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ABSTRACT 
 
 

 The proposed hybrid system generates AC power by combining solar and wind energy 

converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, 

needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy 

system, the stator voltage and its frequency vary with wind speed, and in order to keep them 

constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power 

conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel 

depending on their availability. It consists of a multilevel inverter which gives lower harmonic 

distortion in the stator voltage. Maximum power point tracking techniques have been 

implemented for both wind and solar power. The complete hybrid renewable energy system is 

implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in 

hardware using dSPACE controller board.    
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CHAPTER 1. INTRODUCTION  

 

 World energy consumption is increasing at the rate of 2.3 % per year which causes the 

fossil-fuel reserve to diminish much faster than the forming of new [1]. Fossil fuels are costly 

and their production and use are raising some environmental issues. The USA was ranked 

seventh globally in energy consumption per-capita. They had an annual energy production of 

4151 billion kWh in 2010, the second largest, 69.5 % of which came from fossil-fuel sources. 

Only 10 % of total energy came from renewable sources with 6 % from hydro [2]. Renewable 

energy resources should be used in power generation because it is safe, reliable, better for public 

health, environment-friendly, and addresses global climate change. They find their applications 

mostly in power generation, especially in rural areas, in heating and as transportation fuels. 

Among all alternative sources, wind and solar power are the most abundant and attractive.  

1.1. Hybrid Renewable Energy System 

 Hybrid renewable energy system (HRES) is a system having multiple renewable energy 

sources working independently to supply some isolated DC or AC loads or the utility grid. Thus, 

not only the system efficiency is increased but also the energy supply is more balanced. The 

increasing demand for power from renewable sources has made it necessary for the sources to 

behave, as much as possible, like conventional power plants in terms of supporting the network 

voltage and frequency with good power quality. Several hybrid energy schemes may be used to 

solve these problems. This thesis proposes a new type of HRES that uses wind and solar to 

supply an AC load. Unlike conventional HRESs, the two sources do not work in parallel. The 

system basically uses a wind turbine (WT) to run a doubly-fed induction generator (DFIG) that 

delivers power to the load. The rotor of the generator is fed by a multilevel inverter that is 
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controlled for maximum power point tracking (MPPT) and constant stator output. The DC bus 

voltage of the inverter is provided by the PV panel that is also after ensuring maximum power 

extraction from solar energy using a boost regulator. The power can also be drawn from grid in 

case of unavailability of PV power. The AC power from the grid goes through an AC-DC-AC 

converter system while the PV power goes through a DC-AC converter system.  

 Normally a HRES requires separate power converters for all its energy sources which 

increase system complexity and losses. But the proposed system uses a single inverter for all 

sources making the control simple and reliable. Using PV power for rotor injection adds 

flexibility to the system by enabling AC power generation even in the absence of grid power. 

The proposed scheme is helpful for power supply in rural areas and for unreliable utility 

networks. The system can operate either using grid or PV power after processed by power 

converter. Besides, the system can even supply in time of low wind speed when the generator 

acts as a transformer, the rotor being its primary side taking converted solar power as input and 

the stator being its secondary side supplying the load.  

1.2. Doubly-Fed Induction Generator 

 For wind energy conversion, fixed speed systems using squirrel cage induction generators 

were implemented in the past. At present, variable-speed systems mostly using DFIGs are being 

used for system operation with higher efficiency, absence of speed control, and reduced 

flickering problem. Permanent magnet machines which do not need gear box can also be used, 

but not for high capacity installations. A DFIG has windings on both the stator and rotor, both of 

them capable of transferring energy. The most attractive feature of a DFIG is that the system can 

use power converters as well as filters with lower ratings because they have to transform only a 

fraction of the total power (slip power) and inject it to the rotor. It has high energy conversion 
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efficiency and an improved fault-ride through capability. Also its real and reactive power outputs 

can be controlled independently.  

1.3. Multilevel Inverter 

 Most energy conversion systems use back-to-back two-level PWM converters which are 

capable of operating in all four-quadrants. Back-to-back multilevel converters can also be used 

for the same purpose offering better power quality. Multilevel inverter is a DC to AC converter 

that synthesizes a desired AC voltage (normally of sinusoidal shape) from several levels of DC 

voltages as inputs. This study uses a three-level neutral-point-clamped (NPC) inverter for one 

stage of power conversion. For the other stage, there are two options, namely (a) PV voltage 

using a boost regulator and (b) the grid voltage using a diode rectifier followed by a boost 

regulator. Both options result in a constant DC-link voltage supplied to the multilevel inverter. 

The reason behind using a multilevel inverter, despite its complicated power and control circuitry 

and modulation scheme, is that it is better for high power applications and most importantly, it 

provides better power quality in terms of reduced harmonics.   

1.4. Outline of Thesis 

 The thesis is organized in six chapters. Chapter 2 consists of a brief description on the 

renewable energy sources used in the proposed HRES. In the first half, the wind energy is 

discussed along with some details of wind turbine’s (WT) components, various WT technologies 

and the generators used in them. This part also covers the MPPT of wind energy. The second 

half deals with solar photovoltaic energy including the operation and different MPPT techniques. 

 Chapter 3 describes different power converters used in both wind and PV energy 

conversion systems. Starting with a brief introduction to power conditioning systems, this 

chapter briefly describes different converters like a rectifier, a chopper, an inverter and a 
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cycloconverter. While emphasizing the power quality, it introduces the different types of 

multilevel inverters and sine pulse width modulation technique.    

 Chapter 4 introduces the proposed hybrid renewable energy system. A complete 

discussion of all the components is presented with itemized analysis. Converters used in the 

complete system are described using their equations and simulation results. A comparison 

between two- and three-level inverter is made based on their harmonic profiles. Finally 

simulation results of the complete system including variable wind speed, variable load and three-

phase short circuit fault are given to validate the design. 

  Chapter 5 presents the experimental results which support the simulation and analysis 

made in the earlier chapters. First it validates the fact that the power converters used for proper 

rotor injection of the DFIG can be rated as low as 20 ~ 30 % of the generator rating. Then it 

demonstrates using hardware results that the multilevel inverter is better than the two-level one 

while feeding a resistive load, followed by the experimental results of the complete WECS using 

both three- and two-level inverters while comparing them with their respective simulation 

results. Lastly, chapter 6 summarizes the work carried out with some concluding remarks and 

includes suggestions for future research.  

1.5. Contributions 

 The thesis presents a multilevel inverter based wind energy conversion system using 

DFIG. It somewhat resembles the system in [3] which is also a DFIG oriented WECS using 

back-to-back multilevel PWM converter. However, the proposed system adds a rotor injection 

path from PV energy and a new inverter controller. It also replaces the back-to-back converter by 

a simple diode rectifier and multilevel inverter based topology. The MPPT of PV panel is 

adapted from the scheme proposed in [4].  
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 The contributions of the thesis are as follows: 

• Hardware implementation of three-level neutral-point-clamped (NPC) inverter for wind 

energy applications. 

• Simpler implementation of voltage control loop using Simulink-dSPACE.  

• Simpler implementation of frequency control loop without a phase-locked-loop circuitry. 

• Realization of MPPT for wind energy using current loop in a synchronously rotating d-q 

reference frame. 
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CHAPTER 2. RENEWABLE ENERGY SOURCES  

 

2.1.Introduction 

 Electricity generation from renewable energy sources is not a new concept these days. 

With the fact of having limited conventional energy resources on the earth which are also costly 

and environment non-friendly, we have to consider alternative ways for power generation. Thus 

power industry is getting attracted towards renewable energy sources which in these days 

provide about 19 % of worldwide electric power. Figure 2-1 illustrates the worldwide power 

generation capacity using different renewable energy sources from 2004 to 2010 [5]. The hybrid 

renewable energy system introduced in this thesis includes wind and solar energy. In this chapter 

some of the characteristics of the two energy sources will be presented. 

2.2. Wind Energy 

 After hydro power, wind is the most promising sustainable energy as can be seen by the 

steadily growing demand [6]. Year by year the demand, as well as the generation capacity of 

 
 

Figure 2-1.  Global Renewable Power Capacity [5] 
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wind power is increasing (Figure 2-1). With the growing demand for wind-based generation 

systems, it has become necessary to improve the systems’ performance so that it can replace the 

existing power houses using conventional energy sources. For this improvement, better 

understanding of the complete system and the overall energy conversion process is very crucial. 

Ref [7] points out some common problems in integrating wind energy to grid in large scale, like 

frequency regulation, scheduling, and stabilization. In this section the details of a wind energy 

system (WES), especially the characteristics of wind turbines and the generators will be given. 

2.2.1. Wind turbine (WT) 

WESs consist of a WT whose shaft rotates when wind passes over the blades and this 

rotation is transferred to the generator through a gearbox. The generator then converts the 

rotational energy into electrical energy. Figure 2-2 shows all the major components of a WT [8]. 

The anemometer measures the wind speed for the controller to control the generator. The low 

speed of the turbine shaft is insufficient to generate adequate voltage from conversion process. 

So the gearbox increases the rotational speed of the generator shaft and thus amplifies the output 

 
 

Figure 2-2.  Components of Wind Turbine [8] 
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voltage. The generator, gear box and controlling equipments are housed in the nacelle. The yaw 

mechanism, comprised of a motor and a drive, is used to turn the whole nacelle in the direction 

of the wind flow. The tower holds the complete turbine at a certain height.  

2.2.1.1. Power relations 

A WT extracts the kinetic energy from the swept area of the blades by slowing down the 

air flow. Theoretically the maximum collectable amount of energy in wind by the rotor of the 

WT is 59 % of the maximum available energy, known as Betz limit [9]. The power in the air 

(Pw) flowing at a speed, vw through an area A is given by 

�� �  1
2 	
���  (2.1) 

where ρ is the air density (1.225 kg/m3). The power constant Cp is defined for a particular WT as 

the ratio of the power transferred to the WT to the power extracted from the air as 


� �  ����  .      (2.2) 

So the mechanical power i.e. the power transferred to the WT can be found from Pw using 

the following equation 

�� �  1
2 	
��� 
� . (2.3) 

This states that the output power is proportional to the third power of the wind speed 

[10]. But this statement is not true for all wind speeds. As can be shown in Figure 2-3, equation 

(2.3) holds for the speed range from cut-in to nominal speed. After that the power drops, and 

above cut-out speed, it goes to zero [11]. The cut-in speed is the minimum speed at which the 

turbine delivers power. The rated wind speed gives the rated output power and the cut-out speed 

is the maximum speed at which the turbine is allowed to deliver power [10].  
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2.2.1.2. Wind turbine technology 

A WT can be categorized based on the orientation of spin, power capacity and the rotor 

speed of the turbine. Based on axis of rotation, WT can either be horizontal-axis wind turbine 

(HAWT) or vertical-axis wind turbine (VAWT), shown in Figure 2-4 [12]. The HAWT, 

compared to VAWT, has higher energy conversion efficiency and a lower torque fluctuation. So 

even after being costly and tough maintenance, HAWT is used in wind farms. Based on 

generation capacity, the WTs can be classified as small (< 20 kW), medium (20 ~ 300 kW) and 

 
 

Figure 2-4.  Classification of WT Based on Orientation of Spin [12] 

 
Figure 2-3.  Power Curve Characteristics of a WT [11] 
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large (a few MW) WTs. Finally, based on the rotor speed, the WT can be categorized as fixed-

speed and variable-speed turbines. As the name suggests, the fixed-speed turbines rotate at a 

fixed speed (slip = 1 ~ 2 %) [13], that depends on the gear box ratio, stator frequency (fs) and 

number of generator poles. This type of WES is designed to reach maximum energy conversion 

efficiency only at that fixed speed; at all other speeds, the efficiency drops. Alternatively, the 

variable-speed systems can be controlled to achieve the maximum efficiency for all wind speeds 

which makes it more suitable for power generation and other applications. The Variable-speed 

WT captures about 5 % more energy annually than a fixed-speed system [14]. Generators and 

power converters used for these systems are different and will be depicted in the next section. 
 

