

FINDING HIDDEN RELATIONSHIPS BETWEEN MEDICAL CONCEPTS BY

LEVERAGING METAMAP AND TEXT MINING TECHNIQUES

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Weikang Yang

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

May 2017

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 Finding Hidden Relationships between Medical Concepts by Leveraging

MetaMap and Text Mining Techniques

 By

Weikang Yang

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Wei Jin

 Chair

Dr. Juan Li

Dr. Na Gong

 Approved:

 05/26/2017 Dr. Brian M. Slator

 Date Department Chair

iii

ABSTRACT

A lot of efforts have been made in order to make new discoveries in the biomedical filed.

However, those valuable information may be hidden in text without applying appropriate text

mining techniques. In this paper, I utilize MetaMap, a powerful biomedical tool provided by

National Library of Medicine (NLM), along with appropriate text mining techniques, to detect

hidden connections between biomedical concepts. The huge volume of Medline documents are

used as data source and experimental data, where more than 20 million titles and abstracts of

Medline articles are analyzed. On top of this corpus, biomedical concept queries are enabled to

allow users to specify any two particular medical concepts, and the system will automatically

identify potential relationships that may connect them. A graphical user interface is also

developed to facilitate the search process and result presentation.

iv

ACKNOWLEDGEMENTS

It is a great honor for me to get so much support during the completion of this paper, I

really appreciate all those peoples’ help and kindness. First, I would like to thank my advisor –

Dr. Wei Jin for her professionalism and patience to guide me through this study. It will

impossible for me to complete this paper smoothly without her help. I would also like to thank

committee members – Drs. Juan Li and Na Gong for their help and presence. I would also like to

thank the NDSU computer science department for providing the resources I need in this research.

For example, Dr. Jeremy Straub provides me a lot of useful information for the journals I should

look into in his seminar. I would like to thank CS Administrative Secretaries - Annette Sprague,

Jane Dickerson, and Betty Opheim for their patience to help me finish paperwork and remind me

of deadlines. At last, I appreciate all the supports from my family and friends which helped me a

lot to fulfill my dream in NDSU.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... x

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. BACKGROUND. .. 4

CHAPTER 3. THE PROPOSED METHOD .. 7

3.1. Overall System Design ... 7

3.2. Medline Documents ... 9

3.3. MedMeta Module ... 10

3.4. S2C Generation Module ... 17

3.5. Title & Abstract Fetching Module ... 19

3.6. ClosedDiscovery Module ... 20

CHAPTER 4. GUI OF CLOSDEDDISCOVERY .. 25

CHAPTER 5. EVALUATION & RESULT ... 29

5.1. Single Thread vs.Multithread Performance ... 29

5.2. Result Evaluation ... 30

5.2.1. Fish Oil – Raynaud’s Disease ... 30

5.2.2. Migraine – Magnesium ... 32

5.2.3. Schizophrenia – Phospholipase A2 ... 33

CHAPTER 6. CONCLUSION & FUTURE WORK .. 35

REFERENCES ... 36

APPENDIX A. XMLPARSER.JAVA CODE .. 38

vi

APPENDIX B. DOCLISTA.XML ... 39

APPENDIX C. S2CWA.XML .. 40

APPENDIX D. C2SENTSA.XML ... 41

vii

LIST OF TABLES

Table Page

5.1. Performance comparison. ... 29

5.2. Fish oil and Raynaud Disease. .. 31

5.3. Migraine and Magnesium. .. 32

5.4. Schizophrenia and Phospholipase A2. .. 33

viii

LIST OF FIGURES

Figure Page

2.1. A human-readable output of “fish oil and Raynaud” .. 4

2.2. JSON output of “fish oil and Raynaud” .. 5

3.1. Overall system design ... 8

3.2. An example of Medline Citation... 10

3.3. Squence diagram for MedMeta Module ... 11

3.4. A code snippet from MetaMapProc class ... 13

3.5. A running MetaMap Server .. 14

3.6. A piece of MetaMaped Document .. 15

3.7. User Interface of the MedMeta Module.. 16

3.8. Squence diagram for S2C generation Module .. 17

3.9. A piece of S2C document ... 19

3.10. Sequence diagram for Title & Abstract Fetching Module .. 19

3.11. A piece of simplified Medline Document ... 20

3.12. Sequence diagram of Closed Discovery module .. 21

4.1. The initial page. User types topic A, C and click start button. ... 25

4.2. ConfigMeta Page appears. User clicks Load Mapping button. .. 25

4.3. Select S2C files and click ok. A Message box appears and shows how many

semantic types are selected and load icon is changed. .. 26

4.4. Clicks the Start button. The process of finding sentences related to topics of

interest starts, and Current Process field shows which file is been processed now.. 26

4.5. After finding of sentences completes, the java program S2CW generator is

executed to generate S2CW and C2Sent files. .. 27

4.6. InitialPage loads S2CW and C2Sent files into tree views. Left tree view is profile

for topic A. Right tree view is profile for topic C. Middle tree view is the merged

profile file for both A and C, corresponding to linking concepts between A and C. 27

ix

4.7. When double click a concept node in left or right tree view, a pop-up window

appears with all sentences that have this concept. .. 28

4.8. When double click a concept node in middle tree view. MergedSentPage window

appears with all sentences related to the intermediate linking concept. 28

x

LIST OF ABBREVIATIONS

NLM ...National Library of Medicine

Proc ..Process

MedMeta ..Medline and MetaMap

S2C ...Semantic Type to Concept

C2W ...Concept to Weight

S2CW ...Semantic Type to Concept and Weight

SENT..Sentence

C2SENT ...Concept to Sentence

TF ...Term Frequency

IDF ...Inverse Document Frequency

1

CHAPTER 1. INTRODUCTION

Interacting with text is a very common and important activity in people’s daily lives. For

example, people read books to obtain information and knowledge; people read newspapers to

keep up with current events; people use text to communicate with each other by sending emails

or messages. According to [1], researchers claim that instead of only acting as passive recipients,

people also act as active seekers of texts. In other words, people not only read the text but also

try to understand the meaning behind text and then evaluate the importance of texts for them.

However, people can still miss some hidden information which is buried in text. For example, we

have a sentence indicating “A implies B” in one article and another sentence “B implies C” in

another article, and people generally could not link them together to establish the relationship

that “A may imply C”, especially when they are facing a large volume of data.

