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ABSTRACT 

Software engineering is a human centric activity and the thought processes of software 

engineers have influence on the quality of software products. Cognitive scientists have 

identified human errors known as cognitive heuristics which could impact quality of a software 

product. However, there is little empirical evidence to substantiate this assertion in software 

engineering. In this research we study a specific heuristic and evaluate its impact in software 

testing. One of the factors that lead to poor quality of testing is to only verify if the system 

works as expected and ignore negative tests. This can be attributed to a heuristic called as 

confirmation bias which is defined as the tendency of people to verify their hypothesis rather 

than refuting them. The experiment design evaluates confirmation bias of software testers 

and measures their quality of testing. The results indicate that testers with low confirmation 

bias obtain better overall testing results.  
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1. INTRODUCTION 

Software Engineering is the study and application of engineering principles to all the 

different processes involved in creating a software product. Software production at the 

abstract level involves the processes of Requirements engineering, software design, 

development, testing and maintenance of software. Software testing is an important process 

in the Software development life cycle to identify defects in the software. The quality of a 

software product can be determined by measuring the number of defects present in it and 

software testing helps in identifying defects so that it can be fixed. Poor or inadequate testing 

can lead to higher number of defects which negatively impacts the quality of software because 

the product is released to customers with defects existing in the software product.  It is 

important to investigate the effects of the human cognitive process and its fallibilities during 

software testing in order to prevent inadequate testing. Since, software development and 

testing is human-centric, analysis of project failures consistently revolves around various 

human errors made by software engineers and testers. It is not surprising that most of the 

project failures are human in nature [4]. Test design logic could be incomplete and some of 

the necessary test conditions could be missing in test-case specifications. A common example 

of this situation is a lack of negative test cases. By definition, a test case is negative if it 

exercises abnormal conditions by using either invalid data input or the wrong user action. A 

lack of negative test cases in test specifications is a common cause of missed defects [5]. 

This can be attributed from psychology literature to a human cognitive heuristic called as 

confirmation bias which was first defined by Peter Wason in his rule discovery experiment and 

later in his selection task experiment [3]. It is defined as the tendency of people to seek 

evidence to verify their hypothesis and ignore evidence that falsify hypothesis. There are very 

few empirical evidences that establish proof for the assertion that confirmation bias can lead 

to low coverage of negative cases in test design and hence it is important to evaluate human 

error patterns like confirmation bias that could result in a lack of negative testing. The problem 
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statement in this research is to find out if confirmation bias has any impact on the quality of 

software testing done by software engineers/testers.   

The notion of cognitive biases was first introduced by Kahneman [1]. There are various 

cognitive biases documented in the psychology literature and some of them are availability, 

representativeness, anchoring and adjustment, and confirmation bias [1, 7]. Although an 

intensive amount of research about cognitive biases exists in the field of cognitive psychology, 

interdisciplinary studies about the effects of cognitive biases in the software development life 

cycles are at an immature level. Stacy and MacMillian are the two pioneers who recognized 

the possible effects of cognitive biases on software engineering [2]. They discussed how 

cognitive biases might have an effect in software engineering activities by giving examples 

from several contexts. However, their work contains no empirical evidence and the authors 

concluded that their ideas can be used for further research and empirical validation.  

In this paper, we study confirmation bias and extract confirmation bias metrics of 

software testers using a psychology test based on Wason’s selection task [3] and then 

correlate it with the results from a software testing task to understand if confirmation bias 

influences the quality of negative testing among software testers. There is evidence from 

previous research that show testers carry out more positive tests as compared to negative 

tests due to positive test bias [6]. In our study we focus only on the quality of negative tests 

and correlate it with the results from a confirmation bias test from the psychology literature 

to understand if confirmation bias influences the ability of software testers to identify negative 

tests.    

The research goal is to analyze the confirmation bias of testers for the purpose of 

understanding its impact on software testing with respect to the defect detection effectiveness 

from the point of view of researchers in the context of computer science students doing 

software testing. 

The research design includes student subjects doing a software testing task to identify 

test cases. The same students are then subjected to a confirmation bias psychology test based 
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on Wason’s selection task [3] to get their confirmation bias metrics. The results obtained from 

the psychology test are then correlated with the results from the testing task to measure the 

quality of software testing. 

