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ABSTRACT

In today’s computing world, graphs have become increasingly important

in modeling sophisticated structures, entities and their interactions, with broad

applications including Bioinformatics, Computer Vision, Web analysis etc. For an

example, multiple gene expressions samples over the same set of genes are recorded to

strengthen the evidence of co-expression patterns. These can be modeled by forming

a set of graphs for these samples. The problem is how to dig into such multiple

sources of information to make better inferences.

In this paper, I have presented an efficient method to find useful subnetworks

from graph networks. The idea is to create a summary graph from these networks and

then find subnetworks using this graph. I have given a detailed comparison between

an already existing approach called vertex-vertex summary graph approach and the

approach discussed in this paper. The results I have found are more promising than

for the existing approach.
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CHAPTER 1. INTRODUCTION AND RELATED WORK

In this Era, data is continuing to grow at unprecedented rates. Every single

transaction made online gets stored in the organizational data. For example, if you

book a flight online or scan an item at Walmart or make a withdrawal or deposit

in your bank account, everything gets stored in the organization’s database as a

part of organizational data. This data is multiplying in companies and organizations

everywhere, but its growth doesn’t stop there. Millions of people around the world

transfer data onto the Internet in bulk every second of each day. So, the question

arises: How much data is out there exactly?

Google receives over 3.5 million queries every second from the internet popula-

tion across the globe today. This is very high in comparison to 10,000 queries per day

in 1998 . Every minute, Facebook users share nearly 2.5 million pieces of content in

form of posts, photos, videos, messages etc. Twitter users tweet nearly 400,000 times.

Instagram users post nearly 220,000 new photos. YouTube users upload 72 hours of

new video content. Apple users download nearly 50,000 apps. Email users send over

200 million messages. Amazon generates over $80,000 in online sales [1].

So, there is a lot of data that is generated every second but there was no

means to harness this data in the past to discover useful patterns that further help

in decision making and hence helps the business to grow. This data seemed to be

useless a few decades ago but today because of technologies and efficient algorithms,

businesses are able to convert this data into useful information or patterns that help

the senior executives in making critical business decisions. For example: Which

cable TV customers are going to drop their service plan before their contract expires

or which customers are highly likely to renew their contract? Which credit card

transactions are fraudulent? Which businessmen are likely to take a loan within the

next eight months?
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Finding this useful information from the plethora of data is like finding a white

cat in a snowstorm. But thanks to the field of data mining which is the science of

digging into these big data sets to look for relevant or useful information and answers

to the above questions. The idea is that businesses these days collect enormous

amount of data that may be homogeneous or heterogeneous and could be manually

entered or automatically collected. Decision-makers need access to smaller, more

specific pieces of data from these large sets. So, they use data mining to uncover

these pieces of information that would help plot the course of their business. The

data of interest may take various forms like vectors, tables, texts, images, and so on.

Generally, data mining (sometimes called knowledge discovery) is the process of

analyzing data from different perspectives and summarizing it into useful information.

There are many data mining methods including:

1. Clustering and Classification

2. Pattern Mining

Classification consists of predicting a certain outcome based on a given input.

There are two kind of datasets used: Training and Testing(or prediction set). For

predicting the outcome, a classification algorithm processes a training set containing

a set of attributes and the outcome, usually called goal or prediction attribute. The

technique tries to discover relationships between the attributes that would make it

possible to predict the outcome. Next the classification algorithm is given a data

set not seen before, called prediction set, which contains the same set of attributes,

except for the prediction attribute whose value needs to be found out. The algorithm

analyses the input and produces a prediction or a classification label. The measure of

prediction accuracy defines how “good” the algorithm is in predicting the outcome.

2



Clustering is the grouping of a set of objects based on their characteristics

and aggregating them according to their similarities based on these characteristics.

In regards to data mining, this technique basically partitions the data into groups

called clusters using a specific algorithm, most suitable for the desired information

analysis.

The other approach referred to as soft partitioning states that in a calculated

degree, every object belongs to a cluster. More definitive divisions are possible for

creating like objects belonging to more than one cluster which may force an object

to engage in a single cluster or construct hierarchical relationships.

Pattern Mining involves construction of data mining algorithms capable of

discovering useful and interesting patterns in data. Pattern mining algorithms may be

applicable to various types of data which include graphs, transactional data, strings

etc. Interesting patterns are the patterns of interest by a researcher. For example

an interesting pattern could be defined as a pattern that appears frequently in a

database. Other researchers want to discover rare patterns, patterns with a high

confidence, the top patterns, etc. Finding interesting patterns in databases supports

decision support, selective marketing, financial forecast, medical diagnosis and many

other applications. One such type of Pattern mining is called frequent itemset mining

which is discussed below.

Frequent Itemset Mining: Frequent itemsets are groups of items shared by

no less than a given number of minimum transactions in the input database. Frequent

Itemset Mining is fundamentally a subset of data mining dedicated to mining itemsets,

patterns, and objects occurring frequently in a dataset. These mined itemsets may

be further employed for discovering association rules beneficial for classification. A

frequent pattern (a set of items, subsequences, substructures, etc.) is a pattern

that occurs frequently in a given data set. The need for finding frequent patterns
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in datasets is to make various business decisions like :What products were often

purchased together? What are the subsequent purchases after buying a PC? One of

the crucial achievement of data mining research is the discovery of efficient algorithms

for finding frequent itemsets in very large transactional databasesa[2, 3, 4, 5]. Mining

the frequent sets allow us to construe association rules among them. This helps us to

find the likelihood of co-occurrence of these sets.