Nowadays, with the development of computer science, the process of understanding and

analyzing texts are now more relying on the powerful computers, information retrieval

techniques, and tools. In 1999, Swanson proposed a system called complementary structures in

disjoint literatures” (CSD), which aimed to find hidden knowledge in text. This system

implements a simple logic “If concept A influences concept B, and concept B influences concept

C, then concept A may influence concept C”. This model is usually referred as Swanson’s ABC

model [2]. For example, in Swanson’s study, he examined the relationship between “migraine

headache” and “magnesium”, and found that although these two concepts do not appear in the

same article, they could be logically linked by third party words such as “calcium blockers”,

“serotonin” etc. [2]

MEDLINE [3] is the “U.S. National Library of Medicine® (NLM) premier bibliographic

database that contains more than 23 million references to journal articles in life sciences with a

2

concentration on biomedicine.” This is a perfect data source which can provides necessary

medical information for this study. MetaMap is a tool developed by NLM, which can map text to

its biomedical interpretation. More details of those tools will be introduced in Chapter 2. In this

study, I take the MEDLINE database as data source and process over 23 million articles from it

with MetaMap as an aid in mapping articles to their biomedical concepts. On top of it, I build the

knowledge discovery model using the technique adapted from Swanson’s ABC idea. Given two

user-specified biomedical concepts A and B, the system attempts to find the intermediate terms

that could possibly connect them, assuming that one or more instances of both concepts occur in

the corpus, but not necessarily in the same article. A user interface is also developed that

displays the results in a user-friendly way. Comparing with the existing methods, this study

makes the following contributions:

1. Swanson’s ABC model has been adapted into the biomedical domain with

appropriate domain knowledge incorporated (e.g., semantic type information)

2. A program based on post-processing MetaMap generated output is developed,

which can extract from texts to get biomedical concepts along with their

associated ontology information.

3. Variant forms of words are considered in this study. A certain biomedical term

can have several variants in terms of expression. For example, “Syntaxin” has a

preferred name called “Qa-SNARE Proteins” or “Syntaxin Protein”. Thanks to

the power of MetaMap, it is now possible to treat different variants of the same

term under a unique name. This significantly improves the recall of generated

result and removes potential duplications caused by variants of words.

3

4. This study also takes consideration of abbreviations. Abbreviations are very

common in biomedical articles, which can be used as disease name, drug name

and so on. Existing methods may treat “AIDS” (Acquired Immunodeficiency

Syndrome) the same as the verb “aids” if they are not case-sensitive. With the

help of MetaMap, the program is also able to distinguish them and produces a

better output.

The paper consists of 6 chapters. Chapter 1 will provide a general introduction and

objective of this study. Chapter 2 will describe the related studies. Chapter 3 will introduce the

methodology used to find hidden knowledge. Chapter 4 shows the User Interface of the Closed

Discovery. Chapter 5 evaluates the performance and reports the accuracy of the result. Chapter 6

discusses the future improvement.

4

CHAPTER 2. BACKGROUND

A lot of efforts have been made to try to map text to its biomedical meaning. For

example, researchers around the world have developed tools like MicroMeSH, SAPHIRE and

MetaMap to do this job. MetaMap[4] is a public tool developed by the National Library of

Medicine (NLM), which can map text to biomedical concepts using its enormous thesaurus. This

has been a popular tool applied to many Information Retrieval and text-mining applications [5].

In particular, when MetaMap receives a sentence, it breaks the sentence down into smaller pieces

called phrases. Then, MetaMap will normalize those phrases and search its database to find

mapping concepts and to calculate a mapping score for each concept. For example, for a short

phrase “fish oil and Raynaud”, the human-readable MetaMap output is shown in Figure 2.1.

Figure 2.1. A human-readable output of “fish oil and Raynaud”

5

Figure 2.2. JSON output of “fish oil and Raynaud”

A lot of alternative output options are also available for MetaMap. Figure 2.2 above

shows part of JSON output for the same phrase “fish oil and Raynaud”.

There are already many applications of MetaMap in the field of biomedical studies. For

example, Wendy, Marcelo etc. developed a system [6] to detect patients with respiratory illness

by processing patients’ clinical reports with MetaMap. Zuccon, Holloway etc. try to

automatically identify disorders mentioned in health records such as discharge summaries by

using MetaMap [7]. In order to test the performance of MetaMap, Pratt and Yetisgen conduct a

research [8], which aims to compare MetaMap’s capability with that of people who are familiar

with the biomedical field. The result shows that MetaMap is capable to identify the biomedical

concepts with a 93.3% of recall comparing with those tagged by biomedical experts.

6

Knowledge discovery in biomedical texts originates from Swanson’s ABC model [2],

based on which Jin and Srihari proposed a new type of query, namely, concept chain queries,

attempting to detect hidden links between concepts. In [9], they tried to generate concept chains

connecting topics of interest from counterterrorism documents. The approach used a variant of

Term Frequency (TF) - Inverse Document Frequency (IDF) weighting scheme for evaluating

each potential connecting term, achieving an approximate 82.5% recall. This work is different

from Jin’s study by using a completely different context – biomedical domain instead of

counterterrorism corpus. Another related work was proposed by Gopalakrishnan, Kishlay, etc.

[10], which introduced a new approach that created a graph-based knowledge base and then used

a bi-directional search for finding paths in the graph to answer concept chain queries in the

biomedical field. My method has been compared with their work and the comparative result is

presented in the experimental section.

7

CHAPTER 3. THE PROPOSED METHOD

3.1. Overall System Design

This system applies the principle of pipe and filter software architectural design [11]

which has many modules in the system acting as filters. Each filter will take output from the

previous filter and produce intermediate data as input to the next filter. In this design, the system

creates a data flow where the original data flows through each filter and gets modified by them,

and eventually produces the desired output at the end of the flow. Figure 3.1 shows the overall

architecture design. The system contains three main phases –MetaMap processing phase,

preparation phase, and output phase. In MetaMap processing phase, the system has MedMeta

module which takes Medline documents as input and extracts useful information from them.

