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ABSTRACT 

Each genotype was exposed to controlled PHS conditions for evaluation of susceptibility 

or tolerance to sprouting, falling number, kernel color, test weight, and yield.  The 24 genotypes 

were grown in replicated trials at three locations over three years, all data subjected to an 

analysis of variance.   

Over three years the genotypes were rated for visual PHS using a 1 to 9 scale, with 1 

equivalent to no visual PHS and 9 equivalent to maximum visual PHS.  The red genotypes 

exhibited a higher tolerance to PHS than white genotypes with a mean PHS score of 4.46 

compared with 5.16 for white genotypes.  Not all the white genotypes were equally susceptible 

to PHS or more susceptible than the red genotypes, suggesting that not all seed dormancy is 

linked to the kernel color genes.   
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INTRODUCTION 

When physiologically mature grain is exposed to high humidity or rain before harvest, the grain 

can germinate in the spike.  Pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) is a major 

constraint to the production of high-quality grain, and it makes the grain unusable for many products.  

Starch is the primary component of grain, and alpha-amylase activity has a direct effect on starch 

degradation.  Excessive alpha-amylase activity caused by PHS can degrade starch and result in poor 

end-use quality of wheat products.  PHS damage results in reduced flour water absorption, which 

reduces the number of loaves of bread produced from a given amount of flour (Dexter and Edwards, 

2003) 

Due to an emphasis on whole-grain products, the domestic and international milling and baking 

industries are encouraging the production of white wheat throughout the Northern Plains and entire U.S.  

The demand for whole-grain milled products is increasing, and the flour resulting from milling white 

wheat produces lighter color bread preferred by many consumers when compared with the flour 

produced from red wheat.  However, red wheat generally exhibits a higher level of tolerance to PHS 

when compared with white wheat.  Extensive research has shown that there is a strong association 

between tolerance to PHS and the genes that determine the red kernel color in wheat (Groos et al., 

2002). 

To effectively develop hard white spring wheat cultivars with tolerance to PHS, it is 

important for plant breeders in the Northern Plains to know the range of tolerance expressed by 

adapted genotypes and if white kernel genotypes are generally more susceptible to PHS.  Hence, 

the objectives of this study were to 1) evaluate a cross-section of adapted hard red and white 

spring wheat cultivars for their reactions to PHS, and 2) determine the relationship between 

kernel brightness PHS tolerance, and falling number.    
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LITERATURE REVIEW 

Most hard red spring wheat (HRSW) cultivars have been selected such that they exhibit a 

high level of tolerance to PHS.  Nevertheless, PHS damage can result in substantial losses in the 

spring wheat growing region and in other areas throughout the world (Flintham et al., 2000).  

Although there is considerable variability in the level of tolerance to PHS in wheat, in striving 

for tolerance, breeders must also be concerned with seed dormancy and inhibiting germination, 

since PHS is closely related to dormancy (Bewely, 1997).   

Germination encompasses events that commence with the uptake of water by the 

quiescent dry seed and terminate with the elongation of the embryonic axis (Bewely, 1997), 

while seed dormancy is defined by the temporary failure of a viable seed to germinate after a 

specific length of time when the seed is exposed to a favorable set of environmental conditions 

(Bewely, 1997).  Dormancy is determined by two different factors, one that is coat-imposed and 

another that is embryo-imposed (Flintham et al., 2000).  Coat-imposed dormancy exists when the 

embryo fails to germinate due to the surrounding seed coat, while embryo-dormancy induces the 

embryo itself to remain dormant (Bewely, 1997).  Embryo dormancy is likely the most beneficial 

type of dormancy.  If dormancy is coat imposed, the embryo may still convert endosperm starch 

into sugar during sprouting, thus utilizing seed nutrients and affecting end-use product quality.  

Environmental factors affect the expression of PHS and make the selection of resistant 

cultivars difficult.  The main environmental factors that impact dormancy are rainfall, high 

relative humidity, and temperature.  Heyne et al. (1987) determined that the optimal amount of 

moisture for germination in wheat is 35 to 45% of kernel dry weight, and germination may occur 

at temperatures between 4 and 37˚ C, with 12 to 25˚C considered an optimum temperature range.   
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There are other factors that contribute to seed dormancy.  Temperature and drought 

conditions during grain-fill are believed to contribute to the level of seed dormancy at maturity.  

Low temperatures during seed development and grain-fill can prolong dormancy, while low 

temperatures during germination breaks dormancy in freshly harvested seeds (Nyachiro et al., 

2002).   Irrigated trials grown under low temperatures produced a similar level of dormancy 

when compared with high temperature drought-induced trials (Biddulph et al., 2005).  However, 

low-temperature drought induced trials showed the greatest level of seed dormancy (Biddulph et 

al., 2005). 

Wu and Carver (1999) noted that differences in PHS damage are evident between hard 

red and hard white genotypes at harvest maturity.  Damage that was measured as a percentage of 

sprouted kernels was hardly noticeable among the hard red genotypes, but easily detected among 

the hard white genotypes.  When harvest was delayed, sprout damage was more evident among 

all genotypes, yet the hard white genotypes showed higher overall PHS damage compared with 

the hard red genotypes. 

There have been numerous studies to identify markers and microsatellites associated with 

PHS tolerance and seed dormancy.  Most of the markers are closely related to the genes 

determining red kernel color.  These genes responsible for red kernel color are located to the 

long arms of the 3A, 3B, and 3D chromosomes (Bassoi and Flintham, 2005).  Red wheat 

genotypes express a wider range of variation for kernel dormancy and an elevated level of kernel 

dormancy/tolerance to PHS when compared with white wheat.  This suggests that red genotypes 

carry one or more alleles for kernel dormancy that are not present in white wheat genotypes.  

Flintham et al. (2002) described a dormancy gene, Vp1 controlled by triplicate R homoeoloci on 

the long arms of the group-3 chromosomes of wheat.  The dominant color gene alleles act in an 



4 

 

additive manner to influence seed dormancy, and as a consequence of this, white wheat 

genotypes require other genes for adequate dormancy (Groos et al., 2002).   Himi et al. (2002) 

stated that the R gene might only act as a minor factor in seed dormancy, and Wu and Carver 

(1999) acknowledged that the range in resistance among hard red cultivars did not appear to be 

related to the number of red kernel color genes. 

 There are markers for PHS tolerance that are not directly related to seed color.  Roy et al. 

(1999) identified a sequence-tagged microsatellite (STMS) on chromosome 6B, and a sequence-

tagged site (STS) on chromosome 7D.  Their study mapped F6 inbred lines, and results 

demonstrated a strong association between each of the markers and tolerance to PHS.  They also 

were able to assign the markers to the associated chromosomes through the use of nulli-

tetrasomic lines.  In their population, tolerance to PHS was governed by two complementary 

genes on chromosomes 6B and 7D.  