The utility of mining frequent patterns shows up in a number of other domains

too and market basket analysis (MBA) is one of them. Market basket analysis mines

the sets of items that are frequently bought together at a supermarket by analyzing

the items that a customer usually buys together. Mining the frequent sets allow us

to construe association rules among them. This helps us to find the likelihood of

co-occurrence of these sets. For example, in the case of market baskets, we can find

rules like, “Customers who buy Milk and Cereal also tend to buy Bananas”, which

may prompt a grocery store to co-locate bananas in the cereal aisle. Another example

is the weblog scenario. Frequent sets allow us to extract rules like, “Users who visit

the sets of pages main, laptops and rebates also visit the pages shopping-cart and

checkout, indicating, perhaps, that the special rebate offer is resulting in more laptop

sales.

For any data mining application, two datasets need to be defined: set of items

and set of transactions denoted by (I) and (T) respectively to mine frequent itemsets

in a given database. The set I=x1, x2, ...., xm is the set of items in questions and

set(T)= t1, t2, ... , tn represents the unique events in which different sets of items

bought at a supermarket. Examples of sets (I) and (T) are the set of all possible

items presents in a grocery store and transactions done by different customers to buy

items from set(I) respectively. Let X and t denote the subsets of I and T respectively

(X I and t T) such that t(X) are the transactions in which items in X appear. The
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subset t is also called tidset. The Eclat algorithm is used to find the itemsets that

are frequently bought together by representing the given database vertically.

The basic idea behind the algorithm is that the support (variable that represents

how frequently an itemset appears in the dataset) of a candidate itemset can be

computed by intersecting the tidsets of suitably chosen subsets. In general, given

t(X) and t(Y) for any two frequent itemsets X and Y, we have t(XY) = t(X)∩t(Y)

and the support for XY is the cardinality of t(XY) ), i.e., sup(XY) =|t(XY)|.

There is a lot of existing work on mining flat transactional data by devising

data mining algorithm that mine patterns from flat data i.e., sets of items and the

datasets with hierarchy, structures, etc. work well with flat representations. But it

becomes challenging to represent the data collected from social networks, Chemical

compounds (Cheminformatics), Protein structures, biological pathways/networks

(Bioinformactics) as flat data. This real world data is usually structured and semi-

structured and can be easily modeled using graphs, thus generally suited to graph

representations.

Graph Mining is essentially the problem of mining useful patterns (subgraphs)

occurring in the input graphs. To give one example, if we consider protein-protein

interaction networks (a common application area for graph mining) these can be

represented in a graph format such that the vertexes indicate genes, and the directed

or undirected edges indicate physical interactions or functional associations.

Because of the ease with which structured and semi-structured data can be

represented in graph formats, there has been much interest in the mining of graph

data. Over the last two decades, the field of graph mining has grown rapidly, not

only because the number and the size of graphs has been growing exponentially

(with billions of nodes and edges), but also because we want to extract much more

complicated information from our graphs.
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One of the growing areas is mining of dense subgraphs in networks and many

problems in social, biological and financial networks require finding cliques, or quasi-

cliques (densely connected subgraphs).

Graph, in general is defined to be a set of vertexes (nodes) which are intercon-

nected by a set of edges. As a general data structure, graphs have become increasingly

important in modeling sophisticated structures and their interactions in these fields.

Entities and the relationships among them are represented by directed or undirected

graphs. In many real world applications, these entities are associated with different

types of relationships in same or different contexts.

For example, the same set of people can form a network on Facebook and

Twitter. Another example would be multiple gene expressions samples over the same

set of genes are recorded to strengthen the evidence of coexpression patterns. These

can be modeled by forming a set of graphs over the same set of vertices but different

set of edges in the graphs.

In graph mining, finding dense components or subgraphs is very important.

A dense subgraph is a subgraph that satisfies a user defined constraint [6]. These

constraints can include vertices with a minimum number of edges to other vertices

in the same subgraph, the vertices with minimum number of outgoing edges or other

similar constraints. Finding dense subgraphs in graphs can represent important

information. In a Protein- Protein Interaction network, proteins which are members

of the same dense subgraph can represent protein complexes [7] which is another name

for dense protein networks. Although there are ways of detecting protein complexes

experimentally, there are weaknesses to each of those ways [8].

Thus it is important to use data currently available and extrapolate other

proteins that might belong to these complexes and find new complexes. This can

help identify disease causing genes to identify people at risk and start preventative
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Fig. 1. A collection of graphs

treatment of possible future conditions. Dense subgraphs in a Facebook network may

represent groups of interrelated people. This information can be utilized to find out

people who are likely to be friends but do not have a connection between them yet.

Mining dense subgraphs will help recommend they befriend each other. Another use

would be to find commercial items which a majority of the people in the group own

and sell them to the other people in the group.

The above approach discussed for mining Frequent Itemset can be applied to

finding dense subgraphs in a graph. The nodes and their neighbors in a graph can be

related to items and their common transactions. The concept of minimum support

in frequent itemset mining can be related to the concept of minimum density for a

subgraph to be dense in graph mining.

Testing every combination of vertices within a graph is one way to enumerate

all the possible dense subgraphs within the graph. This collection of all possible

combinations of items of a set S is called the power set, or P(S) of S. A set enumeration

tree is an efficient way to enumerate the power set of a set. Creating a set enumeration

tree is efficient and makes sure no combination is enumerated twice [12]. An example

of a set enumeration tree for the set {A,B,C,D} is shown in Figure 2.

A set enumeration tree can be created by sorting the set and setting

the root as null. Then the first level nodes in the tree are created. Each node

in the first level contains a unique item of the set(called member set) in a sorted order.
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{}

A B C D

A,B A,C A,D

A,B,C A,B,D

A,B,C,D

A,C,D

B,C B,D

B,C,D

C,D

Level 1 Level 1

Fig. 2. Set enumeration tree for {A,B,C,D}

In Figure 2, the depth-first traversal for the first level node with A as the member

set would be {Af}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,D}, {A,C}, {A,C,D}, {A,D}.

Then the depth-first traversal is done for node {B} on the first level and so on.

