TEACHING SOFTWARE TESTING CONCEPTS USING LEARNING
OBJECTS
A Paper
Submitted to the Graduate School
of the
North Dakota State University
of Agriculture and Applied Science
By
Judi Lynn Simley
In Partial Fulfillment of the Requirements

for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

November 2016

Fargo, North Dakota

North Dakota State University
Graduate School

Title
TEACHING SOFTWARE TESTING CONCEPTS USING LEARNING

OBJECTIVES

By

Judi Lynn Simley

The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Gursimran Walia

Advisor

Dr. Kendall E. Nygard

Dr. Limin Zhang

Dr. Brian Slator

Approved:

December 12, 2016 Dr. Brian Slator

Date Department Chair

ABSTRACT

The ubiquitous nature of software, it is very important to prepare students for jobs in the
software industry. There is a profound deficiency in testing skills in graduating students when
beginning jobs in Information Technology Industry. This paper describes a means of teaching
software testing concepts and tools in introductory computer courses using a Web-based Repository
of Software Testing Tutorials: A Cyber-Learning Environment (WReSTT-CyLE). WReSTT-CyLE
is a collaborative interactive el.earning environment for testing tools and concepts. The site was
created to be student centered and to motivate testing concepts learning. This environment’s design
is customizable for Instructors’ individual needs. Another aspect of WReSTT is the design of
effective learning objects covering breadth of testing concepts. This paper’s focuses on the creation
of two learning objectives. The learning objectives focus on: System and Acceptance Testing levels.
This paper covers testing importance, WReSTT design, and the detailed description of two learning

objectives.

i

ACKNOWLEDGEMENT

I would like to give thanks to all the people who supported me though out this entire
process. That was started in 2010. I want to thank all of my Instructors and Professors that helped
me along the way. I also want to thank all of the helpful people that support them and NDSU
Departments. I give thanks to Dr. Slator for pushing me through this. I want to thank Dr. Nygard
for helping me through both undergraduate courses and graduate courses. Thanks to Dr. Walia for
guiding me through this paper and along with graduate courses. Dr. Zhang, thanks for helping with
this process and teaching me in my undergraduate course.

I give thanks to my family members. To my mother for supporting me in many ways and
giving me the attitude to not give up. To my father for supporting me and guiding me with the life
skills to succeed. My sister for supporting my being! Most of all, I want to thank my husband,
Scott. He has supported me though the complete process starting in 2004. He has helped with the
raising of our 3 beautiful children, Alexis, Kali, and Race. I could not have done this without you! I

love you all and THANKS!

iv

DEDICATION

I would like to dedicate this to my instructors, my parents, my family, and myself. I did it! I would
also like to dedicate this to my husband and my children for all the absent hours mom was missing.
I dedicate this paper to all the Native American Indigenous Women; you can envision your

achievements and succeed with whatever you do!

TABLE OF CONTENTS

ABSTRACT ..o iii
ACKNOWLEDGEMENT ...t asssesans v
DEDICATION ...ttt v
LIST OF FIGUREScociiiiiiiiiiiii s vii
1. INTRODUCTION ..ottt 1
2. BACKGROUND OF WRESTT ...cuiiiiiiiiiiiiiciicsssiss s ssssaes 3
2.1, HiStory Of WREST T ..ottt 4
2.2 Using WReSTT-CyLE to improve software testing skills in I'T students.........cccoccevvvviiiiiiinncnnn. 5

3. LEARNING OBJECTIVES ...t saeses 7
3.1 Research path....iiii s 7
3.2 Research data for Learning ODBJECHIVESccucuviiueriiriieieiriieieiriicierseceesesesesesessisesese e senes 7
3.3 Construction of Learning ODJECIVESccvuiiiiuiiiiiiiiiiiiic s 9
3.3.1 System Testing IO ..o s 10
3.3.2 Acceptance Testing LOcoiiiiiiiiiiciicerceercces e saee 25

4. FUTURE WORK ..o 36
5. DISCUSSION AND CONCLUSION.......ooiiiiiiiieiise e 37
REFERENCES ... 38
APPENDIX A. LISTING OF BOOKS REVIEWED ..o, 40
APPENDIX B. A LISTING OF WEBSITES VISITEDccccooviiiiiiiinicsccccene, 41
APPENDIX C. A LISTING OF CONFERENCE PAPERS REVIEWED.......cccccccovviivniinininnnn. 44
APPENDIX D. A LISTING OF ALL MATERIAL REVIEWED.......ccccccouiiiniiiiiiiieiiaens 46

vi

LIST OF FIGURES

1. The 1st page of System Testing LOcccciuiiiiiiiiniiiiicceeceee e 12
2. The 2nd page of System Testing LO ..o 13
3. The 3rd page of System Testing 1Occcviiiiiiiiiiiii s 14
4. The 4th page of System Testing LOc.ccciiiiiiiiiiiiniiiiicreesceece e 15
5. The 5th page of System Testing LiOcccouiiiiiviiiiiiniiiiiiiiciieiceseee e sesiaes 16
6. Continuation of the 5th page of System Testing LO.......ccccvviiiiiiniiiiiciccccnen 17
7. Continuation of the 5th page of System Testing LO.......cccccoviiiiniiiiiicicccce 18
8. Continuation of the 5th page of System Testing LO.....c.cccceeuviviieininiieieiriiciercceeeeienenes 19
9. The 6th page of System Testing LOcccciuviiiiiiniiiiiicceeree e seaens 20
10. The 7th page of System Testing LOcccviviiiiiiiiiiiii e 21
11. Continuation of the 7th page of System Testing LO........ccccovvimrininiinnniiniiicnn, 22
12. The 8th page of System Testing LO ...c.cociuiiiiiiiiiiiciiicerccce e 23
13. Continuation of the 8th page of System Testing LO.......cccccccuiiiiniinnnnniiicccccccce 24
14. The 1st page of Acceptance Testing LO ..o 26
15. The 2nd page of Acceptance Testing LOccciuviiiiiiiiiiniiiiiisnes 27
16. The 3rd page of Acceptance Testing LO ..o 28
17. Continuation of the 3rd page of Acceptance Testing LO.......ccceuviiivnicvivniccncceeeenen. 29
18. The 4th page of Acceptance Testing LO......ccoviiiiiiiiiiiiiiiiniic e, 30
19. Continuation of 4th page of Acceptance Testing LOccccoviiiiiiviiiiniiiiniiicisicinnns 31
20. The 5th page of Acceptance Testing LO ... 32
21. The 6th page of Acceptance Testing LO ... 33
22. The 7th page of Acceptance Testing LO......ccocouiiiiiiiiiiiiiiiiiiciceeeaes 34
23. The 8th page of Acceptance Testing LO......ccccoviiiiiviiiiiiiiiiiiiiiiees 35

vii

file:///C:/Users/scott/Desktop/JSimley%20MP%20v1.docx%23_Toc481427593

1. INTRODUCTION

As IT Professionals, testing is one of the most sought out I'T skill to have in any position in
the Industry. Testing is considered the most important process to ensure quality software today [3].
Testing is a valued skill-set to have for any IT professional. As stated, “If zhere is one new skill every QA
professional needs today, it is this: the ability to write a test serip?” [4]. This is not only important for QA
professionals but all I'T professionals. Employers are looking for some of these testing skills;
analytical, technical, good verbal and written communication skills, productivity, ‘test to break'
attitude, detail orientation, willingness to learn and suggest process improvements, and a passion for
software testing. [5] The advantage of having these skills does not only benefit the I'T Industry but
all other Global Industries; as well as Academia. All IT professionals have started as students; either
learning through academia or on their own. There have been many studies; via employer/job
positioning surveys and academic surveys that state there is a significant default in testing skills in
students. [6] With this deficiency known; the Academic world has a great challenge. Although there
are increasing amounts of testing tutorials and testing tools available on the web, there are not many
that provide institutions with the student/instructor collaboration features. Web-based Repository
of Software Testing Tutorials: A Cyber-Learning Environment (WReSTT-CyLE) is one of these
opportunities [7]. WReSTT-CyLE is a collaborative learning environment of testing concept for
students. The eLearning site is enhanced with gamification features, independency, and the ease of
usability. Both Instructors and Students are motivated to participate within the website. The
website was updated with gamified features. [8] This also enhanced the collaborative aspects. The
website creators wanted to have complete independence. The user does not have to download any
software to use it. The website’s design was also restructured. It was improved for easier user
interactions. The heart of WReSTT-CyLE is the design of learning objectives (LO). These LO
focus on specified testing concepts for example, Introduction to Software Testing — LO1. The LO

1

start at a basic level and proceed to dive into more depth information about the topic. [16][18] The
LO design was based on the theory of using a linear learning path. [17][18] The paper introduces the
importance of learning testing topics and focuses on teaching students these testing skills. It
discusses the WReSTT-CyLE webpage designed specifically for this purpose. This paper goes over
the creating of two learning objectives that were made for WReSTT-CyLE. It includes the future

works to be completed. Then, the paper is summarized.

2. BACKGROUND OF WReSTT

The background of the paper focuses on how Web-based Repository of Software Testing
Tools (WReSTT) came from and idea into an actual interactive site to teach student testing concepts
and tools. The whole idea for the WReSTT site was to bring testing tools into the classroom with
minimal interruption. It was a collaboration of Florida International University (FIU) and Florida
Agricultural and Mechanical University (FAMU). It was supported by National Science Foundation
and IBM Company. [9] The focus on testing tool tutorials was devised from the Industry. There
were a lot of software bugs in the headlines. The industry needed software professionals with
testing skills. WReSTT creators began to resolve this with the website. They decided to create a
web repository of testing tools for students and instructors. This supported the development of
quality software while in school by offering a program analyzer. It also provided forums for
questions, a rating system for the quality of the testing tutorial, and more external links. [9] WReSTT
was intended to support instructors with the latest and most informative tutorials to offer to
students. The main focus at this time was for undergraduate students taking introductory to
software development courses. These courses were chosen because most of the enrolled I'T
students would be first-timers to software programming. This was their first formal exposure to
development and this was the best opportunity for having testing introduced. Also, since the
instructors were focusing on development, this was a fantastic opportunity to involve a non-
intrusive way to reveal testing. With all these ideas in mind, this is where WReSTT became palpable.
The history gives a description of webpage and how it has evolved to present. The usage of

WReSTT focuses on the how useful it is to student and Instructors.