2.2.2. The generator and conversion unit 

No particular criterion has been set for a wind energy conversion system (WECS) to 

decide what generator and energy conversion unit to use. A brushless DC (BLDC) generator, 

permanent magnet synchronous generator (PMSG), induction generator or synchronous 

generator is used for this purpose [10], [12]. 

For fixed speed systems, squirrel cage induction generators (SCIGs) are used exclusively. 

They have the simplest configuration (Figure 2-5) as no controller is needed. The system only 

needs a soft starter to limit the high inrush current and a capacitor bank to supply reactive power. 

The transformer output can be directly connected to the grid or to an isolated load.  

Variable speed systems can be classified based on the converters’ power rating. Either 

partially rated converter with doubly-fed induction generator (DFIG) or fully rated converter 

with SCIG, PMSG or wound rotor synchronous generator (WRSG) can be used. Figure 2-6 

shows the DFIG based WECS which in today’s power market is the most popular and shared 

47% of world energy market in 2002 [13]. A wound rotor induction generator can be controlled 
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by accessing its rotor circuitry via slip rings. Since both stator and rotor windings can transfer 

power between generator shaft and the electrical network, it is termed as “doubly-fed”. At sub-

synchronous speeds, the converter takes power from the grid, converts it and feeds controllable 

voltage into the rotor at slip frequency. At super-synchronous speeds, the converter extracts 

power from rotor and supplies to the grid. The main advantage of a DFIG based systems is that 

its power converter has to process only the slip power i.e. about 20 ~ 30 % for a slip range of ± 

30 % [3], [15]. The fraction depends on the allowable sub- and super-synchronous speed range 

[16]. So a converter of lower power rating can be used that not only reduces the cost of the 

system, but also increases the total efficiency. The ratio of the converter’s size to the WT rating 

is equal to half of the rotor speed span [14]. It is able to provide power beyond the system rating 

without causing any overheating [17]. They also allow decoupled active and reactive power 

 
 

Figure 2-5.  A Complete WECS using Fixed Speed WT [10] 

 
 

Figure 2-6.  A Variable Speed WECS using DFIG and Partially Rated Converter [10] 
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control [18], use of small filters, and provide higher efficiency [19]. Ref [20] recommends DFIG 

to support network as their presence dampens the power oscillation of other synchronous 

generators in the network.  

Figure 2-7 illustrates a WECS with fully rated power converter. As its in-line with the 

generator it carries the full stator power to grid or load. So the converter rating is the same as that 

of the generator. The system can compensate for reactive power and smoothly connect to the 

grid. But its main disadvantage is the high converter rating that increases the system loss and 

reduces efficiency and also raises the total cost of the system.  The design of the control system 

for a fully rated converter is much complicated compared to that of a partially rated converter. 

The system has an advantage that, if implemented with permanent magnet synchronous 

generators (PMSGs), it does not need any rotor injection, thus can totally get rid of the rotor 

copper losses. Again, the PM machines can have higher number of poles (lower synchronous 

speed), so the gearbox is not needed for increasing the rotational speed. It not only increases 

system’s efficiency and reduces cost, but also ensures reliability and low maintenance [14].  

2.2.3.  Maximum power point tracking of WECS 

For super-synchronous speeds i.e. above rated wind speed, active or passive stall control 

or pitch control is applied for obtaining the rated power from the WT. But for sub-synchronous 

 
 

Figure 2-7.  A Fully Rated Converter Connected Variable Speed WECS [10] 
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speeds, the generator is controlled for attaining maximum power point (MPP). Figure 2-8 shows 

a set of mechanical power output (Pm) versus generator speed curves for different wind speeds. A 

locus shows the MPPs for different wind speeds, same as that given in equation (2.3). Below cut-

in speed (0.4 pu or 5 ms-1), the power drops to zero, named as parking mode and above rated 

speed (1 pu or 12 ms-1), a desired power level can be attained using pitch control. For the speed 

range in between, the pitch angle is set to zero and rotor injection is controlled to achieve a 

certain generator speed that sets the new operating point for the system. Thus with ever changing 

wind speed, a new generator shaft speed is attained to extract the maximum power from the 

turbine corresponding to the speed.  

The MPP equation can be derived from equation (2.3) as follows: 

�� �  1
2 	
��� 
� (2.3) 

�� �  ���
 

(2.4) 

�� �  ��
 

(2.5) 

 
 

Figure 2-8.  Pm versus WT Speed Characteristics for Various Wind Speed with MPP Locus [12] 
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�� �  ���
 

(2.6) 

�� �  �����  .  ���
 

(2.7) 

�� �  �� . �� and (2.8) 

�� �  �����  .  ���  . (2.9) 

 In these equations, ωm is the generator speed which is linearly related to the turbine speed 

(vw), and KPopt and KTopt are the optimum power and torque coefficients that can be determined 

from the machine ratings or given by the turbine manufacturer. Equation (2.7) and (2.9) gives the 

maximum power and maximum torque equations respectively [12]. They can be used as the 

reference for the power or torque loop of the controller. The controller minimizes the error 

between the reference and actual power or torque to generate the required rotor voltage. Thus the 

maximum power is achieved for all wind speeds. 

2.3. Photovoltaic Energy 

 Figure 2-1 shows the solar (photovoltaic) to be the third most potential renewable energy 

source. But after 2007, the photovoltaic (PV) generation capacity is rising at a rate higher than 

biomass and geothermal and the rate is even higher than that of wind. From 2009 to 2010, the 

growth rate of wind energy is 24.53%, whereas the growth rate for PV energy is about 73.91 % 

[21]. PV output can be used directly or through a DC-DC converter to feed isolated DC loads or 

charge batteries. Using a boost regulator followed by DC-AC converter [22], the PV power can 

also be fed to the grid.   

2.3.1. PV cells 

A PV panel is an array of several series and parallel connected PV cells. Each PV cell 

generates electrical energy from the solar radiation absorbed by the cell following photovoltaic 



15 

 

(PV) effect. The PV effect somehow relates to photoelectric effect (release of electron upon 

exposure to solar radiation), but the process is different. In PV effect, the energy of the photons 

in the absorbed light is transferred to the electrons of the semiconductor device and the electrons 

move from the valence band to conduction band of the atom. This builds up a voltage (about 0.5 

~ 0.6 V) between the electrodes of the cell and when the external circuitry is completed, a current 

flows. Connecting the cells in series gives a higher output voltage and when connected in 

parallel, a higher current can be achieved.  

2.3.1.1. Current-voltage and power-voltage relations of a PV panel 

 The electrical equivalent circuit of an ideal PV cell is basically a current source in 

parallel with a diode. Figure 2-9 is the practical model of a PV cell with a series resistance (Rs) 

and a shunt resistance (Rsh). The current-voltage relation of a PV panel can be derived as [11], 

[23], [24],  

����� � � � �� � � !"  (2.10) 

where, Icell is the current from the cell, I is the photogenerated current, ID is the current in the 

parallel diode, IRsh is the current in Rsh. ID can be given by Shockley diode equation as 

�� � ��#exp '( .  ) !"  
* . + . � , � 1-

 
(2.11) 

where Io is the reverse saturation current, q is elementary charge in coulomb, VRsh is the voltage 

 
 

Figure 2-9.  Equivalent Circuit of a Solar Cell 
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across Rsh, n is the diode ideality factor, k is the Boltzmann’s constant, T is absolute temperature 

in Kelvin. Then from Ohm’s law and Kirchhoff’s voltage law, the following equations can be 

written   

� !" � ) !" .!"⁄
 

(2.12) 

) !" �  )���� 0  ����� . .!
 

(2.13) 

where Vcell is the voltage across the output terminals of the panel, and Rs is the series resistance. 

Combining equations (2.10) to (2.13), we can get the current-voltage relation given by  

����� � � � �� 1exp 2( . #)���� 0 �����  . .!-
* . + . � 3 � 14 � )���� 0 ����� . .! 

.!"  . (2.14) 

Neglecting the low current in the Rsh branch, equation (2.14) can be written as follows 

����� � � � �� 1exp 2( . #)���� 0 �����  . .!-
* . + . � 3 � 14 . (2.15) 

Equation (2.15) can also be written as a voltage-current relationship [25] as 

)���� � * . + . �
( ln '� �  ����� 0  ���� , �   ����� .  .! .

 
 (2.16) 

 A more general form of the voltage-current relationship incorporating the number of cells 

connected in series (Ns) and that connected in parallel (Np) can be written as 

)���� � 7! . * . + . �
( ln '� � ����� 0  7� . ��7� . �� , � 7!7�  ����� .  .! . (2.17) 

The voltage-current and power-voltage relationship of a PV array is figured out for 

different irradiance level from Figure 2-10 [24]. The open-circuit voltage (VOC) of the panel, 

derived from equation (2.14) using Icell = 0, is given by 

)89 � * . + . �
( ln ' �

 �� 0  1, �  ) !" (2.18) 
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Similarly with Vcell = 0, the short circuit current is given by, 

�:9 � � . (2.19) 

2.3.2. Maximum power point tracking of PV panel 

The maximum power point (MPP) is the particular point associated with each solar 

irradiance and ambient temperature at which the power from a solar panel is the highest. The 

MPP for different irradiance levels can be located on the power-voltage curves in Figure 2-10. 

Figure 2-11 shows both current versus voltage and power versus voltage curves on the same 

graph [26]. Basically a maximum power point tracking (MPPT) unit is a controller that 

automatically adjusts the electrical load i.e. the cell current (Icell) to achieve the MPP. For a 

variable load connected across panel terminals, the operating point is the intersection of the panel 

I-V curve and the load I-V curve (a straight line with slope =1/Rload for resistive load). So the 

power output depends on the connected load. Since Icell and Vcell are related exponentially, the 

MPP occurs at the knee of the I-V curve where dP/dV = 0. At this point, the load resistance and 

the characteristic resistance of the panel are equivalent. 

 
 

Figure 2-10.  Voltage-Current and Power-Voltage Characteristics of a Solar Panel 
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2.3.2.1. Different MPPT techniques 

Several techniques have been used to control the output current and voltage of the panel 

to ensure operation at MPP [4], [11], [25], [27]-[31]. Some are briefly explained below. 

• Incremental conductance based MPPT technique 

 The basis of this method is that, at the MPP, the instantaneous conductance (Icell/Vcell) is 

equal to negative of incremental conductance (∆Icell/∆Vcell) i.e. 

�����)���� � � ∆�����∆)����  . (2.20) 

At a point to the right of the MPP,  

�����)���� < � ∆�����∆)���� 
(2.21) 

and at a point to the left of the MPP,  

�����)���� = � ∆�����∆)���� (2.22) 

 
 

Figure 2-11.  Maximum Power Point of a Solar Cell [26] 
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This is the most commonly used method for the MPPT of PV panels. This method offers 

good performance under varying atmospheric conditions but it needs four sensors [25]. A quite 

similar method is proposed in [27] where the input resistance of the converter seen by the panel 

is changed depending on the atmospheric condition. 