This set enumeration tree can also be used for finding frequent itemsets in

association rule mining. An example of this is shown in Figure 3. A number of

transactions containing items are mined with minimum support (minsup)=2. An

itemset is frequent if the number of transactions in which the itemset appears is

greater than or equal to the minimum support. Using the set enumeration tree,

the member set of each node is tested for frequency. In frequent itemset mining if

an itemset is not frequent then no superset of that itemset will be frequent(anti-

monotone property). In the itemset enumeration tree, this allows for pruning of all

children of a node if the parent node is not frequent. In Figure 3, the search branches

rooted at {A}, {B},{C}, and {C,D,E} are pruned this way. The frequent itemsets

are shown as bolded boxes in Figure 3.

Finding frequent subgraphs across a set of graphs is another area of graph
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{}

A B C D E

A,B A,C A,D A,E

A,B,C A,B,D A,B,E

A,B,C,D A,C,D,E

A,B,C,D,E

A,B,D,E

A,C,D A,D,E

A,C,D,E

B,C B,D B,E

B,C,D B,C,E

B,C,D,E

B,D,EA,C,E

C,D C,E

C,D,E

D,E

t1

t5

t4

t3

t2

B,C,D,E

A,B,E

B,D,E

C,D

D,E

     Not frequent, no 

need to check children

     Not frequent, no 

need to check children

     Not frequent, no 

need to check children

Fig. 3. Frequent itemset enumeration tree with minimum support of 2

mining. By considering the labels on the network nodes, relevant algorithms discover

frequent subnetworks in networks.

The power of using graphs to model complex datasets has been recognized by

various researchers in chemical domain [9, 10], computer vision [11], image and object

retrieval [12, 13], and machine learning [14, 15]. Dehaspe et al. [9] applied Inductive

Logic Programming (ILP) to obtain frequent patterns in the toxicology evaluation

problem. Inductive Logic Programming has been actively used for predicting car-

cinogenesis, which is able to find all frequent patterns that satisfy a given criteria.

Another approach that has been developed is using a greedy scheme [26, 16] to find

some of the most prevalent subgraphs. These methods are not complete, as they

may not obtain all frequent subgraphs, although they are faster than the ILP-based

methods.

Inokuchi et al. [16] presented a computationally efficient algorithm called AGM,

that can be used to find all frequent induced subgraphs in a graph database that

satisfy a certain minimum support constraint. AGM finds all frequent induced

subgraphs using an approach similar to that used by Apriori [2], which extends
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a b

cd

2
/3

3
/3

e

Fig. 4. A sample template graph

subgraphs by adding one vertex at each step. Experiments reported in [16] show

that AGM achieves good performance for 2 synthetic dense datasets, and it required

40 minutes to 8 days to find all frequent induced subgraphs in a dataset containing

300 chemical compounds, as the minimum support threshold varied from 20% to 10%.

Lee et al. [6] proposed an approach that builds an unweighted summary graph

that only has edges which occur in at least a minimum number of graphs. Clustering

the aggregate graph results in false positive modules since the links between the

edges in a given module can be scattered across the graphs but appear together in

the aggregate graph. To overcome these false positive modules, Hu et al. [4] proposed

the CODENSE algorithm, a two-step approach for mining coherent dense subgraphs.

In the first phase, dense modules are extracted from the aggregate graph. The second

phase uses the edge occurrence similarity and partition these dense modules into

smaller modules whose edges show high edge occurrence similarity.

As discussed above, one of the main subject areas of graph based data mining is

finding frequently occurring subgraph patterns from graphs, there has been a signif-

icant work done in recent past to mine graph data efficiently. Frequent Subgraph

Mining (FSM) is the essence of graph mining. The objective of FSM is to extract all

10



the frequent subgraphs in a given set of graphs, whose occurrence counts are above

a specified threshold. Joint mining of multiple data networks can often discover

interesting, novel, and reliable patterns which cannot be obtained solely from any

single network. For instance in bioinformatics, gene clusters that show coherent

expression patterns can be found, and protein interaction sets can be produced by

joint mining of protein interaction data and gene expression. Such clusters may be

potential pathways in finding related diseases.

The rest of the paper is structured as follows. Section 2 gives the problem

definition and algorithm. The results of the algorithm on real world data is shown

in Section 3. Lastly, Section 4 presents the conclusion and how this work might be

extended in the future.
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CHAPTER 2. PROBLEM DESCRIPTION

In this section, before describing the problem, I define some terms that are used

throughout the paper and are essential for understanding the problem statement. The

graphs considered for this paper are simple graphs. A simple graph is a graph which

only has undirected edges. In addition, a simple graph has no self-directed edges or

multi-edges.

2.1. Graph Terminology

Definition 1 (Graph). A graph G = (V,E), contains a set of vertices V =

{v1, v2, · · · , vm}, and a set of edges E = {e1, e2, · · · , ep} connecting the vertices where

each edge itself is a pair of vertices. Throughout this paper,we assume that the graph

is undirected and labeled i.e each vertex has a label associated with it.

Figure 1 shows a collection of three graphs. The first graph in the collection

has vertices V = {a, b, c, d, e}, and a set of edges E = {ab, ac, ad, ae, bc, de}. All the

graphs in this set are undirected and unweighted.

Definition 2 (Subgraph). A graph Gs = (Vs, Es) is called a subgraph of a graph

G = (V,E) if the set of vertices Vs in Gs is a subset of V and the set of edges Es is

a subset of of E i.e. Vs ⊆ V and Es ⊆ E.

Figure 5 shows an example of a subgraph of the last graph(say G) in the graph

collection shown in Figure 1. The vertices and edges that comprise this subgraph are

the subsets of vertices and edges in G.

Definition 3 (Frequent Subgraphs). A frequent subgraph is a graph Gf that appears

frequently across a collection of graphs. A graph G is frequent across a collection

Gc if the number of graphs in which it appears is greater than or equal to minimum

frequency of appearance (γ).

