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ABSTRACT 

A BCI or Brain Computer Interface is defined as a method of communication that 

converts neural activities generated by brain of living being (without the use of peripheral 

muscles and nerves) into computer commands or other device commands. BCI systems are 

useful for people with severe disability who have no reliable control over their muscles in order 

to interact with their surrounding environment. The BCI system used in this paper has used  

P300 evoked potential and three classifiers namely Logistic Regression (LR), Neural Network 

(NN), and Support Vector Machine (SVM). The system is tested with four people with severe 

disability and two able-bodied people. Classification accuracies obtained from LR, NN, SVM 

classifiers is then compared with Bayesian Linear Discriminant Analysis (BLDA) classifier and 

with each other. The relevant factors required for obtaining good classification accuracy in P300 

evoked potential based BCI systems is also being explored and discussed. 
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CHAPTER 1. INTRODUCTION 

A Brain-Computer Interface or BCI system is described as a communication system that 

enables people with a disability or able-bodied subjects to interact with their surroundings by 

utilizing only the neural activity produced by the brain without the use of peripheral muscles and 

nerves. BCI systems research has been investigated on a wider scale. The major reason behind 

the development of BCI systems is to make the communication for subjects with disabilities 

possible with other people, control artificial limbs, and to interact with their surrounding 

environment. In order to develop BCI based systems, there is a wider need of several 

technologies such as the processing of the patterns of neural activities generated by the brain into 

computer commands, algorithms for translation of signals from brain into commands that could 

be understood by the computer and the evaluation of BCI systems for subjects with a disability. 

In several papers, the research is focused on the above problems. The majority of the research is 

carried out for invasive and noninvasive technologies evaluation such that neural brain activity 

can be measured and new BCI systems can be developed. (Wolpaw et al. (2002); Lebedev and 

Nicolelis (2006)).  

EEG or Electroencephalogram has the ability to record electrical brain activity. BCI 

systems for subjects with a disability have been used in this paper and are based on a 

noninvasive method (EEG) to measure the neural activity of the brain. Birbaumer et al. (1999) 

was among the first to use EEG or Electroencephalogram in the system for persons with 

disability. In his paper, he tested subjects with disability by using EEG to show that subjects who 

had Amyotrophic Lateral Sclerosis or ALS can utilize BCI systems to interact with their 

surrounding environment and operate via a spelling device. The research result of his work 

showed that subjects could acquire voluntary control of slow cortical potential. Pfurtscheller and 



 

2 

Neuper (2001) developed a BCI system that utilized the neural activity of brain associated to 

motor-imagery used as a control signal. Kubler et al. (2005) obtained excellent results for people 

suffering from ALS, quadriplegic persons and other forms of disability. His study depicted that 

people suffering from ALS have the ability to learn regulation of BCI systems utilizing motor 

imagery. Drawbacks of the BCI systems utilizing motor imagery was that since it used slow 

cortical potentials, subjects had to undergo training for a long time for several months and the 

subjects could only communicate slowly. Conversely to Kubler’s research results, Hill et al. 

(2006) examined a BCI system utilizing motor imagery with a number of subjects, who were 

locked in, and showed that the signals obtained were not appropriate for communication. The 

main difference between the study of Kubler and Hill is not completely locked in subjects and a 

number of training sessions (Kubler) verses completely locked in subjects and one long training 

session (Hill). Based on the above research conducted, it has been established that subjects with 

disability can utilize BCI systems using motor-imagery, exceptions being locked in patients and 

a long training session. 

P300 is defined as an Event Related Potential (ERP) and as a positive deflection in EEG. 

In this paper, a control signal called P300 related potential (Sutton et al., 1965) has been utilized 

that one can detect and it does not need lengthy training of the subjects. The P300 related 

potential is a positive detection in the human EEG, appearing approximately 300ms after the 

presentation of rare or surprising task-relevant stimuli. P300 was used by Farwell and Donchin 

(1988) as a control signal and a P300 speller system was utilized which enabled the subjects with 

disability to spell words in sequence by selecting letters from the alphabet. Here, randomly the 

rows and columns of the alphabet matrix were displayed in random sequence. The chosen 

subject was instructed to count the occurrence of the flashing symbol. This technique was 
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adopted so that the subject can choose a symbol. Those columns of the flash, which contained 

the anticipated symbol, prompted EEG signals like P300. Neutral EEG signals were determined 

by white columns and rows. With the help of a simple algorithm, to evoke the largest P300 

amplitude, the target symbol could be inferred. This algorithm searches for the row and column 

which evoked the largest P300 amplitude. This idea is based on the work of Farwell and 

Donchin. 

Studies in the field of P300 based BCI systems were developed as a result of new 

application scenarios (Polikoff et al. (1995); Bayliss (2003)). The latest advanced algorithms for 

the recognition of the P300 were developed possibly from noisy data. The pioneers of this realm 

are Rakotomamonjy et al. (2005), Xu et al. (2004), Kaper et al. (2004), and Thulasidas et al. 

(2006). Now the study for the P300-based BCI systems shows good results for both the subjects 

with disability and able bodied subjects. 

A 2D cursor regulator system having five disabled subjects and seven able-bodied 

subjects were tested by Piccione et al. (2006). Piccione et al. used four choice P300 paradigm as 

cursor control and subjects concentrating on one of four arrows flashing every 2.5s in random 

order. Preprocessed with independent component analysis, each of the signals was recorded from 

one electrooculogram electrode and four EEG electrodes. Furthermore, using a neural network 

the signals are categorized. The results obtained by Piccione et al. showed that the P300 was a 

viable control-signal for subjects with disability. However, when compared to other state-of-the-

art systems the average communication speed obtained in his study was relatively low. The best 

examples are found by Kaper et al. (2004) and Thulasidas et al. (2006). Sellers and Donchin 

(2006) analyzed their system with 3 people having ALS and 3 people with able body. The 

system used signals from few electrodes, the small number of different stimuli and long inter 
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stimulus intervals. The system also utilized a 4 choice paradigm. The corresponding paper that 

was published had 4 stimuli ('YES', 'NO', 'PASS', 'END'). These were flashed every 1.4s without 

following any sequential method. They were presented in different modes like either in the visual 

modality, in auditory modality, or in a combined auditory visual modality. Using a stepwise 

linear discriminant algorithm, the signals from three electrodes were categorized. Thereby, it was 

proved that the P300 based communication is possible in the auditory, combination of visual 

auditory and visual modality for ALS Patients by Sellers and Donchin. 

