

TEACHING SOFTWARE TESTING CONCEPTS USING LEARNING

OBJECTS

A Paper

Submitted to the Graduate School
of the

North Dakota State University
of Agriculture and Applied Science

By

Judi Lynn Simley

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

November 2016

Fargo, North Dakota

North Dakota State University

Graduate School

Title

 TEACHING SOFTWARE TESTING CONCEPTS USING LEARNING

OBJECTIVES

 By

Judi Lynn Simley

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Gursimran Walia

 Advisor

Dr. Kendall E. Nygard

Dr. Limin Zhang

Dr. Brian Slator

 Approved:

 December 12, 2016 Dr. Brian Slator

 Date Department Chair

iii

ABSTRACT

The ubiquitous nature of software, it is very important to prepare students for jobs in the

software industry. There is a profound deficiency in testing skills in graduating students when

beginning jobs in Information Technology Industry. This paper describes a means of teaching

software testing concepts and tools in introductory computer courses using a Web-based Repository

of Software Testing Tutorials: A Cyber-Learning Environment (WReSTT-CyLE). WReSTT-CyLE

is a collaborative interactive eLearning environment for testing tools and concepts. The site was

created to be student centered and to motivate testing concepts learning. This environment’s design

is customizable for Instructors’ individual needs. Another aspect of WReSTT is the design of

effective learning objects covering breadth of testing concepts. This paper’s focuses on the creation

of two learning objectives. The learning objectives focus on: System and Acceptance Testing levels.

This paper covers testing importance, WReSTT design, and the detailed description of two learning

objectives.

iv

ACKNOWLEDGEMENT

I would like to give thanks to all the people who supported me though out this entire

process. That was started in 2010. I want to thank all of my Instructors and Professors that helped

me along the way. I also want to thank all of the helpful people that support them and NDSU

Departments. I give thanks to Dr. Slator for pushing me through this. I want to thank Dr. Nygard

for helping me through both undergraduate courses and graduate courses. Thanks to Dr. Walia for

guiding me through this paper and along with graduate courses. Dr. Zhang, thanks for helping with

this process and teaching me in my undergraduate course.

I give thanks to my family members. To my mother for supporting me in many ways and

giving me the attitude to not give up. To my father for supporting me and guiding me with the life

skills to succeed. My sister for supporting my being! Most of all, I want to thank my husband,

Scott. He has supported me though the complete process starting in 2004. He has helped with the

raising of our 3 beautiful children, Alexis, Kali, and Race. I could not have done this without you! I

love you all and THANKS!

v

DEDICATION

I would like to dedicate this to my instructors, my parents, my family, and myself. I did it! I would

also like to dedicate this to my husband and my children for all the absent hours mom was missing.

I dedicate this paper to all the Native American Indigenous Women; you can envision your

achievements and succeed with whatever you do!

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENT .. iv

DEDICATION ... v

LIST OF FIGURES .. vii

1. INTRODUCTION ... 1

2. BACKGROUND OF WReSTT ... 3

2.1. History of WReSTT ... 4

2.2 Using WReSTT-CyLE to improve software testing skills in IT students 5

3. LEARNING OBJECTIVES ... 7

3.1 Research path ... 7

3.2 Research data for Learning Objectives .. 7

3.3 Construction of Learning Objectives ... 9

3.3.1 System Testing LO .. 10

3.3.2 Acceptance Testing LO ... 25

4. FUTURE WORK ... 36

5. DISCUSSION AND CONCLUSION .. 37

REFERENCES.. 38

APPENDIX A. LISTING OF BOOKS REVIEWED .. 40

APPENDIX B. A LISTING OF WEBSITES VISITED .. 41

APPENDIX C. A LISTING OF CONFERENCE PAPERS REVIEWED .. 44

APPENDIX D. A LISTING OF ALL MATERIAL REVIEWED ... 46

vii

LIST OF FIGURES

Figure Page

1. The 1st page of System Testing LO .. 12

2. The 2nd page of System Testing LO... 13

3. The 3rd page of System Testing LO ... 14

4. The 4th page of System Testing LO ... 15

5. The 5th page of System Testing LO ... 16

6. Continuation of the 5th page of System Testing LO .. 17

7. Continuation of the 5th page of System Testing LO .. 18

8. Continuation of the 5th page of System Testing LO .. 19

9. The 6th page of System Testing LO ... 20

10. The 7th page of System Testing LO ... 21

11. Continuation of the 7th page of System Testing LO .. 22

12. The 8th page of System Testing LO ... 23

13. Continuation of the 8th page of System Testing LO .. 24

14. The 1st page of Acceptance Testing LO .. 26

15. The 2nd page of Acceptance Testing LO ... 27

16. The 3rd page of Acceptance Testing LO ... 28

17. Continuation of the 3rd page of Acceptance Testing LO.. 29

18. The 4th page of Acceptance Testing LO .. 30

19. Continuation of 4th page of Acceptance Testing LO .. 31

20. The 5th page of Acceptance Testing LO .. 32

21. The 6th page of Acceptance Testing LO .. 33

22. The 7th page of Acceptance Testing LO .. 34

23. The 8th page of Acceptance Testing LO .. 35

file:///C:/Users/scott/Desktop/JSimley%20MP%20v1.docx%23_Toc481427593

1

1. INTRODUCTION

As IT Professionals, testing is one of the most sought out IT skill to have in any position in

the Industry. Testing is considered the most important process to ensure quality software today [3].

Testing is a valued skill-set to have for any IT professional. As stated, “If there is one new skill every QA

professional needs today, it is this: the ability to write a test script” [4]. This is not only important for QA

professionals but all IT professionals. Employers are looking for some of these testing skills;

analytical, technical, good verbal and written communication skills, productivity, ‘test to break'

attitude, detail orientation, willingness to learn and suggest process improvements, and a passion for

software testing. [5] The advantage of having these skills does not only benefit the IT Industry but

all other Global Industries; as well as Academia. All IT professionals have started as students; either

learning through academia or on their own. There have been many studies; via employer/job

positioning surveys and academic surveys that state there is a significant default in testing skills in

students. [6] With this deficiency known; the Academic world has a great challenge. Although there

are increasing amounts of testing tutorials and testing tools available on the web, there are not many

that provide institutions with the student/instructor collaboration features. Web-based Repository

of Software Testing Tutorials: A Cyber-Learning Environment (WReSTT-CyLE) is one of these

opportunities [7]. WReSTT-CyLE is a collaborative learning environment of testing concept for

students. The eLearning site is enhanced with gamification features, independency, and the ease of

usability. Both Instructors and Students are motivated to participate within the website. The

website was updated with gamified features. [8] This also enhanced the collaborative aspects. The

website creators wanted to have complete independence. The user does not have to download any

software to use it. The website’s design was also restructured. It was improved for easier user

interactions. The heart of WReSTT-CyLE is the design of learning objectives (LO). These LO

focus on specified testing concepts for example, Introduction to Software Testing – LO1. The LO

2

start at a basic level and proceed to dive into more depth information about the topic. [16][18] The

LO design was based on the theory of using a linear learning path. [17][18] The paper introduces the

importance of learning testing topics and focuses on teaching students these testing skills. It

discusses the WReSTT-CyLE webpage designed specifically for this purpose. This paper goes over

the creating of two learning objectives that were made for WReSTT-CyLE. It includes the future

works to be completed. Then, the paper is summarized.