Other potential QTL that are related to seed dormancy, but not with the kernel color 

genes have been identified on chromosome 4A (Mares et al., 2005).  Mares et al. (2005) 

concluded that the dormancy QTL on chromosome 4A alone is not sufficient to produce progeny 

with a level of dormancy equivalent to the most dormant parent, and doubled-haploid lines that 

contained the 4A QTL allele from the dormant parent only expressed an intermediate level of 

dormancy. 

Mares et al. (2005) confirmed the location of QTL for PHS tolerance, and these QTL 

were identified in other studies (Flintham et al., 2000; Flintham et al., 2002).  A major gene for 

wheat grain dormancy, Phs, which is thought to affect the embryo was originally located to 

chromosome 7D (Flintham et al., 2000).  However, the true location of the gene is on the long 

arm of 4A (Flintham et. al., 2002).  Flintham (2000) suggested that expression of Phs was stable 
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over two years of field trials, and that its expression accounted for the majority of the phenotypic 

variance in their population.  The gene is semi-dominant, and its expression is independent of the 

seed coat and expression of the color genes.  Still, the effect of Phs on dormancy appears to be 

comparable to that of the color genes. 

Many morphological spike features may impact expression of PHS.  Cultivars with awns 

absorbed up to 30% more water than their awnless counterparts, and awnless cultivars showed a 

higher level of tolerance to PHS (King and Richards, 1984).   

In addition to the presence/absence of awns, the pericarp or fruit coat thickness may play 

an important role in the tolerance to PHS.  The pericarp surrounds the entire seed and is 

composed of several layers.  The layers of the pericarp from the outside inward are: epidermis, 

hypodermis, cross cells, tube cells, seed coat (testa), nucellar tissue, and aleurone cell wall 

(Hoseney, 1998).  The thickness of the seed coat can vary from 5 to 8 μm (Hoseney, 1998).  The 

seed coat consists of three layers: a thick outer cuticle, a layer that either contains or does not 

contain pigment, and a thin inner cuticle (Hoseney, 1998).  The seed coat of white wheat has two 

compressed cell layers of cellulose containing little or no pigment (Hoseney, 1998).  In red 

wheat, the testa layer or seed coat contains pigments that prevent pre-mature germination 

(Zakowesky et al., 2005).  Differences among the seed coat or testa layer may be an indicator of 

susceptibly to PHS.  

It has been suggested that there may be differential water uptake due to the amount of 

nucellar lysate between the nucellar tissue and the seed coat (Evers and Reed, 1988).  The lack of 

the pigment layer in the seed coat of white wheat, and the lysate between the nucellar tissue may 

be a primary cause for their general higher level of susceptibility to PHS. 



6 

 

Starch is the predominant component of wheat grain, and alpha-amylase activity has a 

direct effect on starch degradation.  Alpha-amylase is an enzyme that breaks down starch to 

sugars. Specifically, alpha-amylase is an enzyme that breaks glucosidic bonds, which results in a 

decrease in the size of large starch molecules (Hoseney et al., 1998).  Therefore, non-sprouted 

cereal grain expresses a relatively low level of alpha-amylase activity, but all grain exhibits some 

level of alpha-amylase activity.  Upon germination however, the level of alpha-amylase activity 

increases significantly, and elevated alpha-amylase activity decreases the viscosity of starch in a 

solution or slurry (Hoseney et al., 1998).   

Other factors can contribute to elevated levels of alpha-amylase activity not caused by 

PHS.  Mares et al. (2008) indicated that late maturity a-amylase (LMA), or prematurity a-

amylase (PMAA) as it has been termed in the UK, in wheat involves the synthesis of high alpha-

amylase during the middle to later stages of grain development and ripening.   

Elevated alpha-amylase activity degrades starch and reduces the baking quality of flour.  

The result of alpha-amylase on starch is a reduction in the water holding capacity of the starch.  

This leads to a reduction in the water absorption capacity of flour, and it reduces the number of 

loaves of bread produced from a given amount of flour (Dexter and Edwards, 2003).  Another 

consequence is that the flour produces sticky dough, which causes handling problems for bakers 

(Every and Ross, 1996).  The sticky crumb also makes the bread hard to slice, since the crumb 

builds up on slicing blades (Dexter and Edwards, 2003). 
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OBJECTIVES AND HYPOTHESIS 

The objectives of this study were to 1) evaluate a representative regionally adapted group 

of hard red and white spring wheat genotypes for their reaction to PHS, and 2) determine the 

extent of the relationship between kernel color and tolerance to PHS in these genotypes. 

Ho1: The PHS tolerance of red and white genotypes will not be significantly different. 

Ho2: There is no relationship between kernel color and susceptibility or tolerance to PHS. 
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MATERIALS AND METHODS 

Plant Materials 

Twenty-four genotypes representing 12 red and 12 white spring wheats, including 

cultivars typically produced in the spring wheat region of the U.S. were evaluated (Table 1).  

‘Hanna’ and ‘AC Snowbird’ have previously demonstrated a high level of seed dormancy 

(Smith, 2006).  Consequently, Hanna was considered a red kernel control for tolerance to PHS, 

and AC Snowbird a white kernel control.  ‘Ingot’ and ‘Lolo’ which were previously shown to 

exhibit susceptibility to PHS (Anderson, 2006) were considered PHS susceptible red and white 

kernel types, respectively. 

Methods 

Experiments were arranged in a randomized complete block design with four replications 

and they were conducted over three years, 2006 to 2008.  In each year, experimental plots were 

grown at Prosper, Carrington, and Casselton, ND.  The experimental unit consisted of a four-row 

plot planted at a seeding rate of 81.8 kg per ha
-1

, with a length of 3.0 m.  Rows were spaced 30.5 

cm apart, and plots were trimmed to 2.4 m x 1.2m prior to harvest.  The soil types at the Prosper 

and Casselton are similar.  They are classified as a Perella-Bearden silty clay loam, which 

consists of level, deep somewhat poorly drained soil type.  The soil type at Carrington is 

classified as a Heimdal-Emrick loam, which is a very deep, level soil.  Typically, runoff is slow 

for such a soil, although permeability is moderate and available water holding capacity is high. 