But in the research of Piccione et al., when compared to state of the art outcomes, the 

classification accuracy and communication rate accomplished were low. This can be 

acknowledged to the small number of electrodes, the small number of different stimuli, and long 

ISIs (Inter-stimulus interval). Hoffmann and Vesin (2007) tested using Bayesian Linear Analysis 

(BLDA) and Fisher's Linear Discriminant Analysis (FLDA) for a population of 5 and 4, disabled 

and able-bodied subjects respectively with a paradigm of 6-choice. 6 different images were 

flashed in random order with a stimulus interval of 400ms. Electrode configurations consisting of 

four, eight, sixteen and thirty-two electrodes were verified. 

For classification, Bayesian Linear Discriminant Analysis (BLDA) and Fisher’s Linear 

Discriminant Analysis (FLDA) were tested. All the able-bodied subjects and four disabled 

subjects were found to have superior classification accuracy and communication rates compared 

to those in the research of Piccione et al. (2006), and Sellers and Donchin (2006). Discussions 

for disabled subjects about the factors that were relevant for good classification accuracy in BCI 

systems were made. To stimulate further study on data analysis methods for P300-based BCI 

systems and to enable other scholars to replicate results, some algorithms and datasets utilized in 

this research were made available for download on the EPFL BCI group website. 
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Hoffmann and Vesin displayed that high classification accuracies and birates can be 

obtained for severely disabled subjects by using BLDA and FLDA algorithms. Especially the 

results for BLDA were better than that of FLDA. Only a few training sessions were required to 

achieve good classification accuracy because P300 was used. Besides the BLDA and FLDA 

classifiers, various classifiers such as Neural Network, Support Vector Machine and Logistic 

Regression can be used.  

In this MS paper, the study of the BCI system with the same control signal used by 

Hoffmann and Vesin is used. Through this paper, three machine algorithms are investigated; 

Neural Network (NN), Logistic Regression (LR) and Support Vector Machine (SVM) 

algorithms. In addition, a comparison between the investigated algorithms and previously used 

algorithm Bayesian Linear Discriminant Analysis (BLDA) is made. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1. Experimental setup 

Six images displayed on the laptop screen are the following: television, telephone, lamp, 

door, window and radio. Users can regulate electrical appliances through BCI system where each 

image is selected according to the situation of the application. Images are flashed in a random 

sequence one after the other. Inter-stimulus interval is calculated as 400ms when each flash of an 

image persists for 100ms and no image is flashed during the subsequent 300ms. In the 10-20 

International System, 16 electrodes are located and the EEG is recorded at a sampling rate of 

2048 Hz. A bio semi-active two amplifier is used for ADC (Analog to Digital Conversion) 

amplification of the EEG signals. All machine learning algorithms and signal processing are 

implemented using MATLAB. 

2.2. Subjects 

Two healthy (S6, S7) and four disabled subjects (S1, S2, S3, S4) are used for testing the 

system. The table below illustrates data for the disabled subjects (Table 1). All the disabled 

subjects used in the study are wheelchair bound with different abilities for communication and 

limb muscle control. Disabled subjects S1 and S2 from the table perform limited action like slow 

and simple movements with their arms and hands. These subjects are restricted to perform or 

control other margins. Both subjects, S1 and S2, suffer from minor dysarthria, with the ability to 

speak and communicate. Performances are restricted for the only ability to make movements 

with his left hand. However the subject answers with eye blinks for yes or no. 
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Table 1: Disabled subjects and corresponding data recorded for environment control 
system study 

  Subject 1 (S1) Subject 2 (S2) Subject 3 (S3) Subject 4 (S4) 

Diagnosis Cerebral Palsy Multiple 
Sclerosis 

Late-Stage 
Amyotrophic 

Lateral Sclerosis 

Traumatic Brain 
and Spinal-Cord 
Injury, C4 Leve1 

Subject’s Age 56 51 47 33 

Age at 
0 (Perinatal) 37 39 27 Illness Onset 

Sex M M M F 

Speech 
Production Mild Mild Severe Mild 

(Dysarthria) 

Limb Muscle 
Control Weak Weak Very weak Weak 

Respiration 
Control Normal Normal Weak Normal 

Voluntary Eye 
Movement Normal Mild 

Nystagmus Normal Normal 

 

Subject 4 (S4) can communicate but can hardly move his limbs as he is suffering from 

mild dysarthria. Two PhD (S6, S7) male students working in the lab participated in the study 

aged around 30. Subject 6 (S6) and Subject (S7) did not have any recognized neurological 

problems. 

2.3. Experimental schedule 

Each and every subject finished 4 sessions of recording as scheduled. On the first day, 2 

sessions were completed and another day was chosen to complete the other 2 sessions. The 
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duration of time difference between the first and the last session was less than 2 weeks. Each 

session included a total of 6 runs; each run included 6 images. The below mentioned practices 

were used for each of the runs. 

(i) Each subject was supposed to count in silence to count prearranged images flashed.  

(ii) When each of the six images was flashed on the screen a warning sound was issued.  

(iii) Random sequences of flashes were started and the EEG was recorded, four seconds after the 

warning tone. The flashes were torched in random sequences i.e.; each image was flashed once 

after 6 flashes, followed by flashing the image twice after he next twelve and the process 

progresses goes on. The blocks are chosen in random between 20 and 25 count. In one run, an 

average of 22.5 flashes were displayed, i.e., one run = average of 22.5 target P300 target trials 

and 22.5 x 4 = 90 non-target non-P300 trials. 