3

2. BACKGROUND OF WReSTT

The background of the paper focuses on how Web-based Repository of Software Testing

Tools (WReSTT) came from and idea into an actual interactive site to teach student testing concepts

and tools. The whole idea for the WReSTT site was to bring testing tools into the classroom with

minimal interruption. It was a collaboration of Florida International University (FIU) and Florida

Agricultural and Mechanical University (FAMU). It was supported by National Science Foundation

and IBM Company. [9] The focus on testing tool tutorials was devised from the Industry. There

were a lot of software bugs in the headlines. The industry needed software professionals with

testing skills. WReSTT creators began to resolve this with the website. They decided to create a

web repository of testing tools for students and instructors. This supported the development of

quality software while in school by offering a program analyzer. It also provided forums for

questions, a rating system for the quality of the testing tutorial, and more external links. [9] WReSTT

was intended to support instructors with the latest and most informative tutorials to offer to

students. The main focus at this time was for undergraduate students taking introductory to

software development courses. These courses were chosen because most of the enrolled IT

students would be first-timers to software programming. This was their first formal exposure to

development and this was the best opportunity for having testing introduced. Also, since the

instructors were focusing on development, this was a fantastic opportunity to involve a non-

intrusive way to reveal testing. With all these ideas in mind, this is where WReSTT became palpable.

The history gives a description of webpage and how it has evolved to present. The usage of

WReSTT focuses on the how useful it is to student and Instructors.

4

2.1. History of WReSTT

WReSTT-CyLE is an extension of the WReSTT (V2) and WReSTT (V1). It is a TUES II

project; a collaborative effort between Florida International University, Alabama AM University,

Miami University - Ohio, and North Dakota State University. Web-based Repository of Software

Testing Tools; known as WReSTT (V1) was introduced around 2009 and included 7 tools, software

testing tutorials and links to other materials. [10] It was designed to support undergraduate computer

science courses. Based on feedback from students and instructors; WReSTT (V2) introduced some

enhanced features with gamification. It became a collaborative learning environment instead of a

repository for learning materials. These features included access to student reports, the ability to

create virtual teams for team projects, ability for instructors to load class rolls, and the ability for

instructors to create course templates. This added gamification to the repository, the teams could

compete and there were leader boards to track progress of the other teams. With the portal being

down, the team decided to take the opportunity to enhance some of the features and created

WReSTT-CyLE. They enhanced the learning objectives and added more topics, it just not based on

tools. The focus is more on all testing concepts along with the testing tools. The team collaboration

was enriched with more gamification. The website design was again enhanced for better viewing

and for users to navigate easier. Also, the instructors’ portal has more capabilities to monitor

student performance. [6] WReSTT-CyLE is a collaborative learning environment that is non-

intrusive to any classroom. This was a major point that has stayed with the whole progression of

WReSTT/WReSTT-CyLE. The creators wanted it to be independent. There is no downloading of

software—everything needed is right on the site. The site has grown into a whole learning

experience. Instructors can pick which tutorials they want their students to learn along with learning

objectives. They can monitor the students’ progress more easily. The site is adaptable to the

individual instructors’ needs. The site was planned to be student-centric. The students don’t need

5

to search for tutorials—all assigned tutorials are right there. They can view their progress and have

automated test scoring. This means no wait time for quiz grades. They can collaborate with their

team members and face-to-face meetings are only as necessary. With almost 50 universities currently

using the site, the team also used this opportunity to enhance the websites security.

2.2 Using WReSTT-CyLE to improve software testing skills in IT students

The best way to teach students is through motivation. To motivate students, there needs to

be an environment that encourages involvement. One proven way to complete this is to have a

Cyber-Enabled Learning environment with the addition of gamification. [8] WReSTT-CyLE was

designed to incorporate both elements. Cyber-Enabled Learning or eLearning allows instructors

access to alternative teaching avenues. They can introduce students to additional educational

information not readily available before. A typical eLearning site involves having assignments and

exercise submission. With today’s technology, these sites are becoming not just text only sites but

can be multi-media sites. [11] The site was created to be a supplement for a traditional classroom

setting. The instructors use the site’s learning objectives and tutorials in addition to their material.

WReSTT-CyLE is a non-intrusive method to introduce students to testing concepts. Cyber-Enabled

Learning is not enough to motivate most students alone. With the addition of gamification of some

features of the eLearning environment, the site greatly improved student motivation. [11] What is

gamification? Gamification is the process of adding game-like enhancements to ordinary

tasks/activities to entice user participation. [12] So, why use gamification? There are many

gamification studies proving that it offers a positive impact on users. [13] Gamification is used

because it keeps the user involved and promotes user interactions. When adding game-like features

the user do not ‘feel’ like they are learning; it’s more like they are playing a game. This can be

achieved by having a ‘team’ or by creating individual challenges. WReSTT-CyLE was updated with

gamified features. These included; a leader-board, virtual team creation, virtual points (including

6

bonus points) for both teams and individuals, and discussion forums. The leader-board allows

students to view the progress of other teams. [6] [8] Teams were formed by the instructor. They

were given points for completing activities on the site in a timely manner. Individual points were

also given out: these included; getting points for updating the student profile, interacting in the

forums, accessing tutorials and submitting assignments/quizzes. These gamified features kept the

students involved by challenging them to compete against the other teams in points. It also keeps

them involved with interactions through the discussion forum and discussing the best way to get the

most points. The demo website is located at http://demo.wrestt.cis.fiu.edu/about-wrestt-com. [7]

The demo view included the Instructor and student views. The student view does not have as many

options as the Instructors. The Instructor’s view is customizable to the individual Instructor.

Student can create their own student profile; this is the only customization they can perform. They

have the same access (as Instructors) to all the tutorial and learning content. The heart of the site

and main content are the learning objectives on the various testing concepts. Some of these have

been added to the site and are under development. For this paper, the focus was creating two

learning objectives; system testing and acceptance testing.

7

3. LEARNING OBJECTIVES

The learning objectives created were on system and acceptance testing concepts. This

section describes the path that was taken to get to the research and the data collection for the

learning objectives.

3.1 Research path

Previous research on the WReSTT website about the gamification of the website and the

guidance of my advisor, Dr. Gursimran Singh Walia, Ph.D., lead to the construction of this master

paper. The research included reading a lot of borrowed books, intensive internet searching,

gathering papers on the topic, and a lot of computing hours. The topic of this paper came up

because Dr. Walia is the main contact at North Dakota State University (NDSU) for WReSTT-

CyLE. The WReSTT-CyLE team wants to get more testing concepts onto the site. Dr. Walia

provided a list of testing topics that were not on the site yet. All the other levels of testing were

completed; the only high-level concepts left were system and acceptance testing. This was where the

2 learning objectives of this paper generated from. The complete listing of books can be found in

Appendix A. The complete listing of the internet addresses can be found in Appendix B. All papers

used are found in Appendix C.

