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ABSTRACT 

Currently pork marbling is assessed subjectively in the industry, because of the limited 

methods and tools that are suitable for the industry. In this dissertation, we are devoted to 

develop a computer vision system for objective measurement of pork which suits the industrial 

needs. Experiment 1 examined the possibility of using computer vision system (CVS) to predict 

marbling in a lab-based experiment using pork samples that were already trimmed of 

subcutaneous fat and connective tissue. Experiment 2 an industrial scale CVS was built to 

predict the 3rd and 10th rib pork chop’s marbling. Experiment 3 the industrial scale CVS was 

tested in the meat plant and images of whole boneless pork loin were collected. The CVS 

predicted marbling were compared with subjective marbling score using crude fat percentage 

(CF%) as standard.  

 In experiment 1 subjective marbling score had a correlation of 0.81 with CF% while CVS 

had a 0.66 correlation. CVS has shown an accuracy of 63% for stepwise regression model and 

75% for support vector machine model. These results indicate that CVS has the potential to be 

used as an tool to predict pork intramuscular fat (IMF)%. In experiment 2 the accuracy of CVS 

predicting pork chop CF% was 68.6% and subjective marbling was 70.1%. A drop of accuracy in 

predicting anterior chop CF% for both CVS and objective marbling score was observed when 

compared to posterior chop, this suggest that there is a discrepancy in accuracy between the 

anatomy location of samples collected. In experiment 3 the accuracy of CVS predicting boneless 

whole loin was 58.6% and subjective marbling score was 53.3%. In this research, CVS has 

demonstrated a consistency of accuracies using different pork samples. CVS has shown higher 

accuracy when predicting whole boneless loin IMF% when compared to subjective assessment. 
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

Introduction 

Pork is currently the most consumed protein source globally (15.8 kg/capita/yr), followed 

by poultry (13.6 kg/capita/yr), beef (9.6 kg/capita/yr), and sheep and goat meat (1.9 kg/capita/yr) 

(FAOSTAT, 2014). Meat purchasing decisions are influenced more by product appearance, such 

as color and marbling, than any other quality factor (Font-i-Furnols et al., 2012). In 2015, 

Newman et al. reported that the average for pork subjective color score is 2.85 ± 0.79 on a 6-

point scale, with 3, 19, 45, 26, and 7 % of samples having a color score 1, 2, 3, 4, and 5 

respectively. The average for subjective marbling score (an estimate of intramuscular fat 

percentage) is 2.30 ± 1.07, with a distribution of 9, 47, 31, 10, and 3 % for marbling scores 1, 2, 

3, 4, and 5 or above, respectively. This shows that there is variation in pork quality in the retail 

market throughout the US. 

Currently pork color and marbling scores are determined by trained evaluators in the 

plant, which is subjective and lowly repeatable. It is also influenced by the condition of the 

evaluator, such as sickness or fatigue, or different environments, such as lighting or angle of 

viewing. In a laboratory environment, color and marbling can be assessed more objectively using 

a colorimeter, which can express color using L*, a*, and b*, and ether extract to determine the 

percentage of intramuscular fat (IMF). However, in 2013, Girolami et al. reported when 

regenerating a color by using the L*, a*, and b* values recorded by colorimeter, the color did not 

correspond to the true color of meat. Additionally, ether extract is a labor intensive and time-

consuming procedure, which requires an actual sample that could sabotage the integrity of and 

potentially de-value the product. This suggests that a new modern technology that is rapid, 

accurate, non-invasive, and highly repeatable could be beneficial for both research and industry. 
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The potential of using computer vision system (CVS) in the food industry has long been 

recognized (Timmermans, 1998). With recent advances in hardware and software, CVS has been 

allowed to become a technology even more cost effective, more consistent, more rapid, and more 

accurate than ever before. A CVS is a system, which is composed of three main elements: 

camera, lighting system, and image analysis software. A CVS allows for the capturing, 

processing, and analyzing of images, which enables the assessment of a desired target in an 

objective, non-destructive manner. This technology has been applied for numerous usages in the 

food industry such as classification of types of cereal grains (Paliwal et al., 2001), color grading 

for apples (Nakano et al., 1992), and detection of bruises on strawberries (Nagata et al., 2006). In 

the beef industry, CVS has been utilized to objectively measure features of beef quality such as 

marbling and yield percentage using the “beef cam”. Research has shown the potential of CVS in 

predicting beef color (Larraín et al., 2008), fat color, (Chen et al., 2010), tenderness (Sun et al., 

2012; ElMasry et al., 2012), and marbling (Chen et al., 2010). With CVS successfully applied in 

many different fields with different goals, it only seems reasonable to use this technology in the 

pork industry as well. 

In this chapter, pork quality will be defined, how each pork quality trait effects the others 

will be discussed, and current methods of measuring pork quality will be addressed. Next CVS 

will be introduced and how it has been applied to the industry will be discussed. 

Quality 

What is quality? Pork quality is a combination of many factors and cannot be defined 

based on one variable alone because each individual factor can be influenced by one or more 

other factors (Ben, 2011). The answer may also differ depending on what part of the pork 

industry you participate in: quality may be as simple as a pig that grows fast on minimal feed if 
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you are the hog producer or as complex as the combination of visual attractiveness and eating 

satisfaction if you are the consumer. Eating satisfaction is influenced by the color, texture, and 

marbling of pork and is usually assessed by evaluating flavor, tenderness, and juiciness. For pork 

processors and retailers, the definition of quality can vary depending on what they focus on. 

Since the most important factor to consumer’s when they are purchasing pork is color, good 

color (reddish-pink) would be considered good quality. Additionally, pork with low drip loss 

values would be more favorable to processors as there would be less weight loss from slaughter 

to package, which results in more profit. Additionally, pork with high water holding capacity 

produces less purge after packaging, which is more favorable to consumers. 

The National Pork Board (NPB) has established pork quality standards in which it 

describes three types of pork quality based on the pork’s color, texture, and ability to bind water: 

red, firm, and non-exudative (RFN); pale, soft, and exudative (PSE); and dark, firm, and dry 

(DFD). Pork that is RFN has a reddish-pink color, firm texture, and minimal exudation on the cut 

surface or in the package, which is visually attractive to the consumer. Ideally, it would be best 

to provide consumers with RFN pork. The reddish-pink color indicates that the myoglobin has 

gone through minimal amount of denaturing; a firm texture indicates integrity of the structure of 

muscle; and being non-exudative suggests that the meat is capable of binding or retaining water, 

resulting in minimal cook loss and pork that is juicy. Pork that is PSE is considered poor in 

quality, which contributes a large loss to the pork industry. In 1996, Cannon et al. reported that 

10.2 % of carcasses were PSE and, in 2003, Stetzer and McKeith reported approximately 15.5 % 

of the pork produced in US had characteristics of PSE pork. A rapid pH decline while the carcass 

is still at a high temperature results in higher than normal myoglobin denaturation. This results in 

pork that is pale in color and has poor water holding capacity. Once cooked, PSE pork loses even 
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more water and results in tough, dry pork and a poor eating experience. There are many factors 

that contribute to pork becoming PSE such as genetics, preslaughter stress, and carcass chilling. 

Pork that is DFD is considered to have good pork quality. The DFD pork is a result of a slow pH 

decline, which results in a higher ultimate pH compared to RFN and PSE. The structural proteins 

are a lot less denatured, which allows the pork to bind with more free water, resulting in less 

water on the surface, which causes it to look darker. Kauffman (1993) stressed the importance in 

taking greater advantage of high pH meat to gain profit for the processor and greater satisfaction 

for the consumer. However, due to its high ultimate pH, DFD pork typically has a shorter shelf 

life due to bacterial growth when compared to RFN and PSE (Faucitano et al., 2010). 

Muscle to Meat 

The “muscle to meat” conversion is a process of physical and biochemical changes after 

an animal is slaughtered that can be impacted by many factors. This process is affected by 

genetics, pre-slaughter handling, nutrition, short- and long-term stresses, and post-slaughter 

handling of meat. 

In the living animal, the main function of skeletal muscle is to support and contract. Both 

contraction and relaxation of muscle consumes energy such as adenosine tri-phosphate (ATP), 

which is provided and replenished by the mitochondria. Under aerobic environments, muscles 

maintain energy through aerobic glycolysis, which converts one glucose molecule to 36 ATP, 6 

carbon dioxide (CO2), 6 water (H2O), and heat. When the existence of oxygen is insufficient, 

muscles produce energy through anaerobic glycolysis, which converts one glucose molecule to 2 

ATP and 2 lactate. The lactate is then transported by the blood to liver where it is converted back 

into glucose. 
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Conversion from muscle to meat is an enviable procedure, which involves numerous 

biochemical pathways; it is traditionally viewed as an anaerobic process that is largely 

influenced by degradation of glycogen to lactate and hydrogen ions. At harvest, muscle must 

adapt to new physiological circumstances to maintain ATP and homeostasis. As the animal is 

being bled, delivery of oxygen (O2) is eliminated, which hinders mitochondria from contributing 

to ATP production. It also induces the pathway of anaerobic glycolysis, which transforms 

glucose into lactate. Because it is deprived of blood, the lactate accumulates within the muscle 

and results in pH decline. The insufficient amount of ATP then causes the onset of “rigor 

mortis”, which is when the muscle stays in its contracted state. Onset and completion of rigor 

mortis normally occurs within the first 24 h after slaughter. 

During this anaerobic process, different metabolic processes and enzymatic activities are 

involved and many factors can influence the process. It is also the critical process that ultimately 

influences the quality of pork. The amount of lactic acid that can be accumulated may differ due 

to differences in muscle type, glycolytic potential, and genetics (Fernandez et al., 1994; Ryu et 

al., 2005; Salas et al., 2017). Glycolytic potential can also be influenced by stress prior to 

slaughter. In 2004, Hamilton reported long transportation increased muscle glycogen in two 

different muscle when compared with short transport. Later on, Scheffler et al. (2013) reported 

that while low glycolytic potential may limit glycolysis and are associated with ultimate pH, high 

glycolytic potential does not predict low ultimate pH in pork. Genetic differences such as breed 

also influence glycolytic potential as Monin et al. (1987) reported that when compared to Large 

Whites, Pietrains, and Landraces, Penshires had much higher glycolytic potential in the fast 

white muscle. It is also reported that swine calpastatin gene (CAST) DD genotype has a lower 

glycolytic potential when compared with CC and CD (Boruszewska et al., 2016). Swine with 
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Porcine Stress Syndrome (PSS) gene are also more susceptible to hyperthermia under stress 

conditions (Fisher et al., 200a). It has been established when PSS occurs, pigs respond with limb 

muscle rigidity, increased anaerobic metabolism, and increased body temperature due to the 

“fight, fright, or flight reaction” (Bjustrom et al., 1995). It is generally believed that PSS is 

caused by a mutation in gene coding for the calcium ion (Ca2+) release channel because, when 

abnormality of Ca2+ release occurs, the uncontrollable increase of intracellular Ca2+ causes 

muscle rigidity, hypermetabolism, hyperthermia, and metabolic acidosis (Bjustrom et al., 1995). 

The rate of lactic acid accumulation can be effected by the temperature of carcasses, as 

enzymatic activity decreases with the temperature. It is reported that a reduction in glycolysis 

occurs when utilizing blast chilling (Milligan et al., 1998; Springer et al., 2003). It is believed 

that heavier pigs show a greater tendency to develop PSE, as heavier carcasses take longer to 

cool due to the larger volume to surface area ratio. 