• Perturb and observe based MPPT technique 

 This technique observes the power output with changing current [25]. The power is the 

maximum only for a specific current. While in operation, the current is changed in one direction 

and the power is measured. If the power is increased, some more change is made in the current in 

the same direction. Otherwise, if the power is decreased, the current change is made in the 

opposite direction, which should increase the power. Thus the point of optimum power is 

achieved. This method is simple and easy to implement. 

• Fractional open-circuit voltage based MPPT technique 

 An approximately linear relationship exists between the open-circuit voltage (VOC) and 

the voltage at MPP (VMPP) which is the basis of this technique. The relationship is 

)>�� � +?  . )89  . 
 

(2.23) 

 Here kv is a constant with a value of 0.71 ~ 0.78 [11], [30] depending on the array 

characteristics. It is the easiest to implement but since the value of kv is not the same for all PV 

panels, it needs to be calibrated every time.  

• Fractional short-circuit current based MPPT technique 

 Similar to equation (2.23), there exists a linear relation between the short-circuit current 

(ISC) and the current at MPP (IMPP) which is the basis of this technique. The relationship is 

�>�� � +@ . �:9  . 
 

(2.24) 
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 Here ki is a constant with a value varying in the range of 0.78 ~ 0.92 depending on the 

array characteristics [11], [30]. Similar to fractional open-circuit voltage based MPPT technique, 

it is also easy to implement but has the same calibration problem. One other problem with this 

technique is that the short-circuit current (Isc) is not the same for all irradiance levels. This 

problem can be solved by measuring the Isc at a specific interval by shorting the panel terminals 

and controlling the actual cell current to maintain the fraction (ki) [4].  This technique is used in 

the thesis. 

• Ripple correlation control (RCC) based MPPT technique 

 This technique correlates the time-derivative of the time-varying power with time-

derivative of time-varying voltage or current. Below MPP, if dv/dt > 0 or di/dt > 0, then dp/dt > 0 

and over MPP, if dv/dt > 0 or di/dt > 0, then dp/dt < 0. Thus at MPP, 

AB#C-
AC  . A�#C-

AC  or AB#C-
AC  . AF#C-

AC � 0 . (2.25) 

At a point to the right of the MPP,  

AB#C-
AC  . A�#C-

AC  or AB#C-
AC  . AF#C-

AC < 0
 

(2.26) 

and at a point to the left of the MPP,  

AB#C-
AC  . A�#C-

AC  or AB#C-
AC  . AF#C-

AC = 0 . (2.27) 

 There are other MPPT techniques like linearized I-V characteristics based technique, 

fuzzy logic control based technique, neural network based technique, current sweep based 

technique, DC link capacitor droop control based technique, etc.  

2.4. Conclusion 

 Wind and solar PV energy are the two most promising alternative sources of electricity 

generation and also the two used in the proposed hybrid system. Different types of WTs and their 
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comparison, the generators and theoretical analysis of maximum power point tracking of wind 

are described in the first half of this chapter. As stated, WESs are of two types – the fixed speed 

and the variable speed, among which the variable speed is of prime interest in today’s power 

market. Variable speed systems also can be of two types based on the rating of the power 

converter used: one that uses DFIG with low rated converter and the other that uses the fully 

rated converter.  

 In the second half of the chapter, details have been given for solar energy and PV panels. 

Characteristics of PV cells and some commonly used MPPT techniques have been investigated 

throughout. In this thesis, the DFIG with partially rated converter is used and the PV panel is 

used to supply the rotor of a DFIG. In the absence of the sunlight, a fraction of the stator power 

of the DFIG will be taken for rotor injection. The MPPT for both wind and solar (using fractional 

short-circuit current based technique) is ensured in the system. Details of the system components 

will be given in the upcoming chapters.  
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CHAPTER 3. POWER CONVERTERS FOR WIND AND PV ENERGY SYSTEMS 

 

3.1. Introduction 

 The power generated from renewable energy sources cannot be used directly to feed the 

grid or isolated loads. It needs to be converted to a proper form which depends on the grid or the 

load. In WESs, the amplitude and frequency of the output voltage changes with wind speed, so 

does the maximum power point. Thus a power converter is needed to adjust the rotor injection of 

the DFIG based on the wind speed to extract the maximum power from the wind turbine while 

maintaining a consistent stator output. It is important to select a proper converter for the system, 

based on its rating, cost, losses, reliability, etc. and to design an efficient and fast controller. 

Similarly in PV systems, the output is a DC voltage and most often a low voltage whose value 

depends on the number of cells in series. So it needs to be boosted to a higher level while 

ensuring the maximum power extraction from the panel for all irradiance level as well. 

 The power converters basically consist of capacitors, inductors, transformers and most 

importantly switched-mode semiconductor devices [32], [33]. Different semiconductor devices, 

mainly silicon based, like power diode, power MOSFET, bipolar junction transistor (BJT), 

insulated gate bipolar transistor (IGBT), thyristor (SCR, GTO, MCT, IGCT), etc. are used in 

power processing. The criteria, based on which the device is selected for a particular application, 

are the on-state resistance, breakdown voltage and switching time. According to the type of input 

and output voltage, a power converter can be classified as, AC-DC converter (rectifier), DC-DC 

converter (chopper), DC-AC converter (inverter), and AC-AC converter (cycloconverter). These 

converters along with their operations and input-output waveforms will be discussed in details in 

this chapter. 
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3.2. AC-DC Converter: Rectifier 

 Rectifiers are the type of converters that can transform AC voltage into DC voltage. The 

power supplied by the utilities is AC whereas most electrical equipments run on DC which 

requires a rectifier. Rectifiers are used in different electrochemical processes, adjustable speed 

drives (both AC and DC), HVDC systems, power supplies, etc. Rectifiers are basically of two 

types based on the switching device used– diode rectifiers and thyristor rectifiers.  

Since diode works based on the voltage across it, it can be used to generate a 

unidirectional voltage from an AC source. Based on this different rectifier configurations have 

been developed and being widely used. In this study, the concentration will be on three-phase 

full bridge diode rectifiers (Figure 3-1). It has six diodes, two per phase. In each 1/6th of cycle 

(π/3), a combination of two diodes – one from the upper converter (one with the highest positive 

voltage) and one from the lower converter (one with the highest negative voltage) conducts to 

complete the external circuit. Thus each diode will conduct for 2π/3 [33]. The average output DC 

voltage of a full bridge rectifier is,  

)�H?I � 1.35 . )LMLN�! (3.1) 

where VL-Lrms is the rms value of the line to line input voltage. Using thyristor rectifiers, also 

known as phase-controlled rectifiers, the average output voltage of the rectifier can be varied by 

varying the triggering angle (α) of the thyristor. 

 

Figure 3-1.  Three-Phase Full-Wave Diode Rectifier 
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3.3. DC-DC Converter 

 Using a DC-DC converter or chopper, an input DC can be converted into a DC of desired 

magnitude and polarity. DC-DC converters can be designed with reduced size, high efficiency, 

and more reliable operation [34].  Each DC-DC converter basically consists of inductors, diodes, 

high-frequency switches and capacitors. The inductor basically limits the current peak and stores 

energy. The capacitor does the same for voltage, i.e. it smoothes the voltage output and stores 

energy [35]. The voltage level can also be regulated in spite of the changes in the input voltage 

and output current [36]. Some researchers have proposed double-input DC-DC conversion 

systems [37], [38], [39] which can be very useful in a hybrid renewable energy system proposed 

in this work. Depending on the level of input and output, DC-DC converters can be classified as 

buck, boost, buck-boost, etc. that will be described in this section.  

3.3.1. Buck converter 

 A buck or step-down converter provides an output voltage equal to or less than the input 

voltage. It uses a PWM controller with some energy storage components to hold the output when 

the switch is off [36]. Figure 3-2 shows a buck converter with the switching pulse, the inductor 

current and the output voltage. As can be seen from the circuit, when the switch is on (Ton), 

source supplies energy, the diode is reverse biased and the inductor and capacitor are charged. 

Then during the off-period (Toff), the inductor and capacitor discharge through the load. The 

change in the inductor current is the same for both Ton and Toff. The following equations give the 

duty cycle (D) and the average output voltage Vo: 

O � ��P� � ��P . Q!� (3.2) 

)� � O. )@
 

(3.3) 
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where fsw is the switching frequency of the converter, Ts is the switching period (Ts  = 1/fsw) and 

Vi is the input DC voltage. The output level in a buck converter is set by the duty cycle (D) of the 

switch. Since D < 1, for a buck converter, Vo < Vi.  

3.3.2. Boost converter 

 The output voltage of a boost converter also depends on the duty cycle and it is higher 

than the input voltage. Figure 3-3 shows a boost converter with the switching pulse, the inductor 

current and the output voltage. As can be seen from the circuit, when the switch is on (Ton), the 

inductor is charged and the capacitor is discharged through the load. Then during the off period 

(Toff), both the DC input voltage and inductor supply power to the load and charges the capacitor. 

The change in the inductor current is the same for both Ton and Toff. The following equation 

 
 

Figure 3-2.  Buck Converter (D = 22.22 %) 

 
 

Figure 3-3.  Boost Converter (D = 22.22 %) 
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describes the of the boost converter: 

)� �  )@1 � O . 
 

(3.4) 

 Since 0 < D < 1 in equation (3.4), Vo > Vi giving an output voltage higher than the input 

voltage. A boost converter, digitally controlled in real time, is implemented in Ref [34]. 

3.3.3. Buck-boost converter 

 The features of both buck and boost converters are combined in a buck-boost converter. 

Depending on the duty cycle, the output voltage can either be lower or higher than the input 

voltage. An important feature of this converter is that the polarity of the output will be opposite 

to that of the input voltage.  The following equation gives the input-output relation of the buck-

boost converter: 

)� �  � �RS
TM� .

 

(3.5) 

 The circuit, the switching pulse, the inductor current and the output voltage of a buck-

boost converter are shown in Figure 3-4. When the switch is on (Ton), the inductor is charged and 

the capacitor supplies the load. When the switch is off (Toff), the inductor supplies the capacitor 

and load. As can be seen from equation (3.5), for D < 0.5, the converter will operate in the buck 

mode and for D > 0.5, it will operate in the boost mode. 

 
 

Figure 3-4.  Buck-Boost Converter (D = 22.22 %) 
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3.4. DC-AC Converter: Inverter 

 Inversion is the process opposite to rectification i.e. it generates an AC voltage from a 

DC source. The goal here is to generate an AC signal of a desired shape (sinusoidal), voltage 

amplitude and frequency using switching devices, filters, control circuits and transformers. 

Inverters are used in switching power supplies, variable-frequency drives and power conversion 

of PV sources. Inverters are basically of two types – voltage source inverter (VSI) and current 

source inverter (CSI). In this study, a three-phase VSI will be considered. Most inverters 

presently used are two-level inverters. They can be also designed to have a multilevel output. 

3.4.1. Power quality 

 There are several restrictions imposed on an AC source so that the system powered by the 

source functions properly without considerable loss of performance. The parameters related to 

power quality are – continuity of service, change in voltage magnitude, voltage or current 

transients and harmonics. To ensure the highest power quality, the harmonics at the output have 

to be minimized. There are several definitions related to harmonics like the lowest order 

harmonic (LOH), total harmonic distortion (THD), distortion factor (DF), etc.  

