
TOWARDS CHANGE PROPAGATING TEST MODELS IN

AUTONOMIC AND ADAPTIVE SYSTEMS

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Mohammed Abd Alwahab Akour

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Program:
Software Engineering

October 2012

Fargo, North Dakota

 North Dakota State University
 Graduate School

 Title

TOWARDS CHANGE PROPAGATING TEST MODELS IN

AUTONOMIC AND ADAPTIVE SYSTEMS

 By

Mohammed Abd Alwahab Akour

The Supervisory Committee certifies that this disquisition complies

with North Dakota State University’s regulations and meets the

accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Kendall Nygard

Chair

Dr. Jun kong

Dr. Tariq King

Dr. Limin Zhang

Approved:

10/30/2012

Dr. Kenneth Magel

Date

Department Chair

ABSTRACT

The major motivation for self-adaptive computing systems is the self-adjustment of

the software according to a changing environment. Adaptive computing systems can add,

remove, and replace their own components in response to changes in the system itself and

in the operating environment of a software system. Although these systems may provide

a certain degree of confidence against new environments, their structural and behavioral

changes should be validated after adaptation occurs at runtime.

Testing dynamically adaptive systems is extremely challenging because both the

structure and behavior of the system may change during its execution. After self adaptation

occurs in autonomic software, new components may be integrated to the software system.

When new components are incorporated, testing them becomes vital phase for ensuring

that they will interact and behave as expected. When self adaptation is about removing

existing components, a predefined test set may no longer be applicable due to changes in

the program structure. Investigating techniques for dynamically updating regression tests

after adaptation is therefore necessary to ensure such approaches can be applied in practice.

We propose a model-driven approach that is based on change propagation for synchr-

onizing a runtime test model for a software system with the model of its component

structure after dynamic adaptation. A workflow and meta-model to support the approach

was provided, referred to as Test Information Propagation (TIP). To demonstrate TIP, a

prototype was developed that simulates a reductive and additive change to an autonomic,

service-oriented healthcare application.

iii

To demonstrate the generalization of our TIP approach to be instantiated into the

domain of up-to-date runtime testing for self-adaptive software systems, the TIP approach

was applied to the self-adaptive JPacman 3.0 system.

To measure the accuracy of the TIP engine, we consider and compare the work of a

developer who manually identifyied changes that should be performed to update the test

model after self-adaptation occurs in self-adaptive systems in our study. The experiments

show how TIP is highly accurate for reductive change propagation across self-adaptive

systems. Promising results have been achieved in simulating the additive changes as well.

iv

ACKNOWLEDGMENTS

It is a pleasure to express my gratitude to the many people who were abundantly

helpful and offered invaluable assistance and made this dissertation possible.

It is difficult to exaggerate my gratitude to my Ph.D. advisor, Prof. Dr. Kendall

Nygard. With his encouragement, his suggestions, and his time. I hope that one day I

could become as good an advisor to my students as Dr. Nygard has been to me and his

students. Special thanks to my supervisory committee, Assoc. Prof. Dr. Jun Kong and Dr.

Limin Zhang for their support, guidance and helpful suggestions. Without their comments

and assistance this dissertation would not have been successful.

I would like to express my sincere gratitude to my Ph.D. Co-supervisor, the best

friend, and old brother Dr. Tariq King for his enthusiasm, guidance, inspiration, patience,

and his great efforts to explain things clearly and simply. Through his pain and being away

for treatment after my preliminary exam, he provided encouragement, sound advice, lots

of good ideas and advise necessary for me to proceed through the doctoral program and

complete my dissertation. For everything you have done for me, Dr. King, I thank you.

The deepest gratitude are due to my beloved parents, Abd Alwahab and Sameera, for

their praying, endless love and supporting throughout my whole life; this accomplishment

is simply impossible without them. I owe them everything and wish I could show them

how much I love and appreciate them. I would like to thank my wife, Saja Wardat, for her

encouragement, tolerance, and patientce that allowed me to continue and finish graduate

trip. She already has my heart so I will just give her a heartfelt thanks.

v

I thank my friends, for their faith in me and supporting me in several way to be as

ambitious as I wanted, for helping me defeat hard times, and for all the emotional support,

entertainment, and caring they provided. Special thanks to my friend Mathew Warner.

Lastly, I wish to thank my entire family for being a constant source of encouragement

during my graduate study. My brothers Ahmed and Osama, my sisters Ahlam, Ateka,

Hanan, Rabaa, Sumaia, Noor, Slam and Sajeda.

vi

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xi

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 7

2.1. Background . 7

2.1.1. Autonomic and Adaptive Computing 7

2.1.2. Software Testing . 13

2.1.3. Model Driven Engineering . 17

2.2. Related Work . 22

2.2.1. Preliminary Investigation . 22

2.2.2. Self Testable System . 24

2.2.3. Testing Adaptive System . 29

2.2.4. Model Driven Change Propagation . 33

3. RESEARCH PROBLEM . 40

3.1. Research Motivations . 40

3.2. Problem Statement . 41

4. THE TIP APPROACH AND HEALTH CARE PROTOTYPE 44

4.1. Handling Additive changes . 45

4.2. Handling Reductive Changes . 46

vii

4.3. Considering Test Case Dependency . 48

4.4. Modeling Tools, Frameworks, and Languages of TIP 50

4.4.1. Component-Based Adaptation Frameworks 51

4.4.2. Model-Driven Development Tools . 52

4.4.3. Policy-Driven Management Frameworks 53

4.4.4. Automated Testing Tools . 55

4.5. Application Description . 58

4.6. Adaptation Scenarios . 59

4.7. System Development and Architecture . 61

4.8. Detailed Object Design . 62

4.8.1. EMR Service Subsystem . 62

4.8.2. Appointment Service Subsystem . 64

4.9. Dynamic Models Instantiation . 68

5. EXPERIMENTAL SETUP . 71

5.1. Propagating Reductive Changes Simulation . 71

5.2. Propagating Additive Changes Simulation . 75

5.3. Evaluation of Generalization . 77

5.3.1. Sample Self-Adaptive System . 79

5.4. Manual Developer Evaluation Oracle . 80

5.5. Evaluation Criteria . 80

5.6. Jpacman Additive and Reductive Changes Simulation 83

viii

6. RESULTS AND DISCUSSION . 87

6.1. Threats to Validity . 90

7. CONCLUSIONS AND FUTURE WORK . 92

REFERENCES . 97

APPENDIX A. MANUAL EVALUATION ADDITIVE ORACLE 106

APPENDIX B. MANUAL EVALUATION REDUCTIVE ORACLE 118

ix

LIST OF TABLES

Table Page

1. Four aspects of self-management with and without autonomic computing [62] 8

2. Research questions and motivation to guide the systematic review [3] 23

3. Detailed test model updates for reductive change simulation 73

4. Detailed test model updates for additive change simulation 76

5. Jpacman detailed test model updates for reductive change simulation 84

6. Jpacman detailed test model updates for additive change simulation 86

7. Mean precision and mean recall of the TIP approach . 88

x

LIST OF FIGURES

Figure Page

1. Autonomic computing reference architecture [55] . 9

2. Closed loops of control in autonomic manager [67] . 10

3. A test information propagation approach for adaptive software 44

4. Major decisions and actions for updating runtime test models 45

5. A meta-model to support test information propagation in self-adaptive systems 49

6. Simple Junit testcase example . 57

7. Basic use case diagram of EMR and appointment services 59

8. Architecture of service-oriented healthcare prototype . 61

9. Design of EMRservice (based on data analysis spec. [30]) 63

10. Diagnosing patient sequence diagram . 64

11. Detailed class diagram of appointment service . 65

12. Scheduling appointment sequence diagram . 66

13. Exploring competent physician sequence diagram . 67

14. Cancelling/rescheduling appointment sequence diagram 67

15. Component and test models instantaition . 69

16. Test case dependencies GUI . 70

17. EMR component model dependencies call graph . 72

18. Major statements for updating the test model after reductive changes 75

19. Jpacman partial class diagram . 79

20. Developer questionnaire . 81

xi

21. Jpacman component model dependencies call graph . 83

xii

CHAPTER 1. INTRODUCTION

The systems, technologies, and enterprises of today have become highly complex

and heterogeneous. Traditional approaches to managing this complexity have focused on

manual configuration, integration, and maintenance. However, due to increasingly rapid

changes in the context, goals, and requirements of software systems, there is a demand to

perform such tasks automatically during runtime [91].

Major engineering performers have recognized the need to shift the onus of support

tasks such as configuration, maintenance and fault management from people to technology

[35, 51, 77]. Microsoft developed the Dynamic Systems Initiative [77]; Hewlett-Packard

proposed the Adaptive Infrastructure [51]; and in 2001, IBM introduced the Autonomic

Computing (AC) paradigm [62]. A central theme within each initiative is the concept of

self-managing software (i.e., software system able to control their own support tasks).

Autonomic and adaptive computing seeks to meet this demand by specifying sys-

tems that can self-configure, self-optimize, self-heal, and self-protect [62]. However, the

development of such systems has been shown to be significantly more challenging than

traditional software systems, that are relatively more static and predictable [5]. These types

of systems can add, remove, or replace their own components at runtime, referred to in this

dissertation as additive, reductive, and mutative changes.

In comparison with conventional software systems, one of the characteristics of a

self-adaptive software system is that not all activities of its life cycle occurs during the de-

velopment time, much is left to be conducted during runtime (e.g. reconfiguration). During

runtime a self-adaptive software system observes and analyses itself and its environment

for any changes, and if an adaptation becomes necessary, a set of actions will be generated

and then taken to adapt itself in an effective manner.

1

As dynamic adaptation occurs, the dependency relationships between the component

targeted for adaptation and other system components should be updated, to be consistent

with the new changes. As a result of a new adaptation, new errors can be introduced

after changes have been made to the adaptive system. In order to determine whether a

new change doesn’t affect other parts of the software system, regression testing becomes

necessary. Regression testing is a technique which determines whether modifications to

software have introduced new errors into previously tested code [9]. This may involve

re-running the entire test suite (retest-all) or selecting a subset of the initial test suite

for execution (i.e., selective regression testing) [46]. The developers write and maintain

test cases continually in order to reflect changes in the source code to keep an effective

regression suite. Techniques for regression test selection include dataflow, random, safe

and test minimization [46].

In software testing several axiomatic theories and practices reveal why runtime test-

ing should be an integral part of dynamic adaptive software systems. For example, even

when two components are logically equivalent (anti-extensionality), or have the same struc-

tural shape (general multiple change), a test set for one is not necessarily adequate for

the other [102]. Furthermore, a test set that is adequate for validating a component in

isolation, may not be adequate for testing the component’s behavior as part of an enclosing

component (anti-composition) [102]. This is because errors can arise due to interactions

between components.

In practice, anti-extensionality and general multiple change axioms are the reasoning

behind testing software product lines (i.e., that share signiflcant functional and structural

commonalities [21]), while anti-composition represents the traditional need for integration

testing. For autonomic software, system configuration that has never been tested could be

viewed as a member in the same software product line requiring validation.

2

Furthermore, even if the newly introduced or adapted components have been tested

separately, the interaction between components could introduce new errors. Hence runtime

testing should be incorporated into autonomic software to evade harmful and exorbitant

system failures.

In spite of the increased need for runtime testing in autonomic software, there is

little research in the area of testing adaptive system dynamically. Most of the AC re-

search is concentrating on how to integrate the autonomic features of self-configuration,

self-optimization, self-protection, and self-healing into domains such as networking, grid

computing, and database management, etc.. The pioneers of AC state that one of the major

challenges associated with building and maintaining autonomic software is validating its

correctness [61, 62]. The proposed approach in this dissertation for a self-adaptive system

provides good support for runtime testing.

Testing dynamically adaptive systems is extremely challenging because both the

structure and behavior of the system may change during its execution. Existing test cases

may no longer be applicable due to changes in program structure, thereby requiring dy-

namic generation of new test cases, updating or removing existing ones automatically.

Certainly, maintaining dependencies between test cases and classes under test can help

to maintain the consistency between the autonomic software and its runtime test models.

Indeed, refactoring of the code should be followed by refactoring of the tests [26]. Refac-

toring of many of these dependent tests could be automated or at least made easier, if the

exact relationships between the unit tests and the corresponding tested classes would be

known [87].

In the xUnit testing environment [47, 76] there is no pre-defined structure, nor does

there exist explicit links between code and test cases. Some guidelines and naming conven-

tions that describe the testing environment have been proposed to facilitate the identification

of tested classes [76, 36].

3

Strategies for establishing traceability links between production classes and xUnit

test cases in object-oriented systems include test case naming convention, explicit fixture

declaration, static test call graphs, last call before assert, lexical analysis, and co-evolution

logs [90].

Multi-shot transformation approaches such as change propagation could be effective

for synchronizing the component model of an adaptive software system with its runtime

test model after dynamic adaptation. Change propagation becomes a central aspect for

tackling the problem of conveying structural changes in autonomic software to runtime test

models. These changes will be propagated to ensure that the runtime test model for the

system is made consistent with its new structure after dynamic adaptation.

In our previous work [2], we proposed a model-driven approach that is based on

change propagation for synchronizing a runtime test model for a software system with

the model of its component structure after dynamic adaptation. Traceability relationships

were handled through the naming conventions strategy. The approach is referred to as

Test Information Propagation (TIP). To demonstrate TIP, a prototype was developed that

simulates a reductive change to an autonomic, service-oriented healthcare application.

To demonstrate the generalization of our TIP approach into the domain of runtime

testing for self-adaptive software systems, the experiment was performed on other self-

adaptive sysetm (i.e., a different application domain). During our search for a sample

self-adaptive system we forced the three following obstacles:

• We need access to the source code, so as to verify the presence of a considerable

test suite and next to apply the naming convention strategy to handle the traceability

relationship, profile and trace the junit tests execution, and finally trace the internal

component interaction to build the component model that handles the component

dependency relationship.

4

• The implementations we made are currently targeted towards self-adaptive systems

developed in Java and the dynamic language groovy.

• The approach we used to build self-adaptive software system is based on the Spring

framework which provides a core application container that allows us to specify

components (called beans) using XML configurations. We used groovy to write

these Beans. Using the groovy dynamic language allows spring to act as an adaptive

framework since the container can be set to monitor beans for code changes, and to

dynamically use any new source code implementations.

To measure the performance of the propagation engine two main concepts of infor-

mation retrieval were used: recall and precision. We compare the retrieved propagated

changes with a manual developer oracle, (i.e., we consider and compare the work of a

developer who manually identified changes that should be performed to update the test

model after self-adaptation occurs). This duty of identifying changes is part of a short

questionnaire we generated and gave to the developer. The experiments show how TIP is

maximally accurate for Reductive change propagation across self-adaptive systems.

The main contributions of this dissertation are that it:

• Provides a generalization of the proposed approach in [2] to be instantiated into the

domain of up-to-date runtime testing for self-adaptive software systems;

• Extends the TIP prototype in [2] by including the additive change propagation capa-

bility;

• Elaborates on the transformative action update to provide more detailed information

and to focus the updating process;and

• Measures the accuracy of the TIP engine in propagating both dynamic reductive and

additive changes to the corresponding runtime test model after self adaptation takes

place.

5

The domain of this research dissertation is limited to the investigation of techniques

for automatically updating runtime test models after self-adaptation occurs, for making

the runtime test model for the system consistent with its new structure after dynamic

adaptation. Therefore, the automatic synchronization of a runtime test model for a soft-

ware system with the model of its component structure after dynamic adaptation is the

primary focus of the work. Measurements for change propagation is provided as a means to

demonstrate the performance of the proposed approach in updating the runtime test model,

and the results are evaluated against the recall and precision critieria. Dynamically test

case generation to improve the adequacy and effectiveness of runtime testing is outside the

scope of this dissertation.

The rest of this dissertation is organized as follows: Chapter Two provides the back-

ground information for autonomic systems, software testing and model-driven engineer-

ing. The systematic literature review was performed to survey research on self-testing

in autonomic systems and model driven change propagation that this research builds upon.

Chapter Three provides some motivations for the research in the area of dynamically testing

autonomic computing and describes the problems to be investigated. Chapter Four outlines

the approach to achieve the goals of the research, describes the detailed system design

aspect of the prototype, adaptation scenarios along with the simulation environment and

models instantiation. In Chapter Five we describe the experimental, manual developer

evaluation oracle and evaluation criteria. After interpreting the experimental results and

discussing the threat to validity in Chapter Six, Chapter Seven concludes the dissertation

and outlines future works.

6

CHAPTER 2. LITERATURE REVIEW

This chapter provides a survey and discussion of the literature in autonomic comput-

ing, software testing, mode driven engineering, autonomic self-testing, change propagation

and model synchronization.

2.1. Background

This section describes background material on autonomic and adaptive computing,

software testing, and change propagation as an emerging field of model-driven engineering

to understanding the problem under investigation.

2.1.1. Autonomic and Adaptive Computing

Autonomic computing (AC) is IBM’s proposed solution to facilitate the problems of

managing the growing complexity of computing systems, and the progressing nature of

software system. The beginning of the AC was started in October 2001 and depicted a vi-

sion of computing systems [62] that manage themselves according to high-level objectives.

The paradigm seeks to alleviate the burden of integrating and managing highly complex

systems through increased automation and goal specification.

Autonomic systems, inspired by the concept of human autonomic nervous system, fa-

cilitate the paradigm shift from conventional human-manage technology era to technology-

manage-technology era [49]. Autonomic Computing is a potential solution to the problem

of increasing system complexity and costs of maintenance. It is an approach where the

ultimate goal is to create computer systems that can manage themselves while hiding their

complexity from the end users [52, 62]. While autonomic computing is shifting the burden

of the detailed software operation and maintenance from human beings to technology, the

human is only responsible to identify system objectives as high level policies, and have the

system adapt its own components in response to changes in the operating environment [62].

7

AC comprises the activities self-configure, -optimize, -heal, and -protect [62, 80]:

• Self-Configuration: the ability to dynamically configure and reconfigure itself under

changing the conditions, and in accordance with high-level policies representing

business-level objectives; item Self-Healing: the ability to detect failed components

and remove or replace them with other components without disrupting the system. In

addition, this characteristic may involve the prediction of problems to avoid failures;

• Self-Protection: the ability to identify and detect attacks and cover various aspects of

system security at the platform, operating system, and application levels; and

• Self-Optimization: the ability to maximize resource allocation and utilization for

satisfying user requests.

Concept Current computing Autonomic

computing

Self-configuration Corporate data centers have

vendors and platforms.

Installing, configuring, and

integrating systems is time

consuming and error prone.

Automated configuration of

components and systems

follows high-level policies. Rest

of system adjusts automatically

and seamlessly.

Self-optimization Systems have hundreds of

manually set, nonlinear tuning

parameters, and their number

increases with each release.

Components and systems

continually seek opportunities

to improve their own

performance and efficiency.

Self-healing Problem determination in large,

complex systems can take a

team of programmer’s weeks.

System automatically detects,

diagnoses, and repairs localized

software and hardware

problems.

Self-protection Detection of and recovery from

attacks and cascading failures is

manual.

System automatically defends

against malicious attacks or

cascading failures. It uses early

warning to anticipate and

prevent system wide failures.

Table 1. Four aspects of self-management with and without autonomic computing [62]

Table 1 presents the core features that IBM frequently cites, for supporting self-

management in autonomic software. The main characteristic of autonomic computing

software systems is self-management.

8

Manual Manager

K
n

o
w

le
d

g
e

S
o
u

rc
es

Orchestrating Autonomic

Managers

Touchpoint Autonomic

Managers

Touchpoint

Managed Resources

Figure 1. Autonomic computing reference architecture [55]

The aim is to shift the burden of details system operation and maintenance to the system

itself and free the system administrators to perform higher level duties.

Earlier, the autonomic systems might deal with these characteristics separately [62].

Lately, these aspects will be essential properties of a general architecture of any computing

software system.

The architectural blueprint for AC [55] organized a common layered approach for

developing self-managing systems as shown in Figure 1. The horizontal layers (from

bottom to top) include: managed resources, touchpoints, touchpoint autonomic managers,

orchestrating autonomic managers, and a manual manager. The knowledge in the vertical

layer knowledge sources (top-left of Figure 1) is composed of particular types of manage-

ment data with architected syntax and semantics, such as symptoms, policies, requests for

change, and change plans, this knowledge can be shared among autonomic managers (i.e.,

the top three horizontal layers), so that an autonomic manager can load knowledge from

one or more knowledge sources, and the autonomic managers can activate that knowledge,

allowing the autonomic manager to perform additional management tasks (such as recog-

nizing particular symptoms or applying certain policies).

The lowest layer (i.e., Managed Resources) contains the system components that

make up the IT infrastructure. These managed resources can be any type of resource

(hardware or software) and may have embedded self-managing attributes.

9

Figure 2. Closed loops of control in autonomic manager [67]

Immediately above the managed resources are manageability interfaces for accessing

and controlling the managed resources, which are called touchpoints. Touchpoints imple-

ment the sensor and effector behaviors necessary to automate low-level management tasks

[55, 62].

Sensors provide mechanisms for observing the state of managed resources, while

effectors facilitate the implementation of runtime changes. Autonomic managers are cate-

gorized into two classes: (1) Touchpoint AMs, and (2) Orchestrating AMs [55]. Touchpoint

AMs work directly with managed resources through their touchpoints. Orchestrating AMs

manage pools of resources or optimize the Touchpoint AMs for individual resources. Or-

chestration may therefore occur within a single discipline for multiple resources (e.g. Self-

Configuration only), or across multiple disciplines for a single resource. The uppermost

layer is an implementation of the user interface that enables an IT professional to perform

some management functions manually. Called the Manual Manager, these functions enable

an IT professional to delegate management functions to autonomic managers.

10

Self-management in autonomic software is realized through a series of intelligent

closed control loops [55] within Autonomic Managers (AM). Figure 2 [67] shows the

structure of autonomic managers with respect to these closed control loops. AMs are

responsible for implementing closed control loops that monitor, analyze, plan, and execute

(MAPE) changes to achieve self-management goals.

The MAPE functions of AMs collaborate to manage state changes to the resource as

follows:

• Monitor: continuously polls the managed resource for this state information, and

correlates it into symptoms for analysis.

• Analyze: determines if the current state is undesirable, and generates a change re-

quest to be passed to the plan function.

• Plan: specifies the set of actions needed to remedy the state condition of the managed

resource, and formalizes them into a plan for execution.

• Execute: implements change plans on the managed resource through its effectors, for

the purpose of acquiring some desired state.

• Knowledge: coordinates access to data shared among the MAPE functions.

