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ABSTRACT

In the thesis lubrication and wear at metal/HDPHtaots was addressed. In
particular this type of contact occurs in artificjaint replacements. Wear of HDPE was
recognized as a major factor limiting device perfance.

In the thesis, fully implicit fully coupled numedt approach was developed to
simulate lubrication and wear. Approach allows s@\vstationary and transient problems
for rough surfaces in a wide range of parametersaN¢oefficients were estimated from
experimental data.

Wear particles formed in wear process were invatgiy Particles were found to be
approximately 100 nm in diameter and spherical Iapg. Considering theoretical
solutions, it was concluded that debris may playoke of third-body abrasive wear
particles.

In the summary section, some discussion was prduvigstethe topic of theoretical

modeling of friction and wear and recommendatianditure research were formulated.
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1. INTRODUCTION

1.1. Lubrication

It has been empirically recognized long time agat tiry contacts between sliding
or rolling solid bodies produce higher friction ¢es than lubricated ones. At the same time
such surfaces wear out considerably faster ancespondingly an operational life of a
machine element or a whole machine is shortenestidatly. These phenomena are closely
related and play important role in our life.

Sometimes friction is a desirable force, like inase of brakes operation, or Stone
Age practice of firing by friction heat, but in @hcases the influence of it must be reduced
to a minimum. Humans developed different approathekecrease friction, but one of the
most powerful ways to accomplish the task is lutian. Although lubrication is possible
by means of gases, semifluid (greases) and evahrsalterials, most effective lubrication
is provided by liquids. In such contacts liquidsnage to penetrate between surfaces, build
a separation fluid film, reduce friction, improvedt dissipation, carry most of the load and
prevent excessive destruction.

It should be mentioned, that the parameters ofierest in lubrication theory are
film thickness and pressure. Film thickness deteesmihow well two surfaces are separated
to avoid direct contact and pressure determinesstomg the influence of the load on the
bodies is.

Practically important devices with lubrication ameet in many areas including
aerospace, power generation, transportation, defenanufacturing, computer technology
and biomechanical engineering (Fuller 1984). Acidfi joint replacement in biomechanical

engineering is a particular example of such a aewbere two articulating surfaces are



separated by synovial fluid and pressed againgt eteer by load. One of these surfaces
usually is made from plastic material, for examgiegh density polyethylene (HDPE)

(Charnley 1976).

1.2. Wear

Friction sometime is inevitable and necessary phama, but wear has always
negative consequences, whether it happens withomparsbelongings or with public
properties. Obviously, any wear process cost moRey.example, wear of clothes, shoes,
tires, doors, and stairs makes us to spend monekeplacements and repairs. It was
calculated by different sources that personal weats are about 25 — 250 dollars per year
(in 1966) (K.C. 1996). In a scale of a nation, reaghr, automotive and air jet engine wear,
rail road and bridges, and many other sources af wegjuire constant investment in repair,
replacement, related energy consumption costsatbwiéecreasing nation’s productivity.
Wear also affects biomedical applications, suclarificial joint replacements, causing
significant operation life reduction of this devif¢lmgham E. 2005, Sargeant A. 2006).
Thus, significant and continuous efforts have bpmvided to the field of wear research
and wear reduction (Wood W.J. 2011, Wannasria 8920

There is an increasing interest in the wear of t@asnaterials, such as
polytetrafluoroethylene (PTFE), high density pohygéne (HDPE), ultra high molecular
weight polyethylene (UHMWPE) in application to &dial joint replacements. These
materials do not wear out completely, however, desg favorable mechanical properties,
materials produce considerable wear debris amaumitiate autoimmune response and

bone loosening. As a consequence, revision suigrrll be needed (Akchurin A. 2012).



Thus, increasing the wear resistance of artifipait replacement materials is one of the

primary goals of modern arthroplasty.
1.3. Thesis objective

As it was pointed out in the previous paragrapl@mbedical engineering devices,
such as joint replacements, are worn out induciegth problems. Major cause of these
problems is the wear of a plastic material and c¢&dn of it could improve life quality of
such patients. Therefore, the objective of thieaesh was to develop a theoretical model
which predicts wear of HDPE in lubricated condisoas a function of the operational
parameters. Dependency of wear and friction oretipasameters can help to optimize the

design of such devices. Obviously, experiments wegeired to verify the model.
1.4. Overview

Chapter 2 of the thesis presents literature revoemthe topic of lubrication and
wear with emphasis in lubrication models, as thgomahenomenon of the process.
Chapter 3 is devoted to the theoretical developnoéra general lubrication model and
governing equations. In a following Chapter 4, mamoalytical solutions obtained for
several cases. In Chapter 5, numerical solutionrogmh is described and obtained
solutions are discussed. Experimental measurenoéritiction coefficient and wear mass
loss are presented in Chapter 6. Comparison ofékieal results with experiments is given
in Chapter 7. Wear particle measurements and desglation with theory are provided in

Chapter 8. Some conclusions and suggestions anmarped in Chapter 9.



2. LITERATURE REVIEW

2.1. Atrtificial joint replacements

As it was mentioned above, the primary concerrhefthesis is the lubrication in
artificial joint replacements. The reason for tisighe increasing demands in such kind of
devices for patients with joint pain, as it is simowv Figure 1. Abbreviation TKA stands for
total knee arthroplasty, whereas THA for total &ifhroplasty.

3500
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Figure 1. Projections of primary replacement suege(Kurtz S. 2007).

Under healthy conditions, natural joint works undebricated condition with
synovial liquid acting as a lubricant. The bearsugfaces are represented by human bones
with surfaces covered by layers of articular cagd. Interaction of this material and
synovial fluid under normal conditions developsywéw friction (the range for friction
coefficient is in 0.005 to 0.04, (Kennedy F.E., Wat and Human Joints 2012)) and
negligible wear during the lifetime of the humamoia the point of view of tribological

performance of the joint, synovial fluid is the magomponent. The main constituent of it



is water and it also contains long chain proteinlemages, hyaluronic acid and

phospholipids (Neville 2007). Synovial fluid showsongly non-Newtonian properties

with viscosity varying in the range from about 01051.5 Pa s, depending on operational
conditions, as well as individual features of thienan (Kennedy F.E., Natural and Human
Joints 2012). Operational conditions important wbrication analysis in joints can be

summarized in a Table 1, (Neville 2007).

Table 1. Operational conditions in joints.

Motion Sliding/rolling
Lubrication regime Hydrodynamic/Boundary lubricatjo
Speed 0.03-0.3 m/s
Contact pressure Max 18 MPa
Temperature 25-40 °C

Brilliant performance of natural joints sometimadd and people start to feel pain.
In this case, replacement surgery is performed,aatificial joint replaces the natural one.

Schematic of such device for THA is shown in Figre

\ \

QS
o Acetabular Cup

Polyethylene Liner
Femoral Head

Figure 2. Schematic representation of artificial replacement.



In a shown case, femoral head and polyethylene &reethe bearing surfaces, and
as in case with natural joints, they operate inosial lubrication environment. First
introduced by Charnley in 1962 (Kennedy F.E., Natand Human Joints 2012), these
devices showed low friction and wear performanatane able to relief patients from pain.
However, sometimes they fail resulting revisionjekhs a risky and expensive surgery. At
the same time, younger people need joint replacesmEmanding additional requirements
to the performance and longevity of artificial jtanProjections of these revision surgeries

are shown in Figure 3
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Figure 3. Projection of revision surgeries (Kurt2807).

It is already admitted by researchers that the magason of joint failure is the
wear of polyethylene liner (Atwood S. A. 2006). Hoxer, the primary failure is not due to
mechanical wear through of the liner, but the wmanticle induced immune system
reaction (osteolysis, resorption of living bonestig), which leads to a joint loosening (A.
2012). Thus, increasing the wear resistance dicatijoint replacement materials is one

of the primary goals of modern arthroplasty.



A number of researchers attempted to study thacatiwn and wear in artificial
joints theoretically as it was recently reviewed Mgttei et al (Mattei L. n.d.). Goenka
(Goenka P 1980) was first to formulate transientyri®éds equation in spherical
coordinates and solve it using finite element asialyUsing Newton-Raphson approach a
simultaneous solution of elasto-hydrodynamic ludtiam (EHL) problem for ball-in-socket
geometry was obtained by Jalali-Vahid et al (Jafalhid D 2003). A general methodology
for steady state EHL analysis of hip implants wasealoped by Jagatia et al (Jagatia M.
2001). Newton-Raphson algorithms of Reynolds equatvith finite element analysis to
obtain elastic deformations were used for solutiSparse fast Fourier transformation
approach allowed Wang et al (Wang F.C. 2004) tees@HL problem for realistic 3D
loading and motion of walking conditions. Howevercase when solution requires highly
dense mesh, Newton-Raphson approach becomes imefffecs a full matrix linear system
must be solved, which is much more expensive imgeof calculation resources (Gao L.
M. 2007). For this reason, multi-grid techniquesraduced by Lubrecht and further
improved by Venner (Venner C.H. 2000) are widelyptyed in EHL analysis of artificial
joint replacements. As it will be discussed in madetails later in the thesis, recently
developed be Evans et al (Evans H. P. 2000) diffexle deflection approach allows
overcoming mentioned drawback and obtaining EHlutsmh in an efficient manner using
Newton-Raphson solver.

In wear modeling of artificial joint replacementsjtuation is even more
complicated, due to complex nature of the constipfeenomena itself. Most of the studies
neglect the lubrication (Mattei L. n.d.) and comsidrchard’s wear law (Archard 1953) to

estimate wear factor, or wear coefficient from expental measurements (Kima N. H.



2005, Mukrasa S. 2009, Benabdallah H. 2006). Uthigyapproach, Fisher et al (Fisher J.
1994) explored dependency of wear factor on roughrand sliding speed and obtained
empirical relationship between wear factor and hmggs of the tough counter face in case
of bovine serum lubricated conditions. Wang (WafA81) developed a different wear law
for UHMWPE in multi-directional sliding in lubricatl contact. However, the law was not
coupled with EHL theory, which again means that th#uence of lubrication was
neglected. Kennedy et al (Kennedy F.E., Lubricatmal Wear of Artificial Knee Joint
Materials in a Rolling/Sliding Tribotester 2007)pdored wear of UHMWPE in oscillating
contacts and using Archard’s law found that thenfaetor along the wear track in case of
lubricated contact varies in different location$ilEtheory was employed to explain this
result, however, estimation of wear factor was Igotemsed on the simplified dry Hertz
theory solution, which may fail in the lubricateontacts.

As the normal function of either artificial or naalijoints is highly dependent on
the synovial liquid lubrication, assumption of digntact may not be fulfilled. Thus, for a
proper wear analysis, lubrication theory cannotneglected. Zhu et al (M. A. Zhu D.
2007) built a sequential numerical algorithm toveotoupled lubricant flow and wear of
material. As it will be discussed later in the sattdevoted to numerical approach, there
are some disadvantages of sequential algorithmnlynaelated to the low convergence
speed of such schemes. In case of modeling a éragngroblem for rough surfaces, high
number of EHL solutions coupled with wear theorysibe built. For example, for the
modeling of one wear cycle of a pin-on-disk machihé necessary to solve the problem
at least 300 times, depending on the time stepatization. Thus, low convergence speed

algorithms cannot be efficiently applied to the weanulation. For this reason, in the



thesis, a fully implicit or simultaneous approadtcoupling Archard’s wear law with EHL

theory was developed.
2.2. Lubrication theory

History of lubrication theory goes more than a gentback to 1886 when O.
Reynolds published famous equation of thin flulchfflow in the narrow gap between two
solids (Reynolds 1886). This equation carries tas@ and forms a foundation of the
lubrication theory. First analytical solutions fmressure distribution in case of parallel and
converging plane surfaces with fixed separatiom fithicknesses were obtained by
Reynolds himself.

Further, in 1916 Martin (Dowson D., Elasto-Hydrodymc Lubrication. SI Edition.
1977) obtained a closed form solution for a minimfilm thickness and pressure for a
cylinder and plane geometry under assumptionsgal surfaces and isoviscous lubricants.
But as it was shown experimentally later, this 8otudid not match with film thickness
measurements in case of high loads. Comparison atiVs rigid body solution with
experimental measurements can be seen on Figure 4.

Derivation of several analytical solutions incluglithis one will be shown further in
the thesis and it will be seen that pressure igtion is fully determined by minimum film
thickness and therefore is of most importance @éotétical analysis.

