
1

USING INFORMATION RETRIEVAL TO IMPROVE INTEGRATION TESTING

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Iyad Alazzam

In Partial Fulfillment

for the Degree of

DOCTOR OF PHILOSOPHY

Major Program:

Software Engineering

April 2012

Fargo, North Dakota

2

North Dakota State University
 Graduate School

 Title

USING INFORMATION RETRIEVAL TO IMPROVE

INTEGRATION TESTING

 By

IYAD ALAZZAM

The Supervisory Committee certifies that this disquisition complies with North Dakota
State University’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY
SUPERVISORY COMMITTEE:
 Dr. Kenneth Magel
Chair (typed)

Dr. Jun Kong
 Chair (signature)

Dr. Simone Ludwig

Dr. Volodymyr MeInykov

Approved by Department Chair:
4/27/2012

Dr. Brian Slator

Date

Signature

iii

ABSTRACT

Software testing is an important factor of the software development process. Integration

testing is an important and expensive level of the software testing process. Unfortunately, since

the developers have limited time to perform integration testing and debugging and integration

testing becomes very hard as the combinations grow in size, the chain of calls from one module

to another grow in number, length, and complexity. This research is about providing new

methodology for integration testing to reduce the number of test cases needed to a significant

degree while returning as much of its effectiveness as possible. The proposed approach shows

the best order in which to integrate the classes currently available for integration and the external

method calls that should be tested and in their order for maximum effectiveness. Our approach

limits the number of integration test cases. The integration test cases number depends mainly on

the dependency among modules and on the number of the integrated classes in the application.

The dependency among modules is determined by using an information retrieval technique

called Latent Semantic Indexing (LSI). In addition, this research extends the mutation testing for

use in integration testing as a method to evaluate the effectiveness of the integration testing

process. We have developed a set of integration mutation operators to support development of

integration mutation testing. We have conducted experiments based on ten Java applications. To

evaluate the proposed methodology, we have created mutants using new mutation operators that

exercise the integration testing. Our experiments show that the test cases killed more than 60% of

the created mutants.

iv

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Kenneth Magel, whose guidance,

encouragement, incredible support, and insightful comments from the first level to the final level

enabled me to complete my dissertation research.

I would also like to thank Dr. Simone Ludwig, Dr. Jun Kong, and Dr. Volodymyr

Melnykov, for accepting to be members of my committee, and for their support and feedback.

Special thanks to my parents, my wife and my kids for their support, encourage, and

being a source of love and support.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RESEARCH PROBLEMS AND APPROACH .. 7

CHAPTER 3. LITERATURE REVIEW .. 14

CHAPTER 4. MUTATION INTEGRATION TOOL .. 47

CHAPTER 5. EMPIRICAL STUDY ... 73

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 87

REFERENCES ... 90

vi

LIST OF TABLES

Table Page

3.1. Top-Down Integration Order…………………………………………………………..…17

3.2. Bottom-Up Integration Order……………………………………………………….........18

3.3. Bi-Directional Integration…………………………………………………………..…….20

3.4. Integration Strategies……………………………………………………………..………20

3.5. Class Mutation Operator………………………………………………………………….32

3.6. Mutation Operators For Type Conversion And Keywords Insertions………………..…..32

3.7. Mutation Operators For Specifications……………………………………………….......33

3.8. Mutation Operators For FORTRAN.…………………………………………………......34

3.9. Concurrency Mutation Operators For Java……………………………………....…….,…35

5.1. Subject Of The Experiments………...…………………………………………................74

5.2. Bank Test Cases Calculations……………………………………………………….….…76

5.3. Coffee Maker Test Cases Calculations……………………………………………………77

5.4. Computer Test Cases Calculations………………………………………………..………77

5.5. Cruise Control Test Cases Calculations……………………………………………..……78

5.6. Elevator Test Cases Calculations…………………………………………………………78

5.7. Linked List Test Cases Calculations…………………………………………………...…78

5.8. Phone Directory Test Cases Calculations…………………………………………………79

5.9. Telephone Test Cases Calculations………………………………………………….……79

5.10. Word Processor Test Case Calculations…………………………………………………79

5.11. Black Jack Test Cases Calculations…………………………………………………..…80

5.12. Number Of Developed Test Cases………………………………………………….…...80

vii

5.13. Chain Calls Mutants Results……………………………………………………….……81

5.14. Class Mutants Results……………………………………………………………...……82

 5.15. Class Mutants Results Without Inner Mutants………………………………….………83

5.16. Duplicate Call Mutants Results Without Inner Mutants…………………………………83

5.17. Parameter Mutants Results Without Inner Mutants………………………………...……84

5.18. Returns Mutants Results Without Inner Mutants……………………………,,,,…..…….85

5.19. Swap Parameters Mutants Results………………………………………………...….….85

5.20. Swap Methods Mutants Results …………………………………………………..…….86

5.21. Deleting A Call Mutation Results………………………………………………....…….86

viii

LIST OF FIGURES

Figure Page

3.1. Call Graph……………………………………………………….…………………...…...17

3.2. Call Graph…………………………………………………………………………….......20

3.3. Thin Thread Tree For Bank System………………………………………………….......22

3.4. State Collaboration TestModel (SCOTEM)………………………………….……….....24

3.5. Tom And Li Test Framework……………………………………………………….........27

3.6. Substra Framework…………………………………………………………………...….28

3.7. Mutation Process…………………………………………………………………...…....29

4.1. Graphical User Interface Of MIT…………………………………………………....…...48

4.2. Illustration Of Class Selection……………………………………………………....…...49

4.3. Illustration Of The Number Of Created Mutants At Class Level………………...……...49

4.4. Illustration Of The Created Mutants Files……………………………………...…..........50

4.5. Illustration Of Selection A Java Project……………………………………………..…..50

4.6. Illustration Of The Number Of Chain Of Calls Created Mutants………..…..................51

4.7. Chain Of Calls……..…………………………………………………………………….61

4.8. Example Of Mutants (Deleting A Call In A Chain Of Calls) …………………....…….62

4.8. Packages In MIT………………………………………………………………....…..….63

4.9. The Classes In Main Package…………………………………………….…..…..……..64

4.10. The Class In DuplicateCall Package……………………………………...……..…….66

4.11. The Classes In The SwapParameters Package…………………………………..…..…66

4.12. The Classes MParameters Package……………………………………...………..…….68

4.13. The Classes In MReturns Package……………………………………..………..……..70

ix

4.14. The Classes In Chain Call Package……………………………..…….……………….72

1

CHAPTER 1. INTRODUCTION

As computer applications have become larger, more complex, and more varied during the

last sixty years, the need to check the computer software for mistakes as it is developed has

become more and more critical. While various forms of inspection or walkthrough can be useful

and are widely applied, actual testing of the application is still the major technique for

determining where and what these almost inevitable mistakes are. Whichever methodology is

used for software development, testing forms a critical, expensive part of that methodology.

Testing has many forms. Initially, as individual units (classes in object-oriented code,

modules in structured code, and functions in scripting languages and web applications) are

developed they are tested in isolation to determine whether or not they contain mistakes. This

process is called unit testing. Substantial research has been done into effective methods for unit

testing. When mistakes are found in an individual unit, a debugging process is used to find the

cause of the mistake and to implement a solution for that mistake. Once units have been tested

and debugged to an expected level of quality, the units are gradually combined with other units

into larger and larger combinations according to the overall architecture of the intended

application. Each time units are combined, a different set of test cases is applied. This process is

called integration testing. As mistakes are uncovered, another debugging process is used to

identify and correct them. Some research has been done into ways of organizing the units for

integration testing, but little effort has been expended on studying the integration testing

methods. Once the combinations are sufficiently large to completely implement significant

functionality useful to the intended end users, the application moves into system testing. Some

research has explored ways to do system testing including user interface testing and functionality

2

testing. Specialized methods for security testing, performance testing, scaling testing, and so on

have been developed.

There are other forms of testing which may or may not be used in a specific development

project. For example, acceptance testing is similar to system testing except that the intended user

organization does the testing independent of the development organization. Alpha, beta, and

gamma testing are ways to involve large numbers of selected, intended users in the process on

their own equipment in their own environments. Regression testing is reusing some or all of the

test cases to check whether or not a significant change to the application has introduced new

mistakes.

Among all these forms of testing, integration testing may be the most costly and the most

important[7]. The cost of integration testing may be 50 – 70% of the cost of the entire testing

activity [7]. An empirical study reported that 39% of the errors uncovered in the application

studied were interface errors [1].Integration testing tries to find mistakes in how one unit uses the

public interface of another unit. As the combinations grow in size, the chain of calls from one

unit to another which are being tested, grow in number, length, and complexity.

At the same time, integration testing seems to be the neglected form of testing with

respect to the amount of research attention paid to it. The research reported in this dissertation

makes a small step towards addressing this lack.

My work addresses two main problems: (1). How can integration testing be made less

costly while retaining as much as possible of its effectiveness; and (2). How can a given

integration testing process be evaluated for effectiveness. This work provides tentative, partial

answers to these two problems.

3

My approach to the first question involves trying to limit the number of integration test

cases while still retaining much of the effectiveness of a more complete set of test cases. We start

with the assumption that the degree of dependency of one unit on another is an excellent

indicator of the sensitivity of the first unit to mistakes in the second unit. Actually, these

mistakes often are not really mistakes. Instead they are differences between what the first unit

assumes about the second unit and what the second unit actually does. Remember that good unit

testing should have revealed most of the mistakes in either unit alone, and an adequate

debugging process should have removed these mistakes.