Plots were sprayed with a backpack sprayer twice each season when plants were at 

Feekes stage 5.0 and 9.0 with a propiconazole fungicide at a rate of 292.3 ml ha
-1

.  These 

treatments were to control tan spot (Pyrenophora tritici-repentis), and leaf rust (Puccinia 

triticina) diseases, which may have obscured accurate determinations of kernel brightness and 
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quality.  For control of Fusarium head blight, a tebuconazole fungicide was similarly applied at 

Feekes stage 10.5 at a rate of 292.3 ml ha
-1

. When possible, rainfall amounts and average 

temperatures were recorded at the locations for the months of the season when the experiments 

were growing.   
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DATA COLLECTION AND SAMPLING 

Preharvest Sprouting 

Genotypes were evaluated for tolerance to PHS after exposing a sub-sampling of spikes 

harvested from individual plots to high moisture in a mist chamber.  At physiological maturity, 

30 spikes were randomly harvested from each experimental plot.  The spikes were immediately 

stored at 10
o
 C to inhibit additional alpha-amylase activity, and later placed in a mist chamber 

and misted for a period of 48 h.  Following misting, the spikes were maintained at constant high 

humidity by placing a humidifier in the chamber for 3 d.  Visual observations of the spikes were 

made, and they were rated for germination using a 1 to 9 scale, with 1 representing spikes 

showing no visual germination and 9 representing spikes showing nearly 100% germination 

(Table 2).   

Grain Color 

Immediately after harvesting plots, a 50 g sub-sample of seed was taken from each plot 

and stored at -10
o
 C.  A Minolta colorimeter was used to measure kernel color of the sub-

samples.  Sub-samples were classified as white or red according to established criteria (Peterson 

et al., 2001), and colorimeter measurements were made based on a standard color space scale 

(CIE, 1976), where white wheat kernels typically measure 50 or above on the L* brightness scale 

and a reading of 100 is equivalent to pure white.  Red wheat kernels typically measure less than 

50 on the L* brightness scale, where a value of 0 represents pure black.  

Falling Number 

 Falling number measurements represent an indirect measurement of alpha-amylase 

activity in grain.  A portion of the 50 g sub-sampling of seed from genotypes was used to 
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measure falling number.  Grain samples were ground using a Udy grinder, and falling number 

readings were made in accordance with the AACC approved method (AACC, 1999). 

Yield and Grain Volume Weight 

Remaining plot seed was harvested using a small-plot combine, and genotypes were 

evaluated for grain yield and grain volume weight (GVW).  GVW was determined by using a 

pint measuring cup according to approved AACC method 55-10 (AACC, 1999?). 

 
Table 1.  Hard red spring (HRS) and hard white spring (HWS) genotypes included in the study, their 

class, year, origin of release, and their pedigrees. 

 

Genotype Information 

Class Genotype Year Origin  Pedigree      
 
HRS Alsen   2000  NDSU   ND674//ND2710/ND688, 

HRS  Briggs  2002 SDSU  AC Pasua/Bergen//SD3097 

HRS  Freyr  2004 AgriPro  Sonja/Vance//Sumai#3/Dalen 

HRS  Glenn  2005 NDSU  Sumai3/Wheaton//Grandin/ND688/3/Steele-ND 

HRS  Granite  2002 WPB  ACSS4m-k/3/LNL/TG/312S 

HRS  Hanna  2002 AgriPro  MN70170/ECM403//Katepwa/3/Benito/4/AC Domain  

HRS  Knudson 2002 AgriPro  Karl/Krona/3/Bergen//Erik/MN73167 

HRS  Ingot  1998 SDSU  SD3080/Dalen (SD3080 = Butte 86/SD3004) 

HRS  Kelby  2005 AgriPro  N97-0117/N92-0098//Sumai#3/Dalen 

HRS  Norpro  1999 AgriPro  88-0436/Dalen 

HRS  Steele-ND 2003 NDSU  Parshall/ND706 

HRS  Reeder  1999 NDSU  IAS20*4/HH567.71//Stoa/3/ND674 

HWS Snowbird 2004 Canada  RL4137*6//TC/POSO48//AC Domain 

HWS  AC Vista  1996 Canada  HY344/7915-QX76B2/HY358*3/BT10 

HWS  Argent  1998 NDSU  Grandin*5/ND614 

HWS  Diamond  2005 Canterra   AUS1408//Kokako/CSW1889/Endeavour 

HWS  Peerless  2005 Canterra   Otane/AC Karma 

HWS  Explorer  2001 MSU  MT8182/Fortuna//Pondera/MT8182 

HWS  Lolo  1997 U of I  A9158S//Oasis 86/IDO377 

HWS  MT9420  2001 MSU  MT8182/MT8289 

HWS  NDSW0602 Exp NDSU  N97-0117//MT9420/3/971//IDO533/9747 

HWS  Otis  2005 WSU  (PI 591045)/3/Tanager3/Torim73 

HWS  Pristine  2001 WPB  Fergus/Golden 86 

HWS  99S0155-14W Exp AgriPro  Ivan/2/Haqmer//Sumai3/Dalen
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Table 2.  Scale to visually evaluate spring wheat spikes for PHS. 

 

Score   Description          

 

1 Visible radicles emerging from approximately 10% of spikelets. 

 

2 Visible radicles emerging from approximately 20% of spikelets. 

 

3 Visible radicles emerging from approximately 30% of spikelets. 

 

4 Visible radicles emerging from approximately 40% of spikelets. 

 

5 Visible radicles emerging from approximately 50 to 100% of spikelets. 

Coleoptiles emerging from 10 to 20% of spikelets. 

 

6 Visible radicles emerging from approximately 50 to 100% of spikelets. 

Coleoptiles emerging from 30 to 40% of spikelets. 

 

7 Visible radicles emerging from approximately 50 to 100% of spikelets. 

Coleoptiles emerging from 50 to 100% of spikelets. 

Average coleoptile length less than 1 cm. 

 

8 Visible radicles emerging from approximately 50 to 100% of spikelets. 

Coleoptiles emerging from 50 to 100% of spikelets. 

Average coleoptile length 1 to 2 cm. 

 

9 Visible radicles emerging from approximately 50 to 100% of spikelets. 

Coleoptiles emerging from 50 to 100% of spikelets. 

Average coleoptile length greater than 2 cm. 
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Fig. 1. Representative photo of spikes exhibiting tolerance to PHS (score = 1). 

 

 
 

Fig. 2. Representative photo of spikes exhibiting susceptibility to PHS (score = 9). 
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Table 3.  Analysis of variance table of a RCBD experiment with 24 genotypes and 4 replications 

at  a single environment. 

 

Source of Variation  Degrees of Freedom  Expected Mean Square 

Replication    3    
2
 + rg

2 
+ gr

2
 

Genotype    23    
2 

+ rg
2
   

Error     69    
2
    

Total     95    

 

 

Table 4.  Combined analysis of variance table of a RCBD experiment with 24 genotypes and 4 

replications at three environments. 