3.2 Research data for Learning Objectives

There is a lot of terms used for testing concepts. Most of them are used very loosely and

some terms are used as double-meaning words. The hardest part of the data collection was the

categorizing it. For example; ad-hoc testing was under testing methods and types of testing. Ad-hoc

testing is a type of validation to test the software under test (SUT). It is an actual technique used.

It should not be categorized with functional or non-functional. These are the categories of testing

are what is being test; the type of requirement that is being tested. Ad-hoc testing is validating

random pieces of SUT; therefore, can be functional or non-functional. Also, the concept mapping

8

between textbooks, webpages, and papers was very hard to follow. So, one of the greatest concerns

was to categorize these terms correctly. The concept of manual or automated testing fell under the

same principle as functional or black-box, in which a lot of the information grouped them together.

There were also grouping of concepts and phases of testing, which didn’t make sense either. All

software testing is either functional or non-functional; these are the 2 categories of testing. Also,

there are 4 different levels of testing: unit, component, integration, system, and acceptance. These

were always followed in all information researched; the only difference was the naming. For

example, system testing was sometimes named system-integration testing and acceptance testing was

called user acceptance testing. All testing types, testing methods, and testing aspects can fall into any

individual levels and any one of these categories. A compiled list with definition is found in

Appendix D. The first grouping was types of testing were formed. These were based on the actual

testing processes (how the testing was being performed) used for testing the Software Under Test

(SUT). There are many different types of test: Active, Ad-hoc, Agile, Alpha, Automated, Beta, Big-

bang, Big Bang Integration, Bottom-up, Bottom Up Integration, Concurrency, Dynamic, End-to-

end, Exploratory, Hybrid Integration, Manual, Manual Scripted, Manual-Support, Model-Based,

Negative, Pair, Passive, Parallel, Positive, Qualification, Regression, Requirements, Scenario, Static,

Sandwich, System Integration, TDD, and Thread, Top-down, Top Down Integration, Upgrade, V-

model, Waterfall (traditional). The next grouping was testing methods. This group was based on

the information known or results of the tests that were being completed. There are different

methods of testing: Assertion, All-pairs, Basis Path, Benchmark, Boundary Value, Black-box,

Branch, Code-driven, Component, Condition Coverage, Context Driven, Decision Coverage,

Destructive, Error-Handling, Equivalence Partitioning, Fault injection, Fuzz, Gorilla, Glass-box,

Grey-box, Keyword-driven/ Table-driven, Loop, Modularity-driven, Mutation, Orthogonal array,

Path, Statement, Smoke, Structural, Trial-error, White-box, and Workflow. A lot of these terms are

9

used inter-changeably in our industry; for example; glass-box and white-box testing. Both are testing

methods with no real distinction. The final category was testing aspects. These are: Accessibility,

Age, API, Backward Compatibility, Binary Portability, Breadth, Configuration, Compatibility,

Compliance, Conformance, Conversion, Dependency, Domain, Endurance, Formal verification,

GUI software, Globalization, Interface, Install/uninstall, Installation, Internationalization, Inter-

Systems, Load, Localization, Operational, Penetration, Performance, Portability, Ramp, Recovery,

Sanity, Scalability, Stability, Storage, Stress, Security, Upgrade, Usability, User Interface, Volume,

and Vulnerability. This last grouping is based on validating the whole system as one. These are

testing more of the non-functional requirements. For example, User interface testing is to validate

how easily the user can perform tasks in the system. These are only some of the terms found in the

research, there were many more. Now since the data was collected and categorized, the next step

was to build the LO.

3.3 Construction of Learning Objectives

It was very hard to cut out some of the information that was found. There was a lot of

valuable information via textbooks, internet, and papers found. So, getting the correct amount of

information was not an issue. It was cutting it down to be easily read on a webpage for the students

using them and not to overload students. This editing was done to make the learning objective

informative enough and to give a full understanding of the topic. Students that are accessing the site

can have any level of understanding or exposure of testing concepts. This had to be kept in mind, so

that a novice to someone with some knowledge can learn something from the LO. The last item

was creating the learning objective to be aesthetically pleasing for the user. This was fulfilled by

creating page breaks and adding visuals within the pages. Also, the design of the LO was based on a

couple of concepts; linear paths and the layout of pages. [16] [17] The linear path concept is the first

page is a basis and the consecutive pages become more in-depth in the topic. The layout of the page

10

itself was from a concept to keep the pages at a minimum for ease of use and visually appealing. [18]

These items needed to be considered to create a great webpage for WReSTT-CyLE in order to

support Instructors and teach students. The first LO was System Testing. This was the toughest

one to create because it was the first page made. The first version was very word-heavy. There were

8 pages of text alone! It was submitted for review to Dr. Walia and Dr. Slator. Dr. Slator sent it

back with comments and revisions. Dr. Walia commented that it needed to be shortened, there was

too much text, and to add some visuals to make it appeal to the eye. He also sent some examples of

other testing concepts. The LO was updated and sent back for final review. The compilation of

Acceptance Testing LO was not much easier. Experience from the first LO helped with the

creation. With the loosely used testing verbiage, it was a little trickier. Research was more in-depth

with this LO. The path to a fully explained Acceptance Test was difficult to reach. Since there are

many types of Acceptance testing, the main difference is the type of software created. There are 2

types of software created: custom-built and commercial-off-the-shelf (COTS). [14] To ensure the

length of the LO stayed reasonable; only the custom-built software was considered. From the

example and recommendation, visuals were added in the first version. It was sent to Dr. Walia for

review and accepted. Both LOs were sent to peers for commenting.

3.3.1 System Testing LO

The System Testing LO consists of a title, type of testing, testing methods, tools used, the

basic concept, and quizzes. The title is System Testing – LO01. System Testing types are both

manual and automated. The requirements that are tested are both functional and non-functional.

This is the first time that both types of requirements are tested. Also, this will be the first time that

the system is tested as an entire unit. [19] Some of the tools used are; LDRA, IBM Teleprocessing

Network Simulator, and IBM Workload Simulator, test cases and testing scenarios. It contains 5

main concept pages and a page for references. These inform about the overview of System testing,

11

the differences between Integration and System testing, benefits, aspects of system testing, and steps

taken in system testing. The LO is concluded with a Reference page. Also, there is a practice quiz

and a real quiz to judge the knowledge of the students. The Overview Page includes the title at the

top and some header information for the implementation of the page into WReSTT_CyLE website.

The main content is the background information of System Testing.

12

Figure 1 illustrates the 1st page of System Testing Learning Objective. This figure illustrates

the Overview page of System Testing.

Figure 1. The 1st page of System Testing LO

13

The second page of the System Testing Learning Objective gives a listing of the differences

between Integration and System Testing. Integration is the second level of testing and System is the

third level. The two levels are very close in distinction, but are very different in what the testing

focus is.