 The LOH is the order of the lowest harmonic present in a waveform. The THD is defined 

as the ratio of the sum of all harmonic powers to the fundamental frequency’s power. It can also 

be expressed in terms of rms voltages as the following equation: 

THD �  X)��  0  )��  0  )Y� 0  … … … … )[�
)T �  \∑  #)̂�-[̂_�  

)T
 

(3.6) 

 Here Vk is the rms value of kth harmonic in the voltage and for the fundamental frequency, 

k = 1. The THD is computed from the amplitudes of all the harmonics without considering their 

order. The higher order harmonics are not as important as lower order ones since the former can 
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easily be eliminated using a filter. Thus it is very important to consider the order of the 

harmonics in expressing the distortion as done by DF. It is defined by the following equation for 

up to nth harmonic: 

THD �  \)��2Y  0 )��3Y  0  )Y�4Y 0  … … … … )P�
*Y

)T �  \∑  #)P�
*Y-[̂_�  

)T
 

(3.7) 

 As can be seen from (3.7), the higher the order of the harmonic, the lower is its effect in 

distorting the waveform. 

3.4.2. Three-phase two-level inverters  

These inverters are widely used as AC power supplies and for AC motor drives. Figure 3-

5 shows a three-phase quasi-sine inverter. It is made up of three half-bridges in parallel with 

120° phase shift, analogous to a three-phase system. Six switches (Q1 – Q6) with six anti-parallel 

diodes (D1 – D6) are connected in a bridge configuration, similar to a bridge rectifier. Based on 

the six gate pulses, the output can be square wave, quasi-sine wave or pure sine wave. It is 

 
 

Figure 3-5.  Three-Phase Quasi-Sine Inverter: Power Circuit and Waveforms [33], [61] 
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always easy to generate a square wave from an inverter, but such an inverter cannot be used in 

most power applications because of their high harmonic content. Most equipment require, for 

better operation, a pure sine wave (THD < 3 %), which is hard to generate. A more feasible and 

cheap solution is to use quasi-sine wave inverter whose voltage shape is quite similar to square 

wave with some dead time between two transition states. It can replace sine wave inverter in 

many applications including rotor injection of DFIG in wind applications [40]. Figure 3-5 shows 

the output waveforms of the quasi-sine inverter. 

3.4.3. Multilevel inverter 

In a two-level inverter, the line voltages have only three levels (+Vdc, 0, -Vdc). But in a 

multilevel inverter, the number of levels in the output voltage can be increased and if it can be 

increased to infinity, it will be a pure sine wave inverter with zero harmonic distortion. The 

reduced harmonic distortion allows the use of lower reactive components and has lower losses 

and torque pulsation [41]. For high voltage operations with two-level inverters, either devices 

with higher ratings have to be used or they have to be connected in series that increases the cost 

of the system. With matched series-connected devices, it is easy to share the static voltage, but 

very difficult to share the dynamic voltage. Multi-level inverters are normally used for high 

power applications, above 2 ~ 3 MW [6] and high voltage ratings even up to 6 kV [42], since 

they use more devices per phase.  They also reduce ripple in torque output. The disadvantages of 

the multilevel inverter are the complexity of the power and control circuitry. Its modulation 

scheme is difficult [6] and offers a higher switching loss lowering the upper limit of switching 

frequency. Another problem is the voltage unbalance in the DC bus [43]-[45]. They find 

application in high capacity AC-drives, VAR compensators, HVDC transmission systems, active 

filtering, etc [44]. 
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3.4.3.1. Types of multilevel inverters 

 Multilevel inverters are of three types [46], [47]: (a) diode clamped inverter, (b) flying 

capacitor inverter, and (c) cascaded-inverter with separate DC sources. 

a) Diode clamped inverter 

 This inverter (m level) uses (m-1) dc-link capacitors across the dc bus to provide the 

voltage levels and clamping diodes to set the mid-point of each series connected high-speed 

switches to the proper voltage level (Figure 3-6(a)). So by proper switching of the devices 

(similar to that explained in [46]), the output voltage can be clamped to that particular voltage. 

Figure 3-6 shows the output line voltage of an inverter that has (2m-1 = 9) voltage levels. Among 

the multilevel inverters, this topology is the most popular [6], [41]-[46], [48]. A three-phase 

three-level diode-clamped inverter also known as neutral-point-clamed (NPC) inverter, used for 

rotor injection of DFIG in this work, will be discussed in detail in later chapters.  

b) Flying capacitor inverter 

 This type of inverter (Figure 3-6(b)) uses the same m-1 capacitors (dc-link capacitors) to 

create the m voltage levels, but the diodes are replaced by a network of capacitors (inner-loop 

balancing or flying capacitors). In this inverter, the flying capacitors set the mid-point to the 

desired voltage level based on the switching of the transistors. This configuration is more 

flexible than the diode-clamped one, as the same voltage level can be achieved at the output with 

more than one switching combination [46]. Since this circuit needs a higher number of storage 

capacitors, this inverter is expensive and bulky and also its control is very complicated. 

c) Cascaded-inverter with separate DC sources (SDCs) 

 Cascaded-inverter, as the name suggests, is a combination of series connected single-

phase full-bridge inverters, each supplied by a separate DC source and thus eliminating the use  
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of extra clamping diodes or storage capacitors (Figure 3-6(c)). The output terminals of each 

inverter are connected in series to provide a multilevel output by controlling the conduction 

angle of the switches in each inverter. An m-level cascaded-inverter requires (m-1)/2 SDCs with 

(m-1)/2 full-bridges. Though this inverter requires the least number of components and do not 

need any clamping-diode or flying-capacitor, its application is somewhat limited because of the 

need of SDCs [46]. Also it requires a complicated control circuit. 

3.4.4. Pulse width modulation (PWM) techniques in inverter 

 The six-step inverter is simple to control and also has a lower switching loss due to the 

use of a switching frequency which is the same the inverter frequency. But the output, being a 

 

 
 

Figure 3-6.  Single-Phase Three-Level Diode-Clamped, Flying-Capacitor and Cascaded Inverter 
with the AC Output Waveform 
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square wave, has a high harmonic content with all lower order harmonics present. Filtering them 

is costly and increases the physical size of the system. PWM techniques provide a solution to 

these problems. It is assumed that the switching frequency is very high compared to the inverter 

frequency. PWM-VSIs have replaced converters using thyristor due to their improved dynamic 

performance, extensive operating region, lower line harmonics and ability to operate at improved 

power factors [42]. The PWM can be of various types like, uniform PWM, sinusoidal PWM 

(SPWM), selected harmonic elimination PWM, minimum ripple current PWM, space-vector 

PWM, random PWM, hysteresis band current control PWM, delta modulation, sigma-delta 

modulation, etc. SPWM is the one considered in this work and will be explained here. 

 In SPWM, a sine wave of fundamental frequency (fm) is compared to a high frequency 

(fsw) triangular-wave carrier to generate the switching pulses. In a three phase inverter, the same 

carrier is used for all the three phases. Figure 3-7 shows the SPWM for a three-phase inverter 

with the control voltage, the carrier signal, the generated gate pulse for Q1, and the output line 

and phase voltages. There are two important parameters in SPWM – amplitude modulation index 

(ma) and frequency modulation index (mf), given by, 

aH �  )�)�N@ � )bcT�)d�/2 
 

(3.8) 

af �  Q�N@Q�
 

(3.9) 

where Vm, Vtri and VA01m are the amplitudes of the modulated (control) signal, carrier signal and 

fundamental component of phase A voltage respectively and fm and ftri are the control signal and 

carrier frequency. The output voltage level depends on ma and the harmonic profile of the output 

depends on mf. The ratio mf should be an odd integer and also a multiple of 3 for a three-phase 

system. If mf is not odd, DC components and even-order harmonics will be present in the output  
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of inverter, and if mf is not an integer, sub-harmonics will arise [49].With a higher mf, the LOH is 

high and the output practically approaches a sine wave but it also offers a higher switching loss.  

3.4.4.1. Types of SPWM techniques 

 SPWM can be either bipolar or unipolar. In unipolar SPWM, the output voltage in each 

half cycle is either +Vdc or -Vdc while in the case of bipolar SPWM, both +Vdc and +Vdc levels 

will be present in each half cycle. They generate different harmonic profiles, with bipolar SPWM 

giving LOH = mf – 2 and unipolar SPWM giving LOH = 2mf – 3.  

3.4.4.2. Switching frequency  

 One important parameter associated with all these circuits is the switching frequency of 

the converter. Since the efficiency of a power converter is very important, all the losses, like 

fixed losses, conduction losses and switching losses, must be considered in the design. The 

switching loss in these devices are given by [32], 

 
 

 
 

Figure 3-7.  Waveforms of Three-Phase Sine PWM Inverter [33] 
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�!� �  g . Q!� (3.10) 

where W is the energy lost in the switching process in one switching period and fsw is the 

switching frequency. The total loss in a converter is given by 

���!! �  �f@h�d 0  ���Pd 0  g . Q!� (3.11) 

where Pfixed is the fixed loss and Pcond is the conduction loss. Equation (3.11) shows that the 

switching loss dominates at higher switching frequencies.  So, for a converter, there is an upper 

limit for fsw above which the efficiency drops rapidly and it is actually the frequency at which the 

switching loss is equal to the sum of other losses. The critical switching frequency (fcri) is given 

by, 

Q�N@ �  �f@h�d 0  ���Pdg   . (3.12) 

3.5. AC-AC Converter: Cycloconverter 

 The last type of converter is the one used to convert one frequency to another in a single 

step. It is mostly used in very large variable frequency drives like cement and ball mill drives, 

rolling mill drives, slip power recovery Scherbius drives and aircraft power supplies (400 Hz) 

[33]. In addition to the desired frequency, a cycloconverter generates the harmonics and sub-

harmonics (frequencies lower than output frequency) and inter-harmonics (frequencies between 

harmonic frequencies). The elimination of unwanted frequencies requires large filters. A 

cycloconverter also produces a DC component if output frequency is exactly one half of the 

input frequency. 

3.6. Power Converters in WECS with DFIG 

 A discussion on the basic improvement of power electronics and the power converters in 

WES perspective is given in Ref [13], [14], [17]. In a DFIG, the converter is used as an interface 
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between the grid and the rotor (Figure 2-8). The converters commonly used in DFIG are static 

Kramer drives, back-to-back PWM converters, Vestas converter systems, matrix converters, etc. 

A particular converter is selected based on its reliability, efficiency and cost.  

 A static Kramer drive consists of a diode rectifier as the rotor-side converter and an SCR 

inverter as the grid-side converter. This drive considers only operation at super-synchronous 

speeds at which power flows out of the generator from both the stator and the rotor [50]. A more 

technically improved version is the back-to-back PWM converter [15], [16], [18]-[20], [51]-[60]. 