Divergence of experimental and theoretical ressjtd/artin for high loads leaded
researchers to conclusion that elastic distortioth pressure-viscosity dependence play a
significant role in lubrication. In 1949, Grubin f@in A.N. 1949) obtained a solution for
so called elasto-hydrodynamic lubrication (EHL) elircontact problem with certain

simplifications, where he combined both elasticodeiation and lubricant hydrodynamic



flow. Although his solution did not satisfy bothastic and hydrodynamic equations of
EHL, his analysis was recognized as particularlgfuils It also included variance of
viscosity with pressure. At the same time, Grubas\able to predict formation of pressure

spike at the outlet region — remarkable featurElL solutions.

200
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Figure 4. Variation of film thickness with load, ¢@son D., Elasto-Hydrodynamic
Lubrication. Sl Edition. 1977).

Petrushevich (Petrusevich 1951) was actually fiosbbtain predicted by Grubin
pressure spike in his numerical analysis of the HHé& contact problem. For this reason,
the spike sometimes is referred to as “Petrush&wptike. Obtained in 1951, his solution
was first solution of combined elastic distortioftiuid flow and pressure-viscosity
dependency equations. It should be emphasizedithbatccurrence of the pressure spike is

closely related to the variance of viscosity wittegsure along with elastic properties of

10



materials and relative speed. In the thesis, itmedged that pressure spike does not occur,
if only constant pressure is considered.

Remarkable analytical solution of a point contactopem was derived by a famous
Russian scientist P.L. Kapitsa (Cameron 1976) isumptions of rigid substrates,
isoviscous fluid and half-Sommerfeld boundary ctinds. Under these conditions, he
obtained a closed form relation of minimum filmdkmess on load and other parameters of
the problem.

By that moment, newly introduced computer technie@®gbecame available.
Further development of the solution approaches @asely related to the growth of
computer capabilities and evolution of numericathods.

In 1959 Dowson and Higginson (Dowson D., A NumédriGolution to the
Elastohydrodynamic Problem 1959) computed seriesuafierical solutions of EHL line
contact problem for a range and obtained a regmes®rmula for a minimum film
thickness, which is still being widely used. Thdgoaintroduced three non-dimensional
groups of parameters, namely “load”, “speed” andatenals” parameters. Equation is

given by:
ho i70.3 70.54177 —0-13
R=2.65U'G' W, (1)

whereW, = F, /E'R is the load parametef, = aE’ is the materials parameter and
U = Uuy/E'R is the speed parameter.

Several approaches were introduced to solve themysf EHL equations. Direct
methods are used to obtain the pressure distribditioa known fluid film thickness and
inverse methods vice versa: for a fixed pressusgribdution, fluid film thickness is

calculated (Gohar 1988).

11



Multigrid approach introduced by Lubrecht (Lugt P.8011) and further improved
by Venner (Venner C.H. 2000) significantly incregsdficiency of numerical methods and
allowed researchers analyze more complex probl&asently, a fully implicit approach
along with Newton’s method was reexamined in atligh development of differential
deflection approach (Evans H. P. 2000). Advancedprgational methods combined with
sophisticated hardware nowadays allow tribologistsxplore transient problems (Wijnant
1998), incorporate plastic effects (Ning Ren 20HKdface roughness (H. Y.-Z. Zhu D.
2001), study thermal problems (Hasim Khan 2009kechiEHL (Hu Y.Z. Wang H. 2001)
and wear processes (M. A. Zhu D. 2007). ReceftB (Hartinger 2007) and molecular

dynamic simulations (Spikes 2006) were employelHit problems.

12



3. FORMULATION AND GOVERNING

EQUATIONS

As long the lubrication in joints is analyzed, sotheoretical and experimental
models must be considered. In general, a compleeitimensional motion and three-
dimensional dynamic loading makes is difficult onglate and investigate behavior of
natural and artificial joints. Thus, some simpékfiions are employed, namely, one-
dimensional loading and one-directional motion.altows then using a pin-on-disk
tribometer for experimental measurements of weak faiction. The simplified problem

formulation is shown in the Figure 5.

Pressure

Figure 5. Schematic representation of the problem.
Instead of 3-D problem, a 2-D simplified approashemployed. A cylinder with
radius R with some length in Z direction is consédkeand it is assumed that nothing
changes in that direction. There is some lubritativeen the steel cylinder and the HDPE

substrate with certain viscosity, and thicknesstlug lubricant layer changes with

13



coordinate X. Coordinate system is fixed and reldte the steel cylinder. The substrate
moves with constant velocity U, and the steel dginis stationary. When some load is
applied through the cylinder, a certain pressudeigloped in the lubricant and equilibrate
applied load. As long as the elastic modulus aflstetwo orders of magnitude higher than
of HDPE, the cylinder is considered to be rigidd amly substrate is allowed to deform
elastically.

Unknowns here are the pressure developed in lulirigad, actually, separation
distance between two bodies, which is lubricamt fihickness. Knowing these values, one
can estimate friction, and through some laws esémaar. And it is important to know,
how these variables depend on the given paramdilezsioad, viscosity, speed and any
other related values.

In general, EHL model involves two groups of eqomdi (Ai 1993).First group
consists of:

1) Reynolds equation

2) Film thickness equation

3) Load balance equation

Second group involves empirical relationships:

1) Viscosity-pressure relation

2) Density-pressure relation

Further, this system of equations can be changearder to account non-
Newtonian behavior, temperature, plastic defornmatiotime dependent geometry

(roughness, wear) and other effects.
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3.1.Reynolds equation

Reynolds equation is the result of classical Reymaoheory and is employed in a
wide range of thin film flow problems. The prinagl of the theory are derived from the
observation that the lubricant can be treated@sssous and laminar and the fluid film is
of negligible curvature. Reynolds equation can leived from the Navier-Stokes
eqguations and the equation of continuity underragsions of:

1) constant viscosity, Newtonian lubricant

2) thin film geometry

3) negligible inertia

4) negligible body force

Under these assumptions one can obtain followingon (Szeri 2005):

0 (ph3 6p> N 0 (ph3 6p> _ 0(umph) d(ph) _

ax\12uadx) ' ay ox at

1240z

0 (2)

where p is the pressure; is the film thickness or gap height,the time,p the

density,u the viscosity of lubricant and,,, = % represents the mean velocity of the

surfaces. First two terms in equation represensdRilie pressure induced flow, the third
one is referred to as Couette term describingltve induced by mean velocity and the last
is known as a squeeze term. A sketch with coordimaes and velocities is shown in a

Figure 4.
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Figure 6. Surfaces in a relative motion.
Equation ( 3 )s called Reynolds equation and is, in fact, thidigrensional. In a

following analysis, a simplified two-dimensionalrsmsn is used:

0 (3)

124 0x

0 (ph3 ap) _ 9Cumph) _(ph) _

ox dx ot

3.2. Elastic deflection equation

As long as EHL problems require evaluation of étadeflection, expression for
relating pressure and deflection is needed. Detaiézivation of it is given in (Dowson D.,
Elasto-Hydrodynamic Lubrication. SI Edition. 197{Johnson 2003), (Timoshenko S.
1951). Equation is derived for a semi-infinite petfy elastic body, shown in Figure 7. It is
supposed that in directiorsy bodies are infinite and in the study only vertidaflections

are of interest.
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Figure 7. Semi-infinite elastic half-space.
In the examined case, consideration of semi-irdielastic half-space is justified, as
the elastic deflection is orders of magnitudes nahan actual size of the analyzed

substrate. In this case, analytical solution ofatigms of elasticity theory gives following:

Xc

he(x) = —% p(x)In(x —x")dx" + C (4)

whereh,(x) is elastic deflectionp(x') - pressurel/E' = (1 —v?)/E — reduced
Young’'s modulus,E — Young’'s modulusy — Poisson’s ratio and is constant. This
constant is taken in the way, to make the deflaotiqual zero somewhere significantly far

from the contact. For example, if at a poiptdeflection is zero, then constant is equal to:

Xc

C = i p(x")In(x, — x") dx' (5)

~ mE’ Xy
In case of two elastically deformable bodies, reduelastic modulus can be

calculated as an arithmetic average:

1 _1/1 1 (6)
E'  2\E| E}
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In the thesis, a metal/HDPE contact is considereticmnsequently, metal ball can
be considered as a rigid body compared to the HE\PBtrate.

It is clear from equation ( 4 ) that deflectionestch point depends on pressure
distribution all over the substrate, which makes final system of equations differential-

integral and complicates numerical solution.
3.3. Film thickness equation

In the examined two dimensional case, insteadtbfeee dimensional ball, a simple
geometry of an infinite cylinder is introduced ass shown in a Figure 8. Hence, the
problem becomes two dimensional. First, considdy ¢ime ball and assume zero point

coincides with its vicinity.

(0,0) X

Figure 8. Geometrical component of film thickness.
Near the vicinity at point = 0, thicknessh, can be represented as a function of a

current ordinatec and approximated by neglecting all terms of Tagl@xpansion with

exponents higher than two:

hy(x) = R (1 - (1 - (%)2)1/2>

Taylor's expansion near zero:
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and hence,

hg(x)zg—R (7)

Further, we can introduce a substrate on a distapdeom the cylinder as it is

shown in the Figure 4.

Y ho

(0,0) X
Figure 9. Cylinder and substrate.

Then the distance between the cylinder and thetsuéscould be written as

follows:
h(x) = hy + hy(x) (8)

This gap is considered to be filled by a lubricantd henceh(x) is a lubricant
thickness, or film thickness. Further, if therears applied load, some pressure distribution
is going to arise and the substrate is going tdedeficcording to equation ( 4 ). This
deformationh, (x) will increase the distance between surfaces andehequation ( 8 ) is

re-written:

h(x) = hg + hg(x) + he(x) (9)
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It should be emphasized, that paramétem equation (9 ) cannot be treated as in
( 8 ) as a minimum distance between two surfacesv K, represents only a distance
between liney = 0 and the cylinder vicinity necessary to equilibraggplied load. This

parameter is unknown and has to be calculated fising balance equation.

Figure 10. Geometrical meaning/gf.

In case shown in the Figure M), has a negative value according to equation ( 9)
atx = 0. In general, it can be a positive number, if thignder does not cross the liye=
0.

Equation ( 9 ) is not a complete expression forftine thickness, as there are not
included surface roughness and wear, which diredtct separation thickness. It will be
done later in the thesis.

Pressure distribution over a fluid film is highlymkendent on the film thickness.
For EHL problems, elastic deformation of the coctiregy solids is important and
influences the gap formation. Thus, final gap betwvsurfaces consists of actual geometry
and elastic terms. In the other hand, elastic effecletermined by pressure distribution.
Hence, Reynolds equation and gap thickness formul&HL problems are strongly

coupled.
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3.4. Wear law

Wear simulation allows studying the process prégiganding parameters of most
importance, substituting experiments and, actuglyting some important numbers. At the
same time, wear itself is a very complicated precesich includes physical and chemical
transformations. This fact gives rise to a high bemof proposed wear models. According
to the literature surveys (Meng H.C. 1995), the elquioposed by Archard (Archard 1953)
is most frequently used:

V, = k,Fs (10)
where 1, is wear volumek,, is wear coefficientF is the load and s is a sliding
distance.

Now, if both parts of equation ( 10 ) are divideglthe area of contact, equation
takes form:

h,, = k,,ps (11)
whereh,, is a depth of wear andis pressure.

In the other hand, when the transient problem issic®red,h, depends on time

and distance can be represented in an incrememial f

dh,, = k,,pudt (12)
and hence,
dh,,
wo_ 13
dt wpu (13)

Consider an arbitrary pressure distribution as shiovihe Figure 11.
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Figure 11. Motion of the worn point on a lower suoe.

The coordinate system is fixed and zero point istlen lower surface under the
vicinity of the cylinder. Consider a point of thariace at moment; which experiences
pressurep, and wear depth due tp, ish,,. Suppose the coordinate of itxs It is
necessary to follow this point to find it at momegtunder pressurg, at coordinate
x + u(t, — t;) with wear depth due to, ish,,,. Total wear depth of this point then is
h = h,,; + h,,,. Hence, following expression for wear in fixed odioate system can be

written:

t

hy, (x +ut,t) = k,u f p(x 4+ ut’, t")dt’ (14)
0

Thus, every time step, there will be a wear geeédréity pressure. This wear will
increase distance between two surfaces and henseb@uncorporated into film thickness
equation as a positive term:

h(x) = hy + hg(x) + he(x) + hy, (x) (15)

The fact that the film thickness influences pressdistribution means that wear

also influences pressure, and it plays a pressssgdtion role.
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3.5. Surface roughness

It is well known that any surface is not ideallgtflas it was supposed in previous
sections. Some irregularities of the surfaces amays present and actually, in case of
highly loaded contacts can play significant rolg,tlae height of these asperities becomes
comparable with minimum film thickness. This leadsthe local rise of pressures and
corresponding increase in wear, friction, tempeetand other effects. Thus, proper
treatment of surface roughness should be provi@diously, minimum film thickness
must ensure a full separation of two bodies byhkaidant. To achieve it, film thickness
must be larger than a sum of asperities heightheftivo bodies. Thus, asperity heights
determine optimum parameters to achieve a full rsioa.