 Two examples of differences are described in the rest of this paragraph. Assume we have

two units, U1 and U2. U1 uses a method, m, in U2 to implement some functionality for U1. The

code in U1 calls the method, m. U1 assumes that the first parameter to method m is a

temperature in tenths of a degree on the Kelvin scale. However, in fact, method m treats this

parameter as being in units of hundredths of a degree. Thus, if U1 were to call m with a

parameter of 372 meaning 37.2 degrees Kelvin, m would interpret the parameter as meaning 3.72

degrees Kelvin. The result returned to U1 by m would almost certainly be incorrect. This is a

mistake that would not be caught during unit testing since U1 would call a stub method m that

would have the same interpretation of this parameter that U1 did and m would be called by test

cases that had the same assumption about this parameter that U2 did. As a second example,

consider the same situation where unit, U1, is calling method, m in unit U2. The first two

parameters for this call are given in reverse order in U1 from what m is expecting. If they were

both the same data type, no compiler error would be given, but the result returned by m to U1

almost certainly would be wrong.

4

There are more indirect mistakes that could occur during integration testing as well. For

example, suppose U1’s method, m1, called a method, m2, in U2 which called a method, m3 in

U3. Method, m3 computed a result which m2 returned to m1, and which m1 interpreted

differently from how m3 intended that result to be. I argue, however, that all these more

complex situations can be resolved to a misinterpretation at one more boundaries between units.

In this case, either there is a misinterpretation at the boundary where m1 calls m2 or at the

boundary where m2 calls m3, or both. Therefore, we need consider only simple boundary

misinterpretations in our work.

How do we determine the degree to which one unit depends upon another? Dependency

is a semantic concept. Computers require sophisticated artificial intelligence techniques to deal

with semantic concepts. In most cases, including unit dependencies, these techniques have not

been applied yet. In my work, I decided to use a more primitive technique to produce a crude,

but useful approximation to unit dependency. This technique comes from Information Retrieval.

Information retrieval is an active research area which tries to effectively characterize documents

within large collections to make searching and selection more efficient and effective. For

example, suppose I need to find documents that provide information about apricots within a

collection of one million such documents. I could spend substantial time searching or reading

each document for the word apricot. I would miss documents that contained information about

apricots by their scientific name, or about related fruits. As an alternative, I could use

information retrieval techniques to index the documents quickly and find all relevant documents

much more quickly.

5

The other problem area addressed by my work involves a method for evaluating the

effectiveness of a set of test cases. I need such a method to determine how well my information

retrieval-based approximation to dependency works as well as my test case selection method. In

the unit testing and systems testing areas, there are two basic approaches: some notion of

coverage, and some method for error seeding.

Coverage comes in several forms. The simplest form is statement coverage: what

percentage of the total statements in the source code of my application was executed at least once

by my set of test cases. More complex forms of coverage include path coverage (of all the

possible execution paths through my source code, what percentage was exercised at least once by

the set of test cases) and condition coverage (of all the possible values of all the conditional

clauses in my source code, what percentage were executed by my set of test cases).

Error seeding involves having a third party place a set of mistakes in the source code.

The assumption is that if the test cases found x percent of the seeded mistakes, those test cases

found x percent of the actual mistakes. For example, if fifty mistakes were seeded throughout the

code and forty of those mistakes were discovered by the test cases, we assume that 80% of the

actual mistakes present in the source code were revealed by the test cases.

A major variety of error seeding is mutation testing. Mutation testing has been applied to

unit testing. Mutation testing takes the original unit and creates a large set of variants of that unit

by applying an operator from a small set of mutation operators. For example, a subtraction sign

might be changed to a multiplication sign. Each variant, called a mutant, differs from the

original unit in having one change caused by one application of a single mutation operator. All

of the test cases are run on all of the mutants as well as the original unit. If a test case causes a

6

mutant to return something different than the original unit, that mutant is said to have been killed

by that test case. The set of test cases is evaluated by the percentage of the total mutants killed

by at least one of the test cases in that set.

I decided to extend mutation testing for use in integration testing. Existing sets of

mutation operators make changes to the executable statements within a unit. I added new

mutation operators to create variants of calls from one unit to another since that is what

integration testing evaluates.

The remainder of this dissertation is divided into five chapters. Chapter 2 explains the

approaches taken in this research. Chapter 3 presents related work in the areas of integration

testing, mutation testing, and information retrieval. Chapter 4 describes the tool I developed to

support this research. Chapter 5 explains the experiments done in this research to evaluate those

approaches and presents the results with some analysis of those experiments. Chapter 6

concludes the dissertation and proposals for follow on work.

7

CHAPTER 2. RESEARCH PROBLEMS AND APPROACH

Our research has three components. The first component is the development of an

integration testing approach. The second component is the development of a set of integration

mutation operators to support development of integration mutation testing. The third component

is the implementation of two software tools to assist in using our approach. This chapter

concentrates on the first component.

The Context

Software integration is a lengthy process with many possible errors. For example,

suppose we are developing a moderate size application consisting of 500 classes with a total of

2,000 methods within those classes. These 500 classes are being developed by three teams of

developers. Once development is underway, a class might be made available for integration at

any time. Therefore, unless the classes are developed in a very constrained order, we cannot

know which classes would be available for integration when. If the average number of external

methods called by the methods within each class is five, we have a total of approximately 2,500

external method calls to test. Finally, there are at least the following potential errors for which

integration testing needs to be done: (1) the calling method has the parameters in a different

order than the called method; (2) the wrong method is called; (3) a method that should have

been called is not called; (4) the result of a method call is misinterpreted by the calling method;

(5) different methods, perhaps in different classes, interfere with each other (for example, they

each read the next record from a file); and (6) methods are called in the wrong order.

As explained in the first chapter, there are three research problems inherent in integration testing:

(1) what is the best order in which to integrate the classes currently available for integration; (2)

which external method calls should be tested in what order for maximum effectiveness; and (3)

8

which test cases are likely to be most effective in finding problems such as those listed in the

previous paragraph. The work reported in this research deals with the first two questions. The

final chapter discusses how the reported approach could be extended to address the third

question, but we have left that effort for the future.

Our approach assumes that the developers doing integration testing have a set of classes

currently available for integration. Each of those classes has gone through unit testing and

debugging. This unit testing and debugging resulted in each of those classes having acceptable

quality when considered in isolation. Integration is likely to reveal errors not discovered by unit

testing because integration testing deals with how the methods actually are used rather than how

the design specifies that they will be used.

The developers have limited time to perform integration testing and debugging.

Accordingly, the developers want to use test cases that will provide the maximum possible

effectiveness in revealing problems. Moreover, the results of these test cases should provide

significant assistance in the integration debugging process when errors are revealed.

We make an assumption in our work. Namely, the likelihood that a method call will be

erroneous is correlated significantly to the degree in which the calling method and called method

depend upon each other. Unfortunately, dependency is a complex semantic relationship.

Artificial intelligence techniques currently are not sufficiently developed to identify the degree of

dependency. We will use a measure of information similarity derived from information retrieval

as a proxy for dependency.

Finally, we need a means for evaluating the effectiveness of our approach. We extend

the mutation testing approach that is a well-accepted alternative in unit testing to integration

testing. This extension requires that we replace the usual set of mutation operators for units in

9

isolation by a newly developed set of integration mutation operators. We selected ten moderate

size open source applications as experimental subjects.

Objective

Our objective is to develop a feasible approach to integration testing that reduces the

number of test cases needed to a significant degree while still finding at least sixty percent of the

possible errors. If we assume that a full testing approach would require at least one test case for

each external method call for each of the six types of error presented earlier in this chapter, we

want to reduce the number of test cases by at least fifty percent.

For our example application of 500 classes with 2,500 external method calls, a full testing

approach would require 2,500 * 6 = 15,000 test cases. We tried to use no more than 3*number

of classes or 1,500 test cases for our example.

Our Approach

Assume we have a set, S, of classes ready to be integrated. We start by forming each pair

of two different classes from S. For each pair, we use Latent Semantic Indexing, a technique

from information retrieval, to calculate a class pair weight [57] [68] [69] [75].

Latent semantic indexing (LSI) uses singular value decomposition (SVD) to identify patterns in

relationships among words in a text. We adapt LSI to the tokens within a method. We

eliminated the keywords and required punctuation of the programming language. For example,

the semicolon at the end of each statement, or the curly brackets around each block of code were

not considered. Comments were excluded as well. Compound identifiers were split into their

constituents.

10

For example, if the source code of a three methods was:

Method 1: public employee (String name, double salary)

 {

 this.name= name;

 this.salary= salary;

 }

Method 2: public void raissalary(double amount)

{

 salary += amount;

}

Method 3:publicstaticvoid check(employee emp)

 {

 emp = new employee();

 }

The resulting pre-processed method would be:

Method1: “employee name salary namename salary salary”

Method2: “raissalary amount salary amount”

Method3: “Check employee emp emp employee”

LSI starts by constructing a term-document matrix. For our approach, this is the token-

method matrix. Each token is represented by a row of the matrix. Each method is represented by

a column. A cell gives the number of times that row’s token appears in that column’s method.

For our example methods, the token-method matrix would be:

[

]

Next, the values of the matrix are weighted using term frequency-inverse document

frequency (tf-idf) values which assess how important a particular word is to a given document.

wm= fw, m * log (M/fw, M)

11

Where fw, m equals the number of times w appears in m, M is the size of the corpus, and

fw, M equals the number of methods in which w appears in M [72] [35]. For our example methods,

the token-method matrix after tf-idf weighting would be:

[

]

Next, singular value decomposition is done. SVD converts the token-method matrix, M,

into three other matrices. If M is an axb matrix (a rows and b columns), and T, S, and D
T
 are the

three new matrices

M = T * S* D
T

Where T*T
T
= I, D

T
 *D= I; the columns of T are orthonormal eigenvectors of M*M

T
, the

columns of D are orthonormal eigenvectors of M
T
*M, S is a diagonal matrix whose diagonal

elements are non-negative and ordered in decreasing order. The elements on the main diagonal

of S are known as singular values of M and are the square roots of the eigenvalues of M
T
*M and

M*M
T
.T and D are matrices whose columns are left and right singular vectors of M. each row in

the D matrix represents method vector.