Color 

Color may be the most important factor that influences the appearance and attractiveness 

of pork to consumers (Lu et al., 2000; Leon et al., 2006; Valous et al., 2009) as consumer use 

inadequate color as an indicator of spoilage. When buying pork, consumers prefer pork that is 

lean in appearance, consistent in color, with little amount of water on surface or in-package 

(Mabry & Bass, 1998). Typically, consumers prefer pork that is darker versus lighter in color 

(Brewer & McKeith, 1999; Norman et al., 2003). However, meat acceptability depends on 

cultural aspect. Preferences for color may also vary between culture, as consumers from 

Australia (light red, lean), Korea (marbled), Poland (lean), and Taiwan (dark red, lean) all have 

different preferences (Ngapo et al., 2013). Japan, as one of the most profitable pork export 



 

7 

 

markets for the US, prefers moderately firm, well marbled muscle with a darker color (NPPC 

color score 3-5) (Cravens, 2000). 

The color of pork is constituted mainly by myoglobin (Hedrick et al., 1989). Myoglobin, 

a heme protein, is responsible of combining O2 and gives meat its red color. While the 

association of color and freshness of pork is weak, color serves as a good indicator of the quality 

of pork. Pork with darker color were perceived to be more tender, more juicy, and less dry than 

lighter pork by both trained panel and consumers (Norman et al., 2003). 

In the pork industry, pork color is often graded by professional trained evaluators, which 

grade the pork using the NPB standard color cards from grade 1 (pale white) to 6 (dark red). 

From the NPB benchmarking project in 2015 has suggested that the mean subjective color score 

values were 2.85 ± 0.79 when observed within the retailers or supermarkets meat case. This 

indicates that not only there is a great deal of pork quality variation in the retail meat case, but 

also slightly pale. 

For meat science research, pork color is often measured and quantified by using a 

colorimeter which often express the attributes as L*, a*, and b*, where L* measures lightness to 

darkness (100 = white; 0 = black), a* measures redness to greenness (positive = red; negative = 

green), b* measures yellowness to blueness (positive = yellow; negative = blue). There are two 

commercially available colorimeters; Hunterlab (Hunter Associates Laboratory Inc., Reston, 

VA) or Minolta Colorimeter (Minolta Company, Ramsey, NJ). Most researchers use Minolta 

colorimeter (60 %) over Hunter (31.6 %) colorimeter under D65 illumination, which more closely 

resembles daylight and resulted in higher correlations with visual color scores (Tapp III et al., 

2011). It has been well established that using L* as an assessment for pork color has a high 

correlation with subjective color assessment score (Warriss and Brown, 1993). In 2001, Brewer 



 

8 

 

et al. concluded that L* was not prejudiced by bloom time, indicating it is the best value to 

determine if a carcass is predisposed to becoming PSE or DFD pork. In 1994, Laack et al. also 

reported, while dark pork (L* < 52.0) always has acceptable water-holding capacity (WHC), pale 

pork (L* > 58.0) does not always have unacceptable water holding capacity. This suggests that 

when assessing pork quality, it is best not to rely only on color but also other factors such as pH 

or WHC. In 2015, Newman et al. reported that the mean color values of pork chops in retail 

stores across the nation is 55.56 ± 3.63 for L*, 16.60 ± 2.30 for a*, and 10.33 ± 1.53 for b*. An 

L* value near 55 or below (Minolta) is associated with an NPB color standard score of 3.0 as a 

reference (NPB, 2001) which agrees with the subjective color results. 

When using a computer vision system color can be expressed in different color space 

such as HSI (hue, saturation, intensity), RGB (red, green, blue), and Computer estimated L*, a*, 

b*. While the L*, a*, b* generated by computer would differ between illumination, settings of 

camera, it is reported to have a high correlation with Minolta L*, a*, b* (Sun et al., 2016).  

Marbling 

Marbling can often be referred as IMF content and is generally accepted that the degree 

of marbling has a positive influence on the sensory qualities of pork (Brewer et al., 2001; 

Cannata et al., 2010; Wood et al., 2004;). More specifically research has suggested that with an 

increasing of marbling in pork loin result in higher sensory score such as tenderness and 

juiciness of pork. Not only marbling has influence on the eating palatability, it is also a factor 

which influence consumers willing of buying as the amount of marbling, however, the 

preference of consumers toward marbling may differ between or within country. In the US, 

marbling has been reported to negatively affect consumer preferences and the acceptability of 

red meat (Brewer et al., 2001; Moeller et al., 2010) because chops with a greater degree of 
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marbling appear to have more fat and lighter in lean color. However, the acceptability of 

marbling is more favorable and desired in Asiatic countries (Ngapo et al., 2007). Regardless of 

consumer’s preference of marbling when considered as a visual factor, even when consumers are 

divided into “lean loin lovers” and “marbled loin lovers”, both groups show a preference for 

highly marbled pork when tasting the cooked product where they cannot see the amount of 

marbling present (Furnols et al., 2012). In 2008, Meisinger suggested an industry target for IMF 

of 2 to 4 %, with the minimum level reflecting minimum eating satisfaction requirements and the 

maximum level reflecting the health concerns associated with consuming excessive fat. In 2015, 

Newman reported that in the current market, the average of subjective marbling within the retail 

market is 2.54 with a distribution of 9, 47, 31, and 10 % for marbling grades 1, 2, 3, and 4, 

respectively. 

Current methods to measure IMF in pork are limited. In laboratory-based research, IMF 

can be determined by using crude fat extraction (AOAC, 1990); however, this extraction method 

is not only labor-intensively and time-consuming but requires using the actual samples making it 

impractical for the pork industry. The most common way to determine IMF in the pork industry 

is by subjective assessment. Assigning subjective marbling scores requires trained individuals 

assessing the pork loins using pork marbling standard cards (NPB, 2011) on a scale of 1 to 10 

(1=devoid, 10=abundant). However, since this is a subjective measurement, variation can occur 

due to different evaluators, different lean colors, different genetics may cause different 

infiltration of IMF and distribution, and different environmental factors in the slaughter plant 

such as lighting.  
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pH 

The pH of pork plays an important role and has a direct impact on pork quality traits such 

as WHC and color. In live animals, physiological pH of muscle is near 7.2 but, in the “muscle to 

meat” conversion, the pH drops with ultimate pH values typically ranging from 5.3 to 6.0. 

Typically, pH of longissimus muscle should show a steady decline to an ultimate pH near 

5.5. However, when pork exhibits a subtle pH decline with an ultimate pH above 6.0, it is often 

referred to as DFD. On the other hand, when pork exhibits a rapid pH decline and a low ultimate 

pH that is around 5.3, it is often referred to as PSE. The isoelectric point of muscle protein is 

around 5.3.; when the ultimate pH is near 5.3, it reduces the net charge and decreases 

myofilament spacing and protein solubility, which contributes to decreased WHC and poor 

processing yield (Irving et al., 1989; Joo et al., 1999). In research, initial (45 min postmortem) 

pH is often measured. Within the first 45 min postmortem, the animal’s body goes through the 

most dramatic physical and biochemical changes. The rate at which glycolysis occurs can impact 

the 45 min pH and quality of a pork carcass. The amount of glycogen present in the muscle after 

exsanguination is broken down and directly correlated to the amount of lactic acid (Lonergan, 

2008). Thus, more glycogen in the muscle results in a lower ultimate pH (Lonergan, 2008). It is 

reported when 45 min pH is 6.0 or below, the muscle will appear pale and exudative, and when 

45 min pH is 6.0 or above, reflectance is little reduced but exudate decreases rapidly (Warriss & 

Brown, 1987). This suggest that both 45 min and ultimate pH are important in determination of 

pork quality. 

Water-holding Capacity 

Water-holding capacity is the ability of meat to retain its moisture content and is affected 

by biochemical and physical changes which occur postmortem. The WHC of pork is largely 
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influenced by animal stress, genetics, carcass cooling, pH decline, and ultimate pH (Rosenvold 

& Andersen, 2003; Andres et al., 2007) and is arguably one of the most important quality 

characteristics of raw products. Water accounts for approximately 75 % of the weight of meat 

(Schafer et al., 2002); hence WHC is crucial to many meat quality parameters that hold high 

importance to the industry and consumers (Huff-Lonergan & Lonergan, 2005). The decrease in 

WHC results in loss of water causing meat to become less juicy and tougher and, thus, less 

desirable to consumers.  

Water within the muscle can be classified into three types by location or mobility, which 

are bound water, entrapped water, and free water. Bound water is water molecules that are 

bound to the protein, has reduced mobility, and accounts for a very small fraction of the total 

water in muscle cells. The amount of bound water changes very little if at all in post-rigor muscle 

(Offer & Kinght, 1988b). Entrapped water is water that may be held within the structure of 

muscle but not bound to protein as bound water. Such water is most affected by the rigor process 

and conversion of muscle to meat as it relies on the structure of muscle. Free water is water that 

flows freely within the muscle, is held by weak surface forces, and can develop as the muscle 

structure changes post-rigor. Larger amounts of water such as entrapped water and free water, 

are often responsible for drip loss in fresh meat as the WHC of meat slowly decreases due to 

structure change and pH decline. 

Traditionally, WHC can be measured as drip loss or ultimately observed as purge in fresh 

meat packaging. Drip loss can be measured hanging core samples for 24 h at 3 °C. Drip loss is 

determined by subtracting the end weight from the initial weight and is expressed as a percentage 

of initial sample weight. A higher drip loss value corresponds to lower WHC. Product weight 
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losses due to purge can average as much as 1-3 % in fresh retail cuts (Offer & Knight, 1988a) 

and can be as high as 10 % in PSE products (Melody et al., 2004). 

Computer Vision System 

Computer vision system (CVS) is a system that contains an illumination system, a 

camera, and image analyzing software and utilizes a personal computer. It has been widely 

utilized in the food industry and is known to be rapid, economic, consistent, accurate, and non-

invasive (Sun, 2000). In the food industry, it has been widely used for different features 

measurement such as detection or grading to differentiate color, size, texture feature, shape, and 

uniformity of the product or object (Sun, 2000). Many efforts have been made enhancing the 

utilization of CVS in the agriculture industry such as classification of types of cereal grains 

(Luoet al., 1999; Paliwal et al., 2001), color grading for apples (Nakano et al., 1992), and 

detection of bruises on strawberries (Nagata et al., 2006). 

In the beef industry, CVS has been utilized to objectively measure multiple features of 

beef quality such as marbling and yield percentage using the “beef cam”. Research has shown 

the potential of CVS in predicting beef color (Larraín et al., 2008), fat color, (Chen et al., 2010), 

tenderness (Li et al., 1999, 2001; Tan, 2004; ElMasry et al., 2012; Sun et al., 2012), pH value 

(ElMasry et al., 2012), and marbling (Chen et al., 2010; Jackman et al., 2009). Research on the 

application of CVS in the pork industry is behind other fields with most research occurring 

within the past decade. Research has focused on the use of CVS for detecting pale, soft, and 

exudative (PSE) pork (Warriss et al., 2006; Chmiel et al., 2011, 2016), predicting pork color (Lu 

et al., 2000; Faucitano et al., 2005; Huang et al., 2013; Liu & Ngadi, 2014; Xin et al., 2016), and 

even for detection of Escherichia coli contamination (Tao & Peng, 2014). 
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Raman Spectroscopy 

Raman spectroscopy provides qualitative and quantitative information at the molecular 

level by measuring the in-elastic light scattering when illuminating the sample with a strong 

laser. It is a noninvasive spectroscopic technique providing detailed information about the 

chemical composition of pork. It is also relatively insensitive to water, hence does not suffer 

from water interference making it a great technology for pork. Disadvantage of using Raman 

spectroscopy is the size of region of interest. Research utilizing Raman spectroscopy has been 

able to predict early postmortem and ultimate pH with high accuracy (Scheier, 2015). Raman 

spectroscopy has also been implemented on determination of fatty acid composition in pork 

adipose tissue. Results show a high accuracy in predicting the poly- and mono-unsaturated and 

saturated fatty acids within pork adipose tissue (Berhe, 2016). 