Sensors are built on managed resources to provide AMs with mechanisms for intro-

spection, while effectors provide intercession mechanisms. In addition, the self-management

policies that guide the behavior of AMs may be dynamically updated through these top

sensors and effectors. During self-management AMs may dynamically add, remove, or

replace components of the AC system, a process known as Dynamic Software Adaptation

(DSA).

The movement towards autonomic computing [62] has led to the development of

systems that can add, remove, and replace their own components at runtime.

11

Dynamic adaptation enables software to respond to changes in its environment, and

seeks to improve the way in which systems are configured, managed, and integrated [62].

Salehie and Tahvildari [91] summarized the adaptation processes as follows:

1. The monitoring process: is responsible for collecting and correlating data from sen-

sors and converting them to behavioral patterns and symptoms;

2. The detecting process: is responsible for analyzing the symptoms provided by the

monitoring process and the history of the system, in order to detect when a change

(response) is required. It also helps to identify where the source of a transition to a

new state;

3. The deciding process: determines what needs to be changed, and how to change it to

achieve the best outcome; and

4. The acting process: is responsible for applying the actions determined by the de-

ciding process. This includes managing non-primitive actions through predefined

workflows, or mapping actions to what is provided by effectors and their underlying

dynamic adaptation techniques.

To enhance reliability, self-adaptive software should employ a safe process for dy-

namic adaptation, and be able to validate or verify its own behavior at runtime [107], [68],

[108]. Runtime validation of adaptive software can be achieved by deploying the system

with built-in tests, and mechanisms for automatically executing those tests and evaluating

the results [68]. Dynamic adaptation is said to be safe if it does not violate dependencies

between components, or interrupt critical communications [107].

The safe adaptation process in [107] encompasses three phases: analysis, detection

and setup, and realization. The analysis phase occurs during development time, where

the developers prepare a data structure that helps to keep detailed information such as

component configurations, dependency relationships predicates, and adaptive actions.

12

The detection and setup phase occurs at runtime. Once the system detects a condition

warranting adaptation, the adaptation manager should generate a safe adaptation path.

In the realization phase, the adaptation manager and the agents coordinate at runtime to

achieve the adaptation along the safe adaptation path established during the previous phase.

The major states in the realization phase are as follows:

1. Running state : Every component in the process is running in its full operation.

2. Resetting state: The process is only partially operating and some functionalities

related to the adapted component are disabled.

3. Safe state: Hold the system in a safe state while adaptive actions are performed.

4. Resuming state: Resume the system’s partial operation once all adaptive actions are

complete.

5. Original state: Perform a local-post action to return the system to a fully-operational

state (i.e. first state).

If the failure occurs after the manager has sent out a resume message, then the adapta-

tion should run to completion. If failure occurs during an adaptation step, the manager can

retry the same step, attempt to return to the source configuration, or remain at the current

safe conguration and wait for user intervention.

2.1.2. Software Testing

Software Testing involves executing a program on specified inputs, recording the

results, and making an evaluation to determine whether the software behaves as intended

[56]. Software testing is one of the V&V (verification and validation) software practices.

Verification is the process of evaluating a system or component to determine whether the

products of a given development phase satisfy the conditions imposed at the start of that

phase [1].

13

Validation is the process of evaluating a system or component during or at the end

of the development process to determine whether it satisfies specified requirements [1].

Boehm [13] has informally defined verification and validation as follows: Verification: Are

we building the product right?, Validation: Are we building the right product?.

Testing may be performed using black box or white box techniques [9]. Black box

testing assumes no knowledge of the internal structure of the program. On the other

hand, white box testing derives testing requirements from how thoroughly the program

structure has been exercised [109]. Hence, for white box techniques, test adequacy is

usually specified in terms of coverage of elements of the program, (e.g., branches, paths,

statements and internal logic of the code, etc.).

Black box testing is mostly applicable to higher levels of testing such as system

testing, while white box testing is applicable to lower levels of testing such as unit and

integration testing. In white box testing the tester should have full visibility of the internal

workings of the software product, therefore the tester should have programming and testing

knowledge, on other hand in black box testing these knowledge’s are not required.

Software components may be tested independently at the unit level; or as a set of par-

tially connected building blocks during integration; or all together to validate the behavior

of the entire system [17]. During testing, it may be necessary to develop scaffolding code.

This includes stubs and drivers required for testing. A test stub is a mock implementation

that simulates some behavioral aspect of a component under test (CUT), and a test driver

is a program that executes test cases on the CUT [17]. The set of drivers and other tools

to support test execution is called a test harness. Although black box as well as white box

testing is equally essential, using only one is insufficient. So, a combination of black box

as well as white box testing called as Gray box testing has been used in this dissertation

proposal.

14

Test cases can be developed using black box methodologies or white box ones, using

both methodologies are recommended. In order to have a rationally strict test, test cases can

be developed by using some black box methodologies and then supplementing these test

cases by examining the structure of the software, using white box methodologies. Several

black box testing techniques are introduced and discussed in [86](graph-based testing,

equivalence partitioning, boundary value analysis, comparison testing, orthogonal array

testing). Techniques for white box test cases oriented include statement coverage, decision

coverage, condition coverage, decision-condition coverage, multiple-condition coverage

[82].

After releasing the software system to be used, post-delivery activities could start to

keep the system operational and meet user need. Software evolution means that systems

typically require perfective, adaptive, or corrective maintenance after delivery [94]. There

are four types of maintenance according to Lientz and Swanson [71]:

• Corrective maintenance: deals with the repair of faults or defects found.

• Adaptive maintenance: consists of adapting software to changes in the environment,

such as the hardware or the operating system.

• Perfective maintenance: mainly deals with accommodating new or changed user

requirements.

• Preventive maintenance: concerns activities aimed at increasing the systems main-

tainability, such as updating documentation, adding comments, and improving the

modular structure of the system.

Regression testing is that test could be run after changes are made to the software

to ensure that it behaves as intended and that the modifications have not had an adverse

impact on the quality of the softwar [19]. This may involve re-running the entire test suite

(retest-all), or a strict subset (selective retest) [46].

15

A selective retest method commonly used in practice is firewall regression testing

[103]. Firewall regression testing uses change impact analysis to identify the set of compo-

nents affected by the change [103]. The identified components are then retested to ensure

the system still behaves as intended.

In manual testing, software testers should play the role of an end user, and use almost

all of the features of the software system to ensure the correct and intended behavior of the

system. However, there are several tools in the literature that provided tangible assistance in

the automation of the testing process [14, 20, 28, 43]. Test automation involves creating test

scripts; and setting up a test harness for executing tests, logging the results, and performing

a post-test evaluation [79]. If the post-test evaluation passes then the test harness should

automatically terminate, otherwise additional test cases should be selected and fed through

the harness to improve the testing effort.

In software testing, one of the critical concerns is the quality of the test. Test data

adequacy criterion is a rule used to determine whether or not sufficient testing has been

performed. This criterion is considered as quality measurement.

If P is a set of programs, and S is a set of specifications, and T is a set of test cases,

we can formally define a test data adequacy criterion C as follows [109]:

• Testing criteria as measurements:

A test adequacy criterion C is a function

C : P ×S × T → [0, 1]

C (p, s, t) = r means that the adequacy of testing program p against specification s

using the test set t is of degree r according to criterion C. The greater the value of r,

the more adequate the testing.

16

• Testing criteria as generators:

A test data adequacy criterion C is a function

C : P ×S → 2T

A test set t ∈ C (p, s)

means that t satisfies C with respect to p and s. In other words, t is adequate for (p,

s) according to criterion C.

• Testing criteria as stopping rules:

A test criterion C is a function

C : P ×S × T → [true, false]

C (p, s, t) = true means that t is adequate for testing program p against specification

s according to criterion C. Otherwise, t is inadequate. as a stopping rule, a test data

adequacy criterion C is a special case of measurements with the range [0,1].

2.1.3. Model Driven Engineering

The term Model-Driven Engineering (MDE) is typically used to describe software

development approaches in which abstract models of software systems are created and

systematically transformed to concrete implementations [41].

One of the main processes of the Systems Development Life Cycle (SDLC) is the

design process, which starts with the construction of an abstract model of the new system

along with the desired features.

The development of abstraction techniques aid to improve the programming prac-

tice. It has provided programming language constructs, specification techniques, program

structures such as algorithms and data types, strategies for modular decomposition, and

more [93]. The object-oritented paradigm becomes very common and frequently used in

manufacturing.

17

Object-oriented software can be described as a set of interacting objects that commu-

nicate and collaborate in order to perform specific tasks. Each object can associate with

[70]:

• Properties: characterize the object, describing its current state.

• Behavior: is the way an object acts and reacts, possibly changing its state.

The component standpoint provides a higher-level of abstraction than objects [16].

Component provides a modular part of a system, that encapsulates several objects into

one unit. A component may be replaced by another if and only if their provided and

required interfaces are identical. Therefore developers can use commercial-off-the-shelf

(COTS) components, and customize the services provided to the specific requirements of

the application. Software reuse comprises the following forms [44]:

• Interface reuse: reusing the signatures available for message passing;

• Code reuse: reusing classes or collections of procedures and functions; and

• Pattern reuse: reusing solutions to well-known problems.

Reuse is a principal subject in object-oriented software engineering, and component-

based software engineering. One concept of object-oriented that helps objects to work

together is inheritance. Inheritance in OO can be used to reuse code of existing objects,

or to establish a subtype from an existing object. In inheritance, subclasses/child classes

can inherit properties and methods from pre-existing classes called superclasses/parent

classes. Beside the key benefit of inheritance which is to minimise the amount of duplicate

code in an application by sharing common code amongst several subclasses, inheritance

can also make application code more flexible to change because classes that are inherited

from a common superclass can be used interchangeably, If the return type of a method is

superclass.

18

The concepts of composition and delegation are common in object-oriented environ-

ment. ClassA is composed with ClassB if ClassA has a ClassB or ClassB* member (i.e.,

one of its attribute); then we can say ClassA has a ClassB. And, as before, ClassA inherits

from ClassB if ClassA is derived from ClassB as a child class; then we can say ClassA is a

ClassB. The passing of method calls to a composed object is called delegation.

Design patterns are optimized, reusable solutions to the programming problems that

developers and engineers might encounter. These problems have been faced before by other

engineers, and solutions have been designed and implemented to treat these problems. If

developer encounter these problems, why recreate a solution when the developer can use

already proven ones. A design pattern is not just a class or a library that we can simply

incorporate into our system; it is much more than that. It is a template that has to be

implemented in the right time and situation. Design patterns occur at several levels of

abstraction, including [40, 44]:

• Architectural styles: which are patterns at the architectural level;

• Mid-level design patterns (or just design patterns): which are patterns involving

classes and their interactions;

• Data structure and algorithms: which are patterns for implementing abstract data

types and efficient operations; and

• Programming idioms: which are patterns for using a particular programming lan-

guage.

One of the general purpose modeling language for modeling object oriented software

system is the Unified Modeling Language (UML).

19

UML diagrams classified into three categories as follows [4]:

• Behavior diagrams: Describe the behavioral features of a whole system, a particular

process in the system, or a specific object in the system. This includes activity, state

machine, and use case diagrams as well as the interaction diagrams;

• Interaction diagrams: Describe the communication and the collabarotion between

the various system components. This includes communication, interaction overview,

sequence, and timing diagrams; and

• Structure diagrams: Describe the static composition of the system components. This

includes class, composite structure, component, deployment, object, and package

diagrams.

MDE is based on very general concepts that can be applied across many different

disciplines. The basic set of concept includes Models, Meta-models and Transformations

[74]. The goal of model-driven engineering (MDE) is to instate models as first-class

citizens throughout the software process [41]. Transformations between models is therefore

one of the key goals of MDE.

The major challenges that researchers face when attempting to realize the MDE

vision can be grouped into the following categories [41]:

• Modeling language challenges: These challenges arise from concerns associated

with providing support for creating and using problem-level abstractions in modeling

languages, and for rigorously analyzing models.

• Separation of concerns challenges: These challenges arise from problems associated

with modeling systems using multiple, overlapping viewpoints that utilize possibly

heterogeneous languages.

20

• Model manipulation and management challenges: These challenges arise from prob-

lems associated with (a) defining, analyzing, and using model transformations, (b)

maintaining traceability links among model elements to support model evolution and

roundtrip engineering, (c) maintaining consistency among viewpoints, (d) tracking

versions, and (e) using models during runtime.

Meta-modeling has been recognized as a standard technique for representing and

transforming software artifacts [7]. However, many approaches only allow one-shot trans-

formations to be expressed (i.e., single conversion of a source model into a target model).

For one-shot approaches, subsequent changes in the source cannot be mapped to the target

without reconstructing the entire target model. Change propagation, an emerging field of

MDE, overcomes this limitation by allowing updates to be made to models after initial

transformation [99, 105].

When developing an approach based on change propagation, the following factors

should be considered [99]:

• Checking or Updating: an approach may simply indicate to a user where in the target

changes should be made or, on the other extreme, make updates to the target without

notifying the user as to which changes were made;

• Automatic or Manual: it may be possible to automatically extract and convert source

model changes into transformations for the target, otherwise target transformations

must be written manually; and

• Immediate or Batch: an approach may propagate changes to the target as soon as the

source is changed, or propagate multiple changes when applied.

In the case of MDE research on runtime models, the goal is to produce technologies

that hide the complexities of runtime phenomena from agents responsible for managing the

runtime environment, and for adapting and evolving the software during runtime [41].

21

2.2. Related Work

This section presents, first, a systematic literature review performed prior to the start

of this dissertation, followed by a brief description of research works that have been done

in the area of testing adaptive system and model driven change propagation in order to

position our work relative to previous research, and to identify those contributions that are

complementary to our approach.

2.2.1. Preliminary Investigation

As a preliminary step in our investigation, a systematic literature review [3] was

performed to determine the current landscape surrounding the research problem.

To properly focus the review, the following high-level research question was formu-

lated:

Are there any approaches in the literature that can automatically synchronize

a runtime test model for a software system with the model of its component

structure after dynamic adaptation?

This question was then expanded into the series of questions provided in Table 2.

Each top-level question in the series represents a general research inquiry within the prob-

lem area, which was then refined with the (more specific) sub-questions that follow. Moti-

vation behind each question in the series is shown in the rightmost column of the table.

The first question in Table 2 aims to find approaches that have been used to maintain

synchronization between software models at runtime. Its sub-questions refine this objective

to identify works that specifically address the research inquiry in the context of maintaining

up-to-date runtime test models for adaptive software. The second question seeks to assess

the extent to which existing MDE approaches provide a formidable solution to the research

problem. The third question attempts to determine the practicality of implementing such

MDE approaches.

22

Research Questions Motivation
1. Are there approaches in the literature that focus on

maintaining up-to-date models at runtime?

1.1. Are any of these approaches applied in the context

of adaptive software?

1.2. 1.2 Are any of these approaches applied in the

context of updating test models?

Identify works related to the

idea of synchronizing test

models at runtime in adaptive

software.

2. Is there any evidence in the literature that multi-shot

transformation approaches such as change propagation

are effective for synchronizing different software

models at runtime

2.1. Does any of the evidence demonstrate that such

approaches are useful for ensuring completeness and

consistency of runtime models in software?

Assess usefulness of

approaches in the literature

for synchronizing runtime

models without having to

completely re-construct the

target model.

3. Are there any modeling tools, frameworks, or languages

to support implementing approaches that synchronize

runtime models

3.1. Are there any prototypes or case study applications

that were built using these tools?

Assess practicality of

developing a prototype of a

solution to our specific

problem using the

approaches from (2.)

Table 2. Research questions and motivation to guide the systematic review [3]

Conducting the systematic review led us to several articles on the use of models at

runtime, as well as current research directions in the area of MDE. The works on models at

runtime included papers that harness executable models for dynamic adaptation and soft-

ware testing, as separate issues. There was a noticeable lack of research being performed

in the area of testing autonomic and adaptive systems [91, 68]. No works that address

the problem of automatically synchronizing runtime test models in adaptive software were

found during the literature search. Except for the research on change propagation [99, 105],

most of the MDE approaches were focused on one-shot transformations that generate

program source code from platform-independent models. Change propagation research

appears to be in its early stages, and therefore does not have much direct tool and language

support [99]. However, there appears to be a plethora of general MDE tools [39, 32, 100]

that could be used to implement practical ideas on change propagation.

23

In summary, the results of the systematic literature review indicated that the proposed

research direction may lead to advances in two relatively open fields of software engineer-

ing research: (a) Runtime testing of autonomic and adaptive systems; and (b) Change

propagation. The next sections summarize research in the areas of self testable system,

testing adaptive software systems, and model driven change propagation.

2.2.2. Self Testable System

There are several researchers have described that how software system could be a

self-testable software or include self-testable components [75, 12, 98, 64, 10, 24].

Martins et al. [75] presented an approach to improve component testabilily by inte-

grating testing resources into it, and getting a self-testable component. They intended to

increase components testability to improve reliability of the component itself and of the

applications using it. A self-testable component comprises a specification from which test

cases can be derived in addition to its implementation. A prototyping tool was developed to

support some activities of the proposed approach to show its feasibility. This prototyping

tool named Concat. The tool is intended for OO components implemented in C++. For

evaluating the fault revealing effectiveness of the test selection strategy they used a class

from the Microsoft Foundation Class (MFC) library, CObList, which implements a linked

list, and one derived class, CSortableObList, obtained through the Internet, which imple-

ments an ordered linked list. the results showed that the test strategy has a good potential

in detecting methods interaction faults. Furthermore they were able to indicate the need

to retest inherited features in the context of a subclass, even if they do not interact with

modified or newly introduced features, among other reasons, to avoid that faults introduced

during base class maintenance remain unrevealed in the subclass.

Blum et al. [12] presented a general technique which uses self-testing/correcting

pairs to verify a variety of numerical functions.

24

In their work a user can take any program P and its self-testing/correcting pair of

programs, if program P passes the self-test then, on any input, the user can call the self-

correcting program which in turn makes calls to the original program P, to correctly com-

pute the value. The techniques have been applied on integer multiplication, the mod

function, modular multiplication, integr division, polynomial multiplication, modular ex-

ponentiation, matrix multiplication, determinant, matrix inversion and matrix rank. If this

notion of selftesting/ correcting program pairs worked for complex programs then self-

testing for autonomic computing systems would become petty. However, this technique

only works for very well defined functions.

Le Traon et al. [98] presented self-testable OO components which embed their

specification (documentation, methods signature and invariant properties) and test cases.

Their pragmatic approach linked design and test of classes, seen as basic unit test com-

ponents. Their approach has been implemented in Eiffel, Java, Per1 and C++ languages.

As the authors admit, due to the direct support for Design-by-ContractTM in the Eiffel

language, they detailed the Eiffel implementation since it makes the introduction of built-

in test capabilities straightforward. Test cases are generated manually and embedded into

the component. In Eiffel language the assertions can be used as oracle, but manually gen-

erated oracles can also used in complement, in case post-conditions and invariants are not

sufficient to express functional dependencies between methods. The test quality estimate

in their approach can be associated to each self-test for two benefits: (a) To help in the

choice of a component, or (b) To guide reaching a test adequacy criteria when generating

test cases. In their approach several mutation operators that applicable to different OO

languages have been presented. Test case selection can be driven either by quality or by

the maximum number of test cases desired. In their approach, test cases generated during

class development are embedded into the class, and not the test model, as in our approach.

25

King et al. [64] presented and described a comparative case study performed on three

autonomic applications that were engineered to include an implicit self-test characteristic

(i.e., autonomic container (ACT) [95], Communication Virtual Machine (CVM) [25], and

Autonomic Job Scheduler (AJS) [88]. Their experiments are divided into three parts as

follows:

• Development experiments: Involved assessing the development effort for the three

applications, focusing on the autonomic and self-testing features,

• Performance experiments: Comparing a non-self-test variant of AJS with a self-test

variant that uses a distributed testing process and comparing a self-test variant of

CVM with a thread-enhanced self-test variant, and

• Test set quality experiments: Measuring the effectiveness of test sets in revealing

faults, and exercising program code.

Conducting their case study provides evidentiary insight into the benefits and soft-

ware engineering challenges associated with developing autonomic systems with implicit

self-test characteristic.

Beydeda and Gruhn [11] concentrate on overcoming the problem that caused by a

limited exchange of information between the component provider and component user .

A limited exchange and thereby a lack of information can have several consequences, one

of the most important one is the requirement to test a component prior to its integration

into a software system. Furthermore, a lack of information could complicate testing task.

They proposed a new strategy called self-testing COTS components (STECC) to testing

components and making components testable. The essence of this strategy is to augment

a component with functionality similar to that of analysis and testing tools. Their strategy

allows the component user to test the component with respect to information which is not

directly accessible to the component user.

26

The information is either generated by the component itself on-demand or is encap-

sulated in it.

In [10] Beydeda extends the previous work by presenting an approach to self testa-

bility which encompasses test case generation and test evaluation. The new approach in-

tegrates the self-testing COTS components (STECC) method and the metamorphic testing

approach. To demonstrate the feasibility of the proposed approach, a component has been

implemented which provides basic functionality for number computing together with the

functionality required by the STECC framework and for metamorphic testing the states

entered and outputs produced. He concludes the main differences between the STECC

approach and built-in testing approaches in the literature as follows: (1) Built-in testing

approaches are static in that the component user cannot influence the test cases employed in

testing. Precisely, the component user cannot identify the adequacy criterion to be used for

test case generation. In STECC approach the adequacy criteria can be freely specified; (2)

Built-in testing approaches using a predefined test case set generally require more storage

than the STECC approach; and (3) Built-in testing approaches using a predefined test case

set generally require less computation time than STECC at component user site.

Denaro et al. [24] proposed an approach that automatically synthesizing assertions

that evolve over time and adapt to the new context-dependent interactions.

27

The synthesized assertions capture the semantics of the observed application behav-

iors, and can be integrated in the networking infrastructure to detect violating interactions

at runtime and trigger self-management mechanisms correspondingly. Their approach

embeds assertions in the communication infrastructures, to describe the legal interactions

between the communicating entities. Such assertions are then checked at runtime to reveal

misbehaviors, incompatibilities and unexpected interactions that may be due to hidden

faults, changes in some components or malicious code. The synthesis of assertions at

runtime can support the self-testing of adaptive systems by providing a way to create new

test cases for validating components after an autonomic change occurs.

Deveaux et al. [27] started with simple self-testing of individual classes to opti-

mized integration testing. They proposed a general Design-for-Trustability methodology

(DFT) that produces self-testable components for ensuring test quality and increase soft-

ware trustability. The self-testable concept has been implemented in the Eiffel, java and perl

languages.To demonstrate their work some examples in java languages that are extracted

from two packages in STclass web distribution site. The implementation of self-test is

based on two parts:

• Preprocessor to build an instrumented source:

– Preprocessor is written as a perl script for diffusion and portability.