The rest of the paper is organized as follows: In Section 2, we discuss the related work 

on confirmation bias in software engineering. Section 3 describes the study design. Section 4 

describes data analysis and results. Section 5 discusses the results obtained in this study with 

respect to the research questions and hypothesis and section 6 will have the conclusions of 

the paper.   
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2. BACKGROUND AND RELATED WORK 

2.1. Psychological Perspective on Cognitive Heuristics 

Psychological study of human errors received increased attention beginning in the 

early 1970’s [1, 7]. Systematic models of human error capitalized on basic theoretical 

research in human cognition, especially related to information processing. It quickly became 

apparent that errors generally were not the result of irrational or maladaptive tendencies, but 

instead resulted from normal psychological processes gone awry. Generally the use of 

heuristics increases the speed and decreases the effort involved in information processing at 

the expense of accuracy [8]. Heuristics reduce effort by 1) examining fewer options before 

arriving at a solution, reducing the effort of information processing; 3) integrating less 

information before arriving at a solution [9]. Generally, the literature indicates that the loss 

of accuracy is not significant in most contexts, however software engineer’s performance is 

affected by such cognitive biases. The psychological literature on human errors takes the 

perspective that human beings are cognitive misers that rely on the use of cognitive heuristics 

to make decisions. While much of the time, use of heuristics leads to accurate decision-

making, research indicates that this is not always the case [8, 10]. 

We are interested in the conditions where the use of heuristic decision-making leads 

to erroneous decisions that introduce errors into software. At the individual level, psychology 

research focuses on the use of heuristics as a source of errors in decision-making. There are 

a wide variety of heuristics that could negatively affect software development. Table 1 

illustrates a selection of heuristics from [8, 19] that can be used to understand the software 

engineering errors. 
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Table 1. Example of Cognitive Heuristics Applicable to Software Engineering 

Heuristic Definition 

Availability A mental shortcut used by individuals to estimate the likelihood of 

an event by how easily such events come to mind 

Anchoring and 

Adjustment  

A mental shortcut in which initial information on a topic forms an 

initial rough estimate or anchor point. Subsequent information 

leads an individual to adjust their estimate with the anchor point 

as the frame of reference. 

Representativeness A mental shortcut in which individuals classify a person or thing 

into a category to the extent that it is like a typical instance of the 

category 

Less is More A mental shortcut when less information or thought processing 

leads to more accurate judgments. 

Recognition A mental shortcut in which when choosing between two options, 

the more familiar option will be deemed the correct one, regardless 

of actual accuracy. 

Fluency A mental shortcut in which multiple solutions are recognized, but 

one is faster, individuals will choose the faster option. 

Take the First A mental shortcut in which individuals chose the first option that 

comes to mind. 

One Reason A mental shortcut in which a decision is made based on the first 

good reason that comes to mind rather than any subsequent 

reasons (good or bad). 

Trade Off A mental shortcut in which a decision is made by weighing all 

alternatives equally and examining their trade-off. 

Tallying A mental shortcut in which a decision is made by the quantity of 

an option rather than any other merits. 

 

The thought processes of developers are a fundamental concern in software 

development. Stacy and Macmillan recognized the potential effects of cognitive biases on 

software engineering [2]. The authors discussed how cognitive biases might show up in 

software engineering activities by giving examples from several contexts. However, this work 

contains no empirical investigations. The authors put forth some ideas with explanations and 

potential areas that require further research. 

2.2. Confirmation Bias studies in Software Engineering 

A few previous studies analyzed some of the factors affecting confirmation bias and 

their effects on software development and testing. One study provided empirical evidence 

that supports the existence of positive test bias among software testers [6]. The authors 

found that testers are four times more likely to choose positive tests than to choose negative 

ones and that professional testers are no better at obtaining coverage of the test space than 
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novices. They also found that professional testers run many more test cases than less expert 

testers and professional testers are not significantly affected by the level of detail of the 

specifications. Results from another study showed that having strong logical reasoning and 

hypothesis testing skills are differentiating factors in the software developer/tester 

performance in terms of defect rates. Experience factor did not affect confirmation bias levels 

significantly. Individuals who are experienced but inactive in software development/testing 

scored better than active experienced software developers/testers. The recommendation was 

that companies should focus on improving logical reasoning and hypothesis testing skills of 

their employees by designing training programs to improve these skills [11]. Another study 

provided evidence that the size of company was not a differentiating factor in abstract 

reasoning skills. Software Engineers of large scale telecommunication company had 

comparatively less confirmation bias compared to small and medium size companies but 

graduate students of computer engineering showed less confirmation bias compared to 