Vis/NIRS 

Another spectroscopic method is Vis/NIRS analysis, which uses visible light and near-

infrared region of the electromagnetic spectrum. It provides an objective, repeatable, accurate 

method to predict qualitative attributes and chemical composition in meat. Pork was classified 

into three quality grades (PSE, RFN and DFD) using Vis/NIRS with an overall accuracy of 96 % 

(Barbin, 2012). It also showed that color reflectance, pH, and drip loss could be predicted with 

R2 of 0.93, 0.87, and 0.83, respectively, when using a fresh pork chop. When using frozen pork 

chops as samples, R2 for predicting drip loss, color (L*, a*, and b*), and cooking loss were 

0.762, 0.906, 0.716, 0.814, and 0.845, respectively (Xie, 2015). Chemical composition traits of 

protein, moisture, and fat were predicted with R2 of 0.92, 0.87, and 0.95, respectively (Barbin, 

2013). 
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Hyper Spectral Imaging 

Hyper spectral imaging is a combination of spectroscopic techniques and computer image 

analysis. It shares the advantage of both Raman spectroscopy and CVS, being chemical sensitive 

and capable of collecting data of the whole surface. However, the enormous amount of data 

being collected in each hyperspectral cube results in time consuming data collection and data 

analysis. In 2007, Jun Qiao et al. found, by using wavelengths (430-465 nm & 780-864 nm) and 

artificial neural network, they could establish a model to successfully group RFN and RSE (red, 

soft, and exudative) pork with 85 % accuracy. Pork quality traits of drip loss, pH, and color were 

predicted with correlation coefficients of 0.77, 0.55, and 0.86, respectively. When Gabor filter, 

image texture feature extraction was applied with hyperspectral imaging, a statistically 

significant improvement in grouping pork quality (RFN, PFN, PSE, and RSE) was achieved 

(Liu, 2010). Other attributes such as moisture content of pork chops were successfully predicted 

with R2 of 0.94 (Ma, 2017). A safety attribute, E. coli contamination, was also studied and 

predicted with high accuracies (Tao, 2012, 2014). In 2013, Huang et al. predicted total viable 

count, most important index in evaluation of quality and safety of meat, with a successful R2 of 

0.83. Total volatile base nitrogen content, an indicator of raw meat chemical spoilage, was found 

to have an R2 of 0.854 when obtained using salted and cooked pork chop as sample (Cheng, 

2017). 
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CHAPTER 2. EVALUATION OF PORK MARBLING USING COMPUTER VISION 

SYSTEM 

Abstract 

The objective of this study was to investigate the ability of computer vision system (CVS) 

to predict pork intramuscular fat percentage (IMF%). Center-cut loin samples (n=85) were 

trimmed of subcutaneous fat and connective tissue. Images were acquired and pixels were 

segregated to estimate IMF% for each sample. Eighteen image color features were extracted 

from each image. Subjective marbling scores (SMS) were determined by a trained grader for 

each image. Crude fat percentage (CF%) was calculated using the ether extract method. Image 

color features and computer-estimated IMF% were used as predictors for stepwise regression and 

support vector machine (SVM) models. Results showed that SMS had a correlation of 0.81 with 

CF% while the computer-estimated IMF% had a 0.66 correlation with CF%. Correlations 

between computer-estimated IMF% and SMS were 0.62. Accuracy rates for regression models 

were 0.63 for stepwise and 0.75 for SVM. These results indicate that CVS has the potential to be 

used as a tool in predicting pork IMF%. 

Introduction 

It is generally accepted that marbling, or intramuscular fat (IMF), is an important factor 

which positively influences meat quality. Pork loins with more marbling have been shown to be 

associated with greater juiciness, flavor, and tenderness scores (Fernandez, Monin, Talmant, 

Mourot, & Lebret, 1999a; Brewer, Zhu, & McKeith, 2001; Cannata et al., 2010). Fortin, 

Robertson, and Tong (2005) suggested that once IMF percentage (IMF%) exceeds a threshold 

level of 1.0 %, it does not affect instrumental measurement of tenderness. The amount of visible 

fat in loin chops was found to have a negative effect on overall appearance acceptability to 
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consumers because chops with a greater degree of marbling appeared to be more fat and lighter 

in lean color (Brewer et al., 2001). However, consumer ratings of juiciness, initial tenderness, 

and flavor were significantly greater (P < 0.05) for high IMF pork compared to low IMF pork 

when cooked, suggesting a discrepancy between visual raw product acceptance and cooked 

product acceptance (Brewer et al., 2001). In 2010, Moeller et al. reported even though little, an 

increase of IMF resulted in improvement of pork palatability and in consumer’s likelihood of 

purchase. Japan and Korea desire high quality pork which is dark in color and has a high 

percentage of IMF (Ngapo, Martin, & Dransfield, 2007; Oh & See, 2012) and account for 

50.14 % on a value basis of US pork exports (USMEF, 2015). 

Current methods to measure IMF in pork are limited. In laboratory-based research, IMF 

can be determined by using the crude fat extraction method (AOAC, 1990); however, this 

extraction method is labor and time intensive. The most common way to determine IMF in the 

pork industry is by subjective assessment. Assigning subjective marbling scores requires trained 

individuals assessing the pork loins using pork marbling standard cards (NPB, 2011) on a scale 

of 1 to 10 (1=devoid, 10=abundant). However, since this is a subjective measurement, variation 

can occur due to different evaluators, different lean color, and different environmental factors in 

the slaughter plant such as lighting. 

Computer vision system (CVS) is a system that contains an illumination system, a 

camera, and image analyzing software utilizing a computer. It has been widely utilized in the 

food industry and is known to be rapid, economic, consistent, accurate, and non-invasive (Sun, 

2000). Many efforts have been made enhancing the utilization of CVS in the agriculture industry 

such as classification of types of cereal grains (Luo, Jayas, & Symons, 1999; Paliwal, Visen, & 
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Jayas, 2001), color grading for apples (Nakano, Kurata, Kaneko, Kazama, & Takizawa, 1992), 

and detection of bruises on strawberries (Nagata, Tallada, & Kobayashi, 2006). 

In the beef industry, CVS has been utilized to objectively measure multiple features of 

beef quality such as marbling and yield percentage using the “beef cam” (Cannell et al., 2002). 

Research has shown the potential of CVS in predicting beef color (Larraín, Schaefer, & Reed, 

2008), fat color, (Chen, Sun, Qin, & Tang., 2010), tenderness (Li, Tan, Martz, & Heymann, 

1999; Li, Tan, & Shatadal, 2001; Tan, 2004; Sun et al., 2012; ElMasry, Sun, & Allen, 2012), pH 

value (ElMasry et al., 2012), and marbling (Chen et al., 2010; Jackman, Sun, & Allen, 2009). 

Research on the application of CVS in the pork industry has further developed in the past 

decade. Research has focused on the use of CVS for detecting pale, soft, and exudative (PSE) 

pork (Warriss, Brown, & Paściak, 2006; Chmiel, Sƚowiński, & Dasiewicz, 2011; Chmiel, 

Sƚowiński, Dasiewicz, & Florowski, 2016), predicting pork color (Lu, Tan, Shatadal, & Gerrard, 

2000; Faucitano, Huff, Teuscher, Gariepy, & Wegner, 2005; Huang, Liu, Ngadi, & Gariépy, 

2013; Liu & Ngadi, 2014; Xin et al., 2016), and even for detection of Escherichia coli 

contamination (Tao & Peng, 2014). 

Support vector machine (SVM) is a novel machine learning technology which has been 

widely utilized in food or agriculture industry for classification problems such as olive oil 

(Devos, Downey, & Duponchel, 2014), milk (Brudzewski, Osowski, & Markiewicz, 2004), rice 

(Kaur & Singh, 2013), pizza sauce spread (Du & Sun, 2005), fish filet (He, Wu, & Sun, 2014), 

white vinegar (Bao et al., 2014). It is a commonly used pattern recognition algorithm which has 

been proven to be robust and accurate. In our research SVM is an appropriate method for 

multivariate data image based research (Sun, Chen, Berg, & Magolski, 2011; Sun et al., 2012; 

Sun et al., 2014; Sun et al., 2016)). 
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However, little research of using CVS as a tool for objective measurement of IMF% in 

pork loin chops has been conducted (Faucitano et al., 2005; Huang et al., 2013). Thus, the 

objective of this research was to evaluate the potential of using CVS to estimate IMF% in pork 

and to set up IMF% prediction models using stepwise regression and SVM modeling. 

Furthermore, the objective of this research is to compare the accuracy of our CVS system to 

subjective IMF% determined by a trained grader. 

Material and Methods 

Pork Sample Preparation 

Boneless center-cut pork loin sections (10.16 cm thick, n = 85) were obtained from two 

slaughter facilities. Samples were shipped overnight to North Dakota State University (NDSU). 

After arrival at NDSU, a 2.54-cm thick chop was taken from the center of the loin sample. Chops 

were then trimmed of subcutaneous, intermuscular fat, and connective tissue to be used for 

computer imaging and ether extract analysis for IMF%. 

Color Image Acquisition 

After trimming, an image was acquired on both sides of the samples using the computer 

vision system. The computer vision system (Fig. 2.1) consists of three components: a three 

charge-coupled device color digital camera (Model S2100HD, Fujifilm Corporation, Japan) with 

supporting lighting system consisting of two white LED bar lights (Lux = 401; YX-BL25040, 

Yongxin Ltd., China), and a personal computer (850 MHz AMD Athlon processor with 1024 

MB RAM). Images were processed and analyzed using Matlab software (Version 7; The Math-

works, Natick, MA, USA). A self-designed image acquisition studio with light-absorbent black 

fabric background was established in order to provide a controlled and consistent lighting 

environment. A dome-shaped reflective polyethylene material was installed to assist in the even  



 

25 

 

 

Figure 2.1. Computer vision acquisition system. *CCD = charge coupled device. 
 

distribution of light from the bar lights inside the studio. The RGB (red, green, blue) setting for 

camera was calibrated using a white plate before each period of image acquisition. 

Image Processing and Color Features Extraction 

The original image acquired by the computer vision system is shown in Fig. 2.2(a). Using 

the Matlab software, the background of the image was removed using the gray level histogram 

Otsu method (Otsu, 1975; Fig. 2.2(b)). After removing the background, the image was binarized  

 

Figure 2.2. Segmentation procedure: (a) Original pork sample image. (b) Removal of 
background. (c) B channel shown in gray scale for lean and fat segmentation. (d) Fat 
segmentation. 
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on the optimum threshold value according to the color space blue (B) layer (Fig. 2.2(c)) which 

was done by calculating the B value of every pixel and automatically estimating the threshold 

between lean and fat tissue (Fig. 2.2(d)) according to Sun’s method (Sun et al., 2014).  