– IContract preprocessor for processing several source files together.

• Test API that supported by a simple library of four classes that provides three ser-

vices:

– A message center,

– Method profiler and a set of useful methods to manage traces,

– Assertions and test output.

28

The proposed framework for java implementation was usable in real life practice and

implies not any overload on final code efficiency.

2.2.3. Testing Adaptive System

There are several approaches describing how systems can perform self-adaptation at

runtime. Such approaches proposed self-adaptation processes, frameworks, or architectures

able to investigate the need for the adaption when it is necessary and then perform the

adaptation effectively. However, There is a noticeable lack of research being performed in

the area of testing autonomic and adaptive systems [91, 68]. This section presents a brief

literature review in the area of testing self-adaptive system in order to position our work,

and to identify those contributions that are complementary to our approach.

Carlos and Rogrio [23] presented an approach for the dynamic generation of plans

for conducting the integration testing of self-adaptive software systems. Their framework

depends upon a combination of three techniques,

• Workflows: used as a means to implement the plans,

• AI planning: used to dynamically generate the plans, and

• Model transformation: used for supporting the translation between domain specific

models into planning problems.

To demonstrate the feasibility of the proposed approach, a prototype has been built and

applied into a component-based web application. The case study that was used in their

work is a simple web shop application, which can be employed to sell goods on the Internet.

The experiments performed demonstrated that the proposed approach was able to generate

workflows for managing integration testing, that the most time consuming activity when

generating a workflow is related to the architectural reconfiguration of the system being

tested.

29

Arun Mishra and Arun K. Misra [78] proposed a formal approach that can be ap-

plied for validation of the system after component integration in the dynamic adaptive

environment. They highlighted the importance of gaining the trace of the inter-component

interactions for assuring the validation of component based dynamic adaptive systems. A

general profiler with distillation characteristics has been developed to find out that how a

component is affected by the other components through its interfaces. The profiler gathers

all the traces of execution at the runtime and makes it possible to successfully trace the

interactions among components across all threads of the adaptive system. In prior to use

Mobility Workbench Model checking tool for validating adaptive system there was a need

to transpose the collected interactions from trace file into formal specification. Thereby

after implementing the adaptive software to apply their approach on and capturing the inter

component interactions, the formal modeling pi-calculus has been used. Validating the

implemented system based upon two factors: 1) assessment of external behavior and 2)

checking of temporal properties (i.e. safety and liveliness) against a formal model of the

system.

Da Costa et al. [22] have extended the adaptive system framework JAAF [29] by

introducing a new activity called self-test. Self-testing in JAAF is embedded within the con-

trol closed loop of collect, analyze, plan and execute components. The self-test activity has

ability to validate the new behavior and checks for its adequacy with the new environment

before adapting it. The feasibility of the proposed approach is demonstrated by a case study

where a system responsible for generating susceptibility maps. The susceptibility maps

application makes use of different web-services that are capable of dynamic adaptation.

Prior to making an adaptive change, a set of test cases is applied on the given behavior

and the execution takes place on the result of pass and fail of test cases.

Hu et al. [53] presented a new adaptive software testing approach in the context of

an improved Controlled Markov Chain model.

30

They proposed a new set of basic assumptions on the software testing process, and

replaced several unrealistic assumptions that have been used in the previous studies on

adaptive testing rely on a simplified CMC model. To evaluate the effectiveness of the

Adaptive Testing (AT) strategy, a case study on SPACE program has been used. The

experimental showed that under different scenarios, the proposed strategy AT outperforms

the traditional ones in both number of detected/removed defects and the cost of the testing

process.

King et al. [68] proposed a self-testing framework, which is capable of dynamically

validating the behavior of changed components through regression testing in autonomic

computing systems. This process of validating is based on two key strategies: (1) Safe

adaptation with validation: tests autonomic changes directly on managed resources during

the adaptation process, and (2) Replication with validation: tests autonomic changes using

copies of managed resources.

The Safe Adaptation with Validation strategy must be used only if the process of

duplicating managed resources in autonomic computing system is expensive. To support

their research investigations, the authors have developed prototype that implement auto-

nomic self-testing according to the proposed validation strategies [67, 65, 95].

Munoz and Baudry [81] concentrated on testing the adaption policy and proposed a

strategy for the selection of environmental variations that can reveal faults in the policy.

They developed an approach called artificial shaking table testing (ASTT) for testing adap-

tation policies and their realization. ASTT consists in laying a DAS into a virtual shaking

table, which produces artificial earthquakes (AEQ) that test its adaptation capabilities.

31

The main contribution of their work is the ability of ASTT to automatically gen-

erate AEQs in such a way that they simulate representative environmental changes. The

experimental results of performing mutation analysis over an adaptive web server indicate

that automatically generating violent and smooth environmental variations are beneficial to

uncover faults in adaptation policies and their realization. The experimental results showed

that out of 90 faults introduced into an adaptation policy realization, ASTT was capable

of detecting 100% of them. ASTT are complementary to the research problem addressed

in this dissertation. Validating the correctness of dynamically adaptive software is divided

into two distinct research topics:

1. Determining whether or not the software is adapting correctly to environmental changes;

2. Ensuring that the software behaves correctly after an adaptive change takes place.

The work by King et al. [63] extends their previous work [65] on Autonomic Self-

Testing (AST) by overcoming two of its limitations.

• To narrow the gap between online testing and other advances in autonomic com-

puting, they address the need for system-wide validation in autonomic software

through the description of a runtime integration testing approach. Their approach

treats with the autonomic system as an interconnected set, Self-Testable Autonomic

Components (STACs), and emphasizes operational integrity during the runtime test-

ing process.

• They addressed AST of self-testing autonomic communication virtual machine ap-

plication for which it is expensive to maintain test copies of managed resources.

Their application motivates the need for Safe Adaptation with Validation (SAV) and

system-wide AST, and is used as a platform for investigating their feasibility.

Niebuhr and Rausch [83] integrated runtime testing into component infrastructure

DAiSI, to guarantee correctness of component bindings in dynamic adaptive systems.

32

Runtime testing enables them to detect incompatibilities of provided and required

services before they occur. Runtime testing has been integrated into their prototype of

DAiSI. Their work is complementary to ours as they guarantee system correctness and

to support binding of components during runtime. One of the limitations of their work

is not tackling the problem of cyclic dependencies of components. In future work they

intend to investigate test case generation, to enable component developers to provide a

single specification of their components and assure good test cases while trading-off test

case execution overhead. If they accomplish this task, we could use the same technique to

improve our approach in generating test case dynamically after adding new component.

None of the aforementioned approaches and frameworks describe how the test model

is made consistent with the new structure of the autonomic system after adaptation takes

place.

2.2.4. Model Driven Change Propagation

To the best of our knowledge, the approach presented in this dissertation is the first

attempt at tackling the research problem under investigation. Following are some of the

researches in the literature, which described models synchronization, change propagation,

and traceability link establishment between test cases and classes under test in object-

oriented systems.

Falleri et al. [89] implemented a simple traceability framework in the model oriented

language Kermeta. This framework is based on a model definition, which allows a basic

trace meta-model to be defined. They implemented the following features in the traceability

framework:

• Generic traceability items;

• Trace serialization (in XMI 2.0, thanks to EMF); and

• Simple transformation from a trace to graphvizs dot language, in order to allow trace

vizualisation.

33

With their proposed framework, it was possible to trace transformations within Ker-

meta. But it is still possible to improve the Trace metamodel and thus the framework.

Xiong et al. [105] is closely related to our work. They proposed an approach

that automatically synchronizes two models related by transformations described in At-

las Transformation Language (ATL) [32]. Their clarification of the semantics of model

synchronization under the context is precisely characterizing the behavior of the synchro-

nization process with four important properties, namely stability, information preservation,

modification propagation and composability. These properities give the users a clear view

of what models will be after synchronization. These properties were much motivated by

studies on updating semantics of database views [8] and the well-definedness of bidirec-

tional tree transformation [38, 72]. They were the first who adapted these results to solve

the model synchronization problem. An example that synchronizes class diagrams with

relational database models has been used to demonstrate their approach. Although the

semantics of the approach are similar to TIP, we address the specific problem of updating

runtime test models after component-based adaptations.

Jean-remy et al. [89] have proposed a traceability framework for model transfor-

mation using Kermeta language. Their framework is based on a model definition which

allows a basic trace meta-model to be defined. Several definitions have been provided to

describe how their approach deals with different elements in the proposed framework. To

demonstrate their approach, a very simple transformation example has been used where a

class hierarchy turned into a database.

Ivkovic and Kontogiannis [58] proposed a framework called Model-Driven Software

Evolution (MDSE) for model synchronization to achieve traceability of changes of software

models that occur during software evolution and maintenance.

34

Whereby software artifacts at different levels of abstraction such as architecture dia-

grams, object models, and abstract syntax trees are represented by graph-based MOF com-

pliant models that can be synchronized using model transformations. Their work is closely

related to ours as they invistigated the problem of synchronization between software models

when one is altered due to evolution or maintenance activities. Their view of software is

in terms of models, each at a different level of abstraction (i.e., requirements, architecture,

design, implementation). Each such model conforms to and is an instance of a correspond-

ing metamodel. In TIP all models are at the same level of the abstractin (implementation).

For model synchronization they employ an intermediary Graph Metamodel(GMS). This

metamodel is an instance of MOF but is less abstract and more capable of providing

desired semantic detail. They depict each model modification as a combination of graph

changes: insert node/edge, modify node/edge, and delete node/edge. Finally, they provide

a synchronization algorithm that is based on dependency relations implicitly defined by

mapping source and target metamodels as graphs using GMS.

Synchronization approach between a feature model and its specializations is given

by Hwan et al. in [54]. In their research work, to handle the consistency among the

involved models their synchronization approach is based on traceability links between

the interrelated models. These links are introduced during the generation of an initial

specialization model by cloning all features in the original model feature. Once traceability

links are created, the unidirectional synchronization between the two models is applied

(i.e., propagate changes made in the feature model to the corresponding specialization

models but not vice versa). Moreover the traceability links in their work represent only one-

to-many relationships. Currently model synchronization problem requires a bidirectional

approach, source and target models are mutable, that is capable of handling many-to-many

relationships between elements of models.

35

Engels et al. in [33] have addressed the transformation of Class and Collaboration

Diagrams into Java source code. They have presented how to deal with both the structural

and behavioral mapping problems between UML and Java using a pattern-based transfor-

mation algorithm. The pattern used is an instance of a metamodel from which one can

identify parts of the source diagram that is to be transformed. The main objective of their

work is preserving the semantic information through transformation, they did not discuss

how the defined transformations could be used in model synchronization.

The work by Giese and Wagner [45] is related to our work. They presented an

approach to incremental model synchronization that is based on the declarative, visual,

and bidirectional transformation technique of triple graph grammars. Triple graph gram-

mars consist of three graph grammars which describe how to derive in parallel a source

model, target model and correspondence model between source and target. Their work

revealed how correct bidirectional model transformations can be derived from the declara-

tive specification formalism [92] and how they provide an effcient and incremental model

synchronization. Their work is complementary to ours as they addressed the the efficient

execution of the transformation rules and how to achieve an incremental model transfor-

mation for synchronization purposes. Large model transformation could make the model

synchronization inefficient and worthless, in their approach the incremental processing in

the average case even larger models can be tackled. We could benefit from their approach

to increase the efficiency of the syncronization process for large adaptive system.

Tratt [99] presented PMT as a new approach to change propagating model transfor-

mations. The main stages of a PMT transformation are as follows:

1. Take a source model, and an empty target model and transform the source model,

2. The user may make arbitrary changes to both the source and target models, indepen-

dent from one another,

36

3. The user then requests that the changes they have made to the source model are

propagated non-destructively to the target model.

The transformation is reinitialized with the updated source and target models, and the

tracing information from the previous execution. The execution of the transformation then

propagates changes from the source model to the target model. After the transformation has

executed, the source and target models, together with the new tracing information created

are once again stored. To demonstrate his work, the standard class to relational model

transformation example has been used and described in detailed.

Chechik et al. [18] have taken a model-based approach and provided an algorithm

for propagating changes between requirements and design models. Their approach prop-

agates changes between requirements-level activity diagrams, and design-level sequence

diagrams. They start with a set of models that describe a system at different levels of

abstraction and/or from different perspectives. The main target was to provide a technique

for propagating changes across these models. The key feature of their work was to expli-

cate relationships between these models, and then utilize these relationships to propagate

changes automatically, if possible, and to localize the regions in other models that should

be modified by hand. Our approach differs from theirs in that the models in TIP are at

the same level of abstraction (implementation-level). We made this decision with the hope

of achieving higher levels of automation. This rationale is consistent with the findings of

Chechik et al. [18], who reason that propagating changes between models at different levels

of abstraction is impossible.

Hassan and Holt [48] addressed the question: ”How does a change in one source code

entity propagate to other entities?”. They proposed several heuristics which could be used

to predict change propagation by suggesting entities that should change based on an entity

that has changed.

37

In order to validate their approach, they have collected a large data set which is

based on the development a history of five large open source software systems, developed

for a total of over 40 years by hundreds of developers spread around the globe. They

studied changes to these large code bases using data derived from their source control

repositories. Using this large data set, they empirically studied several general heuristics

that predict change propagation. Then their newly acquired understanding has been used

to build enhanced heuristics and measure their effectiveness in predicting change propaga-

tion. Their work is highly complementary to ours as the proposed heuristics may also be

applicable to changes in test code. Applying these heuristics in both our component and

test implementations may improve the overall approach.

Bart Van and Serge [90] established traceability links between test cases and classes

under test in object-oriented systems explicitly. They used and evaluated six different

traceability strategies that rely on naming conventions, static call graph, fixture element

types, lexical analysis, Co-evolution and Last Call Before Assert. The authors analyzed

the accuracy and the applicability of the proposed strategies on three systems JPacman,

ArgoUML4, and Mondrian. The results revealed the strategy that is based on naming

conventions achieved the highest accurate. For this reason, we choose this strategy to han-

dle traceability relationships for test-related entries within an artifact, and across multiple

artifacts.

Qusef et al. [87] presented a traceability recovery approach based on Data Flow

Analysis. The approach identifies the tested classes by looking at all the classes that might

affect the results of the last assert statement in each method of a unit test. To evaluate

the accuracy of the proposed DFA-based recovery method, two system have been used,

an open source system, namely Mondrian, and an industrial system, namely AgilePlanner.

They compared the accuracy of the proposed approach with the approach based on naming

conventions and LCBA presented in [90].

38

The comparison revealed that detecting the class under test cannot be fully automated

and some issues should be better investigated.

39

CHAPTER 3. RESEARCH PROBLEM

This chapter describes the problems to be investigated and presents a detailed prob-

lem statement. The research focus is in the areas of software testing, autonomic computing,

and model synchronization. The primary goal of the research presented in this dissertation

is to formulate a model-driven approach that can automatically synchronize a runtime test

model for a software system with the model of its component structure after dynamic

adaptation, so that test model for the system can become consistent with its new structure

after dynamic adaptation.

The next section provides the motivation for this research by emphasizing the need

for automatically updating runtime test models after self-adaptation occurs. Section 3.2

concisely describes the problems to be investigated.

3.1. Research Motivations

Although researchers have developed many tools and techniques for building adap-

tive systems [107, 101, 69], there has been little research on assuring their quality and

reliability [91]. More specifically, only a few researchers have addressed the need for

runtime validation and verification (V&V) in self-adaptive software [68, 108]. However,

since self-adaptation modifies the structure and behavior of the system, runtime V&V is

necessary to ensure that errors are not introduced as a result of the adaptation process.

As long as technologies of AC continue to advance, it is vital that researchers inter-

change thoughts on how to validate the self-adaptive system dynamically. This includes:

formulating approaches for integrating runtime testing into autonomic software; studying

the detailed designs and prototype implementations that realize these approaches; and

sharing the software engineering experiences of conducting such research studies.

40

King et al. [68] proposed the use of a runtime testing framework for validating

changes in self-adaptive software. Their approach introduces an implicit self-test charac-

teristic into autonomic and adaptive systems, which validates changes made to the software

during dynamic adaptation.

Mishra et al. [78] defined a formal approach that can be applied for validation of the

system after component integration in the dynamic adaptive environment. They proposed

and developed a technique to capture the runtime components interactions using CLR

mechanism (middleware of .NET Framework).

Carlos et al. [23] proposed an approach for the dynamic generation of plans for

conducting the integration testing of self-adaptive software systems. However, none of the

above approaches describe how the runtime test model for the system is made consistent

with its new structure after dynamic adaptation.

To ensure that runtime testing of autonomic software can be applied in practice,

it is necessary to investigate techniques for automatically updating runtime test models

after self-adaptation occurs. For example, if self-adaptation introduces a new component,

new integration test cases should be generated to validate its interactions with existing

components. Similarly, if an existing component is removed, some test cases may no longer

be applicable, or adequate for testing, due to changes in program structure. Such test cases

would therefore have to be updated or pruned from the runtime test model.

3.2. Problem Statement

The problems under investigation are in the areas of software testing, autonomic

computing, and model-driven development. More precisely, the core problem is to develop

a model-driven approach that can automatically synchronizes a runtime test model for a

software system with the model of its component structure after dynamic adaptation.

41

Currently, runtime testing of autonomic software systems has received little attention

in the research community, and there is a general lack of freely available prototypes of the

projects based on autonomic computing.

To properly address the problems under investigation, a high level research problem

was formulated; this main problem was then expanded into a series of sub-problem as

following:

1. Formulating a new approach for propagating structural changes in autonomic soft-

ware to runtime test models. Although some research has been performed in the

area of a self-testing framework in autonomic systems, none of these works have

specifically targeted the problem of how the test model is made consistent with the

new structure of the autonomic system after dynamic adaptation occurs. Special

considerations need to be made when dynamically validating autonomic software

systems in order for testing to be consistent with the new structure of system. In

addition, runtime testing of an autonomic computing system should free system

administrators from the burdensome details of updating and uploading the new test

model after dynamic adaptation takes place.

1.1. Investigating reductive and additive change propagations in autonomic software

to runtime test models. As dynamic adaptation occurs additive or reductive

changes could happen to adaptive software. Additive changes introduce new

component interfaces and implementations into the system at runtime. So, the

propagation of additive changes will require conveying detailed information

about the new componens into the run time test model. On other side, reductive

changes remove existing component interfaces and their implementations from

the system at runtime. However, less attention has been given to the problem of

automatically removing tests that may no longer be applicable due to changes

in program structure.

42

1.2. Developing a prototype for the proposed approach to support the research in

the area of testing autonomic software. Unfortunately, there is a general lack

of freely available real-world autonomic systems for evaluating runtime auto-

nomic software system approaches. In order to evaluate the proposed research

ideas, a healthcare based prototype of test information propagation approach

(TIP) will be developed, in which self-adaptation and self-testing could be

practically useful.

1.3. Designing and performing controlled experiments to evaluate the TIP approach

performance. The Propagation of dynamic changes in autonomic systems for

updating built-in regression tests is necessary to get up-to-date test model. How-

ever, the performance of the technique for automatically propagating reductive

and additive changes to the runtime test model needs to be measured to ensure

that only relevant changes have been propagated. A set of experiments have to

be conducted to evaluate approach performance.

43

CHAPTER 4. THE TIP APPROACH AND HEALTH CARE

PROTOTYPE

To address the research problem, a model-driven approach was proposed for updating

the runtime tests of a software system after dynamic adaptation. The approach, referred

to as Test Information Propagation (TIP) [2], uses change propagation to synchronize

elements of the adaptive system’s component model, with related elements in its runtime

test model.

Pre-Adaptation

Configuration

Post-Adaptation

Configuration

Baseline

Test Model

Adaptive

Transformations

Traceability

Links

Model Analysis

Model Update

Test Model

Transformations

Figure 3. A test information propagation approach for adaptive software

Figure 3 provides an overview of the TIP approach. Under TIP, the transformation

that maps the pre- to the post-adaptation component configuration is analyzed together with

traceability links to the baseline test model. Analysis generates a set of transformations that

are applied to the baseline test model to produce an updated test model.

As the first step in the formulation of TIP, we describe the high-level activities that can

be performed to update the runtime test model of an adaptive system after additive and re-

ductive changes. Propagating additive changes will require conveying detailed information

about the new componens into the run time test model. However, less attention has been

given to the problem of automatically removing tests that may no longer be applicable due

to changes in program structure. Therefore, to gain some insights into the latter problem,

our technical details and discussions focus on propagating reductive and additive changes.

44

Additive

Reductive

Update Test Case

Dependencies

Remove

Unit Tests

Start

Finish

T

F

Type of

Change?

Update Unit/Integration

Tests of Callers

T

F

Caller

Components?

Callee

Components?

Remove Integration

Tests with Callees

T

F

Add Unit

Tests

Callee

Components?

Add Integration

Tests with Callees

Caller

Components?

Update Unit/Integration

Tests of Callers

T

F

Figure 4. Major decisions and actions for updating runtime test models

Figure 4 provides a workflow of the major test-related decisions (diamond boxes) and

actions (rounded rectangles) to be made when propagating additive and reductive changes.

In our previous work [2], we have focused on Handling Reductive Changes since the initial

version of the prototype is targeted on assessing the feasibility of automated propagation of

reductive changes. In this dissertation the prototype is extended to include additive changes

as well. Subsection 4.1 describes the workflow for additive changes, while Subsection 4.2

pertains to reductive changes. Steps that are common to both types of changes are described

in Subsection 4.3. Note that mutative changes are not included within the scope of this

dissertation but will be addressed in future work.

4.1. Handling Additive changes

Additive changes introduce new component interfaces and implementations into the

system at runtime. The unshaded nodes in Figure 4 represent unique aspects of the work-

flow related to additive changes. The workflow for additive changes is described as follows,

starting from left to right after the type of change has been identified:

45

(1) New Black Box Tests and Coverage Criteria: A component interface provides

black box test information that be used to support dynamic test case generation for the new

component. However, the level of automation is typically limited to: (a) generating test

input values for the new component based on the data types of its operation signatures; and

(b) defining test selection criteria based on the new component interface and using it as a

generator rule.

(2) Is Implementation Accessible?: Details on the internal workings of the newly

added component can be used to support dynamic generation of white box tests aimed at

exercising the components structure. However, due to the widespread use of components-

off-the-shelf (COTS) and the trend towards service-oriented architectures, such implemen-

tation details may not be accessible by the calling program. Therefore, the test update

engine must be able to determine whether the implementation of the new component is

readily available for structural analysis.