Figure 2 . The 2nd page of System Testing LO

14

The third page of System Testing includes the benefits of system testing. The list was

shortened because the other entries were related to the same items listed.

Figure 3. The 3rd page of System Testing LO

15

The fourth page of System testing is the Aspects in System Testing. The page gives some of

the examples used for system testing and then guides on how to choose from those examples.

Figure 4. The 4th page of System Testing LO

16

The fifth page of the learning objective is the steps taken to complete System Testing. The

page turned out to be larger than the rest because of the illustrations and the information gathered

to give a full understanding of the concept. There are 7 steps all together. The Illustration is of the

first step to take when starting System testing,

Figure 5. The 5th page of System Testing LO

17

The sixth illustration shows the second and third steps to complete the testing. It illustrates

how the test cases are derived from the user story.

Figure 6. Continuation of the 5th page of System Testing LO

18

The seventh figure illustrates the fourth step of the process. It gives a test case example

along with the output of the test.

Figure 7. Continuation of the 5th page of System Testing LO

19

The figure illustrates the 5th, 6th, and 7th steps in the testing process. It has a diagram of the

flow of bug reporting that is used.

Figure 8. Continuation of the 5th page of System Testing LO

20

The sixth page of the System Testing Learning Objective is the reference list. This page lists

all the references used to gather the information to create the learning objective.

Figure 9. The 6th page of System Testing LO

21

The seventh page of the learning objective is the practice quiz. There are 10 multiple choice

questions along with the correct answers. The main purpose of the practice quiz is to get the

student ready for the real quiz that will be a part of their grade. The figure shows the practice quiz

questions one through five along with the multiple-choice answers.

Figure 10. The 7th page of System Testing LO

22

Figure 11 illustrates multiple choice questions six through 10. It is a continuation of the

practice quiz from figure 10. The figure also contains the correct answers to the quiz.

Figure 11. Continuation of the 7th page of System Testing LO

23

The eighth page of the learning objective is the Real Quiz. The quiz consists of 10 multiple

choice questions including the correct answers. The purpose of the quiz is to determine the

student’s retention of the information. This will be a part of the final grading of the student. Figure

12 illustrates the 8th page of the System Testing Learning Objective. Figure 12 shows the Real

Quiz, questions 1 through 5.

Figure 12. The 8th page of System Testing LO

24

Figure 13 lists the multiple-choice questions six through ten. It has the correct answers at

the bottom of the page.

Figure 13. Continuation of the 8th page of System Testing LO

25

3.3.2 Acceptance Testing LO

The Acceptance Testing LO includes a title, testing type, testing methods, tools used, basic

concepts, and quizzes. Acceptance testing LO – LO01 is the title. This type of testing is mainly

manual; consisting of checklists. The primary testing methods used are black-box, alpha, and beta.

There are diverse ways to perform acceptance testing and different types of acceptance testing. For

example, the type of software created plays a significant role in this. If the software is commercial-

off-the-shelf, the acceptance testing method will be alpha and beta testing. If the software is

custom-built, then it will be end-user in-house acceptance testing. The acceptance testing will

include; Contract Acceptance Testing, Regulation Acceptance Testing, or Operational Acceptance

Testing. [15] So, the whole point is to figure out what will benefit the student the most and review it.

The students are mainly some type of IT background, therefore will be working more with custom-

built software. The focus for this LO was on custom-built software. This was noted on the page.

There are many tools used for this; eggplant, Ranorex 2, web2test, Zephyr, engageuat, and many

more company driven tools (these are mainly used to report any bugs found, automated acceptance

testing, and acceptance testing via internet). The main tools used are Excel spread sheets and

checklists. Acceptance Testing basic concepts consist of; overview of concept, difference between

System and Acceptance testing concepts, differences of COTS and Custom-Built software, UAT

process, and the conclusion. The last items were the 2 quizzes. (Figures 10-13) These will determine

the students’ knowledge of the concept. The first page of Acceptance Testing Learning Objective is

the main content page with the overview. At the top of the page is the title. Then there are the

headers for the page implementation into WReSTT-CyLE website. The overview provides some of

the background into acceptance testing and an analogy for better understanding.

26

Figure 14. The 1st page of Acceptance Testing LO

27

The second page of the learning objective is the differences between System and Acceptance

testing. The differences are formatted side by side for better viewing. There are eight items in the

list, this listing was cut down because the other items found were like these listed.

Figure 15. The 2nd page of Acceptance Testing LO

28

The third page of the learning objective is the differences between COTS and Custom Built

software. This topic was added because of the importance. The way the software is built

determines which acceptance testing process used. If the software is COTS, then acceptance testing

is done via Internet and the results captured. If the software is Custom Built, the acceptance testing

is done on the customer site with real-time data.

Figure 16. The 3rd page of Acceptance Testing LO

29

Figure 17 is a continuation of the third page of Acceptance Testing LO. It illustrates an

example of a Go No Go checklist for testing.

Figure 17. Continuation of the 3rd page of Acceptance Testing LO

30

The fourth page of the learning objective is the User Acceptance Testing (UAT) Process.

This process is for custom built software. The relevance is that most students will be creating this

type of software. There is a note on the top of the page informing that the rest of the learning

objective will focus on custom built software user acceptance testing process. The figure illustrates

steps 1, 2, and 3 of the UAT Process.

Figure 18. The 4th page of Acceptance Testing LO

31

Figure 19 is a continuation of the fourth page of Acceptance Testing LO. It includes steps 4,5,

and 6 of the UAT process.

Figure 19. Continuation of 4th page of Acceptance Testing LO

32

The fifth page of the learning objective is the conclusion. This page gives a brief overview

of the information that was presented. It stresses the importance of how the software is built in the

UAT process.

Figure 20. The 5th page of Acceptance Testing LO

33

The sixth page of the learning objective is the Practice Quiz. There are 10 multiple choice

questions along with the correct answers. The main purpose of the practice quiz is to get the

student ready for the real quiz that will be a part of their grade. Figure 21 illustrates the practice quiz

along with the correct answers.

Figure 21. The 6th page of Acceptance Testing LO

34

The seventh page of the learning objective is the Real Quiz. The quiz consists of 10 multiple

choice questions including the correct answers. The purpose of the quiz is to determine the

student’s retention of the information. This will be a part of the final grading of the student. Figure

22 illustrates the real quiz along with correct answers.

Figure 22. The 7th page of Acceptance Testing LO

35

The final page of the learning objective is the references. This page lists all of the references

used in the learning objective.

Figure 23. The 8th page of Acceptance Testing LO

36

4. FUTURE WORK

There is more work to be done with this topic. There is a lot of information that can go

more in-depth on the subject. For example, in the System Testing – LO; 02 and 03 can be added.

There are some concepts not on the site yet, these can all be added. Some more tutorials on

different testing tools can be added, there are many different tools available that were not at the

creation of this site.

The current WReSTT-CyLE has not been studied since the new design. This can be testing

within a software or testing undergraduate course and journaled. Some studies can be on how

effective are the LO and quizzes.