(iv) The target image was concluded from the EEG with the aid of a simple classifier in the 2nd, 

3rd, and 4th sessions. To provide response to the user, the image is flashed five times at the end 

of each run of the image inference. At the end of the experiment, each of the selected subjects 

were requested to provide their counting result. To monitor the performance of the subjects, the 

count results were collected in order. The calculation is approximated (‘α’ is used) as follows: 

The duration of one run is ~1 minute. The duration of between runs is ~ 30 minutes. One session 

trials (1 session includes setup of electrodes and short breaks) with the whole data for one subject 

results in 3240 trials. 

2.4. Offline analysis 

An offline procedure was adopted to test the machine-learning algorithms on the 

classification accuracy and the impact of various electrode configurations. To assess the average 

classification accuracy, four-fold cross-validation was used for each subject. To be precise, the 
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data from three recording sessions and the data from the sessions that were not considered was 

utilized to train the classifier and validate it, respectively. Each session was run once for the 

validation by repeating the procedure four times. 

2.4.1. Preprocessing 

A number of preprocessing maneuvers were applied to the data, before the learning and 

validation of the classification function. The preprocessing operations followed the operations 

listed below in the following order: 

(i) Referencing 

  For referencing, mean signal coming from 2 mastoid electrodes was utilized.  

(ii) Filtering 

To filter the data, we have used a forward-backward Butterworth band-pass filter of the 

6th order. Cut-off frequencies were set to be 1.0 Hz and 12.0 Hz. Function filtfilt was used to 

filter, and the filter coefficients were computed using the function Butterworth. 

(iii) Down sampling 

By choosing each 64th sample from the band-pass filtered data, the EEG was down 

sampled to 32 Hz from 2048 Hz.  

(iv) Single trial extraction 

Single trials take place at the start of the amplification (i.e. at the stimulus onset) of an 

image, and ends 1000ms after the stimulus onset. For the study, 1000ms were extracted from the 

data (single trials of duration = 1000ms). The first 600ms of each trail were overlapping last 

600ms of each preceding trial due to the ISI of 400ms. 
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(iv) Windsorizing 

Any muscular activities including eye blinks, eye movements or physical subject 

movements can cause huge amplitude outliers in the EEG. To decrease the effect of outliers, the 

data from each electrode were windsorized. 10th and the 90th percentiles of the samples from 

each of the electrodes were calculated. Out of the computed amplitudes, some were set as the 

10th percentile and others as the 90th percentile, for values which were above the 90th percentile 

or which were below the 10th percentile, respectively. 

(v) Scaling 

Scaling interval was chosen as [-1; 1]. 

(vi) Electrode selection 

Four electrode configurations were tested with different number of electrodes. 

(vii) Feature vector construction 

Feature vectors were generated by concatenating the samples from the selected 

electrodes. The dimensionality of the feature vectors was Ne x Nt, where Ne is the count of the 

electrodes, and Nt is the count of the temporal samples present in a single trial. Ne = 4 or 8 or 16 

or 32 (based on electrode configuration) and Nt =32 (based on trial time duration = 1000ms and 

down sampling = 32 Hz). 

2.4.2. Machine learning and classification 

 The fourth session that was left of the training was validation. Both the training and 

validation data sets consisted of several sets of target and non-target trials. These average values 

as per Section 2.3 are as follows:  

Training data sets: 405 target trials & 2025 non-target trials. 

Validation data sets: 135 target trials & 675 non-target trials. 
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To understand the classifiers - Regression, Neural Network and Support Vector Machine were 

used. The corresponding acronyms used are LR, NN and SVM, respectively. Classifiers were 

compared with BLDA to compare the performance of these algorithms with the standard 

algorithm frequently used in BCI research. No user intervention of any kind was entertained to 

adjust hyper parameters by making all algorithms completely automatic. On a standard 

computer, the computation of the classifiers took not more than a minute. Followed by the 

training of the classifiers, the model was applied to the validation. By means of the preprocessing 

mechanism, the single trials, which correspond to the flashes of the first 20 blocks, were obtained 

for each run in the validation session. After which, the single trials were classified. This lead to 

an output of twenty blocks of classifiers. Each block contained six classifier outputs of which 

each output represents one image on the display. The classifier outputs were added over the 

blocks for each image. The image with the maximum classifier output was selected and was 

considered as the image the user was concentrating on. 

 

 

 

 

 

 

 



 

12 

 

Figure 1: Electrode configurations used in the experiments. 

From left to right: Configuration I (4 electrodes), configuration II (8 electrodes), 

configuration III (16 electrodes), and configuration IV (32 electrodes). 

2.4.3. Experimental procedure 

A cross validation procedure is used to evaluate the efficiency of the classification 

algorithm. Three session’s data is used for training and the remaining session’s data is used for 

testing. This procedure is repeated four times in such a way that every session’s data is taken as 

test data once. The performance metrics considered are average accuracy and bitrate. They are 

calculated as follows. 

• A subject is tested in 4 sessions, each session consist of 6 runs which is split into 20-25 

blocks. Each block has 6 trials. Only the first 20 blocks in each run are considered for the 

performance evaluation. A single trial is of duration 400 ms, so a block is of length 2.4 s 

and the duration of 20 blocks is 48 s. Thus, the performance is evaluated from time 0 s to 

48 s. 

• For a single run, the number of correct classifications is calculated for each of the 20 

blocks. This gives a 20-element array. The array elements can be either 1 or 0. A ‘1’ 
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indicates correct classification in the particular block and vice versa. Repeating the 

process for all 6 runs and adding all the 6 arrays will give a 20-element array which has a 

maximum value of 6 and a minimum value of 0. If the nth element of that array is 6, that 

indicates the nth block is correctly classified in all 6 runs. If it is 0, then the nth block is 

wrongly classified in all 6 runs. Any in between value directly gives the number of times 

the nth block is correctly classified in 6 runs. 