In general, asperities decrease the distance bettieebodies, thus, equation for
film thickness is re-written with account of aspies height as:

h(x) = hy + hg(x) + he(x) + hy, (x) — s(x) (16)
wheres(x) is an a sum of asperity heights of two bodiesoatpc. It is possible to
introduce roughness from direct measurements afdbface, for example, by atomic force
microscopy, or for simplicity, through mathematioakpression. We can consider a
following function:
s(x) = A,,sin (Ax) (17)
where 4,, is an amplitude of the asperitidsis a wave length.

Using this relation it is possible to analyze iefhiee of amplitudes and roughness
wave length on local film thicknesses and pressuMsreover, if there are actual
measurements of surface roughness, it is possilflethem using equation ( 17 ) at some

extent and get averaged values.
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3.6. Load equation

Equilibrium of forces is reached when the hydrodyitapressure obtained from
Reynolds equation is balanced by applied IBad-or the line contact problem the force

balance is written as:

A= e (18)

a

where F; is a load per unit length.

Hydrodynamic pressure in lubricant film acting dme tupper surface, actually
initiates two components of forces, in vertical drmtizontal directions. But the horizontal
component of it is very small, as the radius ofvature is very large compared to the

contact length. Thus, it can be neglected.
3.7. Lubricant properties

Pressure dependent parameters of the fluid, sueis@ssity and density are related
with pressure through empirical equations. As thaure of these relations is empirical,
various formulas are available for both properfiésnner C.H. 2000).

Probably, one of the most used equations is kn@\Baaus equation:

1(p) = poexp (a(p — po)) (19)
where u, Is the viscosity under atmospheric pressure ang the pressure-
viscosity coefficient.

The density can be assumed constant or again $exgrarimental results can be
employed. Dowson and Higginson (Dowson D., Ela$yorodynamic Lubrication. Sl

Edition. 1977) relation is given by:
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5.9-108 + 1.34p

20
59-108 +p (20)

p(P) = po

where p, is the atmospheric density and pressure unitvisngin Pa.

Defined set of equations with corresponding boupdaonditions forms a full
stationary EHL problem. Boundary conditions will 8scussed in the numerical scheme
section. Developed code contains ability of pressiependent density feature, however,
pressures developed for metal/HDPE contacts aresioall to influence the pressure

distribution, and thus, in calculations were natsidered.
3.8. Boundary conditions

Reynolds equation as the second order differeatjaation requires two boundary
conditions to be stated. In one hand side, itesrcthat far to the left from the contact in
considered two dimensional cases pressure mustjied & atmospheric pressure. Thus,
one of the boundary conditions for the problem iigten as:

p(xq) = Do (21)

With the same consideration, pressure on the bghhdary is supposed to be equal

to atmospheric pressure:
p(xc) =P (22)

Numerical solution of Reynolds equation with comlis stated boundary
conditions is shown on the Figure 12 and is retetie asFull Sommerfeld Solution.
Pressure distribution is asymmetric and containgatiee values. This behavior is not
physically justified, because the fluid cannot airspressures below its cavitation pressure

(Floberg 1961).
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x 10-3 Full Sommerfeld solution

Ko 1

P, dimensionless
o

4l _

_6 1 1 1
-1 -05 0 05 1

X, dimensionless
Figure 12. Full Sommerfeld numerical solution.

If the pressure goes below vapor, lubricant stamtbng. This condition is believed
to happen rarely in lubrication problems (Dowson Blasto-Hydrodynamic Lubrication.
Sl Edition. 1977). In the other hand, if pressualisfbelow atmospheric, dissolved gases
are liberated, forming bubbles and these bubblestaia pressure near to saturation point.
For examined case, saturation pressure is cloggrtospheric, as the lubricant is opened to
atmosphere. Such condition is called cavitation ae®ds to be implemented into
numerical scheme. Complementarity arises when Regreguation is solved along with
cavitation condition: full solution is subdividedto two areas. Within the one of them
Reynolds equation solution is taken and within ptivee pressure is set to zero. The border
between subdomains is unknown and there are sevayalto find it.

The simplest way is known &kalf Sommerfeld Solution and is used to estimate real
pressure profile and load capacity. This approaadhply set hydrodynamic pressure
obtained by Reynolds equation to zero whereves ihegative. It is stated by Venner
(Venner C.H. 2000) that half Sommerfeld solutiorsutes relatively small errors in

determination of load capacity.
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It was first noticed by Reynolds that proper bougdeonditions are needed. To
locate the cavitation point, one more equationesded. Following equation is referred to

as Reynolds, or Swift-Stieber boundary condition:

dp
0xly,

=0 (23)

It is the most frequently used equation in EHL solu problems and it is found
from considerations of continuity. It is supposédttlubricant travels through cavitation
region in streams, separated by bubbles. Separsttots at the point of cavitation, hence,
at this point velocity profile of the lubricantlisear. Inmediately before cavitation region,
velocity profile obeys Reynolds equation, and helgoees nonlinear distribution, if
pressure gradient is not zero. Thus, only presgtadient equal to zero can satisfy these
considerations.

One way of cavitation boundary implementation iwn as penalty method,

introduced by Wu (Wu 1986). Consider following foahReynolds equation:

d (ph® dp. d(ph) d(ph) 1
— | — - — ——p. = 24
0x <12u 0x ™ 9x ot gPe 0 (24)

where p; = min (0, p.). It was shown by Wu:
1ingpc(x) =p(x), Vx
£

wherep(x) is the solution of the following system:

(0 (ph’op d(ph) otk _
ox \12u 0x Um " ox at
(25)
L
l 0x xc_

Thus, the cavitation boundary condition can be engnted through the solution of

equation ( 24 ). This approach is used in the ghesi
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3.9. Full system of equations

Finally, it is possible to write down the system aemfuations fully describing the

examined problem.

( d (ph3dp d(ph) d(ph) _ 0
ox \12u 0x Ym ox at
Xc
) Fi= | padx (26)
x? -
h(x,t) = hy (t) + R + h.(x,t) + h,(x,t) —s(x,t)
\

Boundary conditions:
(p(—00) = py

) p(x:) = po (27)

op

=0
0x

Xc

\

where

Xc

4
(h,(x£) = —

— . p(x',t) In(x — x',t) dx' + C(t)

t

) hy,(x +ut, t) =k,u j p(x +ut', t")dt’ (28)
0

s(x) = A,,sin (Ax)

and

u(p) = uoexp (ap) (29)

System of equations ( 26 ) - ( 29 ) includes allampns necessary to solve.
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3.10. Dimensional equations

It is convenient to study instead of actual paramsetdimensionless ones. To

perform this procedure, following dimensionlessiatales are introduced.

a

— P, = pP,, x = XR hzi_lRt:iEk L L
p 0 pro, ) ) um' w PO;M ,U()' 0

s =5R,A,, = A,,R,F, = RP,F,
Substitution of these variables gives the dimeriegmequations:

( i<ApE3@>_a(ﬁﬁ)_a(ﬁE) _ 0

ox\" [ 0x 0x ot

< Fi= [ panax (30)

0o
72

h(x,©) = hy (F) + % + Ry (%) + Ry (%) — 5(%,F)

\

(P(—0) =0

p(%.) =0
] PR (31)
55

2l =0

Lax,gc

where parameted = RPy/12uyu,,. Now it is possible to consider particular

analytical solutions of the stated problem.
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4. ANALYTICAL SOLUTIONS OF SIMPLIFIED

PROBLEMS

In general, stated system of equations cannot lvedganalytically, and only in a
few simplified cases it is possible to obtain saclsolution. Three stationary analytical
solutions are discussed.

First case to consider is the lubrication of rigodies with constant viscosity and
density. Although it is not applicable in most betpractical cases, it gives a closed form
solution for a minimum film thickness and shows tekationship between parameters of
the process.

As a second solution, Grubin’s approximate formidaderived. This brilliant
solution is also important to study due to accolamt viscosity-pressure variation and
elasticity of contacting bodies.

Kapitsa solution of a point contact problem is dssed in the last section as the
only analytical solution of three dimensional perbk. It is derived for the case of rigid
substrates, but takes into account viscosity- presgariation. The price for this is the use

of half-Sommerfeld boundary conditions.
4.1. Rigid body isoviscous solution

First, it is convenient to consider the simplessecaf sliding motion in which
bodies are assumed to be rigid. In this case, ysem of equations simplifies to the

following:
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(o _.opy 0d(h
9 (4w 22)-28)
0x 0x 0x

(%
4 F2==f‘ p(x')dx' (32)
=2

_ — X
\ 2

Regular boundary conditions ( 27 ) are applied.

Following variable substitution is applied:

X = /Zf_totan & (33)

Substitution of a new variablé into equations and double integration of the
Reynolds equation leads to a following system afagigns on unknown. andh,:

Aﬂho

= f1(€c)
<AChO

J2h,

= £, (34)

\

( fi€o) = (1 +iC1) (1 + (EC )tanfc) +%

26 = (1 +2C1)Sln2€c 1(1 +3C1) ({C ) (35)

C. = 1
\ L™ cos?é,

A

Once &, and h, are known, pressure distribution is calculatedogtiog to

expression:
_ \/Zho 1 ¢ 1 1 3n
p(§) = [ sin2& +5+ C, <—sm4€ + —sin2¢ + = f) +—C
h,2A L4 32 16
(36)
+7]
4
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If the parameteh, from the first of equations in ( 34 ) is expressederms of

f1(&.) and substituted into the second equation, theviatig relation is obtained:

1 (ﬁ(&))i_ﬁ(&) (37)
VZ\ AR ) AC

This relation dictates the condition for functiofi§é.) andf,(¢.) to be greater or
equal to zero. In casedf— dimensionless cavitation pressure is zero, asmsidered case,
f>(é.) must be equal to zero, as the left hand sidaiefivhenf; (¢,) is greater than zero.
Functionf,(¢,) crosses zero only at one pofpt= 0.4436, thus, from the first equation of
the system ( 34 i, can be calculated as:

- 2f1(&0) _ 0.408
7 AF, AF,

(38)

Returning back to dimensional variables, final emuefor a calculation of the
minimum film thickness is obtained:

U, R
h0=4.9”1;” (39)

l

This solution is known as Martin’s theory approxtroa (Dowson D., Elasto-
Hydrodynamic Lubrication. Sl Edition. 1977), (GrabA.N. 1949). Although it is well
known that experimentally measured minimum filnckmesses for highly loaded contacts
are much greater due to elastic deformation, thigtisn shows essential relationship of
parameters in a hydrodynamic lubrication. Majonaasion in here is that higher

viscosity lubricants produce thicker separatiomsil
4.2. Grubin’s solution

As it is visible from the pressure-viscosity redatj viscosity of the lubricant

increases exponentially with pressure. Thus, a@egrth ( 39 ) minimum film thickness
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will be increasing too. Based on this relation, lédnuwas able to obtain an approximate

analytical solution of the line contact problem.

Consider following system of equations:

(d (ph3 dp) dh

dx\ 120 dx =0

Ty T

) F, = f_ Cp(x’)dx’ (40)
n(p) = uo exp(ap)
p(=») =0

Integrating once first equation, one can obtain:

h3 d dh
PP _ ¢ (41)
12uu,, dx dx

where C is a constant. At some point, pressure gradiemialegto zero, and
corresponding film thickness is notedréslf C is expressed througdti, equation ( 41 )

takes form:

dp h—n

Introduce a variablg, = (1 — e™*?)/a, and hence:

dp, h— h

— = 12H0umT

dx (43)

Under conditions of heavily loaded constants cargd by Grubin, pressure in

contact gets very high, means goes to infinity aré o, which meang, —» % = const,

dpyu

= 0. Therefore, inside of the contact film thicknesgdnstant, and’ = h,, whereh,

is the separation film thickness. Another conclaosimm this statements is that pressure
inside of the contact is the same as for the dntamt, as the lubricant is incompressible.