12



Fig. 5. An example of a subgraph

Fig. 6. An example of frequent subgraph

Consider Figure 1 as the input graph collection and γ=2 (i.e. for a subgraph to

be frequent it should appear atleast in two graphs). Figure 6 shows an example of a

such a subgraph.

Definition 4 (Quasi Appearance). If a sub-network does not appear fully in a graph,

it is said to have quasi appearance in the graph. For example if 90% of a graph

Gáppears in a bigger graph G, then the quasi appearance of Gín G is 90%.

Figure 7 is an example of quasi appearance of a sub graph in a graph. The

graph Gq with vertices V = {a, b, c, d} and E = {ae, eb, bc} has quasi appearance

in the main graph since not all the edges in this subgraph appear in the graph.

For example edge be doesn’t appear in the parent graph. The percentage of quasi

appearance is 66.7%.
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Fig. 7. An example of Quasi appearance

Definition 5 (Template Graph). A Template Graph is a summary network created

from a collection of graphs and has weighted edges. The weight on each edge is the

number of graphs in which the edge appears divided by the total number of graphs in

the collection. We will be demonstrating two kinds of template graphs which basically

differ in what actually represents the nodes and the edges between them.

Figure 4 shows an example of a template graph created from graph collection

in Figure 1. Each graph in the collection has vertices V = {a, b, c, d, e}. So the

resulting template graph has the same vertices and edges Et = {ab, ac, ad, ae, bc, de},

which is the union of all the edges in the collection and the weights Wt =

{3/3, 1/3, 2/3, 2/3, 3/3, 1/3}. The weight for the edge ab in the template graph is

2/3 or 0.66 because it appears in two of the three graphs in the collection.

Definition 6 (Vertex-Vertex Template graph). A template graph in which a node

represents an actual vertex in the collection of graphs and an edge between two nodes

represents the edge between the vertices representing these nodes in the database of

graphs is called a Vertex-Vertex Template graph. So, a node in this network (template

graph) is an actual vertex that appears in the collection of graphs.
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Fig. 8. A vertex-vertex template graph

Figure 8 shows an example of a vertex-vertex template graph constructed from

the graph collection in Figure 1. The nodes in this template graph are the vertices in

the input graph and edges are weighted.

Definition 7 (Edge-Edge Template graph). A template graph that is constructed

from the input graphs in such a way that nodes in the graph are basically edges that

appears in the input graph collection is called a Edge-Edge Template graph. The edges

are constructed in this graph based on the common vertex that appears between two

edges in any given graph in the collection.

Figure 9 is an example of an edge-edge template graph

constructed from Figure 1. Each node in this graph, Vt =

{ab, bc, ac, ad, ae, de} is an edge in the input graph set. The edges Et =

{{ab, bc}, {bc, ac}, {ab, ac}, {ab, ad}, {ab, ae}, {ac, ae}, {ad, ae}, {ad, de}, {de, ae}}

are added to the graphs based on the appearance of a common vertex in two nodes.

For example an edge appears between the nodes ab and bc because these two nodes

which are edges in the input graphs have a common vertex b.
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Fig. 9. An edge-edge template graph

2.2. Problem Definition

Consider there are m different network topologies on the same set of vertices

V . For example we are given m different biological networks with the same set of

molecules. Let us denote the networks in this collection G by graphs Gi = (V,Ei), for

each value of i = 1, 2, ..., m. The given problem is to find frequent dense sub-networks

over the entire set of network topologies.

One of the approaches is creating a summary graph from the graphs in the

collection and then exploiting this graph to find the modules that appear frequently

in the graphs. This summary graph consists of the nodes as the total possible

vertices that appear in the given collection of graphs with the respective edges. The

weight of an edge between two vertices is the ratio of the number of graphs in which

that edge appears to the number of graphs in the network. This summary graph is

also called the template network. Since the nodes in this summary graph represent

the vertices in the network, we call this graph as Vertex-Vertex template graph.
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So, a Vertex-Vertex Template graph is a graph in which a node represents an

actual vertex in the collection of graphs and an edge between two nodes represents

the edge between two vertices representing these nodes in the collection of graphs.

So, a node in this network (template graph) is an actual vertex that appears in the

collection of graphs.

The approach presented in this paper is called the Edge-Edge Template graph

approach which is about creating an Edge-Edge summary graph and then mining

quasi frequent subgraphs from this graph. This means finding out the quasi appear-

ance of these subgraphs in the collection. A vertex in this summary graph represents

an edge in any of the graphs in the collection. So, an Edge-Edge Template graph

is a graph in which a node represents an actual edge in the collection of graphs and

an edge between two nodes represents the connection between two edges present in

graph collection.

2.3. Algorithms

In this project, I developed algorithms for discovering quasi frequent subnet-

works in a given collection of graph. This is done by creating an edge-edge template

summary graph from these graphs and mining this graph to find dense subgraphs.

The first algorithm builds a vertex-vertex template graph with a set of graph

networks and minimum support as the inputs.The set of graphs that have the same

set of vertices. Each graph in this set is represented as an adjacency list of the edges

with equal weight on each edge.

The second algorithm builds an edge-edge template graph with a set of graph

networks, minimum support as the inputs. Each graph in the collection has the same

set of vertices, though the connection amongst these vertices may vary across the

graphs. Each graph in this set is represented as an adjacency list of the edges with
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equal weight on each edge. The nodes in the resulting graph are the edges from the

individual graphs.

The third algorithm discovers the quasi frequent subgraphs obtained from the

vertex-vertex template graph obtained from Algorithm 1. The algorithm used to find

the dense modules or clusters from the template graphs is DME algorithm which takes

the template graph and minimum density as inputs and outputs the dense subgraphs

based on this minimum density. The details of how this algorithm works are given

later in the paper. These dense clusters are then analyzed to see if they have frequent

quasi appearance across the graphs in the collection using this algorithm.