• The above-mentioned 20-element array is obtained from each of the 4 cross validation 

sessions and concatenated to form a 4x20 matrix. Then, the average across all sessions is 

computed by calculating the column mean for the matrix, and further dividing each 

element by 6. The resulting 20-element array gives the average accuracy obtained during 

every block of period 2.4 ms. 

• The bits transferred during every block is log2(6) if the accuracy is 1; here 6 is the 

number of images, and is 0 if the accuracy is 0 and it varies logarithmically for 

intermediate values. The bitrate is calculated by finding the ratio between the numbers of 

bits transferred in a particular block by the finish time of the block. So, even if two 

blocks transfer same number of bits, the block that is earlier in time will have more 

bitrate. 

• The performance is plotted for block time (0 to 48 s) versus average accuracy (0 to 1) and 

bitrate. 
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CHAPTER 3. RESULTS 

3.1. General observation 

Classification accuracy averaged over the sessions and the corresponding bit rates versus 

the time required to come to a decision are depicted in Figure 2, Figure3 and Figure 4. The 

electrode configuration II with eight electrodes in conjunction with Logistic Regression, Neural 

Network, and Support Vector Machine (LR, NN and SVM) are displayed.  

After 9 or more blocks of stimulus presentations were averaged for the LR classifier and 

it was determined that Subjects S3, S4 and S7 had achieved 100% classification accuracy 

whereas Subjects S1, S2, S6 did not achieve 100% accuracy. This is demonstrated in Figure 2.  

After 3 or more blocks of stimulus presentations were averaged for the NN classifier, all 

the subjects, except S6 achieved an average classification accuracy of 100%. This is illustrated in 

Figure 3. 

For the SVM classifier, all of the subjects, except Subject 6 achieved an average 

classification accuracy of 100% after 6 or more blocks of stimulus presentations were averaged. 

This is plotted in Figure 4. 
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Figure 2: Logistic regression - classification accuracy & bit rate plotted vs. time 
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For subjects referred to as S1, S2, S3, S4, S6, and S7. The panels show the eight 

electrodes configuration and classification accuracy achieved with LR. Blue represents the four 

averaged sessions and Red represents the corresponding bitrate. 
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Figure 3: Neural network - classification accuracy & bit rate plotted vs. time 
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For subjects referred to as S1, S2, S3, S4, S6, and S7. The panels show the eight 

electrodes configuration and classification accuracy achieved with NN. Blue represents the four 

averaged sessions and Red represents the corresponding bitrate. 
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Figure 4: Support vector machine - classification accuracy & bit rate plotted vs. time 
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For subjects referred to as S1, S2, S3, S4, S6, S7. The panels show the eight electrodes 

configuration and classification accuracy achieved with SVM. Blue represents the four averaged 

sessions and Red represents the corresponding bitrate. 

3.2. Differences between disabled and able-bodied subjects 

As proved by Hoffmann and Vesin (2006), the maximum classification accuracy cannot 

be used as the performance measure. No dissimilarities can be found between abled and disabled 

subjects, if the maximum classification accuracy achieved is taken as the performance measure. 

Subjects are readily observed using the bitrate. It is evident from the plot that able-bodied 

subjects accomplished higher bitrates compared to disabled subjects. 

Table 2: Bitrates according to subjects and classifier and average bitrate per minute (bpm) 

Subject Logistic Regression 
LR 

Neural Network 
NN 

Support Vector 
Machine SVM 

S1 3.32 4.35 6.73 

S2 3.95 3.17 5.14 

S3 7.17 7.62 3.67 

S4 6.39 6.85 3.83 

S6 6.04 6.65 4.08 

S7 9.23 9.22 7.09 

Avg. (S1-S4) 5.21±1.86 5.49±2.09 4.84±1.42 

Avg. (S6-S7) 6.82±2.12 7.58±1.42 4.56±2.33 

Avg. (All) 5.90±1.99 6.39±2.02 4.72±1.69 
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The average bitrate per minute over all classifiers and the subjects are shown in Table 2. 

The average accuracy curves are used to compute the bitrates are shown for all classification 

algorithms. For both disabled subjects numbered 1 through 4, and able-bodied subjects numbered 

5 through 7, the standard deviation and mean bitrate were computed.  

Subject 1: The classification accuracy acquired with LR, averaged over all sessions, is 

calculated as 91.67%. The bitrate per minute corresponding to the calculated value is 3.32. After 

11 blocks of stimulus exhibitions, the classification accuracy acquired with NN, averaged over 

all the sessions, was calculated as cent percent (i.e. 100%). The corresponding bitrate per minute 

is calculated as 4.35. For classifier SVM, after 5 blocks of stimulus presentations, unlike a NN 

where 6 more stimulus exhibitions were used to obtain 100% for the classification accuracy, 

averaged over all sessions. The corresponding bitrate per minute is calculated as 6.73. From the 

study it is evident that the maximum bpm (bitrate per minute) and maximum average bpm for 

SVM is higher than others for subject 1 (S1). Therefore it can be concluded that, the performance 

for SVM is the best for Subject 1 and it is determined to the worst for LR in subject 1. Subject 1 

accidentally focused on the wrong stimulus during runs in sessions 1 through 4 in LR. 

Subject 2: The classification accuracy with LR, averaged over all sessions, is 95.83%. 

The corresponding bitrate per minute is calculated as the value of 3.95. Likewise, the same 

95.83% was obtained with NN, averaged over all sessions. Although the corresponding bitrate 

per minute is 3.17 which is less than that obtained with LR. For Subject 2, after 5 blocks of 

stimulus presentations the classification accuracy obtained by SVM, averaged over all sessions, 

is calculated as 100% and the corresponding bitrate per minute is 5.14. From the study and the 

computed values it can be affirmed that the performance for SVM is the best for Subject 2. The 

maximum value of classification accuracy is same for both LR and NN with a smaller bpm for 
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NN compared to that of LR. For LR, during one run in Session 4, Subject 2 concentrated on the 

wrong stimulus. Whereas for NN, Subject 2 concentrated on the wrong stimulus through one run 

in Session 2 and 3. Therefore, the performance with LR is better than the one with NN.  