They can operate in both sub-and super-synchronous speed region using the bi-directional power 

flow capability of the converter. Here, both the rotor- side and grid-side converters are bi-

directional PWM-VSIs. This system can work in all four quadrants. In the sub-synchronous 

speed region, the grid-side converter (rectifier) is controlled to give a constant DC-link voltage 

and reactive power. On the other hand, the rotor-side converter (inverter) ensures the MPPT 

operation. The sequence of conversion is just the reverse for operation at super-synchronous 

speeds. The third system, proposed by Vestas, works in the sub-synchronous speed range. It 

consists of a diode rectifier as the grid-side converter and a PWM inverter as the rotor-side 

converter. A similar topology is also used in the proposed work. A matrix converter converts the 

variable-frequency AC from the generator to a fixed-frequency AC in a single step [17]. Its 

advantage is that no energy storage system is needed and only one controller is required. But the 

number of semiconductor switches required is very high. 

3.7. Conclusion 

 A DFIG-based WECS requires a converter for proper rotor injection to ensure a constant 

output voltage at constant frequency. In the proposed system, the rotor of the DFIG is supplied 

either from the grid or from the PV panel. For drawing injection power from the grid, an AC-
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DC-AC conversion unit is needed which in this study uses a three-phase full-bridge diode 

rectifier, a boost regulator and a multilevel inverter. For drawing injection power from PV 

panels, a boost regulator and an inverter are used. The outputs of the boost regulators in either 

case charge a battery that provides the DC-link voltage to the inverter. All the converters to be 

used in the study are described and comparison is made between similar types. 
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CHAPTER 4. PROPOSED HYBRID RENEWABLE ENERGY SYSTEM 

 

4.1. Introduction 

 Hybrid renewable energy system (HRES) is not a new term in renewable energy sector. 

Rather many researchers have already worked on it [14], [39], [62]-[64]. In all the existing 

hybrid systems in these references, two or more energy sources work in parallel to supply the 

grid. Generally they all feed a DC bus being independent of the other sources. The DC power is 

then inverted and connected directly to the grid. The proposed scheme is different from the 

existing topologies since it uses both wind power to supply the load or grid and takes solar as a 

supplementary power for rotor injection of the generator. This chapter describes the overall 

system and all the components including the machine, the converters and their controllers. It also 

shows a comparison of the conventional two-level inverter and the three-level inverter that has 

been used in the system. All the simulation results are also included.  

4.2. System Overview 

 The main component of the proposed system is a DFIG driven by a wind turbine. Its 

stator either supplies a grid or an isolated load. The rotor is supplied with variable-frequency 

variable voltage three-phase power. As the wind speed changes with time, the shaft speed of the 

turbine as well as the generator speed changes. This speed change affects the stator output 

power, voltage amplitude and frequency. But the output needs to be regulated to give a constant 

frequency and amplitude. So if we can adjust the rotor power with wind speed i.e. generator 

speed, we can maintain a constant output from the DFIG.  

 In the proposed system, a new power converter has been used to adjust the rotor injection 

with wind speed. The proposed converter uses a diode rectifier followed by a boost regulator and 
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a multilevel inverter, whereas most DFIG-based WECSs use two back-to-back connected two-

level VSIs [3], [15], [16], [18]-[20], [51]-[60], [65], [66], with a very few using multilevel VSIs 

[3], [67]. The main challenge with a multilevel inverter is their complicated power and control 

circuitry. But the advantages they provide, like high voltage/power handling capacity and lower 

harmonic distortion cannot be overlooked. The thesis presents a multilevel inverter based rotor 

injection system for DFIG. The DC link voltage of the inverter is provided by two rechargeable 

batteries which are charged either using a small fraction of the stator power through a converter 

system or using PV power depending on its availability. Ref [64] presents a comparable hybrid 

scheme which mainly focuses on power factor correction and frequency control. 

 Figure 4-1 shows the complete block diagram of the proposed system simulated using the 

software PSIM [68] and MATLAB-Simulink [69]. PSIM has a wind turbine model with variable 

wind speed and blade pitch angle input and a wound rotor induction machine model that can be 

used as a DFIG. PV power is used as the main source to supply the rotor. Using a boost 

converter, MPPT has been ensured for the PV output at all irradiance levels. This system can 

provide a constant DC voltage for the inverter. In the absence of sunlight, a portion of the stator 

output is used for the same purpose. The three-phase AC voltage from the stator is first rectified 

using a simple diode rectifier instead of a PWM rectifier. This not only reduces the complexity 

of the system but eliminates the need for additional control. The rectified output thus have higher 

ripple in it but the use of the boost regulators provide a constant dc-link voltage (100V) for the 

inverter. The presented scheme uses a three-level neutral-point-clamped (NPC) inverter whose 

output voltage is controlled by controlling the amplitude modulation index. The control voltage 

needed for the inverter switches is generated by the inverter controller based on vector control 

scheme that uses the d-q axis current control [51]. Using maximum power point tracking  
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(MPPT) technique, the torque reference (Teref) is calculated for a given generator speed. The q-

axis current reference (irqef) is then computed from the reference torque. On the other hand, the d-

axis current reference (irdref) is generated by controlling the stator voltage. The d-q axis reference 

rotor currents provide the control voltage (vctrl) which is used to generate the gate pulses for the 

12 switches of the inverter. The inverter voltage is then fed to the rotor of the DFIG.   

4.3. Boost Regulator  

 The system uses a boost regulator for maintaining a constant DC link voltage. Reference 

[70] uses a buck-boost regulator for a WECS using a PMSG. In a boost regulator, the voltage 

stress on the chopper switch is lower and the leakage inductance of the generator and cable can 

be used as an equivalent DC inductor [71]. Figure 4-2 shows the schematic and the input and 

output waveforms of a boost regulator. Its output is constant irrespective of the fluctuations in 

the input voltage and load. It is done by varying the duty cycle (D) for the switch so that the 

output voltage given by the equation,  

)� �  )@1 � O 
 

(4.1) 

is always constant. The output voltage is compared to a preset reference voltage. The error is 

  
 

Figure 4-2.  Boost Regulator and Output Waveform  

PI 
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send to the PI controller which gives a control voltage. The control voltage is then compared to a 

high-frequency carrier (fsw) to generate the switching pulses. So when the output is higher than 

the reference voltage, D is reduced by the PI controller and the output automatically comes down 

and vice versa. The output voltage in Figure 4-2(b) shows a constant level of 100 V regardless of 

the change in input voltage and there is also a very low settling time and overshoot, much lower 

compared to Ref [34] and  [72]. For fast simulation, the average model of the boost regulator has 

been used. Most average models of DC-DC converters use a transformer whose turns-ratio are 

controllable and is equal to (1-D):1 [73]. Average modeling has also been used for discontinuous 

current mode of operation [73]. In the present study, an average model is used for continuous 

mode of operation, since the inductor is large enough to avoid any discontinuity in current. 

Figure 4-3 gives the regulator output voltage (vo(t)), voltage across (vsw(t)) and current through 

the switch (isw(t)), voltage across (vd(t)) and current through the diode (id(t)) and current through 

the inductor (iL(t)). It’s actually used to derive the relations between vsw(t) - vd(t) and isw(t) - id (t) 

based on their relation to vo (t) and iL (t) respectively in terms of d(t) which can be written as:  

 
 Figure 4-3.  Waveforms of a Boost Converter used for Average Modeling 
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i�!�#C-|�k � l1 – A#C-n. i��#C-|�k
 

(4.2) 

iF!�#C-|�k � A#C-. iFL#C-|�k
 

(4.3) 

i�d#C-|�k � A#C-. i��#C-|�k
 

(4.4) 

iFd#C-|�k � l1 – A#C-n. iFL#C-|�k (4.5) 

where d (t) is the duty cycle and Ts is the switching period. Equation (4.2) and (4.4) can be 

combined to give 

i�!�#C-|�k �  i1 – A#C-
A#C-  . �d#C-o

�k
. (4.6) 

Similarly equation (4.3) and (4.5) can be combined to give 

iFd#C-|�k �  i1 – A#C-
A#C-  . F!�#C-o

�k
 . (4.7) 

 The switch-diode combination in the boost converter can be replaced by two dependent 

sources as shown in Figure 4-4. Both the dependent sources have a gain factor of (1 - x)/x in 

equation (4.6) and (4.7) where x = d(t). Table 4.1 gives the values of different parameters used in 

the boost regulator.   

4.4. MPPT for PV Panel 

 As stated earlier, a PV panel is used to provide rotor injection power to the DFIG. It can 

operate  in parallel to the supply path from the stator to charge the batteries. Figure 4-5 shows the 

MPPT scheme based on fractional short-circuit current method [4]. The short-circuit current is 

measured by applying a long pulse to the switch. Using a sample and hold circuit, the value of 

the short-circuit current is held up until the next pulse is applied. This value is used to calculate 

the current at the MPP using the following equation 
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�>�� � 0.921 . �:9  
 

(4.8) 

where the constant 0.921 is specific for this PV panel. Then IMPP is compared to the actual  

current from the cell (Icell) and the error is minimized using a PI controller. The output of the 

controller is compared to a high frequency (10 kHz) carrier wave to generate the gate pulse for 

the switch. The extended pulse has a frequency of 10 Hz and duty cycle of 0.075 %. Figure 4-5 

 
Figure 4-4.  Average Model of Boost Regulator 

TABLE 4.1 BOOST REGULATOR PARAMETERS 

Parameter Value Unit 

Inductance 570 µH 

Capacitance 660 µF 

Proportional Constant, Kp 0.1 - 

Integral Constant, Ki 10 - 

Time Constant, � 10 ms 

Switching Frequency, fsw 20 kHz 
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 also contains the power, voltage and current waveforms for the panel. The simulation results 

show that the output power from the panel closely follows the maximum power curve. A step in 

the maximum power  is obtained by applying a step change in the light intesity (500 to 1000 

W/m2). For both levels of light irradiance, the average voltage is about 16.9V, where VMPP is 

17.1 V. Again the average cell currents for the two light levels are 1.75 A and 3.5 A where the 

  

Figure 4-5.  MPPT for PV panel and Tracking Response 
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values of ISC are 1.9 A and 3.8 A respectively giving a ratio close to 0.921. The PV panel 

parameters and those of the MPPT circuit are given in Table 4.2 and Table 4.3. The L and C 

values are chosen as a compromise betwee settling time and ripple in output voltage and current.  