Thus, the pressure distribution can be considesddeatzian. From the other hand, Grubin
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considered pressures outside of the contact zonemadl, compared with inside, and
therefore all deformations outside of it are dueptessure inside. Consequently, film

thickness outside of Hertzian zone is written as:

2

1-02 1-03
h(x)=h0+( Ly 2
E,

E,

) APmax8 (44)

where the latter term comes from Hertz thearys a half-width of Hertz contact

5=21> (2)2—1—171 =+ /(2)2—1\ (45)

. 2 .
For the line contaqt,,,,, = - Introduce a new variable:
l

1 1—02 1-03\1
— = L 2= (46)
E; E, &

and:

Then equation ( 44 ) can be written in a short way:
1
h(x) = hy + EFIS (47)
l

As the film thickness is constant in contact zane, h' = h — hy = EiFléS . Thus,
l

equation ( 43 ) gets form:

1
=F8
dp E
— = 12Uty —— 3 (48)
¥ ho +5-F18)
0 El l
Now it is possible to re-write the last equatioraifollowing form:
dPu _ 8 (49)
dx' H3
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2
and p, = (;—i) /12ugua, x' = x/a. Integration from the negative infinity to -1,

leads to an equation:

L
P = pie) = | (50)

Now the integration can be performed numerically dorange ofH, and get an

approximate expression:
pl(=1) = 0.0986H, **/ (51)
In the other handp, (—1) must be equal tb/a. Thus, substituting back all the
variables, knowing from Hertz theory that= Zm, h, can be obtained:

ﬂouma\/ﬁ

52
F,/E, (52)

ho'Y® = 2.3664

Equation ( 52 ) is a result of a brilliant analysfsGrubin and as it was shown later,

fairly matches experimentally measured film thickses for highly loaded contacts.
4.3. Kapitsa solution of point contact problem

In case of rigid bodies and half-Sommerfeld boupdanditions, a famous Russian
scientist Kapitsa was able to obtain an analysoc#lition of point contact problem.
Assume a following pressure distribution:

kx

p=ﬁ (53)

Substitution of this expression into three dimenalostationary Reynolds’s

equation then gives:

3kx 2kx _ 12 X ”
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And thusk = — 12u,u/3 + 22—". For ballsR, = R,, then pressure equals to:
y

_ 12uypx
P= "5 T

(55)

From the load balance and half-Sommerfeld boundanglitions, one can obtain:

10.664u, uR3/2\’
ho = ( i ) (56)
l

This solution is not frequently used. In detailsridation of Kapitsa and Grubin’s

solutions are well described in the book of Caméf@ameron 1976).
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5. NUMERICAL SOLUTION OF THE STATIONARY

LINE CONTACT PROBLEM

First numerical calculations of a line EHL problevare performed by Dowson and
Higginson (Dowson D., A Numerical Solution to thEagiohydrodynamic Problem 1959).
Calculations in a wide range of parameters allothenn to derive a famous approximate
formula for the film thickness. In their approatiey used a simple Gauss-Seidel relaxation
scheme. Later, improvements were done by othearesers to obtain solutions in high
loaded contacts. In 1986 Lubrecht (Venner C.H. 200@oduced multigrid approach and
were able to reduce calculation time significantfurther, Venner (Venner 1991)
introduced multi-integration technique that madessiile high load solutions to be
obtained. First simultaneous solution using NewRaphson procedure was considered by
Okamura (H. 1982), but further research in thigation was restricted by the nature of
elastic deflection equation: elastic deflection@ny point depends on the pressure all over
the contact, which makes the resultant Jacobeanxnfiall. Solution of a system of linear
equations with full matrix, necessary to solve imst case, requires much more
computational sources. But relatively recently, faténtial deflection approach was
introduced by Evans (Hughes 2000, Evans H.P. 199#)ere he found that the second
derivative of elastic deflection is highly localdzeand used it to build a numerical
procedure for line and point contact problems. he tthesis, this approach was
implemented for the line contact solution. Furthiewill be discussed in details.

In general, there are two approaches for the swluf the stated problem. First is

most frequently used, sequential, solves for aknamvns iteratively. Second approach,
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fully implicit, and solves for unknowns simultaneby This approach was abandoned by
researchers at first, as it resulted in a full madf linear systems of equations. But as it
was mentioned, this restriction could be overcoAdvantages and shortcomings of each
method are listed in the Table 2.

Table 2. Comparison of solution approaches.

Sequential Fully Implicit

Unknowns:p, hg, x,

One of the unknowns is solved for, oth¢r&nknowns are solved for
are fixed simultaneously
Straightforward and simple Fast convergence rate

Small storage capacity

—

Slow convergence rate Full matrix of linearized system (
Unstable convergence for moderate gnelquations
high loads Hard to implement cavitation conditior]

Singular matrix for high loads

5.1. Discretization

In this section discrete equations are obtainedgusipproximation schemes of
different order. It should be noticed that severathors propose different schemes and

approaches for approximations. Here the schemetogeatpby Ai (Ai 1993) are used.
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5.1.1. Reynolds equation

Although a number of approximation schemes areladai the Poiseuillis term in

Reynolds equation is usually approximated by a rsg¢corder short central difference

scheme:

_ §iyl ST o .
) B

0x

(57)

whereAX represents the mesh step size. The same disti@tizmapplied for inner

partial derivatives:

_ Pi+1 — Di
Ax

5

2
and

(@) _Pi—Pia
0%/t A%

Substitution of (3.12) and (3.13) into (3.11) leatts the

approximation:
d ( 6;5) B
77 \°a% o
L

S‘H%ﬁm - ﬁz(fi% + s‘i_%) + fi_%ﬁm

Ax?
where
fii% = (§i +$ix1)/2,
- 73
Prahia
§1=—"2
*2 #ii%
and
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(59)

following final

(60)

(61)

(62)



h 1= (hi+ his1)/2 (63)

2

Density and viscosity follow the same wayham ( 63 ).

As well as Poiseuillis term, Couette term shouldabsecond order of accuracy,
although the first order is used too (Ai 1993). Wen(Venner C.H. 2000) proposed several
second order schemes: short central order cethtrad, central second order and second
order upstream approximations. Second order upstr@aproximation is suggested for
EHL problems to apply for entire domain a first @rdupstream discretization on the
boundary.

He noticed that for low loads or pressure indepahdiem thickness, any second

order approximation is suitable. For the simplichigre the following scheme was taken:

(6(;)71)) _ Piv1hizs = Pi—1hi_a

ox 2Ax (64)

The time derivative term is approximated using fingler implicit Euler’'s scheme:

o(ph)\ _ pihi — (ﬁif_li)n
<T> =T A (85)

The superscrip means that this value is taken from the curranetstep. From
now on, all the values from current time step wét superscript, and from the next time
step won’t have any superscripts.

Gathering discretized equations and substitutintp ithe first dimensionless
equation of the system ( 30 ), leads to:

A
Ax? 2Ax

(66)
_ pihi — (Pif_li)n _

= 0
At
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Keeping in mind the penalty formulation ( 24 ), wan introduce following

function and use it for numerical solution further:

. 1Pjrq — Di(é. 1+ €. + ¢ 1pi- ~ T T
fp . €1+%pl+1 pl(EH_% fl_%) fl_%pl 1 B pi+1hi+1 _ pi—lhi—l
L Ax? 2AXx
(67)
- —\7
_ pihi — (pih:) 1
At e ¢

5.1.2. Force balance equation

Force balance equation as well as Reynolds equediorbe discretized in a several
ways. Parabolic approximation of pressure is usgdA 1993) in each point and is

considered by (Gohar 1988). Venner (Venner C.H.0208uggests a rectangular

approximation:

N
=07 ) P (68)
i=1

where N is the number of approximation nodes. The same again a previous

section, function is introduced:
N
fi=F-02) p (69)
i=1

5.1.3. Fluid film thickness equation

According to section Surface roughness3.5, filmkifiess equation can be written

in a following form:

h(x) = hy + hg(x) + he(x) + hy, (x) — s(x) (70)
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All terms are straightforward to represent in disized form for each node. Elastic

term, in general can be represented in a folloviomgn:
he(x;) = Z Glipk (71)
k

This form is usually used in EHL calculations. Gméénts G can be considered as
weights of pressure in poirkt to the deflection in point. It will be shown later, that
coefficients G, are decaying very slowly from the point of applica. It means that
deflection in every point strongly depends on puess even far from the point of interest.
For sequential schemes, this fact doesn’t maked#ifgrence, as the resultant matrix of
linear equations is derived from Reynolds equaéind thus is going to be tridiagonal. But
in case of fully implicit approach, Jacobean wi# b full matrix, and is needed to be
inverted. Inversion of a full matrix is a very exygéve procedure and usually is not used.
That is the reason of popularity of sequential apph in EHL theory.

However, recently, as it was mentioned, anothercgmh was invented by Evans
(Evans H.P. 1999). Instead of considering theed&btn itself, he considered a second
derivative of the deflection, and was able to campevith following representation:

9% h,
0x?

= Z gLpk (72)
Xi k

Solution of a second order differential equatioguiees two boundary conditions.
It's clear that at the left hand side, far from tentact, deflection must be equal to zero.
On the right boundary, constriction can be caladathrough equation ( 71 ). Thus, in

dimensionless form:

72

T N -
k
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Comparison of coefficients in equation ( 71 ) a@() is shown in the Figure 13.

Normalized Coefficients

= Differential
== |ntegral
08f
o 086
i}
®
£
s 04} : J
= :
02 ................................. ..................... g .......... 4
-%0 0 50

i
Figure 13. Dependence of coefficients on distdrara point of application.
As we can see, the second derivative of elastitectedn is strongly localized.
Thus, instead of considering the original film #ness equation, it is beneficial to work
with its second derivative and consider the filnckhess as an independent variable. Then,

dimensionless form of the second derivative offtime thickness equation is written in a

form:

Riv1 — 2h; + hi_4 ;
INE =1+ dz 9iPr

¥ (74)
CSip1 =25+ 8y Wiyq — 20 H Wi
AX? AX?
It is possible to introduce following function:
n Pier — 2R +hy_y 1
i AX? B
_ o _ _ (75)
d i~ Siv1— 25+ Si-1  Wipq — 20; + Wiy
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5.2. Newton’s method
The key feature of the approach is to considersoires and film thickness as

independent variables. Thus, to obtain diagonadigded matrix, the vector of unknowns

can be written in a following form:

(76)

~
I
|

Thus, there ar&(N — 1) + 2 unknown variables. For their solutiod(N — 1) +

2 equations (66 ),(68),(73),( 74) are used.

According to Newton’s method, following proceduseapplied:
(77)

Vier = Vi —]_1(‘7k)f(‘7k)

wheref (V,) is calculated from using previously introduceddiions:

f2

- (78)
fia
o

f
| ]

Matrix of Jacobean must be calculated to solve gué 77 ). It is constructed in a

following way:
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K off  0ff Off 9f)]
9p, Ok,  OPy_1 Ohy_, Ohy Ohg
offf  off ofyf  ofy off OfF
P, Ok,  OPy-1 Ohy_, Ohy Ohy
Ofv-r Ofw-1 Ofuy Ofuy Ofiy Ofny
0p,  0h, 0Py_1 Ohy_, Ohy  Ohy
T= o, ofb, ofi. ofi. ofi. ofh
N-1 N-1 N-1 N-1 N-1 N-1
0D, oh, 0py—1 0hy_, Ohy dh,
ofyr  ofw ofw  offt off ofw
ap, 0h, 0Py Ohy_, Ohy Ohy
ofy  of ofe  ofy ofy Ofy
0p,  0h, 0Py Ohy_, Ohy 0h,

(79)

As it can be seen, if all coefficients of the defien equation are used, then this

matrix will be full. However, as it was shown, che@knts goes down rapidly, and hence,

we can assume that only close neighbor pointsentte the second derivative of deflection

in the point. In this casg, becomes banded and band width depends on how many

neighbor points are considered.

5.3. Validation

In order to validate the proposed method, a nundbezromparisons were done.

First, at the limit of infinite elastic modulus, merical solution must be the same as for

rigid cylinders. Thus, it is possible to comparealgtical and numerical solutions for rigid

case. Comparison is given in the Figure 14. ObWouwo solutions match. In the same

figure, the effect of addition of elastic deflect®o is shown. The influence is very

pronounced.
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Comparison of rigid and elastic cases
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Figure 14. Comparison of numerical rigid case valalytical solution.