The number of fat and lean tissue pixels was calculated by computer pixel counting 

method using images (both sides) from each sample. Total pixels of the sample were the sum of 

fat and lean tissue pixels. IMF% from image processing method was estimated as below: 

Image IMF% = Marbling area pixel / (Marbling area pixel + Lean area pixel) (Eq. 2.1) 

Eighteen image color components (the mean, μ, and standard deviation, σ, of each color space 

panel) were extracted from three color spaces: RGB (red, green, blue), HSI (hue, saturation, 

intensity), and L*a*b* (black to white, green to red, blue to yellow) according Sun’s method 

(Sun, 2016). 

Subjective Marbling Score & Lipid Extraction 

Subjective marbling score (SMS) was determined by a trained evaluator using pork 

quality standard cards (NPB, 2011) based on the original images. A grade of marbling was 

giving from the range of 1 (devoid of marbling) to 3 (moderate amount of marbling). The SMS 

was determined and averaged based on both sides images from a sample. 

After images were acquired, samples were freeze dried for 48 h to remove moisture. 

After the freeze drying period, crude fat percentage (CF%) was determined gravimetrically using 

Soxhlet extraction procedure with petroleum ether (AOAC, 1990). 

Statistical Analysis 

The means procedure in SAS (v. 9.4; SAS Institute, Inc., Cary, NC, USA) was used to 

estimate the simple statistics for CF%, SMS, and image IMF%. The correlation procedure in 
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SAS was used to estimate the Pearson correlations between CF%, SMS, and image IMF%. 

Simple statistics for the 18 color features were also estimated using the means procedure in SAS. 

Stepwise regression models were constructed by recursively adding or deleting one 

independent predictor at a time. Stepwise regression modelling will include the independent 

predictor with the lowest P-value provided it meets the threshold for entrance into the model and 

then will check to ensure all predictors in the model meet the threshold for retention in the 

model, removing one predictor at a time if it does not meet the threshold for retention in the 

model. This continued until the same variable was being added and removed or no variables 

were added or removed. In this study, the reg procedure in SAS was utilized to conduct the 

stepwise regression analysis, using a significance level of P < 0.15 for entrance into the 

prediction model and P < 0.10 for retention in the prediction model. 

In order to test and improve the stability and robustness of the model, the bootstrap 

method by Efron (1979) was adopted using SAS. Using the image IMF% value and the 18 color 

features, stepwise regression modelling was conducted using the bootstrap technique. Data was 

divided into training (70 %) and test (30 %) data sets. After 100 repetitions, a scree test was 

conducted to determine which variables to include in the final model based on the number of 

times they were included in the stepwise regression model. After obtaining the variables of 

interest for the final model, the bootstrap technique was utilized again for stepwise regression. 

Again splitting the data into training (70 %) and test (30 %) and running 1000 replications, a 

final model was developed. The final model was then used to estimate the IMF% (RIMF%) and 

compared to the actual IMF% from the ether extraction. 

Support vector machine (SVM) proposed by Cortes and Vapnik (1995) is a supervised 

learning technique with associated learning algorithms which is widely used for classification 
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and regression problems. The SVM can effectively perform binary non-linear classification by 

using the kernel trick, where it calculates the hyperplane which maximizes the distance to the 

closest samples of both classes. Therefore, it is very important to choose the appropriate kernel 

function before constructing an SVM classifier. Currently, the popular kernel functions include 

polynomial darnel function, sigmoid kernel function, and radial basis function (RBF) kernel 

function. Howley and Madden (2005) has shown that RBF kernel function performs best and is 

widely used in SVM; therefore, in this study, the RBF kernel function was used for SVM. The 

RBF kernel function can be written as: 

K(xiyi)=exp(-y||xi-xj||2) (Eq. 2.2) 

where x ∈ Rn is n-dimension vector and yi∈{-1, +1} is the class label, γ is a parameter which 

should be specified by the model user. More details regarding selecting the appropriate kernel 

parameter, γ, and penalty constant, C, can be found in Sun et al. (2014). A multiclass SVM 

classifier was conducted since the SMS grade ranged from 1 to 3. Multi-SVM classifier can be 

developed by combining two class SVM classifiers using one of two strategies: one-versus-one 

or one-versus-rest (Herbrich, 2004). In this study, a one-versus-one method was adopted and the 

data was divided into a training set and a test set (approximately 70/30 split) for SVM model 

validation. 

Two methods were used to determine accuracies of the stepwise regression and SVM 

models. The first was to calculate the residual (CF% - RIMF%). If the absolute value of the 

residual was less than 0.5, then the estimate was considered to be correct. The second was to give 

each sample a categorical value based on the CF% and the RIMF%. The categorical values were 

1 (IMF% < 2), 2 (2 ≤ IMF% < 3), and 3 (IMF% ≥ 3). After categorical values were assigned, the 

percent classified correctly per original category and overall were calculated. 
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Results and Discussion 

Simple Statistics and Correlations 

Simple statistics of the different methods of obtaining IMF% is shown in Table 2.1. The 

SMS is less variable and greater on average than CF%. Image IMF% is more variable and lower 

on average than CF%. Pearson correlation coefficients between CF%, image IMF%, and SMS 

are reported in Table 2.2. Simple statistics for the 18 color features extracted are reported in 

Table 2.3. 

Table 2.1. Simple statistics for three different methods of estimating intramuscular fat 
percentage (IMF%). 
Method N Mean S.D. Minimum Maximum 
Ether Extract IMF% 85 2.13 0.90 0.60 4.33 
Subjective IMF% 85 2.38 0.65 1 4 
Image IMF% 85 1.91 1.31 0.21 7.01 

 

Table 2.2. Pearson correlation coefficients between three different 
methods of estimating intramuscular fat percentage (IMF%). 
 Image IMF% Subjective IMF% 
Ether Extract IMF% 0.62* 0.81* 
Image IMF%  0.66* 
* Correlations are significant at P < 0.0001. 

 

In the current study, the Pearson correlation coefficient between image IMF% (calculated 

by pixels) and SMS was 0.66. Huang et al. (2013) had similar results using grey-level co-

occurrence matrix (GLCM) based and wide line detector (WLD) methods (r2 = 0.79 and 0.94, 

respectively). Additionally, the Pearson correlation between image IMF% and CF% was 0.66 in 

the current study which was consistent with the result (r2 = 0.60) obtained by Faucitano et al. 

(2005). These results suggest a strong relationship with computer obtained marbling values with 

SMS and actual IMF%. 

 



 

30 

 

Table 2.3. Simple statistics for image color features. 
Color feature1 N Mean S.D. Minimum Maximum 
μR 85 157.88 19.39 112.87 192.14 
μG 85 98.05 12.75 66.86 122.86 
μB 85 88.13 11.27 61.42 109.53 
σR 85 31.61 5.86 18.20 43.33 
σG 85 20.07 3.68 11.66 28.58 
σB 85 18.23 3.32 10.69 25.52 
μH 85 6.20 1.62 3.82 10.50 
μS 85 24.91 6.48 15.37 42.11 
μI 85 114.69 14.39 80.38 140.70 
σH 85 0.05 0.01 0.03 0.06 
σS 85 0.15 0.02 0.11 0.18 
σI 85 23.22 4.26 13.44 32.46 
μL* 85 71.17 3.84 61.27 77.84 
μa* 85 13.59 1.00  11.51 16.12 
μb* 85 9.79 0.58 8.31 11.28 
σL* 85 14.13 1.93 9.59 18.02 
σa* 85 2.74 0.43 1.94 3.61 
σb* 85 2.00 0.28 1.43 2.53 
1 Mean, μ, and standard deviation, σ, for each image for R (red), G (green), B (blue), H 
(hue), S (saturation), I (intensity), L* (black to white), b* (blue to yellow), and a* (green 
to red). 

 

Stepwise Regression 

After the initial bootstrapping (100 repetitions with all 18 color features and image IMF% 

included to be fit in the stepwise regression model), the scree test (Fig. 2.3) was used to 

determine the variables to retain in the final model. Based on the scree test, Image IMF%, μa*, 

and μL* were retained. 

After rerunning the bootstrapping method with 1000 repetitions and only image IMF%, 

μa*, and μL* included, image IMF% and μa* were included in every run while μL* was only 

included 26.3 % of the time. Simple statistics from the bootstrapping stepwise regression model 

are presented in Table 2.4. Therefore, the final model for stepwise regression analysis was: 
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Figure 2.3. Scree test results for inclusion in model for Image intramuscular fat percentage 
(IMF%) and mean, μ, and standard deviation, μ, of 18 color features: R (red), G (green), B 
(blue), H (hue), S (saturation), I (intensity), L* (black to white), a* (green to red), and b* (blue to 
yellow). 

 

Table 2.4. Simple statistics for bootstrap resampling of stepwise regression 
analysis. 
Variable N Mean S.D. Minimum Maximum 

Intercept 1000 7.17 1.26 4.94 10.59 

β Image IMF%a 1000 0.53 0.04 0.44  0.72 

β μL*
b 1000 -0.01 0.02 -0.07 0 

β μa*
c 1000 -0.38 0.04 -0.53  -0.21 

R2 1000 0.55 0.04 0.40  0.70 
a Regression coefficient, β, for Image intramuscular fat percentage (IMF%). 
b Regression coefficient, β, for the mean, μ, value for L* (black to white). 
c Regression coefficient, β, for the mean, μ, value for a* (greed to red). 
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Estimated IMF% (RIMF%) = 7.1732411 + 0.5306245 × Image IMF% - 0.0117744 × 

μL* - 0.3827521 × μa* (Eq. 2.3) 

With the final model, an RIMF% was calculated for each of the 85 samples in the original 

dataset. A residual (IMFresid) was calculated for each observation as CF% minus RIMF%. The 

distribution of residuals is presented in Figure 2.4. The accuracy of the model was determined as 

the percentage of observations falling within 0.5 of the CF% value. The accuracy of the final 

model was determined to be 65.1 % with an additional 23.3 % of samples having an estimated 

IMF% within 1 of the CF% value. No samples had an RIMF% deviated greater than 2 from the 

CF%. The accuracies based on categories 1, 2, and 3 are presented in Figure 2.5. For category 1, 

76.2 % were classified as 1 and 23.8 % as 2. For category 2, 68.0 % were classified correctly and 

16.0 % were classified as 1 and 16.0 % as 3. For category 3, only 31.6 % were classified  

 

Figure 2.4. Distribution of residuals from stepwise regression and support vector machine 
(SVM) models 
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correctly with 52.6 % being classified as 2 and 15.8 % as 1. Overall, 63.9 % were classified 

correctly, 32.6 % were classified 1 category off, and 3.5 % were classified 2 categories off. 

SVM Model Prediction from Color Images 

The SVM modelling only reports the estimate of the samples in the test data set. 

Therefore, there is no equation to report. Figure 2.4 shows the distribution of residuals. The 

accuracy of the model was determined as the percentage of observations falling within 0.5 of the 

CF% value. The accuracy of the final model was determined to be 65.0 % with an additional 

35.0 % of samples having an estimated IMF% within 1 of the CF% value. No samples had an 

estimated IMF% deviation greater than 2 from the CF%. The accuracies based on categories 1, 2, 

and 3 are presented in Figure 2.5. For category 1, there was only 1 sample in the test data set and 

it was classified as a 2. For category 2, 80 % were classified correctly and 10 % were classified 

as 1 and 10 % as 3. For category 3, 80 % were classified correctly with 20 % being classified as  

 

Figure 2.5. Comparison of stepwise model and SVM model to predict pork IMF% using image 
pixel area values and color features 
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2 and 0 % as 1. Overall, 65 % were classified correctly, 35 % were classified 1 category off, and 

0 % were classified 2 categories off. 