(3) White-Box Tests and Coverage Criteria: If the component implementation is

accessible, its structure should be harnessed for dynamic test case generation and code

coverage analysis. Full access to the source code provides a wealth of test information, and

facilitates automating many existing white box testing techniques. For situations where the

source is unavailable, researchers have been investigating approaches that automate white

box testing techniques at the byte code level.

4.2. Handling Reductive Changes

Reductive changes remove existing component interfaces and their implementations

from the system at runtime. The shaded nodes in Figure 4 represent elements of the

workflow for these types of changes, which is described as follows:

(1) Remove Unit Tests: Unit-level test cases associated with the component targeted

in the reductive change can be removed from the test model without many considerations.

46

This is because unit tests validate the behavior of a component in isolation, and are

therefore independent of other components and tests.

(2) Does Target have Callee Components?: Dependency relationships between the

component targeted for removal and other components, directly impact the changes that

should be made to the test model. In general, the test model may contain integration

tests involving callees and callers of the component targeted in the adaptation. Callees

are components that are invoked by the adaptation target, while callers are components that

invoke the adaptation target.

(3) Remove Integration Tests with Callees: If the adaptation target has callees, in-

tegration tests that validate the behavior of the target with its callees can also be readily

removed from the test model. Since the adaptation target will be removed, tests that validate

it with its dependents will not affect other parts of the test model. This assumes a software

design in which there are no cyclic dependencies, i.e., component A depends on B but not

vice-versa, and therefore A can be removed without affecting B or B’s callees. Similarly,

tests that validate A using B can be removed without affecting the tests of B or its callees.

(4) Does Target have Caller Components?: Removal of a component will have a

great impact on the behavior of its caller components, thereby requiring updates to be

made to tests that validate the behavior of these components with their own callers. If the

adaptation target has many caller components, we anticipate that a significant number of

changes would have to be made to the test model.

(5) Update Unit and Integration Tests of Callers: Both unit and integration tests of

caller components must be updated after the adaptation target is removed. At the unit level,

tests will no longer require calls to stubs of the adaptation target. Such stubs are also not

necessary for integration-level configurations of the caller components. For integration

tests, function calls to the actual adaptation target, as opposed to its stub, will also have to

be removed.

47

4.3. Considering Test Case Dependency

Test cases typically depend on a number of entities. These range from test data stored

in files or databases, to software components and frameworks, to physical hardware devices

such as printers. In addition, before a specific test is run, it may be necessary to execute

one or more related tests and verify that they have passed. An automated test harness is

generally implemented to enforce this type of hierarchical test structure, where one test

depends on the successful execution of other tests.

To achieve checking-level propagation we had to identify enough meta-data .The

propagation engine to be able to identify general points of change in the test model, we

had to maintain highly detailed information on both the adaptable components and their

associated tests. This information included a list of the components test cases, along with

the filenames, locations, and access information for the: (1) Test scripts that contain the

tests, (2) Test drivers that make calls to the tests, and (3) Test stubs and/or data files used

by the tests. The test metamodel should composed of the above mentioned objects which

describe our domain model. The metamodel acts as a repository of these metamodel objects

and provides direct access to them.

Figure 5 provides a meta-model showing the various types of dependencies in a test

model for a software system. Such a meta-model can be used to support updating different

elements of the runtime tests after dynamic software adaptation. As shown at the top-left of

the figure, each test case in the model is composed of multiple dependencies. Dependencies

are divided into three categories:

• Hierarchical: other tests that must be executed and pass the test in order for a test to

run,

• Internal: entities that are implemented as part of the software, and

• Environmental: entities that are external to the software under test.

48

Test Dependency

-ID : String

-TestName : String

-Class : String

-Package : String

Test Case

0..*

1

Enviromental

Internal

-DeviceType : String

-ModelNumber : String

Hardware

-OS : String

-SoftwareVersion : String

-Type : String

Software

1 0..*

Harddependency

Softdependency

0..*

1

-ID : String

-Type : String

-Class : String

-Package : String

TestScaffolding

-ID : String

-ComponentName : String

-Package : String

CUT

Scaffoldingdependency

-ID : String

-TestName : String

-Class : String

-Package : String

TestHierarchical

Hieraridependency

Ownedtestcase

Cutdependency

0..*

1

Figure 5. A meta-model to support test information propagation in self-adaptive systems

The hierarchical structure of a test harness is exhibited through the order in which

drivers make calls to execute individual test cases. In our metamodel, hierarchical depen-

dencies indicate the required test cases (if any) for each test to be run. Keeping track of

this information facilitates locating and updating the test model elements associated with

the constraints on execution order.

Internal test case dependencies include the component under test (CUT), test drivers,

and test stubs. Storing information on the CUT allows adaptations in the systems com-

ponent model to be directly traced to elements in the test model. If test cases are added,

removed, or modified, the associated drivers and stubs can be updated by following the

traceability links to these entities in the meta-model.

49

Environmental test case dependencies include hardware devices, other software sys-

tems, and stored test data. Adaptation may require updates to test information on specific

hardware and network devices, or their pre- and post- test states. In addition, software

frameworks and libraries to support automated testing may need to migrate to new versions

or platforms as the software evolves. Lastly, test data stored in files or databases will also

need to be updated to ensure adequate testing of data-dependent paths.

4.4. Modeling Tools, Frameworks, and Languages of TIP

In order to demonstrate and evaluate the proposed approach, our investigation in-

volves the development of a prototype of TIP. This section discusses in details of healthcare

based prototype of TIP and its features, tools, frameworks, and languages to support au-

tonomic computing to improve the quality of patient care. Towards building self-adaptive

system, the Tools, languages, and frameworks that would be used during the development

should be able to provide the following features: (1) ability to replace the old source code

file with the new one; (2) ability to build policies to provide self-Configuration, -Protection,

-Healing, and -Optimization behaviors; (3) support runtime testing; and (4) support model

driven engineering, (i.e., model driven tools that allows changes to be propagated between

two models).

During our investigation we found several frameworks and tools to support the devel-

opment of a prototype of TIP. These tools and frameworks are belonging to four categories:

(1) Component-Based Adaptation Framework; (2) Policy-Driven Management Framework;

(3) Model-Driven Development Tools; and (4) Automated Testing Tools. Next subsections

describe some of the frameworks and tools found in each category.

50

4.4.1. Component-Based Adaptation Frameworks

Self-adaptive software system should be able to modify its own structure and be-

havior during runtime in order to cope with changes in its specification, environment or

the system itself. The Spring Framework [101] is one of such framework that provides a

core application container that allows you to specify components (called beans) using XML

configurations. Beans can be written in Java and/or using dynamic programming languages

such as Groovy [69] and Ruby [37]. Using these dynamic languages allows spring to act

as adaptive framework since the container can be set to monitor beans for code changes,

and dynamically use any new source code implementations. Another component-based

frameworks that were found included Struts and Enterprise Java Beans [59, 34].

Spring provides five primary characteristics, Spring is a lightweight, dependency

injection, aspect-oriented container and framework[15].

• Lightweight: Spring is lightweight in terms of both size and overhead. The bulk of

the Spring Framework can be distributed in a single JAR file that weighs in at just

over 2.5 MB. And the processing overhead required by Spring is negligible. Whats

more, Spring is nonintrusive: objects in a Spring-enabled application often have no

dependencies on Spring-specific classes.

• Dependency Injection: Spring promotes loose coupling through a technique known

as dependency injection (DI). When DI is applied, objects are passively given their

dependencies instead of creating or looking for dependent objects for themselves.

You can think of DI as JNDI in reverse. Instead of an object looking up dependencies

from a container, the container gives the dependencies to the object at instantiation

without waiting to be asked.

51

• Aspect-oriented: Spring comes with rich support for aspect-oriented programming

(AOP) that enables cohesive development by separating application business logic

from system services (such as auditing and transaction management). Application

objects do what they supposed to do, perform business logic, and nothing more. They

are not responsible for (or even aware of) other system concerns, such as logging or

transactional support.

• Container: Spring is a container in the sense that it contains and manages the lifecycle

and configuration of application objects. In Spring, you can declare how each of your

application objects should be created, how they should be configured, and how they

should be associated with each other.

• Framework: Spring makes it possible to configure and compose complex applica-

tions from simpler components. In Spring, application objects are composed declar-

atively, typically in an XML file. Spring also provides much infrastructure function-

ality (transaction management, persistence framework integration, etc.), leaving the

development of application logic to you.

4.4.2. Model-Driven Development Tools

Model-Driven Engineering enhances the notion of reusability and automation by

the extensive use of models, meta-model and model transformations. The advantage of

using a runtime explicit meta-model is that it allows new kinds of resource or meta-data

information to be smoothly integrated into the system in a dynamic matter.

In order to design and build a meta-model we have chosen Eclipse Modeling Frame-

work [39], EMF is a modeling framework and code generation facility for building tools

and other applications based on a structured data model. From a model specification

described in XMI, EMF provides tools and runtime support to produce a set of Java classes

for the model, a set of adapter classes that enable viewing and command-based editing of

the model, and a basic editor.

52

The EMF code generation facility is capable of generating everything needed to build

a complete editor for an EMF model. It includes a GUI from which generation options can

be specified, and generators can be invoked. The generation facility leverages the JDT

(Java Development Tooling) component of Eclipse. Three levels of code generation are

supported: Model: provides Java interfaces and implementation classes for all the classes

in the model, plus a factory and package (meta data) implementation class; Adapters:

generates implementation classes (called ItemProviders) that adapt the model classes for

editing and display; and Editor: produces a properly structured editor that conforms to

the recommended style for Eclipse EMF model editors and serves as a starting point from

which to start customizing.

Kermeta [100] is a metamodeling language which allows describing both the struc-

ture and the behavior of models. It has been designed to be fully compliant with the OMG

metamodeling language EMOF (part of the MOF 2.0 specification) and provides an action

language for specifying the behavior of models.

Kermeta is intended to be used as the core language of a model oriented platform.

It has been designed to be a common basis to implement Metadata languages, action

languages, constraint languages or transformation language. Support for meta-modeling

was provided by the Eclipse Modeling Framework (EMF). Models instantiation and trans-

formation was achieved using Kermeta, which facilitates the programmatic manipulation

of EMF models (.ecore files).

4.4.3. Policy-Driven Management Frameworks

Policy driven management frameworks are an administrative technique to simplify

the definition of autonomic management of a given exertion by launching policies to cope

with circumstances that are expected to occur. Policies are set of instructions that can be

referred to as a way to maintain order, security, consistency, etc.

53

Such policies are guidelines that would be specified by administrators and used by

AMs to provide self -configuration, -healing, -protection and -optimization behaviors.

Ponder2 [85] is one of a policy-driven self-management framework that involves

a self-contained, stand-alone, general-purpose object management system with message

passing between objects. It incorporates an awareness of events and policies and imple-

ments a policy execution framework. It has a high-level configuration and control language

called PonderTalk and user-extensible managed objects are programmed in Java. Ponder2

supports access control by providing authorization, delegation, information filtering, and

refrain policies as described below:

• Authorisation policies: Define what activities a member of the subject domain can

perform on the set of objects in the target domain. These are essentially access

control policies, to protect resources and services from unauthorized access;

• Delegation policies: Delegation is often used in access control systems to cater for

the temporary transfer of access rights. However the ability of a user to delegate

access rights to another must be tightly controlled by security policies;

• Information filtering policies: Are needed to transform the information input or out-

put parameters in an action. Some databases support similar concepts of views onto

selective information within records for example a payroll clerk is only permitted to

read personnel records of employees below a particular grade; and

• Refrain policies: Define the actions that subjects must refrain from performing (must

not perform) on target objects even though they may actually be permitted to perform

the action. Refrain policies act as restraints on the actions that subjects perform and

are implemented by subjects.

54

The last policy it was about determining set of actions that must be performed by

authorised manager within the system when certain events occur and provide the ability to

respond to changing circumstances. These policies called Obligation Policies

King et al. [67] provide an XML-based policy driven framework for performing auto-

nomic self-management. In their work the dynamic test model for autonomic systems was

extended by applying the concepts of knowledge sources to testing activities, and explicitly

describes the interdependency relationships of the model components. They provide a

highly reusable detailed design for autonomic managers, test managers, touchpoints, and

self-management policies that facilitate automation. To demonstrate the feasibility of their

approach, a case study was developed that applies the features of self-configuration, self-

optimization, and self-testing in the context of job scheduling.

4.4.4. Automated Testing Tools

JUnit [43] is an open source unit testing framework for Java programs, it is integrated

with several IDEs such as Eclipse. Used for writing, exectuting automated tests and reveal-

ing the test results. Unit testing is an important step in order to validate that individual units

of your system source code are working correctly. By unit we mean the smallest testable

part of a program, function, application, etc..

In Test-Driven Development (TDD) technique for software development, the unit test

is continuously performed on source code, the purpose of is to have something working at

the current point and make it perfect later. After each test, refactoring is done and then

the same or a similar test is performed again. The process is iterated as many times as

necessary until each unit is functioning according to the desired specifications.

Junit provides several features that empower the tester to create and run tests easily,

the following is some of that features:(1) API for easily creating Java test cases, (2) Com-

prehensive assertion facilities to verify expected versus actual results, (3) Test runners for

running tests, (4) Aggregation facility(test suites), and (5) Reporting.

55

JUnit 4 provides several annotations, for example:

• @Test: The Test annotation is used the to tell the JUnit framework that the following

method can be run as a test case.

• @Before and @After: These annotations are used the to tell the JUnit framework that

the annotated methods with @After should be run after the @Test method, while the

annotated methods with @Before should be run before the @Test method. They can

be used to setup or tear down the test environment.

• @BeforeClass and @AfterClass: These are pretty similar to the above annotations,

but they are only run only once. Annotated method with @BeforeClass means this

method should be run only once before any of the @Test methods in the class. In

opposite the method that annotated with @AfterClass means this method should be

run after all the tests in the class have been executed. An application for these kind

of methods could be used to loggin into a database, setup the database connections

and loggout.

• @Ignore: This annotation would be used to tell the framework to temporarily ignore

and not execute the methodes annotated with @Test. JUnit 4 test runners is able to

report the number of ignored tests along with the number of tests that ran and the

number of tests that failed.

Figure 6 presents an example of a simple JUnit test.

Cobertura [28] is a free Java tool that calculates the percentage of code accessed by

tests. It is used to identify which parts of your Java program are lacking test coverage, it

is a free plug-in for Eclipse IDEs. Cobertura provides sevral reports based on the coverage

criteria has been requested to measure how well the program is exercised by a test suite.

One or more coverage criteria are used.

56

Figure 6. Simple Junit testcase example

There are a number of coverage criteria, the main ones being [82]: (1)Function

coverage: Has each function (or subroutine) in the program been called?, (2)Statement

coverage: Has each node in the program been executed?, (3) Decision coverage: Has every

edge in the program been executed?

For instance, have the requirements of each branch of each control structure (such

as in IF and CASE statements) been met as well as not met?, (4) Condition coverage (or

predicate coverage): Has each boolean sub-expression evaluated both to true and false?

This does not necessarily imply decision coverage, and (5) Condition/decision coverage:

Both decision and condition coverage should be satisfied.

Some of the features supported by Cobertura are: (1) Can be executed from ant or

from the command line; Instruments Java byte code after it has been compiled;

57

(2) Can generate reports in HTML or XML; (3) Shows the percentage of lines and

branches covered for each class, each package and for the overall project; (4) Shows the

McCabe cyclomatic code complexity of each class, and the average cyclomatic complexity

for each package, and for the overall product; (5) Can sort HTML results by class name,

percent of lines covered, percent of branches covered, etc. and can sort in ascending or

descending order. Several coverage tools for Java can be found in the literature such as

Clover, Emma, Jtest, and Serenity.

4.5. Application Description

Using the approach by King et al. [68], we implemented a small autonomic system

with runtime testing capabilities for evaluation purposes. To provide a realistic context for

the prototype, we developed the application based on a healthcare scenario in which self-

adaptation and self-testing could be practically useful. Our scenario conveys the idea of a

service-oriented healthcare solution.

Scenario. A person takes ill while abroad and is admitted to a local clinic. A service-

oriented software solution provides the admitting doctor with services for electronically:

(a) retrieving and updating the patient’s medical records stored at hospitals or clinics in

his/her hometown; (b) scheduling an appointment with another physician or specialist on

the patient’s behalf; and (c) requesting that a pharmacist fills a prescription for medical

drugs to treat the patient’s condition.

The goal of the described application is to improve the overall healthcare process

from the perspective of patients, doctors, and other stakeholders, while reducing the burden

of system administration. Automatic service integration and configuration through self-

adaptation are therefore key characteristics of the application.

58

Locate Hospital

Add Medication

Schedule Treatment

Diagnose patient

Cancel Appointment

Retrieve Patient

Record

Schedule

Appointment

Paramedic

Physician

Patient

Adaptive System

Figure 7. Basic use case diagram of EMR and appointment services

In the presence of medical emergencies such a system is mission-critical, and hence

integrated runtime testing is vital to ensure that system operations are reliable after adapta-

tion occurs.

4.6. Adaptation Scenarios

Health care adaptive system is composed of 8 use cases as shown in Figure 7. The use

cases represent some core functionality of the system. Based on these core functionalities,

the following scenarios might be happened in the healthcare services application:

(a) Automatically diagnosing patients scenario: The scenario is based on a situation

where doctor needs to diagnose a patient based on a list of symptoms.

59

The doctor enters the patients symptoms and the autonomic system compares those

symptoms against known diseases. The diagnosis results are returned to the doctor and if

applicable, the doctor can request clinical trials related to the patients medical conditions.

(b) automatically locating hospital scenario: The scenario is based on a situation where a

patient is to be admitted to a hospital as he is seriously injured in a road accident. The

attending ambulance service personnel have to determine the location of the hospital where

the patient can be treated. The decision to choose a hospital depends on various factors such

as the criticality of the patient, distance of hospital from the accident location, requirement

for specialty services, availability of doctors and so on. The autonomic system plays a vital

role in this decision making mechanism.

(c) Automatically retrieving patients record scenario: The scenario is based on a

situation where a patient undergoes heart surgery at Fargo Childrens Hospital (FCH) and is

moved to Merit care at the familys request. The doctor at Merit care asks patients father to

provide the following information: the name of the attending physician at FCH, an x-ray, a

summary of heart related medical data. His parents never got a copy of medical records.

Thus the role played by an autonomic system here is to authorize the hospital to

retrieve patients record from other hospitals system.

(d) Automatically re-Schedule appointment scenario: The scenario is based where

a patient logs into a hospital website to schedule an appointment with a doctor. The

registration form requires the patient to choose from a list of symptoms. Based on the

symptoms, the autonomic system schedules an appointment with a specialist doctor whom

the system thinks might have experience with treating the given symptoms. Once the

appointment is scheduled, the autonomic system sends a confirmation through an email,

text message and automatic voice message. However due to some reasons the doctor has

to cancel all the appointment of that particular day.

60

Thus autonomic system will automatically schedule an alternative appointment for

the patient when the original appointment gets cancelled.

(e) automatically prioritizing available services scenario: The scenario is based on

the situation where a patient is undergoing a critical heart surgery, the case is difficult, and

need a second opinion from another remote expert specialist through video conferencing.

Assume that the broadband network of the hospital is supporting simultaneous streaming

services such as security camera feed, Internet telephone communication etc. A failure oc-

curs, due to some unexpected reasons, resulting in a reduced network bandwidth provided

by the broadband network. In this situation an autonomic system helps in dynamically

prioritizing available services depending on the criticality factor.

4.7. System Development and Architecture

This section provides an overview of different languages, tools and frameworks that

have been used in order to build an autonomic and adaptive system, and then described the

architecture of service-oriented healthcare Prototype of TIP.

<<Library>>

Spring

<<Library>>

Groovy

<<Library>>

JUnit

<<Library>>

Cobertura

Healthcare Application

<<Adaptable>>

PharmacyServices

<<Adaptable>>

EMRServices

<<Adaptable>>

AppointServices

<<Subsystem>>

Adaptation

<<Subsystem>>

Testing

Figure 8. Architecture of service-oriented healthcare prototype

An application was developed in Java [96], using the Eclipse IDE [31] and the

tools/libraries to support adaptation, testing, and change propagation.

61

As shown at the top-left of Figure 8, we used the Spring Framework [101] to provide

a component-based application container for the three major application services. These

services were: EMRServices, AppointServices, and PharmacyServices. Services were

made adaptable using the dynamic language Groovy [69] (bottom-left), which allows com-

ponents to be specified as beans within the application container. At runtime, the container

was set to monitor the Groovy beans for source code changes, and automatically reload

them to use the new implementations. The Adaptation subsystem (center-left) included a

manager that was responsible for updating the component source (.groovy files) at runtime.

The runtime test model for the application was defined in the Testing subsystem, and

consisted of 29 test cases for validating the implemented services. Tests were developed

using a combination of black box and white box techniques. Since JUnit [43] is built

into the Groovy runtime, we created automated tests for each bean by scripting JUnit

tests in the Groovy syntax. Cobertura [28] was used to collect line and branch coverage

of the application services. This was achieved by instrumenting the Groovy byte code

(.class files), executing the tests, and exporting the results to a coverage report in XML

format. Support for meta-modeling was provided by the Eclipse Modeling Framework

(EMF) [39]. Model instantiation and transformation was achieved using Kermeta [100],

which facilitates the programmatic manipulation of EMF models (.ecore files). Kermeta

therefore provided us with a programming environment with which we could set up our

simulation.

4.8. Detailed Object Design

This section presents the detailed system design aspect of the EMR and Appointment

systems along with class and sequence UML diagrams.

4.8.1. EMR Service Subsystem

Figure 9 shows the detailed object design of the EMRService in the TIP prototype.

62

PatientHistory

+getPatientInfo(in pid) : PatientInfo
+scheduleTreatment(in treatment)
+addMedication(in medication)
+createDiagnosis()
+confirmDiagnosis()
+getClinicalTrials()

«interface»
EMRInterface

-pid : string
-name : string
-height : int
-weight : int
-history : PatientHistory

PatientInfo

-patients

EMRService

implements

+getClinicalTrials()
+scheduleTreatment()
+confirmDiagnosis()
+addMedication()

TreatmentManager

-type : string
-date : Date
-description : string
-notes : string

Treatment

-title : string
-location : string
-relevantCondition : string
-tags : string

ClinicalTrial

-description
-date

Symptom

+createDiagnosis()

-disease
-symptom
-date

Diagnosis-name
-description
-dosage
-sideEffects

Medication

Figure 9. Design of EMRservice (based on data analysis spec. [30])

Our object design is based on a software requirements specification for EMR data

analysis [30], which was elicited from a domain expert as part of a software engineering

course project.