4.5. Multilevel Inverter 

 The most important component of the WECS is the inverter. Unlike most of the existing 

systems which use a two-level (0, Vdc) inverter, this scheme uses a three-level (0, Vdc/2, Vdc) 

neutral-point-clamped (NPC) inverter. The line-to-line voltage thus has five levels in it (0, 

+Vdc/2, +Vdc, -Vdc/2, -Vdc). Figure 4-6 shows two three-phase inverters, a three-level NPC inverter 

and a conventional two-level inverter. Figure 4-7 gives the four gate pulses for phase A of the 

NPC inverter. The pulses for the Qa1 and Qa3 are complementary and similarly pulses for Qa2 

and Qa4 are also complementary. Gate signal for Qa4 is 180° out of phase to that for Qa1. The 

operation of the main switches Qa1 and Qa4 is similar to the two switches of one phase in the 

conventional inverter. The auxiliary switches Qa2 and Qa3 along with diodes Da1 and Da2 help 

to provide an extra level (midpoint) in the output. In the first half of the cycle, Qa4 is off and 

Qa2 is on, as can be seen from the gate pulses. During this period, when Qa1 is on, the phase A 

voltage is Vdc and when Qa3 is closed, the phase A voltage is Vdc/2. Figure 4-8 shows the line-to-

line voltages of a NPC inverter and a two-level inverter and also their filtered version clearly 

shows that NPC inverter’s output is less distorted. Even though both inverters have the same 

LOH (mf -4), the NPC inverter provides a lower THD, less than half to that of a two-level 

inverter. The performance of the two inverters when feeding the rotor of a DFIG is compared by 

calculating their THD. It is found that the THD of the system with three-level inverter is 12.33 % 

while the system with the two-level inverter have a THD of 24.8 % (ftri = 600 Hz). For simple 

resistive loads without any filter, the THD becomes 42 % and 91 % respectively.        
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TABLE 4.2 PV PANEL PARAMETERS 

Parameter Value Unit 

No. of Cells 36 - 

Standard Light Intensity 1000  W/m2 

Reference Temperature 25  °C 

Series Resistance 0.008  Ω 

Shunt Resistance 1000  
Ω 

Short Circuit Current  3.87  A 

Saturation Current 21.6  nA 

Band Energy 1.12  eV 

 

TABLE 4.3 SOLAR MPPT PARAMETERS 

Parameter Value Unit 

Inductance, L 2 mH 

Capacitance, C 0.2 µF 

Proportional Constant, Kp 0.01 - 

Integral Constant, Ki 10 - 

Time Constant, � 1 ms 

Switching Frequency, fsw 10 kHz 

Frequency of Extended Pulse 10 Hz 

Duty Cycle of Extended Pulse 0.075 % - 
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 Figure 4-6.  Three- and Two-Level Inverters 

Figure 4-7.  Gate Pulses for Phase A of the Three-Level NPC Inverter 
 



48 

 

4.6. Inverter Controller 

 To adjust the rotor injection with changing wind speed, a controller is needed to control 

the injection voltage level and the injection frequency. Ref [51] compares three different control 

schemes, i.e. slip control, flux magnitude and angle control (FMAC) and vector control, for a 

DFIG based WECS. Based on that analysis, it is found that slip and vector control is better in 

terms of robustness. The basis of vector control is to convert the three-phase currents into two 

phase currents in the direct and quadrature axes. It is easy to control these two currents since they 

are decoupled and can be controlled independently. While supplying the wind power to a load or 

grid, three things must be ensured: (a) maximum power extraction from wind turbine, (b) 

constant stator voltage amplitude, and (c) constant stator frequency. Figure 4-9 gives the inverter 

controller used in the proposed system. It has two loops. The inner loops which are faster control 

the rotor current and generate the control voltages for the inverter. In the inverter, these voltages 

are used to modulate the carrier signal in order to generate the gate pulses. One of the outer loop 

controls the shaft torque and the other one controls the stator voltage. For flux-based rotating 

frames, real power is controlled by controlling the q-axis components and reactive power is 

 Figure 4-8.  Output Waveforms for 3- and 2- Level Inverters w/o and with Filter (fc = 1000 Hz) 
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controlled by controlling the d-axis components [53]. The output of the controller depends on the 

converter size, stator to rotor voltage ratio and modulation factor of converter (ma). Different 

parts of the controller are explained in the following sub-sections.  

4.6.1. Torque control for maximum energy extraction from wind turbine 

 The torque or power controller is designed for tracking the maximum power point of the 

turbine. It is done using the torque equation of a DFIG given in equation (2.9) which is 

�� �  �����  .  ���  . (4.9) 

 The value of KTopt for this particular generator, calculated using the rated values, is 

3.8195µ Nm/(rad/s)2. Using the shaft speed of the generator, the reference torque is calculated 

using (4.9). This torque reference is then compared to the actual machine torque. In PSIM, a 

torque sensor is used to measure the actual torque and a PI controller, minimizing the torque 

error, generates the q-axis component of the rotor current reference. In hardware implementation, 

the reference torque is used to calculate the q-axis component of the rotor current reference. The 

electromagnetic torque of a generator is given by [7] 

�� �  3 . �
2  #F!q . r!d �  F!d  . r!q- (4.10) 

where P is the number of machine poles, isd and isq are the d- and q-axis stator current 

components and �sd and �sd are d- and q-axis components of stator flux linkage. 

 The stator currents isd and isq can be expressed in terms d- and q- axis components of 

rotor currents (idr and iqr) as 

F!d �  #r!d �  s� . FNd-/s! (4.11) 

F!q �  #r!q �  s� . FNq-/s!
 

(4.12) 
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where  Ls, Lr and Lm are stator, rotor and mutual inductances of the generator respectively. So 

equation (4.10) can be written as  

�� �  3 . � . s�2 . s!  l� FNq . r!d 0  FNd  . r!qn. (4.13) 

  Now the flux linkages can be written in terms of stator currents and voltages as  

r!d �  #�!q � .! . F!q-/�! (4.14) 

r!q �  #�!d �  .! . F!d-/�!
 

(4.15) 

where  Rs and Rr are the stator and rotor resistances, ωs is the stator frequency in rad/s and vsd and 

vsq are the d- and q-axis stator voltage components. Substituting the values of flux linkages in 

equation (4.13) and neglecting Rs, which is very small for DFIG, we have 

�� �  � 3 . � . s�2 . s!  lFNd  . �!d 0  FNq . �!qn. (4.16) 

 The use of stator flux oriented reference frame sets vsd = 0. So equation (4.16) becomes  

�� �  � 3 . � . s�2 . s!  FNq . �!q . (4.17) 

from which  the q-axis current reference can be obtained as  

FNqN�f �  � 2 . s! . ��3 . � . s� . �!q �  � 2.0381 . ���!q   (4.18) 

 The reference for q-axis rotor current (irqref) can be computed from (4.18) and compared 

to the actual irq [10].  The error signal is applied to the PI controller to generate the q-axis 

component of control voltage (vcq).  

4.6.2. Constant stator voltage control 

 The d-axis part of the controller controls the stator voltage amplitude which can be done 

by adjusting the rotor injection voltage. The required rotor injection voltage (vr) can be computed 

using the slip (s) and stator voltage reference (Vsref) from the following equation [19], [59]: 



52 

 

�N �  u �!N�fv  
(4.19) 

where a is the stator to rotor turns ratio. A  PI controller is used to control the stator voltage and 

make it constant regardless of any change in the operating condition. The reference rms value of 

line-to-line stator voltage (208 V) is compared to the rms value of actual line-to-line stator 

voltage to generate the d-axis rotor current reference (irdref) which is then used to control ird. The 

error signal (irdref – ird) sets the d-axis component of control voltage (vcd). An estimate of the 

initial stator-voltage PI controller constants is made using the following equations [56]: 

��dT �  s� 0  sNs� . �! . � 
(4.20) 

�dT �  s� 0  sN.N  
(4.21) 

 Using an arbitrary closed-loop time-constant (�) of 10 ms and other machine parameters, 

the constants Kpdl and τdl are found to be 0.27 and 0.33 respectively.   

4.6.3. Frequency control 

 The last component of the controller is the frequency controller which sets the frequency 

of the injected rotor voltage equal to the slip frequency. For a DFIG, the stator frequency (fs) is 

equals the sum of the frequency at which the shaft rotates (fmech) and the frequency of the injected 

voltage as (fsl) [65]:  

Q! �  Q���" 0  Q!�. (4.22) 

 For both abc - dq0 or dq0 - abc transformations, the slip frequency is used to calculate the 

angle. Thus the frequency of the injection voltages and currents generated by the controller are 

equal to fsl. So the system does not require any phase-locked-loop for  measuring the stator or 

rotor angle needed for Park’s transformation. 
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 All the parameters of the controller are specified in Table 4.4 and Table 4.5. The 

generated signals from the controller will be obtained in the next section.  

 

 

TABLE 4.4 INVERTER CONTROLLER PARAMETERS (D-AXIS) 

Parameter Value Unit 

Reference Stator Voltage Level 294 V 

Capacitance 0.01 µF 

Proportional Constant, Kpd1 1m - 

Integral Constant, Kid1 0.01333 - 

Time Constant, �d1 75 ms 

Proportional Constant, Kpd2 50 - 

Integral Constant, Kid2 10k - 

Time Constant, �d2 5 ms 

 

TABLE 4.5 INVERTER CONTROLLER PARAMETERS (Q-AXIS) 

Parameter Value Unit 

Optimum Torque Coeff., KTopt 3.8195µ Nm/ (rad/s)2 

Proportional Constant, Kpq 50 - 

Integral Constant, Kiq 10k - 

Time Constant, �q 5 ms 

Cut-off Frequency of Filter 500 Hz 
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4.7. Simulation Results 

 Figure 4-10 shows the schematic diagram of the system including all the components. 

The controller is as it is in Figure 4-9. The simulation is actually done in Simulink with the 

where the controller is implemented and the power circuit is implemented in PSIM. Both of them 

are integrated using SimCoupler block. The parameters of the wind turbine and the generator 

used for the simulation are given in Table 4.6 and Table 4.7. All other parameters used in the 

system are also given in Table 4.8. This section includes the simulation results of the complete 

system.  

4.7.1. System under normal operating condition 

 Figure 4-11 gives the line-to-line stator voltage of phase A for a wind speed of 11 m/s. it 

takes some time to build up the desired voltage level at starting, but once achieved its stable for 

the rest of the time. The three-phase voltages and currents of the generator are also given that is 

fed to the three-phase load. Another simulation is run for the same system and under the same 

operating conditions, but with a two-level inverter. The three-phase stator voltages, given in 

Figure 4-12, clearly show that the output in Figure 4-11(b) is less distorted.  

 The zoomed in harmonic profiles of the stator voltage for both systems are shown in 

Figure 4-13. For the system with NPC inverter, the THD calculated using PSIM for both the 

voltage and current waveform is 2.14 % respectively, without any filter used in the system, as in 

[57]. The THD can be lowered using higher switching frequency, higher load and higher number 

of levels in the inverter. The LOH appears at 540 Hz (mf - 1) with amplitude of 0.98 V only. The 

harmonic with the highest amplitude is at 1260 Hz (2mf + 1) with amplitude of 2.3 V, i.e. only 

0.9 % of the fundamental voltage. The system with conventional inverter resulted in a THD = 3.6 

%, both being lower than the allowable limit of 5 %. The harmonic profile also confirms the  
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                        Figure 4-10.  Complete Schematic Diagram



56 

 

presence of sub-harmonics at 5 Hz of 1 V. The LOH is at 120 Hz with amplitude of 0.8 V and 

the harmonic with the highest amplitude is at 1260 Hz with amplitude of 5.7 V (2.1 % of the 

fundamental voltage). A similar system in [55], with 2-level inverter, gives a THD of 8.31 % and 

also has harmonics higher than 3 % of fundamental voltage even after using a carrier frequency 

TABLE 4.6 WIND TURBINE PARAMETERS 

Parameter Value Unit 

Nominal Output Power 20 kW 

Base Wind Speed 12 m/s 

Base Rotational Speed 100 rpm 

Initial Rotational Speed 30 rpm 

Moment of Inertia 2  kg.m2 

 

TABLE 4.7 DFIG PARAMETERS 

Parameter Value Unit 

Stator Resistance 0.59  Ω 

Stator Inductance 35.81 mH 

Rotor Resistance 3.39 Ω 

Rotor Inductance 19.894 mH 

Mutual Inductance 1.104 H 

Stator to Rotor Turns Ratio 1 - 

No. of Poles 4 - 

Moment of Inertia 0.05 kg.m2 
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of 10 kHz. Ref [67] presents a synchronous generator based WECS with 25-level cascaded 

inverter that can achieve a THD of 1.5 % for an 11 kV output voltage but with LOH = 3 (0.2 % 

of fundamental amplitude). 