The last algorithm discovers the quasi frequent subgraphs obtained from the

edge-edge template graph obtained from Algorithm 2. These dense clusters are

then analyzed to see if they have frequent quasi appearance across the graphs in

the collection using this algorithm. We then compare the two approaches and see

which is more promising in terms of mining denser subgraphs.

2.4. Pseudo-code

Algorithm 1 shows the pseudo-code for generating a vertex-vertex template

graph. The algorithm takes as input a collection of graphs G, and outputs the

template graph Tvv with ET and VT as edge set and vertex set respectively. The

template graph is finally written to a matrix Mvv that can be further used to mine

subnetworks in the graph collection. In the algorithm, the template graph is first

declared as an empty graph and then built as a set of edges with each edge represented

by a pair of vertices. For a given graph in the collection, each and every edge is scanned

to see if it is present in the template graph. If it is present, its weight is increased by

1. If the edge is not present in the graph, it is added to the graph and the weight of

the edge in the template graph is set to 1. This is repeated for the all the graphs in

the collection. In the end, the template graph with edges having calculated weights
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Algorithm 1: Creating a Vertex-Vertex Template Graph
Input:
Gc: The given set of graphs

Output:
Tvv:Vertex-Vertex Template Graph
ET : Set of Edges in Vertex-Vertex Template Graph
VT : Set of Vertices in Vertex-Vertex Template Graph
Mvv: Vertex-Vertex Template Matrix

1. ET = ∅ .Set of edges in the vertex-vertex template graph
2. .Find the set of edges and their weights in the Template graph
3. for each gi ∈ Gc:
4. E=getEdges(gi) .Set of Vertices in G
5. for each ej ∈ E:
6. if ej ∈ ET Then
7. W (ej) = W (ej) + 1
8. else
9. ET = ET ∪ ej
10. W (ej) =1
11. end if
12. end for

is returned.

Algorithm 2 shows the pseudo-code for generating an edge-edge template

graph. The algorithm takes as input the same collection of graphs G, and outputs

the template graph Tee, with ET and VT as edge set and vertex set respectively.

As explained, each node in the edge-edge template graph represents an edge in the

collection. So each edge in the template graph is formed by using a pair of edges from

the graph collection. The edge-edge template graph is finally written in the form of a

matrix Mee that can be further used to mining subnetworks in the graph collection.

In the algorithm, each graph is scanned in the collection for each pair of edges

eij = eik ∪ ekj. The edges eik and ekj in the given input graph represent the nodes in

the template graphs and the resulting edge is eij which is represented as an edge in

the template graph. If this edge is found in the template graph, its weight is increased

by 1 in the graph. Otherwise this edge is added to the graph and given an initial
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Algorithm 2: Creating an Edge-Edge Template Graph
Input:
Gc: The given set of graphs

Output:
Tee: Edge-Edge Template Graph
ET : Set of Edges in Edge-Edge Template Graph
VT : Set of Vertices in Edge-Edge Template Graph
Mee: Edge-Edge Template Matrix

1. ET = ∅ .Set of edges in the vertex-vertex template graph
2. . Find the set of edges and their weights in the Template graph
3. for each gi ∈ Gc:
4. E=getEdges(gi) .Set of Vertices in G
5. for each pair (eik, ekj) ∈ E where i<j:
6. eij = eik ∪ ekj ∈ ETThen
7. if eij ∈ ET Then
8. W (eij) = W (eij) + 1
9. else
10. ET = ET ∪ eij
11. W (eij) =1
12. end if
13. end for

weight 1. This is repeated for all the graphs in the input graph collection.

Algorithm 3 shows the pseudo-code for mining quasi frequent subnetworks

using the vertex-vertex template graph approach. The algorithm takes as input a

collection of graphs G, the set of input cluster files F obtained from DME algorithm

using template graph, Tvv and the array of DME densities as inputs, the vertex-vertex

template graph obtained from Algorithm 1, the array of DME densities used to

generate the DME clusters, minimum frequency of appearance γ of a cluster in the

collection of graphs to to declare a subgraph as frequent, the array containing quasi

appearance (θ) values. The DME algorithm creates one file per density value.
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The algorithm outputs the result matrix that has the percentage of subnetworks

that is frequent across the graph collection for a given Quasi appearance (θ) and

a Minimum frequency of appearance (γ). The results are found out for quasi-

appearances (θ)= (50, 60, 70, 80, 90, 100) and density threshold for DME mind= (50,

55, 60, 65, 70, 75, 80, 85). The algorithm is run for γ (frequency of appearance)= 8

and 9.

In the algorithm, each cluster file is scanned to loop through the clusters in the

file. For each cluster in the file, the intersection graphs are found by intersecting the

current cluster being scanned with each of the input graphs, gint = gi ∪ cg. For each

intersection graph, it is checked if the length of the intersection graph is greater than

or equal to current θ (quasi appearance)value. If this quasi clearance condition is met,

then the minimum frequency of appearance condition is checked. If the appearance

of this intersection is in graphs equal to greater than γ value, the DME cluster to

which this intersection graph belongs is considered as a quasi-frequent subgraph.

This is done for all the θ values used in the experiment for the current cluster.

The same conditions are checked for all other clusters in the current input cluster file

containing clusters obtained from DME algorithm for a given DME density.

Algorithm 4 shows the pseudo-code for mining quasi frequent subnetworks

using the edge-edge template graph approach. The algorithm takes as input the

collection of graphs G, the set of input cluster files F obtained from DME algorithm,

the edge-edge template graph Tee obtained from Algorithm 2, the array of DME

densities used to generate the DME clusters, minimum frequency of appearance γ

of a cluster in the collection of graphs to to declare a subgraph as frequent, quasi

appearance (θ)values.
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The algorithm outputs the result matrix Mres that has the percentage of

subnetworks that is frequent across the graph collection for a given Quasi appearance

(θ) and a Minimum frequency of appearance(γ). The results are found out for the

same set of quasi-appearances(θ) and density threshold for DME as in edge-edge

clustering. The algorithms are run for γ = 8 and 9.

