vantage
214 ND815/ND806 215 Goldfield/2*Alsen//Faller 216 Arina//Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 223 ND819'S'/steele-ND	213	ND815/Faller
215 Goldfield/2*Alsen/Faller 216 Arina/Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3668/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S/Steele-ND	214	ND815/ND806
216 Arina//Parshall/2817/3/ND716-21/4/Faller 217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	215	Goldfield/2*Alsen//Faller
217 Albany/Parshall 218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S/Steele-ND	216	Arina//Parshall/2817/3/ND716-21/4/Faller
218 Albany/ND815 219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	217	Albany/Parshall
219 Dapps/ND804 220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	218	Albany/ND815
220 ND802/Traverse//Granite 221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	219	Dapps/ND804
221 SD3618/ND803//Dapps 222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	220	ND802/Traverse//Granite
222 SD3868/MT0415//ND807 223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	221	SD3618/ND803//Dapps
223 MN02252-A/Glenn 224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	222	SD3868/MT0415//ND807
224 Faller/Gunner 225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	223	MN02252-A/Glenn
225 Faller 226 N99-0241/Glenn 227 Steele-ND/Traverse 228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	224	Faller/Gunner
226N99-0241/Glenn227Steele-ND/Traverse228Barlow/Goldfield/2*Alsen229Barlow/MN02252-A230ND2879/ND721//Glenn231ND819'S'/Steele-ND	225	Faller
227Steele-ND/Traverse228Barlow/Goldfield/2*Alsen229Barlow/MN02252-A230ND2879/ND721//Glenn231ND819'S'/Steele-ND	226	N99-0241/Glenn
228 Barlow/Goldfield/2*Alsen 229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	227	Steele-ND/Traverse
229 Barlow/MN02252-A 230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	228	Barlow/Goldfield/2*Alsen
230 ND2879/ND721//Glenn 231 ND819'S'/Steele-ND	229	Barlow/MN02252-A
231 ND819'S'/Steele-ND	230	ND2879/ND721//Glenn
	231	ND819'S'/Steele-ND

Table A1. Germplasms used in the AM panel for 2012 (continued).

Serial number	Germplasms used in the AM panel
232	ND803/ND816'S'
233	Saturn/Alsen
234	Faller/ND803
235	ND810//ND2906/ND721
236	SD8070/ND674//ND2831/3/ND801
237	SD3635/Barlow
238	ND802/Faller
239	Faller/Brick
240	ND2849/ND721//ND807
241	Oklee/Reeder
242	ND819'S'/SD3635
243	Alsen/Briggs//Dapps/3/Steele-ND/4/ND751
244	Reeder/Glenn
245	ND752/Hanna//Dapps/3/ND744/4/Howard
246	ND721*2/Tokai66
247	PF9293/2*Alsen
248	Stoa//Gemini/ND658/3/Keene/4/Parshall/5/ND752
249	Walworth/Dapps//ND725/3/ND751
250	Barlow
251	ND706/Parshall//ND744/ND721
252	ND751/Alsen//ND744/ND721/3/ND755
253	ND726/ND2831
254	Fujian5114-1/MN2538//Alsen
255	Tokai66/Parshall//Alsen
256	ND2887/ND721
257	ND2849/ND721
258	ND735/Steele-ND
259	ND2902/Parshall
260	ND673-D//M3*2/ND673/3/Steele-ND
261	ND818 'S'
262	Howard/Alsen
263	ND752/Hanna//Dapps/3/ND744/4/ND751
264	Briggs/Alsen
265	Briggs/Glenn
266	PI350768/ND751//Parshall
267	PF9293/Alsen//ND752
268	Cltr9445/2*Alsen
269	ND825 'S'
270	ND820 'S'

Table A1. Germplasms used in the AM panel for 2012 (continued).