As shown at the top-left of Figure 9, the interface for the EMRService consists of

the following six operations: getPatientInfo - retrieves the patient’s medical information;

scheduleTreatment - schedules a treatment to address the patient’s condition; addMedi-

cation - prescribes medication as part of a patient’s treatment; createDiagnosis - allows

the doctor to enter their medical diagnosis of a patient’s condition; confirmDiagnosis -

checks whether a patient’s symptoms are consistent with the diagnosis; and getClinicalTri-

als - querying clinical trials that may be relevant to the patient’s case. The class labeled

EMRService implements the operations in the EMRInterface. Upon receiving a request for

service, this class orchestrates a series of calls to the other classes in Figure 5, in order to

realize the needs of the client. Recall that classes within the EMR subsystem were made

adaptable via the dynamic language Groovy [69].

63

emrperspective emrControl emrModel

enterDoctorID()

physician

patientDiagnosis()

getPatientDetails()

diagnoseDisease()

Diagnosis Outcome

enterPatientID()

getClinicaTrial(diagnose list)

getDiagnoseList()

navigateClinicalTrials()

Clinical Trial best Matches

Figure 10. Diagnosing patient sequence diagram

The Sequence Diagram in Figure 10 shows the whole message passing between the

doctor and EMR Service objects to retrieve the patient diagnoses based on the list of the

symptoms. If that doctor is authorized to search through the clinical trial, the doctor can

request the best clinical trials, then the system searches for the clinical trial based on the

diagnoses results and returns the doctor with valuable detailed information.

4.8.2. Appointment Service Subsystem

As shown in Figure 11, the detailed object design of the Appointment service in the

TIP prototype. The class diagram for the Appointment service consists of the following six

classes: user, doctor, patient, hospital, department, calendar. For faster service, instead of

entering waiting room of outpatient departments the user could log in the system and make

an appointment before he visits a hospital.

64

+getEmailid()

+getfirstName()

+getlastName()

+getid()

+getphoneNumber()

User

-id : int

-firstName : string

-lastName : string

-emailid : string

-phonNumber : string

+getAge()

+getGender()

+getAppointmentSlots()

+scheduleAppointment()

+getDoctorName()

-age : int

-gender : string

-hospital : string

Patient

+asiignDoctor()

+removeDoctor()

+listDoctor()

+listSymptom()

+getSpecialization()

Department

+addSlot()

+removeSlot()

+listSlots()

+listAvailableSlots()

+scheduleAppointment()

+cancelAppointment()

-slotList : string

Calendar

+getSpecialization()

+rescheduleAppointment()

+getCalendar()

-Specialization : string

-Calendar : string

Doctor

+isAvailable()

+getid()

+getPatientid()

+getSymptomList()

+getDay()

+getHour()

+getMonth()

+getMin()

+getYear()

-id : int

-month : int

-day : int

-year : int

-hour : int

-min : int

Slot

Opthamlogy Dept

+addDoctor()

+removeDoctor()

+getDoctorList()

+addPatient()

+getPatientList()

+addDepartment()

+removeDepartment()

+getDepartmentList()

+getName()

-name : string

-department

-doctorList

-patientList

Hospital

ENT DeptCardioalogy Dept CriticalCare DeptDermatology Dept

1..1

1..1
Has a

1..1
0..*

Has a

0..*

1..1

Has a

Has a

Figure 11. Detailed class diagram of appointment service

The appointment subsystem would have all departments and doctors schedules, once

the user get in the appointment system he could schedule an appointment within one of the

available slots of the required doctor.

Figure 12 shows the interaction and the sequence of messages exchanged between the

Patient and the Appointment system that needed to carry out the functionality of scheduling

an appointment scenario. When a patient chooses the desired slot, the system enables

the schedule button and let patient schedule his appointment. When the appointment is

scheduled successfully, the system sends the patient a confirmation mail.

Figure 13 presents the sequence diagram for finding the best competent doctor.

65

patientperspective patientControl patientModel

selectAppointmentSlot()

patient

clickScheduleAppointment()

scheduleAppointment(slot)

locateSlectedSlot(slot)

confirmation()

Successfully Apointment Schedule, Email Sent

patientDialogueBox

Display schedule button

ok()

Figure 12. Scheduling appointment sequence diagram

Once the patient selects his symptoms the system returns the associated physicians

with their calendars, the calendars highlights the availability date and time for each doctor.

Figure 14 shows the interaction of the doctor with the appointment system for can-

celling/rescheduling an appointment. When a doctor selects cancel button to cancel all

the appointments for a particular day, the system automatically reschedule appointment

for the patient with another competent doctor and sends the confirmation of rescheduled

appointment via email.

66

Pperspective pControl pModel

determineSymptoms()

patient

enable FindDoctor

clickFindDoctor()

getSelectedSymptomList(list of sym)

getAppointmentSlot(Sym)

doctorname & available date and time

Figure 13. Exploring competent physician sequence diagram

patientperspective patientControl patientModel

selectScheduleSlot()

doctor

clickCancel()

locateSlot(slot)

cancelAppointment(Slot)

Appointment Cancelled/Rescheduled Successfully, Email Sent

Display Cancel button

rescheduleAppointment()

Figure 14. Cancelling/rescheduling appointment sequence diagram

67

4.9. Dynamic Models Instantiation

We performed a simulation to propagate additive and reductive changes in the EMR

service implementation to its associated test implementation. To set up the simulation, we

used Kermeta [100] to specify and instantiate two models associated with the EMR service:

a component model and a test model. The EMR service component model was initialized

with the names of the classes within the subsystem, as well as the dependency relationships

among them. Both the class names and dependency relationships were captured automati-

cally using Classycle [42].

Classycle dependencies are classified into three types: (1) usedBy: other software

components are using the adaptation target, (2) usesExternal: adaptation target uses exter-

nal java packages and libraries, and (3) usesInternal: adaptation target uses other software

components.

Figure 15 provides an overview of our proposed approach to instantiate and then load

the two models associated with the EMR service. A general parser has been built to popu-

late the required information from XML reports that was generated by Classycle analyzer,

and automatically create the dynamic instance of EMR component model (i.e. xmi file).

Although research is advancing in change propagation and testing adaptive systems during

runtime, there is a lack of development in the area of creating a comprehensive dynamic

instance of the test model automatically. While the automated generation of the dynamic

test model can handle the most important test information (i.e. callee, caller, hierarchical

test structures), some other test information needs to be injected manually (i.e. hardware,

software, stub and driver dependencies). Hence at this stage our methodology provides a

semi-automatic approach for building the test model.

The EMR test model conformed to the structure of the meta-model defined in Figure

5. Traceability relationships were handled through naming conventions, which we elabo-

rate on as part of the lessons learned in Subsection 6.

68

Start

Identify dependeny relationship

Classycle analyzer

profile test cases LF

Parser

Create EMR component model Create EMR test model

TPTP

Parser

Load component model Load test model

Conformed

Restructure .xmi file

Simulate reductive and additive changes

No

Yes

End

Figure 15. Component and test models instantaition

We build an GUI in java that allows testers to feed the rest of the test model depen-

dencies for each test case. After saving the dependencies, an xmi file will be created that

contains the new feeded test information, the dynamic instance test model then might be

updated with the new test dependencies to get a full test case dependencies information.

As shown in figure 16 the tester could select the test method that required to update its

test dependencies from test method ComboBox, also he could select the class and package

which that test belongs to as well.

69

Figure 16. Test case dependencies GUI

After adding all test dependencies and submitting the information, an .xmi file will

be created which would be used for updating the existed dynamic test model instance.

The Eclipse Test and Performance Tools Platform (TPTP) [97] Project provides a

way to address the entire test and performance life cycle, from early testing to production

application monitoring, including test editing and execution, monitoring, tracing and pro-

filing. TPTP offers different report views, the Method Invocation Details view used in our

approach to see the detailed information about all test cases that related to EMR service,

including test case name, class name, package name, and all methods have been invoked

during test case execution.

In order to create EMR dynamic instance test model, we parse each detailed test

case execution .xml file, extract only required information, and then merge all restructured

execution files into one .xml file to build an test model(.xmi) that conformed to the structure

of the meta-model defined in Figure 5.

70

CHAPTER 5. EXPERIMENTAL SETUP

This section presents the setup of the experiments and the procedures for measuring

the performance of the approach for automatically updating runtime test models after self-

adaptation occurs. After self-adaptation introduces the removal or addition of components

from/to a program structure, some test cases may no longer be applicable, and some exist-

ing integration test cases should be updated to validate its interactions with the remaining

components in the software model. Alternatively, new test cases should be added to validate

the new component behavior and its interaction with other existing components.

We applied our approach to an adaptive java healthcare application described in

Chapter 4. In order to evaluate the generality of our approach, we applied our approach to

adaptive java jpacman application as well. We then compare the outcome against the result

of an evaluation performed by a developer. Our approach to measuring the performance

of the change propagation engine will be described later. The change propagation engine

in the exemplary state could correctly propagate all the test cases that correspond to the

changes in the component structure.

Finally, we apply Size, complexity, and Performance metrics to compare the two

adaptive software systems that were used in our study.

5.1. Propagating Reductive Changes Simulation

Using the Eclipse Modeling Framework (EMF) allowed us to load, change and save

existing models by using Kermeta [100]. Hence we used Kermeta to simulate a reductive

change in the EMR service related to ClinicalTrial, Treatment, PatientHistory, PatientInfo,

and finally EMRService features. This was achieved by creating and applying a transforma-

tion to the EMR component model that removed the {ClinicalTrial, Treatment, PatientHis-

tory, PatientInfo, EMRService} classes, and its associated dependency relationships. Our

change propagation engine then generated a set of transformative actions for synchronizing

the test model with the adapted component model.

71

EMRInterface

Treatment

PatientInfo

PatientDoesNotExistException

Diagnosis

Symptom

EMRService

TreatmentManager

PatientHistory

ClinicalTrial

Medication

Figure 17. EMR component model dependencies call graph

After loading the dynamic instance of EMR component model, and before loading the

dynamic instance of EMR test model, based on the component dependency relationships,

our engine highlights in general a set of changes that must be propagated to correspondent

test model.

Figure 17 shows EMR component model dependencies call graph. Since Classycle’s

Analyzer is helpful for finding cyclic dependencies between classes and packages, as a first

step of change propagation, our engine only could propagate the integration tests that need

to be updated or removed based on the reductive target component. Here the propagation

engine skipped all unit tests, and detailed information about the integration test such as test

case name. For example after removing PatientHistory component our engine identifies

that this component is a caller of Symptom, Medication, Diagnosis, and Treatment, and is

a callee for PatientInfo and EMRService components as shown in Figure 17.

72

As general transformative actions the engine propagates two changes to the test

model: (1) removing the integration test with all callers (Symptom, Medication, Diag-

nosis, and Treatment), (2) updating the integration test with all callees (PatientInfo and

EMRService).

Reductive target
Component

Caller Artifact type Actual
Propagation

Necessary
Propagation

Callee Transformative
Action

Statement

PatientInfo 1 integration test 4 4 1 Update 4

EMRService unit test 1 1 Remove

 3* integration test 1 1 6

 4* integration test 1 1 2

 1* integration test 1 1 1

PatientHistory 1 integration test 3 3 1 Update 3

ClinicalTrial 1 integration test 4 4 1 Update 4

Treatment 1 integration test 3 3 1 Update 3

Table 3. Detailed test model updates for reductive change simulation

Propagating detailed changes to the test model, required loading the EMR dynamic

instance test model that described in subsection 4.9. Utilizing naming conventions strategy

to handle the traceability relationship within the artifacts that make up the system allows the

change propagation engine to automatically lookup of specific test-related entries within an

artifact, and across multiple artifacts. To handle the consistency among the involved models

(i.e., component and test models) our synchronization approach is based on traceability

links between the these interrelated models.

Once the propagation engine identified all Unit-level test cases that associated with

the component targeted in the reductive change, remove transformative action will be

generated to remove these test cases from the test model without many considerations. This

is because unit tests validate the behavior of a component in isolation, and are therefore

independent of other components and tests.

73

If the propagation engine detects any callee of the adaptation target, remove transfor-

mative action will be generated to remove the integration tests that validate the behavior of

the target with its callees (i.e. components that are invoked by the adaptation target) from

the test model. Since the adaptation target will be removed, tests that validate it with its

dependents will not affect other parts of the test model. The engine assumes a software

design in which there are no cyclic dependencies. As long as the target component would

have a great impact on the behavior of its caller components, the engine will generate

update transformative action to update the integration tests of caller components after the

adaptation target is removed. Table 3 summarizes the actions that were generated by our

change propagation simulation. We have simulated five reductive changes.

The component in Reductive target Component column is a component targeted in

the reductive change, Caller column points to the caller component for targeted component,

Artifact Type represents different type of test cases, Actual Propagation reveals the total

number of suggested changes, Necessary Propagation column shows the set of changes

that needed to be propagated, Callee column specifies all callee components for each test

case, Transformative action shows all actions that performed by our propagation engine to

update the test model, the last column Statement represents the total number of the exact

statement in the source code where the developers have to pay attention on to update the

integration test after a callee component is removed. This column is added to refine the

update procedure in column transformative action, and provide more detailed information

to the developer after reductive change takes place. Our engine is able to identify the exact

statement which needs to be modified in each test case instead of just generating update

action. The number of statements that need to be focus on for updating the integration test

are varies from the number of integration test itself, after removing a callee component, the

engine could highlight 4 statements as a total to be modified for 2 integration test, because

it depends on how many calls occurs in each integration test.

74

Figure 18. Major statements for updating the test model after reductive changes

Figure 18 shows part of the source code of the integration test (TestAddMedication())

that needs to be updated after removing Treatment component. the engine as shown in

Table 3 highlighted three statements where the developer should focus on to update the test

model, the highlighted statement in Figure 18 is one of three that are located in three test

cases.

Our engine propagates set of changes to the test model after simulating reductive

change to several EMR component model. As shown in Table 3 after removing PatientInfo

component, the engine doesn’t catch any Unit-level test cases associated with PatientInfo,

removal of PatientInfo will have a great impact on the behavior of its caller components,

thereby our engine asked for updating all tests that validate the behavior of PatientInfo

with EMRservice component. Finally our engine hasn’t detected any callee of PatientInfo

component.

5.2. Propagating Additive Changes Simulation

Prior to simulating additive changes to EMR service we had to maintain the de-

tailed dependency relationships information for all EMR components, and then build the

component model to be used for additive simulation. We used Kermeta to simulate addi-

tive changes in the EMR service related to Medication, Diagnosis, Symptom and finally

EMRService features. This was achieved by creating and applying a transformation to the

EMR component model that add the {Medication, Diagnosis, Symptom and EMRService}

classes respectively, and its associated dependency relationships.

75

Our change propagation engine then generated a set of transformative actions for

synchronizing the test model with the adapted component model.

Additive target
Component

Artifact type Actual
Propagation

Necessary
Propagation

Callee Transformative
Action

Calls

Diagnosis Unit test 7 7 Add

EMRService unit test 3 5 Add

 1* Integration test 1 1 1 1

 4* Integration test 1 1 2 2

 1* Integration test 1 1 2 4

Medication Unit test 4 4 Add

Symptom Unit test 4 4 Add

Table 4. Detailed test model updates for additive change simulation

Table 4 summarizes the actions that were generated by our change propagation sim-

ulation. We have simulated four additive changes.

The component in Additive target Component column is a component targeted in the

Additive change, Artifact Type represents different type of test cases, Actual propagation

reveals the total number of suggested changes, Necessary Propagation column shows the set

of changes that needed to be propagated, Callee column specifies all callee components for

each test case, Transformative action shows all actions that performed by our propagation

engine to update the test model, the last column calls represents the total number of the

calls occurs in each test case to execute and pass that test case.

Our engine propagates set of changes to the test model after simulating additive

change to several EMR component model. As shown in table 4 after adding Medication

component, the engine doesn’t catch any Integration-level test associated with Medication

where Medication is a caller, the only transformative action were generated by the engine

were about adding 4 unit level test associated with Medication.

76

After Adding the EMRservice the engine identifies 3 Unit-level test out of 5 need to

be added, while identifies 6 Integration-level test associated with EMRservice need to be

added out of 6 where the EMRservice is a caller.

5.3. Evaluation of Generalization

In our previous paper [2], in order to demonstrate and evaluate the proposed approach

we implemented a small autonomic system with runtime testing capabilities for evaluation

purposes. To provide a realistic context for the prototype, we developed the application

based on a healthcare scenario in which self-adaptation and self-testing could be practi-

cally useful. The initial version of the prototype is focused on assessing the feasibility of

automatically propagating reductive changes; in this work we extended the prototype to

include the additive change as well.

To demonstrate the generalization of our TIP approach into the domain of runtime

testing for self-adaptive software systems, the experiment should be performed on other

self-adaptive system (i.e., different application domain), our research investigation resulted

that there has been general lack of freely available real-world autonomic systems for eval-

uating self-testing approaches. Most products are commercial (i.e., closed source).

The three prototypes we investigated were:

• Carlos et al. [23] Dynamic Plans for Integration Testing of Self-adaptive Software

Systems, for approach evaluation purposes, they have developed a prototype ap-

plication that has been used to conduct some experiments, and to demonstrate the

feasibility of their approach. They have applied their prototype to a case study, the

case study used is a simple web shop application, which can be employed to sell

goods on the Internet. The software architecture of this application involves five

component types.

77

• Steven et al. [95] A Self-Testing Autonomic Container, which can be defined as a

data structure, called as stack which has ability to reconfigure itself at runtime. When

the stack reaches its full capacity that is at 80%, it will reconfigure itself by increasing

the capacity. And to validate the newly configured stack, they applied the approach

of Replication with Validation, that is validation will be done on the copy of stack.

• Ramirez et al. [88] A Self-Testing Autonomic Job Scheduler also applies the same

concept of Autonomic Container but in more realistic way, which will hold the a

collection of job request and a pool of software agents for handling request. However

the prototype was not very realistic and it was just a simulation.

During our search for sample self-adaptive system we forced the following obstacles:

(1) We need access to the source code, as to verify the presence of a considerable test

suite and next to apply naming convention strategy to handle the traceability relationship,

profile and trace the junit tests execution, and finally trace the internal component interac-

tion to build the component model that handles the component dependency relationship;

(2) The implementations we made are currently targeted towards self-adaptive systems

developed in Java and dynamic language groovy; and (3) The approach we used to build

an self-adaptive software system is based on Spring framework which provides a core

application container that allows us to specify components (called beans) using XML

configurations, we used groovy to write these Beans. We used the Spring Framework to

provide a component-based application container for the three major application services.

These services were: EMRServices, AppointServices, and PharmacyServices. Services

were made adaptable using the dynamic language Groovy, which allows components to be

specified as beans within the application container. At runtime, the container was set to

monitor the Groovy beans for source code changes, and automatically reload them to use

the new implementations.

78

Figure 19. Jpacman partial class diagram

The Adaptation subsystem included a manager that was responsible for updating the

component source (.groovy files) at runtime, and keeping a backup of the old one.

5.3.1. Sample Self-Adaptive System

we searched in Sourceforge for systems with a considerable JUnit test suite, to re-

implement it and get a self-adaptive version with runtime testing capabilities by using the

approach proposed by King et al. [68]. We successfully found JPacman 3.0 java application

which used for educational purposes.

The JPacman 3.0 system is a teaching example at the TU Delft used during a course

about software testing. Its implementation is an example of best practice Java, JUnit,

design-by-contract, etc.

79

It has been developed using a test-intensive XP-style process, featuring unit and

integration tests achieving a high level of test coverage, Its test suite is based on JUnit 4,

but is compatible with older versions of JUnit. The source repository consists of 22 classes

and 16 test cases, totaling 2.3 kSLOC, Figure 19 presents the most important classes and

association dependencies from the pacman model, not all classes, methods, and attributes

have been added.

By using the same tools, languages, and frameworks for building an autonomic and

adaptive java healthcare application that described in Chapter 4, we build a self-adaptive

jpacman release with runtime testing capabilities.

5.4. Manual Developer Evaluation Oracle

To measure the performance of the proposed TIP approach, we compare the retrieved

propagated changes with a manual developer oracle, i.e., we consider and compare the

work of a developer who manually identified changes that should be performed to update

the test model after self-adaptation occurs as the objective baseline for this experiment.

This duty of identifying changes is part of a short questionnaire we generated and gave to

the developer as shown in Figure 20.

In the main questions of the questionnaire (question 4 and 5), we asked the developers

to identify all associated unit and integration tests for component class in the given list.

The list of component classes is randomly selected. We first ask the developer to go

through additive part, and then the reductive part for both adaptive systems (Healthcare

and jpacman).

5.5. Evaluation Criteria

As shown in Table 4 the following example shows simple scenario occurs after

runtime self-adaptation by adding component EMRService.

80

1. What is your favorite editor/IDE you use to develop software

system? Have you used testing tools (testing framework,

browsing, coverage, etc.)?

2. How are you familiar with the (unit) and (integration) testing of

the system?

Do you have any experience in unit, integration testing and

testing frameworks such as JUnit?

3. How are you involved in the self-adaptive software system?

How much experience do you have with dynamic language such

as the groovy language?

4. Additive part, please provide for each component class in the

given list, the associated unit and integration tests.

Based on the source code for each component class identify,

 First, all Unit tests need to be added to the test suite.

 Second, all Integration tests need to be added to the test suite,

where the component class is a caller, and all its callee.

 Third, all Integration tests need to be added to the test suite,

where the component class is a callee, and its entire caller.

5. Reductive part, please provide for each component class in the

given list, the associated unit and integration tests.

Based on the test suite identify,

 First, all Unit tests need to be removed from the test suite if the

component class is removed.

 Second, all Integration tests need to be removed from the test

suite, where the component class is a caller, and all its callee.

Figure 20. Developer questionnaire

After component EMRService is added, our change engine propagates the additive

change and generates the following transformative action to be performed: First, six in-

tegration tests associated with EMRService component class should be added, our engine

detects that for all six tests the EMRSercive component is a caller. Second, three unit tests

associated with the EMRService component should be added to the test model without

many considerations. After comparing the changes generated and propagated by our engine

and the manual developer evaluation, we found that the engine missed two unit test should

be added after adding EMRService component.

81

To measure the performance of propagation engine two main concepts of Information

Retrieval have been used: Recall and Precision. Where RECALL is the ratio of the number

of relevant propagated changes to the total number of relevant changes should perform on

test model, or

RECALL =
|relevantUT&IT ∩ propagatedUT&IT |

relevantUT&IT

PRECISION is the ratio of the number of relevant propagated changes to the total

number of irrelevant and relevant changes propagated, or

PRECISION =
|relevantUT&IT ∩ propagatedUT&IT |

propagatedUT&IT

The total set of propagated updates will be called the Propagated set; Propagated

= 3 unit and 6 integration tests. The set of updates that required to be propagated will

be called the Demanded set; Demanded = was 5 unit and 6 integration tests. These sets

don’t contain that component has been changed (EMRService). We define the number of

elements in propagated as P (P =9), and the number of elements in Demanded as D (D =

11). The number of elements in the intersection of Propagated and Demanded as PD (PD =

9). Based on these definitions, we define: Recall = PD/D, Precision = PD/P. In the above

scenario, Recall = 9/11 = 82% and Precision = 9/9 = 100%.

