

COGNITIVE HEURISTICS IN SOFTWARE ENGINEERING: EVALUATING

CONFIRMATION BIAS DURING SOFTWARE TESTING

A Paper

Submitted to the Graduate Faculty
of the

North Dakota State University
of Agriculture and Applied Science

By

Shishir Hegde

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Software Engineering

April 2017

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 COGNITIVE HEURISTICS IN SOFTWARE

ENGINEERING: EVALUATING CONFIRMATION BIAS
DURING SOFTWARE TESTING

 By

Shishir Hegde

 The Supervisory Committee certifies that this disquisition complies

with North Dakota State University’s regulations and meets the

accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Gursimran Walia

 Chair

Dr. Kendall Nygard

Dr. Achintya Bezbaruah

 Approved:

 04-13-2017 Brian Slator

 Date Department Chair

iii

ABSTRACT

Software engineering is a human centric activity and the thought processes of software

engineers have influence on the quality of software products. Cognitive scientists have

identified human errors known as cognitive heuristics which could impact quality of a software

product. However, there is little empirical evidence to substantiate this assertion in software

engineering. In this research we study a specific heuristic and evaluate its impact in software

testing. One of the factors that lead to poor quality of testing is to only verify if the system

works as expected and ignore negative tests. This can be attributed to a heuristic called as

confirmation bias which is defined as the tendency of people to verify their hypothesis rather

than refuting them. The experiment design evaluates confirmation bias of software testers

and measures their quality of testing. The results indicate that testers with low confirmation

bias obtain better overall testing results.

iv

ACKNOWLEDGEMENTS

I’m grateful to my adviser Dr. Gursimran Walia for his continuous help, support,

patience and guidance in the development and completion of this research study and paper.

He has been a helpful advisor who has motivated me at every step and guided me during my

master’s program.

I’m grateful to Dr. Kendall Nygard for giving me the opportunity to pursue my master’s

program and always being helpful with various stages in the progress of my study and for

taking out the time to be a part of my supervisory committee.

I’m grateful to Dr. Achintya Bezbaruah for taking out the time to be a part of my

supervisory committee.

I’m grateful to the Software Engineering department faculty and staff in all the ways I

could use their help in the progress and completion of my Master’s program.

Finally, I’m grateful to my parents, sister and wife for being supportive all the way.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

1. INTRODUCTION ... 1

2. BACKGROUND AND RELATED WORK ... 4

2.1. Psychological Perspective on Cognitive Heuristics ... 4

2.2. Confirmation Bias studies in Software Engineering .. 5

2.3. Motivation ... 7

3. EXPERIMENT DESIGN ... 8

3.1. Experiment Methodology ... 8

3.1.1. Research Questions and Hypotheses ... 8

3.1.2. Variables ... 9

3.1.3. Participating Subjects .. 9

3.1.4. Artifacts ... 9

3.2. Experiment Procedure ... 10

4. ANALYSIS AND RESULTS .. 11

4.1. Number of Negative Test cases and Invalid Classes (H1) 11

4.2. Overall Effectiveness of Defect Detection (H2) .. 12

4.3. Effect of Experience on Negative test case detection (H3) 13

5. DISCUSSION OF RESULTS .. 16

6. CONCLUSION .. 18

REFERENCES ... 19

vi

LIST OF TABLES

Table Page

1. Example of Cognitive Heuristics Applicable to Software Engineering 5

vii

LIST OF FIGURES

Figure Page

1. Comparison of negative tests detected by falsifier and verifier groups 11

2. Comparison of invalid classes covered by falsifier and verifier groups 12

3. Comparison of overall test coverage by falsifier and verifier groups 13

4. Comparison of invalid classes covered based on experience of subjects 14

5. Comparison of overall test coverage based on experience of subjects 15

1

1. INTRODUCTION

Software Engineering is the study and application of engineering principles to all the

different processes involved in creating a software product. Software production at the

abstract level involves the processes of Requirements engineering, software design,

development, testing and maintenance of software. Software testing is an important process

in the Software development life cycle to identify defects in the software. The quality of a

software product can be determined by measuring the number of defects present in it and

software testing helps in identifying defects so that it can be fixed. Poor or inadequate testing

can lead to higher number of defects which negatively impacts the quality of software because

the product is released to customers with defects existing in the software product. It is

important to investigate the effects of the human cognitive process and its fallibilities during

software testing in order to prevent inadequate testing. Since, software development and

testing is human-centric, analysis of project failures consistently revolves around various

human errors made by software engineers and testers. It is not surprising that most of the

project failures are human in nature [4]. Test design logic could be incomplete and some of

the necessary test conditions could be missing in test-case specifications. A common example

of this situation is a lack of negative test cases. By definition, a test case is negative if it

exercises abnormal conditions by using either invalid data input or the wrong user action. A

lack of negative test cases in test specifications is a common cause of missed defects [5].