Algorithms 3 and 4 are similar except in case of Algorithm 3 you have to basically

create the subgraph for each DME cluster using the template graph (Steps 11-13). In

case of edge-edge template graph approach, each node in a DME cluster is an edge

since the DME clusters are found from edge-edge template graph. So the nodes in

the cluster represent the actual subgraph.
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Algorithm 3: Mining Vertex-Vertex Template Graphs
Input:
Gc: The given collection of input graphs
F : The set of input cluster files generated from DME algorithm
Tvv: Vertex- Vertex template graph
ET : Set of Edges in Vertex- Vertex Template Graph
mind: Density Threshold for DME
γ: Minimum frequency of appearance of cluster in Input Graphs
θ: Quasi appearance of a cluster in an Input Graph
mins: Minimum number of nodes in a cluster

Output:
Mres: The result matrix with for each DME density and each quasi appearance

1. for each file fi ∈ F :
2. C=getClusters(fi) .Set of Vertices in G
3. θ=(50,60,70,80,90)
4. for each cluster ci ∈ C:
5. if(length(ci) < mins then
6. go to step 4
7. end if
8. Ctotal = Ctotal + 1
9. counts = (0, 0, 0, 0, 0, 0)
10. for each node j ∈ ci:
11. x = getIndexes(Tvv[, 1], j)
12. y = getIndexes(Tvv[, 2], j)
13. cg = x ∩ y . subgraph for the current cluster
14. end for
15. . find if the cluster appears in the input graphs
16. for each graph gi ∈ Gc

17. gint = gi ∪ cg
18. qapp = length(gint)/length(ci)
19. for each threshold θi ∈ θ:
20. if(qapp >= θi) then
21. for file ci count(θi) = count(θi) + 1
22. end for
23. end if
24. end for
25. end for
26. .find if the current cluster is frequent across the input graphs or not
27. for each count in counts
28. if(count >= γ) then
29. Cfreq[θi] = Cfreq[θi] + 1
30. end if
31. end for
32. end for
33. .calculate the number of frequent clusters contained this file for each θ
34. for each index x in Cfreq

35. Mres[i, x] = Cfreq/Ctotal . i is the file number being processed
36. end for
37. end for
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Algorithm 4: Mining Edge-Edge Template Graphs
Input:
Gc: The given set of input graphs
Tee: Edge-Edge template graph
ET : Set of Edges in Edge-Edge Template Graph
Flkp: The lookup file having edge to vertex mapping
F : The set of input cluster files generated from DME algorithm
mind: Density Threshold for DME
γ: Minimum frequency of appearance of cluster in Input Graphs
θ: Quasi appearance of a cluster in an Input Graph
mins: Minimum number of nodes in a cluster

Output:
Mres: The result matrix with for each DME density and each quasi appearance

1. for each file fi ∈ F :
2. C=getClusters(fi)
3. θ=(50,60,70,80,90)
4. for each cluster ci ∈ C:
5. if (length(ci) < mins) then
6. go to step 4
7. end if
8. Ctotal = Ctotal + 1
9. counts = (0, 0, 0, 0, 0, 0)
10. . find if the cluster appears in the input graphs
11. for each graph gj ∈ Gc:
12. gint = ci ∪ gj
13. qapp = length(gint)/length(ci)
15. for each threshold θi ∈ θ:
16. if(qapp >= θi) then
17. counts(θi) = counts(θi + 1)
18. end if
19. end for
20. end for
21. .find if the current cluster is frequent across the input graphs or not
22. for each count in counts
23. if (count >= γ) then
24. Cfreq[θi] = Cfreq[θi] + 1
25. end if
26. end for
27. end for
28. .calculate the number of frequent clusters contained this file for each θ
29. for each index x in Cfreq

30. Mres[i, x] = Cfreq/Ctotal . i is the file number being processed
31. end for
32. end for
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CHAPTER 3. EXPERIMENTS

To discover the effectiveness of Edge-Edge Template graph approach in finding

dense clusters, I tested its effectiveness on a real-world dataset. The dataset I used

is constructed from Genetic Network Analysis Tool (GNAT) and consists of genetic

data for 35 human tissues with one graph for each human tissue. The network consists

for 10,000 genes and 5 million links among those genes. So, the collection consists of

35 graphs with 10,000 vertices and 5 million edges in total.

The first step is to create the vertex-vertex and edge-edge template graphs

from this collection of graphs. I first cleansed the 35 graphs based on the minimum

threshold of appearance of an edge across the graphs in the network. The idea behind

this is to remove the edges which appear in significantly low number of graphs. The

minimum threshold for my experiments is 10 for both the approaches.

Figure 10 shows the template graph built using the vertex-vertex template graph

approach constructed using Algorithm 1. The graph consists of 9886 vertices and

55458 edges. Figure 11 shows the template graph built using the edge-edge template

graph approach constructed using Algorithm 2. The graph consists of 55443 vertices

and 689286 edges. The minimum initial frequency used for the construction of these

graphs is 10.

After constructing the template graphs for both approaches, the next step is to

find out the clusters in these graphs. DME (Dense Module Enumeration) algorithm

has been used here for discovering dense modules in both edge-edge template graph

and vertex-vertex template graph. Given an undirected weighted graph G with node

set V , let W represent the set of weights between all pairs of nodes and let U be a

subset of nodes or a subgraph.
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Fig. 10. A Vertex-Vertex Template Graph on GNAT data

Fig. 11. An Edge-Edge Template Graph on GNAT data

Then the density of this set of nodes U with respect to W is defined as

the average pairwise interaction weight between all the nodes that are members of

U . Dense Module Enumeration detects all node subsets that satisfy a user-defined

minimum density threshold.