The following example shows simple scenario occurs after runtime self-adaptation

by removing component ClinicalTrial, as shown in Table 3 after component ClinicalTrial

is removed, our change engine propagates 4 integration test need to be updated, since

the engine detects that the targeted component is a callee for other components. After

comparing the changes generated and propagated by our engine and the manual developer

evaluation for ClinicalTrial, we found that the engine propagated all required changes that

needed to be performed to get up-to-date test model.

82

Guest

Board

RandomMonsterMover

playerMove

MovingGuest

PacmanUI

Food

Move

Animator

Pacman

Monster

Cell

PlayerMove

Player

IMonsterController

BoardViewer

Engine

ImageFactory

Wall

Game

Figure 21. Jpacman component model dependencies call graph

In the above scenario, p=4, D=4, PD=4, Recall = 4/4 = 100% and Precision = 4/4 =

100%.

5.6. Jpacman Additive and Reductive Changes Simulation

In order to propagating detailed changes to the test model of the Jpacman system,

we had to build the dynamic instance model of both component and test model. We have

generated the component and test model of adaptive jpacman in the same way we had did

for EMR.

After loading the dynamic instance of Jpacman component model, based on the

component dependency relationships, our engine highlights in general a set of changes

that must be propagated to correspondent test model.

83

Figure 21 shows Jpacman component model dependencies call graph. For example

after removing Engine component our engine identifies that this component is a caller of

Player, Game, Monster, and is a callee for Pacman and BoardViewer components as shown

in Figure 21. As general transformative actions the engine propagates two changes to

test model: (1) removing the integration test with all callers (Player, Game, Monster), (2)

updating the integration test with all callees (Pacman and BoardViewer).

Reductive target
Component

Caller Artifact type Actual
Propagation

Necessary
Propagation

Callee Transformative
Action

Statement

Board Unit test 1 1 Remove

 2*Integration test 1 1 1 2

 Integration test 1 1 2 4

 1 Integration test 1 1 1 Update 1

Cell Integration test 1 1 1 Remove 1

 1 Integration test 1 1 1 Update 2

 1 Integration test 1 1 1 1

Engine 1 integration test 1 1 1 Update 5

Game Unit test 3 3 Remove

Guest integration test 1 1 1 Remove 1

 1 integration test 1 1 1 Update 2

ImageFactory Unit test 2 2 Remove

Move 1 Integration test 3 3 1 Update 3

Observer Integration test 1 1 1 Remove 5

Pacman Unit test 1 1 Remove

Table 5. Jpacman detailed test model updates for reductive change simulation

The dynamic test model is conformed the meta-model that we have described earlier

in Section 4.3, after loading the Jpacman dynamic instance test model, our propagation

engine generated a set of actions for synchronizing the test model with the adapted compo-

nent model. Table 5 summarizes the actions that were generated by our change propagation

simulation. We have simulated Nine reductive changes.

84

Our engine propagates set of changes to the test model after simulating reductive

change to several Jpacman component model. After removing Cell component, the engine

doesn’t catch any Unit-level test cases associated with Cell, removal of Cell will have a

great impact on the behavior of its caller components, thereby our engine asked for updating

all tests that validate the behavior of Cell with its caller component. Finally our engine

detects one integration test of Cell component with one callee needs to be removed.

In order to simulat additive changes to Jpacman we had to maintain the detailed de-

pendency relationships information for all EMR components, and then build the component

model to be used for additive simulation. We used Kermeta to simulate additive changes in

the Jpacman, this was achieved by creating and applying a transformation to the Jpacman

component model that add the { Board, BoarViewer, Food, ImageFactory, Monster, Move,

MovePlayer, Pacman, Player, Wall} classes respectively, and its associated dependency

relationships. Our change propagation engine then generated a set of transformative actions

for synchronizing the test model with the adapted component model.

Table 6 summarizes the actions that were generated by our change propagation sim-

ulation. We have simulated Ten additive changes. Our engine propagates set of changes to

the test model after simulating additive change to several Jpacman component model. As

shown in table 6 after Adding Move component, the engine identifies six Unit-level tests

associated with Move out of 8 unit tests, and four Integration-level tests need to be added

to the test model. The first integration test has two callees and four calls occurs in there,

two integration test has the same number of callees and calls which is one, and the last

integration test has two callees and two calls occurs in there.

85

Additive target
Component

Artifact type Actual
Propagation

Necessary
Propagation

Callee Transformative
Action

Calls

Board Unit test 4 5 Add

 Integration test 1 1 1 2

 Integration test 1 1 4 4

 Integration test 1 2 1 1

BoardViewer unit test 6 7 Add

 2* Integration test 1 1 1 2

 Integration test 1 1 2 5

 2* Integration test 1 1 1 1

Food Unit test 3 3 Add

 3*Integration test 2 3 1 1

ImageFactory Unit test 6 7 Add

Monster Unit test 1 1 Add

 2*Integration test 1 1 1 1

Move Unit test 6 8 Add

 Integration test 1 1 2 4

 2*Integration test 1 1 1 1

 Integration test 1 1 2 2

PlayerMove Unit test 3 3 Add

 2*Integration test 1 1 1 2

 Integration test 1 1 2 3

 Integration test 1 1 1 1

Pacman Unit test 1 1 Add

 4*Integration test 1 1 1 1

 Integration test 1 1 2 3

 Integration test 1 1 1 2

 Integration test 1 1 2 5

 2* Integration test 1 1 3 3

Player Unit test 8 8 Add

 Integration test 1 2 1 1

Wall Unit test 2 2 Add

 Integration test 1 1 1 1

Table 6. Jpacman detailed test model updates for additive change simulation

86

CHAPTER 6. RESULTS AND DISCUSSION

This section presents the results of the survey that has given to the developer, report on

the accuracy of the proposed TIP approach. For both self-adaptive systems in our study,

the developer completed the questionnaire, and the result used to compare and evaluate the

performance of our work.

Q1.An IDE (Eclipse or NetBeans) is used in the two systems. JUnit is a unit testing

framework for the Java programming language is commonly used for testing, For code

coverage Cobertura was used to focus on lines and branches while EclEmma to concentrate

on bytecode instructions and get line metrics.

Q2.The developer is working in testing field for more than 5 years, experience gained

with JUnit has been important in the development of test-driven development. As long

as his projects based on different languages he used to get to know some of the family

members of unit testing frameworks which referred to collectively as xUnit, such as, PHP

(PHPUnit), C# (NUnit), Python (PyUnit), Fortran (fUnit), Perl (Test::Class and Test::Unit)

and C++ (CPPUnit).

Q3.With this question, we intended to make sure the developer has at least little bit

of the experience in self-adaptive system. In general, the developer did not seem to have

much problem understanding the code and test suite, since groovy language builds upon

the strengths of Java but has additional power features inspired by languages like Python,

Ruby and Smalltalk, seamlessly integrates with all existing Java classes and libraries.

Q4.Q5.The developer gave the impression that identifying the unit and integration

test that need to be removed or add based on a specific component class was not hectic

task. To get the detail about some of reductive and additive developer manual evaluations

please refers to Appendix A and B.

87

 Additive Reductive

Precision Unit Integration Unit Integration

EMRService 100% 100% 100% 100%

Jpacman 100% 100% 100% 100%

 Additive Reductive

Recall Unit Integration Unit Integration

EMRService 90% 100% 100% 100%

Jpacman 81% 80% 100% 100%

Table 7. Mean precision and mean recall of the TIP approach

We calculated the recall and precision for each component was targeted in the reduc-

tive and additive simulation, then we calculate the mean recall and precision for the unit and

integration test in both the reductive and additive change simulations. Table 7 shows how

TIP change propagation engine provides the highest accurate precision measure on both

Jpacman and EMR Service in both Reductive and Additive simulations, 100% on Jpacman

for both unit and integration tests, and 100% on EMRService for both unit and integration

tests. The result based on recall measure is divided into several areas, for EMR Service

Additive simulation the engine provides high recall for integration tests 100% and a good

recall for unit tests 90%, while for Jpacman Additive simulation the engine provides a good

recall for both unit and integration tests 81% and 80% respectively. Back to the Reductive

simulation the engine provides high accuraacy on both Jpacman and EMR Service, 100%

on Jpacman for both unit and integration tests, and 100% on EMRService for both unit

and integration tests. From Table 7, we observe how TIP engine achieves high accuracy in

synchronizing component structure model with its test model. 100% in recall means the

engine propagate all relevant changes that needed to be propagated to updat the run time

test model, and 100% in precision means the engine propagates only relevant changes (i.e.

none of the propagated changes are irrelevant) to updat the run time test model.

88

Size metric of the two software artifacts produced during implementation were gen-

erated using the Eclipse Metrics vl.3.6 [14] plugin. The data was automatically exported

from Metrics to XML format as an estimate of development overhead. In total, the Jpacman

system consists of 2.3 kSLOC and HealthCare system consist of 1.2 kSLOC. The time spent

to trace the execution of all test cases was acquired via the Eclipse Test and Performance

Tools Platform (TPTP) [97], TPTP spent 1.11 second to trace all the execution of the test

cases for the HealthCare application and 2.95 seconds for JPacman system. In addition

to the recall and precision performance measurement of our TIP engine we computed

the elapsed time, in seconds, taken to propagate the necessary changes and generate the

transformative actions to update the run time test model. After simulating the additive and

reductive changes in both systems in our study, we calculated the mean time that required

by our engine to propagate the changes, the performance results showed that the TIP engine

for the Jpacman system took 5 seconds in propagating the additive changes and 7 seconds

in propagating reductive changes, while took 4 seconds in propagating the additive changes

and 5 seconds in propagating reductive changes for HealthCare application. A windows-

based Intel Core i7 6GHz PC with 8GB RAM was used to collect the development and

performance metrics.

Developing the prototype provided us with much insight into the complexity of im-

plementing an automated solution to the research problem. Although our reductive and

additive examples of the EMR service and Jpacman were not a very complex scenarios

available, it allowed us to identify enough meta-data to achieve checking-level propagation.

We discovered that even for the propagation engine to be able to identify general points

of change in the test model, we had to maintain highly detailed information on both the

adaptable components and their associated tests.

89

This information included a list of the components test cases, along with the file-

names, locations, and access information for the: (1) test scripts that contain the tests, (2)

test drivers that make calls to the tests, and (3) test stubs and/or data files used by the tests.

Our simulation results and experience also revealed the central role of the meta-model in

enabling change propagation.

Using naming convention resolution strategy to handle the traceability relationship

represents a valuable support for the developer during the identification of relationships

between unit tests and component class under test. One of the lessons learned in our work

was the importance of utilizing naming conventions within the artifacts that make up the

system. The purpose of the naming conventions was to allow the automatic lookup of

specific test-related entries within an artifact, and across multiple artifacts. Conventions

included the use of unique identifiers for all components and test cases, and the reuse of

component IDs within test IDs for traceability.

6.1. Threats to Validity

In this section we describe the threats to validity that could affect our results. Re-

garding construct validity, we have contacted three developers to identify manually all tests

that need to be added or removed based on target component class for both self-adaptive

systems. We got a response from two developers. Inexperience, lack of motivation or

human mistake factors could impact the correctness of the manual evaluation. Therefore

we counter the experience argument by the selection of developer. The developers that we

have chosen are a project leader with more than 5 years experience in the testing field, and

the second developer is still junior with no experience in adaptive system. The developer

was motivated to do his task so we got a quick response from his side.

Recall and Precision are widely used metrics for assessing relevant retrieval ap-

proaches and traceability recovery techniques [6, 73, 50, 106].

90

Thereby we used these metrics to measure the accuracy of our engine to retrieve

the only associated tests and dependencies that need to be updated or generated to get

consistent component and test model after self-adaptation occurs.

Although if naming convention strategy seems to be the most accurate strategy for

establishing traceability link between unit tests and component under test [90], the relation-

ships between tests and component class under test are not always one-to-one. Therefore

our approach used naming convention strategy to handle the traceability relationship but

does not rely completely on this strategy. The TIP approach was able to identify all classes

that might be targeted in each test, by tracing all interactions among system components

and tests cases.

Finally, Regarding the generality of the approach and result (external validity), an

important threat is related to the case studies used in the evaluation. To reduce such a

threat we use open source system jpacman, and a real service oriented healthcare applica-

tion. Note that Jpacman has been previously used to evaluate the accuracy of traceability

recovery approaches based on naming conventions strategy [90, 87].

91

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

In this dissertation we investigated in the importance of having First, Runtime val-

idation and verification (V&V) in self-adaptive software. Since self-adaptation modifies

the structure and behavior of the system, runtime V&V is necessary to ensure that errors

are not introduced as a result of the adaptation process; Second, Up-to-date test models. If

self-adaptation introduces a new component, new integration test cases should be generated

to validate its interactions with existing components. Similarly, if an existing component

is removed, some test cases may no longer be applicable or adequate for testing, due to

changes in program structure. Such test cases would therefore have to be updated or pruned

from the runtime test model. As a result, the runtime test model for the system will be made

consistent with its new structure after dynamic adaptation.

To ensure that runtime testing of autonomic software can be applied in practice, it

was necessary to investigate techniques for automatically updating runtime test models

after self-adaptation occurs. Using multi-shot transformation approaches such as change

propagation, an emerging field of MDE could be effective for synchronizing different

software models at runtime.

As a preliminary step in our investigation, we performed a systematic literature

review to determine the current landscape surrounding the research problem. To properly

focus the review, we formulated the high-level research question, and then we expanded

it into a series of questions. The main motivations behind our research questions were:

(1) Identify works related to the idea of synchronizing test models at runtime in adaptive

software; (2) Assess the usefulness of approaches in the literature for synchronizing run-

time models without having to completely re-construct the target model; and (3) Assess

the practicality of developing a prototype of a solution to our specific problem using the

approaches from 2.

92

Conducting the systematic review led us to several articles on the use of models at

runtime, as well as current research directions in the area of MDE. The works on models

at runtime included papers that harness executable models for dynamic adaptation and

software testing, as separate issues. No works that specifically address the problem of

automatically synchronizing runtime test models in adaptive software were found during

the literature search. The results of the systematic literature review indicated that the

proposed research direction may lead to advances in two relatively open fields of software

engineering research: (1) runtime testing of autonomic and adaptive systems, and (2)

change propagation.

In this dissertation we have developed, described, and evaluated a model-driven

approach that is based on change propagation for synchronizing component models and

runtime test models in autonomic software after dynamic adaptation. To investigate prac-

tical issues surrounding the research problem, a prototype of the approach was developed

and used to demonstrate its feasibility. Traceability relationships were handled through the

naming conventions strategy. The approach is referred to as Test Information Propagation

(TIP). We extended the TIP prototype in [2] by including the additive change propagation

capability. The TIP was able to identify and then propagate the new component detailed

information such as interfaces, implementations, callers, and callees into the test model

after additive changes occur at runtime. The prototype simulates reductive and additive

changes to an autonomic, service-oriented healthcare application. We elaborated on the

transformative action update to provide more detailed information and to focus the updating

process.

Designing and building a self-adaptive Health care application allowed us to identify

major software components, and to create appropriate test cases. Testing tools were applied

to assess coverage of the test suite.

93

To demonstrate the generalization of our TIP approach into the domain of runtime

testing for self-adaptive software systems, the experiment was performed an another self-

adaptive system in a different application domain. To measure the performance of the prop-

agation engine two main concepts of information retrieval were used: Recall and Precision.

We compared the retrieved propagated changes with a manual developer oracle, i.e., we

consider and compare the work of a developer who manually identified changes that should

be performed to update the test model after self-adaptation occurs as the objective baseline

for this experiment. This duty of identifying changes is part of a short questionnaire we

generated and gave to the developer. The developer has worked in the testing field for more

than 5 years, including experience gained with JUnit which is important in the development

of test-driven development. To the best of our knowledge, the approach presented in this

dissertation is the first attempt addressing the research problem under investigation. The

experiments performed demonstrated that our approach is able to propagate reductive and

additive changes with high accuracy.

As future work, we intend to fully improve the TIP approach in which the sug-

gested new test cases by our engine are dynamically generated by exploring some of

the approaches for automatically generating test cases from source code. Pacheco et al.

[84] presented an automatic unit test generator for Java called Randoop. It automatically

creates unit tests for java classes, in JUnit format. Randoop generates unit tests using

feedback-directed random test generation. Their technique generates sequences of methods

and constructor invocations for the classes under test, and uses the sequences to create

tests.Randoop tool can do the following: 1) Generate unit tests; 2) Captures behavior of

existing code; 3) Produce random test data; and 4) Automatically execute tests. Whitney

[104] presented a tool for automatic JUnit test creation as a part of his thesis. His tool

provides a GUI that allow tester to input test values and specify expected results. The GUI

allows developers to work at the problem domain level of abstraction.

94

This will reduce cognitive load since developers will no longer have to worry about

coding the test harness at the same time they are deriving the test. We also intend to extend

the TIP prototype to include the mutation changes, so that our prototype will be able to

propagate all types of changes (i.e., add new components, remove exist components, or

modify existing ones). More case studies will be used to evaluate the accuracy of TIP

approach.

Another beneficiary of TIP is merging the cloud computing infrastructures to improve

the healthcare industry. As a part of the future work, the prototype can be served as a con-

crete real world problem in the healthcare domain. Each healthcare provider can make use

of services available in a cloud environment. To ensure feasibility of the application in the

cloud environment, the approach used by King et al. [66] can be used to perform adequate

testing. In their approach, testing would be performed on copy of the service to avoid

interruption, (i.e., Replication with validation), due to high availability and requirements

of the service. To achieve the replication with validation and test environment the design

is incorporated in virtual environment. In this test environment each service provider host

Test Support as a Service [66], which would help in accessing the test model of the different

service provider and also helps in updating the test model if needed.

In this dissertation we have evaluated how built-in regression tests for autonomic

systems can be updated after dynamic changes have been made to the software systems.

Regression testing is an expensive maintenance process directed at validating modified

software. Regression test selection techniques attempt to reduce the cost of regression

testing by selecting tests from a programs existing test suite [46]. Several regression test

selection techniques have been depicted in the testing literature, (e.g., Minimization, Safe,

Dataflow-Coverage-Based, Ad Hoc/Random, Retest-All techniques). As future work, we

intend to conduct an experiment to examine the relative costs and benefits of some of these

regression test selection techniques and our technique for updating regression test.

95

In the experiment we would concentrate on the relative abilities of the examined tech-

niques and our in reducing regression testing effort and detect faults in modified programs.

One of the important means of assuring the validation of the dynamic adaptive system

is by obtaining the trace of the inter-component interactions [78]. Interactions are the most

commonly used tools to model behavioral aspects of the system [57]. In this dissertation

we used TPTP profiler to trace all components interaction and test cases execution for

validating dynamic adaptive system by analyzing execution traces. As future work, we

intend to build a general profiler that collects all the traces of execution at the runtime and

makes it possible to successfully trace the interactions among components with minimal

overheads and gets the output in the form of a trace file.

Software metrics are quantitative measures of some properties of a part of software.

Coupling is defined as the degree to which each program module depends on the other

modules. Low coupling is desired among the modules of an object-oriented application

and it is a sign for a good design. High coupling may lower the understandability and

the maintainability of a software system [60]. For testing, four unordered types are needed,

These four coupling types were used to define coupling-based testing criteria for integration

testing. The four types are defined between pairs of units (A and B) as follows [60]. (1) Call

coupling refers to calls between units (unit A calls unit B or unit B calls unit A) and there

are no parameters, common variable references, or common references to external media

between the two units. In this dissertation we focus on this type of coupling to determine

components dependencies, as future work we intend to consider the following remaining

three types in capturing components dependencies, (2) Parameter coupling refers to all

parameter passing, (3) Shared data coupling refers to procedures that both refer to the same

data objects, (4) External device coupling refers to procedures that both access the same

external medium.

96

REFERENCES

[1] IEEE standard glossary of software engineering terminology, December 1990.

[2] Mohammed Akour, Akanksha Jaidev, and Tariq M. King, Towards change
propagating test models in autonomic and adaptive systems, Proceedings of the 2011
18th IEEE International Conference and Workshops on Engineering of Computer-
Based Systems (Washington, DC, USA), ECBS ’11, IEEE Computer Society, 2011,
pp. 89–96.

[3] Mohammed Akour, Gursimran Walia, and Tariq M. King, A systematic review of
runtime test case synchronization in adaptive software, Tech. report, NDSU Dept.
of Computer Science, May 2010.

[4] Scott W. Ambler, The object primer: Agile model-driven development with uml 2.0,
Cambridge University Press, New York, NY, USA, 2004.

[5] Jesper Andersson, Rogerio de Lemos, Sam Malek, and Danny Weyns, Reflecting
on self-adaptive software systems, Proceedings of the 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (Washington, DC,
USA), IEEE Computer Society, 2009, pp. 38–47.

[6] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore
Merlo, Recovering traceability links between code and documentation, vol. 28, IEEE
Press, October 2002, pp. 970–983.

[7] Colin Atkinson and Thomas Kühne, Model-driven development: A metamodeling
foundation, vol. 20, IEEE Computer Society Press, September 2003, pp. 36–41.

[8] F. Bancilhon and N. Spyratos, Update semantics of relational views, vol. 6, 1981,
pp. 557–575.

[9] Boris Beizer, Software testing techniques, second ed., Van Nostrand Reinhold, New
York, 1990.

[10] Sami Beydeda, Self-metamorphic-testing components, Proceedings of the 30th
Annual International Computer Software and Applications Conference - Volume 02
(Washington, DC, USA), COMPSAC ’06, IEEE Computer Society, 2006, pp. 265–
272.

[11] Sami Beydeda and Volker Gruhn, Merging components and testing tools: The self-
testing cots components (stecc) strategy, In EUROMICRO Conference Component-
based Software Engineering Track. IEEE Computer, Society Press, 2003, pp. 107–
114.

[12] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to
numerical problems, vol. 45, 1993, p. 549?595.

97

[13] Barry W. Boehm, Software engineering economics, Prentice Hall, Englewood Cliffs,
NJ, 1981.

[14] Guillaume Boissier, Metrics 1.3.6, 2005, http://metrics.sourceforge.net/ (July 2010).

[15] Ryan Breidenbach and Craig Walls, Spring in action, Manning Publications Co.,
Greenwich, CT, USA, 2007.