There can be more options added to the site itself. An example is the option of Instructor

uploading their own LO or tutorials. Another option could be Instructor requests on a specific

topic or tool. Within WReSTT-CyLE, the website can be opened to the public for use. As

mentioned, not all IT professionals go through the traditional route of schooling. This can also help

current professionals with up-to-date tutorials and LOs for ramping up on a specific tool or topic.

37

5. DISCUSSION AND CONCLUSION

There is a gap of testing skills/knowledge in IT professionals. The way to address this issue

is to teach students the importance of testing and provide them with the proper tools to gain this

knowledge. Academia has started to resolve this with WReSTT-CyLE. It is a collaborative,

interactive cyber-learning environment for testing concepts. It is minimally intrusive to any

classroom. All of the data and learning items are accessed via internet. The site was updated with

gamification and visual components to motivate students to participate within the site. The

WReSTT-CyLE provides learning objectives for testing concepts. These learning objectives support

the instructors and teach the students in a very logical way. Along with the gamification and easy

access for the students, the site is very motivational for a learning environment. Recent studies

reported that the site supports this very effort.

38

REFERENCES

1. Software Testing Class Team. (2016, September 30). Importance of Testing. [Web Log Entry].

Retrieved from http://www.softwaretestingclass.com/importance-of-testing/

2. Kovach, S. (2016 October 11). It's time for Samsung to come clean about the Galaxy Note 7.

Business Insider: Tech Insider. Retrieved from http://www.businessinsider.com/samsung-

galaxy-note-7-recall-what-went-wrong-2016-10

3. Software Testing Class Editors. (2012, October 7). Importance of Testing. [Web Article Entry].

Retrieved from http://www.softwaretestingclass.com/

4. Lent, J. (2016, September 15). QA skills gap: Testing pros need enough to wrote a test script.

Retrieved from http://searchsoftwarequality.techtarget.com/feature/QA-skills-gap-Testing-

pros-need-enough-to-write-a-test-script

5. Guru99. (2016, August 10). Software Testing as a career- complete guide. Retrieved from

http://www.guru99.com/

6. Goswami, A., Walia, G. S., & Abufardeh, S. (2014). Using a Web-Based Testing Tool

Repository in Programming Course: An Empirical Study. Proceedings of 2014 International

Conference on Frontiers in Education: Computer Science and Computer Engineering. July 21-

24, FECS 2014 USA.

7. WReSTT-CyLE, (2016, September 25). Home Page. Retrieved from

http://demo.wrestt.cis.fiu.edu/about-wrestt-com

8. Fu, Y., & Clarke, P.J. (2016). Gamification based Cyber Enabled Learning Environment of

Software Testing. 123rd ASEE Annual Conference & Exposition. Accepted 03/28/16

9. Clarke, P.J. (2009). Introductions to Web-Based Repository for Software Testing Tools

(WReSTT). [PPT Format]. Retrieved from http://demo.wrestt.cis.fiu.edu/wistpc-09

39

10. Clarke, P.J., Pava, J., Wu, Y. & King, T. M. (2011). Collaborative Web-Based Learning of

Testing Tools in SE Courses. In Proceedings of the 42nd ACM Technical Symposium on

Computer Science Education (2011). ACM, New York, NY, USA, pages 147-152.

11. Fu, Y., Barnes, N., & Clarke, P.J. (2016). Integrating Software Testing into Computer Science

Curriculum Using WReSTT-CyLE. 123rd ASEE Annual Conference & Exposition.

12. Gamification. (n.d.) In Merriam-Webster dictionary online. Retrieved from

http://www.merriam-webster.com/dictionary/gamification

13. Hamari, J., Koivisto, J. & Sarsa, H. (2014). Does Gamification Work? — A Literature Review of

Empirical Studies on Gamification. In Proceedings of the 47th IEEE Hawaii International

Conference on System Science. HICSS 2014, pages 3025-3034.

14. ISTQB Team. (2016, September 15). What is Acceptance testing? [Web Log Entry]. Retrieved

from http://istqbexamcertification.com

15. Peham, T. (2015). 5 Types of user acceptance tests – the perfect UAT framework. [Web Log

Entry]. Retrieved from http://usersnap.com/blog/types-user-acceptance-tests-frameworks

16. Wiley, David A. (2000). Connecting learning objects to instructional design theory: A definition,

a metaphor, and a taxonomy. In D.A. Wiley (Ed.). The Instructional Use of Learning Objects

17. Martinez, M. (2000). Designing learning objects to mass customize and personalize learning. In

D.A. Wiley (ED.) The Instructional Use of Learning Objects.

18. Mills, Sandy. (2002). Learning about Learning Objects with Learning Objects [on-line].

Available: http:// www.alivetek.com/learningobjects/ site_paper.htm.

19. Softwaretestingclass.com. (2016, August 17). System Testing What? Why? & How? [Web

Tutorial Entry}. Retrieved from http://www.softwaretestingclass.com/system-testing-what-

why-how/

40

APPENDIX A. LISTING OF BOOKS REVIEWED

Desikan, S., & Ramesh, G. (2006). Software Testing: Principles and Practices. Pearson Education

India.

Kit, E., & Finzi, S. (1995). Software testing in the real world: Improving the process. New York,

NY: ACM Press.

Mathur, A. (2013). Foundations of software testing. Delhi: Pearson.

Pezzè, M., & Young, M. (2008). Software testing and analysis: Process, principles, and techniques.

Hoboken, NJ: Wiley.

Tsui, F. F., & Karam, O. (2007). Essentials of software engineering. Sudbury, MA: Jones and

Bartlett.

Wiegers, K. E. (2003). Software requirements: Practical techniques for gathering and managing

requirements throughout the product development cycle. Redmond, WA: Microsoft Press.

41

APPENDIX B. A LISTING OF WEBSITES VISITED

Coley Consulting. (2016, September 15). UAT Test Plan Template. [Web Log Entry]. Retrieved

from http://coleyconsulting.co.uk/UAT_Test_Plan.htm

etestinghub, (2016, September 17). Online software testing tutorial - manual and automation.

Retrieved from http://www.etestinghub.com/

Gamification. (n.d.) In Merriam-Webster dictionary online. Retrieved from http://www.merriam-

webster.com/dictionary/gamification

Guru99. (2016, August 10). Software Testing as a career- complete guide, What is System Testing?,

What is User Acceptance Testing (UAT)?, & 100 Types of Testing You Never Knew

Existed [Web Tutorial Entry]. Retrieved from http://www.guru99.com/

Hower, R., (2016, September 12) What are some recent major computer system failures caused by

software bugs? (n.d.). Retrieved from http://www.softwareqatest.com/qatfaq1.html

ISTQB Team. (2016, September 15). What is Acceptance testing? & Why is software testing

necessary? [Web Log Entry]. Retrieved from http://istqbexamcertification.com/why-is-

testing-necessary/

Kovach, S. (2016 October 11). It's time for Samsung to come clean about the Galaxy Note 7.

Business Insider: Tech Insider. Retrieved from http://www.businessinsider.com/samsung-

galaxy-note-7-recall-what-went-wrong-2016-10

Lent, J., (2016, September 15). QA skills gap: Testing pros need enough to wrote a test script.