Subject 3: 100% accuracy is obtained over all classifiers, averaged over all sessions. 

However, every bpm calculated is different from each other. After 9 blocks of stimulus 

presentations, the classification accuracy with LR is 100%. The corresponding bpm is computed 

as 7.17. After 3 blocks of stimulus presentations, the classification accuracy with NN is 100% 

and the corresponding bpm is 7.62. As for SVM, the classification accuracy with SVM is 100% 

after 14 blocks of stimulus presentations. The corresponding bpm is computed as 5.14. 

Therefore, it can be affirmed that the performance of NN is the best in case of Subject 3. 

Subject 4: The classification accuracy obtained with LR and NN, averaged over all 

sessions, is 100%. After 7 blocks of stimulus exhibitions, the classification accuracy with LR is 

obtained as 100%. The corresponding bpm is determined as 6.39. After 11 blocks of stimulus 

presentations with NN, the classification accuracy is 100% and the corresponding bpm is 6.85. 

The classification accuracy is 83.33% for SVM. The corresponding bpm is 3.83, which is 

slightly less than that of NN. It can therefore be confirmed that the performance of LR is the best 

for Subject 4. 

 Subject 6 and Subject 7: It was observed that performances of all classifiers were good. 

The classification accuracy reached 100% for all classifiers. LR has shown the best performance 

in this case. Figure 8 below illustrates for each of the three classifiers; LR, NN and SVM the 

change process of maximum average bmp according to the time. From the plot it can be 

determined that, the average bpm of LR and NN is greater than that of SVM. Thus, it can be 

concluded that the classifiers LR and NN are better compared to the classifier SVM. Of the two 
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classifiers, LR and NN, it is determined that the maximum average bpm of NN is the highest. 

Consequently, it can be confirmed that the NN classifier performs best compared to the other 

classifiers used. 

 

Figure 5: For 8-electrode configuration, average bitrate per minute 

Acquired with LR, NN and SVM, averaged over all subjects and sessions are plotted 

against time. 

3.3. Interpretation of results 

3.3.1. Logistic regression 

Out of the 6 subjects, 3 of them achieve 100% classification accuracy. The average 

accuracy is less during the earlier blocks and it increases to higher values as time progresses. 

This indicates the subjects produce an easily distinguishable P300 signal when given sufficient 

time. Earlier blocks give very little reaction time for the subject hence the signals are not clear 

enough for the classifiers to identify. The peak bitrate for subjects 1 and 2 is very less, but other 

subjects can achieve a peak bitrate. This indicates good response and better classification. 



 

24 

3.3.2. Neural networks 

Compared to logistic regression, Neural Networks provide better performance. All 6 

subjects achieve 100% classification accuracy, and the bitrates are fairly higher. As in the 

previous case the accuracy is low when a new run is started, but as time advances, the subjects 

tend to settle with the new target and the classifier identifies correctly. 

3.3.3. Support vector machine 

SVM offers better classification accuracy for disabled subjects than subjects with no 

known disability. The bitrates achieved by subjects 1 and 2 with SVM is higher among any 

classification methods. But the poor performance of SVM in subject 6 can be considered as a 

deterrent in selecting SVM as a classifier. 

3.3.4. Comparison with BLDA 

BLDA achieved 100% classification accuracy for all the subjects. Only Neural Network’s 

achieved similar classification accuracy out of the three classifiers tried in the work. Though 

SVM achieved better accuracy for most of the subjects, its result for S6 is very inconsistent. 

There is no way to distinguish between a disabled and able bodied subject from classification 

accuracy while using BLDA. But the bitrates obtained by BLDA classification clearly 

distinguishes disability. But the 3 classifiers used in this paper are not consistent in terms of 

distinguishing between able bodied and disabled subjects. 
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CHAPTER 4. DISCUSSION 

4.1. Comparison with other studies 

Compared to various other P300 systems for people with disability, the classification 

accuracy and bitrate obtained in the current study are relatively high. In the research of Sellers 

and Donchin (2006) the best classification accuracy for the able-bodied subjects was on average 

85% and the best classification accuracy for the ALS patients was on average 72% (values taken 

from Table 3 in Sellers and Donchin (2006)). In the present study the best classification accuracy 

for the able-bodied subjects is on average close to 100% and the best classification accuracy for 

disabled subjects was on average 100% (see Figures 2, 3, and 4). 

In the research of Sellers and Donchin, the bitrates (bits/min) were not mentioned. The 

average bitrates of approx. 8 bits/min were mentioned for people with disability and people with 

able-body in the research of Piccione et al. (2006). The average bitrate which was found using 

electrode configuration (II) to be 15.9 bits/min for the people with disability and 29.3 bits/min 

for the able-bodied people in the current research. The classification accuracy and bitrate found 

in the two research works cannot be associated with that acquired in the current study due to 

variation in subject populations and experimental paradigms. These factors described below are 

some that have been recognized.  

 Number of choices: 

 A six-choice model had been used in the current study compared to the research of 

Sellers, Piccione et al. and Donchin where four-choice paradigms were used. As a consequence 

the target stimulus occurred with a probability of 0.25 in the study of Sellers and Donchin and 

Piccione et al., but in the present work it occurred with a probability of 0.16. Smaller target 

probabilities are equivalent to higher amplitudes in P300 systems (Duncan-Johnson and 



 

26 

Donchin, 1977), thus the P300 in our system might have been simpler to discover. BCI systems 

based on P300 were designed taking into account that disabled subjects might suffer from visual 

impairments. Systems such as the P300 speller in which users have to focus on a relatively small 

area of the display might thus not be appropriate for disabled subjects. Reducing the number of 

choices enlarges the area occupied by one item on the screen and thus facilitates concentration 

on one item. This might be particularly important for subjects who have little remaining control 

over their eye-movements. Such subjects might use covert changes of visual consideration 

(Posner and Petersen, 1990) to regulate a BCI system based on P300, which should be easier 

when a small number of large items is used.  