[

]

T

12

[

]

S

[

]

D
T

[

]

D

Next, we reduce the high dimensional methods vectors into low dimensional space by

using the low rank approximation. We chose two as rank. In our example, the matrices would be:

[

]

T2

[

]

S2

[

]

D2

13

 The similarity between two methods is calculated through finding the cosine angle value

between methods vectors. This can be calculated as inner product between vectors as follows:

Similarity (q, d) =

Similarity (M1, M2) =
()() ()()

√() () √() ()
 0.8

Similarity (M1, M3) =
()() ()()

√() () √() ()
 0.005

Similarity (M2, M3) =
()() ()()

√() () √() ()
 -0.6

Thus from the above results we can see that there is a similarity between Methods

(M1and M2). However there is no similarity between methods (M1 and M3) and (M2 andM3).

The class pair weight is computed from the method pair weights for the methods in the two

classes by adding all the method pair weights. Next, we sum all the class pair weights to form

the total pair weight, T. Each class pair weight is divided by T to form the adjusted class pair

weights.

For our preliminary work we decided that the number of test cases we would use would

be a small multiple of the total number of classes to be integrated. In the work reported here,

that multiple is 5. Thus if we have n classes to be integrated, we would have 5*n test cases.

These test cases are allocated to each pair of classes by multiplying the adjusted class pair weight

by the total number of test cases and rounding up.

14

CHAPTER 3. LITERATURE REVIEW

This research concerns integration testing, mutation testing, and information retrieval.

Associated literature on the above mentioned areas is discussed in this chapter. This chapter

consists of three main sections: the first section presents integration testing definitions,

integration faults and integration testing strategies for structured programming languages and

object-oriented languages. The second section illustrates mutation testing in general, and shows

different mutation operators. The last section describes generally information retrieval

techniques and then specifically Latent Semantic Indexing.

Integration Testing

Testing separate classes in the software independently assists in removing errors at the

class level, but does not guarantee that the software is error free. Unit testing does not have the

ability to reveal errors that might happen when integrating classes together including, interface

problems and missing functionalities. Integration testing is the activity of bringing together the

different classes that compose the software to ensure that these classes are interacting together

without causing any error or system failure [34][16] [9] [15].

Integration Faults

The types of discovered faults at the unit testing level are not the same as faults at the

integration testing level. Leung and White, 1990 [32] categorize integration faults into four main

categories:

1. Interpretation errors: interpretation error happens when integrating two classes together and

the type of behavior expected through a user of a class is not equivalent to the functionality

15

offered by the class. The developer of a calling class might get the wrong idea about the

functionality of the called class. Interpretation errors are further classified as:

- Wrong function errors: This happens when the functionalities offered by the called class are not

same as the required by the calling class. For example, a calling class may incorrectly presume

that the called class will return a sorted array rather than an unsorted array.

- Extra function errors: This is when the called class provides certain functionalities which are

not required by any caller class.

- Missing function errors: This is when the calling class attempts to call a function not available

in the called class.

2. Miscoded call errors: This is when the programmer puts the call instruction at the incorrect

place in the calling class. Miscoded call errors are further classified as:

- Extra call instruction: This happens when the order that is carrying out the invocation is

inserted in a place that should not include the invocation.

- Wrong call instruction placement: this type of error happens when the invocation is inserted on

the correct path, but in an incorrect position.

- Missing instruction: this type of error happens when the invocation is not found on the path that

should include it.

3. Interface errors: An interface error happens when the defined interface between two or more

classes is violated, for example a wrong parameters order, an invalid parameter type or format,

and an incorrect parameter order.

16

4. Global errors: This kind of error relates to the inappropriate use of global variables.

Beizer [5] has categorized integration faults into the following types:

- Protection against corrupted data: The calling class attempts to call a function in the

called class with invalid data, and the called class does not use any protection or any

checking for the data before using it.

- Input/output format faults: The calling class attempts to call a function in the called class

with wrong input format. For example, the date parameter the format of “dd-mm-yyyy” is

different from “ dd-mm-yy”

- Call parameters faults: The calling class attempts to call a function in the called class

with wrong parameters.

- Invalid subroutine call sequence: This happens when calling sequence of functions

incorrectly. For example, if the valid sequence of function calls should be f1, f2, f3 and

f4, yet the sequence of function calls: f1, f2, f4, and f3.

- Invalid parameter values: the calling class attempts to call a function in the called class

with incorrect values parameters.

The categorization of integration faults by Leung and White [32] is more accurate and

comprehensive than the categorization by [5]. Beizer has focused mainly on the function

parameters whereas [32] provide wide variety of errors that may occur at an integration level.

Integration Testing Strategies

Software integration strategy commonly refers to an integration chain or order of integration

components or parts for the entire system.

17

The major traditional integration testing strategies are classified into five strategies as

follows:

1. Top-down strategy: In top-down integration testing strategies the integration testing

process starts with the highest class, which is marked out by the use relation between

classes. To the same degree the integration testing process starts with the class that is not

used by other classes. In this strategy the stubs are required. Stubs are dummy

implementation or incomplete classes use only to let the higher class to be tested. For

example given an system consists of eight modules and the following figure represents

the call graph of the system under test:

Figure 3.1. Call Graph

Thus the next table shows the steps of top-down integration testing. In other words it

shows which modules are integrated first, the order of module integration as well as the

required stubs in each step.

Step Integrated classes Required stubs

1 A and B C,D and E Stubs

2 A, B, and C D, E, F and G Stubs

3 A,B,C and D E, F, G, and H Stubs

4 A,B,C,D, and E F, G, and H Stubs

5 A,B,C,D,E, and F G, and H Stubs

6 A,B,C,D,E, F, and G H Stub

7 A,B,C,D,E, F, G, and H No Stubs

 Table 3.1. Top-Down Integration Order

18

This approach permits early verification and proof of high-level behavior. However, the

top-down approach postpones the verification of low level behavior, requires creating

stubs for each missing or untested module which leads to an increase the cost, raises

probability of error prone, and increases the difficulty of test cases input and output

preparation [7][20].

2. Bottom-up strategy: This strategy is the opposite of the top-down strategy. The

integration testing process starts with the lower class which is marked out by the use

relation between classes. It begins with the class that does not depend on other classes. In

this strategy the drivers are required to simulate the caller.

This approach permits early verification of low-level behavior, ease of preparation for

inputs and outputs of test cases and does not require stubs. However it does require

drivers for missing modules and postpones the verification of high level behavior. For

example if we need to do bottom-up integration testing for the same system in the above

figure, then the following table shows the steps of bottom-up integration testing and the

required driver for each step:

Step Integrated classes Required drivers

1 E and B A Driver

2 F,G, and C A Driver

3 H and D A Driver

4 E,B,F,G,C,H,D and A No drivers

 Table 3.2. Bottom-Up Integration Order

Our approach is different from both the top-down and bottom-up approaches in

many respects. First we do not need to create any stubs nor drivers which as a results

leads to reduce the cost and error prone operations [20]. In addition our approach depends

19

on class pair weight which is calculated using a latent semantic indexing technique to

determine how many test cases should be developed for each class pair. Moreover we do

not need to create the call graph of the system under test. Furthermore our approach helps

in determining which methods are connecting classes together in order to focus on them

from a testing perspective.

3. Big-bang strategy: The integration testing process starts once all the classes are

developed and tested separately; it combines all the classes together to see if they are

working or not. Although this strategy does not need stubs and drives, it is not

recommended because of the difficulty in finding the error causes and the complexity in

distinguishing the interface errors from other types of errors.

Our approach is similar the big-bang approach because it does not need to create neither

stubs nor drivers and starts till all the modules are implemented. However, our approach

follows systematic calculation based on calculating class pair weight through using latent

semantic indexing technique. From these calculations we can determine the number of

test cases for the whole application. In addition the calculations help us in specifying

which parts of the class pair are most important in order to create test cases for these

parts. Furthermore our approach can help in overcoming the huge number of potential

test cases [28].

4. Bi-Directional Integration: This kind of approach is a mixture of the top-down and

bottom-up integration approaches used jointly. It requires both stubs and drivers since it

is a composite of top-down and bottom-up approaches. This approach is also known as

either sandwich integration or hybrid integration. This approach is recommended for use

when migrating from a two-tier to a three-tier environment [31]. To illustrate this

20

approach, the following figure represents the system’s modules and the table represents

the steps of bi-directional integration.

Figure 3.2. Call Graph

Step Integrated classes Approach type

1 B and E Bottom-up

2 C,F,G Bottom-up

3 D and H Bottom-up

4 (A,B,E)-(A,F,G)-(A,D,H) Top-down

 Table 3.3. Bi-Directional Integration

Desikan and Ramesh [31] suggest guidelines for choosing which integration testing

approach (top-down, bottom-up, bi-directional, and Big bang) based on the factors shown in the

following table:

Factors Suggested integration method

Clear requirements and design Top-down

Dynamically changing requirements, design,

architecture

Bottom-Up

Changing architecture, stable design Bi-directional

Limited change to existing architecture with less

impact

Big bang

 Table 3.4. Integration Strategies

5. Thread strategy: this kind of integration testing combines and integrates classes based on

the expected execution threads.

6. Critical classes strategy: classes are merged together based on the class level of

criticality, the classes with high critical are combined together first.

21

Object Oriented Integration Testing Strategies

Object oriented languages have many characteristics that traditional languages do not

have. Such characteristics include among others, encapsulation, polymorphism, inheritance,

dynamic binding, synchronization, threads, and others. An ordinary difficulty in inter-class

integration testing of object-oriented system is the decision about the order in which modules are

integrated and tested [21].

When modules are integrated and tested an order of integration should be recognized.

The problem occurs when there is a cyclic dependency. This problem is generally called the class

integration and test order (CITO) problem [20]. Various researchers [20] [22] [23] [24] [25] [26]

[27]have proposed many solutions for the CITO problem.

 New integration testing strategies are necessary for object oriented programs. Many

likewise researchers have proposed strategies for object oriented integration testing. Jorgensen

and Erickson [5] classify five integration levels in object oriented as follows: (1) integration of

methods into a single class, (2) integration of two or more classes through inheritance, (3)

Integration of two classes through containment, (4) integration of more than one class to form a

component and (5) Integration of components into a single application.