 

Source of Variation  Degrees of Freedom  Expected Mean Square 

Environments  e-1  2     

Reps/Environment (r-1)e  9       

Genotype  g-1  23    
2
e+r

2
ge+ re

2
g  

G X E      (g-1)(e-1) 46    
2
e+r

2
ge   

Error   (g-1)(r-1)e 207    
2
e 

Total     287   
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RESULTS AND DISCUSSION 

Environmental Conditions 

Environmental conditions in 2006, 2007, and 2008 represented the wide range of 

variability for temperature and rainfall that can be expected at the various experimental locations 

(Table 5).  Each location received lower than normal precipitation in the early part of the 

growing seasons in 2006 and 2008.  Conversely, in 2007 all locations received a higher than 

normal amount of precipitation during May.  Temperatures in 2006 were normal compared to 

long-term averages.  Temperatures in 2007 at Carrington and Prosper, were above normal, but 

below normal at both environments in 2008.   

Kernel Brightness 
 

With significant results across the nine environments, a Bartlett’s chi-square test of 

homogeneity indicated not all variances were homogenous, therefore, not all locations were 

combined for colorimeter L* value.  Seven environments were combined with a χ
2
 value of 72.8; 

whereas, the 2008 Casselton and 2006 Prosper variances were combined with a χ
2
 value of 6.4, 

and analyzed separately.  The mean colorimeter L* value over seven environments was 49.5; 

whereas, the 2008 Casselton and 2006 Prosper mean was 48.5 . 
 
  

Results in Tables 6 and 7 indicate that genotype, and genotype x environment interaction 

were highly significant for L* value.  Glenn had the lowest mean L* value across all 

environments, which suggests that Glenn likely is homozygous for the three dominant R genes 

(Table 8).  

The range of colorimeter L* values for the genotypes suggests that in addition to the  

genes responsible for kernel color, other factors impact kernel brightness.  Studies have indicated 

that a delayed harvest can result in bleaching of the kernel (Gan et al., 2000).  Additionally, the 
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range of L* values may indicate that not all of the red genotypes possess 3 homozygous alleles 

for kernel color.   

Table 5.  Weather data for the growing seasons of 2006, 2007 and 2008 at Carrington, 

 and Prosper,  North Dakota. 

 Precipitation Temperature 

 

Environment 

 

Month    Total 

 

%Normal†  Max. Min Avg. 

 

+Normal† 

   mm  
         _________________

°C 
______________

 

        

Carrington May 29 46 20 7 14 0 

2006 June 88 92 25 12 19 +1 

 July 27 34 30 14 22 +1 

 Aug. 54 86 28 12 20 0 

        

Carrington May 136 295 20 7 14 0 

2007 June 66 84 33 21 27 +9 

 July 85 116 29 15 22 +1 

 Aug. 85 190 24 12 18 -2 

        

Carrington May 30 48 18 2 10 -4 

2008 June 127 132 22 10 16 -2 

 July 47 59 27 14 20 0 

 Aug. 39 62 27 12 20 -1 

        

Prosper May 41 60 20 7 14 +1 

2006‡ June 12 13 25 12 19 +1 

 July 66 80 30 15 22 +1 

 Aug. 25 37 27 13 20 0 

        

Prosper May 123 181 22 9 15 +2 

2007‡ June 106 116 27 14 21 +3 

 July 49 60 29 15 22 +1 

 Aug. 48 71 24 11 18 -2 

        

Prosper May 38 57 20 4 12 -1 

2008‡ June 164 180 23 11 17 -1 

 July 75 91 27 14 20 0 

 Aug. 77 113 28 13 20 0 

† Based on 1971-2007 average. 

‡ Due to the proximity of the location, data used for Casselton  
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Furthermore, the range of L* values among the white genotypes may indicate the 

involvement of alleles other than those for the genes related to kernel color, and  it likely 

indicates that environment also affects L* values. 

Glenn had the lowest mean kernel brightness readings, with a mean L* value of 46.80 

over the seven locations, and a mean value of 45.46 over the two environments.  Explorer had 

the highest mean kernel brightness with a reading of 53.16 over the seven environments and 

51.97 over the two environments (Table 8). 

Argent displayed the lowest L* mean for a white genotype at 49.46 and 49.30 over the 

seven and two environments, respectively.  Matus-Cádiz et al. (2008) noted that Argent did not 

meet the USDA Federal Grain Inspection Service (FGIS) color standards as a white wheat, and 

thus, it was classified by the FGIS as a hard red spring wheat.  Matus-Cádiz et al.,(2008) 

concluded that higher free phenolic compounds in the bran of Argent could explain why seed of 

Argent is darker than expected for a white wheat cultivar.   In the present study, neither the red 

or white wheats were genotyped with markers or otherwise confirmed as being homozygous 

dominant or recessive for the major color genes.  Genotypic variation for the major genes as well 

as the phenotypic expression of phenolics in the bran similar to Argent are two possible reasons 

for the differences in measured kernel L* values. 

Results in Table 9 indicate the mean L* value over seven environments was significant. 

The 2006 L* value was the highest at 50.56; whereas, the 2007 Carrington L* value was the 

lowest, at 49.19.  The differences between environments demonstrate the environmental impact 

on L* values.  Matus-Cádiz et al (2003) noted that genotypic differences in grain brightness was 

generally stable across environments, however hard white kernels tended to be smaller and 

appear more red in dry years.  Additionally, Peterson et al. (2001) suggested that 
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environmentally induced variations in grain protein content, hardness, vitreousness, and kernel 

size and shape might all contribute to variation in visual grain color.    

Results in Table 10 indicate that, 2006 Prosper, and 2008 Carrington had lower mean L* 

values when compared to the other seven environments.  With the exception of June at 

Carrington, 2008, both environments had lower than average precipitation.  Any delay of harvest 

after physiological maturity can greatly impact seed coat color (Gan et al., 2000).  The genotypes 

tested displayed a range of maturities, which depending on the environment, may have impacted 

L* values.   

Table 6.  Combined analysis of variance table for L* across seven locations. 

 

Source of Variation  Degrees of Freedom  Mean Square 

Environments    6   17.8**  
Reps/Environment   21   1.5**    

Genotype    23   129.6**  

G X E        138   1.7**   

Error     483   .42 

CV%        1.3%   

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 

 

 

Table 7.  Combined analysis of variance table for L* across two locations. 

 

Source of Variation  Degrees of Freedom  Mean Square 

Environments    1   5.4* 

Reps/Environment   6   5.4    

Genotype    23   39.3**  

G X E        23   2.2  

Error     276   1.4      

CV%        2.4%      

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 
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Table 8.  Mean L* values across seven and two North Dakota environments respectively 

during 2006, 2007, and 2008. 