software engineers of all companies. Results indicated experience did not play a role even in 

familiar situations such as problems about the software domain. Students showed less 

confirmation bias compared to experienced software engineers by applying more reasoning 

skills to solve software domain problems [12]. Results from another study analyzed factors 

such as company culture and education and results indicated that problem solving 

methodology followed by a large software development company in North America was better 

than a large telecommunication company in Europe since confirmation bias was significantly 

less according to the metrics evaluated. Results also indicated that more education among 

software engineers can mitigate confirmation bias since graduate students performed better 

in some of the confirmation bias metrics compared to software engineers from the 

telecommunication company in Europe [13]. One more previous study used confirmation bias 

metrics in building defect prediction models and the results were compared with defect 

prediction models built using static code metrics and churn metrics. The improvement in 
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defect prediction performance as a result of using confirmation bias metrics was not significant 

but gave comparable performance results [14].  

Other cognitive biases like Anchoring and adjustment bias within the context of 

software development was studied by performing two experiments to investigate the 

existence of the bias in software artifact reuse. The first experiment they conducted examined 

the reuse of object classes in a programming task, while their second experiment investigated 

how anchoring and adjustment bias affected the reuse of software design artifacts [15].  

Another study discussed how over-optimism and over-confidence of software engineers 

contaminated the results obtained by software effort predictors, making them far from 

objective [16]. One more study empirically investigated some cognitive bias types within the 

scope of software development effort estimation. According to these empirical findings, an 

increase in the effort spent on risk identification during software development effort 

estimations leads to an illusion of control, which in turn leads to more over-optimism and 

overconfidence [18]. Moreover, as a result of availability bias, risk scenarios that are more 

easily recalled are overemphasized so that inaccurate effort estimations are made. This study 

also empirically investigated how anchoring and adjustment heuristics leads to inaccurate 

effort estimates [17]. 

2.3. Motivation 

The study described in this paper is motivated from the research of Stacy and 

Macmillan who recognized the potential effects of cognitive biases on software engineering 

[2]. The authors discussed how cognitive biases might show up in software engineering 

activities by giving examples from several contexts. However, this work contains no empirical 

investigations. The authors put forth some ideas with explanations and potential areas that 

require further research.  
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3. EXPERIMENT DESIGN 

The major goal of this study is to investigate with empirical evidence for claims from 

previous studies that confirmation bias of software testers can result in inadequate negative 

testing.  

The experiment to test this claim is a repeated measures design in which we perform 

a software testing task to get the test cases identified by the participants in the experiment 

and then perform a psychology test based on Wason’s selection task to understand the 

confirmation bias levels of the testers and then correlate the results from the two tests. 

3.1. Experiment Methodology 

3.1.1. Research Questions and Hypotheses 

The research questions investigated in this study were: 

Research Question 1: Do software testers who have low confirmation bias levels 

detect more negative test cases and obtain better coverage of invalid classes during software 

testing? 

Research Question 2: Does the confirmation bias levels of software testers have an 

impact on the overall defect detection effectiveness during software testing? 

Research Question 3: Do software testers with low confirmation bias and having 

high work experience in the software development/testing industry detect more invalid 

classes and obtain better overall test coverage during software testing? 

The hypotheses related to the above questions are: 

Hypotheses 1: Software testers with low confirmation bias levels detect more 

negative test cases and obtain better coverage of invalid classes during software testing. 

Hypotheses 2: The overall effectiveness of defect detection can be improved with low 

confirmation bias levels. 

Hypotheses 3: Software testers with high experience will be able to detect more 

invalid classes and obtain better overall test coverage during software testing. 
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3.1.2. Variables 

3.1.2.1. Independent variables 

a. Requirement specification for testing task 

b. Wasons selection task specifications 

3.1.2.2. Dependent Variables 

a. Number of subjects categorized as Falsifiers from Wasons selection task  

b. Number of subjects categorized as Verifiers from Wasons selection task 

c. Number of negative test cases detected by each subject in testing task 

d. Number of Invalid classes detected by each subject in testing task 

e. Total testing coverage percentage of each subject in testing task  

3.1.3. Participating Subjects 

Twenty graduate students enrolled in Software Testing and Debugging course at North 

Dakota State University (NDSU) participated in this study. This course was primarily focused 

on the goals, practices, evaluation and limitations of software testing and software debugging. 

Students receive practice in developing and using test plans and various testing and 

debugging techniques in this course. 