2.1. History of WReSTT

WReSTT-CyLE is an extension of the WReSTT (V2) and WReSTT (V1). Itisa TUES II
project; a collaborative effort between Florida International University, Alabama AM University,
Miami University - Ohio, and North Dakota State University. Web-based Repository of Software
Testing Tools; known as WReSTT (V1) was introduced around 2009 and included 7 tools, software
testing tutorials and links to other materials. [10] It was designed to support undergraduate computer
science courses. Based on feedback from students and instructors; WReSTT (V2) introduced some
enhanced features with gamification. It became a collaborative learning environment instead of a
repository for learning materials. These features included access to student reports, the ability to
create virtual teams for team projects, ability for instructors to load class rolls, and the ability for
instructors to create course templates. This added gamification to the repository, the teams could
compete and there were leader boards to track progress of the other teams. With the portal being
down, the team decided to take the opportunity to enhance some of the features and created
WReSTT-CyLE. They enhanced the learning objectives and added more topics, it just not based on
tools. The focus is more on all testing concepts along with the testing tools. The team collaboration
was enriched with more gamification. The website design was again enhanced for better viewing
and for users to navigate easier. Also, the instructors’ portal has more capabilities to monitor
student performance. [6] WReSTT-CyLE is a collaborative learning environment that is non-
intrusive to any classroom. This was a major point that has stayed with the whole progression of
WReSTT/WReSTT-CyLE. The creators wanted it to be independent. There is no downloading of
software—everything needed is right on the site. The site has grown into a whole learning
experience. Instructors can pick which tutorials they want their students to learn along with learning
objectives. They can monitor the students’ progress more easily. The site is adaptable to the

individual instructors’ needs. The site was planned to be student-centric. The students don’t need

to search for tutorials—all assigned tutorials are right there. They can view their progress and have
automated test scoring. This means no wait time for quiz grades. They can collaborate with their
team members and face-to-face meetings are only as necessary. With almost 50 universities currently
using the site, the team also used this opportunity to enhance the websites security.
2.2 Using WReSTT-CyLE to improve software testing skills in I'T students

The best way to teach students is through motivation. To motivate students, there needs to
be an environment that encourages involvement. One proven way to complete this is to have a
Cyber-Enabled Learning environment with the addition of gamification. [8] WReSTT-CyLE was
designed to incorporate both elements. Cyber-Enabled Learning or elearning allows instructors
access to alternative teaching avenues. They can introduce students to additional educational
information not readily available before. A typical eLearning site involves having assignments and
exercise submission. With today’s technology, these sites are becoming not just text only sites but
can be multi-media sites. [11] The site was created to be a supplement for a traditional classroom
setting. The instructors use the site’s learning objectives and tutorials in addition to their material.
WReSTT-CyLE is a non-intrusive method to introduce students to testing concepts. Cyber-Enabled
Learning is not enough to motivate most students alone. With the addition of gamification of some
features of the eLLearning environment, the site greatly improved student motivation. [11] What is
gamification? Gamification is the process of adding game-like enhancements to ordinary
tasks/activities to entice user patticipation. [12] So, why use gamification? There ate many
gamification studies proving that it offers a positive impact on users. [13] Gamification is used
because it keeps the user involved and promotes user interactions. When adding game-like features
the user do not ‘feel’ like they are learning; it’s more like they are playing a game. This can be
achieved by having a ‘team’ or by creating individual challenges. WReSTT-CyLE was updated with

gamified features. These included; a leader-board, virtual team creation, virtual points (including

bonus points) for both teams and individuals, and discussion forums. The leader-board allows
students to view the progress of other teams. [6] [8] Teams were formed by the instructor. They
were given points for completing activities on the site in a timely manner. Individual points were
also given out: these included; getting points for updating the student profile, interacting in the
forums, accessing tutorials and submitting assignments/quizzes. These gamified features kept the
students involved by challenging them to compete against the other teams in points. It also keeps
them involved with interactions through the discussion forum and discussing the best way to get the
most points. The demo website is located at http://demo.wrestt.cis.fiu.edu/about-wrestt-com. [7]
The demo view included the Instructor and student views. The student view does not have as many
options as the Instructors. The Instructor’s view is customizable to the individual Instructor.
Student can create their own student profile; this is the only customization they can perform. They
have the same access (as Instructors) to all the tutorial and learning content. The heart of the site
and main content are the learning objectives on the various testing concepts. Some of these have
been added to the site and are under development. For this paper, the focus was creating two

learning objectives; system testing and acceptance testing.

3. LEARNING OBJECTIVES

The learning objectives created were on system and acceptance testing concepts. This
section describes the path that was taken to get to the research and the data collection for the
learning objectives.

3.1 Research path

Previous research on the WReSTT website about the gamification of the website and the
guidance of my advisor, Dr. Gursimran Singh Walia, Ph.D., lead to the construction of this master
paper. The research included reading a lot of borrowed books, intensive internet searching,
gathering papers on the topic, and a lot of computing hours. The topic of this paper came up
because Dr. Walia is the main contact at North Dakota State University (NDSU) for WReSTT-
CyLE. The WReSTT-CyLE team wants to get more testing concepts onto the site. Dr. Walia
provided a list of testing topics that were not on the site yet. All the other levels of testing were
completed; the only high-level concepts left were system and acceptance testing. This was where the
2 learning objectives of this paper generated from. The complete listing of books can be found in
Appendix A. The complete listing of the internet addresses can be found in Appendix B. All papers
used are found in Appendix C.

3.2 Research data for Learning Objectives

There is a lot of terms used for testing concepts. Most of them are used very loosely and
some terms are used as double-meaning words. The hardest part of the data collection was the
categorizing it. For example; ad-hoc testing was under testing methods and types of testing. Ad-hoc
testing is a type of validation to test the software under test (SUT). It is an actual technique used.

It should not be categorized with functional or non-functional. These are the categories of testing
are what is being test; the type of requirement that is being tested. Ad-hoc testing is validating

random pieces of SUT; therefore, can be functional or non-functional. Also, the concept mapping

-

between textbooks, webpages, and papers was very hard to follow. So, one of the greatest concerns
was to categorize these terms correctly. The concept of manual or automated testing fell under the
same principle as functional or black-box, in which a lot of the information grouped them together.
There were also grouping of concepts and phases of testing, which didn’t make sense either. All
software testing is either functional or non-functional; these are the 2 categories of testing. Also,
there are 4 different levels of testing: unit, component, integration, system, and acceptance. These
were always followed in all information researched; the only difference was the naming. For
example, system testing was sometimes named system-integration testing and acceptance testing was
called user acceptance testing. All testing types, testing methods, and testing aspects can fall into any
individual levels and any one of these categories. A compiled list with definition is found in
Appendix D. The first grouping was types of testing were formed. These were based on the actual
testing processes (how the testing was being performed) used for testing the Software Under Test
(SUT). There are many different types of test: Active, Ad-hoc, Agile, Alpha, Automated, Beta, Big-
bang, Big Bang Integration, Bottom-up, Bottom Up Integration, Concurrency, Dynamic, End-to-
end, Exploratory, Hybrid Integration, Manual, Manual Scripted, Manual-Support, Model-Based,
Negative, Pair, Passive, Parallel, Positive, Qualification, Regression, Requirements, Scenario, Static,
Sandwich, System Integration, TDD, and Thread, Top-down, Top Down Integration, Upgrade, V-
model, Waterfall (traditional). The next grouping was testing methods. This group was based on
the information known or results of the tests that were being completed. There are different
methods of testing: Assertion, All-pairs, Basis Path, Benchmark, Boundary Value, Black-box,
Branch, Code-driven, Component, Condition Coverage, Context Driven, Decision Coverage,
Destructive, Error-Handling, Equivalence Partitioning, Fault injection, Fuzz, Gorilla, Glass-box,
Grey-box, Keyword-driven/ Table-driven, Loop, Modularity-driven, Mutation, Orthogonal array,

Path, Statement, Smoke, Structural, Trial-error, White-box, and Workflow. A lot of these terms are

used inter-changeably in our industry; for example; glass-box and white-box testing. Both are testing
methods with no real distinction. The final category was testing aspects. These are: Accessibility,
Age, API, Backward Compatibility, Binary Portability, Breadth, Configuration, Compatibility,
Compliance, Conformance, Conversion, Dependency, Domain, Endurance, Formal verification,
GUI software, Globalization, Interface, Install/uninstall, Installation, Internationalization, Inter-
Systems, Load, Localization, Operational, Penetration, Performance, Portability, Ramp, Recovery,
Sanity, Scalability, Stability, Storage, Stress, Security, Upgrade, Usability, User Interface, Volume,
and Vulnerability. This last grouping is based on validating the whole system as one. These are
testing more of the non-functional requirements. For example, User interface testing is to validate
how easily the user can perform tasks in the system. These are only some of the terms found in the
research, there were many more. Now since the data was collected and categorized, the next step
was to build the LO.
3.3 Construction of Learning Objectives

It was very hard to cut out some of the information that was found. There was a lot of
valuable information via textbooks, internet, and papers found. So, getting the correct amount of
information was not an issue. It was cutting it down to be easily read on a webpage for the students
using them and not to overload students. This editing was done to make the learning objective
informative enough and to give a full understanding of the topic. Students that are accessing the site
can have any level of understanding or exposure of testing concepts. This had to be kept in mind, so
that a novice to someone with some knowledge can learn something from the LO. The last item
was creating the learning objective to be aesthetically pleasing for the user. This was fulfilled by
creating page breaks and adding visuals within the pages. Also, the design of the LO was based on a
couple of concepts; linear paths and the layout of pages. [16] [17] The linear path concept is the first

page is a basis and the consecutive pages become more in-depth in the topic. The layout of the page

itself was from a concept to keep the pages at a minimum for ease of use and visually appealing. [18]
These items needed to be considered to create a great webpage for WReSTT-CyLE in order to
support Instructors and teach students. The first LO was System Testing. This was the toughest
one to create because it was the first page made. The first version was very word-heavy. There were
8 pages of text alone! It was submitted for review to Dr. Walia and Dr. Slator. Dr. Slator sent it
back with comments and revisions. Dr. Walia commented that it needed to be shortened, there was
too much text, and to add some visuals to make it appeal to the eye. He also sent some examples of
other testing concepts. The LO was updated and sent back for final review. The compilation of
Acceptance Testing LO was not much easier. Experience from the first LO helped with the
creation. With the loosely used testing verbiage, it was a little trickier. Research was more in-depth
with this LO. The path to a fully explained Acceptance Test was difficult to reach. Since there are
many types of Acceptance testing, the main difference is the type of software created. There are 2
types of software created: custom-built and commercial-off-the-shelf (COTS). [14] To ensure the
length of the LLO stayed reasonable; only the custom-built software was considered. From the
example and recommendation, visuals were added in the first version. It was sent to Dr. Walia for

review and accepted. Both LLOs were sent to peers for commenting.

3.3.1 System Testing LO
The System Testing LLO consists of a title, type of testing, testing methods, tools used, the
basic concept, and quizzes. The title is System Testing — LOO1. System Testing types are both
manual and automated. The requirements that are tested are both functional and non-functional.
This is the first time that both types of requirements are tested. Also, this will be the first time that
the system is tested as an entire unit. [19] Some of the tools used are; LDRA, IBM Teleprocessing
Network Simulator, and IBM Workload Simulator, test cases and testing scenarios. It contains 5

main concept pages and a page for references. These inform about the overview of System testing,

10

the differences between Integration and System testing, benefits, aspects of system testing, and steps
taken in system testing. The LLO is concluded with a Reference page. Also, there is a practice quiz
and a real quiz to judge the knowledge of the students. The Overview Page includes the title at the
top and some header information for the implementation of the page into WReSTT_CyLE website.