  

Genotype Mean Genotype Mean 

             _________________
Colorimeter L Value

_________________________
 

    

ALSEN 47.3 ALSEN 46.2 

BRIGGS 48.0 BRIGGS 46.8 

FREYR 46.8 FREYR 46.0 

GLENN 46.8 GLENN 45.5 

GRANITE 47.1 GRANITE 46.4 

HANNA 48.0 HANNA 47.0 

INGOT 48.2 INGOT 47.1 

KELBY 48.1 KELBY 46.7 

KNUDSON 47.4 KNUDSON 46.8 

NORPRO 46.9 NORPRO 46.1 

REEDER 48.5 REEDER 46.7 

STEELE-ND 47.5 STEELE-ND 46.1 

99S0155-14-1W § 51.8 99S0155-14-1W § 50.9 

AC SNOWBIRD § 50.7 AC SNOWBIRD § 49.4 

AC VISTA § 51.7 AC VISTA § 50.9 

ARGENT § 49.5 ARGENT § 49.3 

DIAMOND § 51.7 DIAMOND § 51.6 

PEERLESS § 52.3 PEERLESS § 50.9 

EXPLORER § 53.2 EXPLORER § 52.0 

LOLO § 51.4 LOLO § 50.8 

MT9420 § 52.3 MT9420 § 51.4 

NDSW0602 § 50.9 NDSW0602 § 49.7 

OTIS § 51.5 OTIS § 50.2 

PRISTINE § 51.0 PRISTINE § 49.6 

MEAN  49.5 MEAN 48.5 

LSD (5%)  0.3 LSD (5%)  1.2 

§ Denotes white genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

Table 9.  Mean L* values averaged across seven North Dakota environments during 2006, 

2007, and 2008. 

Year Location Mean  

2006 Carrington 50.6 

2006 Casselton 49.5 

2007 Carrington 49.2 

2007 Casselton 49.5 

2007 Prosper 49.8 

2008 Casselton 49.7 

2008 Prosper 49.5 

 LDS (5%) .2 

 

 

Table 10.  Mean  L* values across two North Dakota environments during 2006, 2007, and 

2008. 

Year Location Mean  

2006 Prosper 48.3 

2008 Carrington 48.7 

 Mean 48.5 

 LDS (5%) .3 

 

Preharvest Sprouting 

Environmental variances were significant, and a Bartlett’s chi-square test of homogeneity 

indicated that the environmental variances were homogenous, χ
2
 = 69.7.  Therefore ,all 

environments were combined for the evaluation of PHS.  Data analysis of PHS showed the 

environment, genotype, and genotype x environment were all highly significant for PHS (Table 

11).   

The mean PHS score over all nine environments was 4.8, and scores for genotypes over 

environments ranged from 2.22 for 99S0155-14-1W, a white kernel genotype, to 6.64 for 

Explorer, also a white kernel genotype (Table 12).  The susceptible control genotypes, Ingot and 

Lolo, had mean PHS scores of  6.44 and 5.17, respectively (Table 12).  The tolerant control 

genotypes, Hanna and AC Snowbird had means scores of 2.72 and 2.47, respectively(Table 12).   

Two white kernel genotypes, 99S0155-14W, and AC Snowbird both were the most 

tolerant to PHS, but the mean PHS score for white genotypes over all environments was 5.16.   



21 

 

In comparison, the PHS mean for the red kernel genotypes was 4.46.  Although some white 

kernel genotypes are more tolerant than the most tolerant red genotypes, on average, the white 

genotypes were more susceptible than the red genotypes.  Similarly, there were red genotypes 

that exhibited very little tolerance to PHS.  For example, Ingot was the third most susceptible to 

sprouting under PHS conditions.  However, Knudson, NorPro, and Granite exhibited PHS scores 

higher than the mean.   

Additionally morphological characteristics may play an important role in PHS tolerance.    

AC Snowbird is an awnless cultivar, and displayed a very high level of tolerance to PHS.  

Cultivars with awns absorbed up to 30% more water than their awnless counterparts, and 

awnless cultivars showed a higher level of tolerance to PHS (King and Richards, 1984).   

Furthermore Derera et al. (1977) demonstrated differential sensitivity of wheat cultivars 

to germinate in the presence of their chaff or tissue.  Wu et al. (1999) demonstrated that with the 

addition of chaff extract to the germination medium, seed germination was inhibited by 20 to 

85% of germination without the extract.  Both Glenn and Hanna displayed high levels of 

tolerance to PHS.  Seed of these two genotypes is generally more difficult to thresh from the 

spikes at maturity in comparison to other genotypes.  This may indicate that not only chaff tissue 

can inhibit germination, but glume structure and adherence of the glume to the kernels may 

provide a barrier to moisture reaching the kernels under PHS conditions.   

Mean PHS score was the highest at Carrington, 2008, and  2006 Prosper had the lowest 

PHS score (Table 13).  Biddulph et. al (2005) indicated that high temperatures with drought 

conditions resulted in seed with a high level of dormancy.  The 2006 growing season was the 

driest of the three years (Table 5), which may have contributed to the lower PHS scores for that 

year. 
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Table 11.  Combined analysis of variance table for PHS values across nine locations 

Source of Variation  Degrees of Freedom  Expected Mean Square 

Environments    8    44.5** 

Reps/Environment   27    2.0   

Genotype    23    62.0 ** 

G X E        184    2.31 **   

Error     621    1.4 

Total     863         

C.V.%         24.13 

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 

 

 

 

 

Table 12.  Mean PHS values averaged across nine North Dakota environments during 

2006, 2007, and 2008.  

Genotype  Sprout Value 

ALSEN 4.1 

BRIGGS 4.5 

FREYR 4.2 

GLENN 3.4 

GRANITE 5.5 

HANNA 2.7 

INGOT 6.4 

KELBY 3.6 

KNUDSON 5.2 

NORPRO 5.8 

REEDER 4.2 

STEELE-ND 4.3 

99S0155-14-1W § 2.2 

AC SNOWBIRD § 2.5 

AC VISTA § 5.7 

ARGENT § 4.3 

DIAMOND § 6.4 

EXPLORER § 5.2 

LOLO § 6.1 

MT9420 § 5.7 

NDSW0602 § 6.5 

OTIS § 6.1 

PEERLESS § 6.6 

PRISTINE § 4.4 

MEAN 4.8 

LSD (5%)  0.5 

§ Denotes white genotypes. 
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Table 13.  Mean PHS values ranked by location from lowest to highest, averaged across nine 

North Dakota environments during 2006, 2007, and 2008. 