This can be attributed from psychology literature to a human cognitive heuristic called as

confirmation bias which was first defined by Peter Wason in his rule discovery experiment and

later in his selection task experiment [3]. It is defined as the tendency of people to seek

evidence to verify their hypothesis and ignore evidence that falsify hypothesis. There are very

few empirical evidences that establish proof for the assertion that confirmation bias can lead

to low coverage of negative cases in test design and hence it is important to evaluate human

error patterns like confirmation bias that could result in a lack of negative testing. The problem

2

statement in this research is to find out if confirmation bias has any impact on the quality of

software testing done by software engineers/testers.

The notion of cognitive biases was first introduced by Kahneman [1]. There are various

cognitive biases documented in the psychology literature and some of them are availability,

representativeness, anchoring and adjustment, and confirmation bias [1, 7]. Although an

intensive amount of research about cognitive biases exists in the field of cognitive psychology,

interdisciplinary studies about the effects of cognitive biases in the software development life

cycles are at an immature level. Stacy and MacMillian are the two pioneers who recognized

the possible effects of cognitive biases on software engineering [2]. They discussed how

cognitive biases might have an effect in software engineering activities by giving examples

from several contexts. However, their work contains no empirical evidence and the authors

concluded that their ideas can be used for further research and empirical validation.

In this paper, we study confirmation bias and extract confirmation bias metrics of

software testers using a psychology test based on Wason’s selection task [3] and then

correlate it with the results from a software testing task to understand if confirmation bias

influences the quality of negative testing among software testers. There is evidence from

previous research that show testers carry out more positive tests as compared to negative

tests due to positive test bias [6]. In our study we focus only on the quality of negative tests

and correlate it with the results from a confirmation bias test from the psychology literature

to understand if confirmation bias influences the ability of software testers to identify negative

tests.

The research goal is to analyze the confirmation bias of testers for the purpose of

understanding its impact on software testing with respect to the defect detection effectiveness

from the point of view of researchers in the context of computer science students doing

software testing.

The research design includes student subjects doing a software testing task to identify

test cases. The same students are then subjected to a confirmation bias psychology test based

3

on Wason’s selection task [3] to get their confirmation bias metrics. The results obtained from

the psychology test are then correlated with the results from the testing task to measure the

quality of software testing.

The rest of the paper is organized as follows: In Section 2, we discuss the related work

on confirmation bias in software engineering. Section 3 describes the study design. Section 4

describes data analysis and results. Section 5 discusses the results obtained in this study with

respect to the research questions and hypothesis and section 6 will have the conclusions of

the paper.

4

2. BACKGROUND AND RELATED WORK

2.1. Psychological Perspective on Cognitive Heuristics

Psychological study of human errors received increased attention beginning in the

early 1970’s [1, 7]. Systematic models of human error capitalized on basic theoretical

research in human cognition, especially related to information processing. It quickly became

apparent that errors generally were not the result of irrational or maladaptive tendencies, but

instead resulted from normal psychological processes gone awry. Generally the use of

heuristics increases the speed and decreases the effort involved in information processing at

the expense of accuracy [8]. Heuristics reduce effort by 1) examining fewer options before

arriving at a solution, reducing the effort of information processing; 3) integrating less

information before arriving at a solution [9]. Generally, the literature indicates that the loss

of accuracy is not significant in most contexts, however software engineer’s performance is

affected by such cognitive biases. The psychological literature on human errors takes the

perspective that human beings are cognitive misers that rely on the use of cognitive heuristics

to make decisions. While much of the time, use of heuristics leads to accurate decision-

making, research indicates that this is not always the case [8, 10].