To validate numerical solution in case of elastdlibes, published data was used.
Two independent sources were taken. Pressure BndHhickness profiles were re-built
from their papers using a ruler and compared viighresults obtained in the thesis. First is
the work by Okamura (H. 1982), who first had usesiwtbn’s method in EHL. In his
solution, he considered the same line contact proplhowever, the second-order
differential Reynolds equation was first integrated! resulted a first order equation. This
approach seems to be more accurate, because ¢esedpproximation errors of the second
derivative. But this approach cannot be directlgdufor general 3D case, which makes it
only particularly useful. In the Figure 15,Figuré,Bigure 17,Figure 18 comparison of
pressure and film thicknesses with Okamura solutioshown. As it is seen, pressure

distributions and film thickness profiles are cabesnt with reference data.
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Figure 15. Comparison with Okamura. Pressure.
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Figure 16. Relative error in pressure calculatibn Okamura.
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%10 Comparison with reference solution
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Figure 17. Comparison with Okamura. Film Thickness.
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Figure 18. Relative error in film thickness cald¢ida, %, Okamura.

48



Comparison with reference solution
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Figure 19. Comparison with Wu. Pressure.
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Figure 20. Relative error in pressure calculatidn\Wu.

To ensure correctness of the developed numeribaihse, pressure distribution was

compared with another reference, namely, with smiubbtained by Wu (Wu 1986).
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Pressure distributions and relative errors are shiomFigure 19 and Figure 20. Again, it
can be concluded that profiles are consistent. ,Thumerical solution by fully implicit

approach is consistent with published data, andcdiecan be considered as correct.
Solutions obtained by the solver will be used talgre the stated problem of wear

simulation.
5.4. Discussion of theoretical model

As it can be seen from the given solutions, theeesaveral features in the EHL
solution. It is worth to discuss them. First of, @lwe consider the film thickness profile,
we will definitely see the reduction of the film ithe outlet of the contact. To analyze this
fact, first consider red isoviscous curve in thgure 21. At some poiri, pressure gradient
is zero. Thus, the flow rate is fully determined dyinear part of velocity profile. At the
outlet, according to Figure 22, there is a presguadient, which will increase velocity by
addition of non-linear component. Thus, to fulfitle constant flow rate requirement, the
linear part of velocity must decrease, and it isgilde only if the gap height is decreased.

Further, consider the case of pressure dependsrusiiy of lubricant. As it can be
expected from the rigid theory, as viscosity inse=s the film thickness increases, as it can
be seen from the profiles. However, another featnirde film thickness profile is added,
when viscosity changes. Right before closure offilne thickness at the outlet, a small
bump occurs. It happens from the same considemtiwhen pressure gradient term is
subtracted from velocity, gap has to be increasddlfill the constant flow rate. After the
peak pressure, the gradient again increases welaaidl the gap has to be decreased. As the
pressure drop in this case is much more visibke sttarpness and deepness of the closure

is more pronounced for the pressure dependent ttesefor isoviscous case. The reasons
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of pressure spike occurrence are not fully undedst@®/enner 1991). It is known that it
occurs only for pressure-dependent viscosity madédl for certain speeds, but researchers
still cannot develop a full explanation. In thedise it was found that pressure spike occurs

only when the Barus relationship is introduced.

x 107 Film thickness comparison
22 T ! T T
= Barus Relation
ol R ——Constant Viscosity| ¢ |
i | D, T S ......................... .......................... ............................
o
; I e, G ......................... .......................... ....................... i
T4k ....................... .......................... 3
T ......................... ......................... ..................... _
1 i | i i
-0.01 -0.005 0 0.005 0.01

XR
Figure 21. Film thickness for constant and presdependent viscosity.

It is worth to study dependence of pressure prdite film thickness on major
parameters — speed and viscosity. To start witbsqure profiles for the case of given
parameters were plot, and mean velocity was vaitedas varied around experimental
value of 0.0079 m/s. In the Figure 23, number ahscurves is given. Notatidi,, = 10,
means that the mean velocity is increased 10 ticoespared to experimental value of

0.0079. For comparison, Hertz solution for the cage is also presented.
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Pressure Distribution
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Figure 22. Pressure distribution for isoviscous prassure dependent lubricant.
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Figure 23. Dependence of pressure on the meanglsgieed.
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As it can be readily seen, pressure spike did notiofor the speeds in considered
range. For low speeds, pressure profile is vergecto the Hertz solution profile, as there
was no liquid at all. Increase in speed leads Bggmt mismatch with dry case solution.
Thus, at low speeds, the influence of lubricantvflim the pressure profile is small, and
increases with speed. In general, it can be coedutiat increase of speed results in
decreased maximum pressure and smothered profile.

Corresponding film thickness profiles are showikrigure 24. For low speeds, film
thickness profile has a parallel section, widthwdfich decreases with speed. When in
pressure spike occurs, film thickness changesidaiigt and the parallel section does not
form. Further increase in speed leads to smootherfithe film, but with larger minimum

thickness.

0" Film Thickness on Velocity (UﬂJm)

I
I

o
I

M2
I

—e
|

Film Thickness, dimensionless

k)

0.1

X, dimensionless
Figure 24. Dependence of film thickness on meaedpe

Next parameter to consider is the influece of ws#go With all parameters fixed,

viscosity of the lubricant was varied in the rarigen 1cP to 1000 cP. Hertz solution for
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dry case was also drawn for comparison. Accordingigure 25, for any viscosity in the
range, pressure profiles are close to the Hertgisaol

Film thickness profiles presented in Figure 26,enawide parallel section for low
viscosities. With increase in viscosity this secticeduces, with overal increase in
minimum film thickness, which is shwon in Figure. 2iportant observation here is that
viscosity does not change the minimum film thiclsjeshich is the separation distance
between two bodies, significantly in the range ofsidered parameters. Thus, even 1000
times increase in viscosity will not guarantee lagaparation of surfaces, when roughness
is about 50-100 nm. In the other hand, for highscasities, the widht of the region where
direct contact may occur is much narrower thanidaer viscosities, thus the total wear can
be decreased. The same is actually true for changgeeed too.

Pressure on viscosity
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1
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Figure 25. Dependence of pressure on viscosity.
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Figure 26. Dependence of film thickness on visgosit
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Figure 27. Dependence of minimum film thickness/mcosity.
It can be concluded from desrcibed calculationat fbr the case of considered

parameters and elastically deformable substratgkjence of viscosity and speed on
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minimum film thickness is not that important as fwid case, although, these parameters

changes profiles significantly.
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6. EXPERIMENTAL MEASUREMENTS

Wear testing was performed under lubricated commiti using a pin-on-disc
tribometer (CETR-UMTZ2). Schematic representationitois shown in Figure 28. The
polymer sample is fixed on a bottom of a lubricied holder, which is attached to a
rotating disk. The counterpart steel ball is fixada ball holder. Controlled misalignment
between central axis of the rotating disk and thk lolder makes the sliding path in a
form of a circle with a certain diameter. During test, friction force is measured by force
sensors and friction coefficient is calculateds lalso possible to attach a thermocouple (k-
type) and measure the temperature of the lubriednsome fixed point. The main

controlled parameters are load, speed and duration.

i
£ Cariago

Dual
FriclionfLoac
Foreo Sonsors

Ball Holder
with Ball

Lubricant
pecimen  —T—

Test Disc —
Liquid
Holder

Figure 28. Schematic representation of a tribometer
High Density Polyethylene was used as a wearing@mat Each test specimen had

a lin. x 1 in. square size and was fixed in al steamber filled with the lubricant. A
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thermocouple was embedded into lubricant to retemntperature change in the lubricant.
Each sample was dried at temperature of 75 de@elssus for 12 hours before and after
the test to exclude any moisture influence to masssurements. Stainless steel balls
(5S440 Grade 25) with diameter of 3/16 in. (4.768)rand surface roughness of 2 micro
in. (0.0051um) from Salem Specialty Ball, Inc. were used. Mafsthe wear testing was
performed under following conditions: normal load5—N, sliding velocity — 60 rpm,
sliding diameter — 10 mm and duration — 4-8 hokrgtion force and friction coefficients
as well as temperature of the lubricant in a chamiere recorded during the test. Mass

wear loss was measured and used to evaluate wear ra

. x 107 Experimental Wear

9 Wewmn I experiment *
_—- 3 A e B A R R R SR s
Eﬂ
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0 i i i

0 2 4 6 8

Time, h
Figure 29. Wear of HDPE on time.

As lubricant, deionized water, glycerol and glydewater solutions were used. The
reason for taking these lubricants is in their Newdan behavior, even for high shear rates,

encountered in EHL contacts.
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In the Figure 29 the wear loss in grams is presefde the case of 95% weight
glycerol-water solution. Corresponding data is give Table 3. Asterisks represent
actually measured values and line is the resutiarflinear interpolation. As it is easily
seen, first four hours produce less wear than éutiours. It means that wear is a nonlinear
process. Increase in wear rate with time is rel&tettie change of wear regime, from mild
to more severe. Usually, after first four hours veéaring the track is smooth, only
sometimes having rough cavities on the surface. dédew after 8 hours, the track has
rough surface, fully taken by cavities as it iswhan Figure 30. Thus, it is supposed that
wear regime is changing in time. Theoretical mauebf wear in a proposed form only can
be used for one regime, meaning that if coefficeintvear was found in mild regime, it
cannot be applied to the estimation of wear inweeregime. As it can be seen from the
figure, the red line represent theoretically caltedl wear rates based on the wear

coefficient estimated from 4 hour long experimdntthis case, wear coefficient is low,

15 m3N

k, =10~ —, due to mild wear regime, thus it underestimatearwnass loss in other

regimes.

Figure 30. Photographs of wear surface evoluticime.

Important experimental curve can be built if theawes plot against viscosity of

lubricant. For this purposes, dry, water lubricat®8% glycerol-water solution and pure
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glycerol were used as lubricants in 4 hour londsteExperimental wear measurements

then can be used to plot the graph Figure 31.

Table 3. Wear mass loss and standard deviation (@%éérol-water mixture)

Time, hours | Mean Wear Loss, grams  Standard Dewniagiams
4 0.0008 0.0008
6 0.002 0.0018
8 0.004 0.0025
: %10~ Experimental Wear
Lubricated =
o 3_ .............................................
Eﬁ
SR N LW
&
g (O A el I Y oy R L
oL AR
0 107 10° 10" 10°
Viscosity, Pa s

Figure 31. Dependence of worn mass on viscosity.

In the Figure 31 it is seen that the wear ratalfgrcondition is not highest. Further,

for the case of water lubrication, the wear ragmigicantly increases. When the viscosity is

increased till about 0.38 Pa s, the wear is droppedr of the dry case. Further increase in

viscosity leads to the increase in wear mass ldksis, it can be assumed, that the

minimum wear loss under lubricated conditions Ww#l in the range of viscosities starting

from 1 cP to about 380 cP, and closer to lattergdneral, the behavior is quite logical,
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except of the low worn mass for the dry case. indther hand, some researchers (Xu S.
2012) have shown that HDPE has outstanding setfdation properties in dry conditions.
This theory implies that a thin film of HDPE is Hun relative motion and protects the
lower layers of HDPE from wearing.

Another important experimental measurement isiénmctoefficient. For the same
tests, friction coefficient was measured. In caB®%% glycerol-water solution, friction
coefficient is shown for all experiments in Figl82. It is necessary to have a mean value
of friction coefficient, thus, it is plotted in Rige 33. As it can be seen from these figures,
friction coefficient decreases with time, and asglas the normal load is constant, it means
that friction force decreases. It is common evid@gmehich indicates a running-in friction
region. After it, most of the curves stabilize atne level and this value is of most interest.
These values for different lubricants are summadrize Table 4. They were used to
compare with theoretical calculations and discussioCorresponding elevation in
temperature is given in Table 5. These values wseel for theoretical calculations as the
estimation of the temperature in contact.

Viscosities of glycerol and glycerol-water solutiere estimated using following
correlation (Cheng 2008):

Hmix = water” Hgtycerol * (80)
wherey is determined through volumetric concentrationglgterol and water. It
is necessary to notice that,;, depends on temperature, as both viscosities afrveatd
glycerol depends on temperature.
Uwater = 1.790exp((—1230 — T)T /(36100 + 360T)) (81)

and
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Hgiyceror = 12100exp((—1233 4+ T)T/(9900 + 70T)) (82)
In these equations temperature is measured inUSedsid viscosity is given in cP.
The last term to identify hereys
y=1—-C+ (abC(1-C))/(aC+b(1—-0C)) (83)
where C — mass concentration of glycerol in mixtuses= 0.705 — 0.0012T,b =

(4.9 + 0.036T)a’2.5.