Year Location Mean Location Sprout Value  

2008 Carrington 6.0 

2008 Casselton 5.3 

2007 Carrington 5.2 

2007 Casselton 5.1 

2007 Prosper 5.1 

2008 Prosper 4.5 

2006 Carrington 4.2 

2006 Casselton 4.2 

2006 Prosper 3.8 

 Mean 4.8 

 LDS (5%) .3 

 

 

 

Falling Number 

While the individual environmental analysis proved to be significant, a Bartlett’s chi- 

square test of homogeneity indicated not all variances were homogenous; therefore, not all 

environments were combined for analyses of falling number.  With a χ
2
 value of 69.7, the five 

environments; 2006 Prosper, 2006 and 2008 Casselton, and 2006 and 2007 Carrington were in 

the ANOVA, and environment, genotype, and genotype x environment interactions were highly 

significant (Table 14).  After combining the other environments; 2007 and 2008 Prosper, 2007 

Casselton, and 2008 Carrington in the ANOVA, environment, genotype, and genotype x 

environment interactions were highly significant with a χ
2
 value of 40.8 (Table 15).  The mean 

falling number value over five environments was 488.6 s; whereas, over four environments, it 

was 586.2 s (Table 16). 
 
  

Wu et al. (1999) stated that a falling number of greater than 300 s serves as minimum for 

predicting that wheat grain is not exhibiting PHS, while anything less is predictive of grain that 

has sprouted.  Although differences were seen among the genotypes tested in the present study 
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(Table 16), all falling number values for genotypes were above 300 s, indicating little PHS 

damage prior to harvest. 

At 577.7s, Briggs had the highest mean falling number value over the five environments.  

Norpro had the highest mean falling number over the four environments at 737.5 s.  At 421.9 s 

MT9420 had the lowest mean falling number value over the five environments, while Explorer 

had the lowest mean over the four environments at 472.8 s.  While significant differences were 

observed among the genotypes, all genotypes displayed no PHS damage prior to harvest.  

However, falling number differences among the genotypes may be related to late maturity alpha-

amylase activity (Mares et al 2008). 

Similar to the individual genotypic results, the mean falling number for all white 

genotypes was 471.3 s; whereas, that for the red genotypes was 505.4 s.  The mean for the white 

genotypes over four environments was 538.4 s; whereas, the mean for red genotypes was 624.5 

s.  While genotypes that display lower falling number values may also be susceptible to PHS, 

falling number was not always predictive or indicative of PHS.  Glenn had a mean falling 

number value lower than the mean of the red genotypes, but Glenn expressed a high level of 

tolerance to PHS (Table 12).  This could be an indicator that Glenn is more susceptible to late 

maturity alpha-amylase activity. 

Means of the environments were significantly different (Tables 17 and 18).  The five- 

year environment mean was 490.37 s; whereas, the four-year environment mean was 591.16 s.  

Wu et al, (1999) stated falling number values can fluctuate widely depending on the degree of 

ripening and the amount of rainfall preceding harvest.  While there are genotypic differences for 

falling number, environmental differences can affect falling number values.  
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Table 14.  Combined analysis of variance for falling number across five locations. 

 

Source of Variation  Degrees of Freedom  Mean Square 

Environments    4   49,5516.7**  

Reps/Environment   15   3185.9    

Genotype    23   35,272.1**  

G X E        92   14,204.8**   

Error     345   2437.3 

CV%         10.1% 

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 

† L = 100 (white) to 0 (black) 

 

 

 

 

Table 15.  Combined analysis of variance for falling number across four North Dakota 

environments over 2007 and 2008. 

 

Source of Variation  Degrees of Freedom  Mean Square 

Environments    3  1569297.2** 

Reps/Environment   12      7694.9   

Genotype    23      89022.1**  

G X E        69      19380.4**  

Error     276      12248.0    

CV%           18.9%   

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 
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Table 16.  Mean falling number values averaged across five and four North Dakota 

environments respectively during 2006, 2007, and 2008.  

  

Genotype Five Location Mean Genotype Four Location Mean 

                      Seconds                                                             Seconds 

 

ALSEN 490.4 ALSEN 589.9 

BRIGGS 577.7 BRIGGS 686.4 

FREYR 553.1 FREYR 725.0 

GLENN 480.1 GLENN 530.5 

GRANITE 434.1 GRANITE 622.9 

HANNA 498.5 HANNA 653.2 

INGOT 503.2 INGOT 616.7 

KELBY 518.1 KELBY 639.0 

KNUDSON 523.7 KNUDSON 576.9 

NORPRO 511.0 NORPRO 737.5 

REEDER 487.8 REEDER 596.0 

STEELE-ND 492.5 STEELE-ND 632.6 

99S0155-14-1W § 489.9 99S0155-14-1W § 550.0 

AC SNOWBIRD § 545.2 AC SNOWBIRD § 635.0 

AC VISTA § 525.3 AC VISTA § 614.6 

ARGENT § 483.8 ARGENT § 584.8 

DIAMOND § 497.6 DIAMOND § 506.1 

EXPLORER § 431.2 EXPLORER § 472.8 

LOLO § 422.2 LOLO § 501.1 

MT9420 § 421.9 MT9420 § 478.2 

NDSW0602 § 478.2 NDSW0602 § 576.6 

OTIS § 427.7 OTIS § 475.4 

PEERLESS § 445.5 PEERLESS § 541.0 

PRISTINE § 487.8 PRISTINE § 525.9 

MEAN  488.6 MEAN 586.2 

LSD (5%)  30.7 LSD (5%)  77.0 

§ Denotes white genotypes. 
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Table 17.  Mean falling number averaged across five North Dakota environments during 

2006, 2007, and 2008. 

Year Location Mean Location FN Value  

2006 Carrington 515.6 

2006 Casselton 440.1 

2006 Prosper 443.8 

2007 Carrington 602.6 

2008 Casselton 449.8 

 Mean 490.4 

 LDS (5%) 14.0 

 

 

 

Table 18.  Mean falling number values averaged across four North Dakota environments 

during 2006, 2007, and 2008. 

Year Location Mean Location Sprout Value  

2007 Casselton 667.22 

2007 Prosper 722.29 

2008 Carrington 484.27 

2008 Prosper 490.86 

 Mean 591.16 

 LDS (5%) 31.44 

 

 

 

Grain Yield 

 A Bartlett’s chi-square test of homogeneity indicated not all variances were homogenous, 

therefore not all environments were combined for grain yield.  Eight environments were 

combined with a χ
2
 value of 60.7, while 2006 Carrington data were analyzed separately.  Results 

of the ANOVA for grain yield (Table 19) indicate the main factors of environment and genotype, 

and the genotype by environment interactions were highly significant.  In 2006, genotype was 

highly significant (Table 20).     

In evaluating red and white genotypes, Peterson et al. (1992) reported a significant 

genotype by environment interaction for grain yield.  In the present study, the red genotypes 

generally expressed higher grain yields when compared to the white genotypes (Table 21).  