The main content is the background information of System Testing.

11

Figure 1 illustrates the 1st page of System Testing Learning Objective. This figure illustrates

the Overview page of System Testing.

System Testing — LOO1

Content:

Basic Concepts

Type: Manual and Automated

Method: Black-box, Functional, Non-functional

Tools: LDRA, 1BM Teleprocessing Metwork Simulator, and I1BM Workload Simulator, test cases and
testing scenarios.

The Overview of Systemn Testing

System testing is a level of testing that is performed after Integration Testing (see Integration Testing
L1} and before Acceptance (user) Testing (zee Acceptance Testing LO1). It is the first time that the
system is performing 25 8 whols and tested. It iz both & manual and automated process. The method of
system testing is Black-Box (s=e Black-Box LO1). The tester does not know the “how™ of the system, but
anly nesds to know the expectad output. For exampls, in a log-in situation, the user expects to be able
to log-in with the correct credentizls and not to log-in with the wrong credentials.

An analogy for system testing; producing & ball-point pen. During the process of manufacturing a
ballpoint pen, the cap, the body, the tzil, the ink cartridge and the ballpoint are produced separately and
unit tested separately. When two or more units are ready, they are assembled and Integration Testing is
performed. When the complete pen is integrated, System Testing is performed. [1]

Muost of the test cases are derived directly from the requirements that are captured from the users
before the software is written. They become use cases then eventually are used for test cases. Thisis
howe the test cazes are formed. System Testing is the first testing lewvel that will t2st both non-functional
and functional requirements of the praduct. For the non-functional side of system testing, the test
categories would be performanceload, scalability, relizkility, stress, interoperability, localization,
security, portability, installation, =and usability. The functionsl side of system testing has a foous on the
real-life user perspective of the product and the business needs of the organization. Functional test
caszes focus on the behavior of the praduct; they will include specific execution steps within the test
cazes. [2]

Thiz= level of testing is not used for debugsging. Debugging is mainly to find and fix errors or bugs in the
software. This testing lewvel is mainly to check to see if the test cases pass or not. 3ystem testing uses =
check list format. Test cases are spplied and marked off if they are passing within the paramaters of the
specified requiremeant. Although bugs sre tracked in System testing, they are not fixed. The bug is
reported and then given back to another testing team to correct. System testing is usuzlly performed by
specified testing teams. 3ome companies have release management teams that would perfiorm this or
guality mansgement teams

<new page>

Figure 1. 'The 1st page of System Testing LO

12

The second page of the System Testing Learning Objective gives a listing of the differences
between Integration and System Testing. Integration is the second level of testing and System is the

third level. The two levels are very close in distinction, but are very different in what the testing

focus is.

The difference in Integration and System Testing Levels

The difference between the System and Integration testing levels are: Integration Testing is performed
on integrating modules of the system. The modules are implemented and then tested one by one. Then
the system integration tests are completed. Only after this the System testing is started. System testing

is the validation and verification of the whaole system. All modules are implemented a5 gowhole.in the
testing environment that is like the real-world environment.

Here are some of the differences in table format for better viewing:

System Testing Integration Testing

. s 1. Testing the collection and interface
L. Teni'gga I.:ff;_zcﬁt;rg;lﬁe ::g n%r?-ggﬁitr::a%iﬁgk ifit modules to check whether they give the
' expacted result.

2. Both functional and non-functional testing | 2. Only Functional testing is performed to

are covered like; sanity, usability, check whether the two modules when
performance, stress, and load. combined give correct outcome.
3. It is a high-level testing performed after | 3. It is a low-level testing performed after
integration testing. unit testing.
. . . 4, It is both black box and white box
4, It is a black box testing technique so0 no . : .
knowledge of internal structure or code is testing approach. So, it requires the
required knowledge of the two modules and the
' interface.
. . 5. Integration testing is performed by
5. It is performed by test engineers only. developers as well test engineers.

6. Here the testing is performed on the 6. Here the testing is performed on
system as.a wbaole including all the external | interface between individual module; thus
interfaces, so any defect found in it is any defect found is only for individual
regarded as defect of whole system. modules and not the entire system.

7. Here the test cases are developed to
simulate the interaction between the two
modules.

7. In System Testing the test cases are
developad to simulate real-life scenarios.

Figure 1. Table of the differences between Integration and System testing.
http:/ fwwrw. softwaretestingclass.com/difference-between-systemn-testing-vs-integration-testing/

<new pages

Figure 2. 'The 2nd page of System Testing LO

13

The third page of System Testing includes the benefits of system testing. The list was

shortened because the other entries were related to the same items listed.

Benefits of System testing:
v System testing is the first step in the Software Development Life Cycle, where the application is
fested azawhale.

v The application is tested thoroughly to verify that it meets the functional and technical
specifications.

v The application is tested in an environment that is very close to the production enviranment
where the application will be deployed.

v System testing enables us o test, verify, and validate both the business requirements as well as
the application architecture [3]

<Tew page>

Figure 3. The 3rd page of System Testing LO

14

The fourth page of System testing is the Aspects in System Testing. The page gives some of

the examples used for system testing and then guides on how to choose from those examples.

The as DECtS of system testing: Functional, Hardware/Software, Load, Migration, Recovery,
Regression, and Usability are some of the main aspects. There are more than 100 testing aspects that
can be used with System testing. [4]

To determine which testing aspect to choose; there are some guestions to ask.

First, who does the tester work for? This is important because larger software companies will have
different objectives then medium to smaller companies. The company testing philosophies will vary
alzo.

Second, how much time is available? This will help figure out how many tests you can complete within
the schedule. This may be changed along with the schedule throughout the Software Development Life

Cycle (SDLC).

Third, how many resources are available to test? How many “hands on deck’ will tie in with the time
available. There are automated tests and manual tests, and this will help find which ones are suited for
the testing need.

Fourth, how much do the testers know? The knowledge of the testers will help figure out what tests the
testers can perform. Also, they will need to learn how to use the testing software if not already known.
There are different aspects of testing and different testing processes. The timings of when to test a
module and what to look for in the outputs are a huge factor in choosing the right test.

Fifth, how much money is there for testing? This is always the bottom line. This will determine which
testing processes will be used. The testers will need to either use what they have for testing tools or
choose to purchase them. This is a major factor for how many testers are on the project. [5]

<new page>

Figure 4. 'The 4th page of System Testing LO

15

The fifth page of the learning objective is the steps taken to complete System Testing. The
page turned out to be larger than the rest because of the illustrations and the information gathered
to give a full understanding of the concept. There are 7 steps all together. The Illustration is of the

first step to take when starting System testing,

In Software System Testing following steps needs to be executed:

First, the System Test Plan is prepared. The points covered will vary from company to company. The
praject plan, test strategy and main test plans will also influence theze. These are some main points in a
System Test Plan:

« Goals & Objective

* Scope

s Critical areas Area (to focus)

¢+ Test Deliverable

s Testing Strategy for System testing

s Testing Schedule

s Entry and exit criteria

¢ Suspension & resumnption criteria for system testing
* Test Environment

¢ FRoles and Responsibilities

¢ Glossary Example of a generic test plan:

Project e

Tasring Services Regueated By
Date Aequested [Today's Datel:
Taochnicel Derector:

B | BAsnager

Test Load:

Project Informatisn
Sibjectivs of Project:

et of (P project. What furctionaliby is being croated, added. sndfor

Fearjeed Timeline
Erewe v vl

Froguecs Tosing: S1aging §rebronment [
Farformance Testirg: PLT Enslronment [T
FeiriliaE Toalingg, Froducticen §ule o ment [

Wt irmrated Launsh Bate

Figure 5. 'The 5th page of System Testing LO

16

The sixth illustration shows the second and third steps to complete the testing. It illustrates

how the test cases are derived from the user story.

Second, Test Cases are created. This is very similar to functional test case writing. In test case writing
you should write the test scenarios & use cases. This is where the aspects of testing are considered and
chosen. For example, there could be a Test Case |D, Test Suite Name, How to Test, Test Data, Expected
Result, &ctuzl Result, and & Pass or Fail included in the Test Case.

Buny omi IO COsmme SO, Buy two loe creams Buy two loe creasms
of sarmie flavor of different Mlavars

P, Chiwipis Becneter de S0 CRRREL S8,
Verify corferfog in abamioerd
& Click Add agoinet Purple ioe

CaT AR aGIRIEE Cotaiog
T Click Chack Quar

Figure 3. Test Case. This is an example of how test cases are created from a requirement.

Third, the test data is considered. In the example above, the test data is eptered.into the Test Case for
the determining factor for the test results. These are dependent on the tests used. For example, if
there were a login associated with the software, some of the test data could be: correct login credentials

and wrong login credentials. Another example would be for speed of the executed commands, in the
requirements there might be a statement that is; the executed command will take less than 5 seconds.

Figure 6. Continuation of the 5th page of System Testing LO

17

The seventh figure illustrates the fourth step of the process. It gives a test case example

along with the output of the test.

Foaurth, the Automated test case execution is completed. A lot of the automated tests are already
crested from the Unit and Integration testing levels. These tests are combined into larger testing suites
=nd then exscuted.

Output of an automated test case example:

This example is for 3 30 car software game. In this automation software, the test data is entered. For
this example, the test case is for loading the game. The exact steps are provided into the software and
the expected results are given. The automated test cases are performed by the spedalized testing team
before User Acceptance Testing is started. These will simulate the real-life scenarios of the users.

[oz | Test Case: Load a game |
Demain Game = Tests =
Type Usage =
Pricrty Mud -
Tillé Lond o grms

P T ot
® A garme hae prevously Besn paves
Thip appdicalion g narersg

Steps 2
i Belect Load Game’ from the man applicalion mans
2 Chek darired @ avd games fom The bl
3 Ok Load’ buflon
Expacted Rewuks a2

* The Ioad game screen should show all e saved games in ke save game folder
= The game shoaubd be loaded wiih all elemants in e oxact state they wens Wit i the teme of sawng
= Thie appdicatiom should B in player 1uen sLete wah i wesld viw S en waibli
WARMIONE | e ax
Lipciate I

Figure 4. Example of Automated Test Caze. This example is from a Project management tool called
Proj .

Then, when the test case is executed this was the output:

Testing Iy Test Case Type [Priority] Staws [Bulld] Date [lssue

Pags 100 2008211
|l [Load a game Lzage Med Faza 100 (2008249 ‘i‘ Log

Fass (100 (0081219

FPazs (100 [200B/241
|2 psa Save and Restore Lsageiad |Pass 100 [200812A9 e Log

Fags (105 [200BM2419
|3 [New game ceeation LIzageied |Pass 100 |[2008M2011 - Lu;-gl

Test core game faalures F il 100 [ooEAE
4 [Garme 30 rendenng - land and £ ea|llsageMed Fass 105 Fooeiang x ([Log
(5 [Garme 30 rendiing - cilies Usageied |Pass 100 [20081211 e Log
& o [Game 30 mouse navigaton Usaga{ngh F ail 100 [ooen2aifzr (db Lowg
e |7 |ndowe unil comenand Llzage Mad Untested ‘i’ Log
=l [Linit work kand cammand UsageMed [Untested 4 Log
fe [P |Metwork game sefup Uzageied [Untested ar Lu-gl

[Tast natwork play

ror (10| Metwark game play Uzagebded [Unlesied e Lngl
| 10 Test Coses |

Figure 7. Continuation of the 5th page of System Testing LO

18

The figure illustrates the 5%, 6™, and 7" steps in the testing process. It has a diagram of the

flow of bug reporting that is used.