In our case, the undirected weighted subgraphs are Tvv and Tee and sets of

edges and nodes associated with each of these graphs are represented by Et and Vt

respectively. Dense Module Enumeration algorithm works on both weighted and non-

weighted undirected graphs. The graph collection used for the experiments in this
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paper consists of unweighted graphs. For unweighted graphs, it calculates the weights

for its edges on its own. Dense Module Enumeration algorithm works on a set of input

parameters. Following is basic enumeration method along with the explanation of the

input parameters:

./dme m 〈input_file〉 〈output_file〉 〈density_threshold〉 [options]

Input file: This is the file consists of the edges along with the weight on

each edge in the graph. There are three columns in total with first column and

second column consisting of the node number and the third column consists for

the corresponding interaction weight between the nodes. The input files for our

experiment are the template_vv and template_ee files consisting of vertex-vertex

template graph and edge-edge template graph respectively.

Output File: The output file consists of the cluster modules obtained by

running DME algorithm on the input files. There are 4 columns: ranking score,

density in the module (between 0 to 1), module size and module nodes. We will be

working on the 4th column of the output file which consists of the nodes constituting

the clusters.

Density Threshold: This input parameter specifies the minimum density

threshold for the modules. This value should be between 0 and 1. The density

thresholds used in the experiments are 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85. A

threshold density of 0.50 means that a node in the set U must interact with 50% of

other nodes in U. The density threshold is represented by mind in this paper.

Options: The only option I am using as the input parameter is the minsize

option which specifies what should be the minimum size of a module in the output

file. Those with size less than minimal size are not included in the output.
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Because I have run the DME algorithm for 8 different threshold densities(mind),

there are 8 output files after running the algorithm on each of the template graphs.

The next step is to find out if each of the cluster modules in each of the files is frequent

in the input graphs in the network or not. The two constraints used to analyze this

are:

Minimum Frequency of Appearance (γ): The number of graphs the given cluster

module should appear in. I have included the results for γ=8 and γ=9.

Quasi Appearance (θ) : The cluster is not always required to be present fully in a

graph. So we are finding out the quasi appearance of the clusters in the collection of

graphs. This constraint specifies the percentage or the part of the cluster that should

be present in a graph. For example, if θ=50%, then at least a half of the cluster

should appear in a graph to be considered as a frequent candidate.

Following tables show the results of my experiments run on the DME cluster

files for both vertex-vertex template graph and edge-edge template graph.

Table 1. Result Matrix for Vertex-Vertex Template Graph approach

mind Clusters AvgSize θ = 100 θ = 90 θ = 80 θ = 70 θ = 60 θ = 50
50 2936 4.7 24% 24% 25% 26% 28% 30%
55 970 4.5 26% 26% 27% 28% 30% 32%
60 373 4.4 23% 23% 24% 26% 28% 31%
65 152 4.2 28% 28% 28% 31% 32% 36%
70 41 4.3 39% 39% 39% 44% 44% 44%
75 14 4 36% 36% 36% 36% 36% 36%
80 4 4 25% 25% 25% 25% 25% 25%
85 0 0 0% 0% 0% 0% 0% 0%

Table 1 shows the percentage of dense subnetworks (clusters) discovered from

Vertex- Vertex template graph that actually appear in the initial set of graphs.

The DME densities are 50, 55, 60, 65, 70, 75, 80, 85 (in percentages). For each

density value, the table shows the total number of clusters discovered using the DME
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approach. For density 0.5 (50% ) the number of clusters is maximum and for density

0.85 (85%) it’s minimum which is because there would be a fewer number of subgraphs

that are denser as compared to the ones that are less dense. The average cluster size

for less dense subgraphs will be more as compared to the ones with a higher density

value. The reason again is because it’s more likely that a fewer nodes will be involved

in stronger interaction. Next given are the percentages of subgraphs discovered from

the vertex-vertex template graph that are quasi frequent in the collection of graphs

for a different densities of clustering.

For example if the value of quasi appearance (θ) is 100% which means a subgraph

should appear fully in the set of networks and density= 0.5, the percentage of

subgraphs discovered from vertex- vertex template graph that are frequent across the

given set of graphs is 24%. Another example is, for quasi appearance (θ)= 50% and

DME density (mind)= 50% the percentage for subgraphs (clusters) that are frequent

across the collection of graphs is 30%. It can be inferred from the table that as the

value of quasi appearance increases, the percentage of frequent subgraphs decreases.

Table 2. Result Matrix for Edge-Edge Template Graph approach

mind Clusters AvgSize θ = 100 θ = 90 θ = 80 θ = 70 θ = 60 θ = 50
50 5310 5.8 39% 39% 78% 95% 99% 100%
55 1615 5.3 49% 55% 84% 96% 99% 100%
60 571 4.8 63% 67% 85% 97% 99% 100%
65 210 4.5 72% 73% 85% 99% 99% 100%
70 73 4.5 75% 75% 88% 100% 100% 100%
75 33 4.4 67% 67% 79% 100% 100% 100%
80 15 4.1 87% 87% 93% 100% 100% 100%
85 3 4.1 87% 67% 100% 100% 100% 100%

29



Table 2 shows the percentage of dense subnetworks discovered from Edge- Edge

template graph that actually appear in the initial set of graphs. The DME densities

again are 50, 55, 60, 65, 70, 75, 80, 85. For each density value, the table shows the

total number of clusters discovered using the DME approach.

The observations regarding the number of clusters, average cluster size are the

same as in vertex-vertex template graph. The percentage of subnetworks discovered

from the edge-edge template graph that actually appears in the set of networks for

a given density of clustering are listed in the table. For example, consider the quasi

appearance is 100% which means a subnetwork appears 100% in the set of networks.

For density= 0.5, the percentage of subgraphs discovered from vertex-vertex template

graph that actually exist in the give set of graphs is 39%.