4.7.2. System operation with variable wind speed  

 Figure 4-14 shows the system response with a step change in wind speed (9 m/s to 11 

m/s). The total simulation time is 8 seconds and the step in wind speed was applied at 4 seconds.  

The change in wind speed results in a change in generator speed from 1245 rpm to 1527 rpm. 

The figure shows the waveforms at different points in the controller. Figure 4-14(b) confirms 

that the rms value of the stator voltage is strictly constant at 208 V for all wind speeds. Figure 4-

14(d) shows the change in torque reference with wind speed, which sets a new operating point 

for the system. Figure 4-14(c) and Figure 4-14(e) demonstrate that how closely the rotor current 

components follow their respective references. Figure 4-14(f) and Figure 4-14(g) show the 

waveforms of the injected rotor current and voltage. It can be seen that the injection frequency  

changes with wind speed from 9 Hz to 18.5 Hz to maintain a constant stator frequency of 60 Hz. 

 Figure 4-15(a) gives the phase A stator voltage which is constant even with a step change 

in wind speed (also verified in Figure 4-14(b) in terms of rms value). In Figure 4-15(b), the stator  

TABLE 4.8 SYSTEM PARAMETERS 

Parameter Value Unit 

Three-Phase Load 100 Ω 

Gear Box Ratio 10 - 

DC-Bus Voltage 2*100 V 

Switching Frequency 600 Hz 
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output power and the required injection power are sketched out. The stator power is constant 

 (433 W) throughout the time span since a fixed load is connected to the stator. For the wind 

speed at 9 m/s, the power drawn from the rotor is about 129 W (≈ 29 %) and for 11 m/s it is 

about 82 W (≈ 18.94 %). It shows that at high wind speeds, the generator takes less power from 

rotor. This also verifies the statement that if the speed is in the range of ± 30 % of the rated 

Figure 4-11.  System Response under Normal Operating Condition 
a) Phase A stator voltage, b) three-phase stator voltage, and c) three-phase stator current 

 

 Figure 4-12.  System Response under Normal Operating Condition: Three-Phase Stator Voltage 
with Two-Level Inverter  
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 value, the converter rating can be as low as 20 ~ 30 % of the generator rating. 

 The system is also tested for voltage and frequency regulation when the wind turbine was 

supplied with a set real wind data for North Dakota state [74]. The waveforms, showing constant 

stator voltage across a 22 Ω/phase load, are given in Figure 4-16.  

Figure 4-13.  System Response under Normal Operating Condition: Harmonic Profile of Stator 
Voltage using a) Three-level NPC inverter, and b) two-level conventional inverter 
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Figure 4-14.  System Response to Variable Wind Speed 
a) Generator shaft speed, b) amplitude of stator voltage, c) d-axis component of reference and 
actual rotor current, d) reference torque from MPP equation, e) q-axis component of reference 

and actual rotor current, f) injected phase-A rotor current, and g) injected phase-A rotor voltage 
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4.7.3. System under variable load 

 Figure 4-16 shows the system response to variable load. The initial load is three-phase Y-

connected resistive load of 1000 Ω per-phase. Another 1000 Ω per-phase resistive load was 

placed in parallel (total resistance = 500Ω/phase) at t = 2 seconds. At t = 4 seconds, an R-L load 

of 1000 Ω and 100 mH per-phase was added in parallel. As expected, the stator voltage is almost 

Figure 4-16.  System Response to Real-Time Wind Speed 
a) Wind Speed [74], and b) rms value of line-to-line stator voltage 

Figure 4-15.  System Response to Variable Wind Speed 
a) Phase A stator voltage, and b) stator and injected rotor power 
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constant, with a small dip of 0.14 pu at the time of switching, and the load current and power 

goes up as the load is increased. Figure 4-16(d) shows the reactive power output of the system. 

4.7.4. System under grid fault condition 

 Finally the system was tasted for a three-phase short circuit fault. The load was shorted 

for about 110 ms. After the short was removed, it came to a steady state condition in about 35 ms 

(Figure 4-17), much faster compared to 280 ms in Ref [56] and 100 ms in Ref [3]. The voltage, 

speed and power waveforms in Ref [3] are given in Figure 4-18 for comparison. They created a 

short circuit of 100 ms and during that time the stator voltage and power dropped to zero. It took 

Figure 4-17.  System Response to Variable Load 
a) Phase A stator voltage, b) phase A stator current, c) stator and rotor real power, and d) stator 

reactive power 
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about 1.2 seconds for the power to reach its original value, whereas for the proposed system in 

this study, this time was only 0.88 seconds. The system in Ref [3] also has a change in speed 

about 0.07 pu, very high compared to the almost constant speed of the proposed scheme. The 

voltage overshoot for the system in Ref [3] is about 1.5 pu, much higher compared to that of the 

proposed system (1.1 pu).  

 

Figure 4-18.  System Response to Three-Phase Short Circuit Fault  
a) Short circuit signal, b) phase A stator voltage, c) phase A stator current, d) generator speed, 

and e) stator power 
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4.8. Conclusion 

 A simple and economical power converter system has been designed to extract the power 

from wind turbine and feed either to the grid or to an isolated load. To reduce the power drawn 

by the rotor from the grid, an auxiliary source i.e. a PV panel has been included in the system. 

MPPT technique used for the wind turbine ensures high efficiency at all wind speeds reducing 

the power rating of the converter. The surplus power output from the PV panel, if available, can 

The source for the converter can be selected manually or based on the availability of PV power. 

MPPT technique used for the wind turbine ensures high efficiency at all wind speeds reducing 

the power rating of the converter. The surplus power output from the PV panel, if available, can 

be stored in the battery for future use. The use of NPC inverter reduces the THD in the stator 

voltage. Both the boost regulator and the inverter controller have good dynamic response with a 

very low overshoot and a low settling time. This chapter presents a complete system overview 

proposed in this thesis with some supporting results obtained from simulation. 

 
(a)                                                                                 (b) 

 
Figure 4-19.  Comparison of System Response under Short Circuit Fault Condition 

(a) Proposed System and (b) System in Ref [3]  
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CHAPTER 5. EXPERIMENTAL RESULTS 

 

5.1. Introduction 

 This chapter presents the results of all experiments conducted to verify the proposed wind 

energy conversion system described in earlier chapters. The experiments are carried out with the 

power circuits including the inverter in hardware and the generator. Instead of a wind turbine, a 

DC motor is used here to run the DFIG. The control circuit is implemented in Simulink and the 

interfacing is done using dSPACE controller board RT1104. First it is verified that the converter 

in DFIG based WECS processes only the slip power and thus components with lower rating can 

be used in the rotor circuitry. Then two- and three-level inverters supplying a three-phase 

resistive load have been compared. Similar comparisons are made with these converters feeding 

the rotor of the DFIG. Finally the system is tested under variable-speed conditions to ensure its 

frequency and voltage regulation.  

5.2. Rotor Injection Power  

 The injected rotor power to the DFIG is equal to the product of the required stator power 

and the slip (s) of the generator. So if the slip can be maintained to be less than 30 %, the rotor 

power will also be low. So all the components used on the rotor side, like the converter, filter, 

etc., can have lower ratings compared to the ratings of the converters used in systems with 

synchronous generators. Table 5.1 and Table 5.2 validate the relation between stator and rotor 

power from simulation and experimental respectively. For the experimental data, a 5 hp DFIG is 

used to supply a three-phase resistive load and a variable-frequency power supply (360-ASX) is 

used for rotor injection. The injection voltage and frequency are controlled manually at different 

speeds to get a constant frequency (60 Hz), constant voltage (80 V) stator output. 
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5.3. Three- versus Two-Level Inverter 

 Different types of inverters are explained in Chapter 3. In Chapter 4, some simulation 

results are shown to verify that a multilevel inverter generates fewer harmonics by introducing 

intermediate levels in output voltage. In this section the above statement is verified using 

hardware experiments. The two-level inverter is implemented using IRAM136-3063B which 

integrates the three-phase full bridge inverter and its gate drivers. This IC is rated at 600 V and 

30 A, suitable for motor applications. For a three-level inverter, similar IC can be found only for 

a maximum current of 2 A. So separate ICs, APTGF30TL601G and IRS 26310DJPbF, are used 

TABLE 5.1 STATOR AND INJETED ROTOR POWER AT DIFFERENT WIND SPEEDS  

(SIMULATION RESULT) – Vsanrms = 120 V, RLoad = 100 Ω  

Wind Speed 

vw (m/s) 

Slip 

s (%) 

Stator Power 

Ps (W) 

Rotor Power 

Pr (W) 

Power Ratio 

Pr /Ps (%) 

9 25 433 129 29 

11 8.33 433 82 19 

 

TABLE 5.2 STATOR AND INJETED ROTOR POWER AT DIFFERENT WIND SPEEDS 

(EXPERMENTAL RESULT) – Vsanrms = 80 V, RLoad = 22 Ω 

Shaft Speed 

Nm (rpm) 

Slip 

s (%) 

Stator Power 

Ps (W) 

Rotor Power 

Pr (W) 

Power Ratio 

Pr /Ps (%) 

1038 42.3 873 563 64.5 

1176 34.6 873 387 44.3 

1340 25.6 873 321 36.8 

 



67 

 

as the power module and the driver respectively. APTGF30TL601G is a three-level single-phase 

IGBT bridge with high voltage and current ratings (600 V and 42 A at 25°C respectively). Three 

of them are connected in parallel to the DC bus for three-phase output. No dedicated drivers are 

available for supplying gate pulses to the twelve switches of the three-level bridge supporting 

such high voltage. So three IRS 26310DJPbF drivers, which are actually drivers for two-level 

bridges, are used for supplying the three-level bridge. Figure 5-1 shows the connection diagram 

of the NPC inverter circuitry using three APTGF30TL601G, three IRS 26310DJPbF and one 

SN74LS04N, a hex logic inverter. Six of the triggering pulses, for the top two switches in each 

phase, are generated using Simulink and the rest are obtained by inversion. Since each driver can 

supply one signal per phase with isolated ground and its inverted one with respect to the system 

ground, one driver is used to supply the second and the fourth switch (the one with the common 

ground) of all phases. The other drivers supply the first and the third switches with the inverted 

outputs left unused since their grounds are not isolated. Each driver supplies identically 

positioned switches in all three-phases. Figure 5-2 and Figure 5-3 show the inverter modules. 

 Both inverters are tested under same input conditions. The DC bus voltage is set to 6 V. 