Inter-stimulus interval (ISI):  

Several factors have to be kept in mind when choosing an ISI for a P300-based BCI 

system. Regarding the classification accuracy, longer ISIs theoretically yields better results. This 

should be the case since longer ISIs (within some limits) cause larger P300 amplitudes. On the 

other hand, a consequence of lengthy ISIs is a lengthier overall duration of runs. Disabled 

subjects might have difficulties to stay concentrated during long runs and thus P300 amplitude 

and classification accuracy might actually decrease for longer ISIs. 

Regarding the bitrate, the factors described above have to be considered together with the 

fact that for a given classification accuracy with smaller ISIs, bitrates of higher values are 

obtained. Moreover, it should be acknowledged that if ISI is made shorter, subjects with 

cognitive deficits might have problems to detect all target stimuli and classification accuracy 

might decrease. 

Given the complex interrelationship of several factors an optimal ISI for P300-based 

BCIs can only be determined experimentally. Here we have shown that an ISI of 400ms yields 
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good results. Sellers & Donchin and Piccione et al. have used an ISI of 1.4s, and 2.5s, 

respectively. The corresponding outcomes achieved in their conclusions signify that the ISIs to 

be too long. Therefore, in this paper, the classification accuracy and bitrate obtained with LR, 

NN and SVM are compared directly to those obtained by BLDA (Bayesian Linear Discriminant 

Analysis). The performance for BLDA is shown in Figure 9 and Figure 10. 
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Figure 6: BLDA - classification accuracy & bit rate plotted vs. time 

Time (s)
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y 
(%

)

10

20

30

40

50

60

70

80

90

100

B
itr

at
e 

(b
its

\m
in

)

0

5

10

15

20

25

30

35

40

45

Time (s)
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y 
(%

)

10

20

30

40

50

60

70

80

90

100

B
itr

at
e 

(b
its

\m
in

)

0

5

10

15

20

25

30

35

40

45

Time (s)
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y 
(%

)

10

20

30

40

50

60

70

80

90

100
B

itr
at

e 
(b

its
\m

in
)

0

5

10

15

20

25

30

35

40

45

Time (s)
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y 
(%

)

10

20

30

40

50

60

70

80

90

100

B
itr

at
e 

(b
its

\m
in

)

0

5

10

15

20

25

30

35

40

45

Time (s)
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y 
(%

)

10

20

30

40

50

60

70

80

90

100

B
itr

at
e 

(b
its

\m
in

)

0

5

10

15

20

25

30

35

40

45

Time (s)
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y 
(%

)

10

20

30

40

50

60

70

80

90

100

B
itr

at
e 

(b
its

\m
in

)

0

5

10

15

20

25

30

35

40

45

S1 
S2 

S3 S4 

S6 S7 



 

29 

For subjects referred to as S1, S2, S3, S4, S6, S7. The panels show the eight electrodes 

configuration and classification accuracy achieved with BLDA. Blue represents the four 

averaged sessions and Red represents the corresponding bitrate. 

For Subject 1, the classification accuracy obtained with BLDA, averaged over all 

sessions, is 100% after 10 blocks of stimulus presentations and the corresponding bitrate per 

minute is 6.46. As mentioned above, the classification accuracy obtained with LR, averaged over 

all sessions, is 91.67% and the corresponding bitrate per minute is 4.94; the classification 

accuracy obtained with NN, averaged over all sessions, is 100% after 11 blocks of stimulus 

presentations and the corresponding bitrate per minute is 5.87 and for SVM, the classification 

accuracy, averaged over all sessions, is 100% after 5 blocks of stimulus presentations, and the 

corresponding bitrate per minute is 12.92. As we can see from the above result, the performance 

of BLDA is better than the one of LR. And the classification accuracy of BLDA and NN is 

100%, but the bmp of BLDA is larger than one of NN. Therefore, we can say that BLDA is 

better than NN. However, the bmp of BLDA is smaller than the bmp of SVM. So, the 

performance of BLDA is not better than the one of SVM. 

For Subject 2, the classification accuracy obtained with BLDA, averaged over all 

sessions, is 100% after 5 blocks of stimulus presentations and the corresponding bitrate per 

minute is 10.77. The classification accuracy obtained with LR, averaged over all sessions, is 

95.83%, and the corresponding bitrate per minute is 3.29, the classification accuracy obtained 

with NN, averaged over all sessions, is 95.83% and the corresponding bitrate per minute is 2.95, 

and the classification accuracy obtained with SVM, averaged over all sessions, is 100% after 5 

blocks of stimulus presentations and the corresponding bitrate per minute is 12.92. In this case, 
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the performance of BLDA is also better than the performance of LR and NN. But it is not better 

than the performance of SVM. 

For Subject 3, the classification accuracy of all classifiers is 100%, but the classifier 

BLDA shows the best performance. The classification accuracy is 100% after 3 blocks of 

stimulus presentations and the corresponding bpm is 16.16, the classification accuracy with LR 

is 100% after 9 blocks of stimulus presentations and the corresponding bpm is 7.18, the 

classification accuracy with NN is 100% after 3 blocks of stimulus presentations and the 

corresponding bpm is 21.54, and the classification accuracy with SVM is 100% after 14 blocks 

of stimulus presentations and the corresponding bpm is 4.62. Among all classifiers, the bpm of 

BLDA is the largest. This means for the Subject 3 the performance of BLDA is the best. 

For Subject 4, the classification accuracy obtained with BLDA, averaged over all 

sessions, is 100% after 5 blocks of stimulus presentations and the corresponding bitrate per 

minute is 10.7707. The classification accuracy obtained with LR and NN, averaged over all 

sessions, is 100%. The classification accuracy with LR is 100% after 7 blocks of stimulus 

presentations and the corresponding bpm is 9.23, the classification accuracy with NN is 100% 

after 11 blocks of stimulus presentations and the corresponding bpm is 5.87. For SVM, the 

classification accuracy is 83.33% and the corresponding bpm is 4.84. Therefore, for Subject 4, 

the performance of BLDA is also the best. 