Then, MedMeta module will generate MetaMaped documents in XML format as output of this

phase. Section 3.2 will introduce the structure of Medline documents and what information has

been extracted by the MedMeta module. Section 3.3 will explain the design of MedMeta module

in detail. In preparation phase, the system has two modules – S2C generation module and title &

abstract fetching module. They take MetaMaped documents as input and generate S2C

documents. Section 3.4 and section 3.5 will reveal the design and function of S2C generation

module and title & abstract fetching module. The last phase is the output phase. In this phase, the

system has the closed discovery module which applied the adapted Swanson’s ABC model to

find hidden links between input concepts and build concept chains. This module also contains a

GUI (graphical user interface) that shows generated concept chains and evidence related to each

chain. Section 3.6 will talk about the design and features of ClosedDiscovery module with some

screenshots of the GUI. The outputs of closed discovery module are S2CW documents and

8

M
et

aM
ap

 P
ro

ce
ss

in
g

P
ha

se
M

et
aM

ap
 P

ro
ce

ss
in

g
P

ha
se

P
re

pa
ra

ti
on

 P
ha

se
P

re
pa

ra
ti

on
 P

ha
se

O
ut

pu
t

P
ha

se
O

ut
pu

t
P

ha
se

M
ed

lin
e

D
oc

um
en

ts
M

ed
M

et
a

M
od

ul
e

S2
C

ge
ne

ra
ti

on

M
od

ul
e

M
et

aM
ap

ed

D
oc

um
en

ts

S2
C

D
oc

um
en

ts

T
itl

e
&

A
bs

tr
ac

t

fe
tc

hi
ng

M
od

ul
e

Si
m

pl
if

ie
d

M
ed

lin
e

D
oc

um
en

ts

C
lo

se
d

D
is

co
ve

ry

M
od

ul
e

S2
C

W

D
oc

um
en

ts

C
2S

en
te

nc
e

D
oc

um
en

ts

St
ar

t
E

nd

M
et

aM
ap

 P
ro

ce
ss

in
g

P
ha

se
P

re
pa

ra
ti

on
 P

ha
se

O
ut

pu
t

P
ha

se

M
ed

lin
e

D
oc

um
en

ts
M

ed
M

et
a

M
od

ul
e

S2
C

ge
ne

ra
ti

on

M
od

ul
e

M
et

aM
ap

ed

D
oc

um
en

ts

S2
C

D
oc

um
en

ts

T
itl

e
&

A
bs

tr
ac

t

fe
tc

hi
ng

M
od

ul
e

Si
m

pl
if

ie
d

M
ed

lin
e

D
oc

um
en

ts

C
lo

se
d

D
is

co
ve

ry

M
od

ul
e

S2
C

W

D
oc

um
en

ts

C
2S

en
te

nc
e

D
oc

um
en

ts

St
ar

t
E

nd

F
ig

u
re

 3
.1

.
O

v
er

a
ll

 s
y
st

em
 d

es
ig

n

9

C2Sentence documents and they are the final outputs of this pipe and filter system. The details of

those documents will also be covered in section 3.6.

3.2. Medline Documents

Medline documents are released by NLM and are used as the data sources for the system.

According to the description on the NLM website [3], Medline documents contain the basic

information such as abstract and title of a biomedical paper submitted to Medline worldwide. “23

million references to journal articles in life sciences with a concentration on biomedicine” have

been collected so far [3]. Medline provides free access to Medline documents and those

documents can be downloaded by the following link: ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline.

In this study, I downloaded 746 Medline documents from the link and each Medline document

contains 30,000 Medline citations. Each Medline citation is a reference to an article so

22,380,000 article references are processed by the system. Figure 3.2 illustrates an example of

Medline citation. Notice that since each Medline citation has more than 100 lines, many of XML

tags have been folded so that the figure can show the whole picture of it. Highlighted parts in the

figure 3.2 are the parts useful to the system and they are gathered and processed by the system.

The XML tags of those useful information are <PMID>, <PubDate>, <ArticleTitle>, and

<AbstractText>. <PMID> tag contains the information of an 8-digit PubMed unique identifier;

<PubDate> tag contains the publishing date of the article; <ArticleTitle> tag contains the entire

title of the journal article and it is always written in English and non-English title will be

translated first; <AbstractText> tag contains the English-language abstract of the article.

ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline

10

Figure 3.2. An example of Medline Citation

3.3. MedMeta Module

MedMeta module is the first module in the system. The function of this module can be

described by the following four sequential steps: (i) extracts useful information mentioned in

Section 3.2 from data source – Medline documents; (ii) inserts MetaMap API in the code and

sends titles and abstracts to the MetaMap Server; (iii) reads from MetaMap output and builds

indexes of Medline documents based on concept occurrence relationship. (iv) Write index files in

XML format. Figure 3.3 is a UML Sequence Diagram that explains how objects in MedMeta

interact with each other.

11

lo
o

p

fo
r
ea

ch
 c

it
a

ti
o
n

lo
o

p

fo
r
ea

ch
 c

it
a

ti
o
n

lo
o

p

fo
r
ea

ch
 m

e
d

li
n
e
 f

il
e

lo
o

p

fo
r
ea

ch
 m

e
d

li
n
e
 f

il
e

C
li
e
n
t

C
li
e
n
t

m
a
in

:M
ed

M
et

a
m

a
in

:M
ed

M
et

a
X

M
L

p
a
rs

e:
X

M

L
P

a
r

se
r

X
M

L
p

a
rs

e:
X

M

L
P

a
r

se
r

<
<

u
se

r
In

p
u

t>
>

m
ed

:

M
ed

li
n

eC
it

e

m
ed

:

M
ed

li
n

eC
it

e

t1
:

T
h

re
a
d

t1
:

T
h

re
a
d

m
e
d

li
n

e
F

il
eL

o
c
.a

d
d

()

n
e
w

 X
M

L
p

a
r
se

r
()

p
a
r
se

()

n
e
w

 M
e
d

li
n

eC
it

e(
)

g
e
tM

ed
s
()

n
e
w

 T
h

r
e
a
d

()

t2
:

T
h

re
a
d

t2
:

T
h

re
a
d

t3
:

T
h

re
a
d

t3
:

T
h

re
a
d

:M
e
ta

M
a
p

P
ro

c
:M

e
ta

M
a
p

P
ro

c

n
e
w

 M
e
ta

M
a
p

P
ro

c(
)

:P
o
st

P
r
o
c

:P
o
st

P
r
o
c

:O
u

tp
u

tX
M

L
:O

u
tp

u
tX

M
L

n
e
w

 T
h

r
e
a
d

()

n
e
w

 T
h

r
e
a
d

()

n
e
w

 M
e
ta

M
a
p

P
ro

c(
)

n
e
w

 M
e
ta

M
a
p

P
ro

c(
)

st
a
r
tP

o
st

P
r
o
c
()

g
e
tR

e
su

lt
()

a
p

i.
p

r
o
c
C

it
a
ti

o
n

()

w
ri

te
X

M
L

()

lo
o

p

fo
r
ea

ch
 c

it
a

ti
o
n

lo
o

p

fo
r
ea

ch
 m

e
d

li
n
e
 f

il
e

C
li
e
n
t

m
a
in

:M
ed

M
et

a
X

M
L

p
a
rs

e:
X

M

L
P

a
r

se
r

<
<

u
se

r
In

p
u

t>
>

m
ed

:

M
ed

li
n

eC
it

e

t1
:

T
h

re
a
d

m
e
d

li
n

e
F

il
eL

o
c
.a

d
d

()

n
e
w

 X
M

L
p

a
r
se

r
()

p
a
r
se

()

n
e
w

 M
e
d

li
n

eC
it

e(
)

g
e
tM

ed
s
()

n
e
w

 T
h

r
e
a
d

()

t2
:

T
h

re
a
d

t3
:

T
h

re
a
d

:M
e
ta

M
a
p

P
ro

c

n
e
w

 M
e
ta

M
a
p

P
ro

c(
)

:P
o
st

P
r
o
c

:O
u

tp
u

tX
M

L

n
e
w

 T
h

r
e
a
d

()

n
e
w

 T
h

r
e
a
d

()

n
e
w

 M
e
ta

M
a
p

P
ro

c(
)

n
e
w

 M
e
ta

M
a
p

P
ro

c(
)

st
a
r
tP

o
st

P
r
o
c
()

g
e
tR

e
su

lt
()

a
p

i.
p

r
o
c
C

it
a
ti

o
n

()

w
ri

te
X

M
L

()

F
ig

u
re

 3
.3

.
S

eq
u

en
ce

 d
ia

g
ra

m
 f

o
r

M
ed

M
et

a
 M

o
d

u
le

12

Figure 3.3 shows that the MedMeta Module consists of seven classes – MedMeta,

XMLParser, MedlineCite, MetaMapProc, PostProc, OutputXML, and Thread. The following

part discusses the details of each class.

• MedMeta: MedMeta class contains the main function, so the main thread begins in the

object of this class. It is the class that regulates the creation of other objects and invokes

methods from other objects.

• XMLParser: XMLParser class uses XMLEventReader which is a popular XML parsing

Java API to parse required data. Instead of reading the entire XML structure into memory

and parsing it, XMLEventReader iterates over XML file and is triggered if and only if a

certain event happens. As a result, XMLEventReader is effective for large XML files

which might consume a huge amount of memory by using the traditional way. In this

study, the total size of Medline documents is 93.7 GB with single document as large as

200MB, so XMLEventReader is a better tool for parsing Medline documents. Appendix

A shows the code I used in parsing those Medline documents. After paring the Medline

documents, XMLParser creates MedlineCite objects and stores data into those objects.

• MedlineCite: It is a placeholder class that stores the data parsed from Medline

documents. It has four data fields – article title, article abstract, PMID, and publishing

date.

• MetaMapProc: The most important class in MedMeta Module. This class handle the

task of communicate with MetaMap Server and create PostProc object to build the index.

Figure 3.4 shows a code snippet from MetaMapProc where communication with

MetaMap Server happens. Notice that the setOption() method will set the input option for

MetaMap server. The “-y -K -Q 0” option I used here means the server will use Word

13

Sense Disambiguation server and ignore stop phrases. Titles and abstracts are sent to

MetaMap Server by calling processCitationsFromString(content) method. Figure 3.5

shows the MetaMap server is running and communicating with the system. After

processing the string, MetaMap Server will return the result to MetaMapProc object and

MetaMapProc objects will send result to PostProc object and start post processing.

Figure 3.4. A code snippet from MetaMapProc class.

14

Figure 3.5. A running MetaMap Server.

• PostProc: Object of this class will take results from MetaMap server as input and

gather information from results. Then, it creates a three-level data structure that holds

the data gathered from result. Figure 3.6 illustrates the design of this three-level data

structure. The first level is Semantic Type objects, it is obtained by calling

getSemanticTypes() method and it holds one or many Concepts objects. The second

level is Concept objects, it is obtained by calling getConceptName() method and it

holds one or many Occurrence objects. The bottom level is Occurrence objects, it

represents a certain occurrence of a word in the Medline documents. The Occurrence

objects hold the information such as OccurrenceName(the original word appears in

the text), PreferName(the prefer name of the original word), Tag(location where the

word appears in the Medline citation. “T” stands for title; “A” stands for abstract),

PMID (PMID of the Medline citation where the word appears), “PubYear” (publish

15

date of the Medline citation where the word appears), and Offset(“the exact location

of the word appears in the title or abstract”, [(23, 8)] in this case means that the word

starts from 23th character of the string and occupies 8 characters in total).

Figure 3.6. A piece of MetaMaped Document.

• OutputXML: The object of this class will take the three-level data structure as input

and create XML files to hold the data. Figure 3.6 shows an example of MetaMaped

Document created by OutputXML object. In this study, OutputXML object generated

161GB of MetaMaped Documents in this study overall.

• Thread: The object of this class will create a new thread which has a MetaMapProc

object that implements Runnable Java Interface. As we see from the description of

OutputXML class, the MedMeta module read, processed and generated huge amount

of data. To improve the performance of MedMeta Module, it is wise to apply parallel

processing methodology such as multithreading into the process of developing this

module. MedMeta Module first divide 30,000 Medline citations in each Medline

document into 3 parts so each part has 10,000 Medline citation. Then, MedMeta

16

Module creates a new thread for each part of Medline citations so there will be three

threads running at the same time. Each thread will communicate with its own

MetaMap server and create its own PostProc object for the postprocessing. After the

execution of each thread, three threads will join and hand the control of CPU back to

main thread which starts OutputXML process later. As a result, the MedMeta Module

can communicate with three MetaMap servers which run at different ports on the

same machine at the same time. In the Evaluation section of this paper, I will show

how the performance has been improved by applying multithreading into the system

comparing with single thread. Figure 3.7 shows the user interface of MedMeta

module. Notice that the user interface displays both thread number and file number

for each MetaMap execution.

Figure 3.7. User Interface of the MedMeta Module

17

3.4. S2C Generation Module

S2C generation module is one of the two modules in the preparation phase. The main

purpose of this module is to generate a simplified version of MetaMaped documents which

called S2C documents. As mentioned in section 3.3, the MetaMaped XML documents has a

three-level data structure – Semantic Type, Concept and Occurrence. However, in latter part of

the system, a two-level relationship – Semantic Type and Concept (i.e. S2C) is used frequently.

If the system gets the two-level relationship from the three-level MetaMaped documents every

time the relationship is requested, it will take a huge amount of time to iterate over all

MetaMaped documents several times. By reducing three-level relationship down to the S2C two-

level relationship, it also reduces the access time. After running S2C generation module, the

161GB of three-level MetaMaped documents are simplified to 42MB of two-level S2C

documents. Figure 3.8 shows the design of S2C generation module.

Figure 3.8. Sequence diagram for S2C generation module

loop

foreach occurence

loop

foreach occurence

loop

foreach file

loop

foreach file

main:S2CG

enerator

main:S2CG

enerator

parser:

XMLparser

parser:

XMLparser
writer:

WriteXMLFile

writer:

WriteXMLFile

getFileLocs()

parse()

addOccurence()

writeXML()
orderByAlph()

sem:

SemanticType

sem:

SemanticType

getSems()

18

S2C generation module consist of three classes – S2CGenerator, XMLParser,

SemanticType and WriteXMLFile. The following part will discuss the detail of each class.