Retrieved from http://searchsoftwarequality.techtarget.com/feature/QA-skills-gap-Testing-

pros-need-enough-to-write-a-test-script

Peham, T., (2015). 5 Types of user acceptance tests – the perfect UAT framework. Retrieved from

http://usersnap.com/blog/types-user-acceptance-tests-frameworks

42

Seela, S. (2016, August 26). What is User Acceptance Testing (UAT) and How to Perform It

Effectively? [Web Article Entry]. Retrieved from

http://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/

Software Testing Class Editors. (2012, October 7). Difference between System testing and

Acceptance Testing, Importance of Testing, System Testing: What? Why? & How?, & User

Acceptance Testing: What? Why? & How?. [Web Article Entry]. Retrieved from

http://www.softwaretestingclass.com/

Software Testing Fundamentals. (2016, September 10). Acceptance Testing Fundamentals & System

Testing. [Web Log Page]. Retrieved from http://softwaretestingfundamentals.com/

Software Testing Help. (2016, August 24). System Testing – A Beginner’s Guide. [Web Article

Entry]. Retrieved from http://www.softwaretestinghelp.com/system-testing/

Techopedia.com. (2016, September 12). User Acceptance Testing (UAT). [Web Definition Entry].

Retrieved from https://www.techopedia.com/definition/3887/user-acceptance-testing-uat

Thomson, R., (2008, May 8) Lack of software testing to blame for Terminal 5 fiasco, BA executive

tells MPs. (n.d.). Retrieved from

http://www.computerweekly.com/news/2240085948/Lack-of-software-testing-to-blame-

for-Terminal-5-fiasco-BA-executive-tells-MPs

TutorialsPoint. (2016, August 10). Software Testing – Levels &What is Acceptance Testing? [Web

Tutorial Entry]. Retrieved from http://www.tutorialspoint.com/software_testing/

WReSTT-CyLE, (2016, September 25). Home Page, About, Instructor Home Page, Student, Home

Page, Events, Forums, Documentation, Software Testing Tools Tutorials, & Software

Testing Learning Objectives. Retrieved from http://demo.wrestt.cis.fiu.edu/about-wrestt-

com

Online Presentation Slides:

43

Clarke, P.J. (2009). Introductions to Web-Based Repository for Software Testing Tools (WReSTT).

[PPT Format]. Retrieved from http://demo.wrestt.cis.fiu.edu/wistpc-09

44

APPENDIX C. A LISTING OF CONFERENCE PAPERS REVIEWED

Clarke, P.J., Allen, A. A., King, T. M., Jones, E. L., & Natesan, P. (2010). Using a Web-Based

Repository to Integrate Testing Tools into Programming Courses. In Proceedings of the

ACM international Conference Companion on Object Oriented Programming Systems

Languages and Applications Companion. SPLASH 2010, pages 193-200.

Clarke, P.J., Davis, D. L., Chang-lau, R. & King, T. M. (2014). Observations on Student Use of

Tools in an Undergraduate Testing Class. In Proceedings of the 121st American Society for

Engineering Education (ASEE) - Software Engineering Constituent Committee Division

Track (SWECC) 2014. Paper ID: 10123, 16 pages.

Clarke, P.J., Davis, D. L., King, T. M., Pava, J., & Jones, E. L. (2014). Integrating Testing into

Software Engineering Courses Supported by a Collaborative Learning Environment. ACM

Trans. Comput. Educ. 14, 3, Article 18 (October 2014), 33 pages.

Clarke, P.J., Pava, J., Davis, D. L., & King, T. M. (2012). Using WReSTT in SE Courses: An

Empirical Study. In the Proceedings of the 43rd ACM Technical Symposium on Computer

Science Education (SIGCSE '12). ACM, pages 307-312.

Clarke, P.J., Pava, J., Wu, Y. & King, T. M. (2011) Collaborative Web-Based Learning of Testing

Tools in SE Courses. In Proceedings of the 42nd ACM Technical Symposium on Computer

Science Education (SIGCSE '11). ACM, New York, NY, USA, pages 147-152.

Fu, Y., Barnes, N., & Clarke, P.J. (2016). Integrating Software Testing into Computer Science

Curriculum Using WReSTT-CyLE. 123rd ASEE Annual Conference & Exposition.

Accepted 03/28/16

Fu, Y., & Clarke, P.J. (2016). Gamification based Cyber Enabled Learning Environment of

Software Testing. 123rd ASEE Annual Conference & Exposition. Accepted 03/28/16

45

Goswami, A., Walia, G. S., & Abufardeh, S. (2014). Using a Web-Based Testing Tool Repository

in Programming Course: An Empirical Study. Proceedings of 2014 International

Conference on Frontiers in Education: Computer Science and Computer Engineering. July

21- 24, FECS 2014 USA.

46

APPENDIX D. A LISTING OF ALL MATERIAL REVIEWED

1. Acceptance Testing: Formal testing conducted to determine whether a system satisfies its

acceptance criteria and to enable the customer to determine whether to accept the system. It is

usually performed by the customer.

2. Accessibility Testing: Type of testing which determines the usability of a product to the people

having disabilities (deaf, blind, mentally disabled etc.). The evaluation process is conducted by

persons having disabilities.

3. Active Testing: Type of testing consisting in introducing test data and analysing the execution

results. It is usually conducted by the testing teams.

4. Agile Testing: Software testing practice that follows the principles of the agile manifesto,

emphasizing testing from the perspective of customers who will utilize the system. It is usually

performed by the QA teams.

5. Age Testing: Type of testing which evaluates a system's ability to perform in the future. The

evaluation process is conducted by testing teams.

6. Ad-hoc Testing: Testing performed without planning and documentation - the tester tries to

'break' the system by randomly trying the system's functionality. It is performed by the testing teams.

7. Alpha Testing: Type of testing a software product or system conducted at the developer's site.

Usually it is performed by the end user.

8. Assertion Testing: Type of testing consisting in verifying if the conditions confirm the product

requirements. It is performed by the testing teams.

9. API Testing: Testing technique similar to unit testing in that it targets the code level. API Testing

differs from unit testing in that it is typically a QA task and not a developer task.

10. All-pairs Testing: Combinatorial testing method that tests all possible discrete combinations of

input parameters. It is performed by the testing teams.

47

11. Automated Testing: Testing technique that uses automation testing tools to control the

environment set-up, test execution and results reporting. It is performed by a computer and is used

inside the testing teams.

12. Basis Path Testing: A testing mechanism which derives a logical complexity measure of a

procedural design and use this as a guide for defining a basic set of execution paths. It is used by

testing teams when defining test cases.

13. Backward Compatibility Testing: Testing method which verifies the behaviour of the developed

software with older versions of the test environment. It is performed by testing teams.

14. Beta Testing: Final testing before releasing application for commercial purpose. It is typically

done by end-users or others.

15. Benchmark Testing: Testing technique that uses representative sets of programs and data

designed to evaluate the performance of computer hardware and software in a given configuration.

It is performed by testing teams.