Fifth, Mormal and updsted test cases are executed in this step. This is where the test management tool
is used. After the sutomated test outputs, the test cases would be updated and implemented.

Sixth, bug reporting, bug werification and regreszion testing is performed. Bugs are journzled. The bugs
zre tracked and monitored. Regression testing if then parformed to validate the system bugs.

5, QA Enginesr Approves Besolution

5.0A Engineer Appeals Resolgiol

1. QA Engincer Creates »
Bug Report H tir Belease Mgr, t/\

A Enginger Release Manager

£] |

3. Release Mgr. Assigna Bug 1w Developer

——d. Developer Resolves Hug ! t ‘dl ':!'
—

Developer Engineer

3. Release Mpgr. HEIL‘L@.’ -

3, Release Mgr, Posipones Bug -

2. Bug Assigned

| Indicates Document Must Be Associated With the Action
|ndicates “"F Wioves o End Stane
Figure 6. The Flow of Bug Control. This image illustrates the flow when a software bug is discoverad.

Seventh, the whole testing life cycle is repested, depending on the Software Testing Lifecycle.
Crtherwise System testing is complete. The next level of tasting starts, Acceptance Testing. [6)

Figure 8. Continuation of the 5th page of System Testing LO

19

The sixth page of the System Testing Learning Objective is the reference list. This page lists

all the references used to gather the information to create the learning objective.

References

[1] 5TF. {2016, August 7). System Taesting [Web Tutorial Entry]. Retrieved from

http://softwaretestingfundamentals.comysystem-testing/[2] Desikan, 5. & Ramesh, G. [2012]. System
znd Acceptznce Testing. In H.N. Mahabzlz, 5. Jose, & M.E. Sethurajan [Eds). Software Tasting Principles

and Practices [127-158). Noida, India: Doring Kindarsley Put. Ltd. [3] Tutorizlspaint.com. (2016, August
10). Software Tasting - Levels [Web Tutorial Entry]. Retrieved from

http:/fwwew.tutorizlspoint.com/software testingsoftwars testing levels.htm

[4] Gurud3. (2016, August 10). 100 Types of Testing You Mever Knew Existed [Web Tutorial Entry].
Retrieved from http:/www.gurud9.com/types-of-software-testing hitmi

[5] Guruds. (2016, August 10). What iz System Testing? [Web Tutorial Entry]. Retrieved from
http://wvew. 2urud3.com/system-testing htmi

6] Softwaretestingclzss.com. (2016, August 17). System Tasting: What? Why? & How? [Web Tutaorial
Entry]. Retrieved from http://wenw.softwaretestingclass.com/system-testing-what-why-how/

<new page>

Figure 9. 'The 6th page of System Testing LO

20

The seventh page of the learning objective is the practice quiz. There are 10 multiple choice
questions along with the correct answers. The main purpose of the practice quiz is to get the
student ready for the real quiz that will be a part of their grade. The figure shows the practice quiz

questions one through five along with the multiple-choice answers.

Practice Quiz {O1)

1} What level is System testing?
3. Before Integration Lewvel
b. After Acceptance Level
. Before Unit Level
d. None of the above.
2} What zre the testing aspects of System Testing?
3. Black-box testing
b. Imtegration testing
. Usability and Load
d. All of the above
3} What is the first step to System Testing?
2. Create & Test Plan
b. Execute automsted tests
. Repeat the test cycle
d. Determine test data
4] What are some of the factors to choose testing aspects?
2. Who the testers work for
b. Budget
. How many testers are available
d. All of the above
£] What zre some of the points of 2 Systam Test Plan?
3. Goals & Objectives
b. Scope
. Entry and Exit criteria
d. Allof the above

Figure 10. The 7th page of System Testing LO

21

Figure 11 illustrates multiple choice questions six through 10. It is a continuation of the

practice quiz from figure 10. The figure also contains the correct answers to the quiz.

6] Iz this lavel of tasting used for debugging?
2 Yes
b. No
7] Who would perform System Testing?
2. Release Team
b. Cuality Management Team
¢. Development Team
d ARB
8] What testing method is used for System Testing?
2. White-box
b. Unit
. Black-box
d. Mone of the above
9] What zre some of the items included on the Tast Case?
2. TestScenario
b. Test Emtry Criteriz
. TestCassID
d A&C
10) What iz the benefit of System Testing?
2. The zpplication is tested thoroughly to verify that it meets the functional and technical
specifications.
b. The bugs are identified and are corrected in this phass.
€. Zystem testing is less time consuming.
d A&C

Answers:1)d2)c3)ad)dSlde)b7)da)cT)c 1)z

Znew pages

Figure 11. Continuation of the 7th page of System Testing LO

22

The eighth page of the learning objective is the Real Quiz. The quiz consists of 10 multiple
choice questions including the correct answers. The purpose of the quiz is to determine the
student’s retention of the information. This will be a part of the final grading of the student. Figure
12 illustrates the 8th page of the System Testing Learning Objective. Figure 12 shows the Real

Quiz, questions 1 through 5.

Real Quiz

1} What zre the benefits of System testing?
3. System testing is the first step in the Software Development Life Cycle, where the
application is tested as a whale
b. System testing is all automated.
. The application is tested in &n environment that is very close to the production
environment where the application will be deployed
d. ARC
2} Thatis included in the System Test Plan?
8. Glossary, Goals and Objectives, Scope
b. Test Case ID, Test Envircnment, Roles and Responsibilities
. Testing Environment, Entry and Exit Criteria, Test scenario
d. ABRC
3} What are some of the aspects to System testing?
3. Recovery, Regression, and Adhoc
b. Recovery, Regression, and Usability
c. Functionzl, Hardware/Software, and Mutation

d. AEC
4} What is one of the automation toels that is used for System Testing?
a. JUnit
b. Eclipse
. |IBM Workload Simulator
d BEC

5} What zre the steps in System Testing?
8. Test Plan crestion, Test Case crestion, Tests executed
b. Test Plan crestion, Test Data considered, SOLC is repeated
. Test Data considered, Automated test executed, Mormal and Update test cases
executed
d. Normal and Update test cases executed, Bug Reporting, SDLC is repeated

Figure 12. The 8th page of System Testing LO

23

Figure 13 lists the multiple-choice questions six through ten. It has the correct answers at

the bottom of the page.

B8] Inthe step of 3ystam Testing; bug reporting, bug verification and regrassion testing, is the bug
fixed at that time?
3 Yes
b. Mo
7] Who performs System Testing?
& Development Team
b. Project Managers
.. Specialized Testing Team
d. Maone of the above
8] What testing method is used for System Testing?
8. White-box
b. Grey-box
c. Black-box
d. B&C
8] When iz System Testing performed?
8. Before Unit Testing and zfter Integration Testing
b. After Integration Testing and before Acceptance Testing
. After Unit Testing and before Integration Testing
d. After Acceptance Testing and before Unit Testing
10) What zre some of tha items in the Test Caze?
8. Test Case ID, Test Suite Name, How to Test
b. Test Datz, Expected Result, Actual Result, and = Pazs or Fail
€. Test Case ID, Test Suite Name, Test Scenario Result
d. AEB

Answers1)d 2)a3)b4)c5)cE)b7c8)co)b10) d

Figure 13. Continuation of the 8th page of System Testing LLO

24

3.3.2 Acceptance Testing LO

The Acceptance Testing O includes a title, testing type, testing methods, tools used, basic
concepts, and quizzes. Acceptance testing LO — LOO01 is the title. This type of testing is mainly
manual; consisting of checklists. The primary testing methods used are black-box, alpha, and beta.
There are diverse ways to perform acceptance testing and different types of acceptance testing. For
example, the type of software created plays a significant role in this. If the software is commercial-
off-the-shelf, the acceptance testing method will be alpha and beta testing. If the software is
custom-built, then it will be end-user in-house acceptance testing. The acceptance testing will
include; Contract Acceptance Testing, Regulation Acceptance Testing, or Operational Acceptance
Testing. [15] So, the whole point is to figure out what will benefit the student the most and review it.
The students are mainly some type of I'T background, therefore will be working more with custom-
built software. The focus for this LO was on custom-built software. This was noted on the page.
There are many tools used for this; eggplant, Ranorex 2, web2test, Zephyr, engageuat, and many
more company driven tools (these are mainly used to report any bugs found, automated acceptance
testing, and acceptance testing via internet). The main tools used are Excel spread sheets and
checklists. Acceptance Testing basic concepts consist of; overview of concept, difference between
System and Acceptance testing concepts, differences of COTS and Custom-Built software, UAT
process, and the conclusion. The last items were the 2 quizzes. (Figures 10-13) These will determine
the students’ knowledge of the concept. The first page of Acceptance Testing Learning Objective is
the main content page with the overview. At the top of the page is the title. Then there are the
headers for the page implementation into WReSTT-CyLE website. The overview provides some of

the background into acceptance testing and an analogy for better understanding.

25

Acceptance Testing — LO01

Content:

Basic Concepts

Type: Manual

Method: Black-box, Alpha, Beta

Tools: eggPlant, Ranorex 2, web2test, Zephyr, engageuat, and many more company driven tools
Acceptance Testing:

Defimtion by ISTOQB:

acceptance testing: Formeal testmg with respect to wser needs, requirements, and business processes
conducted to determine whether or not a systemn satisfies the acceptance criteria and to enable the
user, customers or other authonized entity to determine whether or not to accept the system [1]

Acceptance Testing (also called; User Acceptance Testing
{UAT), end-user testing, customer-driven

testing, etc.) is the final level of testing. .
This is where; the kind of software iiEg= T Sy=tern HERZRENEE
comes nto consideration for testmg. As

up to now in the testing life cycle, most of the testing is conducted the same way between

the different kands of software; commercial-off-the-shelf (COTS) or costom bnlt In

Agcceptance testing the software kind will help determine the aspects of testing used. The kind of
software will determime these factors; the how”, “what”, “where”, *why” and “who’.

Analog:

During the process of mamifacturing a ballpeint pen, the cap, the body, the tail and clip, the ink
cartridge and the ballpoint are produced separately and unit tested separately. When two or more
units are ready, they are assembled and Integration Testing is performed. When the complete pen is
mtegrated, System Testing iz performed. Once System Testing 1s complete, Acceptance Testing is
performed so as to confirm that the ballpoint pen is ready to be made available to the end-users. [1]

“TEeW pages-

Figure 14. 'The 1st page of Acceptance Testing LO

26

The second page of the learning objective is the differences between System and Acceptance
testing. The differences are formatted side by side for better viewing. There are eight items in the

list, this listing was cut down because the other items found were like these listed.