Coefficient of friction
0. T T T
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Figure 32. Friction coefficient measurements fav®Ofycerol-water solution.

Temperature at the contact was taken as 24 de@@eksus, Table 5. Thus,
viscosity of pure glycerol equals to 987 cP an®%% glycerol water solution equals to
363.8 cP. These values were used as an estimdtiabracant viscosity in a contact. For

water, 1 cP was taken as it doesn’t change sigmifig for assumed temperature.
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Mean COF
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Figure 33. Mean friction coefficient for 95% glyoésmvater solution.

Based on data provided in Table 4, it is possibléuild a plot of dependence of
friction coefficient on viscosity. This type ofqtlis called a Stribeck curve (Liu 2002) and
usually it shows dependence of friction coefficiam product of initial viscosity and
velocity. The following speculations are usuallyplgd. When the distance between two
rough surfaces is decreased from fully lubricaegime, asperities tend to form a contact
and the friction is locally determined by shearithg boundary layers present at the
surfaces. Further decrease will increase the dncéind the load will be carried fully by the

asperities and friction becomes of a Coulomb naiugeindependent of load and velocity.

In the provided experiments, following curve carpbsted:
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Figure 34. Dependency of friction coefficient osaosity. Dry viscosity is taken as O.

As it can be seen from the Figure 34, maximum oaefit of friction is developed

for the dry case, which was expected. With addiabpure water, total friction coefficient
is built by two components, dry and lubricated. Water viscosity is low, the minimum
film thickness is extremely low and thus, the ciimition of dry components is more
pronounced, which results a high friction coeffitieFurther, with increase of viscosity,
the component of dry contact decreases, resulteggedse in total friction coefficient.
With further increase in viscosity, dry componetit decreasing, however, the lubricated
component increases and at some viscosity the grofwt will compensate decrease in dry
component and total friction coefficient will grows it is seen for a pure glycerol. This

behavior misleadingly can be understood as an atalicof a full fluid lubrication regime,
as it shows a typical relationship of friction andcosity for fluids. However, as it will be

shown from theoretical considerations, it is natetr This aspect will be discussed in a

following section. In advance, it is worth to memtithat for HDPE and steel contact for
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the case of glycerol and considered load, radiukeball, it is hard to achieve a full fluid
lubrication regime by changing speed and viscosityhe considered range.

Table 4. Coefficient of friction for different luizants.

Lubricant COF Standard Deviatiorn
Dry 0.09 N/A
Water 0.055 N/A
95%
Glycerol 0.031 0.0043
Pure
Glycerol 0.036 0.0027

Presence of dry component in friction also indisateat some part of the load is
carried by asperities. It means, that pressureldpeéd in the lubricant will be lower in
reality, than calculated using a smooth surface=orth and considering a full fluid
lubrication regime.

To support the assumption of asperity contact, storiorce microscopy
measurements of roughness of the HDPE surfacesebafal after the test were taken.
Roughness of the surface before the wear is showdgure 35 and after the 4 hours wear
is shown in Figure 36. As it can be seen, inittaface is rough with mean roughness about
215 nm. During the test, the roughness is decrgasid after four hours, mean roughness
is only 40 nm, as it can be seen in Figure 36.yFpanometers is lower than predicted
minimum film thickness, however, it is only mearue It is also seen, that there are some
areas on the surface of wear track, where theivelakight is much larger than 52 nm,
larger than 100 nm. These areas are considered &sferities and come to direct contact
with metal surface; hence, they are responsibl¢hi®dry component in friction and wear.

Thus a mixed lubrication regime is encountered, ad will be seen from the comparison
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of experimental and theoretical calculation latée full fluid lubrication regime is not
encountered for the considered range of parameters.

Surface height, nm,Mean Ra=215.1839
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Figure 35. Surface roughness before wear.

Surface height, nm,Mean Ra=40.0007
™ ! T

Length, um
Figure 36. Surface roughness of the wear track afteurs.
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Table 5. Mean temperature for different lubricants.

Lubricant | Temperature, C Standard Deviation| C
Dry 22.9 N/A
Water 22.1 N/A
95%
Glycerol 23.8 0.91
Pure
Glycerol 24.1 0.33
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/. THEORETICAL MODELING AND COMPARISON

WITH EXPERIMENT

First, parameters used in the theoretical calanatare summarized in Table 6.

Table 6. Properties in the system.

Load 5N
Radius of the Ball 251073, m
Um 0.0079, m/s
E(HDPE) 1.05 - 10°, Pa
a 59-1077, 1/Pa
T 24 C

Necessary to notice that most of the time, idesfhpooth surfaces are considered.
Viscosities were varied in a range from 1 cP toQL6P. It is also important to re-scale a
load from three dimensional experimental setupa twwo dimensional theoretical model.
To accomplish it, the width of the wear track wasasured after the test, and it was found
to be about 1 mm. It was taken as constant focafiulations as a rough estimation. As
long as width of the track is known, then it isyetsrecalculate the length of the arc of the
ball, bounded by a chord of 1 mm. This length wasunfi to be equal
0.4R and taken as a scale factor for the load. Thugefper unit length in direction

perpendicular to the motion i = F/0.4R, where the actual load i5
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Figure 37. Computed pressure distribution and satast

The result of calculation for a standard set ohpaaters is shown in Figure 37 and
Figure 38. As it can be seen, there is a presguke at the outlet of the pressurized region,
although it is not very pronounced. Minimum filmdkness for this case is equal to 52 nm.
Thus, if ideally smooth case is considered andfluildl lubrication regime is assumed, then
the separation film thickness is only 52 nm. Hesgbt the asperities of HDPE are most
probably exceeding this value (direct contact), anen if not, considerably decreases this
minimum distance, hence locally, high pressures megur. For comparison, in fully

lubricated steel contacts it is usually of microenedrders.
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Figure 38. Pressure and film thickness.

Further, it is important to calculate friction cbeient for the modeled case and
compare it with experiments. Dependence of themkfriction coefficient on viscosity
was explored and presented in Figure 39. As itbmassumed, the friction is determined
by internal friction of liquid layers and thus, ljudetermined by viscosity of the lubricant.
As it can be readily seen, friction coefficientnmre than order of magnitude smaller for
the viscosities of 363 and 987 cP when comparell @iperimental measurements. Based
on this data and the fact that the minimum filnckhiess is 52 nm, it can be then concluded
that the assumption of full fluid lubrication reg@nleads to underestimation of friction
coefficient and hence, mixed lubrication is actpatikes place. It means that part of the
load is carried by liquid and part by direct comtachich will increase the total friction
coefficient significantly. However, as it is seeorh experimental curve in the Figure 34,
friction coefficient highly dependent on viscosity lubricant, and this fact is not yet

clarified. The question can be stated, if the oafanagnitude mismatch of calculated and
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experimental friction coefficients is due to direcintact of the surfaces, why then increase
in viscosity of lubricant in experiments shows gligant impact to the measured
coefficient of friction? This impact is again ordeof magnitude higher than calculated
through the theory.

Experimental vs Theoretical COF
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Figure 39. Comparison of theoretical and experi@enttion coefficient on viscosity.

This question cannot be answered through calculatior ideally smooth surfaces.
Hypothesized idea is that roughness of the surfeaesplay a role there due to increased
local pressure gradients, and, hence, shear stitaigase of steel contacts, pressures rises
till 4000 atmospheres and up, this makes viscasitiubricant to increase according to
exponential law. For regular oil, pressure visgosibefficient is usually about 4 times
higher than for glycerol, thus, ensuring rise afcasity by orders of magnitude in contact.
These facts lead to high predicted friction coédfits and match with experimental data. In

the considered case, pressure is only 250 atmasphand hence, there is no significant

increase in viscosity. Thus, order of magnitudengeain shear force can only be achieved
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due to high pressure gradients or small film thedsr To explore this possibility, instead
of ideally smooth surface of HDPE, the surface waitie asperity with vicinity right under
the ball tip was considered. Width of it was ab@umicrometer and height was varied.
Corresponding change in minimum film thickness spuge distribution and coefficient of

friction were tracked.

Friction coefficient on Asperity height
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Figure 40. Asperity height and friction coefficient

Comparison of Figure 39 and Figure 40 implies tlaadition of asperity
significantly increases influence of viscosity arction. At the same time, according to
Figure 41, if the asperity height is enough, separdilm thickness can get very low and
direct contact may occur. Thus, friction coeffidievill be increased. At the same time, if
the viscosity of lubricant is increased, local tina around asperity is increased too, no
matter whether direct contact occurs or not. Howesa@culated friction coefficient is still

smaller than experimentally obtained. Thus, comtimnaof dry friction and lubricated
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friction only can give the experimentally recordddction coefficient, with high
dependence of friction on viscosity of lubricant.
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Figure 41. Dependence of minimum film thicknessaeperity height.
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As it can be seen from Figure 42, anti-symmetrpraissure profile occurs at the
vicinity of the asperity. This anti-symmetry is nraqronounced for the higher asperity, and
in limit will touch zero pressure value. If thisgpens, local cavitation may occur, thus,
local low pressure zones can raise and in theseszoa lubrication is provided, hence,
condition of direct contact of the surfaces cambkieved. It can be speculated here, that
these zones may be responsible for wear partictendtion, their size and their
morphology. As low pressure fields, surrounded hbghly pressurized regions, these
cavities may serve as a vacuum and an HDPE subsbiclly may deflect inside of them.
In the other hand, on the borders of cavities, lpgissures are established; hence, high
stresses may be experienced by HDPE particle tdappeavity from both sides of cavity
borders. Then the abrasive wear delamination & plairt of HDPE can be formed and

produce an HDPE wear particle.

74



8. WEAR PARTICLES

Wear debris of materials used nowadays in orth@petilacements is known to be
the major cause of failures in a long-term peri&kcent studies showed that the
autoimmune reaction to the foreign body is not dhb/ consequence of the material itself,
but also depends on the size and shape of the pegticles. Thus, the HDPE debris is
worth to explore quantitatively and morphologicalMoreover, it can help in analysis of
major wear mechanism. For these purposes, followkmeriment was undertaken. Wear
testing was performed under phosphate bufferedhesdlibrication using a pin-on-disc
tribometer (CETR-UMT?2). Each test specimen hadra % 1 in. square size and was fixed
in a steel chamber filled with the saline lubricafihe wear testing was performed under
following conditions: normal load — 3 N, slidingleeity — 60 rpm, sliding diameter — 10
mm and duration — 8 hours. The wear debris wagdel, isolated and characterized by
scanning electron microscopy (SEM) at high magatifans and also by dynamic light
scattering (DLS) particle sizing. The DLS measunetmevere in general consistent with
the SEM observations. Small sphere-shaped wearicleartof various diameters
(predominantly less than 100 nm) were observed hen SEM images. The particles’
diameter distributions obtained by the DLS techrigiso showed that the mean diameters
of the majority of the particles were mostly lelsart 100 nm.

In the Figure 43, the small sphere shaped weaiclgmtof HDPE are shown.
Diameters are about only 100 nm, but these valuveshigher than predicted theoretical
film thickness under employed parameters. In thguifeé 45, the idealized Gaussian

distribution of wear particle diameter is shown. iAgan be seen, the mean diameter is
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close to 50 nm, which roughly corresponds to SEMults.Figure 45. Idealized Gaussian

distribution of wear particle diameter.

Figure 43 Sphere-shaped wear particle on the ﬁhrface.
Calculated theoretical pressure distribution aid thickness for given parameters
is shown in Figure 44. In this case, minimum filnckness is 52 nm, which is smaller, or
at least of comparable size with observed wearisi@lrticles. Thus, any of those particles
passing under the ball will cause a direct contddivo surfaces and will be acting as a
third body abrasive particle. As it is seen frone ttame figure, the region of small
separation film thickness is quite wide, thus tffeat of any particle will last through all

this width. Thus, third body abrasive wear mechanisn be dominant in considered case.
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9. SUMMARY

9.1. Discussion

In the thesis, the problem of lubrication and wearHDPE at a metal/HDPE
contact was considered theoretically and experiatignt

Fully coupled fully implicit elasto-hydrodynamic gislem solution approach was
developed. Numerical solution algorithm allowed sideration of the problem in a wide
range of physical parameters without special refeeMajor parameters such as velocity,
viscosity, elastic modulus were varied for theaadtcalculations in the range of 0.2 mm/s
to 1000 mm/s, 1-1000 cP, 1 GPa to 200 GPa correapgly. It means that conditions
varied from low velocities to very high, from lowseous liquid to high and from soft
material to hard. In considered cases, calculatethmam film thicknesses varied from the
order of 10 um down to about 1 nm and solutionsevadrtained in maximum 40 Newton-
Raphson iterations. Thus, the numerical solver sfamvn to be robust and to have high
convergence rate.