Overall Comparison of the Stepwise Linear Regression and SVM Classifier 

In this study, stepwise regression was compared with SVM regression. There was a 

noticeable difference in the overall accuracy and the prediction residuals. Many factors 

contributed to such result. In the stepwise model while 18 color features were extracted from the 

image, after running bootstrap method and scree test, only image IMF%, μL*, and μa* were 

chosen to remain in the final formula. All samples (85) were used to test the accuracy of the 

model. The SVM regression is a machine-learning technique which can be trained to use all 

predictors including meaningful or nontrivial relationships utilizing training data and then use 

these relationships from the data base to predict new, unlabeled test data unlike stepwise 

regression which fits in suitable predictors and eliminate useless ones. Therefore, all 18 color 

features and image IMF% were used in the SVM model. However, the bootstrap method was not 

utilized for SVM model; hence only 30% (16) of the samples were used to test the model. 

Meanwhile the difference between sub-set and re-sampling may play a huge factor in 

establishment of the model and result of accuracy due to the size of sample. 

The distribution of the residuals from both models is shown in Figure 2.4. The SVM 

model has a higher prediction accuracy result; however, the distribution of residuals shows that 

stepwise model has a more favorable residual distribution. Also from the residual distributions, it 

shows that the SVM model will have a higher estimate than the actual result while the stepwise 

model, even though more evenly distributed, tends to underestimate the CF%. This might be due 

to the difference between the factors that were used to setup the model or the fundamental 

algorithm of the two models. 
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Stepwise regression model predicted CF% correctly approximately 64 % of the time 

while the SVM model predicted correctly 75 % of the time. While the accuracies are not 

extremely high, they show potential for developing a model to predict CF%. Several factors were 

considered to modify in order to improve the predict accuracy, such as number of samples needs 

to be expanded. With a greater number of samples in the training dataset, there would be better 

representation of samples along the entire range of CF%, resulting in less extrapolation of the 

data. For example, the randomization of creating the training and testing datasets for the SVM 

model resulted in the testing dataset only having one sample of grade 1. With a different 

subsampling, the training dataset could have only had one sample of grade 1. With a larger 

dataset, the odds of being limited on samples of a particular grade would be decreased. A larger 

dataset could also result in a better model being developed which could increase accuracy. It is 

difficult for the CVS to detect very fine marbling. More research involving advanced image 

analyzing techniques and cameras which take pictures of higher quality and clarity needs to be 

conducted and would be beneficial in the development of an automated objective method of 

measuring IMF%. 

Conclusions 

In this study, stepwise regression and SVM modelling were utilized to predict IMF% in 

pork samples. The results demonstrate the potential of using CVS and color images of pork 

samples to estimate IMF%. The distribution of residuals is promising for the use of CVS as a 

tool to predict IMF% in pork in the future. Further work will be to expand sample size through 

all categories of IMF%, building proper industrial implementation for marbling evaluation, and 

exploring potential image analysis techniques to improve distinction of fine marbling in pork. 
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CHAPTER 3. PREDICTING PORK CHOP INTRAMUSCULAR FAT USING VISION 

SYSTEM TECHNOLOGY 

Abstract 

The objective of this study was to examine the potential of using computer vision system 

(CVS) as a tool to predict pork chop intramuscular fat (IMF) percentage under industry scale 

equipment and environment. An anterior (3rd rib) and posterior (10th rib) chop were obtained 

from 200 pork loins from 7 different packing plants (n = 2800 chops). Color images of pork chop 

samples were acquired using a CVS. Subjective marbling scores (SMS) were determined 

according to the National Pork Board standards (NPB, 2011) by a trained evaluator. Crude fat 

percentage (CF%) was calculated using ether extract method (AOAC, 1990). Results show that 

SMS had an overall accuracy of 70.1 % for predicting CF%, while accuracies were 90.0, 44.5, 

34.0, 30.4, and 44.1 % for CF% categories of 0-1.99, 2-2.99, 3-3.99, 4-4.99, and greater than 

5 %, respectively. Comparatively, the overall accuracy of using CVS was 68.6 %, with 

individual accuracies being 78.6, 48.5, 23.7, 13.3, and 24.4 % for CF% categories of 0-1.99, 2-

2.99, 3-3.99, 4-4.99, and greater than 5 %, respectively. These results demonstrate the potential 

of using CVS as an objective measurement for pork chop CF% within the industry environment. 

Introduction 

It is generally accepted that marbling, or intramuscular fat (IMF), is an important factor 

which positively influences meat quality. Pork loins with more marbling have been shown to be 

associated with greater juiciness, flavor, and tenderness scores (Fernandez, Monin, Talmant, 

Mourot, & Lebret, 1999a; Brewer, Zhu, & McKeith, 2001; Cannata et al., 2010). Fortin, 

Robertson, and Tong (2005) suggested that once IMF percentage (IMF%) exceeds a threshold 

level of 1.0 %, it does not affect instrumental measurement of tenderness.  
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Consumers from different culture have different preference in pork quality traits such as 

color and marbling. While the amount of visible fat in loin chops was found to have a negative 

effect on overall appearance in the U.S. (Brewer et al., 2001), it is reported that consumers from 

Japan, Korea find well marbled pork more appealing whereas consumers from Taiwan, Poland 

and Australia prefer lean pork (Ngapo et al., 2013). When cooked, consumer ratings of juiciness, 

initial tenderness, and flavor were significantly greater (P < 0.05) for high IMF pork compared to 

low IMF pork, regardless of visual preference of the raw product (Brewer et al., 2001). Japan and 

Korea desire high quality pork which is dark in color and has a high percentage of IMF (Ngapo, 

Martin, & Dransfield, 2007; Oh & See, 2012) and account for 50.14 % on a value basis of U.S. 

pork exports (USMEF, 2015). 

Current methods to measure IMF in pork are limited. In laboratory-based research, IMF 

can be determined by using crude fat extraction (AOAC, 1990); however, this extraction method 

is labor and time intensive. The most common way to determine IMF in the pork industry is by 

subjective assessment. Assigning subjective marbling scores requires trained individuals 

assessing the pork loins using pork marbling standard cards (NPB, 2011) on a scale of 1 to 10 

(1=devoid, 10=abundant). However, since this is a subjective measurement, variation can occur 

due to different evaluators, different lean color, and different environmental factors in the 

slaughter plant such as lighting, fatigue or exhaustion of eye sight, and the repeatability is poor. 

This suggest that a rapid, accurate, repeatable, objective measurement to determine IMF in pork 

is still needed. 

Computer vision system (CVS) is a system that contains an illumination system, a 

camera, and image analyzing software utilizing a computer. It has been widely utilized in the 
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food industry and is known to be rapid, economic, consistent, accurate, and non-invasive (Sun, 

2000).  

In the beef industry, CVS has been utilized to objectively measure multiple features of 

beef quality such as marbling and yield percentage using the “beef cam” (Cannell et al., 2002). 

Research has shown the potential of CVS in predicting beef color (Larraín, Schaefer, & Reed, 

2008), fat color, (Chen, Sun, Qin, & Tang., 2010), tenderness (Li, Tan, Martz, & Heymann, 

1999; Li, Tan, & Shatadal, 2001; Tan, 2004; Sun et al., 2012; ElMasry, Sun, & Allen, 2012), pH 

value (ElMasry et al., 2012), and marbling (Chen et al., 2010; Jackman, Sun, & Allen, 2009). 

Research on the application of CVS in the pork industry has further developed in the past 

decade. Research has focused on the use of CVS for detecting pale, soft, and exudative (PSE) 

pork (Warriss, Brown, & Paściak, 2006; Chmiel, Sƚowiński, & Dasiewicz, 2011; Chmiel, 

Sƚowiński, Dasiewicz, & Florowski, 2016), predicting pork color (Lu, Tan, Shatadal, & Gerrard, 

2000; Faucitano, Huff, Teuscher, Gariepy, & Wegner, 2005; Huang, Liu, Ngadi, & Gariépy, 

2013; Liu & Ngadi, 2014; Xin et al., 2016), and even for detection of E. coli contamination (Tao 

& Peng, 2014). 

In 2014 Huang reported that different sampling locations including last rib, 10th rib, 

3rd/4th last ribs and 2nd/3rd last ribs have been adopted in different studies, and that the 

nonuniformity of sampling site could cause discrepancy in results of pork quality studies.   

Thus, the objective of this research was to compare the accuracy of using CVS estimated 

IMF% and subjective marbling score with CF%. Furthermore, to understand if site of sampling 

would play as an factor to the accuracy of both methods. 
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Material and Methods 

Sample Collection and Image Acquisition 

Whole, boneless loin samples were obtained from 7 different processing plants (n = 200 

per plant). Each sample was selected by a trained evaluator from the deboning line. Samples 

were chosen to maximize the variation in pork quality for subjective color and marbling scores, 

which were assessed on-line according to National Pork Board (NPB) standards (NPB, 2011). 

After in-plant data collection (data not presented), whole loins were vacuum-packaged and 

transported in a refrigerated truck to the US Meat Animal Research Center in Clay Center, NE. 

Whole loins were aged for 14 d and then sliced into individual chops. The chop from the 3rd and 

10th ribs were selected and a digital color image was taken of each chop using a computer vision 

system (CVS) after a 15 min bloom period (Fig. 3.1), consisting of an industry camera (NI 

1776C smart camera, National Instrument, Ltd., USA) with a 1/1.8” F1.6/4.4-11-mm lens 

(LMVZ4411, Kowa, Ltd., Japan), a 44-inch dome light (DL180, advance illumination, Ltd., 

USA), and a personal laptop (Lenovo, Ltd., China). The CVS was attached to a table to ease 

transportation of the dome light and to standardize the relationship of the camera to the dome 

light and the samples. A black, light-absorbent fabric was installed between the dome light and 

table to exclude light noise from the surrounding environment. Before sample collection, a 

Minolta white tile was used for calibration. The white tile was placed in the center and corner of 

the CVS to ensure the evenness of light spread. When taking pictures of the white tile, color 

space red green and blue color features were extracted and used as standards for calibration and 

setting of the CVS. Each sample was manually placed on a light-absorbing, black background 

surface for image acquisition. The color image was captured and stored using LabVIEW 

software (National Instrument, Ltd, TX). After imaging, samples were covered with plastic wrap 
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and allowed to bloom until 3 h post-cut time. After 3 h, subjective marbling scores (SMS) were 

assessed by a trained evaluator using the NPB standards. After SMS were assessed, chops were 

vacuum packaged and transported to North Dakota State University on ice. Once at North 

Dakota State University, chops were trimmed of connective tissue and subcutaneous fat. Samples 

were freeze-dried for 48 h to remove moisture. After the freeze-drying period, crude fat 

percentage (CF%) was determined gravimetrically using Soxhlet extraction with petroleum ether 

according to AOAC procedure (AOAC, 1990). 

 

Figure 3.1. Pork color image acquisition system 
 

Image Analysis 

An original pork sample image acquired by the CVS is shown in Figure 3.2(a). To 

remove the background of the image automatically, Otsu method was performed using the 

LabVIEW software (Fig. 3.2(b); Otsu, 1975). Once the background was removed, the Sobel  
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(a) (b) (c) 

  

(d) (e) 

Figure 3.2. (a) Original image; (b) background segmentation; (c) identification of fat pixels; (d) 
identification of region of interest; (e) identification of fat and lean muscle pixels within region 
of interest 
 
Method was applied to the image to segment lean muscle pixels and IMF pixels (Fig. 3.2(c)). 