We are interested in the conditions where the use of heuristic decision-making leads

to erroneous decisions that introduce errors into software. At the individual level, psychology

research focuses on the use of heuristics as a source of errors in decision-making. There are

a wide variety of heuristics that could negatively affect software development. Table 1

illustrates a selection of heuristics from [8, 19] that can be used to understand the software

engineering errors.

5

Table 1. Example of Cognitive Heuristics Applicable to Software Engineering

Heuristic Definition

Availability A mental shortcut used by individuals to estimate the likelihood of

an event by how easily such events come to mind

Anchoring and

Adjustment

A mental shortcut in which initial information on a topic forms an

initial rough estimate or anchor point. Subsequent information

leads an individual to adjust their estimate with the anchor point

as the frame of reference.

Representativeness A mental shortcut in which individuals classify a person or thing

into a category to the extent that it is like a typical instance of the

category

Less is More A mental shortcut when less information or thought processing

leads to more accurate judgments.

Recognition A mental shortcut in which when choosing between two options,

the more familiar option will be deemed the correct one, regardless

of actual accuracy.

Fluency A mental shortcut in which multiple solutions are recognized, but

one is faster, individuals will choose the faster option.

Take the First A mental shortcut in which individuals chose the first option that

comes to mind.

One Reason A mental shortcut in which a decision is made based on the first

good reason that comes to mind rather than any subsequent

reasons (good or bad).

Trade Off A mental shortcut in which a decision is made by weighing all

alternatives equally and examining their trade-off.

Tallying A mental shortcut in which a decision is made by the quantity of

an option rather than any other merits.

The thought processes of developers are a fundamental concern in software

development. Stacy and Macmillan recognized the potential effects of cognitive biases on

software engineering [2]. The authors discussed how cognitive biases might show up in

software engineering activities by giving examples from several contexts. However, this work

contains no empirical investigations. The authors put forth some ideas with explanations and

potential areas that require further research.

2.2. Confirmation Bias studies in Software Engineering

A few previous studies analyzed some of the factors affecting confirmation bias and

their effects on software development and testing. One study provided empirical evidence

that supports the existence of positive test bias among software testers [6]. The authors

found that testers are four times more likely to choose positive tests than to choose negative

ones and that professional testers are no better at obtaining coverage of the test space than

6

novices. They also found that professional testers run many more test cases than less expert

testers and professional testers are not significantly affected by the level of detail of the

specifications. Results from another study showed that having strong logical reasoning and

hypothesis testing skills are differentiating factors in the software developer/tester

performance in terms of defect rates. Experience factor did not affect confirmation bias levels

significantly. Individuals who are experienced but inactive in software development/testing

scored better than active experienced software developers/testers. The recommendation was

that companies should focus on improving logical reasoning and hypothesis testing skills of

their employees by designing training programs to improve these skills [11]. Another study

provided evidence that the size of company was not a differentiating factor in abstract

reasoning skills. Software Engineers of large scale telecommunication company had

comparatively less confirmation bias compared to small and medium size companies but

graduate students of computer engineering showed less confirmation bias compared to

software engineers of all companies. Results indicated experience did not play a role even in

familiar situations such as problems about the software domain. Students showed less

confirmation bias compared to experienced software engineers by applying more reasoning

skills to solve software domain problems [12]. Results from another study analyzed factors

such as company culture and education and results indicated that problem solving

methodology followed by a large software development company in North America was better

than a large telecommunication company in Europe since confirmation bias was significantly

less according to the metrics evaluated. Results also indicated that more education among

software engineers can mitigate confirmation bias since graduate students performed better

in some of the confirmation bias metrics compared to software engineers from the

telecommunication company in Europe [13]. One more previous study used confirmation bias

metrics in building defect prediction models and the results were compared with defect

prediction models built using static code metrics and churn metrics. The improvement in

7

defect prediction performance as a result of using confirmation bias metrics was not significant

but gave comparable performance results [14].

Other cognitive biases like Anchoring and adjustment bias within the context of

software development was studied by performing two experiments to investigate the

existence of the bias in software artifact reuse. The first experiment they conducted examined

the reuse of object classes in a programming task, while their second experiment investigated

how anchoring and adjustment bias affected the reuse of software design artifacts [15].