[16] Bernd Bruegge and Allen H. Dutoit, Object-oriented software engineering: Using
uml, patterns and java, second edition, Prentice Hall, September 2003.

[17] Ilene Burnstein, Practical software testing: A process-oriented approach, Springer-
Verlag, New York, NY, USA, 2003.

[18] Marsha Chechik, Winnie Lai, Shiva Nejati, Jordi Cabot, Zinovy Diskin, Steve
Easterbrook, Mehrdad Sabetzadeh, and Rick Salay, Relationship-based change
propagation: A case study, MISE ’09 (Washington, DC, USA), IEEE Computer
Society, 2009, pp. 7–12.

[19] Pavan Kumar Chittimalli and Mary Jean Harrold, Regression test selection on system
requirements, Proceedings of the 1st India software engineering conference (New
York, NY, USA), ISEC ’08, ACM, 2008, pp. 87–96.

[20] Mike Clark, JUnitPerf 1.9, 2005, http//www.clarkware.com/software/JUnitPerf.html
(July 2010).

[21] Paul Clements and Linda Northrop, Software product lines: Practices and patterns,
third ed., Addison-Wesley Professional, Boston, MA, USA, 2001.

[22] Andrew Diniz da Costa, Camila Nunes, Viviane Torres da Silva, Baldoino Fonseca,
and Carlos J. P. de Lucena, Jaaf+t: a framework to implement self-adaptive agents
that apply self-test, SAC ’10 (New York, NY, USA), ACM, 2010, pp. 928–935.

[23] Carlos Eduardo da Silva and Rogério de Lemos, Dynamic plans for integration
testing of self-adaptive software systems, Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(New York, NY, USA), SEAMS ’11, ACM, 2011, pp. 148–157.

[24] Giovanni Denaro, Leonardo Mariani, Mauro Pezzè, and Davide Tosi, Adaptive
runtime verification for autonomic communication infrastructures, First
International IEEE WoWMoM Workshop on Autonomic Communications
and Computing (ACC’05), 2005, pp. 553–557.

[25] Yi Deng, S. M. Sadjadi, Peter J. Clarke, Vagelis Hristidis, Raju Rangaswami, and
Yingbo Wang, CVM-a communication virtual machine, vol. 81, Elsevier Science
Inc., 2008, pp. 1640–1662.

98

[26] Arie Van Deursen and Leon Moonen, The video store revisited - thoughts on
refactoring and testing, 2002.

[27] Daniel Deveaux, Patrice Frison, and Jean-Marc Jézéquel, Increase software
trustability with self-testable classes in java, Proceedings of the 13th Australian
Conference on Software Engineering (Washington, DC, USA), ASWEC ’01, IEEE
Computer Society, 2001, pp. 3–11.

[28] Mark Doliner, Grzegorz Lukasik, and Jeremy Thomerson, Cobertura 1.9, 2002,
http://cobertura.sourceforge.net/ (July 2010).

[29] Baldoino F. dos S. Neto, Andrew Diniz da Costa, Manoel T. de A. Netto,
Viviane Torres da Silva, and Carlos José Pereira de Lucena, Jaaf: A framework to
implement self-adaptive agents, SEKE ’09, Knowledge Systems Institute Graduate
School, 2009, pp. 212–217.

[30] James Drallos, Jordan Clare, Joseph Korolewicz, Daniel Laboy, and Betty H.C.
Cheng, SRS: EMR Data Analysis, Tech. report, Michigan State University,
East Lansing, MI, Fall 2009, http://www.cse.msu.edu/ cse435/Projects/F09/EMR-
Analysis/web/ (Nov 2010).

[31] Eclipse Foundation, Eclipse 3.2, November 2001, http://www.eclipse.org/ (July
2010).

[32] Eclipse Foundation., ATL: A Model Transformation Technology, Jan 2004,
http://www.eclipse.org/atl/ (July 2010).

[33] Gregor Engels, Roland Hücking, Stefan Sauer, and Annika Wagner, Uml
collaboration diagrams and their transformation to java, Proceedings of the 2nd
international conference on The unified modeling language: beyond the standard
(Berlin, Heidelberg), UML’99, Springer-Verlag, 1999, pp. 473–488.

[34] Enterprise Java Beans., http://www.java.sun.com/products/ejb/docs.html (October
2011).

[35] Enterprise Managment Associates, Practical autonomic computing: Roadmap to
self managing technology, Tech. report, IBM, Boulder, CO, Jan. 2006.

[36] Michael Feathers, Working effectively with legacy code, Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.

[37] David Flanagan and Yukihiro Matsumoto, The ruby programming language -
everything you need to know: covers ruby 1.8 and 1.9, O’Reilly, 2008.

[38] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt, Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem, vol. 29, ACM, May 2007.

99

[39] Eclipse Foundation, Eclipse Modeling Framework, August 2003,
http://www.eclipse.org/modeling/emf/ (July 2010).

[40] Christopher Fox, Introduction to software engineering design: Processes, principles
and patterns with uml2, Addison Wesley, 2006.

[41] Robert France and Bernhard Rumpe, Model-driven development of complex
software: A research roadmap, FOSE ’07 (Washington, DC, USA), IEEE Computer
Society, 2007, pp. 37–54.

[42] Franz-Josef Elmer, Classycle 1.4, 2011, http://classycle.sourceforge.net/ (October
2011).

[43] Erich Gamma and Kent Beck, JUnit 3.8.1, 2005, http://www.junit.org/index.htm
(July 2010).

[44] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm, Design patterns:
Elements of reusable o-o software, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[45] Holger Giese and Robert Wagner, From model transformation to incremental
bidirectional model synchronization, vol. 8, Springer Berlin / Heidelberg, February
2009, pp. 21–43.

[46] Todd Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel, An empirical study of regression test selection techniques, no. 2, April
2001, pp. 184–208.

[47] Paul Hamill, Unit test frameworks, 2004.

[48] Ahmed E. Hassan and Richard C. Holt, Predicting change propagation in software
systems, vol. 0, IEEE Computer Society, 2004, pp. 284–293.

[49] Shenin Hassan, Dhiya Al-Jumeily, and Abir Jaafar Hussain, Autonomic computing
paradigm to support system’s development, vol. 0, IEEE Computer Society, 2009,
pp. 273–278.

[50] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne, Improving requirements
tracing via information retrieval, in Proceedings of the International Conference on
Requirements Engineering (RE, 2003, pp. 151–161.

[51] Hewlett-Packard Development Company, L.P., HP Adaptive Infrastructure:
Accelerating adoption of next-generation data center technologies and services to
optimize business outcomes, Tech. report, HP, February 2009.

[52] Paul Horn, Autonomic Computing: IBM’s perspective on the State of Information
Technology, October 2001.

100

[53] Hai Hu, Chang-Hai Jiang, and Kai-Yuan Cai, Adaptive software testing in the
context of an improved controlled markov chain model, Proceedings of the 2008
32nd Annual IEEE International Computer Software and Applications Conference
(Washington, DC, USA), COMPSAC ’08, IEEE Computer Society, 2008, pp. 853–
858.

[54] Chang Hwan, Peter Kim, and Krzysztof Czarnecki, Synchronizing cardinality-
based feature models and their specializations, Proceedings of the First European
conference on Model Driven Architecture: foundations and Applications (Berlin,
Heidelberg), ECMDA-FA’05, Springer-Verlag, 2005, pp. 331–348.

[55] IBM Autonomic Computing Architecture Team, An architectural blueprint for
autonomic computing, Tech. report, IBM, Hawthorne, NY, June 2006.

[56] IEEE Computer Society, Std 610.12-1990(r2002): Glossary of software engineering
terms, Tech. report, 2002.

[57] Paola Inverardi, Henry Muccini, and Patrizio Pelliccione, Automated check of
architectural models consistency using spin, vol. 0, IEEE Computer Society, 2001,
p. 346.

[58] Igor Ivkovic and Kostas Kontogiannis, Tracing evolution changes of software
artifacts through model synchronization, Proceedings of the 20th IEEE International
Conference on Software Maintenance (Washington, DC, USA), ICSM ’04, IEEE
Computer Society, 2004, pp. 252–261.

[59] Java Struts., http://www.struts.apache.org/ (October 2011).

[60] Zhenyi Jin and A. Jefferson Offutt, Coupling-based criteria for integration testing,
vol. 8, 1998, pp. 133–154.

[61] Jeffrey O. Kephart, Research challenges of autonomic computing, ICSE ’05:
Proceedings of the 27th international conference on Software engineering, 2005,
pp. 15–22.

[62] J.O. Kephart and D.M. Chess, The vision of autonomic computing, vol. 36, January
2003, pp. 41–52.

[63] Tariq King, Andrew Allen, Rodolfo Cruz, and Peter Clarke, Safe runtime
validation of behavioral adaptations in autonomic software, Autonomic and Trusted
Computing (Jose Calero, Laurence Yang, Felix Marmol, Luis Garcia Villalba, Andy
Li, and Yan Wang, eds.), Lecture Notes in Computer Science, vol. 6906, Springer
Berlin / Heidelberg, 2011, 10.1007/978-3-642-23496-53, pp. 31–46.

[64] Tariq M. King, Andrew A. Allen, Yali Wu, Peter J. Clarke, and Alain E. Ramirez,
A comparative case study on the engineering of self-testable autonomic software,
vol. 0, IEEE Computer Society, 2011, pp. 59–68.

101

[65] Tariq M. King, Djuradj Babich, Jonatan Alava, Ronald Stevens, and Peter J. Clarke,
Towards self-testing in autonomic computing systems, ISADS ’07 (Washington, DC,
USA), IEEE Computer Society, 2007, pp. 51–58.

[66] Tariq M. King and Annaji Sharma Ganti, Migrating autonomic self-testing to the
cloud, Proceedings of the 2010 Third International Conference on Software Testing,
Verification, and Validation Workshops (Washington, DC, USA), ICSTW ’10, IEEE
Computer Society, 2010, pp. 438–443.

[67] Tariq M. King, Alain Ramirez, Peter J. Clarke, and Barbara Quinones-Morales,
A reusable object-oriented design to support self-testable autonomic software,
Proceedings of the 2008 ACM symposium on Applied computing (New York, NY,
USA), SAC ’08, ACM, 2008, pp. 1664–1669.

[68] Tariq M. King, Alain E. Ramirez, Rodolfo Cruz, and Peter J. Clarke, An integrated
self-testing framework for autonomic computing systems, vol. 2, 2007, pp. 37–49.

[69] Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet,
Groovy in action, Manning Publications Co., Greenwich, CT, USA, 2007.

[70] Timothy Lethbridge and Robert Laganiere, Object-oriented software engineering:
Practical software development using uml and java, 1 ed., McGraw-Hill, Inc., New
York, NY, USA, 2002.

[71] Bennett P. Lientz and E. Burton Swanson, Software maintenance management,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980.

[72] Dongxi Liu, Zhenjiang Hu, and Masato Takeichi, Bidirectional interpretation of
xquery, Proceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation (New York, NY, USA), PEPM ’07,
ACM, 2007, pp. 21–30.

[73] Andrian Marcus and Jonathan I. Maletic, Recovering documentation-to-source-
code traceability links using latent semantic indexing, Proceedings of the 25th
International Conference on Software Engineering (Washington, DC, USA), ICSE
’03, IEEE Computer Society, 2003, pp. 125–135.

[74] Jean marie Favre, Towards a basic theory to model model driven engineering,
In Workshop on Software Model Engineering, WISME 2004, joint event with
UML2004, 2004.

[75] Eliane Martins, Cristina Maria Toyota, and Rosileny Lie Yanagawa, Constructing
self-testable software components, Proceedings of the 2001 International Conference
on Dependable Systems and Networks (formerly: FTCS) (Washington, DC, USA),
DSN ’01, IEEE Computer Society, 2001, pp. 151–160.

[76] Gerard Meszaros, Xunit test patterns: Refactoring test code, Addison-Wesley, 2007.

102

[77] Microsoft Corporation, Dynamic Systems Initiative Overview, Tech. report,
Microsoft, March 2007.

[78] Arun Mishra and Arun K. Misra, Formal aspects of specification and validation
of dynamic adaptive system by analyzing execution traces, vol. 0, IEEE Computer
Society, 2011, pp. 49–58.

[79] Daniel J. Mosley and Bruce Posey, Just enough software test automation, Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2002.

[80] H. A. Muller, L. O’Brien, M. Klein, and B. Wood, Autonomic Computing, Tech.
report, Carnegie Mellon Univeristy and SEI, April 2006.

[81] Freddy Munoz and Benoit Baudry, Artificial table testing dynamically adaptive
systems, HAL - CCSD, 2009.

[82] Glenford J. Myers, Tom Badgett, Todd M. Thomas, Corey Sandler, and Inc ebrary,
The art of software testing, 2nd ed ed., John Wiley & Sons, Hoboken, N.J, 2004.

[83] Dirk Niebuhr and Andreas Rausch, Guaranteeing correctness of component
bindings in dynamic adaptive systems based on runtime testing, Proceedings of the
4th international workshop on Services integration in pervasive environments (New
York, NY, USA), SIPE 09, ACM, 2009, pp. 7–12.

[84] Carlos Pacheco and Michael D. Ernst, Randoop: feedback-directed random testing
for Java, OOPSLA 2007 Companion, Montreal, Canada, ACM, October 2007.

[85] Ponder2, http://www.ponder2.net/cgi-bin/moin.cgi/Ponder2Overview (July 2011).

[86] Roger S. Pressman, Software engineering: A practitioner’s approach, 5th ed.,
McGraw-Hill Higher Education, 2001.

[87] Abdallah Qusef, Rocco Oliveto, and Andrea De Lucia, Recovering traceability links
between unit tests and classes under test: An improved method, Proceedings of the
2010 IEEE International Conference on Software Maintenance (Washington, DC,
USA), ICSM ’10, IEEE Computer Society, 2010, pp. 1–10.

[88] Alain Ramirez, Barbara Morales, and Tariq M. King, A self-testing autonomic job
scheduler, ACM-SE 46 (New York, NY, USA), ACM Press, 2008, pp. 304–309.

[89] Jean rmy Falleri, Marianne Huchard, and Clmentine Nebut, C.: Towards a
traceability framework for model transformations in kermeta, In: ECMDA-TW
Workshop, 2006.

[90] Bart Van Rompaey and Serge Demeyer, Establishing traceability links between unit
test cases and units under test., CSMR (Andreas Winter, Rudolf Ferenc, and Jens
Knodel, eds.), IEEE, 2009, pp. 209–218.

103

[91] Mazeiar Salehie and Ladan Tahvildari, Self-adaptive software: Landscape and
research challenges, vol. 4, ACM, 2009, pp. 1–42.

[92] Andy Schrr, Specification of graph translators with triple graph grammars, in Proc.
of the 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG
‘94), Herrsching (D, Springer, 1995.

[93] M. Shaw, Abstraction techniques in modern programming languages, vol. 1, IEEE
Computer Society, 1984, pp. 10–26.

[94] Ian Sommerville, Software engineering: Seventh edition, Addison-Wesley, Essex,
England, 2004.

[95] Ronald Stevens, Brittany Parsons, and Tariq M. King, A self-testing autonomic
container, ACM-SE 45 (New York, NY, USA), ACM Press, 2007, pp. 1–6.

[96] Sun Microsystems, Inc., Core Java J2SE, February 2005, http://java.sun.com/j2se/
(July 2009).

[97] The Eclipse Foundation, Test and Performance Tools Platform, Nov. 2001,
http://www.eclipse.org/tptp/ (July 2011).

[98] Yves Le Traon, Daniel Deveaux, and Jean-Marc J233;z233;quel, Self-testable
components: From pragmatic tests to design-for-testability methodology, vol. 0,
IEEE Computer Society, 1999, p. 96.

[99] Laurence Tratt, A change propagating model transformation language, vol. 7, March
2008, pp. 107–126.

[100] Triskell Team, Kermeta - Breathe life into your metamodels, October 2005,
http://www.kermeta.org/ (July 2010).

[101] Craig Walls and Ryan Breidenbach, Spring in action, Manning Publications Co.,
Greenwich, CT, USA, 2005.

[102] E J Weyuker, Axiomatizing software test data adequacy, vol. 12, IEEE Press, 1986,
pp. 1128–1138.

[103] Lee White and Brian Robinson, Industrial real-time regression testing and analysis
using firewalls, ICSM ’04: Proceedings of the 20th IEEE International Conference
on Software Maintenance (Washington, DC, USA), IEEE Computer Society, 2004,
pp. 18–27.

[104] William Whitney, Automatic JUnit Creation Tool: An Exploration
in High Level Process Driven Automatic Test Case Creation, June,
http://sourceforge.net/projects/amaticjunittool/ (June 2010).

104

[105] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and
Hong Mei, Towards automatic model synchronization from model transformations,
ASE ’07 (New York, NY, USA), ACM, 2007, pp. 164–173.

[106] Suresh Yadla, Jane Huffman Hayes, and Alex Dekhtyar, Tracing requirements to
defect reports: an application of information retrieval techniques, 2005, pp. 116–
124.

[107] Ji Zhang, Betty H. C. Cheng, Zhenxiao Yang, and Philip K. McKinley, Enabling
safe dynamic component-based software adaptation., WADS, 2004, pp. 194–211.

[108] Ji Zhang, Heather J. Goldsby, and Betty H.C. Cheng, Modular verification of
dynamically adaptive systems, AOSD ’09 (New York, NY, USA), ACM, 2009,
pp. 161–172.

[109] H. Zhu, P. A. V. Hall, and J. H. R. May, Software unit testing coverage and adequacy,
vol. 29, December 1997, pp. 366–427.

105

 Class Name: Diagnosis

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

Test

createDiagnosis(j

ava.lang.String,

java.lang.String,

java.util.Date)

 Test

confirmDiagnosi

s(emrservicedesi

gn.Diagnosis)

emrservicedesign

.EMRService/get

Symptom()

Test getDate() Test

confirmDiagnosi

s(emrservicedesi

gn.Diagnosis)

emrservic

edesign.EMRSer

vice/getDisease()

Test getDisease()

Test

getSymptom()

Test

setDate(java.util.

Date)

Test

setDisease(java.l

ang.String)

Test

setSymptom(java

.lang.String)

 Class Name: Medication

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test getDosage()

test

getSideEffects()

test

setDosage(java.l

ang.String)

test

setSideEffects(ja

APPENDIX A. MANUAL EVALUATION ADDITIVE ORACLE

106

va.lang.String)

test getDosage()

 Class Name: EMRService

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test

setClinicaltrials(j

ava.util.ArrayLis

t)

Test

addMedication(ja

va.lang.String,

emrservicedesign

.Medication)

emrservicedesign

.PatientInfo/getH

istory()

test

setPatients(java.u

til.ArrayList)

Test

addMedication(ja

va.lang.String,

emrservicedesign

.Medication)

emrservicedesign

.PatientHistory/g

etMedicationlist(

)

test

setResult(java.uti

l.ArrayList)

Test

confirmDiagnosi

s(emrservicedesi

gn.Diagnosis)

emrservicedesign

.Diagnosis/

getSymptom()

 Test

confirmDiagnosi

s(emrservicedesi

gn.Diagnosis)

emrservicedesign

.ClinicalTrial/

getSymptomDes

cription()

 Test

confirmDiagnosi

s(emrservicedesi

gn.Diagnosis)

emrservicedesign

.Diagnosis) /

getDisease()

 Test

confirmDiagnosi

s(emrservicedesi

gn.Diagnosis)

emrservicedesign

.ClinicalTrial/

getBestDiagnosis

()

 Test

createDiagnosis(j

ava.lang.String,

emrservicedesign

.Diagnosis)

emrservicedesign

.PatientInfo /

getHistory()

 Test

createDiagnosis(j

emrservicedesign

.PatientHistory /

107

ava.lang.String,

emrservicedesign

.Diagnosis)

getDiagnosislist(

)

 Test

getClinicalTrials(

emrservicedesign

.Symptom)

emrservicedesign

.ClinicalTrial/

getSymptomDes

cription()

 Test

getClinicalTrials(

emrservicedesign

.Symptom)

emrservicedesign

.Symptom/

getDescription()

 Test

getPatientInfo(ja

va.lang.String)

emrservic

edesign.PatientIn

fo/ getPid()

 Test

scheduleTreatme

nt(java.lang.Strin

g,

emrservicedesign

.Treatment)

emrservicedesign

.PatientInfo/

getHistory()

 Test

scheduleTreatme

nt(java.lang.Strin

g,

emrservicedesign

.Treatment)

emrservicedesign

.PatientHistory/

getTreatmentlist(

)

 Class Name: Symptom

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test getDate() Test

getClinicalTrials(

emrservicedesign

.Symptom)

emrservicedesign

.EMRService/

getDescription()

test

getDescription()

test

setDate(java.util.

Date)

test

setDescription(ja

va.lang.String)

108

 Class Name: Board

 Class Name: BoardViewer

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test cellHeight() test

BoardViewer(jpa

cman.model.Engi

ne)

jpacman.controll

er.ImageFactory/

ImageFactory()

test display() jpacman.controll

er.PacmanUI/

windowWidth()

Test cellWidth() test jpacman.controll Test jpacman.c

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test getCell(int,

int)

test Board(int,

int)

jpacman.model.C

ell/ Cell(int, int,

jpacman.model.B

oard)

test

addGuestFromC

ode(char, int, int)

jpacman.model.

Game/

getCell(int, int)

test getHeight() Test Board(int,

int)

jpacman.model.C

ell/ -clinit-()

test

boardHeight()

jpacman.

model.Game/

getHeight()

test getWidth() Test

getGuest(int, int)

jpacman.model.C

ell/

getInhabitant()

test

boardWidth()

jpacman.

model.Game/

getWidth()

test

withinBorders(in

t, int)

Test

guestCode(int,

int)

jpacman.model.

Wall/

guestType()

Test

cellAtOffset(int,

int)

jpacman.

model.Cell/

getCell(int, int)

 Test

guestCode(int,

int)

jpacman.model.F

ood/ guestType()

Test

cellAtOffset(int,

int)

jpacman.

model.Cell/

withinBorders(in

t, int)

 Test

guestCode(int,

int)

jpacman.model.

Monster/

guestType()

Test

getGuestCode(int

, int)

jpacman.

model.Game/

guestCode(int,

int)

 Test

guestCode(int,

int)

jpacman.model.P

layer/

guestType()

test

loadWorld(java.l

ang.String[])

jpacman.model.

Game/ Board(int,

int)

 test

loadWorld(java.l

ang.String[])

jpacman.model.