Incorporation of surface roughness was shown tionipertant for the estimation of
friction coefficient and for wear simulation. Adidih of one asperity with height of twice
as much as minimum film thickness for smooth caseht theoretical model showed
increase in local friction coefficient in about erdbf magnitude up to 0.06, which is close
to the dry friction performance. At the same tinfegal pressure also increased almost
twice, increasing local wear rate for the same armh@according to Archard’s law.

Coupled simulation of EHL theory and Archard’s wéaw was performed in the
thesis. In this case, transient problem solutiomsewobtained. Based on experimental

measurements for four hour long wear test, wearfficmnt was found to be
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3
about10-15 2~

— . However, it was shown that this value changeth wiear regime,

encountered when increased wear time was considered

From the measurements of surface roughness akewdar test and theoretical
calculations of minimum film thickness it was cambéd that the mixed lubrication regime
was encountered for the considered range of paesseén this case, dry contact between
asperities occurs, which leads to increase in éxgatally measured friction coefficients.
However, theoretical model does not account forthys, making estimated friction
coefficients much lower compared to experimentdlie@s This observation also leads to
the conclusion that part of the load is carrieddoy contact of asperities. However, in
theoretical model the load is assumed to be casadly by liquid, which means that
hydrodynamic pressures are overestimated in degdlsplutions. According to Archard’s
law, it means that wear coefficients are underestohin this case.

The size of wear particles induced by wearing wddressed in the thesis. These
debris were found to be about 100 nm in diameterspherical in shape. Corresponding
theoretical solution showed that the minimum filnickness was about 52 nm. Thus, as it
was discussed above, penetration of such parmttethe contact will lead to increased
local friction and local pressure. According to Aand’'s wear law, increased pressure
results in increased wear rate. Thus, not onlyaserfasperities can give rise to abrasive
wear mechanism, but also wear induced particled,imrthis case, it will be third-body
abrasive mechanism. Due to low elastic modulus BDPH, the plastic surface is highly
deformable and hence, such particles may still pateeto the contact, even though the

separation film thickness is twice smaller thangize of the debris.
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Considered range of viscosities of Newtonian glgterater mixture lubricants was
close to the range of viscosities encountered mowgl liquid in joints. Experimental
measurements showed that there was a certain mdngecosities resulting in minimum
wear mass loss and friction coefficient. It wadtsund that trends in behavior of friction
coefficient were close to that of mass loss. Thusse parameters are closely related in the

system.
9.2. Recommendations for future research

Developed theoretical model offers great possiéditor further research of friction
and wear simulation. From that standpoint, topidressed in the thesis are only several
items from what can be studied.

At first, transition to the 3D theoretical modehiseded. In the thesis, a 2D problem
was considered; however, in this case, some siicgtibns were necessary to be assumed,
in particular, when 3D load was translated into [BBd. These simplifications introduce
some error and must be excluded in future. It shbel noted that developed approach can
be employed for the development of such model, ireguonly re-formulation of the
equations in 3D.

Further, the issue of mixed lubrication model mustaddressed. As it was already
stressed, a mixed lubrication condition is encowatan considered range of parameters
and direct contact between surfaces occurs. Thgseeis most likely occurs in artificial
joints. Hence, it is attractive to investigate tpessibility of modeling dry contact
incorporated to the coupled EHL solution approdchportant issue here would be a
transition from lubricated to the dry contact. Fréme point of view of developed in the

thesis model, it is not possible to distinguishwestn these contacts as the EHL theory
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does not contain any information on dry contactsuth theory would be developed,
correct distribution of load between lubricated ang contacts might be obtained, which
would lead to correct assessment of pressures niactband, hence, wear coefficients.
Also, although it is referred to as dry or direchtact, it is not clear, whether the fluid film
is completely removed from the surface or not. Ewample, addition of low viscosity
liquid, such as water, decreases the friction eaefit significantly compared to the dry
case, meaning that there might be some thin bowritiar

More attention must be paid to the influence ofae roughness on the solution.
Directly measured values must be incorporated éantbdel and through such solutions, it
may be possible to estimate parts of total frictiowefficients raised by direct and
lubricated contacts.

Another interesting topic for the future studieshie solution of transient problems.
It is worth to consider this case, as the speedsiamiered in joints vary during the walking
cycle from 0 to about 0.3 m/s due to changes iaoml direction. Locations where the
velocity becomes zero are important, because thececased wear rate will be
encountered. From the point of view of EHL themtgady-state solution will give a zero
separation thickness for zero velocity. Howeveg thansient solution of reciprocation
motion will not due to additional dissipation termReynolds equation. Thus, solution of
such problem will give information on the raiseldnfithicknesses and hence, wear in points
of velocity re-direction.

Another important topic to address is the non-Newaio behavior of the synovial
fluid. When the mentioned above transient problemonsidered, non-Newtonian behavior

of the lubricant becomes essential due to variatibwiscosity with shear rates. Thus,
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incorporation of this effect is necessary for theawand friction simulation of synovial

liquid.
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11. APPENDIX

The listing of the main program code developed atllb is presented here.
function  num_calc()

clc;
close all ;

% %%%% parameters %%%%%%%%%%%%%%%

R =2.5*10"-3; % Radius, m

PO = 101325; % Pa

Um = 2*pi*R/2; %%% m/s Ul = 2piR => Um = U1/2

Ul = 2*Um;

muO = 0.383; %%% Pa*s %%% viscosity at PO, Pa*s %% 0.383 - visco sity of
%%%% 95% glycerol-water mix at 24 C

WI=3; % Newtons

WII = WI/(0.4*R); % Newtons/m

Pc=P0; % Pa, cavitation pressure

Er = 2*1.05*10"9/(1-0.35"2); %% reduced elastic modulus, if Poisson ratio
for HDPE = 0.35, E = 1.05*10"9 Pa, Poisson ratio = 0.35

%Er = 2*200*1079/(1-0.3"2)*1.5; %% for steel
% %9%9%%6%6%6%%%%%%%%% %% %% % % %% %% %% %% %%

global alpha;
%%%%%%% pressure-density-viscosity coefficients
alpha = 5.9 *107-9; % pressure-viscosity coefficient; here for glycerol

%9%6%%6%%%%%% %% %% %% %% % % %% %% %% %% %% %% %% %% % % %
Ul =2*Um %%% speed of lower surface, m/s

Ltrack = 2*pi*R; %%% track length (wear track from pin on disk), m
Ltr_d = Ltrack/R; %%% dimensionless track length
Ncycles = 1; %%% number of wear cylces %%% number of revolutions of pin

%%%% dimensionless parameters %

global A_C;
global WiId;
global Pcd;
global CE;

global gamma_h; %%% fully implicit cavitation boundary parameter

gamma_h = 10"6;

uld = Ul/Um;

A_C = R*P0/(12*mu0*Um);

wid = WII/(R*PO0);

Pcd = (Pc - PO)/PO;

C = Pcd;

CE = -4*PO/(pi*ED);
%9%6%6%%%%%% %% %% %% % % %% %% %% %% %% %% %%
%%%% non dimensional parameters, Dowson-Higginson

G = alpha*Er;
U = mu0*Um/(Er*R);
W = WII/(Er*R);

%0%% %% %% %% % %% %% %% % % %% %% % %% %% %% % %
%%% define number of nodes
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Npoints = 500; %%% in a local line (where the pressure and wear is
calculated)
%69%%%%%%% %% %% %% %% % % % % % %% %% %% %% %% %0 % % % % % %% %% %% %% %% % % % %

%%%%%%% introduce global line (wear track) %%%%%%%% %%%%%%% %% %% %% %% % % %% % %%
dx_tr=0.01;

Xtr = [0:dx_tr:Ltr_d];

Ntr = length(Xtr);

Wglobal = zeros(1,Ntr);

Wear_track = zeros(1,Ntr); %%% intorduce vector of wear (wear in each

loacation)

dt = dx_tr/uld; %%% dimensionless time of travelling from one locat ion on

t=0; %% initial time variable

tmax = Ncycles*Ltr_d/uld; %%% duration of the modelling is the total path

%9%%%%% %% %% %% %% %% %% % %% %% %% %% %% devided by/alse%%%%% %% %% %% %% %% %% %%
flag_t = 0; %%% set the intial time stop flag, O - continue, 1 - stop;

X_star = 0; %%% begining point (left border of the pressure bui Id up)
%%%%%%%%%% it is going to change by x_start = x_sta rt + uld*dt=x_start +

%%%%%%%%%% dx_tr

%9%%6%6%6%%%% %% %% %% % % % %% %% %% %% %% %% %0 %0 % % 988808080802 04020080808080808989896%6%% %
%%%%% declare pressure boundary values, dimensionle SS

Pleft = 0;

Pright = 0;

%9%%%%% %% %% %% %% %% %% % % %% %% %% %% %% %% %0 %69

%%%% initial value of HO and pressure can be found from

%%%%% analytical solution for isoviscous rigid body solution of

%%%%% Reynolds equation

global left_border;

global step_ksi;

left_border = -pi/2.0004;

step_ksi = 0.001;

%%%%%%%% find ksic for a given parameters %%%%%%%
[ksic fval exitflag]=

fminsearch(@find_ksic,0.5,optimset( 'MaxFunEvals' ,15000, 'Maxlter' ,12000));
if exitflag~=1

display( 'Algorithm did not converge' );
end

%9%%6%%%%%%% %% %% %% %% % %% %% %% %% %% %% %0 %0 %0 % % % % % %% %% %% %% % %0
%%%% calculate pressure for given parameters %%%%

[Pan xan aan xcan ksian ksican wan] = calc_p(ksic);

%%%% %% %% %% %% %% %% %% % % %% %% %% %% %% % %% %0 %% % % % %% % %% %% %% %
HO = aan;

XC = xcan;

%ao = 4.9*mu0*Um*R/WII; %%% analytical solution of

%9%%%%% %% %% %% %% %% %% % % %% %% %% %% %% %% %0 %69 %%%%%
%%

%%%%%% download an initial guess for pressure and f ilm thickness, if

%%%%%% available

load ‘'matlab_W_5 true_P_new.mat' ;. %%% downloads X, P, H, xc, HO

x_el=X;

Xc = xc*1.1;

%%%%% construct initial guess in P and H %%%%%%%%%% %

left_boundary = -0.15;
right_boundary = xc;
dx = (right_boundary - left_boundary)/Npoints;
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X = [left_boundary:dx:right_boundary];
Pin = interp1(x_el,P,X)"; %%% interpolate downloaded solution to the
current grid
Hin = interp1(x_el,H,X)"; %%% interpolate downloaded solution to the
current grid
HT = Hin;
XT =X;
Pin(end) = P(end);
idx = find(isnan(Pin) == 1);
Pin(idx) = 0;
idx = find(isnan(Hin) == 1);
if isempty(idx)==0
Hin(idx) = HO + X(idx)."2/2;

end

HT = Hin;  %%%% film thickness of the previous time step
XT =X;

PT = Pin;

%%%% %% %% % %% % % %% % % %% % % %% % % %% % % %% % % %% % % %% % % %
%%%% Hertz Solution of dry contact %%%%%%%%%%%
bh = sqrt(8*WII*R/(pi*Er));

tmp = 1 - (X.*R).*2/(bh"2);

idx = find(tmp<=0);

tmp(idx) = 0;

Ph = 2*WIl/(pi*bh)*sqrt(tmp);

Pmh = 2*WIl/(pi*bh);

%%%% %% %% %% %% %% %% %% %% %% %% % % %% % %%
%%%% roughness parameters

global &;

global xstart;

global Amp; %%%%%% sin amplitude

global w_frequency; %%%% sin frequency

w_frequency = 50*4;

xstart = 0.04;

a =0.5*10"-4;

a=0; %%% no roughness

Ampl = 35*10"-9; %%% meters, no roughness, 0.5 - works
Amp = Ampl/R; % dimensionless

Amp = 0;