Reeder, a HRSW, expressed the highest yield potential across the eight environments and 
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Carrington in 2006 ,yielding 3761.2 kg ha
-1

 and 1820.5 kg ha
-1

, respectively.  Conversely, 

Pristine a HWSW expressed the lowest yield potential across the eight environments yielding 

2452.2 kg ha
-1

.  Additionally, Lolo, a HWSW expressed the lowest yield at Carrington during 

2006, yielding 964.8 kg ha
-1

. 

The eight environment mean grain yield of the red genotypes was 3413.7 kg ha
-1

; 

whereas, the mean for the white genotypes was 3048.1 kg ha
-1

.  This suggests that the regional 

adaptation of the red genotypes is higher compared with the white genotypes.  Similarly, the 

mean grain yield of red genotypes in the 2006 Carrington environment was higher than the mean 

grain yield for white genotypes.  

The environmental conditions during 2008 provided optimal growing conditions for grain 

yield (Table 5).   Adequate rainfall coupled with below average temperatures during May and 

June resulted in advantageous early plant development.  July and August temperatures remained 

average to below average, contributing to high grain yield potential. 

Conversely, the environmental conditions during 2007 provided the least desirable 

growing conditions for grain yield (Table 5).  Higher than average rainfall in 2007 coupled with 

above average temperatures during May and June resulted in low grain yield potential.  While 

temperatures remained average for July and August the earlier than normal plant development  in 

2007 resulted in low grain yields. 

 The location mean yields were significant (Table 22).  The 2008 Casselton location grain 

yield was the highest, with a mean of 4890.6 kg ha
-
1.l.  Grain yields were the lowest in the 2006 

Casselton environment. 
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Table 19.  Combined analysis of variance for grain yield across eight locations. 

 

Source of Variation  Degrees of Freedom  Mean Square 

Environments    7   34,283.7**  

Reps/Environment   24   245.9**    

Genotype    23   835.7**         

G X E        161   177.7**          

Error     552   62.2 

CV. %        16.3% 

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 

 

 

 

Table 20.  Analysis of variance for grain yield at Carrington during 2006. 

                                               

Source of Variation  Degrees of Freedom  Mean Square 

Replication    3   74.4** 

Genotype    23   41.6**   

Error     69   7.1  

CV, %        12.3%                                      

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 
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Table 21.  Mean yield averaged across eight and one North Dakota environments 

respectively during 2006, 2007, and 2008. 

 

2006 and 2007 Environments                         2008  Carrington Environment 

Genotype Grain Yield Genotype                  Grain Yield 

 kg ha
-1

  kg ha
-1

 

    

BRIGGS 3730.6 BRIGGS 1399.3 

FREYR 3495.5 FREYR 1667.8 

GLENN 3202.4 GLENN 1372.5 

GRANITE 3544.5 GRANITE 1303.7 

HANNA 3084.9 HANNA 1562.1 

INGOT 3607.3 INGOT 1033.6 

KELBY 3567.5 KELBY 1724.8 

KNUDSON 3365.4 KNUDSON 1726.5 

NORPRO 3400.8 NORPRO 1255.0 

REEDER 3761.2 REEDER 1820.5 

STEELE-ND 3676.6 STEELE-ND 1510.1 

99S0155-14-1W § 2951.0 99S0155-14-1W § 1422.8 

AC SNOWBIRD § 2836.2 AC SNOWBIRD § 1552.0 

AC VISTA § 3605.3 AC VISTA § 1313.8 

ARGENT § 2922.3 ARGENT § 1620.8 

DIAMOND § 2702.1 DIAMOND § 1510.1 

EXPLORER § 3391.4 EXPLORER § 1515.1 

LOLO § 3032.2 LOLO § 964.8 

MT9420 § 3171.0 MT9420 § 1394.3 

NDSW0602 § 3068.9 NDSW0602 § 1432.9 

OTIS § 3100.2 OTIS § 1308.7 

PEERLESS § 3345.0 PEERLESS § 1552.0 

PRISTINE § 2452.2 PRISTINE § 1125.8 

MEAN 3254.9 MEAN GENERAL 1447.6 

LSD (5%) 259.8 LSD (5%)  251.6 

§ Denotes white genotypes. 
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Table 22.  Mean environment yield averaged across eight North Dakota environments 

during 2006, 2007, and 2008 

Year Location Mean Location Yield kg ha
-1

  

2006 Casselton 1463.8 

2006 Prosper 3973.2 

2007 Carrington 2714.1 

2007 Casselton 1752.4 

2007 Prosper 2720.8 

2008 Carrington 4277.9 

2008 Casselton 4890.6 

2008 Prosper 4244.3 

 Mean 2893.0 

 LDS (5%) 149.67 

 

Grain Volume Weight 
 

A Bartlett’s chi-square test of homogeneity indicated not all variances were homogenous; 

therefore, not all environments were combined for GVW.  Data from eight environments were 

combined with a χ
2
 value of 88.6; whereas, the 2008 Carrington environment was analyzed and 

is reported separately.  Results of the ANOVA for GVW (Table 23) indicate the main factors of 

environment and genotype, and the genotype by environment interactions were highly 

significant.  Data from 2008 demonstrates that genotype was highly significant (Table 24).   

Glenn displayed the highest GVW across the eight environments, with a mean of 80.1 kg 

hL
-1

 (Table 25).  Glenn  typically expresses  a high GVW (Underdahl et al., 2008).  Ingot had the 

highest GVW at Carrington 2008, while ranking second among genotypes with  a 79.6 kg hL
-1

  

mean over eight locations.. 

AC Vista, and AC Snowbird displayed the lowest GVW means across the eight 

environments and in 2008 at Carrington.  Gan et al., (2000) reported that AC Vista has exhibited 

lower GVW when compared to other cultivars at harvest.  The regional adaptation of genotypes 

may impact their GVW.  Both the low GVW lines are Canadian, and are not widely grown 

throughout North Dakota. 
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The eight environment GVW mean of the red genotypes was 77.8 kg hL
-1

; whereas, the 

mean for the white genotypes was 76.1 kg hL
-1

.  This suggests that the regional adaptation of the 

red genotypes is higher compared with the white genotypes.  Similarly, the mean GVW of red 

genotypes in the 2006 Carrington environment was higher than the mean GVW for white 

genotypes.  

The location means for GVW were significant (Table 26).  The 2008 Casselton test 

weight was the highest with a mean of 81.44 kg hL suggesting that the 2008 Casselton 

environment optimized GVW.  Casselton 2006 was the lowest in GVW at 72.25 kg hL
-1

.  This 

additionally confirms that the 2006 Casselton location had the least favorable growing, and 

grain-fill conditions. 

Table 23.  Combined analysis of variance for GVW across eight locations. 