Game/ -clinit-()

109

BoardViewer(jpa

cman.model.Engi

ne)

er.ImageFactory/

-clinit-()

display() ontroller.Pacman

UI/

windowHeight()

test

createGraphics2

D(int, int)

test

drawCell(int, int,

java.awt.Graphic

s2D)

jpacman.model.E

ngine/

getGuestCode(int

, int)

Test

PacmanUI(jpacm

an.model.Engine,

jpacman.controll

er.Pacman)

jpacman.c

ontroller.Pacman

UI/

BoardViewer(jpa

cman.model.Engi

ne)

Test

drawCells(java.a

wt.Graphics2D)

test

drawCell(int, int,

java.awt.Graphic

s2D)

jpacman.controll

er.ImageFactory/

monster(int)

Test

PacmanUI(jpacm

an.model.Engine,

jpacman.controll

er.Pacman)

jpacman.controll

er.PacmanUI/ -

clinit-()

test

paint(java.awt.Gr

aphics)

test

drawCell(int, int,

java.awt.Graphic

s2D)

jpacman.model.E

ngine/

getPlayerLastDx(

)

Test

windowWidth()

test

drawCell(int, int,

java.awt.Graphic

s2D)

jpacman.controll

er.ImageFactory/

player(int, int,

int)

 test

drawCell(int, int,

java.awt.Graphic

s2D)

jpacman.model.E

ngine/

getPlayerLastDy(

)

 Test

nextAnimation()

jpacman.controll

er.ImageFactory/

monsterAnimatio

nCount()

 Test

nextAnimation()

jpacman.controll

er.ImageFactory/

playerAnimation

Count()

 Test

worldHeight()

jpacman.model.E

ngine/

boardHeight()

 Test

worldWidth()

jpacman.model.E

ngine/

boardWidth()

110

 Class Name: Food

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

Test Food() Test Food() Test Food(int) jpacman.model.

Guest/ Guest()

test createFood() jpacman.model.

Game/ Food()

test getPoints() Test

meetPlayer(jpac

man.model.Playe

rMove)

jpacman.model.P

layerMove/

setFoodEaten(int

)

test

createFood()

jpacman.

model.Game/

getPoints()

test guestType() test createFood() jpacman.

model.Game/ -

clinit-()

 Test

guestCode(int,

int)

 jpacman.mo

del.Board/

guestType()

 Class Name: ImageFactory

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test

getImage(java.la

ng.String)

 Test

BoardViewer(jpa

cman.model.Engi

ne)

jpacman.c

ontroller.BoardV

iewer/

ImageFactory()

test

ImageFactory()

 Test

BoardViewer(jpa

cman.model.Engi

ne)

jpacman.controll

er.BoardViewer/

-clinit-()

Test

monsterAnimatio

nCount() int

 Test

drawCell(int, int,

java.awt.Graphic

s2D)

jpacman.controll

er.BoardViewer/

monster(int)

Test

monster(int)

 Test

drawCell(int, int,

java.awt.Graphic

s2D)

jpacman.controll

er.BoardViewer/

player(int, int,

int)

Test

playerAnimation

Count()

 Test

nextAnimation()

jpacman.controll

er.BoardViewer/

monsterAnimatio

nCount()

111

Test player(int,

int, int)

 Test

nextAnimation()

jpacman.controll

er.BoardViewer/

playerAnimation

Count()

 Class Name: Monster

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

Test

guestType()

Test

meetPlayer(jpac

man.model.Playe

rMove)

jpacman.model.

Move/die()

test

createMonster()

jpacman.model.

Game/ Monster()

 Test Monster() jpacman.model.

MovingGuest/

MovingGuest()

test

createMonster()

jpacman.model.

Game/ -clinit-()

 test

guestCode(int,

int)

jpacman.model.B

oard/

guestType()

 Class Name: Move

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

Test die() test apply() jpacman.model.C

ell/

getInhabitant()

test apply() jpacman.model.P

layerMove/

apply()

test

getMovingGuest(

)

test apply() jpacman.model.

Guest/

occupy(jpacman.

model.Cell)

Test

invariant()

jpacman.

model.PlayerMo

ve/

moveInvariant()

test

movePossible()

test apply() jpacman.model.

Guest/

deoccupy()

Test invariant() jpacman.

model.PlayerMo

ve/

getMovingGuest(

)

Test

Move(jpacman.

model.MovingG

uest,

test apply() jpacman.model.

Guest/

getLocation()

Test

meetPlayer(jpac

man.model.Playe

rMove)

jpacman.model.

Monster/ die()

112

jpacman.model.C

ell)

test playerDies() Test

moveDone()

jpacman.model.

Guest/

getLocation()

Test

movePlayer(int,

int)

jpacman.

model.Game/ -

clinit-()

test

withinBorder()

Test

moveInvariant()

jpacman.model.

Guest/

getLocation()

test

PlayerMove(jpac

man.model.Playe

r,

jpacman.model.C

ell)

jpacman.

model.PlayerMo

ve/

precomputeEffec

ts()

 Test

precomputeEffec

ts()

jpacman.model.C

ell/

getInhabitant()

test

PlayerMove(jpac

man.model.Playe

r,

jpacman.model.C

ell)

jpacman.model.P

layerMove/

Move(jpacman.m

odel.MovingGue

st,

jpacman.model.C

ell)

 Test

precomputeEffec

ts()

jpacman.model.P

layerMove/

tryMoveToGuest

(jpacman.model.

Guest)

 Class Name: MovePlayer

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test

getFoodEaten()

Test apply() jpacman.model.

Move/ apply()

test

meetPlayer(jpac

man.model.Playe

rMove)

jpacman.

model.Food/

setFoodEaten(int

)

Test getPlayer() Test apply() jpacman.model.P

layer/ eat(int)

Test

movePlayer(int,

int)

jpacman.model.

Game/

PlayerMove(jpac

man.model.Playe

r,

jpacman.model.C

ell)

test

setFoodEaten(int

)

Test apply() jpacman.model.P

layer/

getPointsEaten()

test

movePlayer(int,

int)

 jpacman.mo

del.Game/ -

clinit-()

113

 Test invariant() jpacman.model.

Move/

moveInvariant()

test

precomputeEffec

ts()

jpacman.model.

Move/

tryMoveToGuest

(jpacman.model.

Guest)

 Test invariant() jpacman.model.

Move/

getMovingGuest(

)

 Test

PlayerMove(jpac

man.model.Playe

r,

jpacman.model.C

ell)

jpacman.model.

Move/

precomputeEffec

ts()

Test

PlayerMove(jpac

man.model.Playe

r,

jpacman.model.C

ell)

jpacman.model.

Move/

Move(jpacman.

model.MovingG

uest,

jpacman.model.C

ell)

Test

tryMoveToGuest

(jpacman.model.

Guest)

jpacman.model.

Wall/

meetPlayer(jpac

man.model.Playe

rMove)

 Class Name: Pacman

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

test exit() Test down() jpacman.model.E

ngine/

movePlayer(int,

int)

test

keyPressed(java.

awt.event.KeyEv

ent)

jpacman.controll

er.PacmanUI/

up()

 test

Pacman(jpacman

.model.Engine)

jpacman.controll

er.AbstractMonst

erController/ -

clinit-()

test

keyPressed(java.

awt.event.KeyEv

ent)

jpacman.c

ontroller.Pacman

UI/ down()

 test

Pacman(jpacman

jpacman.controll

er.RandomMonst

test

keyPressed(java.

jpacman.c

ontroller.Pacman

114

.model.Engine) erMover/

RandomMonster

Mover(jpacman.

model.Engine)

awt.event.KeyEv

ent)

UI/ right()

 test

Pacman(jpacman

.model.Engine)

jpacman.controll

er.RandomMonst

erMover/ -clinit-

()

test

keyPressed(java.

awt.event.KeyEv

ent)

jpacman.c

ontroller.Pacman

UI/ left()

 Test Pacman() jpacman.model.E

ngine/ Engine()

 Test Pacman() jpacman.model.E

ngine/ -clinit-()

 Test

Pacman(jpacman

.model.Engine,

jpacman.controll

er.IMonsterContr

oller)

jpacman.controll

er.PacmanUI/

PacmanUI(jpacm

an.model.Engine,

jpacman.controll

er.Pacman)

 Test

Pacman(jpacman

.model.Engine,

jpacman.controll

er.IMonsterContr

oller)

jpacman.controll

er.PacmanUI/

display()

 Test

Pacman(jpacman

.model.Engine,

jpacman.controll

er.IMonsterContr

oller)

jpacman.controll

er.Animator/

Animator(jpacma

n.controller.Boar

dViewer)

Test

Pacman(jpacman

.model.Engine,

jpacman.controll

er.IMonsterContr

oller)

jpacman.controll

er.PacmanUI/ -

clinit-()

 Test

Pacman(jpacman

.model.Engine,

jpacman.controll

er.IMonsterContr

oller)

jpacman.controll

er.PacmanUI/

getBoardViewer(

)

 Test quit() jpacman.controll

115

er.Animator/

stop()

 Test quit()

jpacman.model.E

ngine/ quit()

 Test quit() jpacman.controll

er.AbstractMonst

erController/

stop()

 Test right() jpacman.model.E

ngine/

movePlayer(int,

int)

 Test start() jpacman.model.E

ngine/ start()

 Test start() jpacman.controll

er.AbstractMonst

erController/start

()

 Test start() jpacman.controll

er.Animator/start

()

 Test up() jpacman.

model.Engine/

movePlayer(int,

int)

 Test left() jpacman.model.E

ngine/

movePlayer(int,

int)

 Class Name: player

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

Test die() Test Player() jpacman.model.

MovingGuest

/MovingGuest()

Test apply()

jpacman.model.P

layerMove/

eat(int)

Test eat(int) Test

apply()

jpacman.model.P

layerMove

/getPointsEaten()

Test getLastDx() Test jpacman.

116

getFoodEaten() model.Engine/

getPointsEaten()

Test getLastDy() Test

getPlayerLastDx(

)

jpacman.

model.Game/

getLastDx()

Test

getPointsEaten()

 Test

getPlayerLastDy(

)

jpacman.model.

Game/

getLastDy()

Test guestType() Test

guestCode(int,

int)

jpacman.

model.Board/

guestType()

Test living() Test

movePlayer(int,

int)

jpacman.model.

Game/

setLastDirection(

int, int)

Test

setLastDirection(

int, int)

 Test

playerDied()

jpacman.model.

Game/ living()

 Test

playerWon()

jpacman.model.

Game/

getPointsEaten()

 Class Name: Wall

Unit test needs

to be added

Integration test needs to be

added(class here is a

caller)

 Integration test needs to be added

(class here is a callee)

Test Callee/method Test Caller/method

Test guestType() Test Wall() jpacman.model.

Guest/Guest()

test

addGuestFromC

ode(char, int, int)

jpacman.model.

Game/ Wall()

Test meetPlayer

(jpacman.model.

PlayerMove)

 test

addGuestFromC

ode(char, int, int)

jpacman.model.

Game/ -clinit-()

 test

guestCode(int,

int)

jpacman.model.B

oard/

guestType()

 Test

tryMoveToGuest

(jpacman.model.

Guest)

jpacman.model.P

layerMove/

meetPlayer(jpac

man.model.Playe

rMove)

117

 Class Name: ClinicalTrial

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testConfirmDia

gnosis_rainy()

emrservicedesi

gn.EMRServic/

ClinicalTrial(ja

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

java.lang.String

)

 testConfirmDia

gnosis_sunny()

emrservicedesi

gn.EMRServic/

ClinicalTrial(ja

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

java.lang.String

)

 testGetClinical

Trials_rainy()

emrservicedesi

gn.EMRServic/

ClinicalTrial(ja

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

java.lang.String

)

 testGetClinical emrservicedesi

APPENDIX B. MANUAL EVALUATION REDUCTIVE ORACLE

118

Trials_sunny() gn.EMRServic/

ClinicalTrial(ja

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

java.lang.String

)

 Class Name: Diagnosis

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

testGetDate() testAddMedicat

ion()

emrservicedesi

gn.EMRService

/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

testGetDisease(

)

testConfirmDia

gnosis_rainy()

emrservicedesi

gn.EMRService

/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

testGetSympto

m()

testConfirmDia

gnosis_sunny()

emrservicedesi

gn.EMRService

/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

testSetDate() testCreateDiagn

osis()

emrservicedesi

gn.EMRService

/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

119

testSetDisease() testScheduleTre

atment()

emrservicedesi

gn.EMRService

/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

testSetSympto

m()

 Class Name: EMRService

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

testGetPatientIn

fo_rainy()

 testAddMedicat

ion()

emrservicedesi

gn.Diagnosis/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

 testAddMedicat

ion()

emrservicedesi

gn.Symptom/

Symptom(java.l

ang.String,

java.util.Date)

 testAddMedicat

ion()

emrservicedesi

gn.Medication/

Medication(jav

a.lang.String,

java.lang.String

)

 testAddMedicat

ion()

emrservicedesi

gn.Treatment/

Treatment(java.

lang.String,

java.util.Date,

java.lang.String

,

java.lang.String

)

 testAddMedicat

ion()

emrservicedesi

gn.PatientHisto

ry/

PatientHistory(j

120

ava.util.ArrayLi

st,

java.util.ArrayL

ist,

java.util.ArrayL

ist,

java.util.ArrayL

ist)

 testAddMedicat

ion()

emrservicedesi

gn.PatientInfo/

PatientInfo(java

.lang.String,

java.lang.String

, int, int,

emrservicedesi

gn.PatientHisto

ry)

 testConfirmDia

gnosis_rainy()

emrservicedesi

gn.Diagnosis/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

 testConfirmDia

gnosis_rainy()

emrservicedesi

gn.ClinicalTrial

/

ClinicalTrial(ja

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

java.lang.String

)

 testConfirmDia

gnosis_sunny(

emrservicedesi

gn.Diagnosis/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

 testConfirmDia

gnosis_sunny(

emrservicedesi

gn.ClinicalTrial

/

ClinicalTrial(ja

121

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

java.lang.String

)

 testCreateDiagn

osis()

emrservicedesi

gn.Diagnosis/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

 testCreateDiagn

osis()

emrservicedesi

gn.Symptom/

Symptom(java.l

ang.String,

java.util.Date)

 testCreateDiagn

osis()

emrservicedesi

gn.Medication/

Medication(jav

a.lang.String,

java.lang.String

)

 testCreateDiagn

osis()

emrservicedesi

gn.Treatment/

Treatment(java.

lang.String,

java.util.Date,

java.lang.String

,

java.lang.String

)

 testCreateDiagn

osis()

emrservicedesi

gn.PatientHisto

ry/

PatientHistory(j

ava.util.ArrayLi

st,

java.util.ArrayL

ist,

java.util.ArrayL

ist,

122

java.util.ArrayL

ist)

 testCreateDiagn

osis()

emrservicedesi

gn.PatientInfo/

PatientInfo(java

.lang.String,

java.lang.String

, int, int,

emrservicedesi

gn.PatientHisto

ry)

 testGetClinical

Trials_rainy()

emrserv

icedesign.Symp

tom/

Symptom(java.l

ang.String,

java.util.Date)

 testGetClinical

Trials_rainy()

emrservicedesi

gn.ClinicalTrial

/

ClinicalTrial(ja

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

java.lang.String

 testGetClinical

Trials_sunny()

emrservicedesi

gn.Symptom/

Symptom(java.l

ang.String,

java.util.Date)

 testGetClinical

Trials_sunny()

emrservicedesi

gn.ClinicalTrial

/

ClinicalTrial(ja

va.lang.String,

java.lang.String

,

java.lang.String

,

java.lang.String

,

123

java.lang.String

)

 testGetPatientIn

fo_sunny()

emrservicedesi

gn.PatientInfo/

PatientInfo(java

.lang.String,

java.lang.String

, int, int)

 testScheduleTre

atment()

emrservicedesi

gn.Diagnosis/

Diagnosis(java.

lang.String,

java.lang.String

, java.util.Date)

 testScheduleTre

atment()

emrservicedesi

gn.Symptom/

Symptom(java.l

ang.String,

java.util.Date)

 testScheduleTre

atment()

emrservicedesi

gn.Medication/

Medication(jav

a.lang.String,

java.lang.String

)

 testScheduleTre

atment()

emrservicedesi

gn.Treatment/

Treatment(java.

lang.String,

java.util.Date,

java.lang.String

,

java.lang.String

)

 testScheduleTre

atment()

emrservicedesi

gn.PatientHisto

ry/

PatientHistory(j

ava.util.ArrayLi

st,

java.util.ArrayL

ist,

java.util.ArrayL

ist,

java.util.ArrayL

ist)

124

 testScheduleTre

atment()

emrservicedesi

gn.PatientInfo/

PatientInfo(java

.lang.String,

java.lang.String

, int, int,

emrservicedesi

gn.PatientHisto

ry)

 Class Name: Medication

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

testGetDosage(

)

testAddMedicat

ion()

testGetSideEffe

cts()

testCreateDiagn

osis()

testSetDosage() testScheduleTre

atment()

testSetSideEffe

cts()

 Class Name: PatientHistory

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testAddMedicat

ion()

emrservicedesi

gn.EMRService

/

PatientHistory(j

ava.util.ArrayLi

st,

java.util.ArrayL

ist,

java.util.ArrayL

ist,

java.util.ArrayL

ist)

 testCreateDiagn

osis()

emrservicedesi

gn.EMRService

125

/

PatientHistory(j

ava.util.ArrayLi

st,

java.util.ArrayL

ist,

java.util.ArrayL

ist,

java.util.ArrayL

ist)

 testScheduleTre

atment()

emrservicedesi

gn.EMRService

/

PatientHistory(j

ava.util.ArrayLi

st,

java.util.ArrayL

ist,

java.util.ArrayL

ist,

java.util.ArrayL

ist)

 Class Name: Patientinfo

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testAddMedicat

ion()

emrservicedesi

gn.EMRService

/

PatientInfo(java

.lang.String,

java.lang.String

, int, int,

emrservicedesi

gn.PatientHisto

ry)

 testCreateDiagn

osis()

emrservicedesi

gn.EMRService

/

PatientInfo(java

.lang.String,

java.lang.String

, int, int,

126

emrservicedesi

gn.PatientHisto

ry

 testGetPatientIn

fo_sunny()

emrservicedesi

gn.EMRService

/

PatientInfo(java

.lang.String,

java.lang.String

, int, int)

 testScheduleTre

atment()

emrservicedesi

gn.EMRService

/

PatientInfo(java

.lang.String,

java.lang.String

, int, int,

emrservicedesi

gn.PatientHisto

ry)

 Class Name: Symptom

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

testGetDate() testAddMedicat

ion()

emrservicedesi

gn.EMRService

/

Symptom(java.l

ang.String,

java.util.Date)

testGetDescript

ion()

testCreateDiagn

osis()

emrservicedesi

gn.EMRService

/

Symptom(java.l

ang.String,

java.util.Date)

testSetDate() testGetClinical

Trials_rainy()

emrservicedesi

gn.EMRService

/

Symptom(java.l

ang.String,

java.util.Date)

testSetDescripti testGetClinical emrservicedesi

127

on() Trials_sunny() gn.EMRService

/

Symptom(java.l

ang.String,

java.util.Date)

 testScheduleTre

atment()

emrservicedesi

gn.EMRService

/

Symptom(java.l

ang.String,

java.util.Date)

 Class Name: Treatment

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testAddMedicat

ion()

emrservicedesi

gn.EMRService

/

Treatment(java.

lang.String,

java.util.Date,

java.lang.String

,

java.lang.String

)

 testCreateDiagn

osis()

emrservicedesi

gn.EMRService

/

Treatment(java.

lang.String,

java.util.Date,

java.lang.String

,

java.lang.String

)

 testScheduleTre

atment()

emrservicedesi

gn.EMRService

/

Treatment(java.

lang.String,

java.util.Date,

java.lang.String

,

128

java.lang.String

)

 Class Name: Board

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

testGettingWid

thHeight()

testCellAtOffse

t()

jpacman.model.

Cell/getCell(int,

int)

testFailingBoar

dCreation()

TestUtils.jpacm

an/-clinit-()

 testFailingBoar

dCreation()

TestUtils.jpacm

an/assertionsEn

abled()

 testGettingCells

FromBoard()

jpacman.model.

Cell/getY()

 testGettingCells

FromBoard()

jpacman.model.

Cell/getX()

 testOccupy() jpacman.model.

Guest/-clinit-()

 testOccupy() jpacman.model.

Guest/occupy(j

pacman.model.

Cell)

 testOccupy() jpacman.model.

Food/Food()

 testOccupy() jpacman.model.

Food/-clinit-()

 Class Name: Cell

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testGettingCells

FromBoard()

jpacman.model.

Board/ getY()

testCellAtOffse

t()

jpacman.model.

Board/

getCell(int, int)

 testGettingCells

FromBoard()

jpacman.model.

Board/ getX()

 testOccupyDeo

ccupy()

jpacman.model.

Guest/

getInhabitant()

129

 Class Name: Engine

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testUpdates() jpacman.model.

Observer/

inPlayingState(

)

 testUpdates() jpacman.model.

Observer/

start()

 testUpdates() jpacman.model.

Observer/

movePlayer(int,

int)

 testUpdates() jpacman.model.

Observer/ quit()

 testUpdates() jpacman.model.

Observer/

inHaltedState()

 Class Name: Game

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

testDxDyImpos

sibleMove()

testDxDyPossib

leMove()

testGetMonster

s()

130

 Class Name: Guest

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testOccupy() jpacman.model.

Board/-clinit-()

testOccupyDeo

ccupy()

jpacman.model.

Cell/getInhabita

nt()

 testOccupy() jpacman.model.

Board/occupy(j

pacman.model.

Cell)

 Class Name: ImageFactory

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee
testMonster()
testPlayer()

 Class Name: Move

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

 testSimpleGette

rs()

jpacman.model.

PlayerMove/

movePossible()

 testSimpleGette

rs()

jpacman.model.

PlayerMove/-

clinit-()

 testSimpleGette

rs()

jpacman.model.

PlayerMove/pla

yerDies()

131

 Class Name: Observer

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

 Test Caller Test Callee

 testUpdates() jpacman.model.

Engine

/inPlayingState(

)

 testUpdates() jpacman.model.

Engine/

movePlayer(int,

int)

 testUpdates() jpacman.model.

ObserverTest$

MyObserver/

access$1(jpacm

an.model.Obser

verTest$MyOb

server)

 testUpdates() jpacman.model.

Engine/ quit()

 testUpdates() jpacman.model.

Engine/

inHaltedState()

 testUpdates() jpacman.model.

Engine/ start()

 Class Name: pacman

Unit test needs

to be removed

Integration test needs to be

updated(class here is a callee)

Integration test needs to be

removed(class here is a caller)

Test Caller Test Callee

testTopLevelA

lphaOmega()

132