Difference in System Testing and Acceptance Testing?

System Testing Acceptance Testing

1. System testmg 15 end to end testmg performed 1. Acceptance testing 15 fimcfionality testing
to check if the software meets the specified performed to check if the software meets the
Tequirements. customer requirements.

2. Bystem testing is performed by developers and 2. Acceptance testing is performed by
testers. independent testers, stakeholders, and the clients.

3. System Testing can be both fimctional and

nonfimctional testing 3. Acceptance testing is pure fimctional testing.

4. T this testing we test the software for
complete specification includng hardware and
software, memory and number of users.

4 Here we test the software for the user needs

and if uzer needs are met in the developed
softoare.

5. It is performed with demo data and notthe 5. Tt is performed with actual real time data,

production data. production data.

6. System testing is performed before the 6. Acceptance testing is performed after the

Arceptance testing. System testing.

7. System Testing comprises of System Testmg 7. Acceptance testing comprises of alpha testing

and System Integration testing. and beta testing.

8. System testmg involves nonfinctional testing 8. A".’“’Eptm festimg m'.'ol‘re_s ﬁ.ln:rlmnal testing

that is perf e load and stress testin thet 1z boundary value analysiz, equivalence
periomman: & portioning and decision table testing.

hitp:/www_softwaretestingelass com/difference-between-system-testmg-and-acceptance-testing/

<TEW page=

Figure 15. The 2nd page of Acceptance Testing LO

27

The third page of the learning objective is the differences between COTS and Custom Built
software. This topic was added because of the importance. The way the software is built
determines which acceptance testing process used. If the software is COTS, then acceptance testing
is done via Internet and the results captured. If the software is Custom Built, the acceptance testing

is done on the customer site with real-time data.

The Differences in COTS versus Customn Built Software in UAT
Testing aspects: The COTS will mainty use Alpha and Beta testing aspects and custom will use
mznual-imput and checklists. Both kands of software will use automated testing and are Black Box.

Test casesTest Plans The test cases will relatively be the same. These are based on the requirements
theat are captured at the beginning of the software lifecycle. Thesze test cases will already be
implemented into the testing environment and will be automated. In the following example, the test
case 13 gbout a login function for an application.

Test Test Case Actual
Casa # Doscriptian k‘lupl Test Data Steps to Perlarm Expected Result o (o
1 Jur: wwes gmail com |Launch URL Gmal.com page
|should open up
2 |Usemame: Test |EnterUssmame |1 u¥eemamne i entered
i 1k usemame feld
{2 1. Login - with The passward erfered into
corect credentials| 3 |Password; ALM Test|Enter Password I Password Sald and
characters are hidden as dots
Thee user is bagged o
4 Click Sign In button |gmail com page and inbox is
displayed

http/fedn? softwaretestinghelp. com/wp-content/gauploeds2013/06/Cuality-Center- Test-cases jpg

The aszumpticn of Acceptance testing is that all of the other phases of testing are complete and there
are no viable bugs in the system For example—page does not load. Acceptance testing is not for
“bug” humting, but more for performance testing for the user. For example; for a log-in user
zeceptance test: the test 15 lookang for the tommg that 1t takes to log-in; not that the user failed
venfication with the comrect credentials. [2]

Location of testing: The assumption for this would be that the test cases are chosen and the test
environment 15 implemented (if needed). The custom built software—the customer would be
provided an area where the fest would be performed . For COTS—the location of testing would be: a
testing emvironment on site (Alpha Tests) or on the Internet (Beta Tests). [2] For the Bata testimg, the
test environment would be downloaded with the software, this would be emor gathering software that
would report back to the company.

Purpose of the tests: The porpose of UAT is either to determine if the customer will purchase the
product or to decide 1f it 15 at a release state to end users called “go or no-go™ decision. This
decizion is bazed on the results of the Acceptance test and the end user/customer/company. Here is

Figure 16. The 3rd page of Acceptance Testing LO

28

Figure 17 is a continuation of the third page of Acceptance Testing LO. It illustrates an

example of 2 Go No Go checklist for testing.

an example of a company (New Flyer) GoNo Go checklist
Mew Flyer Ge/No Go Cheeklist

i T Y ey
ew [SFTN [—— L—— [——) [ra——
S Papa— [reyee—— [y — [t m——
{— - [[p— Welem, |
I e fea [v b oo sk preskacrson di Villew
oY e r——— Ty
(SR S Ml i S ————— Vellew
ey ———
Pt e i B T TR
[Vellew
rivas e e bee bm raskie !
. [Fincr cwwmmmen m e imr b 1
e i | e syviaindeend ™ Taller
e ot BT e ol Mkl ol
. [ES—
Villew
i o o mrmrm m el e s o
[, Vel
s bow s e ©
s sher oy acer. sl ey s @iy e
T e s e b1 e o Toller d
R iﬁr\-b-::n“--kal.-*lnmd == — .
s b commgrecy precvdencs smd s ey Cvm
L h T e s med w11 e m e Tilen d
Bl | o e [ksl s, i e £ e e rn el b elbw
" o [Fim gy s e ey T p— = ¥
- o e v b gy [arre
" L lu-n.'.n.::-*imalzn-n-._u\m ¥ "
i thw il L et i sk ot e b D
i ——— beikew i
s kel v g e
u o . [Fim ST il e, s v v e ¥ "
b B e o
Him e prom e Dor By e b el o om
LR [Ry T R P P p——y Vilkew
A o b
Hir o e daa .o, i o b, v
- e Lt b B - ™ [Ra— o
" P [T P T Pe——————— e
syl g e e~
T T |t de cesmy smlbom o hom cbms ol © Vel 1
K oy [Bl i e i e Ul e ¥ "
e precqugs

—hitp:/img docstocedn com/thmby'orig 35216530 png

For both, the bugs that are found will be captured and inventoried. These will either help determine;
the go'no-go decision, to leave it as is, or to be fixed in an update &t a later time. [3]

Testers: If the software 1= under ‘contract to hire’ then the customer/customer representative will
perform the testing. If the software is nof under contract, the software testing team, end users and/or
internet users will perform the testing. [4] For custom built software, the company will produce the
user manuals needed for the chient software and will train the clients (that are performing the tests)
before they perform the UAT.

<new page=

Figure 17. Continuation of the 3rd page of Acceptance Testing LO

29

The fourth page of the learning objective is the User Acceptance Testing (UAT) Process.
This process is for custom built software. The relevance is that most students will be creating this
type of software. There is a note on the top of the page informing that the rest of the learning
objective will focus on custom built software user acceptance testing process. The figure illustrates

steps 1, 2, and 3 of the UAT Process.

##% The Leaming Object 15 focused on custom-built software from this point omward. **#

UAT Process:

Before UAT is started, there are some requirements that need to be completed. All other testing 13
complete and at a passing level. The business requirements are available to the UAT testing team.
The UAT enviromment 1= up and fimetional and there 1= documentation signing off that it is ready

with the comect testmg commuttee members. All ligh-prority or showstopper bugs are fixed and

verified and all regression testing completed. Also, the sign-off from the System testing team that

their work i= complete iz needed. Only when these are completed TTAT can be started. [4][3]

1. Analyse the busmess requirements. This will be performed by the UAT Testing commuttee. The
UAT commuttes can be comprised of; some of the testing team members, a busmess analysist,
customer representative, and/or client appointed end users. In this step; Service Level Agreements
(SLA) might become a part of the acceptance critenia. These are from the contract that initiated the
project. For example; downtime of the system is less than (.1%. So how to validate these in the
UJAT, this iz done my having the night information and resources available to the chient This canbe
m the training of the employees or fully document any trouble shooting. [6]

2. Create a UAT test plan. This will be completed by the testing team or busmess analysist Get
plan. For an example of a test plan please click here: <hot ref to the test plan= (can add ths to the
webszite in the references-this iz a great template) [7]

3. Identify the UJAT Test Scenanos. The UAT Testng committee will choose the requirements that
best fit the criteria for accepting the application. [8] Some of the acceptance testing eritenia would be;

* Fimctional Correciness and Completeness
Data Integrity

Data Conversion

Usahility

Performance

Timeliness

Confidentiality and Availability
Installability and Upgradability
Scalability

Documentation

Figure 18. The 4th page of Acceptance Testing LO

30

Figure 19 is a continuation of the fourth page of Acceptance Testing LO. It includes steps 4,5,

and 6 of the UAT process.

4, Create UAT Test Cases. Thus s performed by the UAT Testmg Team. These are very detailed m

most cases. The enfry and exat data s given along with the all the steps i befween. Most of these
wil are already i the testmg system and have been tested mumerous times through-out the software
Ife cycle. Before the fmal UAT 15 completed, the tesfing team vill ake the finalized test cases and

run them m-howsse. This will be antomated festmg.

3. Execute the UAT Test Cases. Thus wil be completed on-sitz of the chent company. The testers

wil be pucked by the UAT Tesfng commttee. Thus vitll be memmal testmg. In some cases, the test
dafa can be ‘live” data from the client. [9] These wll be performed by the testers m-front of the
Release Team and UAT Testme commttee. In some cases, ‘Live” data will be used for the mputs. In
these cases, 1t 15 bestto scramble the dafs for secunty reasons and fram the ueer on the data flow (if
teeded). 7]

6. Confirm the busmess objectrves. The UAT Testm comemttes vl confimn the results waith the
UAT Testme commttee and sign-off. Thus 1z the final sep of validating the busmess requrements
wnthin the software. [3] UAT is complete. The companies will have the fingl mesting and decide on the
£0/no-g0 decision zt this paint.

<NeW page:

Figure 19. Continuation of 4th page of Acceptance Testing LO

31

The fifth page of the learning objective is the conclusion. This page gives a brief overview
of the information that was presented. It stresses the importance of how the software is built in the

UAT process.

Conclusion

The UAT iz the final stage in testing. There are multiple ways to complete UAT. The kind of software
comes into play within this stage of testing. The 2 major kinds of software are Commercizl-Off-The-Shelf
and ‘custom built’ or ‘contract for hire’. The focus on thiz Learning Objective is the custom built because
COTS UAT is mot that much different than regular testing. The only major difference is that there are 2
testing phases: Alphz and Beta. Also the delivery method is different, as the testing can be complets
over the internet. There is 3 lot of documentation within UAT. The testing teams will crezte another
testing plam specifically for UAT only. In this stage there are user manusls, instzllztion instructions,
training documents, and support documeants created including the full test plan 2nd validation
documentation. UAT is important because it is the final capture and validation point of the business

requirements for the whole project. This will be the final input for the client to accept the product or
nat!