The region of interest (ROI; 4.08 × 5.08 cm) was then determined automatically using a mapping 

system to avoid uncleaned surface or connective tissue remained on the pork loin chop (Fig. 

3.2(d)). After determination of ROI, the fat and lean pixels were then counted to calculate image 

IMF% (IIMF) within ROI (Fig. 3.2(e)). 

Data Analysis 

In order to calculate the accuracies of SMS predicting CF%, CF% was categorized into 

ranges of 0-1.99, 2.00-2.99, 3.00-3.99, 4.00-4.99, and greater than 5.00 %, identified as CF1, 

CF2, CF3, CF4, and CF5, respectively. Bootstrapping (Efron, 1979) was utilized to run 100 

replications of randomly dividing the data into training (70 %) and test (30 %) datasets. The 

training dataset was used to generate a simple regression model of CF% = intercept + β × IIMF. 

The test dataset was used to determine the accuracy of the equation developed from the training 
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dataset. Intercepts and betas from all 100 replicates were averaged to create a final regression 

equation to calculate a regression IMF% (RIMF). Accuracies were averaged across all 100 

replicates and compared to results from the final regression equation using all data. Since results 

were similar, results from the final regression equation will be reported. To compare results with 

SMS, RIMF was also categorized into RIMF1, RIMF2, RIMF3, RIMF4, and RIMF5, using the 

same values as CF%. Residual distributions of IIMF and RIMF were calculated by subtracting 

them from CF% to further understand the predictive power of IIMF and RIMF. All procedures 

were accomplished using SAS (v. 9.4, SAS Institute, Inc., Cary, NC). 

Results and Discussions 

Distributions 

From the 2800 chops that were collected, the distribution of CF% was 1657, 787, 253, 

69, and 34 in CF1, CF2, CF3, CF4, and CF5, respectively. By definition of SMS, there should be 

59.2, 28.1, 9.1, 2.4, and 1.2 % scored as a 1, 2, 3, 4, and greater or equal to 5, respectively. This 

distribution of CF%, with 87.3 % of chops having a CF% less than 3, is similar to results from 

Newman (2015), who found 87% of pork loin chops in the US retail market had a SMS equal or 

less than 3% marbling. 

Comparatively, actual SMS had a distribution of 1840, 611, 208, 98, and 43 for scores 1, 

2, 3, 4, and 5 or above, respectively, which corresponds to percentages of 65.7, 21.8, 7.4, 3.5, 

and 1.5 %, respectively. Three regression models were developed to estimate RIMF, one each for 

overall, just anterior chops, and just posterior chops. The equations were as follows: 

RIMF% = 1.4641932 + 0.394858972*IIMF% (Eq. 3.1) 

RIMF% = 1.624465895 + 0.427090402* IIMF% (Eq. 3.2) 

RIMF% = 1.309720432 + 0.357723038* IIMF% (Eq. 3.3) 
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where Eq. 3.1 is for overall, Eq. 3.2 is for anterior chops, and Eq. 3.3 is for posterior chops. The 

distribution of RIMF for both chops combined was 1838, 774, 149, 33, and 6 for RIMF1, 

RIMF2, RIMF3, RIMF4, and RIMF5, respectively, which corresponds to percentages of 65.6, 

27.6, 5.3, 1.2, and 0.2 %, respectively. The distribution of SMS had more chops in the extreme 

categories (1, 4, and 5) than CF% while the distribution of RIMF had more chops in the lower 

categories (1 and 2) than CF%. 

Accuracies 

When comparing CF% with SMS, the overall prediction accuracy was 70.1 %. When 

evaluating different levels of marbling, SMS had an accuracy of 90.0, 44.5, 34.0, 30.4, and 

44.1 % when predicting CF1, CF2, CF3, CF4, and CF5, respectively (shown in Fig. 3.3). SMS  

 

Figure 3.3. Overall crude fat categorical versus subjective marbling scores. Within a crude fat 
category, the distribution is what the samples were called subjectively and the percentages will 
sum to 100. The green column represents the accuracy of calling subjective marbling score in 
each category, whereas light blue, orange, gray, yellow, and dark blue is what the samples were 
assessed. 
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had the best accuracy in predicting CF% under 2, whereas when predicting CF% at a higher 

percentage the accuracies were lowered. In fact, Fig. 3.3 shows that SMS often underestimates  

CF% at the higher CF%. This could be explained by several factors. Variety in pork appearance 

can affect SMS. While the NPB standards provide an example for each SMS that corresponds to 

the CF%, pork chops being assessed may have several different traits that affect the evaluator’s 

ability to correctly assess the CF%, such as different color, texture, exudative, and the fineness or 

coarseness of IMF. Chops that are paler, more exudative, or have finer IMF are harder for the 

evaluator to distinguish IMF from the lean tissue. Additionally, evaluator fatigue could 

contribute to a decreased accuracy of evaluating SMS. When evaluating a large number of 

samples, the evaluator may become fatigued and be less accurate in calling SMS as an estimate 

of CF%. These results suggest that, even for trained evaluators, it is hard to subjectively and 

accurately predict the IMF% of pork chops, particularly when CF% is higher than 2 %. When 

dividing the pork chop into anterior (3rd rib) and posterior (10th rib), similar results were found. 

The overall accuracies to predict CF% in anterior and posterior were 66.6 and 73.7 %, 

respectively. For the anterior group, the accuracies in each category were (shown in Figure 3.4)  

94.3, 40.5, 33.5, 32.7, and 46.2 % for CF1, CF2, CF3, CF4, and CF5, respectively. For the 

posterior group, the accuracies in each category were (shown in Figure 3.5) 86.9, 49.6, 35.1, 

23.5, and 37.5 % for CF1, CF2, CF3, CF4, and CF5, respectively. When comparing anterior 

group to posterior group, SMS had better overall accuracy in the posterior group. 

The overall accuracy for RIMF to predict CF% is 60.8 %. Accuracies for RIMF were 

82.6, 41.4, 15.4, 11.6, and 5.9 % when predicting CF1, CF2, CF3, CF4, and CF5, respectively 

(shown in Figure 3.6). RIMF had the best accuracy in predicting CF% under 2, whereas when 

predicting CF% at a higher percentage, the accuracy lowered. When looking at the distribution of  



 

48 

 

 

Figure 3.4. Anterior crude fat categorical versus Subjective. Within a crude fat category, the 
distribution is what the samples were called subjectively and the percentages will sum to 100. 
The green column represents the accuracy of calling subjective marbling score in each category, 
whereas light blue, orange, gray, yellow, and dark blue is what the samples were called 
subjectively. 
 

 

Figure 3.5. Posterior crude fat categorical versus Subjective. Within a crude fat category, the 
distribution is what the samples were called subjectively and the percentages will sum to 100. 
The green column represents the accuracy of calling subjective marbling score in each category, 
whereas light blue, orange, gray, yellow, and dark blue is what the samples were called 
subjectively. 
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Figure 3.6. Overall crude fat categorical versus RIMFC. Within a crude fat category, the 
distribution is what the samples were called subjectively and the percentages will sum to 100. 
The green column represents the accuracy of calling subjective marbling score in each category, 
whereas light blue, orange, gray, yellow, and dark blue is what the samples were assessed. 
 
prediction of CF%, RIMF results in predicting the CF% lower than the actual CF%. This could 

be due to the insufficient of sample size in high CF% as the majority of the samples were CF1 

and CF2. When dividing the pork chop into anterior (3rd rib) and posterior (10th rib), similar 

results were found. The overall accuracies to predict CF% in anterior and posterior were 56.6 

and 71.1%, respectively. For the anterior group, the accuracies in each category were 74.9, 48.9, 

19.9, 19.2, and 11.5 % for CF1, CF2, CF3, CF4, and CF5, respectively (shown in Figure 3.7). 

For the posterior group, the accuracies in each category were 88.3, 41.2, 14.3, 11.8, and 0.0 % 

for CF1, CF2, CF3, CF4, and CF5, respectively (shown in Figure 3.8). When comparing anterior 

group to posterior group, RIMF showed better predictive power in the posterior group. 

When comparing SMS and RIMF, both had the best accuracies at lower CF%. However, 

when predicting higher CF% (4 or 5), SMS had better accuracies as well as a narrower 
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distribution of the prediction when compared to RIMF. Both SMS and RIMF had higher 

accuracy when predicting CF% in the posterior chop when compared to the anterior chop. It is  

 

Figure 3.7. Anterior crude fat categorical versus RIMFC. Within a crude fat category, the 
distribution is what the samples were called subjectively and the percentages will sum to 100. 
The green column represents the accuracy of calling subjective marbling score in each category, 
whereas light blue, orange, gray, yellow, and dark blue is what the samples were assessed. 
 

 

Figure 3.8 Posterior crude fat categorical versus RIMFC. Within a crude fat category, the 
distribution is what the samples were called subjectively and the percentages will sum to 100. 
The green column represents the accuracy of calling subjective marbling score in each category, 
whereas light blue, orange, gray, yellow, and dark blue is what the samples were called. 
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noticed that when comparing anterior to posterior chops, anterior chops tended to be lighter in 

color (data not presented) and have higher CF% than posterior chops. Thus, the combination of 

paler lean meat and an increase in CF% increased the difficulty to distinguish between IMF and 

lean meat, especially for CVS. 

Residual Distributions 

Residual distributions overall and by plant are shown for IIMF in Fig. 3.9 and for RIMF 

in Fig. 3.10. Overall accuracies (residual between -0.5 and +0.5) were 20.9 and 53.3 % for IIMF 

and RIMF, respectively. For the individual plants, the accuracies were 31.5, 28.0, 27.5, 27.3, 

14.8, 8.8, and 8.8 % for IIMF and 46.8, 42.2, 51.6, 56.3, 57.9, 57.6, and 60.9 % for RIMF for 

plants 1, 2, 3, 4, 5, 6, and 7, respectively. The residual distribution was right-skewed for IIMF, 

suggesting that CVS tends to underestimate CF% when using just IIMF. However, when 

switching to RIMF, the residual distribution shifts towards being more accurate. However, there 

is a slight overestimation (left skewness) of CF%. This could possibly be improved by ensuring 

that the regression model development data set has equal representation of samples in each CF% 

category. 

Residual distributions of anterior chops overall and by plant are shown for IIMF in Fig. 

3.11 and for RIMF in Fig. 3.12. Overall accuracies (residual between -0.5 and +0.5) were 16.2 

and 47.3 % for IIMF and RIMF, respectively. For the individual plants, the accuracies were 22.0, 

23.5, 20.0, 19.8, 15.0, 8.5, and 5.5 % for IIMF and 44.5, 39.5, 44.0, 54.5, 49.5, 45.5, and 55.0 % 

for RIMF for plants 1, 2, 3, 4, 5, 6, and 7, respectively. The residual distribution was right-

skewed for IIMF, suggesting that CVS tends to underestimate CF% when using just IIMF. The  
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Figure 3.9. Overall residual distribution of image intramuscular fat percentage versus crude fat 
percentage. Green column represents percentage of residual that were within -0.5 and + 0.5. 
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Figure 3.10. Overall residual distribution of regression intramuscular fat percentage versus crude 
fat percentage. Green column represents percentage of residual that were within -0.5 and + 0.5. 
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Figure 3.11. Anterior residual distribution of image intramuscular fat percentage versus crude fat 
percentage. Green column represents percentage of residual that were within -0.5 and + 0.5. 
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Figure 3.12. Anterior residual distribution of regression intramuscular fat percentage versus 
crude fat percentage. Green column represents percentage of residual that were within -0.5 and + 
0.5. 
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Figure 3.13. Posterior residual distribution of image intramuscular fat percentage versus crude 
fat percentage. Green column represents percentage of residual that were within -0.5 and + 0.5. 
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Figure 3.14. Posterior residual distribution of regression intramuscular fat percentage versus 
crude fat percentage. Green column represents percentage of residual that were within -0.5 and + 
0.5. 
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distribution of residuals were wider when compared to overall and the accuracies dropped. This 

showed similarity with SMS in assessment of anterior chop. However, when switching to RIMF,  

the residual distribution shifts towards being more accurate. However, there is a slight 

overestimation (left skewness) of CF%. This could possibly be improved by ensuring that the 

regression model development data set has equal representation of samples in each CF% 

category. 