3.1.4. Artifacts 

The software testing task was administered by providing a testing task based on a 

given requirement specification to the subjects. The subjects were asked to do black box 

testing for this task by using the requirement specification. The psychology test was 

administered using a survey website in which the subjects were given a link to the website 

with four questions based on Wason’s selection task and were asked to select their answer  

from the list of available choices. 
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3.2. Experiment Procedure 

The experiment was designed to contain a single group of subjects to evaluate the 

hypotheses posed in section 3.1.1. The details of the experiment are provided in the following 

subsections. 

• Software testing task: The subjects were given a testing task with specifications and asked 

to do black box testing to identify test cases for the task. Black-box testing is a method 

of software testing that examines the functionality of an application based on the 

specifications and no access to code. The testing task was given as a take home 

assignment to give ample time for the subjects to do testing. The subjects were asked to 

record the test cases according to a template with input values and expected output. 

• Psychology test: The same group of subjects were administered a psychology test based 

on Wason’s selection task. In this task the subjects were asked to provide their answers 

to four different variations of Wason’s selection task through a website with multiple choice 

answers. This task was also a take home task with ample time to provide the answers to 

the questions. 

• Classification of Falsifier/Verifier/Matcher from the Psychology test: The classification 

strategy was employed based on existing psychology literature by Reich and Ruth [20]. 

For the conditional rule of the form “if P, then Q”, the subject who selects the choices that 

could break the rule is classified as a falsifier which in our tests is the answer choice of “P, 

not-Q”. The rest of the subjects would belong to the category of Verifiers. They are 

categorized based on answer choices that verify the rule but may not have the potential 

to break the rule. There can also exist a tendency for subjects to just select an answer 

choice based on what is specified in the rule and they can be called as matchers. Matchers 

are classified in the same group as Verifiers since for the conditional rule of the form “if 

P, then Q”, the subject who selects P,Q as the answer can either be a verifier or matcher.  
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4. ANALYSIS AND RESULTS 

This section provides an analysis of the data collected during the study. This section is 

organized around the hypotheses presented in Section 3.1.1. An alpha value of 0.05 was 

selected for judging the significance of results. 

4.1. Number of Negative Test cases and Invalid Classes (H1) 

The results from the psychology test was used to classify the subjects into falsifier and 

verifier categories. Falsifiers exhibit lower confirmation bias levels as compared to verifiers. 

An independent samples t-test was chosen to do the analysis to compare the average number 

of negative test cases detected by the falsifier and verifier groups. The falsifier group detected 

significantly more negative test cases than the verifier group finding an average of 11.75 

negative test cases as compared to an average of 6.58 negative test cases (p=0.038). These 

results are shown in Figure 1. 

 

Figure 1. Comparison of negative tests detected by falsifier and verifier groups 

The quality of negative test cases detected by the subjects was further validated by 

employing equivalence partitioning and boundary value analysis method [21] to get the 

invalid classes covered and eliminate redundant test cases. The results indicated the falsifier 
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group covered significantly more invalid classes than the verifier group covering an average 

of 8.88 classes as compared to an average of 6.08 classes (p=0.047). These results are shown 

in Figure 2. 

 

Figure 2. Comparison of invalid classes covered by falsifier and verifier groups 

4.2. Overall Effectiveness of Defect Detection (H2) 

The overall effectiveness of testing was measured by employing equivalence class and 

boundary value analysis method [21]. Every possible equivalence class and boundary value 

class was identified for the task and the percent coverage of the test cases identified by the 

subjects was measured. Percent coverage was calculated as the ratio of the equivalence 

classes or boundary conditions actually tested by the subjects to the total possible. This 

indicates the quality as opposed to quantity of the tests. An independent samples t-test was 

chosen to do the analysis to compare the average percent coverage by the falsifier and verifier 

groups. The results indicated the falsifier group obtained significantly more overall percent 

coverage than the verifier group obtaining an average of 41.40% coverage as compared to 

an average of 31.24% (p=0.036). These results are shown in Figure 3. 
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Figure 3. Comparison of overall test coverage by falsifier and verifier groups 

4.3. Effect of Experience on Negative test case detection (H3) 

In order to evaluate hypothesis 3 to see how experience in software 

development/testing industry effects negative test detection, we analyzed the number of 

negative test cases detected by subjects more than 14 months of experience and less than 