In addition, Overbeck[6] identifies three types of typical integration testing strategies: (1)

execution based integration testing to uncover wrong interactions of units through tracing the

interaction execution;(2) value based integration testing which uses particular values to execute

units’ interaction and (3) function based integration testing which certifies the functionality of

modules while they are interacting.

22

[7] proposes another approach for integration testing called thin thread. Thin thread is

defined in [8] as “A complete trace (E2E) of data/messages using a minimally representative

sample of external input data transformed through an interconnected set of systems (architecture)

to produce a minimally representative sample of external output data. The execution of a thin

thread demonstrates a method to perform a specified function”. The following figure shows an

example of the thin thread tree for a bank system:

 Figure 3.3. Thin Thread Tree For Bank System [7]

The root of a thin-thread tree shows the whole integrated system under test, in which the

branch node shows a group of connected thin threads and a leaf shows a concrete and specific

23

thin thread. The next step after constructing a thread tree is to identify conditions. Conditions are

predicates that influence the running of thin threads. A thin thread is considered triggered if, and

only if, its conditions are entirely valid. The test cases then are generated from a thin thread

identifying through various testing techniques the input data that fulfilled the conditions related

to the thread. The expected output is identified from the description of the thread. The problem

with this approach is the complexity of building the thin thread which requires the

comprehensive and detailed knowledge and awareness of functionalities of the system and the

architecture of the system as well.

Our approach does not require any knowledge or comprehensive understanding of the

system under test. Since we use the latent semantic indexing technique in determining which

method is connecting classes together as well as in specifying how many test cases should be

made for the whole system under test. Thus anyone who has no knowledge about the system

under test can determine the number of test cases.

Other researchers have utilized Unified Modeling Languages models (UML) in

integration testing [9] [10]. [9] provide a new testing method based on collaboration diagrams

and state charts in order to reveal state-dependent interaction faults, such as changeable states of

classes, incorrect calling state of a class, and incorrect initial state of a class. Their integration

testing strategy is based on the concept that the interaction among objects should be exercised for

every likely state of included objects. They propose a test model called State Collaboration

TEstModel(SCOTEM) which uses the state chart to identify the behavior of each class and uses

the collaboration diagram to identify the test directives as shown in the following figure

24

 Figure 3.4. State Collaboration TestModel (SCOTEM) [9]

A vertex refers to an object of a class contributing in the integration. A modal class

obtains a message in more than one state and shows various behaviors for the equivalent

message in distinctive states. This model indicates many vertices, in which every vertex relates

to an object of the class in different abstract. On the other hand, a non-modal class needs a single

vertex solely in the SCOTEM graph. There are two types of edges: message and transition. A

message edge indicates a call action between two objects, and a transition edge indicates a state

transition of an object when getting a message. Every message edge might hold a condition or

iteration as well. Every message can trigger a state transition. A transition edge links two vertices

from the equivalent class. State charts might have many transitions to different states for the

equivalent operations. Therefore, there can be many transition edges for the equivalent message

edge in SCOTEM. The inner information of a vertex contains the class name and state of the

25

objects which it relates. Message edge is created in SCOTEM through attributes of a message

involving associated operation, message sequence number, the sender object, and receiver object.

The transition edge is formed through the attributes of a transition involving sending state,

accepting state, associated operation, and sequence number [9].

A test path resulting from the SCOTEM represents a path that begins with the initial

vertex and includes the entire message sequence of the collaboration. The overall number of the

test paths in SCOTEM can be computed through computing the product of the numbers of the

transition paths in every class, where every transition path is an inner transition of a model class

from a source state to a target state upon receiving of a specific message. However this approach

requires all guards, paths, and loops conditions to be specified using Object Constraint Language

(OCL) [9].

This approach presents the problem of state explosion since it uses the state diagram.

Also this approach does not determine the order of integrating classes as well as the number of

test cases for the whole system under test. Our approach does not require state diagram nor

collaboration diagram to determine the collaboration among modules in the system under test.

Furthermore, in [10] they propose a new algorithm for integration testing called TEst Sequence

generaTOR (TeStor). It permits the testers to get test sequences from state diagrams and

sequence diagrams. The state diagram provides the component behaviors whereas the sequence

diagram identifies what the test should include. In other words, the TESTOR needs a behavioral

model of the components as an input in terms of state machines and a sequence diagram denoting

the test directives, and it generates a set of sequence diagrams representing the paths which the

tests should follow. This algorithm requires the structural specification, as well as the behavioral,

specification to be available all together with architectural information that permits the testers to

26

determine how modules are assumed to interact when they are integrated. In addition, this

approach removes loops from the state machines which means some aspects are left without

testing.

Our approach is different from the approach in [10] in determining how modules are

integrated. The algorithm in [10] requires the structure specification as well as the behavioral

specification to be available together with architectural information. While our approach requires

only the source code of the system under test to determine interactions and find out how classes

are integrating with each other.

Additionally, in [2] they propose a formal specification method for integration testing

specifically for object oriented programs. Specifically they formally identify the behavioral

dependencies and interactions between objects of various classes formally. Contract is one of the

formal languages to specify the behavioral properties. The behavioral property is defined by

“message-passing rules” (mp-rules).

Mutation Analysis For Integration Testing

The mutation analysis has been used in integration testing. Delamaro et al. [44] initially

illustrated the technique of interface mutation for the integration testing of C programs. The

fundamental idea is to produce mutants solely through suggesting minimal changes in the classes

belonging to the interface between modules [12]. Mutation testing is used to evaluate the

effectiveness of test suite in detecting errors. The use of mutation testing does not provide any

guideline to determine how classes are interacting with each other nor how to create test cases at

integration level. We use the mutation testing to evaluate our approach.

27

Tom and Li [13] propose a test framework for testing object oriented systems at the

integration level. They create integration test cases based on UML class diagrams and sequence

diagrams in terms of coordination contracts. Coordination contracts are connections that are

established among a collection of participants objects [14]. After getting class diagram and

sequence diagram specification, Tom and Li [13] integration testing process works as follows:

(1) the XML Parser parses the class diagram and sequence diagram and represents them in XML

notation. (2) Test cases are realized in terms of contacts. What to test and how to test results are

described in the contracts rule. (3) The Coordination Development Environment (CDE) is used

to create code from the contracts and the components under test to structure the test framework.

CDE is a tool to help develop Java applications using coordination contracts [14].

 Figure 3.5. Tom And Li Test Framework [13]

This approach depends on the sequence diagram and class diagram to generate the test

cases. Thus, if there is mistake in class diagram or sequence diagram then test cases will be

inaccurate. Even more, the source code of the system under test may not be compatible with the

28

class diagram or class diagram. Our approach mainly uses the source code in determining the

interactions among modules of the system under test.

Our approach is different from [13] approach in many ways. Our approach does not

require either class diagram or sequence diagram. In addition we use Latent Semantic Indexing

(LSI) in determining how a pair of classes is related to one another.

Yuan and Xie [18] propose a framework for automatic generation of integration tests

called Substra. Their framework depends on call sequence restrictions inferred from initial- test

execution or usual runs of the subsystem under test. These restrictions rely on two types of

information: shared subsystem states and define-use relationship. Substra employs an object state

machine to model these restrictions. A subsystem’s state is represented as nodes in the state

machine, function calls as transition, and define-use relationships as guard conditions of

transitions. Substra proposes an iterative process that uses initial test executions or normal runs

of the system to infer sequencing restriction dynamically and uses these restrictions to assist in

the creation of new tests. Each one iteration involves six steps: gather execution traces, discover

boundary calls, infer define-use relationships, build basic object state machines, build a

subsystem state machine, and create a new test as illustrated in the following figure:

 Figure 3.6. Substra Framework [18]

29

This approach is different from the Tom and Li approach which requires specification in

terms of class diagrams and sequence diagrams while the [18] approach does not require any

specifications. However their approach supposes that every test in the initial test suite is correct

and valid. If the initial test suite employs incorrect behaviors it may not be valid or important.

Our approach requires neither any pretests nor any diagram constructions.

Mutation Testing

Mutation testing is a fault based testing technique that evaluates the effectiveness of test

cases. Mutation testing, initially proposed in 1978, is based on the fact that software will be well

tested if whole simple faults are detected and removed. Simple faults are created in software

through producing a collection of faulty versions, called mutants. Test cases are used to carry

out the mutants with the goal of leading every mutant to create inaccurate output. A test case that

differentiates the software from its mutant is viewed to be effective at discovering faults in the

software [33][12] [35] [36] [42] [42] [43] [44]. The mutation process depends on mutation

operators in order to generate mutants from the original source code as shown in the following

figure:

Figure 3.7. Mutation Process

30

Mutation testing relies on the competent programmer hypothesis and the coupling effect.

The competent programmer hypothesis declares that programmers are commonly capable and

produce software is close to accurate software. Accurate software can be created from inaccurate

software through making modifications that are composed of minor alternations. The coupling

effect declares that test cases that differentiate programs with minor modifications from each

other are very precise and that they can differentiate software with more compound

modifications. The competent programmer hypothesis and the coupling effect express that small

modifications in software are sufficient to help discover compound errors [12].

Let S be the system under test and Sa be one accurate version of S. if S is correct, S and

Sa are the same. T is the set of tests used to test S. Let the input domain of S be represented by

D. Mutation testing depends on a set of Faults F. Every fault f in F is initiated in S individually.

Presentation of a fault into S outcome in a program M is named a mutant of S. The application of

all faults in F one by one into S generates a collection of mutants M. Factors of F are identified

as mutation operators. When a mutant M executes versus a test case t in T and the performance

of M is dissimilar from that of S, the mutant M is said to be killed by t. A tester should kill every

mutant in M with a minimum of one test case t. Mutants that are not killed throughout testing are

called alive mutants [12] [35] [36] [42] [43] [44].