OR

Figure 20. The 5th page of Acceptance Testing LO

32

The sixth page of the learning objective is the Practice Quiz. There are 10 multiple choice
questions along with the correct answers. The main purpose of the practice quiz is to get the
student ready for the real quiz that will be a part of their grade. Figure 21 illustrates the practice quiz

along with the correct answers.

Ouiz 1

1] What does UAT stand for?
2. User application testing
b. Undocuments acceptance test
. User acceptance testing
2] What does COTS stand for?
=. Customer off the shelf
b. Commercial on the shelf
c. Commercial off the shelf
3] Who performs the testing in this stage?
2. End users
b. Testingteams
. Business Analysts
4] What are some of methods used in UAT?
2. Alpha, beta, black box
b. Adhoc, white box
.. AEb
5] Acceptance testing is known as?
2. Unittesting
b. Regression testing
c. End-user testing
6] = UAT for bug hunting?
= True
b. Fzalze
7] I= VAT for testing system performance?
2. True
b. Fzalse
B] Who picks the testers?
2. UAT testing committes members
b. Testing team only

c. Clisnt
3] C=znthe end-user be 3 part of the UAT testing committes?
& True
b. False
10) UAT is black box testing method?
a. True
b. False

Answers: 1-c, 2-b, 3-3, 4-3, 5, §-b, 7-3, 8-3, -3, 10-a.

Figure 21. The 6th page of Acceptance Testing LO

33

The seventh page of the learning objective is the Real Quiz. The quiz consists of 10 multiple
choice questions including the correct answers. The purpose of the quiz is to determine the
student’s retention of the information. This will be a part of the final grading of the student. Figure

22 illustrates the real quiz along with correct answers.

Quiz 2

1} What is the main focus of this LO?
2. System Testing
b. Custom built software
c. Software Release Team
2] What are some of the testing criteria?
2. Documentation, Usability, Data integrity
b. Usability, affordability, maintzinability
. Bunmy-day, rainyg-day, grey-day
3]} What does 5LA stand for?
=. Software learning assessment
b. 3Service level sgreement
. Service level sgent
4] Who performs the testing in this stage?
a. End uses
b. Testing team
. UJAT testing committes
5]} What are some of the documents created in this stage?
&. Training documents
b. Warranty information
. MNone of the above
6] Whao is included in the UAT testing committes?
=. Product company CEOQ
b. Subject knowledge expert
. End-user, testing t=am, business analysts
7] UAT iz not the final stage in testing?

a. True
b. Fzalse
B] Are UAT test cases automatad?
& True
b. Falze

2} Is regression testing perform in this stage?

= True
b. Fzlze
10) What is ancther name for ‘contract for hire'?
2. UAT
b. COTS

. Custom-built

Answers: 1-b, 2-a, 3-b_4-a, 5-g, 6-c, 7-b, -3, 3-3, 10-c.

Figure 22. 'The 7th page of Acceptance Testing LO

34

The final page of the learning objective is the references. This page lists all of the references

used in the learning objective.

References:

[1] STF. (2016, September 10). Acceptance Testing Fundamentals. [Web Log Page]. Retrieved
from hitp:/softwaretestingfimdamentals. com/acceptance-testing/

[2] Techopedia com. (2016, September 12). User Acceptance Testing (UAT). [Web Defimtion
Entry]. Retrieved from https:wanw techopedia com/definition/ 3827 user-acceptance-testing-uat
[3]15 Seela (2016, August 26). What 15 User Acceptance Testmg (UAT) and How to Perform It
Effectively? [Web Arficle Entry]. Retrieved from hitp:fwww softwaretestinghelp comwhat-1s-user-
acceptance-testmg-uat/

[4] Software Testing Class. (2012, October 7). User Acceptance Testing: What? Why? & How?
[Web Arficle Entry]. Fetneved from hittp:/‘www softwaretestingelass. com/user-acceptance-testmg-
what-why-how/

(5] Software Testing Class. (2012, October 7). Difference between System testing and Acceptance

Testing. [Web Article Entry]. Remeved from hitp:/www softwaretestimgelass.com/difference-
between-system-testing-and-acceptance-testmg/

[6] Desikan, &, & Ramesh, G. [2012). Software Testing: Principles and Practices. System ond Acceptance
Testing. (pp. 158-162). Mew Dehli, India: Pearson.

[7] Coley Consulting. (2016, September 15). UAT Test Plan Templzte. [Web Log Entry]. Retrieved from
http://coleyconsulting.co.uk/UAT _Test_Flan.htm

(8] TutonialsPomt. (2016, September 20). What 15 Acceptance Testmg? [Web Article Enfry].
Retrieved from hitp:/ mwww totorialspomt com/software testing dichionary/acceptance_testmg him

9] Guru9. (2016, September 26). What is User Acceptance Testmg (UAT)? [Web Log Entry].
Fetneved from hitp:/www. gum®3 com/user-acceptance-testing himl

Figure 23. 'The 8th page of Acceptance Testing LO

35

4. FUTURE WORK

There is more work to be done with this topic. There is a lot of information that can go
more in-depth on the subject. For example, in the System Testing — .O; 02 and 03 can be added.
There are some concepts not on the site yet, these can all be added. Some more tutorials on
different testing tools can be added, there are many different tools available that were not at the
creation of this site.

The current WReSTT-CyLE has not been studied since the new design. This can be testing
within a software or testing undergraduate course and journaled. Some studies can be on how
effective are the LO and quizzes.

There can be more options added to the site itself. An example is the option of Instructor
uploading their own LO or tutorials. Another option could be Instructor requests on a specific
topic or tool. Within WReSTT-CyLE, the website can be opened to the public for use. As
mentioned, not all I'T professionals go through the traditional route of schooling. This can also help

current professionals with up-to-date tutorials and LOs for ramping up on a specific tool or topic.

36

5. DISCUSSION AND CONCLUSION

There is a gap of testing skills/knowledge in I'T professionals. The way to address this issue
is to teach students the importance of testing and provide them with the proper tools to gain this
knowledge. Academia has started to resolve this with WReSTT-CyLE. It is a collaborative,
interactive cyber-learning environment for testing concepts. It is minimally intrusive to any
classroom. All of the data and learning items are accessed via internet. The site was updated with
gamification and visual components to motivate students to participate within the site. The
WReSTT-CyLE provides learning objectives for testing concepts. These learning objectives support
the instructors and teach the students in a very logical way. Along with the gamification and easy
access for the students, the site is very motivational for a learning environment. Recent studies

reported that the site supports this very effort.

37

REFERENCES

Software Testing Class Team. (2016, September 30). Importance of Testing. [Web Log Entry].
Retrieved from http://www.softwaretestingclass.com/importance-of-testing/

Kovach, S. (2016 October 11). It's time for Samsung to come clean about the Galaxy Note 7.
Business Insider: Tech Insider. Retrieved from http://www.businessinsider.com/samsung-
galaxy-note-7-recall-what-went-wrong-2016-10

Software Testing Class Editors. (2012, October 7). Importance of Testing. [Web Article Entry].
Retrieved from http://www.softwaretestingclass.com/

Lent, J. (2016, September 15). QA skills gap: Testing pros need enough to wrote a test script.
Retrieved from http://searchsoftwarequality.techtarget.com/ feature/ QA-skills-gap-Testing-
pros-need-enough-to-write-a-test-script

Guru99. (2016, August 10). Software Testing as a career- complete guide. Retrieved from
http://www.guru99.com/

Goswami, A., Walia, G. S., & Abufardeh, S. (2014). Using a Web-Based Testing Tool
Repository in Programming Course: An Empirical Study. Proceedings of 2014 International
Conference on Frontiers in Education: Computer Science and Computer Engineering. July 21-
24, FECS 2014 USA.

WReSTT-CyLE, (2016, September 25). Home Page. Retrieved from
http://demo.wrestt.cis.fiu.edu/about-wrestt-com

Fu, Y., & Clarke, P.J. (2016). Gamification based Cyber Enabled Learning Environment of
Software Testing. 123rd ASEE Annual Conference & Exposition. Accepted 03/28/16
Clarke, P.J. (2009). Introductions to Web-Based Repository for Software Testing Tools

(WReSTT). [PPT Format]. Retrieved from http://demo.wrestt.cis.fiu.edu/wistpc-09

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Clarke, P.J., Pava, J., Wu, Y. & King, T. M. (2011). Collaborative Web-Based Learning of
Testing Tools in SE Courses. In Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education (2011). ACM, New York, NY, USA, pages 147-152.

Fu, Y., Barnes, N., & Clarke, P.J. (20106). Integrating Software Testing into Computer Science
Curriculum Using WReSTT-CyLE. 123rd ASEE Annual Conference & Exposition.
Gamification. (n.d.) In Merriam-Webster dictionary online. Retrieved from

http:/ /www.merriam-webster.com/dictionary/gamification

Hamari, J., Koivisto, J. & Sarsa, H. (2014). Does Gamification Work? — A Literature Review of
Empirical Studies on Gamification. In Proceedings of the 47" IEEE Hawaii International
Conference on System Science. HICSS 2014, pages 3025-3034.

ISTQB Team. (2016, September 15). What is Acceptance testing? [Web Log Entry]. Retrieved
from http://istqbexamcertification.com

Peham, T. (2015). 5 Types of user acceptance tests — the perfect UAT framework. [Web Log
Entry]. Retrieved from http://usersnap.com/blog/types-user-acceptance-tests-frameworks
Wiley, David A. (2000). Connecting learning objects to instructional design theory: A definition,
a metaphor, and a taxonomy. In D.A. Wiley (Ed.). The Instructional Use of Learning Objects
Martinez, M. (2000). Designing learning objects to mass customize and personalize learning. In
D.A. Wiley (ED.) The Instructional Use of Learning Objects.

Mills, Sandy. (2002). Learning about Learning Objects with Learning Objects [on-line].
Available: http:// www.alivetek.com/learningobjects/ site_paper.htm.
Softwaretestingclass.com. (2016, August 17). System Testing What? Why? & How? [Web
Tutorial Entry}. Retrieved from http://www.softwaretestingclass.com/system-testing-what-

why-how/

39

APPENDIX A. LISTING OF BOOKS REVIEWED

Desikan, S., & Ramesh, G. (2000). Software Testing: Principles and Practices. Pearson Education
India.

Kit, E., & Finzi, S. (1995). Software testing in the real world: Improving the process. New York,
NY: ACM Press.

Mathur, A. (2013). Foundations of software testing. Delhi: Pearson.

Pezze, M., & Young, M. (2008). Software testing and analysis: Process, principles, and techniques.
Hoboken, NJ: Wiley.

Tsui, F. F., & Karam, O. (2007). Essentials of software engineering. Sudbury, MA: Jones and
Bartlett.

Wiegers, K. E. (2003). Software requirements: Practical techniques for gathering and managing

requirements throughout the product development cycle. Redmond, WA: Microsoft Press.