16. Big Bang Integration Testing: Testing technique which integrates individual program modules

only when everything is ready. It is performed by the testing teams.

17. Binary Portability Testing: Technique that tests an executable application for portability across

system platforms and environments, usually for conformation to an ABI specification. It is

performed by the testing teams.

18. Boundary Value Testing: Software testing technique in which tests are designed to include

representatives of boundary values. It is performed by the QA testing teams.

19. Bottom Up Integration Testing: In bottom up integration testing, module at the lowest level are

developed first and other modules which go towards the 'main' program are integrated and tested

one at a time. It is usually performed by the testing teams.

48

20. Branch Testing: Testing technique in which all branches in the program source code are tested at

least once. This is done by the developer.

21. Breadth Testing: A test suite that exercises the full functionality of a product but does not test

features in detail. It is performed by testing teams.

22. Black box Testing: A method of software testing that verifies the functionality of an application

without having specific knowledge of the application's code/internal structure. Tests are based on

requirements and functionality. It is performed by QA teams.

23. Code-driven Testing: Testing technique that uses testing frameworks (such as xUnit) that allow

the execution of unit tests to determine whether various sections of the code are acting as expected

under various circumstances. It is performed by the development teams.

24. Compatibility Testing: Testing technique that validates how well a software performs in a

particular hardware/software/operating system/network environment. It is performed by the testing

teams.

25. Comparison Testing: Testing technique which compares the product strengths and weaknesses

with previous versions or other similar products. Can be performed by tester, developers, product

managers or product owners.

26. Component Testing: Testing technique similar to unit testing but with a higher level of

integration - testing is done in the context of the application instead of just directly testing a specific

method. Can be performed by testing or development teams.

27. Configuration Testing: Testing technique which determines minimal and optimal configuration

of hardware and software, and the effect of adding or modifying resources such as memory, disk

drives and CPU. Usually it is performed by the performance testing engineers.

49

28. Condition Coverage Testing: Type of software testing where each condition is executed by

making it true and false, in each of the ways at least once. It is typically made by the automation

testing teams.

29. Compliance Testing: Type of testing which checks whether the system was developed in

accordance with standards, procedures and guidelines. It is usually performed by external companies

which offer "Certified OGC Compliant" brand.

30. Concurrency Testing: Multi-user testing geared towards determining the effects of accessing the

same application code, module or database records. It is usually done by performance engineers.

31. Conformance Testing: The process of testing that an implementation conforms to the

specification on which it is based. It is usually performed by testing teams.

32. Context Driven Testing: An Agile Testing technique that advocates continuous and creative

evaluation of testing opportunities considering the potential information revealed and the value of

that information to the organization at a specific moment. It is usually performed by Agile testing

teams.

33. Conversion Testing: Testing of programs or procedures used to convert data from existing

systems for use in replacement systems. It is usually performed by the QA teams.

34. Decision Coverage Testing: Type of software testing where each condition/decision is executed

by setting it on true/false. It is typically made by the automation testing teams.

35. Destructive Testing: Type of testing in which the tests are carried out to the specimen's failure,

in order to understand a specimen's structural performance or material behaviour under different

loads. It is usually performed by QA teams.

36. Dependency Testing: Testing type which examines an application's requirements for pre-existing

software, initial states and configuration in order to maintain proper functionality. It is usually

performed by testing teams.

50

37. Dynamic Testing: Term used in software engineering to describe the testing of the dynamic

behaviour of code. It is typically performed by testing teams.

38. Domain Testing: White box testing technique which contains checking that the program accepts

only valid input. It is usually done by software development teams and occasionally by automation

testing teams.

39. Error-Handling Testing: Software testing type which determines the ability of the system to

properly process erroneous transactions. It is usually performed by the testing teams.

40. End-to-end Testing: Similar to system testing, involves testing of a complete application

environment in a situation that mimics real-world use, such as interacting with a database, using

network communications, or interacting with other hardware, applications, or systems if appropriate.

It is performed by QA teams.

41. Endurance Testing: Type of testing which checks for memory leaks or other problems that may

occur with prolonged execution. It is usually performed by performance engineers.

42. Exploratory Testing: Black box testing technique performed without planning and

documentation. It is usually performed by manual testers.

43. Equivalence Partitioning Testing: Software testing technique that divides the input data of a

software unit into partitions of data from which test cases can be derived. it is usually performed by

the QA teams.

44. Fault injection Testing: Element of a comprehensive test strategy that enables the tester to

concentrate on the way the application under test can handle exceptions. It is performed by QA

teams.

45. Formal verification Testing: The act of proving or disproving the correctness of intended

algorithms underlying a system with respect to a certain formal specification or property, using

formal methods of mathematics. It is usually performed by QA teams.

51

46. Functional Testing: Type of black box testing that bases its test cases on the specifications of the

software component under test. It is performed by testing teams.

47. Fuzz Testing: Software testing technique that provides invalid, unexpected, or random data to

the inputs of a program - a special area of mutation testing. Fuzz testing is performed by testing

teams.

48. Gorilla Testing: Software testing technique which focuses on heavily testing of one particular

module. It is performed by quality assurance teams, usually when running full testing.

49. Gray Box Testing: A combination of Black Box and White Box testing methodologies: testing a

piece of software against its specification but using some knowledge of its internal workings. It can

be performed by either development or testing teams.

50. Glass box Testing: Similar to white box testing, based on knowledge of the internal logic of an

application's code. It is performed by development teams.

51. GUI software Testing: The process of testing a product that uses a graphical user interface, to

ensure it meets its written specifications. This is normally done by the testing teams.

52. Globalization Testing: Testing method that checks proper functionality of the product with any

of the culture/locale settings using every type of international input possible. It is performed by the

testing team.

53. Hybrid Integration Testing: Testing technique which combines top-down and bottom-up

integration techniques in order leverage benefits of these kind of testing. It is usually performed by

the testing teams.

54. Integration Testing: The phase in software testing in which individual software modules are

combined and tested as a group. It is usually conducted by testing teams.

55. Interface Testing: Testing conducted to evaluate whether systems or components pass data and

control correctly to one another. It is usually performed by both testing and development teams.

52

56. Install/uninstall Testing: Quality assurance work that focuses on what customers will need to do

to install and set up the new software successfully. It may involve full, partial or upgrades

install/uninstall processes and is typically done by the software testing engineer in conjunction with

the configuration manager.

57. Internationalization Testing: The process which ensures that product's functionality is not

broken and all the messages are properly externalized when used in different languages and locale. It

is usually performed by the testing teams.

58. Inter-Systems Testing: Testing technique that focuses on testing the application to ensure that

interconnection between application functions correctly. It is usually done by the testing teams.

59. Keyword-driven Testing: Also, known as table-driven testing or action-word testing, is a

software testing methodology for automated testing that separates the test creation process into two

distinct stages: a Planning Stage and an Implementation Stage. It can be used by either manual or

automation testing teams.

60. Load Testing: Testing technique that puts demand on a system or device and measures its

response. It is usually conducted by the performance engineers.