For Subject 5, the performance for all classifiers is less than 100%. The classification 

accuracy obtained with BLDA, averaged over all sessions, is 95.83% and the corresponding bpm 

is 7.99, the classification accuracy obtained with LR and NN, averaged over all sessions, is 

95.83% and the corresponding bpm is 6.99, and the classification accuracy obtained with SVM, 

averaged over all sessions, is 83.33% and the corresponding bpm is 4.84. For BLDA, LR and 
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NN, Subject 5 concentrated on the wrong stimulus during one run in Session 1, but for SVM, 

Subject 5 concentrated on the wrong stimulus for all sessions. But the bpm of BLDA is also 

larger than others. Therefore, for the Subject 5, the performance of BLDA is better than the other 

classifiers. 

For Subject 6 and 7, all performances of all classifiers are very good. For all classifiers, 

the classification accuracy of 100% is reached. Overall, the performance for BLDA is the best. 

The bpm of BLDA for Subject 6 is 16.16, and for Subject 7 is 24.72.  

Table 3 shows the average bitrate per minute over all subjects and classifiers. From the 

table we can see the average bpm of BLDA is larger than the other classifiers. Therefore, we can 

conclude that BLDA is the best method compared to the other machine learning methods. 

Table 3: Average bitrate per minute (bpm) 

Subject LR NN         SVM        BLDA 

S1 3.32 4.35 6.73 5.14 
S2 3.95 3.17 5.14 6.22 
S3 7.17 7.62 3.67 8.67 
S4 6.39 6.85 3.83 7.69 
S6 6.04 6.65 4.08 7.13 
S7 9.23 9.22 7.09 8.24 

Avg. (S1-S4) 5.21±1.86 5.49±2.09 4.84±1.42 6.93±1.56 
 Avg. (S6-S7) 6.82±2.12 7.58±1.42 4.56±2.33 6.93±1.56 

 Avg. (All) 5.90±1.99 6.39±2.02 4.72±1.69 7.62±1.68 
  

Figure 7 shows the average bmp of each classifier according. As we can see, the average 

bpm of BLDA is larger than the one of the other classifiers. This means, the BLDA classifier is 

the better method compared to LR, NN, and SVM. 
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Figure 7: Average bitrate per minute vs time 

4.2. Machine learning algorithm 

Many of the characteristics of a BCI system depend critically on the employed machine 

learning algorithm. The important characteristics influenced by the machine learning algorithm 

are as follows: classification accuracy, communication speed, time and user intervention required 

to set up a classifier from the training data. FLDA is an effective and simple algorithm used in 

P300-based systems (Pfurtscheller and Neuper, 2001; Bostanov, 2004; Kaper, 2006). In one of 

Krusienski et al.’s comparisons of classification procedures (2006) for P300-based BCIs, it was 

determined in terms of classification accuracy and simplicity of usage, that the best method is 

FLDA when compared to others. However, using FLDA becomes impossible when the number 

of features becomes large, relative to the number of training models. This is acknowledged as the 

small sample size problem. The small sample size problem occurs because the between-class 

scatter matrix used in FLDA becomes singular when the number of features becomes larger. The 
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answer to this setback in the current study was to use the Moore-Penrose pseudo inverse of the 

between-class scatter matrix. Even if the quantity of features is high it is still allowed to use 

FLDA in this case. However, with this approach the performance of FLDA deteriorated when the 

number of electrodes was increased.  

In this work, LR, NN and SVM are employed. The classification accuracy of NN is 

higher than both LR and SVM. But the communication speed of it is very slow. The larger the 

dataset is, the slower the processing. When the number of features becomes large, the NN 

classifier is not suitable and SVM cannot reach high accuracy values. The LR classifier is the 

best suitable for classification accuracy and communication speed. In addition, BLDA is also 

considered. The common drawback of overfitting in BLDA, e.g., the small sample size, etc. are 

solved by using regularization. Without user intervention or time consuming cross-validation, the 

degree of regularization can be automatically assessed from training data through a Bayesian 

analysis approach.  
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

In this work an efficient P300-based BCI system for disabled subjects was presented. In 

the proposed algorithm, first the EEG signals were preprocessed using several stages that 

included referencing, filtering, downsampling, single trial extraction, windsorizing, scaling and 

electrode selection, to extract the feature vectors. These feature vectors were then fed to different 

classifiers namely Bayesian Linear Discriminant Analysis, Logistic Regression, Neural Network, 

and Support Vector Machine. Samples from both able bodied and disable persons were used for 

the experimentation. The classification accuracy averaged over sessions and the corresponding 

bitrates are used to determine the best classifier.  

Through experimentation it is shown that high classification accuracies and bitrates can 

be obtained for severely disabled subjects. Due to the use of the P300, only a small amount of 

training data are required to achieve good classification accuracy. Bayesian Linear Discriminant 

Analysis has shown better performance than the other classifiers for all subjects.  

Future improvements to the work presented here might consist of testing the system with 

completely locked-in patients and defining useful BCI applications customized to disabled users’ 

requirements. Furthermore, it would be good to perform studies with larger numbers of subjects 

in order to confirm the results found in the present work. 
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APPENDIX A. SUPPORT MACHINE LEARNING (SVM) 

As computationally dominant gears for supervised learning, support vector machines 

(svms) are extensively employed in classification and regression issues. Assume that a data set 

},..,1|),{( niyxD ii ==  is known for training, where the target value is the input vector d
i Rx ∈ . 