40

APPENDIX B. A LISTING OF WEBSITES VISITED

Coley Consulting. (2016, September 15). UAT Test Plan Template. [Web Log Entry]. Retrieved
from http://coleyconsulting.co.uk/UAT_Test_Plan.htm

etestinghub, (2016, September 17). Online software testing tutorial - manual and automation.
Retrieved from http://www.etestinghub.com/

Gamification. (n.d.) In Merriam-Webster dictionary online. Retrieved from http://www.mertiam-
webster.com/dictionary/gamification

Guru99. (2016, August 10). Software Testing as a career- complete guide, What is System Testing?,
What is User Acceptance Testing (UAT)?, & 100 Types of Testing You Never Knew
Existed [Web Tutorial Entry]. Rettrieved from http://www.guru99.com/

Hower, R., (2016, September 12) What are some recent major computer system failures caused by
softwate bugs? (n.d.). Retrieved from http://www.softwareqatest.com/qatfaql.html

ISTQB Team. (2016, September 15). What is Acceptance testing? & Why is software testing
necessary? [Web Log Entry]. Retrieved from http://istgbexamcertification.com/why-is-
testing-necessary/

Kovach, S. (2016 October 11). It's time for Samsung to come clean about the Galaxy Note 7.
Business Insider: Tech Insider. Retrieved from http://www.businessinsider.com/samsung-
galaxy-note-7-recall-what-went-wrong-2016-10

Lent, J., (2016, September 15). QA skills gap: Testing pros need enough to wrote a test script.
Retrieved from http://searchsoftwarequality.techtarget.com/feature/QA-skills-gap-Testing-
pros-need-enough-to-write-a-test-script

Peham, T., (2015). 5 Types of user acceptance tests — the perfect UAT framework. Retrieved from

http://usersnap.com/blog/ types-uset-acceptance-tests-frameworks

41

Seela, S. (2016, August 26). What is User Acceptance Testing (UAT) and How to Perform It
Effectively? [Web Article Entry]. Retrieved from
http:/ /www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/

Software Testing Class Editors. (2012, October 7). Difference between System testing and
Acceptance Testing, Importance of Testing, System Testing: What? Why? & How?, & User
Acceptance Testing: What? Why? & How?. [Web Article Entry]. Retrieved from
http:/ /www.softwaretestingclass.com/

Software Testing Fundamentals. (2016, September 10). Acceptance Testing Fundamentals & System
Testing. [Web Log Page]. Retrieved from http://softwaretestingfundamentals.com/

Software Testing Help. (2016, August 24). System Testing — A Beginner’s Guide. [Web Article
Entry]. Retrieved from http://www.softwaretestinghelp.com/system-testing/

Techopedia.com. (2016, September 12). User Acceptance Testing (UAT). [Web Definition Entry].
Retrieved from https://www.techopedia.com/definition/3887/user-acceptance-testing-uat

Thomson, R., (2008, May 8) Lack of software testing to blame for Terminal 5 fiasco, BA executive
tells MPs. (n.d.). Retrieved from
http:/ /www.computerweekly.com/news/2240085948 / Lack-of-software-testing-to-blame-
for-Terminal-5-fiasco-BA-executive-tells-MPs

TutorialsPoint. (2016, August 10). Software Testing — Levels &What is Acceptance Testing? [Web
Tutorial Entry]. Retrieved from http://www.tutorialspoint.com/software_testing/

WReSTT-CyLE, (2016, September 25). Home Page, About, Instructor Home Page, Student, Home
Page, Events, Forums, Documentation, Software Testing Tools Tutorials, & Software
Testing Learning Objectives. Retrieved from http://demo.wrestt.cis.fiu.edu/about-wrestt-
com

Online Presentation Slides:

42

Clarke, P.J. (2009). Introductions to Web-Based Repository for Software Testing Tools (WReSTT).

[PPT Format]. Retrieved from http://demo.wrestt.cis.fiu.edu/wistpc-09

43

APPENDIX C. A LISTING OF CONFERENCE PAPERS REVIEWED

Clarke, P.J., Allen, A. A., King, T. M., Jones, E. L., & Natesan, P. (2010). Using a Web-Based
Repository to Integrate Testing Tools into Programming Courses. In Proceedings of the
ACM international Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion. SPLASH 2010, pages 193-200.

Clarke, P.J., Davis, D. L., Chang-lau, R. & King, T. M. (2014). Observations on Student Use of
Tools in an Undergraduate Testing Class. In Proceedings of the 121st American Society for
Engineering Education (ASEE) - Software Engineering Constituent Committee Division
Track SWECC) 2014. Paper ID: 10123, 16 pages.

Clarke, P.J., Davis, D. L., King, T. M., Pava, J., & Jones, E. L. (2014). Integrating Testing into
Software Engineering Courses Supported by a Collaborative Learning Environment. ACM
Trans. Comput. Educ. 14, 3, Article 18 (October 2014), 33 pages.

Clarke, P.J., Pava, J., Davis, D. L., & King, T. M. (2012). Using WReSTT in SE Courses: An
Empirical Study. In the Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education (SIGCSE '12). ACM, pages 307-312.

Clarke, P.J., Pava, J., Wu, Y. & King, T. M. (2011) Collaborative Web-Based Learning of Testing
Tools in SE Courses. In Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education (SIGCSE '11). ACM, New York, NY, USA, pages 147-152.

Fu, Y., Barnes, N., & Clarke, P.J. (2016). Integrating Software Testing into Computer Science
Curriculum Using WReSTT-CyLE. 123rd ASEE Annual Conference & Exposition.
Accepted 03/28/16

Fu, Y., & Clarke, P.J. (2016). Gamification based Cyber Enabled Learning Environment of

Softwate Testing. 123rd ASEE Annual Conference & Exposition. Accepted 03/28/16

44

Goswami, A., Walia, G. S., & Abufardeh, S. (2014). Using a Web-Based Testing Tool Repository
in Programming Course: An Empirical Study. Proceedings of 2014 International

Conference on Frontiers in Education: Computer Science and Computer Engineering. July

21- 24, FECS 2014 USA.

45

APPENDIX D. A LISTING OF ALL MATERIAL REVIEWED

1. Acceptance Testing: Formal testing conducted to determine whether a system satisfies its
acceptance criteria and to enable the customer to determine whether to accept the system. It is
usually performed by the customer.

2. Accessibility Testing: Type of testing which determines the usability of a product to the people
having disabilities (deaf, blind, mentally disabled etc.). The evaluation process is conducted by
persons having disabilities.

3. Active Testing: Type of testing consisting in introducing test data and analysing the execution
results. It is usually conducted by the testing teams.

4. Agile Testing: Software testing practice that follows the principles of the agile manifesto,
emphasizing testing from the perspective of customers who will utilize the system. It is usually
performed by the QA teams.

5. Age Testing: Type of testing which evaluates a system's ability to perform in the future. The
evaluation process is conducted by testing teams.

6. Ad-hoc Testing: Testing performed without planning and documentation - the tester tries to
'break’ the system by randomly trying the system's functionality. It is performed by the testing teams.
7. Alpha Testing: Type of testing a software product or system conducted at the developer's site.
Usually it is performed by the end user.

8. Assertion Testing: Type of testing consisting in verifying if the conditions confirm the product
requirements. It is performed by the testing teams.

9. API Testing: Testing technique similar to unit testing in that it targets the code level. API Testing
differs from unit testing in that it is typically a QA task and not a developer task.

10. All-pairs Testing: Combinatorial testing method that tests all possible discrete combinations of
input parameters. It is performed by the testing teams.

46

11. Automated Testing: Testing technique that uses automation testing tools to control the
environment set-up, test execution and results reporting. It is performed by a computer and is used
inside the testing teams.

12. Basis Path Testing: A testing mechanism which derives a logical complexity measure of a
procedural design and use this as a guide for defining a basic set of execution paths. It is used by
testing teams when defining test cases.

13. Backward Compatibility Testing: Testing method which verifies the behaviour of the developed
software with older versions of the test environment. It is performed by testing teams.

14. Beta Testing: Final testing before releasing application for commercial purpose. It is typically
done by end-users or others.

15. Benchmark Testing: Testing technique that uses representative sets of programs and data
designed to evaluate the performance of computer hardware and software in a given configuration.
It is performed by testing teams.

16. Big Bang Integration Testing: Testing technique which integrates individual program modules
only when everything is ready. It is performed by the testing teams.

17. Binary Portability Testing: Technique that tests an executable application for portability across
system platforms and environments, usually for conformation to an ABI specification. It is
performed by the testing teams.

18. Boundary Value Testing: Software testing technique in which tests are designed to include
representatives of boundary values. It is performed by the QA testing teams.

19. Bottom Up Integration Testing: In bottom up integration testing, module at the lowest level are
developed first and other modules which go towards the 'main' program are integrated and tested

one at a time. It is usually performed by the testing teams.

47

20. Branch Testing: Testing technique in which all branches in the program source code are tested at
least once. This is done by the developer.

21. Breadth Testing: A test suite that exercises the full functionality of a product but does not test
features in detail. It is performed by testing teams.

22. Black box Testing: A method of software testing that verifies the functionality of an application
without having specific knowledge of the application's code/internal structure. Tests are based on
requirements and functionality. It is performed by QA teams.

23. Code-driven Testing: Testing technique that uses testing frameworks (such as xUnit) that allow
the execution of unit tests to determine whether various sections of the code are acting as expected
under various circumstances. It is performed by the development teams.

24. Compatibility Testing: Testing technique that validates how well a software performs in a
patticular hardware/software/operating system/network environment. It is performed by the testing
teams.

25. Comparison Testing: Testing technique which compares the product strengths and weaknesses
with previous versions or other similar products. Can be performed by tester, developers, product
managers or product owners.

26. Component Testing: Testing technique similar to unit testing but with a higher level of
integration - testing is done in the context of the application instead of just directly testing a specific
method. Can be performed by testing or development teams.

27. Configuration Testing: Testing technique which determines minimal and optimal configuration
of hardware and software, and the effect of adding or modifying resources such as memory, disk

drives and CPU. Usually it is performed by the performance testing engineers.

48

28. Condition Coverage Testing: Type of software testing where each condition is executed by
making it true and false, in each of the ways at least once. It is typically made by the automation
testing teams.

29. Compliance Testing: Type of testing which checks whether the system was developed in
accordance with standards, procedures and guidelines. It is usually performed by external companies
which offer "Certified OGC Compliant" brand.

30. Concurrency Testing: Multi-user testing geared towards determining the effects of accessing the
same application code, module or database records. It is usually done by performance engineers.
31. Conformance Testing: The process of testing that an implementation conforms to the
specification on which it is based. It is usually performed by testing teams.

32. Context Driven Testing: An Agile Testing technique that advocates continuous and creative
evaluation of testing opportunities considering the potential information revealed and the value of
that information to the organization at a specific moment. It is usually performed by Agile testing
teams.

33. Conversion Testing: Testing of programs or procedures used to convert data from existing
systems for use in replacement systems. It is usually performed by the QA teams.

34. Decision Coverage Testing: Type of software testing where each condition/decision is executed
by setting it on true/false. It is typically made by the automation testing teams.