Another study discussed how over-optimism and over-confidence of software engineers

contaminated the results obtained by software effort predictors, making them far from

objective [16]. One more study empirically investigated some cognitive bias types within the

scope of software development effort estimation. According to these empirical findings, an

increase in the effort spent on risk identification during software development effort

estimations leads to an illusion of control, which in turn leads to more over-optimism and

overconfidence [18]. Moreover, as a result of availability bias, risk scenarios that are more

easily recalled are overemphasized so that inaccurate effort estimations are made. This study

also empirically investigated how anchoring and adjustment heuristics leads to inaccurate

effort estimates [17].

2.3. Motivation

The study described in this paper is motivated from the research of Stacy and

Macmillan who recognized the potential effects of cognitive biases on software engineering

[2]. The authors discussed how cognitive biases might show up in software engineering

activities by giving examples from several contexts. However, this work contains no empirical

investigations. The authors put forth some ideas with explanations and potential areas that

require further research.

8

3. EXPERIMENT DESIGN

The major goal of this study is to investigate with empirical evidence for claims from

previous studies that confirmation bias of software testers can result in inadequate negative

testing.

The experiment to test this claim is a repeated measures design in which we perform

a software testing task to get the test cases identified by the participants in the experiment

and then perform a psychology test based on Wason’s selection task to understand the

confirmation bias levels of the testers and then correlate the results from the two tests.

3.1. Experiment Methodology

3.1.1. Research Questions and Hypotheses

The research questions investigated in this study were:

Research Question 1: Do software testers who have low confirmation bias levels

detect more negative test cases and obtain better coverage of invalid classes during software

testing?

Research Question 2: Does the confirmation bias levels of software testers have an

impact on the overall defect detection effectiveness during software testing?

Research Question 3: Do software testers with low confirmation bias and having

high work experience in the software development/testing industry detect more invalid

classes and obtain better overall test coverage during software testing?

The hypotheses related to the above questions are:

Hypotheses 1: Software testers with low confirmation bias levels detect more

negative test cases and obtain better coverage of invalid classes during software testing.

Hypotheses 2: The overall effectiveness of defect detection can be improved with low

confirmation bias levels.

Hypotheses 3: Software testers with high experience will be able to detect more

invalid classes and obtain better overall test coverage during software testing.

9

3.1.2. Variables

3.1.2.1. Independent variables

a. Requirement specification for testing task

b. Wasons selection task specifications

3.1.2.2. Dependent Variables

a. Number of subjects categorized as Falsifiers from Wasons selection task

b. Number of subjects categorized as Verifiers from Wasons selection task

c. Number of negative test cases detected by each subject in testing task

d. Number of Invalid classes detected by each subject in testing task

e. Total testing coverage percentage of each subject in testing task

3.1.3. Participating Subjects

Twenty graduate students enrolled in Software Testing and Debugging course at North

Dakota State University (NDSU) participated in this study. This course was primarily focused

on the goals, practices, evaluation and limitations of software testing and software debugging.

Students receive practice in developing and using test plans and various testing and

debugging techniques in this course.

3.1.4. Artifacts

The software testing task was administered by providing a testing task based on a

given requirement specification to the subjects. The subjects were asked to do black box

testing for this task by using the requirement specification. The psychology test was

administered using a survey website in which the subjects were given a link to the website

with four questions based on Wason’s selection task and were asked to select their answer

from the list of available choices.

10

3.2. Experiment Procedure

The experiment was designed to contain a single group of subjects to evaluate the

hypotheses posed in section 3.1.1. The details of the experiment are provided in the following

subsections.

• Software testing task: The subjects were given a testing task with specifications and asked

to do black box testing to identify test cases for the task. Black-box testing is a method

of software testing that examines the functionality of an application based on the

specifications and no access to code. The testing task was given as a take home

assignment to give ample time for the subjects to do testing. The subjects were asked to

record the test cases according to a template with input values and expected output.

• Psychology test: The same group of subjects were administered a psychology test based

on Wason’s selection task. In this task the subjects were asked to provide their answers

to four different variations of Wason’s selection task through a website with multiple choice

answers. This task was also a take home task with ample time to provide the answers to

the questions.

• Classification of Falsifier/Verifier/Matcher from the Psychology test: The classification

strategy was employed based on existing psychology literature by Reich and Ruth [20].