• S2CGenerator: This class contains the main method. S2CGenerator controls the creation

of other objects and invoking of their method. The first step of this class is to get the file

path of MetaMaped documents. After finding the path of MetaMaped documents, it

creates XMLParser and calls the parse() method to build the S2C two-level relationship.

Then, it creates WriteXMLFile object and calls the writeXML() method to write the two-

level relationship into XML files.

• XMLParser: The design of XMLParser in S2C generation module is very similar to the

design of XMLParser in MedMeta module. They used the same XML parsing API –

XMLEventReader which is event-driving based parsing technique and the only difference

is that triggering events are different. XMLParser will iterate over all concepts in

MetaMaped documents and add them to SemanticType by calling the addConcpet()

method from SemanticType class.

• SemanticType: The object of this class holds the S2C relationships by having a Hash set

of concepts. When the addConcpet() method is called to add concept into the hash set, it

will first check if the hash value exists in the hash table and will only add the concept into

the hash set if it has a unique hash value. There are 133 semantic types in total and each

of them hold a hash set of concepts.

• WriteXMLFile: This class write the S2C relationships stored in SemanticType objects to

XML files. Unlike the OutputXML class in MedMeta module, WriteXMLFile uses

DocumentBuilderFactory Java API to build the XML files. This avoids errors occurred in

19

OutputXML where the object may write XML reserved characters such as “&” and “<”

into the XML files. The contents of S2C documents is illustrated in Figure 3.9.

Figure 3.9. A piece of S2C document

3.5. Title & Abstract Fetching Module

The main aim of this module is to fetch title and abstract from Medline documents and

builds simplified Medline documents to store title and abstract. As we know, Medline documents

are huge and accessing them takes a lot time. If the system only needs the data from title and

abstract data field, there is no point to iterate over all data fields in Medline documents to get

them. Figure 3.10 shows the design of title & abstract fetching module.

Figure 3.10. Sequence diagram for Title & Abstract Fetching Module

loop

foreach Medline citation

loop

foreach Medline citation

loop

foreach file

loop

foreach file

main:TNAF

etcher

main:TNAF

etcher

parser:

XMLparser

parser:

XMLparser
writer:

WriteXMLFile

writer:

WriteXMLFile

getFileLocs()

parse()

addCitation()

writeXML()

med:

MedLineCitation

med:

MedLineCitation

getMeds()

20

Title & abstract fetching module consist of four classes such as TNAFetcher,

XMLParser, MedLineCitation and WriteXMLFile. Since the design of TNAFetcher,

XMLParser, and WriteXMLFile is like their counterpart in S2C generation module, they will not

be introduced again.

• MedLineCitation: This class has two data fields – title and abstract. Those two data

fields are used to store data fetched from XML documents. Figure 3.11 shows a piece of

simplified Medline document generate by MedLineCitation object.

Figure 3.11. A piece of simplified Medline Document

3.6. ClosedDiscovery Module

The ClosedDiscovery Module takes user inputs, MetaMaped documents, S2C documents,

and simplified Medline documents as inputs. After processing, the module generates S2CW files

and display its finding in a graphical user interface. Figure 3.12 shows the design of

ClosedDiscovery Module.

The ClosedDiscovery Module consists of eight classes – InitialPage, ConfigMeta, S2CW,

MetaMapProc, ResultProc, WriteXML, SentPage, and MergedSentPage. SentPage and

21

U
se

r
U

se
r

:
I
n
it

ia
lP

a
g

e
:

I
n
it

ia
lP

a
g

e
:

C
o

n
fi

g
M

e
ta

:
C

o
n

fi
g

M
e
ta

<
<

u
s
er

 i
n

p
u
t>

>

:
S

2
C

W
:

S
2

C
W

n
e
w

 C
o
n
fi

M
e
ta

()

<
<

u
s
er

 i
n

p
u
t>

>

b
a
c
k
g
ro

u
n
d
_

D
o

W
o
rk

()

n
e
w

 S
2

C
W

()

:
M

e
ta

M
a

p
P

r
o

c
:

M
e
ta

M
a

p
P

r
o

c
:

R
e
su

lt
P

r
o

c
:

R
e
su

lt
P

r
o

c
:

W
r
it

e
X

M
L

:
W

r
it

e
X

M
L

re
a
d
D

o
c
()

n
e
w

 M
e
ta

M
a
p
P

ro
c(

)

n
e
w

 R
es

u
lt

P
ro

c(
)

g
e
tS

2
C

W
()

w
ri

te
X

M
L

()

re
a
d
R

e
su

lt
X

M
L

()

n
e
w

 I
n
ti

ti
a
lP

a
g
e
()

u
p

d
a
te

T
re

e
V

ie
w

()

fi
n
is

h
e
d
()

U
se

r
:

I
n
it

ia
lP

a
g

e
:

C
o

n
fi

g
M

e
ta

<
<

u
s
er

 i
n

p
u
t>

>

:
S

2
C

W

n
e
w

 C
o
n
fi

M
e
ta

()

<
<

u
s
er

 i
n

p
u
t>

>

b
a
c
k
g
ro

u
n
d
_

D
o

W
o
rk

()

n
e
w

 S
2

C
W

()

:
M

e
ta

M
a

p
P

r
o

c
:

R
e
su

lt
P

r
o

c
:

W
r
it

e
X

M
L

re
a
d
D

o
c
()

n
e
w

 M
e
ta

M
a
p
P

ro
c(

)

n
e
w

 R
es

u
lt

P
ro

c(
)

g
e
tS

2
C

W
()

w
ri

te
X

M
L

()

re
a
d
R

e
su

lt
X

M
L

()

n
e
w

 I
n
ti

ti
a
lP

a
g
e
()

u
p

d
a
te

T
re

e
V

ie
w

()

fi
n
is

h
e
d
()

F
ig

u
re

 3
.1

2
.
S

eq
u

en
ce

 d
ia

g
ra

m
 o

f
C

lo
se

d
 D

is
co

v
er

y
 m

o
d

u
le

22

MergedSentPage are not included in Figure 3.13, but they are used to display additional

graphical user interface.

• InitialPage: It is a Windows Form object which displays the initial graphical user

interface. Figure 3.13 illustrates an example of InitialPage. A InitialPage object has two

textboxes to receive inputs from users, and those inputs will be called Topic A and Topic

C. Since there are no findings for concept chains yet, the three tree views are empty.

Figure 3.xx shows how it looks like if concept chains are generated (i.e. S2CW and

C2Sent documents are generated). After clicking the Start button, A ConfigMeta object

will be created.