35. Destructive Testing: Type of testing in which the tests are carried out to the specimen's failure,
in order to understand a specimen's structural performance or material behaviour under different
loads. It is usually performed by QA teams.

36. Dependency Testing: Testing type which examines an application's requirements for pre-existing
software, initial states and configuration in order to maintain proper functionality. It is usually

performed by testing teams.

49

37. Dynamic Testing: Term used in software engineering to describe the testing of the dynamic
behaviour of code. It is typically performed by testing teams.

38. Domain Testing: White box testing technique which contains checking that the program accepts
only valid input. It is usually done by software development teams and occasionally by automation
testing teams.

39. Error-Handling Testing: Software testing type which determines the ability of the system to
properly process erroneous transactions. It is usually performed by the testing teams.

40. End-to-end Testing: Similar to system testing, involves testing of a complete application
environment in a situation that mimics real-world use, such as interacting with a database, using
network communications, or interacting with other hardware, applications, or systems if appropriate.
It is performed by QA teams.

41. Endurance Testing: Type of testing which checks for memory leaks or other problems that may
occur with prolonged execution. It is usually performed by performance engineers.

42. Exploratory Testing: Black box testing technique performed without planning and
documentation. It is usually performed by manual testers.

43. Equivalence Partitioning Testing: Software testing technique that divides the input data of a
software unit into partitions of data from which test cases can be derived. it is usually performed by
the QA teams.

44. Fault injection Testing: Element of a comprehensive test strategy that enables the tester to
concentrate on the way the application under test can handle exceptions. It is performed by QA
teams.

45. Formal verification Testing: The act of proving or disproving the correctness of intended
algorithms underlying a system with respect to a certain formal specification or property, using

formal methods of mathematics. It is usually performed by QA teams.

50

46. Functional Testing: Type of black box testing that bases its test cases on the specifications of the
software component under test. It is performed by testing teams.

47. Fuzz Testing: Software testing technique that provides invalid, unexpected, or random data to
the inputs of a program - a special area of mutation testing. Fuzz testing is performed by testing
teams.

48. Gorilla Testing: Software testing technique which focuses on heavily testing of one particular
module. It is performed by quality assurance teams, usually when running full testing.

49. Gray Box Testing: A combination of Black Box and White Box testing methodologies: testing a
piece of software against its specification but using some knowledge of its internal workings. It can
be performed by either development or testing teams.

50. Glass box Testing: Similar to white box testing, based on knowledge of the internal logic of an
application's code. It is performed by development teams.

51. GUI software Testing: The process of testing a product that uses a graphical user interface, to
ensure it meets its written specifications. This is normally done by the testing teams.

52. Globalization Testing: Testing method that checks proper functionality of the product with any
of the culture/locale settings using every type of international input possible. It is performed by the
testing team.

53. Hybrid Integration Testing: Testing technique which combines top-down and bottom-up
integration techniques in order leverage benefits of these kind of testing. It is usually performed by
the testing teams.

54. Integration Testing: The phase in software testing in which individual software modules are
combined and tested as a group. It is usually conducted by testing teams.

55. Interface Testing: Testing conducted to evaluate whether systems or components pass data and

control correctly to one another. It is usually performed by both testing and development teams.

51

56. Install/uninstall Testing: Quality assurance work that focuses on what customers will need to do
to install and set up the new software successfully. It may involve full, partial or upgrades
install/uninstall processes and is typically done by the software testing engineer in conjunction with
the configuration manager.

57. Internationalization Testing: The process which ensures that product's functionality is not
broken and all the messages are propetly externalized when used in different languages and locale. It
is usually performed by the testing teams.

58. Inter-Systems Testing: Testing technique that focuses on testing the application to ensure that
interconnection between application functions correctly. It is usually done by the testing teams.

59. Keyword-driven Testing: Also, known as table-driven testing or action-word testing, is a
software testing methodology for automated testing that separates the test creation process into two
distinct stages: a Planning Stage and an Implementation Stage. It can be used by either manual or
automation testing teams.

60. Load Testing: Testing technique that puts demand on a system or device and measures its
response. It is usually conducted by the performance engineers.

61. Localization Testing: Part of software testing process focused on adapting a globalized
application to a particular culture/locale. It is normally done by the testing teams.

62. Loop Testing: A white box testing technique that exercises program loops. It is performed by
the development teams.

63. Manual Scripted Testing: Testing method in which the test cases are designed and reviewed by
the team before executing it. It is done by manual testing teams.

64. Manual-Support Testing: Testing technique that involves testing of all the functions performed
by the people while preparing the data and using these data from automated system. it is conducted

by testing teams.

52

65. Model-Based Testing: The application of Model based design for designing and executing the
necessary artefacts to perform software testing. It is usually performed by testing teams.

66. Mutation Testing: Method of software testing which involves modifying programs' source code
or byte code in small ways in order to test sections of the code that are seldom or never accessed
during normal tests execution. It is normally conducted by testers.

67. Modularity-driven Testing: Software testing technique which requires the creation of small,
independent scripts that represent modules, sections, and functions of the application under test. It
is usually performed by the testing team.

68. Non-functional Testing: Testing technique which focuses on testing of a software application for
its non-functional requirements. Can be conducted by the performance engineers or by manual
testing teams.

09. Negative Testing: Also known as "test to fail" - testing method where the tests' aim is showing
that a component or system does not work. It is performed by manual or automation testers.

70. Operational Testing: Testing technique conducted to evaluate a system or component in its
operational environment. Usually it is performed by testing teams.

71. Orthogonal array Testing: Systematic, statistical way of testing which can be applied in user
interface testing, system testing, regression testing, configuration testing and performance testing. It
is performed by the testing team.

72. Pair Testing: Software development technique in which two team members work together at one
keyboard to test the software application. One does the testing and the other analyses or reviews the
testing. This can be done between one Tester and Developer or Business Analyst or between two
testers with both participants taking turns at driving the keyboard.

73. Passive Testing: Testing technique consisting in monitoring the results of a running system

without introducing any special test data. It is performed by the testing team.

53

74. Parallel Testing: Testing technique which has the purpose to ensure that a new application which
has replaced its older version has been installed and is running correctly. It is conducted by the
testing team.

75. Path Testing: Typical white box testing which has the goal to satisfy coverage criteria for each
logical path through the program. It is usually performed by the development team.

76. Penetration Testing: Testing method which evaluates the security of a computer system or
network by simulating an attack from a malicious source. Usually they are conducted by specialized
penetration testing companies.

77. Performance Testing: Functional testing conducted to evaluate the compliance of a system or
component with specified performance requirements. It is usually conducted by the performance
engineer.

78. Positive Testing: Testing process where the system validated against the valid input data. In this
testing, tester always checks for only valid set of values and checks if an application behaves as
expected with its expected inputs.

79. Qualification Testing: Testing against the specifications of the previous release, usually
conducted by the developer for the consumer, to demonstrate that the software meets its specified
requirements.

80. Ramp Testing: Type of testing consisting in raising an input signal continuously until the system
breaks down. It may be conducted by the testing team or the performance engineer.

81. Regression Testing: Type of software testing that seeks to uncover software errors after changes
to the program (e.g. bug fixes or new functionality) have been made, by retesting the program. It is
performed by the testing teams.

82. Recovery Testing: Testing technique which evaluates how well a system recovers from crashes,

hardware failures, or other catastrophic problems. It is performed by the testing teams.

54

83. Requirements Testing: Testing technique which validates that the requirements are correct,
complete, unambiguous, and logically consistent and allows designing a necessary and sufficient set
of test cases from those requirements. It is performed by QA teams.

84. Security Testing: A process to determine that an information system protects data and maintains
functionality as intended. It can be performed by testing teams or by specialized security-testing
companies.

85. Sanity Testing: Testing technique which determines if a new software version is performing well
enough to accept it for a major testing effort. It is performed by the testing teams.

80. Scenario Testing: Testing activity that uses scenarios based on a hypothetical story to help a
person think through a complex problem or system for a testing environment. It is performed by
the testing teams.

87. Scalability Testing: Part of the battery of non-functional tests which tests a software application
for measuring its capability to scale up - be it the user load supported, the number of transactions,
the data volume etc. It is conducted by the performance engineer.

88. Statement Testing: White box testing which satisfies the criterion that each statement in a
program is executed at least once during program testing. It is usually performed by the
development team.

89. Static Testing: A form of software testing where the software isn't used it checks mainly for the
sanity of the code, algorithm, or document. It is used by the developer who wrote the code.

90. Stability Testing: Testing technique which attempts to determine if an application will crash. It is
usually conducted by the performance engineer.

91. Smoke Testing: Testing technique which examines all the basic components of a software system
to ensure that they work propetly. Typically, smoke testing is conducted by the testing team,

immediately after a software build is made.

55

92. Storage Testing: Testing type that verifies the program under test stores data files in the correct
directories and that it reserves sufficient space to prevent unexpected termination resulting from lack
of space. It is usually performed by the testing team.

93. Stress Testing: Testing technique which evaluates a system or component at or beyond the limits
of its specified requirements. It is usually conducted by the performance engineer.

94. Structural Testing: White box testing technique which takes into account the internal structure of
a system or component and ensures that each program statement performs its intended function. It
is usually performed by the software developers.

95. System Testing: The process of testing an integrated hardware and software system to verify that
the system meets its specified requirements. It is conducted by the testing teams in both
development and target environment.

96. System integration Testing: Testing process that exercises a software system's coexistence with
others. It is usually performed by the testing teams.

97. Top Down Integration Testing: Testing technique that involves starting at the stop of a system
hierarchy at the user interface and using stubs to test from the top down until the entire system has
been implemented. It is conducted by the testing teams.

98. Thread Testing: A variation of top-down testing technique where the progressive integration of
components follows the implementation of subsets of the requirements. It is usually performed by
the testing teams.

99. Upgrade Testing: Testing technique that verifies if assets created with older versions can be used
propetly and that uset's learning is not challenged. It is performed by the testing teams.

100. Unit Testing: Software verification and validation method in which a programmer tests if

individual units of source code are fit for use. It is usually conducted by the development team.

56

101. User Interface Testing: Type of testing which is performed to check how user-friendly the
application is. It is performed by testing teams.

102. Usability Testing: Testing technique which verifies the ease with which a user can learn to
operate, prepare inputs for, and interpret outputs of a system or component. It is usually performed
by end users.

103. Volume Testing: Testing which confirms that any values that may become large over time (such
as accumulated counts, logs, and data files), can be accommodated by the program and will not
cause the program to stop working or degrade its operation in any manner. It is usually conducted
by the performance engineer.

104. Vulnerability Testing: Type of testing which regards application security and has the purpose to
prevent problems which may affect the application integrity and stability. It can be performed by the
internal testing teams or outsourced to specialized companies.

105. White box Testing: Testing technique based on knowledge of the internal logic of an
application's code and includes tests like coverage of code statements, branches, paths, conditions. It
is performed by software developers.

106. Workflow Testing: Scripted end-to-end testing technique which duplicates specific workflows

which are expected to be utilized by the end-user. It is usually conducted by testing teams.

57