61. Localization Testing: Part of software testing process focused on adapting a globalized

application to a particular culture/locale. It is normally done by the testing teams.

62. Loop Testing: A white box testing technique that exercises program loops. It is performed by

the development teams.

63. Manual Scripted Testing: Testing method in which the test cases are designed and reviewed by

the team before executing it. It is done by manual testing teams.

64. Manual-Support Testing: Testing technique that involves testing of all the functions performed

by the people while preparing the data and using these data from automated system. it is conducted

by testing teams.

53

65. Model-Based Testing: The application of Model based design for designing and executing the

necessary artefacts to perform software testing. It is usually performed by testing teams.

66. Mutation Testing: Method of software testing which involves modifying programs' source code

or byte code in small ways in order to test sections of the code that are seldom or never accessed

during normal tests execution. It is normally conducted by testers.

67. Modularity-driven Testing: Software testing technique which requires the creation of small,

independent scripts that represent modules, sections, and functions of the application under test. It

is usually performed by the testing team.

68. Non-functional Testing: Testing technique which focuses on testing of a software application for

its non-functional requirements. Can be conducted by the performance engineers or by manual

testing teams.

69. Negative Testing: Also known as "test to fail" - testing method where the tests' aim is showing

that a component or system does not work. It is performed by manual or automation testers.

70. Operational Testing: Testing technique conducted to evaluate a system or component in its

operational environment. Usually it is performed by testing teams.

71. Orthogonal array Testing: Systematic, statistical way of testing which can be applied in user

interface testing, system testing, regression testing, configuration testing and performance testing. It

is performed by the testing team.

72. Pair Testing: Software development technique in which two team members work together at one

keyboard to test the software application. One does the testing and the other analyses or reviews the

testing. This can be done between one Tester and Developer or Business Analyst or between two

testers with both participants taking turns at driving the keyboard.

73. Passive Testing: Testing technique consisting in monitoring the results of a running system

without introducing any special test data. It is performed by the testing team.

54

74. Parallel Testing: Testing technique which has the purpose to ensure that a new application which

has replaced its older version has been installed and is running correctly. It is conducted by the

testing team.

75. Path Testing: Typical white box testing which has the goal to satisfy coverage criteria for each

logical path through the program. It is usually performed by the development team.

76. Penetration Testing: Testing method which evaluates the security of a computer system or

network by simulating an attack from a malicious source. Usually they are conducted by specialized

penetration testing companies.

77. Performance Testing: Functional testing conducted to evaluate the compliance of a system or

component with specified performance requirements. It is usually conducted by the performance

engineer.

78. Positive Testing: Testing process where the system validated against the valid input data. In this

testing, tester always checks for only valid set of values and checks if an application behaves as

expected with its expected inputs.

79. Qualification Testing: Testing against the specifications of the previous release, usually

conducted by the developer for the consumer, to demonstrate that the software meets its specified

requirements.

80. Ramp Testing: Type of testing consisting in raising an input signal continuously until the system

breaks down. It may be conducted by the testing team or the performance engineer.

81. Regression Testing: Type of software testing that seeks to uncover software errors after changes

to the program (e.g. bug fixes or new functionality) have been made, by retesting the program. It is

performed by the testing teams.

82. Recovery Testing: Testing technique which evaluates how well a system recovers from crashes,

hardware failures, or other catastrophic problems. It is performed by the testing teams.

55

83. Requirements Testing: Testing technique which validates that the requirements are correct,

complete, unambiguous, and logically consistent and allows designing a necessary and sufficient set

of test cases from those requirements. It is performed by QA teams.

84. Security Testing: A process to determine that an information system protects data and maintains

functionality as intended. It can be performed by testing teams or by specialized security-testing

companies.

85. Sanity Testing: Testing technique which determines if a new software version is performing well

enough to accept it for a major testing effort. It is performed by the testing teams.

86. Scenario Testing: Testing activity that uses scenarios based on a hypothetical story to help a

person think through a complex problem or system for a testing environment. It is performed by

the testing teams.

87. Scalability Testing: Part of the battery of non-functional tests which tests a software application

for measuring its capability to scale up - be it the user load supported, the number of transactions,

the data volume etc. It is conducted by the performance engineer.

88. Statement Testing: White box testing which satisfies the criterion that each statement in a

program is executed at least once during program testing. It is usually performed by the

development team.

89. Static Testing: A form of software testing where the software isn't used it checks mainly for the

sanity of the code, algorithm, or document. It is used by the developer who wrote the code.

90. Stability Testing: Testing technique which attempts to determine if an application will crash. It is

usually conducted by the performance engineer.

91. Smoke Testing: Testing technique which examines all the basic components of a software system

to ensure that they work properly. Typically, smoke testing is conducted by the testing team,

immediately after a software build is made.

56

92. Storage Testing: Testing type that verifies the program under test stores data files in the correct

directories and that it reserves sufficient space to prevent unexpected termination resulting from lack

of space. It is usually performed by the testing team.

93. Stress Testing: Testing technique which evaluates a system or component at or beyond the limits

of its specified requirements. It is usually conducted by the performance engineer.

94. Structural Testing: White box testing technique which takes into account the internal structure of

a system or component and ensures that each program statement performs its intended function. It

is usually performed by the software developers.

95. System Testing: The process of testing an integrated hardware and software system to verify that

the system meets its specified requirements. It is conducted by the testing teams in both

development and target environment.

96. System integration Testing: Testing process that exercises a software system's coexistence with

others. It is usually performed by the testing teams.

97. Top Down Integration Testing: Testing technique that involves starting at the stop of a system

hierarchy at the user interface and using stubs to test from the top down until the entire system has

been implemented. It is conducted by the testing teams.

98. Thread Testing: A variation of top-down testing technique where the progressive integration of

components follows the implementation of subsets of the requirements. It is usually performed by

the testing teams.

99. Upgrade Testing: Testing technique that verifies if assets created with older versions can be used

properly and that user's learning is not challenged. It is performed by the testing teams.

100. Unit Testing: Software verification and validation method in which a programmer tests if

individual units of source code are fit for use. It is usually conducted by the development team.

57

101. User Interface Testing: Type of testing which is performed to check how user-friendly the

application is. It is performed by testing teams.

102. Usability Testing: Testing technique which verifies the ease with which a user can learn to

operate, prepare inputs for, and interpret outputs of a system or component. It is usually performed

by end users.

103. Volume Testing: Testing which confirms that any values that may become large over time (such

as accumulated counts, logs, and data files), can be accommodated by the program and will not

cause the program to stop working or degrade its operation in any manner. It is usually conducted

by the performance engineer.

104. Vulnerability Testing: Type of testing which regards application security and has the purpose to

prevent problems which may affect the application integrity and stability. It can be performed by the

internal testing teams or outsourced to specialized companies.

105. White box Testing: Testing technique based on knowledge of the internal logic of an

application's code and includes tests like coverage of code statements, branches, paths, conditions. It

is performed by software developers.

106. Workflow Testing: Scripted end-to-end testing technique which duplicates specific workflows

which are expected to be utilized by the end-user. It is usually conducted by testing teams.