There are some conditions that should exist in order to kill each mutant. [40] propose the

three conditions: let L be a line of code in C class which has been mutated to LM to obtain

mutant M, so to kill the mutant by a test T, the test T must satisfy the following conditions: (1)

Reachability: the line of code L must be reached when the test T is executed; (2) Necessity: The

state of M immediately following some execution of LM must be distinctive from the state of C

31

immediately following the equivalent execution of L; (3) Sufficiency: the differentiation in the

states of C and M immediately following the execution of L and LM must continue until the

complete of the execution of C or M such that C (t) ≠ M (t).

In mutation testing the tester is looking for to kill every mutant in mutants set with a

minimum of one test case. In the situation when mutant remains a live, the tester must explain

that the mutant is equal to the original program M ≡ P or update the Tests set T by improving or

adding a test t to T in order to kill the mutant. The test adequacy is identified through the ratio of

the number of killed mutants to the number of non-equivalent mutants. This ratio is called the

mutation score as shown in the following equation:

Mutation Operators

Mutation testing inserts faults into programs through mutation operators. There are two

types of mutation operators (1) mutation operators for procedural languages sometimes called

traditional mutation operators. These operators are Absolute Value Insertion (ABS), Arithmetic

Operator Replacement (AOR), Logical Connector Replacement (LCR) and Unary Operator

Insertion (UOI); and (2) class mutation operators [38]. Many researchers have proposed and

classified many class mutation operators [35] [36] [37] [46] [49] [55] [50]. In more detail [35]

classifies the class mutation operators into six groups, based on the language feature that is

affected: (1) Information Hiding (Access Control), (2) Inheritance, (3) Polymorphism, (4)

overloading, (5) Java-Specific Features and (6) Common Programming Mistakes. As shown in

the following table:

32

Operators Description

AMC Access Modifier Change

IHD Hiding Variable Deletion

IHI Hiding Variable Insertion

IOD Overriding Method Deletion

IOP Overridden method calling position change

IOR Overridden method rename

ISK Super Keyword deletion

IPC Explicit call of a parent’s constructor deletion

PNC New method call with child class type

PMD Instance Variable declaration with Parent Class Type

PPD Parameter Variable declaration with child class Type

PRV Reference assignment with other compatible type

OMR Overloading method contents change

OMD Overloading Method Deletion

OAO Argument Order Change

OAN Argument number Change

JTD This Keyword Deletion

JSC Static Modifier Change

JID Member Variable initialization deletion

JDC Java-supported default constructor create

EOA Reference assignment and content assignment replacement

EOC Reference Comparison and Content Comparison Replacement

EAM Accessor Method Change

EMM Modifier Method Change

Table 3.5. Class Mutation Operator

In addition, Offutt et al. [36] adds to the above mutation operators six new operators as

shown in the following table three of them are related to type conversion and three of them are

related the “this, super, and static” keywords insertions.

Operators Descriptions

PCI Type cast operator insertion

PCD Type cast Operator Deletion

PCC Cast Type Change

ISI Super Keyword Insertion

JTI This Keyword Insertion

JSI Static Modifier Insertion

Table 3.6. Mutation Operators For Type Conversion And Keywords Insertions [36]

Moreover Kim et al. [37] increase mutation operators for class level by adding three new

operators Compatible Reference Type (CRT), Constructor (CON) and Overriding Method

(OVM). In CRT, this operator swaps a reference type with all the compatible types found in the

classes. In CON, this operator swaps a constructor with other overloaded constructor. In OVM,

33

this operator deactivates the overriding method so that a reference to the overriding method in

fact goes to the overridden method. In addition [39] prove the capability of using mutation

analysis and model checkers to create comprehensive test sets from formal specification. They

propose eight mutation operators for specifications: Operand Replacement Operator (ORO),

Simple Expression Negation Operator (SNO), Expression Negation Operator (ENO), Logical

Operator Replacement (LRO), Relational Operator Replacement (RRO), Missing Condition

Operator (MCO), Stuck-At Operator (STO), and Associative Shift Operator (ASO). The table

below gives short example explaining each operator.

Operator Example Mutants

ORO AG (request →AF state =ready)

SNO AG (!request → AF state=busy)

AG(request →AF(!state=busy)

ENO AG(!(request→AF state =busy)

LRO AG(request & AF state =busy)

AG(request | AF state= busy)

MCO AG AF state=busy

STA AG (0→AF state = busy)

AG(1→AF state = busy)

AG (request →AF 0)

AG (request → AF 1)

ASO AG(x&(y→z))

RRO AG (WaterPres<=100)

AG (WaterPres>100)

AG (WaterPres =100)

AG (WaterPres !=100)

Table 3.7. Mutation Operators For Specifications [7]

34

Offutt et al. [46] provide the following mutation operators FORTRAN:

Operator Description

AAR Array reference for Array reference Replacement

ABS ABSsolute value insertion

ACR Array reference for Constant Replacement

AOR Arithmetic Operator Replacement

ASR Array reference for Scalar variable Replacement

CAR Constant for Array reference Replacement

CNR Comparable array Name Replacement

CRP Constants RePlacement

CSR Constant for Scalar variable Replacement

DER Do statement End Replacement

DSA Data Statement Alterations

GLR Goto Label Replacement

LCR Logical Connector Replacement

ROR Relational Operator Replacement

RSR Return Statement Replacement

SAN Statement ANalysis

SAR Scalar for Array reference Replacement

SCR Scalar for Constant Replacement

SDL Statement DeLetion

SRC SouRce Constant replacement

SVR Scalar Variable Replacement

UOI Unary Operator Insertion

Table 3.8. Mutation Operators For FORTRAN [46]

35

Other researchers provide the following concurrency mutation operators for Java [49] [50]:

Operator Description

MXT Modify time parameter t of wait(t), sleep(t), join(t),

await(t)

MSP Modify parameter obj of block synchronized(obj)f...g

ESP Exchange parameter obj of block synchronized(obj)f...g

MSF Modify Semaphore Fairness

MXC Modify Permit Count in Semaphore and Modify

Thread Count in Latches and Barriers

MBR Modify Barrier Runnable Parameter

RTXC Remove Thread Call wait(), join(), sleep(), yield(),

notify(), notifyAll()

RCXC Remove Concurrency Call (methods in Locks,

Semaphores, Latches, Barriers, etc.)

RNA Replace notifyAll() with notify()

RJS Replace join() with sleep()

ELPA Exchange Lock/Permit Acquisition

EAN Exchange Atomic Call with Non-Atomic

ASTK Add static Keyword to synchronized Method

RSTK Remove static Keyword from synchronized Method

RSK Remove synchronized Keyword from Method

RSB Remove synchronized block

RVK Remove volatile Keyword

RFU Remove finally Around Unlock

Table 3.9. Concurrency Mutation Operators For Java [49]

RXO Replace One Concurrency Mechanism-X with Another

(Locks, Semaphores, etc.)

SHCR Shift Critical Region

SKCR Shrink Critical Region

EXCR Expand Critical Region

SPCR Split Critical Region

DelStat Deletes a statement from a synchronized block

ReplArg Replaces argument with constant in a synchronized

method

DelSync

Call

Deletes a call to a synchronized method

ReplMeth Uses method with same name and other signature

InsNegAr

g

Inserts unary (negation) operators in an argument

ReplTarg

Obj

Replaces the object in a call to synchronized method

36

Praphamontripong and Offutt [55] propose a group of new mutation operators

particularly for testing interaction between web components. They propose two categories of

mutation operators. One for HTML and the second one for JSP as follow:

Mutation operators for HTML:

- Simple Link Replacement (WLR): the WLR operator changes a destination of a simple

link transition identified in the <A> tag with a different destination in the similar domain

of the web application.

- Simple Link Deletion (WLD): the WLD operator deletes the destination a destination of a

simple link transition identified in the <A> tag.

- Form Link Replacement (WFR): the WFR operator replaces a destination of a form link

transition to a different destination in the similar domain of the web application.

- Transfer mode replacement (WTR): the WTR operator changes all GET requests into

POST request and all POST requests into GET request.

- Hidden form field replacement (WHR): the WHR operator changes the attribute values of

the <input> tag of type hidden with different value.

- Hidden for field deletion (WHD): the WHD operator deletes the whole block of the

<input> tag of type hidden.

- Server-side-include replacement (WIR): the WIR operator replaces file attribute of

include directives into different destination in the similar domain of the web application.

- Server-side-include deletion: this operator deletes the whole include directive from the

HTML file.

Mutation operator for JSP

37

- Redirect transition replacement: this operator replaces the forward destination of the

redirected transition identified in <jsp:forward> tag to different destination.

- Redirect transition deletion (WRD): this operator deletes the whole redirection, as

identified in the <jsp:forward> tag.

- Get session replacement (WGR): this operator opens a new connection to the web server

each time a client retrieves the webpage.

Moreover Lonetti and Marchetti [56] propose new mutation operators for Extensible

Stylesheet Language Transformations (XSLT) through creating six XSLT mutation classes:

Arithmetic Operator Replacement (AOR), Variable Manipulation (VM), Arithmetic, Logic and

Relational operator Manipulation (ALROM), XPath Expression Manipulation (XPEM),

Condition Iteration Manipulation (CIM), Template Manipulation (TM), and Element Attribute

Manipulation (EAM).

The mutation operators mentioned above are applied on individual methods or functions

consisting of statements and on individual classes or modules consisting of multiple functions or

methods. These operators are a concern of unit testing. Since our research is concerned with

integration testing we develop mutation operators which are explained in Chapter 4.

Interface Mutation

The researchers in [40] present a technique that employs existing information from the

description of the components interface for testing the component. They use this information to

generate coverage domains. Components testing are executed throughout their interface as well.