For the conditional rule of the form “if P, then Q”, the subject who selects the choices that

could break the rule is classified as a falsifier which in our tests is the answer choice of “P,

not-Q”. The rest of the subjects would belong to the category of Verifiers. They are

categorized based on answer choices that verify the rule but may not have the potential

to break the rule. There can also exist a tendency for subjects to just select an answer

choice based on what is specified in the rule and they can be called as matchers. Matchers

are classified in the same group as Verifiers since for the conditional rule of the form “if

P, then Q”, the subject who selects P,Q as the answer can either be a verifier or matcher.

11

4. ANALYSIS AND RESULTS

This section provides an analysis of the data collected during the study. This section is

organized around the hypotheses presented in Section 3.1.1. An alpha value of 0.05 was

selected for judging the significance of results.

4.1. Number of Negative Test cases and Invalid Classes (H1)

The results from the psychology test was used to classify the subjects into falsifier and

verifier categories. Falsifiers exhibit lower confirmation bias levels as compared to verifiers.

An independent samples t-test was chosen to do the analysis to compare the average number

of negative test cases detected by the falsifier and verifier groups. The falsifier group detected

significantly more negative test cases than the verifier group finding an average of 11.75

negative test cases as compared to an average of 6.58 negative test cases (p=0.038). These

results are shown in Figure 1.

Figure 1. Comparison of negative tests detected by falsifier and verifier groups

The quality of negative test cases detected by the subjects was further validated by

employing equivalence partitioning and boundary value analysis method [21] to get the

invalid classes covered and eliminate redundant test cases. The results indicated the falsifier

11.75

6.58

0

2

4

6

8

10

12

14

Falsifier Verifier

A
v
e
r
a
g

e
 n

e
g

a
ti

v
e
 t

e
s
tc

a
s
e
s

Group

Mean Negative Test Density

12

group covered significantly more invalid classes than the verifier group covering an average

of 8.88 classes as compared to an average of 6.08 classes (p=0.047). These results are shown

in Figure 2.

Figure 2. Comparison of invalid classes covered by falsifier and verifier groups

4.2. Overall Effectiveness of Defect Detection (H2)

The overall effectiveness of testing was measured by employing equivalence class and

boundary value analysis method [21]. Every possible equivalence class and boundary value

class was identified for the task and the percent coverage of the test cases identified by the

subjects was measured. Percent coverage was calculated as the ratio of the equivalence

classes or boundary conditions actually tested by the subjects to the total possible. This

indicates the quality as opposed to quantity of the tests. An independent samples t-test was

chosen to do the analysis to compare the average percent coverage by the falsifier and verifier

groups. The results indicated the falsifier group obtained significantly more overall percent

coverage than the verifier group obtaining an average of 41.40% coverage as compared to

an average of 31.24% (p=0.036). These results are shown in Figure 3.

8.88

6.08

0

1

2

3

4

5

6

7

8

9

10

Falsifier Verifier

A
v
e
r
a
g

e
 i

n
v
a
li

d
 c

la
s
s
e
s

Group

Mean Invalid Class Coverage

13

Figure 3. Comparison of overall test coverage by falsifier and verifier groups

4.3. Effect of Experience on Negative test case detection (H3)

In order to evaluate hypothesis 3 to see how experience in software

development/testing industry effects negative test detection, we analyzed the number of

negative test cases detected by subjects more than 14 months of experience and less than

14 months. The average months of experience among the subjects was 14 months and hence

this value was chosen. An independent samples t-test was done to compare the average

invalid classes’ covered and overall percent coverage obtained by the experienced and less

experienced subjects within the falsifier and verifier groups. The results indicated no

significant difference between the average invalid classes covered by the different levels of

experience in the two groups. In the falsifier category the average invalid classes detected by

experienced and less experienced subjects were 8.75 and 9 respectively (p=0.927). In the

verifier category the average invalid classes detected by experienced and less experienced

subjects were 7.25 and 5.50 respectively (p=0.258). These results are shown in Figure 4.