The frequency modulation index, mf = 33 (ftri = 1980 Hz) and amplitude modulation index, ma = 

0.8. The output waveforms of both inverters with their FFT are shown in Figure 5-4 and Figure 

5-5. The NPC inverter has its LOH at mf – 4, i.e. at 1740 Hz whereas the two-level inverter’s 

output contains some sub-harmonics and other lower order harmonics resulting in a high THD 

and a high DF. Both inverters have the harmonic with highest amplitude at 2mf – 1, i.e. 3900 Hz, 

but the amplitude being 23 % and 36 % of fundamental amplitude for NPC and two-level 

inverters respectively. Table 5.3 shows the results of THD and DF calculation (disregarding the 

sub- harmonics for both) showing a close agreement between the simulation and experimental  
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Figure 5-2.  Hardware Implementation of Three-Level Inverter 
 
 

 
 

Figure 5-3.  Power Module for Two-Level Inverter  
 

DC Bus Voltage Three-Phase AC Output 15 V DC 
Supply 

Gate Pulses 

Inverter IC 

dSpace Controller 
Board 

Drivers’ Panel 

Three-Phase 
IGBT Bridge 
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Figure 5-4.  Waveforms of Three-Level NPC Inverter 
a) Line-to-line output voltage (Vab), and b) fast Fourier transform (FFT) of Vab 

 
 

  
 

Figure 5-5.  Waveforms of Two-Level Sine PWM Inverter 
a) Line-to-line output voltage (Vab) and b) fast Fourier transform (FFT) of Vab 
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results and also proves that for NPC inverter, not only the THD is 50% of the value for a two-

level inverter but also the DF is much lower. Figure 5-6 shows the inverter output after passing 

through a digital low-pass filter with a cut-off frequency (fc) of 1000 Hz which also proves 

superior performance of the NPC inverter. 

TABLE 5.3 THREE- VERSUS TWO-LEVEL INVERTER WITH RESISTIVE LOAD (ftri = 1980 Hz) 

  3-Level Inverter 2-Level Inverter 
S

im
ul

at
io

n 
LOH mf – 4 mf – 4 

THD 42.2 % 91.9 % 

DF 0.018 % 0.038 % 

THD with filter (fc = 1000 Hz) 10.7 % 23.7 % 

H
ar

dw
ar

e
 LOH mf – 4 4 

THD 43.43 % 78.93 %  

DF 0.022 % 1 %  

 

 
 

Figure 5-6.  Filtered Voltage Vab (fc = 1000 Hz) for Three-and Two-Level Inverters 
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5.4. Performance of the WECS under Variable Wind Speed Condition 

 Figure 5-7 and Figure 5-8 show the complete experimental setup including both the 

hardware and the dSPACE unit. The DFIG supplies a 3-phase resistive load having 22 Ω/phase 

with the rotor injection coming from a Semikron three-phase inverter module. In this case, the 

rechargeable batteries are replaced by a MASTECH DC power supply (50 V, 20 A). Only the 

stator voltage and frequency regulation are tested in the experimental setup. The system does not 

use any filter in the rotor injection side, i.e. the rotor is being supplied directly from the inverter 

output. Only digital filters are being used at the output of the ADCs of the dSPACE board such 

that the filtered signals are used by the controller. The speed data is fed to the controller 

manually using dSPACE ControlDesk. The ControlDesk is also used to set the stator reference 

voltage and to view the stator, rotor and controller waveforms.   

 Figure 5-9 shows the performance characteristics of the WECS at various speeds. It gives 

the stator voltages for three different speeds, 1020, 1210, and 1475 rpm. For all speeds, the stator 

voltage is constant with a line-to-neutral rms voltage of 15 V (26 V line-to-line rms). Figure 5-10 

gives the harmonic profile of the stator output voltage showing that the harmonics are suppressed 

more at higher speeds and also sub-harmonics appear at lower speeds. Table 5.4 shows the 

calculated THD and DF from both simulation and experiment using the two different inverters 

and also some results of earlier research works for comparison. The results not only prove that 

the system provides about 50 % less distortion by adding just one more level in the inverter but 

also gives better performance when compare to some existing systems. Figure 5-11 gives the 

stator voltage and rotor current of the WECS using the three-level inverter at 1050 rpm. The 

reason for its low voltage is that the maximum DC bus voltage and current has been set to 15 V 

and 1 A, for the protection of the inverter module. Figure 5-12 shows the change in the stator  
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(a) 
 

 
(b) 

 
Figure 5-8.  Simulation Diagram of a) WECS and b) controller subsystem 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 5-9.  Stator Line-to-Neutral Voltage and its rms Value at  

a) 1020 rpm, b) 1210 rpm, and c) 1475 rpm 
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TABLE 5.4 WECS USING THREE- VERSUS TWO-LEVEL INVERTER  

 Proposed System (ftri =1980Hz) System of Ref [55] 

(ftri = 10 kHz) 

System of Ref [67] 

(25-Level) 3-Level Inverter 2-Level Inverter  

S
im

ul
at

io
n 

LOH mf – 1 2 3 - 

THD 1.44% 3.58 % 8.31 % - 

DF 0.0062 % 0.0753 % - - 

H
ar

dw
ar

e
 LOH mf – 2 6.7 - 3 

THD 9.08 % 16.13 % - 1.55 % 

DF 0.0083 % 0.1015 % - - 

 

   
(a)                                                                         (b) 

 

 
(c) 

 
Figure 5-10.  Fast Fourier Transform (FFT) of Stator Voltage at  

a) 1020 rpm, b) 1210 rpm, and c) 1475 rpm 
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output voltage for a change in the reference voltage from 15 to 20 V at 1210 rpm. Table 5.5 and 

Figure 5-13 illustrate how the frequency regulation works at different speeds. As the speed goes 

up, the injection frequency is expected to decrease maintaining a constant stator frequency of 60 

Hz. The waveforms in the figure and the data in the table also verify this statement. Finally, in 

figure 5-14, the stator voltage is shown to maintain steadiness for various speeds ensuring that  

 

 
 

Figure 5-12.  Vsanrms at 1210 rpm with a Step-Input of 15 V to 20 V at Reference Voltage 
 
 

 
 

Figure 5-11.  Systems Performance using Three-Level Inverter at 1050 rpm 
a) rms value of Vsanrms, b) Vsan, c) three-phase injected rotor current, and d) FFT of Vsan 
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the system output will be consistent under variable wind speed condition. The speed is dropped 

from 1475 rpm to 1180 rpm resulting in a higher injection frequency and thus a lower injection 

current. With a small disturbance, the rms value of the stator voltage again settles down to the 

reference point of 15 V. The machine parameters are listed in Table 5.6. 

TABLE 5.5 FREQUENCY REGULATION AT VARIOUS WIND SPEED 

Generator Speed 

Nm (rpm) 

Mechanical 

Frequency 

fmech (Hz) 

Theoretical 

Slip Frequency 

fsl (Hz) 

Injected Rotor 

Frequency  

fr (Hz) 

Stator 

Frequency 

fs (Hz) 

1020 34.00 26 26.1 60 

1210 40.33 19.67 19.5 60 

1475 49.17 10.83 10.8 60 

 

  
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 5-13.  Frequency Variation of Injected Rotor Current with Speed Variation  

a) 1020 rpm, b) 1210 rpm, and c) 1475 rpm 
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Figure 5-14.  Constant Vsanrms (15 V) with a Change in Speed (1475 rpm to 1180 rpm) 
 

TABLE 5.6 MACHINE PARAMETERS OF THE DFIG 

Rated Power 5  hp 

Rated Speed 1725 rpm 

Rated Voltage 220/440 V 

Stator Resistance 0.32 Ω 

Stator Inductance 1.19 mH 

Rotor Resistance 0.36 Ω 

Rotor Inductance 1.34 mH 

Mutual Inductance 39.46 mH 

Stator to Rotor Turns Ratio 1.38 - 
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5.5. Performance of the WECS under Variable Load Condition 

 Figure 5-15 gives the systems response under variable load condition at 1210 rpm. 

Initially the load is a three phase resistive load with (22||11) = 7.33 Ω/phase. After some time the 

11 Ω load is removed from each phase resulting in a drop in the rotor current. But after some 

transient, the stator voltage settled down to its reference value of 15 V.  

5.6. Conclusion 

 This chapter gives the experimental results obtained on the proposed WECS. The 

hardware does not include all the aspects of the actual HRES especially the MPPT scheme of 

both wind and solar. It also uses the DC supplies and not rechargeable batteries using the stator 

or solar power. But the controller provides a well regulated stator voltage and frequency under 

variable-speed conditions. Also a harmonic analysis was carried out on the output and a 

comparison between the two inverters and also with some previous works has been shown. 

 
 

Figure 5-15.  Constant Vsanrms (15 V) with a Step Change in Load (7.33 Ω/phase to 22 Ω/phase) 
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CHAPTER 6. CONCLUSIONS 

 

6.1. Summary of Presented Work 

 A new concept of HRES is presented in this thesis that includes wind and PV energy, but 

the two sources do not just operate in parallel to feed the grid, like most existing HRESs. The 

WECS uses a DFIG whose rotor injection power is derived from two alternate sources depending 

on their availability. The rotor of the DFIG can be supplied either by a PV panel or by the stator. 

This multi-input concept makes the system more flexible and reduces its dependency on any 

single renewable source, whose availability is highly unpredictable. When possible, PV power is 

used for feeding the rotor and thus drawing no power from the stator, which increases the system 

efficiency. Then in the absence of the sunlight, a small fraction of the stator power is used by the 

rotor. The system can supply the load even in case of low wind speeds using only the PV power, 

since under that condition the generator acts as a regular transformer.  

 For drawing power from stator, a simple diode rectifier is used to convert the AC power 

to DC avoiding the complications of using a PWM rectifier and its controller. The DC voltages 

from both the sources are maintained constant using boost regulators at a level that matches the 

voltage of the battery which actually provides a constant bus voltage to the inverter. The boost 

regulator fed by the PV panel also extracts the peak power available from the panel. The core 

component of this work is the inverter and its controller. For lowering the harmonic distortion, a 

three-level neutral-point-clamped inverter has been used. Although it increases the complexity 

and cost of the converter, it makes the system suitable for high power and high voltage systems 

where a reduced distortion is worth implementing the scheme.  Compared to the existing power 

converters used for a DFIG based WECS, i.e. a back-to-back PWM converter with two separate 



82 

 

controllers, this concept uses a diode rectifier and an inverter with only one controller for the 

inverter. The rectifier controller is completely replaced by a boost regulator that is much easy to 

implement and also cost effective. All other parameters like, the real and reactive powers and the 

stator voltage and frequency are controlled using the inverter controller. The controller also 

ensures the MPPT of wind power providing high conversion efficiency over a wide range of 

wind speeds. The system is tested in a PSIM-Simulink based environment for variable wind 

speeds and load and three-phase short circuit fault where it demonstrates a very good and fast 

performance. The controller developed using PSIM is also used for running the experiments. 

 Compared to similar systems presented earlier, the proposed system offers better power 

quality without using costly and bulky power filters. The system does not use any lookup table 

for wind MPPT and also no phase-locked loop is implemented for angle measurement.  The 

digital environment makes it easy to control, adjust controller parameters and set references for 

stator output.   

6.2. Scope for Future Research 

 The aspects not included in the presented system that can be taken care of under future 

research are: 

• Operation at super-synchronous speeds (speeds higher than synchronous speed), where 

rotor power can be used to feed grid along with stator power and higher system efficiency 

can be achieved. This concept needs a back-to-back converter connected to the rotor of the 

generator to allow bidirectional power flow. Again a multilevel back-to-back converter can 

be used for better power quality. 

• Blade pitch angle control can be tried for extracting rated power from the WT running at 

super-synchronous speed. 
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• The system fails to maintain a constant stator voltage for an unbalanced load or any uneven 

faults since the controller works only on one line-to-line voltage. All the three phase are to 

be considered in developing the voltage feedback.  

• Use of PID controller can further improve the transient response of the system.     

• The system is currently designed to supply an isolated load. Grid integration can be 

considered that needs synchronization of the machine voltages and the grid voltages. In the 

case of grid connected systems, the power factor or the reactive power can be controlled. 
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