Serial number	Germplasms used in the AM panel
271	Kadett/Bobwhitesib//Grandin/3/ND706
272	Goldfield/ND2902//Alsen'S'
273	Kadett/Bobwhitesib//Grandin/3/ND706/4/ND752
274	KS86WGRCO2//Len/Butte86/3/ND674/4/2*Parshall
275	Howard
276	Howard//ND2831/ND706Sib
277	ND2709/ND688//Grandin
278	ND819 'S'
279	ND2849/ND721//ND740'S'
280	ND709-9/ND2902
281	ND2902/Parshall//ND751
282	ND744/Parshall
283	Glenn/Steele-ND
284	PrairieRed/Keene//ND721
285	Spelt#20/98W1147*3
286	Parshall'S'/4/Stoa*2//Butte*3/CI9321/3/Trenton/5/Steele-ND
287	SD3618/ND806
288	9950146ES/Alsen
289	ND810/ND744'S'
290	Glenn/Briggs//ND753/3/Steele-ND
291	Granger/ND804
292	Kuntz/Steele-ND
293	ND803/Glenn
294	Dapps/Granite
295	ND802//Goldfield/2*Alsen
296	ND2891/ND721
297	Kadett/Bobwhitesib//Grandin/3/ND706
298	ND2948/Alsen//ND721
299	PF9293/Alsen//ND721/Parshall
300	Briggs
301	SD3618/ND740'S'
302	ND2891/ND721
303	ND2849/ND721//ND810
304	Frontana/W9207//Alsen/3/ND740'S'
305	Ember/Glenn
306	Dapps/ND804
307	Faller/Brick
308	ND2902/2*Parshall
309	Glenn/ND810
308 309	ND2902/2*Parshall Glenn/ND810

Table A1. Germplasms used in the AM panel for 2012 (continued).

Serial number	Germplasms used in the AM panel
310	Ember/Howard
311	Ember/Howard
312	Keene/ND803
313	Stoa/ND803
314	Parshall/Prosper
315	Alsen/ND807
316	ND744'S'/Parshall
317	ND721*2/Tokai66//Velva
318	PF9293/2*Alsen//Faller
319	ND744'S'/Kuntz
320	ND816'S'/Parshall
321	ND816'S'/Faller
322	ND814/ND804
323	ND815/Faller
324	ND2902/2*Parshall
325	Kelby
326	Goldfield/2*Alsen//Faller
327	Goldfield/2*Alsen//Velva
328	ND2709/3/Grandin*3//Ramsey/ND622/4/ND688/ND674/5/Velva
329	ND2831/ND706sib//Granite
330	ND721*2/Tokai66//Parshall
331	ND721/Parshall//Parshall/ND706/3/Dapps
332	SD3942/Howard
333	Albany/Parshall
334	Frontana/W9207//Alsen/3/ND2849/ND721/4/Freyr/5/Faller
335	Steele-ND/Prosper
336	Dapps/Faller
337	Granite/Faller
338	ND721*2/Tokai66//ND804/3/Granite
339	SD3870/Glenn
340	ND815/MULT757//ND807
341	ND807/Briggs
342	Duo/Glenn
343	Fiorina/ND802
344	MT0416/Howard
345	ND2902/2*Parshall
346	Rush/Parshall//Faller
347	Howard/ND814
348	PF9293/2*Alsen//Faller

Table A1. Germplasms used in the AM panel for 2012 (continued).

Tuble 111. Oct inplushis used in the 1111 punct for 2012 (continued).		
Serial number	Germplasms used in the AM panel	
349	ND2902/2*Parshall	
350	Albany	

Table A1. Germ	plasms used in f	he AM nanel fo	r 2012 (continued).
	plasms used m c	ne mu panel lu	

Serial	Germplasms used in the AM panel
number	
1	Elgin
2	Rowyn
3	Linkert
4	Norden
5	Advance
6	Forefront
7	Mott
8	Brick
9	Steele-ND
10	Vantage
11	Brennan

Table A2. Additional germplasms used in the AM panel for 2013 and 2014.