14 months. The average months of experience among the subjects was 14 months and hence 

this value was chosen. An independent samples t-test was done to compare the average 

invalid classes’ covered and overall percent coverage obtained by the experienced and less 

experienced subjects within the falsifier and verifier groups. The results indicated no 

significant difference between the average invalid classes covered by the different levels of 

experience in the two groups. In the falsifier category the average invalid classes detected by 

experienced and less experienced subjects were 8.75 and 9 respectively (p=0.927). In the 

verifier category the average invalid classes detected by experienced and less experienced 

subjects were 7.25 and 5.50 respectively (p=0.258). These results are shown in Figure 4.  
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Figure 4. Comparison of invalid classes covered based on experience of subjects 

The results also indicated no significant difference between the average overall 

coverage percentages covered by the different levels of experience in the two groups. In the 

falsifier category the average overall percent coverage obtained by experienced and less 

experienced subjects were 41.14% and 41.66% respectively (p=0.912). In the verifier 

category the average overall percent coverage obtained by experienced and less experienced 

subjects were 34.89% and 29.42% respectively (p=0.470).This result was consistent with 

previous studies which implied that experience does not affect the confirmation bias levels 

among software developers/testers. These results are shown in Figure 5. 
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Figure 5. Comparison of overall test coverage based on experience of subjects  
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5. DISCUSSION OF RESULTS 

This section discusses the results from Section 4 by accepting or rejecting the 

hypothesis and answering the research questions. 

Research Question 1: Do software testers who have low confirmation bias levels 

detect more negative test cases and obtain better coverage of invalid classes during software 

testing? 

Results indicate that the subjects in the group classified as falsifier who have low 

confirmation bias levels detected significantly more negative test cases and obtained better 

coverage of the invalid classes than the group classified as verifier having high confirmation 

bias levels. This result thus supports hypothesis 1: 

Hypotheses 1: Software testers with low confirmation bias levels detect more 

negative test cases and obtain better coverage of invalid classes during software testing. 

This implies that more test coverage through negative test cases can be obtained by 

testers with low confirmation bias levels. This result signifies the importance of doing negative 

tests and encourages software testers to test scenarios that can potentially break the system 

or a specific rule in addition to tests that only verify if the system works as expected. 

Research Question 2: Does the confirmation bias levels of software testers have an 

impact on the overall defect detection effectiveness during software testing? 

Results indicate that the overall defect detection effectiveness of subjects with low 

confirmation bias (falsifiers) was significantly better than the subjects with high confirmation 

bias levels (verifiers). This result thus supports hypothesis 2: 

Hypotheses 2: The overall effectiveness of defect detection can be improved with low 

confirmation bias levels. 

This implies that confirmation bias can impact the overall quality of testing and 

provides empirical evidence which signifies that software testers with low confirmation bias 
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can be more effective in terms of overall defect detection as compared to software testers 

with high confirmation bias.   

Research Question 3: Do software testers with low confirmation bias and having 

high work experience in the software development/testing industry detect more invalid 

classes and obtain better overall test coverage during software testing? 

Results indicate that there was no significant difference observed between the average 

number of invalid classes covered and the overall test coverage percentage detected within 

the Falsifier and Verifier groups. This result thus does not support hypothesis 3: 

Hypotheses 3: Software testers with high experience will be able to detect more 

invalid classes and obtain better overall test coverage during software testing. 

This implies that the experience of software developer/tester does not play a significant 

role in detecting invalid classes and obtaining better overall test coverage. Previous studies 

[6, 12, 13] have shown same results and our results further prove that experience do not 

significantly impact the confirmation bias levels of software testers. 
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6. CONCLUSION 

Based on the results obtained from the study in this paper, we can understand the 

impact of confirmation bias on the quality of functional software testing. The results provide 

empirical evidence to suggest that testers who were classified as having low confirmation bias 

were better testers as compared to testers with high levels of confirmation bias. The study 

also shows that testers who do effective negative testing are much effective in terms of quality 

of testing and obtaining good test coverage. The results also indicate that experience factor 

of testers do not have any impact on the confirmation bias. Hence, we can interpret that 

exercising negative test cases and testing to see if a system fails should be an integral part 

of software testing. Software testers should be made more aware and encouraged to exercise 

tests that break the system in addition to tests that verify if the system works as specified in 

the requirements. This would result in overall improvement of the testing process and lead to 

better quality of software products. In future, we can plan to replicate this study with different 

settings and data sets like capstone projects and in industrial settings with professional 

testers.    
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