Their method does not depend on the existing implementation of the code. [40] propose five

operators for interface mutation in CORBA-IDL as follows: (1) Replace: “Replaces an

38

occurrence of one of ‘in’, ‘out’ and ‘inout’ with another in the list.”; (2) Swap: “Operator for

parameter swapping in the method call. Parameters of the same type could be swapped in a

method call”; (3) Twiddle: “this operator is used on a numerical or a character variable that is

passed to or from the method”; (4) Set:” the set operator assigns a certain (fixed) value to a

parameter or to the value returned from a method.” and(5) Nullify: “the nullify operator nullifies

an object reference.”

The mutation operators mentioned in [40] are designed for CORBA-IDL. But our

mutation operators are designed for Java and include more mutation operators than in [40]. For

example we have mutation operators to alter and modify the chains of calls from one module or

class to another or itself.

Information Retrieval

Information retrieval (IR) is discovering and returning material, mostly documents of a

shapeless environment typically text that complies with the information need from within large

collections commonly existing on computers [57].Information retrieval refers to the

demonstration, storage, classification of information materials and gain access to information

materials. The models of information retrieval are categorized mainly into two groups. The first

group is the keywords oriented model, and the second group is matrix oriented model. Keyword

based models make use of particular data structures and search algorithms. Matrix oriented

models transform the representation of documents keywords into a matrix format [59].

Information retrieval depends on two ratios (Precision and Recall) to assess and calculate

the effectiveness of the information retrieval strategies. Precision is the percentage of the number

of related documents retrieved to the total number retrieved. Precision gives an indication about

39

the quality of the answer set. Recall is referred to the total number of related documents. It is the

percentage of the number of related documents retrieved to the total number of documents in the

corpus that are assumed to be related [58].

Information Retrieval Strategies

Retrieval strategies determine a degree of similarity among a query and document. A

retrieval strategy is defined by [58] as “an algorithm that takes a query Q and a set of documents

D1, D2... Dn and identifies the Similarity Coefficient SC (Q, Di) for each of the documents 1≤i

≤n”. Information retrieval depends on a technique or algorithms in formulating strategies. The

following are brief description of information retrieval strategies:

- Vector Space Model (VSM): The vector space model calculates the similarity between

query and document by representing them as vectors, a document vector and query

vector, then calculating the similarity by finding the cosine angel between two vectors

[73]. VSM is based on the idea that the documents words express the documents

meaning.

Given that the individual keywords are not enough and sufficient in discriminating the

semantic content of queries and documents, performance of the VSM suffers from two

classical problems of synonymy and polysemy [63][68]. Synonymy refers to the different

words with same meaning. Polysemy refers to the same words with different meaning.

The occurrence of synonymy is likely to reduce the recall performance and the

occurrence of polysemy reduces the precision performance [58]. Because term-document

matrices are mostly very dimensional and sparse, then the matrices are at risk to noise

[59].

40

- Inference network: a Bayesian network is utilized to infer the relevance of a query to a

document. Inference network depends on the “evidence” in a document that permits an

inference to be made about the importance of the document. The similarity coefficient is

determined by the weight of the inference [58]. The problem with this strategy is the

synonymy and polysemy because it depends on the statistical measures that basically

depend on matching the terms between the query and the document.

- Neural networks: a chain of “neurons” or nodes in a network, that execute after a query

triggering links to documents. Each link has weight which is transmitted and gathered to

calculate the similarity coefficient between the query and the document. Network is

trained by changing the links weights in return to predetermined related and unrelated

documents [58]. A neural network mainly used in the machine learning and it requires

high computational resources.

- Fuzzy set Retrieval: a document is mapped to a set that holds elements and number

associated with it. The number indicates the strength of the membership and it represents

the similarity coefficient between the query and the document [58]. This strategy has

limitations. Among these limitations are semantic model needs in order to take the terms

meaning into account, needs high computing expenses used for aggregation and

membership function, fast expansion of complexity when input variables number

increases and does not have the ability to adapt and change via feedback and learning

[60].

- Genetic Algorithms: Genetic algorithm based on a best query to locate related

documents, which can evolve. An original query is used with either estimated term

weights or random. New queries are created through changing these weights. A new

41

query continues to exist by being near to known related documents and queries with low

closeness to documents are dropped from consequent generations [58]. Genetic

algorithms are mainly used in machine leaning and needs high computational resources,

which prohibits genetic algorithms for more extensive. [58].

- Boolean indexing: “the score is assigned such that an initial Boolean query results in a

ranking. This is done by associating a weight with each query term so that this weight is

used to compute the similarity coefficient” [58].Drawbacks of the Boolean retrieval

model are no official or proper ways for qualifying the task and measure of the terms in

differentiating documents’ contents, matching method depends merely the evaluation of

the occurrence of a given search keywords in document representation, impossibility of

finding out the degree of value of every particular document and troubles with Boolean

operators; Disjunctive (OR) queries result in an overload of information as a result of an

extreme amount of results. Conjunctive (AND) queries result in decreasing results, and

frequently zero results and it leads to decrease in recall [60].

- Probabilistic Retrieval: a probability depends on the possibility that a term will emerge in

a related document is calculated for every term in the collection. The similarity

coefficient between the query and the document is calculated by combining the

probabilities of every term that matches between a query and document. The problem of

this strategy is the need of preexisting information to execute correctly [58].

- Latent Semantic Indexing (LSI): is a modification of VSM to overcome the problem of

synonym, polysemy and high dimensional space. LSI attempts to create advantage of the

conceptual content of documents through searching on concepts rather than looking for

42

single terms in the documents [59]. LSI employs one technique in algebra called Singular

Vale Decomposition (SVD) in order to reduce the dimensional space[58] [60]. Singular

value decompositions arrange the space in order to reveal the main associative patterns in

the corpus and disregard the less significant effects [61]. Vectors representing the queries

and documents are projected in low dimensional space acquired by reduced singular

value decomposition.

LSI begins with a term X document matrix A of dimension rXc and rank r and uses the

SVD to decompose it into three matrices A=USV
T

, where U and V are matrices whose

columns are left and right singular vectors of A, S is a diagonal matrix whose diagonal

elements are non-negative and ordered in decreasing order. The elements on the main

diagonal of S are known as singular values of A and are the square roots of the

eigenvalues of A
T
A and AA

T
 [67] [68] [69].Computationally, a K-dimensional SVD of A

returns Ak=UKSKV
T

K, where Uk, Rkare first k columns of U and V. In this way the rank of

A has been reduced from r to k. using this low rank approximation, the high dimensional

documents and query vectors are projected and reduced to low dimensional space [59].

LSI Example: the following is an example taken from [58] to illustrate the latent semantic

indexing showing how to find the similarity between query and documents:

Q: “gold silver truck”

D1: “Shipment of gold damaged in a fire”

D2:”Delivery of silver arrived in a silver truck”

D3: “Shipment of gold arrived in a truck”

Then the Matrix A is constructed as term-document matrix and the values represent the

occurrence of each term in every document as shown below:

43

[

]

The singular value decomposition (SVD) then is used on the matrix A to generate three

matrixes U, S, and V
T
.

[

]

U

[

]

S

[

]

V
T

After that the K rank is chosen to be 2 then the matrixes will be A2= U2S2V
T

2 as shown

below:

44

[

]

U2

[

]

S2

[

]

V
T2

Now the documents are represented as vectors as follow:

D1 (-0.4945, 0.6492)

D2 (-0.6458, -0.7194)

D3 (-0.5817, 0.2469)

The query vector is then found through applying this equation: q= q
T
UkS

-1
kas follows:

[

]

[

]

[

] =q= -0.2140, -0.1821

45

 Finally the similarity between query and each document is calculated through finding the

cosine value between each document and query vectors. This can be calculated as inner product

between vectors as follows:

Similarity (q, d) =

Similarity (Q, D1) =
()() ()()

√() () √() ()

Similarity (Q, D2) =
()() ()()

√() () √() ()

Similarity (Q, D3) =
()() ()()

√() () √() ()

Information Retrieval In Software Engineering

Information retrieval methods and techniques have been used in many aspects and areas

in software engineering. Dilucca et al. in [62] apply various information retrieval and machine

learning methods involving classification tree, vector space model, support vectors probabilistic

model, and K-nearest neighbor classification to the problem of categorizing and ordering

incoming maintenance requests and routing them to particular maintenance team automatically.

They use a training set of classified maintenance request correctly; recent incoming maintenance

request is evaluated versus the maintenance request in the training set and categorized according

to certain distance metric varying with the employed method.

Software reuse is an additional software engineering area that has mostly used

information retrieval methods. The acceptance of IR has essentially intended to build reusable

software libraries automatically through indexing software components [63] [64] [65] [66]. [63]

46

present an IR method to gather software libraries automatically based on a free text indexing

scheme.

Latent semantic indexing (LSI) has been used by Tairas and Jeff in detecting code clones

[67]. Code clones are parts of source code that are copied in many places in a program. Clones

are created generally as a result of the copy and paste action of developers where one part of

code is copied and pasted into other places.

Program comprehension is another field in software engineering where information

retrieval methods have been employed to enhance the process. Poshyvanyket al. measure the

coupling between modules through using information retrieval methods to help the developers to

comprehend how software modules relate to each other [68]. Revelleet al. present a method for

feature location through using structural and textual information to capture feature coupling in

object oriented [69]. They use the latent semantic indexing technique to measure how the

functions are related to each other. Latent semantic indexing is employed by [70] as well to

recreate traceability links among requirements and design artifacts as well as among

requirements and test case specification.

Settimi et al. study the usefulness of information retrieval methods for tracing

requirements to UML artifacts, code, and test cases. In particular, they evaluate the results

attained by applying diverse variants of the vector space model to create links among software

artifacts [71].

47

CHAPTER 4. MUTATION INTEGRATION TOOL

We have developed a Mutation Integration Tool (MIT) to create mutants at the

integration level for Java programs. Our tool creates integration mutants based on several new

mutation operators. For example: deleting a call from a chain of calls, swapping a call in a chain

of calls with other methods or functions, duplicating calls, swapping methods’ parameters,

changing the value of methods’ parameters and changing the value of methods’ returns. The

parameter types that we use in changing values are: integer, double, long, short, byte, boolean,

float and string.