Tables 1 and 2 show that Clustering on Edge-Edge template graph gives more

promising figures than clustering on Vertex-Vertex template graph. Following are the

observations:

1. The number of clusters discovered using edge-edge template graph approach

is almost double than that by vertex-vertex template graph approach. For

example, for DME Density = 0.5 the cluster size of edge-edge ad template-

template are 5310 and 2936 respectively.

2. The average size of clusters for a given density is greater in case of edge-edge

template graph approach. For example, considering the DME Density = 0.5 and

quasi appearance is 50% then the average cluster size for edge-edge template

graph and vertex-vertex template graphs are 4.7 and 5.8 respectively.

3. The percentage of dense subgraphs appearing in given set of networks is way

higher in case of edge-edge template graph approach. For example, according to

the tables for DME density = 0.5 the quasi appearance 100% which means the
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whole subgraph appears in the given set of graphs, 39% of the total clusters are

frequent if edge-edge template graph approach is used which is higher than the

percentage in case of vertex-vertex template graph approach. Another example

is if DME density (mind)=0.5 and the quasi appearance θ = 50% then 99.7% of

the total clusters found using edge-edge template graph approach are frequent,

which is a lot higher than the percentage of clusters that are frequent using

vertex-vertex template graph (which is 30.42%) for the same set of constraints.

Fig. 12. Percentage of Quasi Frequent Subgraphs shown by Density

Figure 12 shows the result plots for the percentage of quasi frequent subgraphs

for each of DME densities mind = {50, 55, 60, 65, 70, 75, 80, 85} using both vertex-

vertex and edge-edge template graph approaches. For each of the mind values, the

results are further shown for θ={50, 60, 70, 80, 90, 100}.

For example in case of vertex-vertex template graph approach, for mind= 50

the percentage of subgraphs that are quasi frequent in the input graph collection

for θ ={ 50, 60, 70, 80, 90, 100 } are {30, 28, 26, 25, 24, 24} respectively. And in

case of edge-edge template graph approach, for the same value of mind, the values

corresponding to θ ={50, 60, 70, 80, 90, 100} are {100, 99, 95, 78, 39, 39} respectively

(in percentage).
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Fig. 13. Percentage of Quasi Frequent Subgraphs shown by Threshold

Fig. 14. Results for γ = 8 and 9 by mind for Edge-Edge Template Graph

Figure 13 shows the result plots for the percentage of quasi frequent subgraphs

for each of the values in Quasi Frequent set θ = {50, 60, 70, 80, 90, 100} using both

vertex-vertex and edge-edge template graph approaches. For each of the θ values, the

results are further shown for mind = {50, 55, 60, 65, 70, 75, 80, 85}.
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Fig. 15. Results for γ = 8 and 9 by θ for Edge-Edge Template Graph

For example in case of edge-edge template graph approach, for θ = 70 the

percentage of subgraphs that are quasi frequent in the input graph collection for

mind = {50, 55, 60, 65, 70, 75, 80, 85} are {26, 28, 26, 31, 44, 36, 25, 0} respectively.

And in case of edge-edge template graph approach, for the same value of θ, the values

corresponding to mind = {50, 55, 60, 65, 70, 75, 80, 85} are {95, 96, 97, 99, 100, 100,

100, 100} respectively (in percentage).

Figure 14 compares the results for of quasi frequent subgraphs for γ = 8 and 9

in case of edge-edge template graph approach using bar plots by DME densities . The

variable γ is the minimum frequency of appearance of a subparagraph in the given

graph collection. The bar plots show that there is not much difference in percentages

when γ is changed from 8 to 9. We see similar kind of observation in Figure 15 where

the plots are by minimum threshold of appearance (θ).
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CHAPTER 4. CONCLUSION AND FUTURE WORK

In this paper I have presented a new method to find quasi frequent subgraphs

or frequent subgraphs in large network sets that can be used to discover recurrent

patterns in scientific, spatial, and relational datasets. Such subgraphs can play an

important role for understanding the nature of these datasets and can be used as

input to other data-mining tasks. Using a summary graph to find communities in

networks helps find interesting interactions and there are many established algorithms

to do it.

The edge-edge template graph approach presented in this paper looks very

promising in terms of finding larger number of denser clusters in the set of networks.

My experimental evaluation shows that this approach can scale reasonably well to

very large graph databases if the value if the value of support (γ) is not low. One of

the reasons is that the connections that are not frequent are eliminated at the initial

stage. So, the template graph is built on the edges that appear frequently across the

set of networks. The results clearly show that edge-edge template graph approach is

much more efficient in finding the dense interactions across networks. The algorithm

is also capable of finding the quasi appearance of a subgraph across the networks. In

this paper, the value of quasi appearance are 50%, 60%, 70%, 80%, 90%, 100%.

There are a few limitations that can be addressed as a part of future work.

Firstly, we assumed that the vertices across all the graphs are the same in the

collection. It sometimes doesn’t hold true in real world networks, For example two

different social networks might not have the same people connected in them. There

could be more people involved in a network or two different sets of people in two

different networks. So, the algorithm can be improved to work for different sets of

vertices across the graphs in a graph collection. That way this algorithm can be used

in the area of mining social networks to find useful connections.
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Another functionality that can be added as a part of future work is further

enhancing this algorithm to find quasi frequent subnetworks when the edges in the

graphs have attributes attached to them. For example, the edges (connections) in

a network can have different attributes associated with them that define the nature

of these connections. For example, in a Facebook network the attributes associated

with two people connected in the network are their common friends (or connections),

common page likes, common TV show likes etc. The algorithm can be modified to

find frequent subgraphs based upon the values of these attributes assigned to different

connections or edges in the graphs.

The elimination of edges that are not frequent across the graphs during the

initial stage is important since it makes the algorithm efficient in terms of running

time and space required. But in many cases the edges that sparsely appear across the

collection are significant for some analyses and should not be eliminated. Using the

algorithm in that case may take larger amount of time and space. So the algorithm

needs to be optimized to run for huge datasets if initial elimination step has to be

skipped.
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