41.4

31.24

0

5

10

15

20

25

30

35

40

45

Falsifier Verifier

A
v
e
r
a
g

e
 t

e
s
t

c
o
v
e
r
a
g

e
 %

Group

Overrall Defect Detection Effectiveness

14

Figure 4. Comparison of invalid classes covered based on experience of subjects

The results also indicated no significant difference between the average overall

coverage percentages covered by the different levels of experience in the two groups. In the

falsifier category the average overall percent coverage obtained by experienced and less

experienced subjects were 41.14% and 41.66% respectively (p=0.912). In the verifier

category the average overall percent coverage obtained by experienced and less experienced

subjects were 34.89% and 29.42% respectively (p=0.470).This result was consistent with

previous studies which implied that experience does not affect the confirmation bias levels

among software developers/testers. These results are shown in Figure 5.

8.75

7.25

9

5.5

0

1

2

3

4

5

6

7

8

9

10

Falsifier Verifier

A
v
e
r
a
g

e
 i

n
v
a
li

d
 c

la
s
s
e
s

Group

Mean invalid class coverage by experience

Avg Invalid Class More Experience Avg Invalid Class Less Experience

15

Figure 5. Comparison of overall test coverage based on experience of subjects

41.14

34.89

41.66

29.42

0

5

10

15

20

25

30

35

40

45

Falsifier Verifier

A
v
e
r
a
g

e
 t

e
s
t

c
o
v
e
r
a
g

e
 %

Group

Overall test coverage by experience

Avg Percent Coverage More Experience Avg Percent Coverage Less Experience

16

5. DISCUSSION OF RESULTS

This section discusses the results from Section 4 by accepting or rejecting the

hypothesis and answering the research questions.

Research Question 1: Do software testers who have low confirmation bias levels

detect more negative test cases and obtain better coverage of invalid classes during software

testing?

Results indicate that the subjects in the group classified as falsifier who have low

confirmation bias levels detected significantly more negative test cases and obtained better

coverage of the invalid classes than the group classified as verifier having high confirmation

bias levels. This result thus supports hypothesis 1:

Hypotheses 1: Software testers with low confirmation bias levels detect more

negative test cases and obtain better coverage of invalid classes during software testing.

This implies that more test coverage through negative test cases can be obtained by

testers with low confirmation bias levels. This result signifies the importance of doing negative

tests and encourages software testers to test scenarios that can potentially break the system

or a specific rule in addition to tests that only verify if the system works as expected.

Research Question 2: Does the confirmation bias levels of software testers have an

impact on the overall defect detection effectiveness during software testing?

Results indicate that the overall defect detection effectiveness of subjects with low

confirmation bias (falsifiers) was significantly better than the subjects with high confirmation

bias levels (verifiers). This result thus supports hypothesis 2:

Hypotheses 2: The overall effectiveness of defect detection can be improved with low

confirmation bias levels.

This implies that confirmation bias can impact the overall quality of testing and

provides empirical evidence which signifies that software testers with low confirmation bias

17

can be more effective in terms of overall defect detection as compared to software testers

with high confirmation bias.

Research Question 3: Do software testers with low confirmation bias and having

high work experience in the software development/testing industry detect more invalid

classes and obtain better overall test coverage during software testing?

Results indicate that there was no significant difference observed between the average

number of invalid classes covered and the overall test coverage percentage detected within

the Falsifier and Verifier groups. This result thus does not support hypothesis 3:

Hypotheses 3: Software testers with high experience will be able to detect more

invalid classes and obtain better overall test coverage during software testing.

This implies that the experience of software developer/tester does not play a significant

role in detecting invalid classes and obtaining better overall test coverage. Previous studies

[6, 12, 13] have shown same results and our results further prove that experience do not

significantly impact the confirmation bias levels of software testers.

18

6. CONCLUSION

Based on the results obtained from the study in this paper, we can understand the

impact of confirmation bias on the quality of functional software testing. The results provide

empirical evidence to suggest that testers who were classified as having low confirmation bias

were better testers as compared to testers with high levels of confirmation bias. The study

also shows that testers who do effective negative testing are much effective in terms of quality

of testing and obtaining good test coverage. The results also indicate that experience factor

of testers do not have any impact on the confirmation bias. Hence, we can interpret that

exercising negative test cases and testing to see if a system fails should be an integral part

of software testing. Software testers should be made more aware and encouraged to exercise

tests that break the system in addition to tests that verify if the system works as specified in

the requirements. This would result in overall improvement of the testing process and lead to

better quality of software products. In future, we can plan to replicate this study with different

settings and data sets like capstone projects and in industrial settings with professional

testers.