The Graphical User Interface Of Mutation Integration Tool

The graphical user interface of the MIT is composed from input and output sections:

 Input section: this section consists of three buttons and nineteen check boxes. The user selects

the Java file by pressing the “Browse” button. The nineteen check boxes are listed where the user

selects the type of mutants (swap parameters, duplicate calls etc.) and the “Create Mutant”

Button generates mutants for the selected Java file based on the selected mutant types. “Create

Chain of calls Mutant” button is used to create mutants based on the chain of calls.

Output section: this section consists of one test area and eighteen Labels. The text area

shows the full path of the selected Java file. The labels show the number of created mutants of

each type.

For example, if the user clicks on the button labeled “Browse” and selects the “Elevator”

class (Figure 1), a textbox displays the path of the file “Elevator”. After the user selects “ALL”

(Figure 2) for the types of mutants to be created then the MIT displays the number of created

mutants for each mutation type (Figure 3) and the mutants files are saved in the project folder

(Figure 4). Another example, if the user clicks on the button labeled “Create Chain of calls

48

Mutant” the open dialog will appear to select the source code of the whole application as shown

in Figure 5. After the user selects the source code then the MIT displays the number of created

mutants (deleted call from the chain of calls and the swap call in the chain of calls with another

method or function) as shown in Figure 6.

Figure 4.1. Graphical User Interface Of MIT

49

Figure 4.2. Illustration Of Class Selection

Figure 4.3. Illustration Of The Number Of Created Mutants At Class Level

50

Figure 4.4. Illustration Of The Created Mutants Files

Figure 4.5. Illustration Of Selection A Java Project

51

Figure 4.6. Illustration Of The Number Of Chain Of Calls Created Mutants

Integration Mutation Testing Operators

MIT creates mutants based on the following integration mutation testing operators:-

1. Swap parameters: this will swap the parameters in the method declaration if there is

more than one parameterwith the same data type. For example:

Public void calculate (intnum_of_hours, inthour_cost){

…

}

This operator will create a mutant,

Public void calculate (inthour_cost, intnum_of_hours){

…

}

52

2. Duplicate calling: the mutant will call the same method twice instead of the original one

time. For example:

Public void method1 () {

CarClass car = new CarClass()

Car.calculateMilage();

…

}

The mutant will be:

Public void method () {

CarClass car = new CarClass()

Car.calculateMilage();

Car.calculateMilage();

...

}

3. Return String: for the methods in a specific class that have “String” as their return value

the mutant will return a “null” value.

For example :

Public String getname(){

Return name;

}

The mutant will be:

Public String getname(){

Return null ;

53

}

4. Return Integer: for the methods in a specific class that have “int” as their return value the

mutant will return a “0” value.

For example

Public intgetAge (){

Return age;

}

The mutant will be:

Public intgetAge(){

Return 0;

}

5. Return Double: for the methods in a specific class that have “double” as their return value

the mutant will return a “0.0” value.

For example

Public double getSalary(){

Return salary;

}

The mutant will be:

Public double getSalary(){

Return 0.0;

}

54

6. Return Float: for the methods in a specific class that have “float” as their return value the

mutant will return a “0.0” value.

For example

Public floatgetFloatnum(){

Return floatnum;

}

The mutant will be:

Public floatgetFloatnum (){

Return 0.0;

}

7. Return Long: for the methods in a specific class that have “long” as their return value the

mutant will return a “0” value.

For example

Public longgetLongnum(){

Return longnum;

}

The mutant will be:

Public longgetLongnum (){

Return 0;

}

8. Return Byte: for the methods in a specific class that have “byte” as their return value the

mutant will return a “0” value.

For example

55

Public bytegetByte(){

Return bytenum;

}

The mutant will be:

Public bytegetByte (){

Return 0;

}

9. Return Short: for the methods in a specific class that have “short” as their return value the

mutant will return a “0” value.

For example

Public shortgetShortNum(){

Return shortnum;

}

The mutant will be:

Public shortgetShortNum (){

Return 0;

}

10. Return Boolean: for the methods in a specific class that have “boolean” as their return

value, two mutants will be created. One mutant will return a “false” value and the other

mutant will return a “true” value.

For example

Public booleanisEmpty(){

Return size==0;

56

}

The mutants will be:

Public booleanisEmpty (){

Return true;

}

Public booleanisEmpty (){

Return false;

}

11. Boolean parameters: the mutation method for Boolean parameters will change the

parameters into fixed Boolean values either true or false.

For Example:

Public void method1(Boolean is_ready)

{

If (is_ready){ …….}

}

The mutants will be:

Public void method1(Boolean is_ready)

{

is_ready= true;

If (is_ready){ …….}

}

Public void method1(Boolean is_ready)

{

57

is_ready= false;

If (is_ready){ …….}

}

12. String parameters: the mutation method for String parameters will change the parameters

into fixed String value “null”.

For Example:

Public void method1(String x)

{

Function(x);

…

}

The mutant will be:

Public void method1(String x)

{

 x= “null”;

Function(x);

…..

}

13. Integer parameters: the mutation method for Integer parameters will change the

parameters into integer value “0”

For Example:

Public void method1(int x)

{

58

Function(x);

…

}

The mutant will be:

Public void method1(int x)

{

 x= 0;

Function(x);

…..

}

14. Double parameters: the mutation method for double parameters will change the

parameters into double value “0.0”

For Example:

Public void method1(double x)

{

Function(x);

…

}

The mutant will be:

Public void method1(double x)

{

 x= 0.0;

Function(x);

59

…..

}

15. Float parameters: the mutation method for float parameters will change the parameters

into float value “0.0”

For Example:

Public void method1(float x)

{

Function(x);

…

}

The mutant will be:

Public void method1(float x)

{

 x= 0.0;

Function(x);

…..

}

16. Long parameters: the mutation method for long parameters will change the parameters

into long value “0”

For Example:

Public void method1(long x)

{

Function(x);

60

…

}

The mutant will be:

Public void method1(long x)

{

 x= 0;

Function(x);

…..

}

17. Short parameters: the mutation method for short parameters will change the parameters

into short value “0”

For Example:

Public void method1(short x)

{

Function(x);

…

}

The mutant will be:

Public void method1(short x)

{

 x= 0;

Function(x);

…..

61

}

18. Byte parameters: the mutation method for byte parameters will change the parameters

into Byte value “0”

For Example:

Public void method1(Byte x)

{

Function(x);

…

}

The mutant will be:

Public void method1(Byte x)

{

 x= 0;

Function(x);

…..

}

19. Chain call deletion: this mutation removes a call in a chain of calls. For example if we

have three classes A, B, and C. where A interacts with B through two methods m1 and

m2, and class B interacts with class C through method m3 as shown in the following

figure.

Figure 4.7. Chain Of Calls

A B C

M1

M2

M3

62

This leads to create three mutants as following:

Figure 4.8. Example Of Mutants (Deleting A Call In A Chain Of Calls)

20. Swap methods: if there are two or more methods in a class with the same type of

parameter and number and the return type is quite similar (can be cast). This mutation

operator will replace a method with another one.

For example: if there are two classes A and B, where class A has three methods as

follows:

public double getBalance(){ …}

public double calculate(){ …}

public double getSalary(){ …}

and in class B there is a method named compute that interacts with class A:

class B{ …

public void compute(){…

A.getBalance();

…}

Then the Swap method will replace the getBalance() method which is used in the

compute method in class B with calculate and getSalary respectively and create two

mutants as:

M1

M2

B C
M3 M2

B C

M1 M3

A B C

A

A

63

class B{ …

public void compute(){…

A.calculate ();

…}

class B{ …

public void compute(){…

A.getSalary ();

…}

The Architecture of Mutation Integration Tool

The MIT is developed using the Java language and creates various integration mutants which are

illustrated in the next sections. The MIT consistsofsix main packages as shown in Figure 4.8

Figure 4.8. Packages In MIT

The Main package consists of three classes, “Method”, “Comment” and “MIT” as shown in

Figure 4.9. The DuplicateCall package consists only of one class “DupliacteCall” as shown

64

Figure 4.10. The SwapParameters package consists of two classes: “Parameters” and

“swapParameters” as shown in Figure 4.11. The MParameters package consists of ten

classes:“MParameter”, “MParameterByte”, “MParameterInteger”, “MParameterDouble”,

“MParameterString”, “MparameterBooleanTrue”, “MparameterBooleanFalse”,

“MParameterFloat”, “MparameterShort”, and “MparameterLong” as shown in Figure 4.12. The

MReturn package consists of nine classes: “MReturnString”, “MReturnBooleanFalse”,

“MReturnBooleanTrue”, ”MReturnLong”, “MReturnShort”, “MRetrunDouble”,

“MReturnInteger”, “MReturnByte” and “MReturnFloat” as shown in Figure 4.13. The Chain call

package consists of two classes: “ChainMutant” and “ClassMethods” as shown in Figure 4.14.

Figure 4.9. The Classes In Main Package

The method of the Comment class:

65

- RemoveComment(String): Reads the Java file line by line and removes all the comments

and blank lines.

The methods of the Method Class:

- CountMethodParametersTypes(Method []): counts the number of Boolean parameters, String

parameters, Long parameters, Short parameters, Integer parameters, Double parameters, and

Byte parameters for the all methods in the Java class.

- CountMethodReturnsTypes(Method[]): counts the number of return Boolean methods, return

String methods, return Integer methods, return Double methods, return Float methods, return

Byte methods, return Long methods, and return Short methods, for all methods in the Java class.

- ReadFile(String): reads the Java file in order to do the above calculations.

The methods of the MIT Class

- main (String[]): creates the frame of the graphical user interface and sets the size of the

frame.

- ItemStateChanged (ItemEvent) in the inner class “ALLCheckBox”: controls the states of

every check box in the frame based on the state of ALL check boxes. When the user

selects the ALL check box, every check box in the frame will be selected. When the user

deselects the ALL check box, every check box in the frame will be deselected.