A linear machine is built by decreasing a normalized functional when SVMs maps these input 

vectors into a high dimensional Reproducing Kernel Hilbert Space (RKSH). 

bxwxf +>ʹ′⋅=< )()( φ  is the form taken by the linear machine . Here, )(⋅φ  is the mapping 

function, b is known as the bias, and the dot product >ʹ′⋅< )()( xx φφ 0i is also the reproducing 

kernel ),( xxK ʹ′  in the RKHS. The regularized functional is commonly defined as; 
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Where the regularization parameter is C, which is greater than zero, the norm of w in the RKSH 

is the stabilizer and ∑
=

n

i
ii xfyl

1

))(,( is the empirical loss term.  

The standardized functional can be minimized in standard SVMs, by resolving a convex 

quadratic programming optimization problem that assurances an exclusive global minimum 

result. In SVMs for binary classification (SVC) in which the target values }1,1{ +−∈iy , the hard 

margin loss function is defined as:  
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For noise-free data sets, the best and appropriate function is the hard margin loss 

function. Whereas for other general cases, a soft margin loss function is commonly employed in 

classical SVC. This is equated as:  
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Here, ρ is a positive integer.  

The minimization of the regularized functional with the soft margin as loss function leads 

to a convex programming problem for any positive integer ρ ; for L1 ( ρ  = 1) or L2 ( ρ  = 2) soft 

margin, it is also a convex quadratic programming problem. The L1 and L2 soft margin loss 

functions are simplified and handled as the le soft margin loss function, which is defined as:  

⎪
⎪
⎩

⎪⎪
⎨

⎧

−⋅−

−+≥⋅≥+
⋅−

+≥⋅

=

otherwisefy

fyiffy
fyif

fyl

xx

xx
xx

xx

xxe

ε

ε
ε

)1(

;211
4

)1(
;10

),(
2

 

where the parameter 0>ε . By introducing slack variables ibxwy iii ∀+>⋅<−≥ ))((1 φξ , the 

minimization hitch in SVC with the Le soft margin loss function can be modified as the 

following equivalent optimization problem. This is referred to as the primal problem: 
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Where  

ψe(ξ ) =
ξ 2

4ε
if ξ ∈ [0, 2ε]

ξ −ε if ξ ∈ (2ε, +∞)
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Standard Lagrangian techniques are used to derive the dual problem. For the inequalities 

in the primal problem let us make an assumption that 0≥iα . Also, let 0≥iγ  be the 

corresponding Lagrange multipliers. Now for the primal problem, the Lagrangian would be 

equated as: 

∑ ∑∑
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The KKT conditions for the primal problem require: 
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On Lagrange multipliers, an equality constraint can be evidently equated as follows:  

C ⋅ ξi
2ε

=αi +γ i if 0 ≤ ξi ≤ 2ε and C =αi +γ i if ξi > 2ε ∀i  

If we collect all items involving iξ  and let Ti =Cψe(ξi )− (αi +γ i )ξi  .Fom the above formulas, we 

have: 

Ti =
−
ε
C
(αi +γ i )

2 if ξ ∈ [0, 2ε]

−Cε if ξ ∈ [2ε, +∞]
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Thus, the iξ  can be eliminated if we set 2)( iii C
T γα

ε
+−= and introduce the additional 

limitations. In expressions of the positive dual variables iα  and iγ , the dual problem can be 

quantified as a maximization problem. This is represented as:  
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It is noted that )0,(),( αγα RR ≤  for any α and γ. Hence the maximization of the above 

formula over (α, γ) can be found as maximizing R (α,0) over 0,0
1

=≤+≤ ∑
=

n

i
iiii yandC αγα . 

Therefore the dual problem can be finally simplified as: 
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iiii yandiC αγα . The classifier can be obtained from the solution of 

the above problem as bxxKyxf
n
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iii +=∑
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),()( α . In the solution, ‘b’ is achieved as a byproduct.  
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APPENDIX B. LOGISTIC REGRESSION (LR) 

Logistic regression model can be express as the following: 

x
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 Similarly, we now write p ( x|1Π ) as ),,( 01 ββxp  and p( x|2Π ) as ),,( 02 ββxp  . Then we can 

estimate ββ ,0 as the following method. 

Given n training data, ),( ii yx , the conditional likelihood for ( ββ ,0 ) can be written as: 
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hence, the conditional log-likelihood is: 
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The maximum likelihood estimates ( ββ ,0 ) are obtained by maximizing ),( 0 ββl  with respect to 

0β  AND β . 

There various algorithms for calculating the maximum likelihood estimates such as EM-

method and weighted least-squares procedure are widely used. In this paper, its algorithms are 

not given. 

After the maximum likelihood estimates ( ββ
~,~0 ) of ( ββ ,0 ) is obtained, the classification 

rule: 

IF 1,0)(~ Π> toxassignxL  

Otherwise, 2Πtoxassign  
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APPENDIX C. NEURAL NETWORK (NN) 

The neural network mode is the following: 

2Πtoxassign 2Πtoxassign

 

Figure C1: Graph of a multilayer neural network 

As we can see in the Figure C1, the structure of the neural network consists of input, 

multilayers and output. In each layer, the output is calculated by the following formula: 
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where kH
jz  is the output of the j-th cell of the k-th layer,  kH

jh is the critical value of the j-th cell of 

the k-th layer,  k
jiw   is the weight coefficient and kH

jf  is the output function of the j-th neural  

cell at the k-th layer. 

Given the training data ),1,,())(),(( nmRyxmymx p =∈ , NN improve the weight 

coefficients, as the square sum of all errors of output is smaller. The formula of as the square 

sum of all errors of output is the following: 
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The algorithm for training the given data is the following: 

Step1: Set the initial weight (we can select any values for initial weights). 

Step2: For k-th training data input the input signal and find all output signals. 

Step3: By using the following formula, improve the weight coefficients. 

First improve the weight coefficients of the last layer (W-th layer). 
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Improve the weight coefficients of every layer in reverse order. 
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With improved weight coefficients, calculate the sum of the output error of the all-training data. 
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Step 5: Until ε≤E , repeat Step 2- Step 4. 

 

 