Residual distributions of posterior chops overall and by plant are shown for IIMF in Fig. 

3.13 and for RIMF in Fig. 3.14. Overall accuracies (residual between -0.5 and +0.5) were 25.7 

and 64.7 % for IIMF and RIMF, respectively. For the individual plants, the accuracies were 41.0, 

32.5, 35.0, 35.5, 14.5, 9.0, and 10.0 % for IIMF and 59.0, 53.0, 68.5, 70.0, 69.5, 68.5, and 

66.5 % for RIMF for plants 1, 2, 3, 4, 5, 6, and 7, respectively. The residual distribution was 

right-skewed for IIMF, suggesting that CVS tends to underestimate CF% when using just IIMF. 

The distribution of residuals were narrower when compared to overall and the accuracies 

increased. This showed similarity with SMS in assessment of anterior chop. However, when 

switching to RIMF, the residual distribution shifts towards being more accurate. However, there 

is a slight overestimation (left skewness) of CF%. When comparing results of anterior chops and 

posterior chops, both SMS and CVS has shown better accuracies in predicting CF% of 10 th rib 

chop, this suggest that there are discrepancy in between anatomy site. 

Conclusion 

When comparing results for prediction of CF%, SMS had an overall higher accuracy 

(70.1 %) when compared to RIMF (62.3 %). When dividing the pork chops into anterior and 

posterior groups, both SMS (66.6 %) and RIMF (56.6 %) had lower accuracies for anterior chops 

and both SMS (73.7 %) and RIMF (71.1 %) had higher accuracies for posterior chops. When 
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using IIMF as a predictor for CF%, the overall accuracy was 36.8 % and the distribution of 

residuals was right skewed, suggesting that the CVS tends to underestimate CF%. When using 

RIMF% as predictor for CF%, the overall accuracy increased to 53.3 % and the distribution of 

residual was only slightly left skewed, suggesting a slight tendency to overestimate CF%. 

Overall, the results demonstrate the potential of using CVS as an objective predictor of CF% in 

pork chops. 
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CHAPTER 4. PREDICTING PORK LOIN INTRAMUSCULAR FAT USING VISION 

SYSTEM TECHNOLOGY 

Abstract 

The objective of this study was to examine the potential of using computer vision system 

(CVS) as a tool to predict pork loin intramuscular fat (IMF) percentage under industry scale 

equipment and environment. Whole pork loins (n=1400) were obtained from 7 major meat 

plants. Color images of pork loin chop samples (n=1040) were acquired using a computer vision 

system. Subjective marbling scores (NPB, 2011) were determined by a trained evaluator 

according to surface of loin. Crude fat percentage (CF%) of 3rd and 10th rib chops were 

calculated using ether extract method (AOAC, 1990) and averaged to represent CF% of the 

whole loin. Results show that subjective marbling scores had an overall accuracy of 53.3 % of 

predicting CF%, while for individual categories, the accuracies were 66.2, 39.9, 31.3, 17.4, and 

60.0% for CF% ranges of 0-1.99, 2.00-2.99, 3.0-3.99, 4.0-4.99, and 5.0-5.99 %, respectively. 

The overall accuracy of using CVS was 58.56 %, while for individual catergories, the accuracies 

were 75.1, 46.0, 21.9, 8.7, and 0 % for CF% ranges of 0-1.99, 2.00-2.99, 3.0-3.99, 4.0-4.99, and 

5.0-5.99 %, respectively. These results indicate that CVS is better at predicting CF% in pork 

whole loins when compared to subjective marbling score and have the potential of replacing 

subjective marbling scores. 

Introduction 

Marbling is an important factor which positively influences meat quality. In the beef 

industry, quality is primarily driven by the level of marbling. In the pork industry, marbling has 

been shown to be associated with greater juiciness, flavor, and tenderness scores in center-cut 

loin chops (Fernandez et al., 1999b; Brewer et al., 2001; Cannata et al., 2010; Moeller et al., 
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2010a,b), with pork containing more intramuscular fat (IMF) being more favorable than pork 

containing low amounts of IMF (Brewer et al., 2001; Font-i-Furnols et al., 2012). 

While the preference in cooked pork is for greater IMF, visual acceptability levels of IMF 

in uncooked pork differs between countries. Well-marbled pork, or pork containing high levels 

of IMF, are preferred in Asian countries such as Japan and Korea while lean pork, or pork 

containing low levels of IMF, are preferred in European countries such as Finland and Poland 

(Ngapo et al., 2007). In the US, the amount of visible fat in loin chops was found to have a 

negative effect on overall appearance acceptability to consumers (Brewer et al., 2001). This 

shows variety in the acceptability of IMF in pork based on cultural background. 

Newman (2015) showed that a great deal of pork quality variation exists in the retail meat 

case nationwide and that the majority of pork (over 80 %) has a IMF percentage (IMF%) which 

lies within 1 to 3 %. Currently there are limited methods to measure IMF% in pork. In 

laboratory-based research, IMF% can be determined by using crude fat extraction (AOAC, 

1990); however, this extraction method is labor-intensive, time-consuming, and uses up the 

actual samples. In pork processing plants, marbling is graded subjectively by trained evaluators 

on a scale of 1 to 10 (1 = devoid of marbling, 10 = abundant of marbling; NPB, 2011). However, 

subjective marbling is inconsistent due to the different evaluators and environmental factors in 

the plant such as lighting condition. An objective, or instrumental, measurement of IMF%, 

similar to using a colorimeter for determining color, would benefit the pork industry by 

providing a quick and effective means for measuring quality or sorting loins for different market 

specifications. Such an instrument could also be helpful in providing a more consistent and high 

quality product to consumers. 
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Computer vision systems (CVS) contain an illumination system, a camera, and image 

analyzing software and have been widely utilized in the food industry as an inspection tool. It 

has great features such as being rapid, economic, consistent, accurate, and non-invasive (Sun, 

2000). In the food industry, it has been widely used for different features measurement such as 

detection or grading to differentiate color, size, texture features, shape, and uniformity of the 

product (Sun, 2000). More pertinent to this research, CVS has been utilized in the beef industry 

to objectively measure multiple features of beef quality such as marbling and yield percentage 

using the “beef cam” (Cannell et al., 2002). Research has shown the potential for CVS in 

analyzing, or predicting, beef color (Larraín et al., 2008), fat color, (Chen et al., 2010), 

tenderness (Li et al., 1999, 2001; Tan, 2004; ElMasry et al., 2012; Sun et al., 2012), pH value 

(ElMasry et al., 2012), and marbling (Chen et al., 2010; Jackman et al., 2009). More recent 

research has been done evaluating the potential use of CVS in the pork industry, with research 

focusing on classification or detection of pale, soft, and exudative pork (Warriss et al, 2011; 

Chmiel et al, 2016), pork color grading (Sun et al., 2016), IMF% (Lu et al., 2000; Faucitano, et 

al., 2005; Huang et al., 2013; Liu & Ngadi, 2014; Sun et al., 2016), and Escherichia coli 

contamination (Tao & Peng, 2014). 

While using the 10th rib pork chop as a sample source is common in research, industry 

uses the whole loin to sort to different markets rather than cutting the loin at the 10th rib, which 

sabotages the integrity of the product and devalues the product. Therefore, the objective of this 

study was to evaluate the effectiveness of using an industrial CVS as a consistent, accurate, and 

non-invasive method to estimate IMF% of whole, boneless pork loins. 
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Materials and Methods 

Sample Collection and Image Acquisition 

Whole, boneless loins were obtained from seven different processing plants (n = 200 per 

plant). Each sample was selected by a trained evaluator from the deboning line. Samples were 

chosen to maximize the variation in pork quality for subjective color (SCS) and marbling (SMS) 

scores, which were assessed on-line according to National Pork Board (NPB) standards (NPB, 

2011). After loins were selected and removed from the deboning line, an image of the lean 

surface of the loin was acquired using a CVS (Fig. 4.1), consisting of an industry camera (NI 

1776C smart camera, National Instrument, Ltd., USA) with a 1/1.8” F1.6/4.4-11-mm lens 

(LMVZ4411, Kowa, Ltd., Japan), a 44-inch dome light (DL180, advance illumination, Ltd., 

USA), and a personal laptop (Lenovo, Ltd., China). The CVS was attached to a table to ease 

 

Figure 4.1. Computer vision system used for this project and it’s key component including the 
camera, dome light, and computer. 
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transportation of the dome light and to standardize the relationship of the camera to the dome 

light and the samples. A black, light-absorbent fabric was installed between the dome light and 

table to exclude light noise from the surrounding environment. Before each plant collection, a 

Minolta white tile was used for calibration. The white tile was placed in the center and corner of 

the CVS to ensure the evenness of light spread. When taking pictures of the white tile, color 

space red green blue color features were extract and used as standards for calibration and setting 

of the CVS. Each sample was manually placed on a light-absorbing, black background surface 

for image acquisition. The color image was captured and stored using LabVIEW software 

(National instrument, Ltd, TX). 

After images were acquired, pork loins were vacuum packaged and transported in a 

refrigerated truck to the US Meat Animal Research Center in Clay Center, NE. Loins were stored 

at 4 °C for 14 d. After 14 d, whole loins were cut into 2.54 cm thick chops. The 3rd and 10th rib 

chops were collected, vacuumed packaged, and transported to North Dakota State University to 

determine crude fat percentage (CF%). After arrival at North Dakota State University, chops 

were trimmed of connective tissue and subcutaneous fat and then freeze-dried for 48 h to remove 

moisture. After the freeze-drying period, CF&&% was determined gravimetrically using Soxhlet 

extraction with petroleum ether according to AOAC procedure (AOAC, 1990). The average of 

the 3rd and 10th rib chops were used to represent the CF% of the entire loin. 

Image Analysis 

An original pork sample image acquired by the CVS is shown in Fig. 4.2(a). To remove 

the background of the image automatically, Otsu method was adopted and performed using the 

LabVIEW software (Fig. 4.2(b); Otsu, 1975). Once the background is removed the region of 

interest (ROI; 5.08 × 9.18 cm) was then determined automatically using a mapping system to 
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avoid uncleaned surface or connective tissue remained on the pork loin surface (Fig. 4.2(c)). 

After determination of ROI, the Sobel Method was applied to the image to segment lean muscle 

pixels and IMF pixels (Fig. 4.2(d)). After segmentation, the pixels were then counted to calculate 

image IMF% (IIMF) within ROI (Fig. 4.2(e)). 