• ConfigMeta: It is a Windows Form object that interact with user to get S2C documents.

Figure 3.14 shows an example of ConfigMeta object. After clicking the Load Mapping

button, user can choose S2C documents they are interested and unselected documents

will be ignored. After clicking the Start button in ConfigMeta object, the program will

start to find sentences related to Topics user inputted on InitialPage. Then, ConfigMeta

object builds XML documents docListA.xml and docListC.xml to store sentences related

to Topic A and Topic C. Appendix B shows the structure of docListA.xml and

docListC.xml. If those XML files are written successfully, ConfigMeta executes a Java

program – S2CWGenerator.

• S2CW: The main method of the S2CWGenerator locates in the S2CW class. It reads

docListA.xml and docListC.xml which are generated in ConfigMeta object. Then, it

creates MetaMapProc objects and passes sentences read from docList documents to the

MetaMapProc objects.

23

• MetaMapProc: MetaMapProc class is used to interact with MetaMap Server. It receives

sentences from S2CW object and creates MetaMap Java API. Alike the MetaMap Java

API used in MedMeta module, the API used in here also requires server address and port

number. After sending the sentences to the MetaMap Server, the server will return results

back to the MetaMapProc object as Result objects. MetaMapProc object then creates

ResultProc to deal with Result objects.

• ResultProc: This class is one the most important classes in the CloseDiscovery Module.

ResultProc takes MetaMap Result objects as input and builds concept chains by

calculating TF (Term Frequency) and IDF (Inverse Document Frequency) [13] in

sentences relevant to the input topics. The TF of a concept is the number of times the

concept appears in all sentences examined with multiple appearances of a concept in the

same sentence counted as one appearance. The IDF measures the importance of the

concept and is measured for concept c by IDF(c) = loge (Total number of sentences /

Number of sentences with concept c in it). The assumption is that the rarer a concept

appears in the sentences, the higher the IDF value is, meaning the more important the

concept is to the context. Then, the ResultProc multiplies TF and IDF to get concept

weights (i.e. Weightc = TFc * IDFc). As we know, each MetaMap Result may contain

several concepts. By iterating over all the Results received from the MetaMap Server, the

ResultProc can build C2W(Concept to weight) relationship and C2Sents(Concept to

Sentencs) relationship. The next step is to join the S2C(Semantic to Concept) relationship

and the C2W(Concept to weight) relationship together to get the S2CW relationship,

24

based on which the weight of each concept is further normalized by:

After normalization, ResultProc will sort the weights of concepts in each semantic

type in the descending order. The next step is to merge S2CWA(S2CW for Topic A) and

S2CWC(S2CW for Topic C) to get the intermediate level information S2CWB. S2CWB

represents the potential linking terms between topics A and C and is generated by finding

the intersection of S2CWA and S2CWC. In other words, every concept in S2CWB

should appear in both S2CWA and S2CWC profiles. The weight of concept in S2CWB is

calculated by adding the concept weights in S2CWA and S2CWC. Appendix C shows the

structure of S2CW files and Appendix D shows the structure of C2Sent files.

• WriteXML: This class will build XML files for S2CWA, S2CWB, S2CWC, C2SentsA,

and C2SentsC. It uses DocumentBuilderFactory Java API to build the XML files.

• SentPage: This is a Windows Form class and it will be displayed if the user double clicks

the node of tree views in the InitialPage. This class will list out all sentences related to a

certain concept. Figure 4.7 shows the screenshot of this windows form.

• MergedSentPage: This is a Windows Form class and it will be displayed if user double

clicks the node of merged tree views in InitialPage. This class will list out all sentences

related to concept chains A-B and B-C. Figure 4.8 shows the screenshot of this windows

form.

25

CHAPTER 4. GUI OF CLOSEDDISCOVERY

Figure 4.1. The initial page. User types topic A, C and click start button.

Figure 4.2. ConfigMeta Page appears. User clicks Load Mapping button.

26

Figure 4.3. Select S2C files and click ok. A Message box appears and shows how many

semantic types are selected and load icon is changed.

Figure 4.4. Clicks the Start button. The process of finding sentences related to topics of

interest starts, and Current Process field shows which file is been processed now.

27

Figure 4.5. After finding of sentences completes, the java program S2CW generator is

executed to generate S2CW and C2Sent files.

Figure 4.6. InitialPage loads S2CW and C2Sent files into tree views. Left tree view is profile

for topic A. Right tree view is profile for topic C. Middle tree view is the merged profile file

for both A and C, corresponding to linking concepts between A and C.

28

Figure 4.7. When double click a concept node in left or right tree view, a pop-up window

appears with all sentences that have this concept.

Figure 4.8. When double click a concept node in middle tree view. MergedSentPage

window appears with all sentences related to the intermediate linking concept.

29

CHAPTER 5. EVALUATION & RESULT

5.1. Single Thread vs. Multithread Performance

A lot of changes have been made in the development of this system, and most of them

happen in the development of MedMeta Module because it is at the early stage of development

of the overall system when everything is not clear yet. The Major Changes I made in the

development of MedMeta Module is that I changed the program from a single-thread program

into a multi-thread platform. The changed program has three threads used to communicate with

the MetaMap server. To show the performance change after applying multithreading, I designed

an experiment to test how the performance changes if the number of threads used to

communicate with the MetaMap server changes. The machine used in the experiment has an

eight-core i7-4790k CPU and 16GB of memory running at Windows Pro 10 x64. The testing

Medline document contains 180 Medline citations. The number of threads varies from one to

three.

Table 5.1. Performance comparison

Number

of thread

Processing

Time

Average

Memory Usage

Average CPU

Usage

Performance

compare to

single thread

% of

theoretical

performance

1 145 s 98MB 25% 1

2 87 s 110MB 40% 1.67 85%

3 62 s 128MB 73% 2.34 78%

As we can see in Table 1, the performance improves significantly as the number of

threads increases. When there are two threads, the processing time decreased from 145 seconds

to 87 seconds so the performance increases 1.67 times. When there are three threads, the

processing time decreases from 145 seconds to 62 seconds so the performance increases 2.34

30

times. We can also see that the increasing speed slows down when there are more threads

involved. When we have two threads, the actual performance 1.67 is 83.5% of the theoretical

best performance of 2. When we have three threads, the actual performance of 2.34 is only 78%

of the theoretically best performance of 3. Besides, running many MetaMap servers costs a huge

amount of memory since each of them could consume 3GB of memory. Since I only have 16 GB

of memory, I choose three threads as the best number of threads to run in this study because it

keeps a good balance between performance and memory usage.