 

Source of Variation  Degrees of Freedom  Mean Square 

Environments    7   26,882.5**  

Reps/Environments   24   94.0**    

Genotype    23   1948.2**       

G X E        161   156.5**   

Error     552   27.9 

CV%        1.28% 

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 

 

 

 

Table 24.  Analysis of variance for GVW at Carrington during 2008. 

 

Source of Variation  Degrees of Freedom  Mean Square 

Replication    3   149.8 

Genotype    23   467.3**   

Error     69   174.2 

CV, %        3.22%                                       

* and ** Significant at the 0.05 and 0.01 probability levels, respectively. 
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Table 25.  Mean GVW across eight and one North Dakota environments during 2006, 

2007, and 2008.  

Eight Location Mean kg hL
                                                                                                              

 2008 Carrington Mean kg hL 

ALSEN 77.9 ALSEN 77.0 

BRIGGS 78.1 BRIGGS 78.8 

FREYR 76.6 FREYR 76.7 

GLENN 80.1 GLENN 81.1 

GRANITE 78.7 GRANITE 78.5 

HANNA 77.1 HANNA 75.4 

INGOT 79.6 INGOT 81.3 

KELBY 77.4 KELBY 79.5 

KNUDSON 77.3 KNUDSON 76.8 

NORPRO 76.0 NORPRO 76.2 

REEDER 76.7 REEDER 75.4 

STEELE-ND 78.4 STEELE-ND 75.7 

99S0155-14-1W § 76.7 99S0155-14-1W § 79.3 

AC SNOWBIRD § 76.6 AC SNOWBIRD § 73.7 

AC VISTA § 74.3 AC VISTA § 75.4 

ARGENT § 77.2 ARGENT § 77.0 

DIAMOND § 75.7 DIAMOND § 77.4 

EXPLORER § 75.7 EXPLORER § 76.4 

LOLO § 76.4 LOLO § 76.4 

MT9420 § 75.1 MT9420 § 76.4 

NDSW0602 § 75.2 NDSW0602 § 74.8 

OTIS § 76.4 OTIS § 73.9 

PEERLESS § 76.0 PEERLESS § 74.6 

PRISTINE § 77.4 PRISTINE § 77.1 

MEAN  76.9 MEAN  76.9 

LSD (5%)  .48 LSD (5%)  3.5 

§ Denotes white genotypes. 

 

Table 26.  Mean GVW averaged across eight North Dakota environments during 2006, 2007, 

and 2008 
Year Location Mean Location GVW kg hL  

2006 Carrington 72.3 

2006 Casselton 73.7 

2006 Prosper 76.6 

2007 Carrington 77.7 

2007 Casselton 80.7 

2007 Prosper 76.0 

2008 Casselton 81.4 

2008 Prosper 77.1 

 Mean 76.9 

 LDS (5%) 1.5 
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Correlations 

The correlation between PHS scores and colorimeter L* values was significant for six 

environments; 2006, 2007, and 2008 Carrington, 2007 and 2008 Prosper, and 2008 Casselton..  

A Bartlett’s chi-square test of homogeneity indicated that the six environments were 

homogenous, so they were pooled for the correlations. There was a significant positive 

correlation between PHS scores and L* values across environments (r=.29, P<0.05 Fig 1).  

While this is not a strong correlation, it suggests that, the white genotypes generally are more 

susceptibility to PHS.  There would have been a stronger correlation had the two genotypes that 

were the most resistant to PHS not been white. 

 

Fig. 3. Correlation analysis for PHS score and L* value evaluations across six North Dakota 

environments 
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There was a significant correlation between PHS and falling number readings across three 

environments.  A significant negative correlation was calculated between PHS and falling 

numbers readings at the 2006 Casselton, and 2008 Casselton and Carrington environments.    

Falling number readings may be indicative of PHS; however, the readings are not always 

predictive of PHS.  Singh et al. (2008) illustrated that some wheat genotypes exhibiting high 

falling numbers were also susceptible to sprouting.  Additionally Barbeau et al. (2006) suggested 

that falling number should not be used as the sole criteria for determining the degree of sprout 

damage because it does not quantify or accurately reflect changes in protein composition and 

quality due to grain weathering. 

 

Fig. 4. Correlation analysis for PHS score and falling number values across three North Dakota 

environments over 2006, and 2008. 
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 Glenn displayed a lower than average falling number value when compared with other 

red wheat genotypes (Table 16).  However, Glenn did exhibit higher levels of tolerance to PHS 

(Table 12), which is an example of why falling number should not be used as the sole criteria for 

predicting PHS. 
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SUMMARY 

 Although both red and white kernel wheat genotypes exhibited a range of reactions when 

exposed to PHS conditions, the red genotypes in this study generally expressed a higher level of 

tolerance than white genotypes.  Still, several white kernel genotypes were among the most 

tolerant to PHS.  This indicates that the all genes controlling seed dormancy, or tolerance to PHS 

are not necessarily linked to the R-color alleles.   

 Environments that received less than average rainfall, and higher than average 

temperatures resulted in lower PHS scores than those that had lower temperatures and average to 

above average rainfall.  Similarly, Biddulph et al, (2005) concluded that high temperatures and 

drought stress increase dormancy significantly.  

 Both red and white kernel genotypes had significantly different mean colorimeter L* 

values.  Although some of the differences are likely due to environment, this may be indicative 

of differences in seed color genotype, particularly for the red kernel genotypes. Prior knowledge 

of the seed color genotype of every line and cultivar was not available, and the lines and cultivars 

were not genotyped for the color alleles as part of these experiments. 

 There were significant genotype differences for falling number, and while all falling 

number readings for genotypes were above the minimum considered indicative of PHS, the white 

kernel genotypes generally exhibited lower falling number readings than the red.  Also, a 

negative correlation was calculated between PHS scores and falling number readings, which 

suggests that falling number readings are not always indicative or predictive of PHS. 

 Yield and test weight data comparisons between red and white kernel genotypes suggest 

that in general, the red genotypes are more highly adapted to the region.  This could be reflective 

of the fact that the breeding and development of white wheat genotypes for the region is more 
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recent.  Still, several white wheat genotypes were not only as tolerant or more tolerant than the 

red spring wheat genotypes, but several were highly competitive for grain yield and test weight, 

which are traits producers value in spring cultivars that are grown in the Northern Plains. 

In summary, despite the general susceptibility of white kernel genotypes to PHS, there 

are several white genotypes tolerant to PHS that also exhibit adequate adaptation to the region.  

Breeders should consider the use of these as parents when developing white wheat genotypes for 

the region.  Furthermore, falling number readings should not be used as the only indicator or 

predictor of PHS, and breeders should consider both the impact of genotype and environment on 

the phenotype when attempting to select for optimal white kernel color. 
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