19

REFERENCES

[1] A. Tversky and D. Kahneman, "Judgment under Uncertainty: Heuristics and

Biases", Science, vol. 185, no. 4157, pp. 1124-1131, 1974.

[2] W. Stacy and J. MacMillan, "Cognitive bias in software engineering", Communications of

the ACM, vol. 38, no. 6, pp. 57-63, 1995.

[3] P. Wason, "On the failure to eliminate hypotheses in a conceptual task", Quarterly

Journal of Experimental Psychology, vol. 12, no. 3, pp. 129-140, 1960.

[4] Demarco, T. and Lister, T., Peopleware: Productive Projects and Teams. New York:

Dorset House Publishing, 1987.

[5] Y. Chernak, "Validating and improving test-case effectiveness", IEEE Software, vol. 18,

no. 1, pp. 81-86, 2001.

[6] B. Teasley, L. Leventhal and S. Rohlman, "Positive test bias in software engineering

professionals: What is right and what's wrong", in Proceedings of the 5th workshop on

empirical studies of programmers, 1993.

[7] A. Tversky and D. Kahneman, "Availability: A heuristic for judging frequency and

probability", Cognitive Psychology, vol. 5, no. 2, pp. 207-232, 1973.

[8] G. Gigerenzer and W. Gaissmaier, "Heuristic Decision Making", Annual Review of

Psychology, vol. 62, no. 1, pp. 451-482, 2011.

[9] A. Shah and D. Oppenheimer, "Heuristics made easy: An effort-reduction

framework.", Psychological Bulletin, vol. 134, no. 2, pp. 207-222, 2008.

[10] R. Cialdini, Influence: Science and Practice, 5th ed. Boston: Allyn & Bacon, 2009.

[11] G. Calikli and A. Bener, "Empirical analyses of the factors affecting confirmation bias

and the effects of confirmation bias on software developer/tester performance", in PROMISE

20

'10 Proceedings of the 6th International Conference on Predictive Models in Software

Engineering, Timisoara, Romania, 2010.

[12] G. Calikli, B. Arslan and A. Bener, “Confirmation Bias in Software Development and

Testing: An Analysis of the Effects of Company Size, Experience and Reasoning Skills”, 22nd

Annual Psychology of Programming Interest Group Workshop, 2010.

[13] G. Calikli, A. Bener and B. Arslan, "An analysis of the effects of company culture,

education and experience on confirmation bias levels of software developers and

testers", Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering - ICSE '10, 2010.

[14] G. Calikli and A. Bener, "Influence of confirmation biases of developers on software

quality: an empirical study", Software Quality Journal, vol. 21, no. 2, pp. 377-416, 2012.

[15] J. Parsons and C. Saunders, "Cognitive heuristics in software engineering applying and

extending anchoring and adjustment to artifact reuse", IEEE Transactions on Software

Engineering, vol. 30, no. 12, pp. 873-888, 2004.

[16] C. Mair and M. Shepperd, "Human judgement and software metrics", Proceeding of the

2nd international workshop on Emerging trends in software metrics - WETSoM '11, 2011.

[17] M. Jorgensen, "Forecasting of software development work effort: Evidence on expert

judgement and formal models", International Journal of Forecasting, vol. 23, no. 3, pp. 449-

462, 2007.

[18] M. Jorgensen, "Identification of more risks can lead to increased over-optimism of and

over-confidence in software development effort estimates", Information and Software

Technology, vol. 52, no. 5, pp. 506-516, 2010.

21

[19] D. Griffin, R. Gonzalez and C. Varey, "The Heuristics and Biases Approach to Judgment

Under Uncertainty", Blackwell Handbook of Social Psychology: Intraindividual Processes, pp.

207-235, 2007.

[20] S. Reich and P. Ruth, "Wason's selection task: Verification, falsification and

matching", British Journal of Psychology, vol. 73, no. 3, pp. 395-405, 1982.

[21] G. Myers, T. Badgett, T. Thomas and C. Sandler, The art of software testing, 1st ed.

Hoboken, N.J.: John Wiley & Sons, 2004.