5.2. Result Evaluation

The system developed has found the meaningful connecting terms between two input

topics A and C, and stored those information in the S2CWB XML files. To test if the output of

the system is accurate, we need to compare our results with the findings from other studies. In

Gopalakrishnan and Kishlay’s study [10], they have run their own algorithm on Mesh terms

related discovery between input topics and found connecting Mesh terms that have been proved

to be meaningful in explaining the relationship between input topics. In this section, I attempt to

run the same query pairs with the same data collection but not in a Mesh term context (instead I

use the real citation title and abstracts as the corpus). Then, I compare my results with

Gopalakrishnan and Kishlay’s results to see if my results are consistent with theirs or identify

some new findings. The input query pair “Fish-oil and Raynaud’s Disease” will be used as a

testing case, i.e., topic A is fish-oil and topic C is Raynaud’s Disease.

5.2.1. Fish Oil – Raynaud’s Disease

Gopalakrishnan and Kishlay had found connecting words such as platelet aggregation,

vascular reactivity, blood viscosity, Prostaglandin, and arthritis rheumatoid [10]. Table 2 shows

how our system behaves for finding those meaningful connections.

31

Table 5.2. Fish oil and Raynaud Disease

Four out of five connecting words discovered in [10] have been found in our system and

three of them have high rank (1 or 2) in their corresponding semantic types. Notice that the

context we use for discovery is article titles and abstracts whereas [10] used Mesh terms assigned

by biomedical experts as potential connecting terms candidates. We also notice that our system

found interesting linking terms, such as “Hemodynamic” and “Atherosclerosis”, where [10]

could not detect.

• Hemodynamic” is the connecting word in the chain for “Fish oil” – “Hemodynamic” –

“Raynaud Disease”. The evidence we found support of this relationship is “fish oil diet

can reduce the hemodynamic …” and “Hemodynamic response of the digital artery… in

systemic scleroderma and in Raynaud's disease”. In short, fish oil can reduce

hemodynamic and morphological sequelae of chronic hypoxia, which may have

therapeutic significance in treating hemodynamic response of Raynaud Disease.

• “Atherosclerosis” is another connecting word for “Fish oil” and “Raynaud Disease”.

The sentences we found as evidence are “Therefore, fish-oil diets exert effective

protective control of progression of atherosclerosis during severe atherogenic stimuli”

Connecting Concept Find? Weight Rank in the

Semantic type

Platelet aggregation True 0.87 2

Vascular reactivity True 1.27 1

Blood viscosity False, but found something

about blood pressure

0 0

Prostaglandin True 0.309 6

Arthritis rheumatoid True, it appears as “Rheumatoid

Arthritis”

0.43 2

32

and “A new peripheral vasodilator prostaglandin E1 in atherosclerosis of lower limb

vessels and Raynaud disease”. In short, fish-oil slows the control of the progression of

Atherosclerosis and Atherosclerosis is a symptom of Raynaud disease.

5.2.2. Migraine – Magnesium

As another case study, for two topics Migraine and Magnesium, Gopalakrishnan and

Kishlay had found connecting words such as propranolol, adenosine triphosphate, calcium,

ergotamine, serotonin, norepinephrine, adenine nucleotides, and epinephrine [10]. Table 3

shows how our system behaves.

Table 5.3. Migraine and Magnesium

Table 3 indicates that the system can find all those eight connecting concepts found in

Gopalakrishnan and Kishlay’s system[10]. Six words have high rankings within top ten. The

system also found some other linking terms that were not found in the previous study [10], such

as “Insulin”.

Connecting Concept Find? Weight Rank in the

Semantic type

propranolol True 0.41 8

adenosine triphosphate True 0.52 10

calcium True 1.50 1

ergotamine True, the system found “Ergot

Alkaloids”

0.34 5

serotonin True 1.49 1

norepinephrine True 0.79 6

adenine nucleotides True 0.32 14

epinephrine True 0.49 13

33

• “Insulin” is the connecting word for the “Migraine” – “Magnesium” relationship query.

The evidence is “insulin ... involved in the pathogenesis of migraine” and “Magnesium, a

second messenger for insulin”. It shows that insulin could be a key factor for answering

the migraine and magnesium relationship.

5.2.3. Schizophrenia – Phospholipase A2

Gopalakrishnan and Kishlay also used this query for testing, where they found the

following connecting words – chlorpromazine, trifluoperazine, receptors dopamine, prolactin,

Choline, arachidonic acid, phenothiazines, and norepinephrine [10]. Table 4 indicates how our

system behaves in this case.

Table 5.4. Schizophrenia and Phospholipase A2

The result shows that the system once again found all connecting words that were found

by Gopalakrishnan and Kishlay’s system [10]. Three of them have a very high rank (top five) in

their corresponding semantic types. We also notice that our system found interesting linking

terms, such as “PGE2”, where [10] could not detect.

Connecting Concept Find? Weight Rank in the

Semantic type

chlorpromazine True 0.22 11

trifluoperazine True 0.07 32

receptors dopamine True 0.33 5

prolactin True 1.17 2

Choline True 0.12 21

arachidonic acid True 1.18 1

phenothiazines True 0.05 56

norepinephrine True 0.3 11

34

• PGE2” is one of the connecting words that are found by our system but not in [10]. The

sentences show as evidence for this relationship are “…increased production of PGE2 in

schizophrenia” and “main released by PLA2(Phospholipase A2) was PGE2”. We can see

both schizophrenia and Phospholipase A2 affect the production of PGE2.

35

CHAPTER 6. CONCLUSION & FUTURE WORK

In this paper, I develop a tool which can find hidden connecting words between any two

biomedical concepts. It uses Medline database as data source and parses the abstracts and titles

of articles from the database. It then processes all texts form abstracts and titles with MetaMap to

gather a collection of biomedical concepts and organizes concepts into semantic types provided

by NLM. Finally, it provides an interface for querying the data source, built on the technique

adapted from Swanson’s ABC model. The developed tool can produce fairly accurate results and

visualize them in a user-friendly way. Comparing with other approaches [9] [10], this approach

can find more unapparent connecting words and those words are further categorized under their

belonging semantic types. The interface also extracts all the sentences related to those identified

links, with which the users can find out evidence showing how those input concepts are

connected by identified intermediate terms.

Currently only one level of intermediate terms are discovered for (i.e., the chains of

length 1). In future work, I will expand the chains (links) to multiple levels. This is extremely

useful when there is little information about concepts of interest. Additionally, I will combine

MetaMaped files together (right now there are about 2000 individual MetaMaped files) so that

accessing them can be easier. I will also tweak different MetaMap options to compare their

performance.