%%% %% %% %% %% % %% %% %% %% % %% %% %
%%% wear parameters

kw_dimensions = 1.83*10"-17; %%% m”2/N, taken from the article
kw = kw_dimensions*P0; %%% dimensionless

kw= kw*1.2*128.9793;

kw = 0;

%%%%%%0%% %% %% % %% %% %%

%%%%%%% coordinates shift parameters %%%%%%%% %% %% %8%86%%%%%%%%%
Lleft = 0.15; %%% initial dimensionless distance to left from tha ball
tip

20%% %% %% %% %% %% %% %% % %% %% %% % % %% %% % %% %
%%%% service variables %%%%%%%%%%%%%%%%%

P_ALL ={};

X _ALL ={};

H_ALL ={};

HO_ALL ={};

XC_ALL ={};

I=1; %%%

%0%%%%%0%% %% %% %% %% % %% %0% % %% %% %% % %% %% %% % % % %%

80%%%%%
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%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %% % % %% % % % %% % %
N = length(X);
% %%%% calculate elastic deflection matrix nuclear
D = zeros(N,N);
for i=1:N
xi = (X(i) + X(i) + dx)/2;
for j=1:N
D(i,j) = part_integral_elastic_line( xi , X(j), X(j) + dx);
end
end
D = D*CE;
%%%% %% %% %% %% %% %% %% %% % %% %% % %% % % %% % % %% %% %% %% %%
Ncycles_counter = 1;
while flag_t==0

tic

[P HHO X Wlocal_accumulated] = calc_pressure( Pin, Hin,PT, HT,XT,
HO, X,D,R,dt,t,kw,uld,Lleft,Xtr, Wglobal,alpha_dim, z,P0);

time = toc;

display(strcat( 'Solution time:' ,num2str(time)));

%%%% % %% %% %% % % %% %% %% %% %% % % %% %0 % %% %0 % % 8 W W e W W W60 %0 % %0 %0 Y%
%%%% calculate total wear in a local mesh %%%%%
indexes = 1:length(P);
w_local = wfind(P,indexes,dt,kw,uld,Wlocal_accu mulated);

%%%% % %% %% %% % % %% %% %% %% %% %% %% % % % %% % % %% % %6 %% % % %% %

if X(end) <= Ltr_d %%%% in case if inside of the track

Wglobal_temp = interp1(X,w_local,Xtr)"; %%% interpolate local
pressure to a global mesh

idx = find(isnan(Wglobal_temp) == 1);

Wglobal_temp(idx) = 0;

idx = Wglobal_temp~=0;

Wglobal(idx==1) = Wglobal_temp(idx==1);

else  %%%% on the border of a periodical solution

idx = find(X<=Ltr_d);

Wglobal_temp = interp1(X(idx),w_local(idx), Xtr)'; %%% interpolate
local pressure to a global mesh

idx = find(isnan(Wglobal_temp) == 1);

Wglobal_temp(idx) = 0O;

idx = Wglobal_temp~=0;

Wglobal(idx==1) = Wglobal_temp(idx==1);

idx = find(X>Ltr_d);

Wglobal_temp = interp1(X(idx)-Ltr_d,w_local (idx), Xtr)"; %%%
interpolate local pressure to a global mesh

idx = find(isnan(Wglobal_temp) == 1);

Wglobal_temp(idx) = 0;

idx = Wglobal_temp~=0;

Wglobal(idx==1) = Wglobal_temp(idx==1);

end

if I==1 %%% save first undisturbed film thickness (time =0 )
Xinit = X;

Pinit = P;

Hinit = H;

end

Lleft = Lleft + uld*dt;
if Lleft>=Ltr d

Lleft = 0.15;
Ncycles_counter = Ncycles_counter +1;
display(strcat( 'Cycle number:' ,num2str(Ncycles_counter)));
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end
t=t+dt
X_star = x_star + uld*dt;

if t>tmax

flag t=1,;

end
P_ALL{l,1}=P;
H_ALL{l,1} = H;
X_ALL{l,1} = X;
HO_ALL{l,1} = HO;
XC_ALL{l,1} = xc;

if mod(l,24)==
plot(Xtr,Wglobal, ™),
hold on;
end
I=1+1
HT = H;
PT =P;
X =XT; %%%% make X as at the begining ('local’);
Hin = H;
Pin = P;

%%%%%%% save all variables %%%%%%%%%%%%%%%%
save(strcat( ‘all'  ,num2str(dx), "mat" ));
%%%%% %% % %% %% %% %% % %% %% %% % % %% %% %% % % % % %% %% %6 % % %0

end
%%%% equation for ksic (for numerical solution) %%% %%%%% %% %% %%
function  goal_val = find_ksic(ksic)
global Pcd;
global A C;
global WiId;

f1 = load_equation(ksic);

f2 = pc_equation(ksic);

goal_val = abs(2*Pcd/(sqrt(A_C)*WId"(3/2)) - f2/(f1 (3/2));
%%%% %% %% %% %% %% %% % %% %% %% %% %% %% %% %0 % % %8 P 0%%%%%
%%%% first equation of the system (from load balanc e)%

function W = load_equation(ksic)

cl = -1/cos(ksic)"2;

W = 0.5*(1+3/4*c1)*(1+(ksic+pi/2)*tan(ksic)) + 1/8;

%%%%% %% % % %% % % %% % %% %% % %% % % %% % % %% %0 % % %8888 %0 %0 % %% %0 % %% %0 % %%

%%%% second equation of the system (from Reynolds e guation) %%

function P = pc_equation(ksic)

¢l = -1/cos(ksic)"2;

P = 1/8*sin(2*ksic)*(1+3/2*c1)+1/2*(1+3/4*c1)*(ksic +pi/2);

%%%% %% %% %% %% %% %% % %% %% %% %% %% %% %% % % % %8

%%%% Pressure function %%%%%%%% %% %%%%%%%%%%%%%%%%%% %% %%
function [P x a xc ksi ksic w] = calc_p(ksic)

0%%%%%

global A_C;
global WiId;
global Pcd;

global left_border;
global step_ksi;
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f1 = load_equation(ksic);
a = 2*f1/(A_C*WId);

¢l = -1/cos(ksic)"2;
k = 3*pi/16*cl+pi/4;

ksi = left_border:step_ksi:ksic;

P = sqgrt(2*a)/(a"2*A_C)*(1/4.*sin(2.*ksi) + ksi./2 +
c1.*(1/32.*sin(4.*ksi) + 1/4.*sin(2.*ksi) + 3.*ksi. /8) + K);

X = sqrt(2*a).*tan(ksi);
xc = sqrt(2*a)*tan(ksic);
w = 2*load_equation(ksic)/(a*A_C);

%9%%%% %% %% %% %% %% %% %% % %% %% %% %% %% %% % %0 %
function [P H HO X WIlocal_accumulated] = calc_pressure(Pin,

%%%%

HT,XT, HO, X,D,R,dt,t,kw,uld,Lleft,Xtr,Wglobal,alph a_dim,z,P0);
global  WiId;
global gamma_h;
global Amp;
global w_frequency; %%%% frequency
N = length(X);
X =X + Lleft;
Wilocal_accumulated = zeros(1,N)";
%% % interpolate global accumulated wear to a new lo cal X coordinates
%09%0%%%%
if X(end) <= Xtr(end) %%%% in case if inside of the trac

Wilocal_accumulated = interp1(Xtr,Wglobal,X) "
idx = isnan(Wlocal_accumulated) == 1;
Wilocal_accumulated(idx) = 0O;
else  %%%% on the border of a periodical solution
idx = find(X<=Xtr(end));
Wilocal_accumulated(idx) = interp1(Xtr,Wglob al,X(idx))";
idx = isnan(Wlocal_accumulated) == 1;
Wilocal_accumulated(idx) = 0O;
idx = find(X>Xtr(end));
Wilocal_accumulated(idx) = interp1(Xtr,Wglob al,X(idx)-Xtr(end))";
idx = isnan(Wlocal_accumulated) == 1;
Wilocal _accumulated(idx) = 0;
end
%% % assign initial guess on pressure and h
P = Pin;
H = Hin ;
%%%% % %% % % %% % % %% %% %% %% %% % % %% %% %% %% %% %0 % %% %0 % %% %0 % %% %% %%
V = zeros(2*(N-2)+2,1);
idxp = 1:2:(2*(N-2));
idxh = 2:2:(2*(N-2));
V(idxp) = P(2:N-1);
V(idxh) = H(2:N-1);
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Nt = length(V);

V(Nt-1) = H(end);

V(end) = HO;

Vt=V; %% vestor for the previous iteration

flag = O;

k=1,

w_all = 0.01;

mu_w =1 -w_all; %%% aetkins parameter

Mu_wp = mu_w;
w_all_p=w_all;

NormL2_all_p =T];
NormLinf_all_p =];
NormL2_all_h =T];
NormLinf_all_h=];
NormL2_all_h0 =TJ;
NormLinf_all_h0 =];

while flag==0

Jacobian =
find_jacobian(P,X,H,R,D,H0,dt,kw,uld,Lleft,alpha_di
);

F =

find_f_vector(P,X,H,PT,HT,R,D,HO,WId,dt,t,kw,uld,LlI
,alpha_dim,z,P0);

if k>2

Lkhp = NormL2_h;
end

if k==20

w_all =0.1;

elseif ==30
w_all =1,

end

if mod(k,50)==0;

display( 'Stop'  );
end

tic

setup.type = nofill’ ;

[A1l A2] = luinc(sparse(Jacobian),setup);
tol = 1le-12;
maxit = 15;
[Vn flag_gmres relres iter] = gmres(Jacobian,
F,10,tol,maxit,A1,A2);
if relres>10"-9

display( 'Warning: GMRES did not converge!'

relres
iter
end
time=toc;

display(strcat( 'Solution time:' ,num2str(time)));

Epsilon = sum(abs(Vn-V)./abs(V));
Pn = Vn(idxp);
Pt = V(idxp);
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idx = find(Pt~=0);
NormL2_p = sum(((Pn(idx) -
Pt(idx))./abs(Pt(idx))).*2); %./NormL2_all_p(end);
NormL2_h = sum(((Vn(idxh)-
V(idxh))./V(idxh)).~2); %./NormL2_all_h(end);
NormL2_h0 = sum(((Vn(end)-V(end))./V(end)). 2); %./NormL2_all_hO(end);

NormLinf_p = abs(max((Vn(idxp)-
V(idxp))./V(idxp))); %./NormLinf_all_p(end);

NormLinf_h = abs(max((Vn(idxh)-
V(idxh))./V(idxh))); %./NormLinf_all_h(end);

NormLinf_hO = abs(max((Vn(end)-
V(end)))./V(end)); %./NormLinf_all_h0O(end);

NormL2_all_p =[NormL2_all_p NormL2_p]J;
NormL2_all_h =[NormL2_all_h NormL2_hlJ;
NormL2_all_hO0 = [NormL2_all_hO NormL2_h0];

NormLinf_all_p = [NormLinf_all_p NormLinf_p];
NormLinf_all_h = [NormLinf_all_h NormLinf_hJ;
NormLinf_all_hO = [NormLinf_all_h0 NormLinf_hQ] ;
V(idxp) = w_all.*Vn(idxp) + (1-w_all).*V(idxp ); %% P

V(idxh) = w_all.*Vn(idxh) + (1-w_all).*V(idxh) 7 %% H
V(Nt-1) = w_all.*Vn(Nt-1) + (1-w_all).*V(Nt-1) i %% Hn
V(end) = w_all*Vn(end) + (1-w_all)*V(end); %% HO;

dP = (P(end) - P(N-1))/abs(X(1)-X(2));
if NormL2_p < 0.0000099532 && abs(dP)<1500;
flag = 1;
end

residual = sum(abs(Jacobian*F));

Vn=V;

P(2:N-1) = Vn(idxp);

P(1) =0;

P(N) = 0;

H(2:N-1) = Vn(idxh);

H(N) = Vn(Nt-1);

HO = Vn(end);
display(strcat( '‘Newtons iteration:' ,num2str(k)));
k=k+1;

if k>1000

flag = 1;

end
display(strcat( ‘L2 norm p:' ,num2str(NormL2_p)));
display(strcat( 'L2 norm h:' ,num2str(NormL2_h)));
display(strcat( 'L2 norm hO:' ,num2str(NormL2_h0)));
display(strcat( 'dP:"  ,num2str((P(end) - P(N-1))/abs(X(1)-X(2)))));
display(strcat( 'F:' ,num2str(sum(F.*2))));

end
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