 

Figure 4.2. Segmentation procedure: (a) Original pork sample image. (b) Removal of 
background. (c) Selection of region of interest (d) Applying Sobel detection. (e) Calculation of 
intramuscular fat pixel percentage within the region of interest.  
 

Data Analysis 

In order to calculate the accuracies of SMS predicting CF%, CF% was categorized from 

range of 0-1.99, 2.00-2.99, 3.00-3.99, 4.00-4.99, and 5.00 % and above as CF1, CF2, CF3, CF4, 

and CF5, respectively. The bootstrap method by Efron (1979) was adopted using SAS (v. 9.4; 

SAS Institute, Inc., Cary, NC). Data were set to randomly divide data base into training group 

70% and test group 30% for 100 replications. The 100 simple regression equations were then 

averaged to generate a final regression equation to calculate regression IMF% (RIMF) using the 
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IIMF. To calculate the accuracies of CVS predicting CF%, RIMF was categorized into RIMF1, 

RIMF2, RIMF3, RIMF4 and RIMF5 using the same percentages as CF%. The residual was also 

calculated as CF% minus RIMF to further understand the prediction of RIMF. All procedures 

were accomplished using SAS 

Results and Discussion 

Distribution of CFC in Pork Loin 

From 1045 loins that were collected the distribution of CF% were 785, 441, 129, 31, and 

14 respectively in CF1, CF2, CF3, CF4, and CF5. Which by the definition of SMS if graded 

correctly there should be 56.1%, 31.5%, 9.2%, 2.2%, and 1.0% that were graded respectively 

SM1, SM2, SM3, SM4, and SM5. This suggest that the majority of CF% distribution of pork 

loins were below 3% (87.59%).  

Accuracies 

When comparing CF% with SMS, the overall prediction is 53.30%. When evaluating 

different levels of marbling, SMS had an accuracy of 66.2, 40.0, 31.2, 17.4, and 60.0 % when 

predicting CF1, CF2, CF3, CF4, and CF5, respectively (shown in Fig. 4.3). SMS had the best 

accuracy in predicting CF% under 2, whereas when predicting CF% at a higher percentage the 

accuracies were lowered. In fact, Fig. 4.3 shows that the spread is wide but not skewed. This 

could be explained by several factors. Variety in pork appearance can affect SMS. While the 

NPB standards provide an example for each SMS that corresponds to the CF% of pork chop, 

however, when grading on whole pork loin, there are different traits that affect the evaluator’s 

ability to correctly assess the CF%. Unlike pork chop, pork loin may display a sizable variety in 

color or marbling from posterior end to anterior end, therefore, increasing the difficulty for 

evaluator to accurately assess pork quality. Additionally, assessment of whole loin may be 
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interfered by the different standard of trimming from plant to plant, as more connective tissue 

remains, less lean meat surface is revealed. this suggest that even for trained grader it is hard to 

subjectively predict the marbling of loin by observing the surface of loins when CF% are within 

the 2-5% range. 

 
Figure 4.3. Crude fat categorical versus subjective marbling scores. Within a crude fat category, 
the distribution is what the samples were called subjectively and the percentages will sum to 100. 
The green column represents the accuracy of calling subjective marbling score in each category. 

 

The overall accuracy for RIMF% to predict CF% was 58.56%. Accuracies for RIMF 

were 75.1, 46.0, 21.9, 4.3, and 0.0 % when predicting CF1, CF2, CF3, CF4, and CF5, 

respectively (shown in Fig. 4.4). RIMF had the best accuracy in predicting CF% under 2, 

whereas when predicting CF% at a higher percentage, the accuracy lowered. When looking at the 

distribution of prediction of CF%, RIMF predicted the CF% lower than the actual CF%. This 

could be due to the insufficient of sample size in high CF% as the majority of the samples were 

CF1 and CF2. 
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Figure 4.4. Crude fat categorical versus regression intramuscular fat categorical. Within a crude 
fat category, the distribution is what the samples were estimated as using the regression equation 
and the image intramuscular fat estimates and the percentage will sum up to 100. The green 
columns represent the correct prediction within each category.  
 

When comparing crude fat percentage prediction accuracies between RIMF and SMS, 

RIMF has shown a higher overall accuracy (58.5% vs 53.3%). However, in each category, RIMF 

only had a higher accuracy in category 1, this result could be due to the imbalance amount of 

sample within each category, while SMS has shown 60.0% in category 5, it only represents 1% 

of the sample.  
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Figure 4.5. Accuracies for regression intramuscular fat categorical (blue bars) and subjective 
marbling scores (orange bars) for predicting crude fat categorical by category and overall. 

 

Residual Distribution 

Residual distributions overall and by plant are shown for IIMF in Fig. 4.6 and for RIMF 

in Fig. 4.7 Overall accuracies (residual between -0.5 and +0.5) were 24.5 and 53.3 % for IIMF 

and RIMF, respectively. For the individual plants, the accuracies were 31.7, 2.8, 30.1, 31.5, 14.9, 

42.6, and 39.5 % for IIMF and 33.8, 49.2, 48.6, 60.4, 59.6, 62.8, and 49.0 % for RIMF for plants 

1, 2, 3, 4, 5, 6, and 7, respectively. A severe of inconsistent of residual distribution was observed 

for IIMF, in plant 1, 2, 4, 6, and 7 the distribution of the residuals were left skewed while in plant 

3 and 5 the distribution of residuals were right skewed. There wasn’t a tendency to overestimate 

or underestimate when using IIMF% to predict CF% of pork loin, but rather both. This could be 

due to the following reasons: 1. The possibility of calculating connective tissue or subcutaneous  
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Figure 4.6. Residual for crude fat percentage of image intramuscular fat of overall result and 
each individual meat plant. Residual= crude fat percentage – image intramuscular fat. Green bars 
represent correct prediction (-0.5 < residual < +0.5)  
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Figure 4.7. Residual for crude fat percentage of regression intramuscular fat of overall result and 
each individual meat plant. Residual= crude fat percentage – regression image intramuscular fat. 
Green bars represent correct prediction (-0.5 < residual < +0.5) 
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fat on surface as CF%, while our CVS is capable of automatic selecting the cleanest area as ROI, 

however, in each meat plant, there are different standard in trimming, one meat plant would 

demand a very cleaned, well-trimmed whole loin, while others may prefer minimal trimming, 

and this could increase the difficulty of ROI selection as ROI is a fixed area and could have 

chances of having unwanted subcutaneous fat or connective tissue counted as marbling; while 

trained grader could easily distinguish the difference, CVS would have to rely on the consistency 

of the cleanness of the surface of loin. 2. ROI position and size. It was noticeable that the 

positioning of ROI was not consistent as it relies on the consistency of cleanness of the loin lean 

surface, depending on the cleanness of the lean surface area, the ROI could be closer to the 

anterior rib or the posterior, which could affect the precision of our prediction. Also, due to the 

inconsistency of trimming or cleanness of the lean surface, it would restrict the size of ROI as the 

system would try to avoid subcutaneous fat or connective tissue automatically. This could further 

influence the precision of our prediction as the distribution of marbling through the whole loin 

could vary between each loin. 3. Using CF% of 2 chops to represent whole loin CF%, the 

distribution of marbling within the whole loin varies. between location. However, when 

switching to RIMF, the residual distribution shifts towards being more accurate. However, there 

is a slight overestimation (left skewness) of CF%. This could possibly be improved by ensuring 

that the regression model development data set has equal representation of samples in each CF% 

category. 4. Using equal amount of sample for each category. In our results, the residual 

distribution has shown to be left skewed, another possible reason could be due to the imbalance 

size of our sample, while category one represents over 80% of the sample and category five only 

1%.  
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Conclusion 

Neither of the prediction accuracies were satisfying, which suggests more research should 

be conducted to improve accuracies or to find the most ideal ROI on lean surface loin to 

represent the whole loin. When comparing results in prediction of CFC, CVS had an overall 

higher accuracy (58.50%) when compared to SMS (53.30%). The residual distribution of the 

RIMF was left skewed suggesting that CVS system tends to over-estimate CF% when comparing 

to SMS, however, the residual distribution was also more concentrated when comparing to SMS 

(95.22% vs 89.56%, residual within -1.5 and +1.5). Overall, this demonstrate that CVS has a 

better accuracy and precision when compared to subjectively grading marbling and the potential 

of application of using CVS as an objective measurement of CF% in both the industry and 

laboratory. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

The studies conducted and presented in this dissertation have allowed for the opportunity 

to demonstrate the possibility of using computer vision system (CVS) as an objective 

measurement tool for predicting crude fat percentage (CF%) of pork. Through our series of 

experiments, we have moved from a system that was laboratory based to a system that is industry 

friendly. 

In Experiment 1, we investigated the possibility of using CVS to predict CF% under a 

laboratory based environment. Samples were already trimmed of subcutaneous fat and 

connective tissue before image acquisition, to minimize the factors which could affect our 

imaging process and results. Our CVS though build precise, however, wasn’t suitable for 

industrial purposes. When setting up a model for predicting CF%, 18 color features were used; 

stepwise regression and support vector machine were adopted. In result, while the support vector 

machine has shown to have higher accuracy when looking at categories (75 vs. 64 %) but 

stepwise regression had a narrower residual distribution (65 vs. 44 % between -0.5 and +0.5). 

In Experiment 2, we upgraded our CVS to meet industry requirements. Instead of using a 

Charge Couple Device, we upgraded our camera to an industrial smart camera. Our lighting 

system was upgraded by introducing a 44-inch dome light system which was synded with the 

camera and image collection software instead of using two LED bar light build within a box. To 

improve portability, our system was built on a table with wheels for transport, which also 

allowed for constant distance between the camera and the sample. Instead of using Matlab 

software, Nivision was adopted, which is more common and compatible to the industry needs. 

When comparing accuracies to subjective marbling score (SMS), CVS has shown the potential of 

competing with SMS. A lower accuracy in anterior chop than posterior chop was noticed in both 
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SMS and CVS, which could be due to the variation of pork color, texture, and the transparency 

of marbling. Future research based on increasing model accuracy such as adding color features 

or texture features is warranted.  

In Experiment 3, the same CVS system as Experiment 2 was used. However, the images 

were acquired within the meat plant and were of the whole pork loin instead of individual chops. 

Both the accuracy of CVS and SMS dropped compared to Experiment 2. When observing the 

surface of loin, it was noticed that there was a sizeable variation in color and marbling between 

the anterior and posterior ends of the loin. This, in conjunction with the online speed and the 

different standards of trimming between plants, could all potentially be factors that influenced 

both CVS and SMS. Similar results were also reported by Carpenter et al. (1961) and Faucitano 

et al. (2004), who observed extreme variation in IMF content and marbling at different loci of 

thoracic ribs from pig carcasses. In 2013, Hang et al. reported that the nonuniformity of sampling 

site has been observed in various studies and believes that could cause discrepancy in results in 

pork quality studies; it is also reported that using last rib had the great potential for prediction of 

CF% of the whole loin. Future research could focus on finding the most ideal anatomical sites 

that best correlate with the whole loin quality. Within the series of our study, the influence of 

CF% and pork lean color has been established, this suggest that further research such as adding 

color features or textures features to increase model accuracy and robustness is needed. 

As a result, the possibility of using CVS as an objective measurement for CF% in pork 

has been established. While in the past pork has always been more driven by quantity over 

quality, more and more research has proven the importance of pork quality, and its impact on 

consumers’ willingness to purchase and on pork export. Therefore, further research is warranted 

and this will forever be an area to explore as the demand of pork quality continues to increase. 