36

REFERENCES

[1] Belkin, N. J. (1993). Interaction with texts: Information retrieval as information seeking

behavior. Information Retrieval, 93, 55–66. http://doi.org/10.1.1.85.7785

[2] Swason, D. R., “Complementary structures in disjoint science literatures”, in Proceedings

of the 14th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, ACM Press, Chicago, IL, pp 280-289. (1991)

[3] U.S. National Library of Medicine. (2016). MEDLINE®/PubMed® Resources Guide.

Retrieved from https://www.nlm.nih.gov/bsd/pmresources.html

[4] Aronson, a R. (2001). Effective mapping of biomedical text to the UMLS Metathesaurus:

the MetaMap program. Proceedings / AMIA ... Annual Symposium. AMIA Symposium,

17–21. http://doi.org/D010001275 [pii]

[5] U.S. National Library of Medicine. (2017). MetaMap - A Tool for Recognizing UMLS

Concepts in Text. Retrieved from https://metamap.nlm.nih.gov/

[6] Chapman, W. W., Fiszman, M., Dowling, J. N., Chapman, B. E., & Rindflesch, T. C.

(2004). Identifying respiratory findings in emergency department reports for

biosurveillance using MetaMap. Studies in Health Technology and Informatics, 107(Pt 1),

487–91. http://doi.org/D040004481 [pii]

[7] Zuccon, G., Holloway, A., Koopman, B., & Nguyen, A. (2013). Identify Disorders in

Health Records using Conditional Random Fields and Metamap.

[8] Pratt, W., & Yetisgen-Yildiz, M. (2003). A study of biomedical concept identification:

MetaMap vs. people. AMIA ... Annual Symposium Proceedings / AMIA Symposium.

AMIA Symposium, 529–33. http://doi.org/D030003464 [pii]

37

[9] Jin, W., & Srihari, R. (2006). Knowledge Discovery across Documents through Concept

Chain Queries. Sixth IEEE International Conference on Data Mining - Workshops

(ICDMW’06), 448–452. http://doi.org/10.1109/ICDMW.2006.105

[10] Gopalakrishnan, V. (n.d.). Generating Hypothesis: Using Global and Local Features in

Graph to Discover New Knowledge from Medical Literature Knowledge-base Creation.

[11] Wikipedia. (2017). Pipeline (software). Retrieved from

https://en.wikipedia.org/wiki/Pipeline_(software)

[12] TFIDF. (2008). Tf-idf :: A Single-Page Tutorial – Information Retrieval and Text Mining

Retrieved from http://www.tfidf.com/

38

APPENDIX A. XMLPARSER.JAVA CODE

// First, create a new XMLInputFactory

XMLInputFactory inputFactory = XMLInputFactory.newInstance();

// Setup a new eventReader

InputStream in = new FileInputStream(fileLoc);

XMLEventReader eventReader = inputFactory.createXMLEventReader(in);

// read the XML document

MedlineCite med = null;

int i = 0;

while (eventReader.hasNext()) {

 XMLEvent event = eventReader.nextEvent();

 if (event.isStartElement()) {

 StartElement startElement = event.asStartElement();

 // If we have an item element, we create a new item

 if(startElement.getName().getLocalPart().equals(MEDLINECITATION)){

 med = new MedlineCite();

 }

 if(event.asStartElement().getName().getLocalPart().equals(PMID)) {

 event = eventReader.nextEvent();

 med.setPMID(event.asCharacters().getData());

 continue;

 }

 ………

 }

 // If we reach the end of an item element, we add it to the list

 if (event.isEndElement()) {

 EndElement endElement = event.asEndElement();

 if(endElement.getName().getLocalPart().equals(MEDLINECITATION)) {

 System.out.println("Processing " + (i + 1) + "/" + "30000" + " MedlineCitation");

 MetaMapProcessor mmProcessor = new MetaMapProcessor(med, host, port);

 mmProcessor.startProcess();

 System.out.println("PostProcess started");

 if (mmProcessor.getTitleResult() != null) {

 PostProcessor posProc = new PostProcessor(med, mmProcessor.getTitleResult(), "T",

semLst);

 posProc.startPostProcess();

 }

 }

39

APPENDIX B. DOCLISTA.XML

<?xml version="1.0" encoding="utf-8"?>

<Documents>

<Document>Studies of visceral pathology in fowls on fish oil diets.</Document>

<Document>Three strains of rats were fed a fish oil diet to verify their ability to

incorporate and convert dietary eicosapentaenoic acid (20:5 omega 3) into trienoic

prostaglandins</Document>

<Document>5 mole % in response to the fish oil-supplemented diet.</Document>

…………

</Documents>

40

APPENDIX C. S2CWA.XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<S2CW>

 <SemType name="geoa">

 <Concept weight="1.0">SO</Concept>

 <Concept weight="0.5704939964430451">MDA</Concept>

 <Concept weight="0.40775952588681413">Farm</Concept>

 <Concept weight="0.22725752284865017">farms</Concept>

 <Concept weight="0.22725752284865017">Region</Concept>

 <Concept weight="0.22725752284865017">MX</Concept>

 <Concept weight="0.22725752284865017">Australia</Concept>

 <Concept weight="0.22725752284865017">Greenland</Concept>

 <Concept weight="0.22725752284865017">Community</Concept>

 <Concept weight="0.22725752284865017">states</Concept>

 </SemType>

 <SemType name="popg">

 <Concept weight="1.0">Group</Concept>

 <Concept weight="0.17045684615376022">Males</Concept>

 <Concept weight="0.12307120864928749">female</Concept>

 <Concept weight="0.06950540277181888">cohorts</Concept>

 <Concept weight="0.03873760060949701">White</Concept>

 <Concept weight="0.03873760060949701">Consumer</Concept>

 <Concept weight="0.03873760060949701">SPANISH</Concept>

 <Concept weight="0.03873760060949701">aged</Concept>

 <Concept weight="0.03873760060949701">Eskimo</Concept>

 <Concept weight="0.03873760060949701">Healthy Volunteers</Concept>

 <Concept weight="0.03873760060949701">Senegalese</Concept>

 <Concept weight="0.03873760060949701">Japanese</Concept>

 </SemType>
</S2CW>

41

APPENDIX D. C2SENTSA.XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<C2sents>

 <Concept name="Fold">

 <ID>116</ID>

 <ID>184</ID>

 <ID>244</ID>

 <ID>270</ID>

 <ID>296</ID>

 <ID>315</ID>

 <ID>434</ID>

 <ID>435</ID>

 <ID>657</ID>

 <ID>728</ID>

 </Concept>

 <Concept name="Water">

 <ID>583</ID>

 </Concept>

 <Concept name="Time, Prothrombin">

 <ID>586</ID>

 </Concept>

 <Concept name="Platelet adhesion">

 <ID>177</ID>

 </Concept>
</C2sents>