- ActionPerformed (ActionEvent) in the inner class “Browse”: controls the show of open

dialog which lets the user select Java file and get the file path, filename and set the file

path in the text box.

66

- ActionPerformed (ActionEvent) in the inner class “CreateMutants”: is the most important

method. This triggers the main methods in the other classes.

Figure 4.10. The Class In DuplicateCall Package

Method of DuplicateCall class

- ReadFile(): reads the Java file line by line and creates a duplicate line if the line is

representing method calling.

Figure 4.11. The Classes In The SwapParameters Package

Methods of Parameters class

- Generate(int): it produces the method parameters after doing swapping.

67

- parameterSwap(String) it is responsible for determining if the method is valid for

swapping; having two or more parameters with the same data type.

- Swap(int, int, int): it is responsible for performing swapping.

Method of ParameterSwap class

- ReadFile(Vector, Vector, String [][],Vector): reads the Java file line by line and when

there is a method signature call the methods in the parameters class for swapping.

Methods of Mreturn class

-Mutation(String,BufferedWriter,Scanner,int): this method is responsible for creating mutants

based on the return type.

- processmethod(Vector, String,Vector,Vector,BufferedWriter): it is responsible for deriving the

method name from the line, and to determine if the method returns value or not. This method is

used in the derived classes in the same way.

- readFile(Vector, Vector, String [][],Vector, String,int): reads the Java file line by line and

checks if the line represents a method or not. This method is used in the derived classes in the

same way.

68

Figure 4.12.The Classes MParameters Package

Methods of MParameters class

- DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible to

create mutants based on the types of the methods’ parameters.

- readFile(Vector, Vector, String [][],Vector, String,int, String): reads the Java file line by

line and checks if the line represents a method or not. This method is used in the derived

classes in the same way.

- writefile(BufferedWriter, String, String, Scanner): it is responsible to retrieve the method

body after doing mutation based on the parameters’ values. This method is used in the

derived classes in the same way.

Method of MParameterBooleantrue class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type Boolean to set its value to true before using it.

69

Method of MParameterBooleanfalse class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type Boolean to set its value to false before using it.

Method of MParameterByte class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type Byte to set its value to 0 before using it.

Method of MParameterDouble class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type double to set its value to 0.0 before using it.

Method of MParameterFloat class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type Float to set its value to 0 before using it.

Method of MParameterInt class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type Integer to set its value to 0 before using it.

Method of MParameterLong class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type Long to set its value to 0 before using it.

Method of MParameterShort class

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type Short to set its value to 0 before using it.

Method of MParameterString class

70

 - DoMutation(String,Vector, String,Vector,int, String [][], Vector): it is responsible for each

method that has a parameter of type String to set its value to null before using it.

Figure 4.13. The Classes In MReturns Package

Method of MReturnBooleanfalse class

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that return value of type Boolean to set its return value to false.

Method of MReturnBooleantrue class

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that return value of type Boolean to set its return value to true.

Method of MReturnByte class

71

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that returns value of type Byte to set its return value to 0.

Method of MReturnDouble class

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that returns value of type Double to set its return value to 0.0.

Method of MReturnFloat class

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that returns value of type Float to set its return value to 0.0.

Method of MReturnIntclass

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that returns value of type Integer to set its return value to 0.

Method of MReturnLong class

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that returns value of type Long to set its return value to 0.

Method of MReturnShort class

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that returns value of type Short to set its return value to 0.

Method of MReturnString class

- Mutation(String,BufferedWriter,Scanner,int): this method is responsible for each method

that returns value of type String to set its return value to null.

72

Figure 4.14. The Classes In Chain Call Package

Methods of ClassMethod

-main (): this method is responsible for generating text files that contain the public methods for

each class in the application.

- InitializeMethodParameters (Class[]): this method is responsible to assign initial values for the

methods parameters.

Methods of ChainMutant

- DeleteCall(String [][],int, file[], String, String): this method creates mutant through

deleting a call from a chain of calls. The call should be alone which means it should not

be a part of any assignment or use such as in loops or conditions or others.

- SwapCall(String, String): this method creates mutant through replacing a call in a chain

of calls with another method or function from the same class which has the same return

type and public access modifier.

73

CHAPTER 5. EMPIRICAL STUDY

In order to evaluate and assess our approach, we have carried out a sequence of

experiments based on 10 open source Java applications obtained from different repositories.

In this chapter, we describe the 10 Java applications that we have used in the experiments

and present the values of class pair weights for the whole applications. In addition we show the

percentage of test cases of each class in every application along with the number of test cases

that should go for each class as well. Moreover we present the results of mutation testing and

explain them. This chapter also presents the number of created mutants for each application

along with the mutation score which is the percentage of killed mutants.

Application Under Test

Table 5.1 lists all the applications that we use in our experiments shows how many

classes in each application.

- The “Black Jack” application consists of ten classes: “BustedExceptio”, “Card”, “Dealer”,

“DealTemplate”, “FileFacade”, “FileUser”, “Hand”, “LogicFacade”, “Player”, and “User”.

- The “CruiseControl” application consists of four classes: “CarSimulator”, “Controller”,

“CruiseControl”, and “SpeedControl”.

- The “Linked List” application consists of four classes: “MyLinkedList”, “MyLinkedListItr”,

“MyListBuilder”, and “MyListNode”.

- The “Telephone” application consists of five classes: “RemoteTelNums”, “Setup”,

“TelephoneApp”, “TelNums” and “TelNumsProxy”.

- The “Word Processor” application consists of six classes: “CutCommand”, “Document”,

“DocumentCommand”, “PasteCommand”, “UndoCommand” and “WordProcessor”.

74

-The “Bank” application consists of eight classes: “Account”,

“AttemptToAddBadBankingComponentException”, “CDAccount”, “CheckAccount”, “Client”,

“Customer”, “SavingAcount” and “Setup”.

- The “Elevator” application consists of eight classes: “ArrivalSensor”, “Elevator”,

“ElevatorControl”, “ElevatorGroup”, “ElevatorInterface”, “Floor”, “FloorControl” and

“FloorInterface”.

- The “Phone Directory” application consists of three classes: “Person”, “PhoneList” and

“phoneNumbers”.

- The “Computer” application consists of five classes: “Client”, “Computer”, “CPU”,

“NetSystem” and “RAM”.

- The “Coffee Maker” application consists of six classes: “CoffeeMaker”, “RecipeException”,

“Inventory”, “InventoryException”, “Recipe” and “RecipeBook”.

Application

Number of

classes Classes

BlackJack

10 BustedException

Card

Dealer

DealTemplate

FileFacade

FileUser

Hand

LogicFacade

Player

User

CruiseControl

4 CarSimulator

Controller

CruiseControl

SpeedControl

Table 5.1. Subject Of The Experiments

75

LinkedList

4 MyLinkedList

MyLinkedListItr

MyListBuilder

MyListNode

Telephone

5 RemoteTelNums

Setup

TelephoneApp

TelNums

TelNumsProxy

WordProcessor

6 CutCommand

Document

DocumentCommand

PasteCommand

UndoCommand

WordProcessor

Application

Number of

classes Classes

Bank

8 Account

AttemptToAddBadBankingComponentException

CDAccount

CheckAccount

Client

Customer

SavingAcount

Setup

Elevator

8 ArrivalSensor

Elevator

ElevatorControl

ElevatorGroup

ElevatorInterface

Floor

FloorControl

FloorInterface

Table 5.1. (Continued)

76

Phone

Directory

3 Person

PhoneList

phoneNumbers

Computer

5 Client

Computer

CPU

NetSystem

RAM

CoffeeMaker

6 CoffeeMaker

RecipeException

Inventory

InventoryException

Recipe

RecipeBook

Table 5.1. (Continued)

Class Pair Weight And Test Cases Calculation

Table 5.2 lists the class pair weight for the “Bank” application, test cases percentage for

each class, and the number of test cases for each class in the application. The “Account” class

has the highest weight among the classes so the majority of test cases, 11 test cases, will go to

the “Account” class. On the other hand, the “Setup” class has no class pair weight. In this case,

we ensure it has one test case.

Class Name Weight

Test Cases

Percentage
Test Cases

Count

Account 11.7638 25.55% 11

CheckAccount 7.017 15.24% 7

Customer 7.719 16.77% 7

CDAccount 6.679 14.51% 6

SavingsAccount 6.781 14.73% 6

Client 4.324 9.39% 4

AttemptToAddBadBankingComponentException 1.757 3.82% 2

Setup 0 0 1

Table 5.2. Bank Test Cases Calculations

77

Table 5.3 lists the class pair weight, Test cases percentage and the number of test cases

for each class in the “Coffee Maker” application. The “Recipe” class has the highest weight

“13.7”. The “inventory exception” class has the lowest weight.

Class Name Weight Test Cases Percentage Test Cases Count

Recipe 13.7 27.7% 10

CoffeeMaker 9.762 19.74% 7

RecipeBook 8.435 17.1% 6

Main 8 16.18% 6

Inventory 3.861 7.81% 3

RecipeException 2.91 5.88% 3

InventoryException 2.79 5.64% 2

Table 5.3. Coffee Maker Test Cases Calculations

The Table 5.4 lists the class pair weight, Test cases percentage and the number of test

cases for each class in the “Computer” application. The “NetSystem” class has the highest test

cases percentage “24.93”. On the other hand, the percentage of test cases for the “Setup” class is

zero; however, we ensure that each class at least has one test case.

Class

Name Weight

Test Cases

Percentage Test Cases Count

NetSystem 6.684 24.93% 8

CPU 4.063 15.15% 6

Component 3.83 14.28% 5

RAM 4.007 14.94% 5

Client 1.12 4.18% 2

computer 7.112 26.52% 1

Setup 0 0 1

Table 5.4. Computer Test Cases Calculations

Table 5.5 lists the class pair weight, Test cases percentage and the number of test cases

for each class in the “Cruise Control” application. The “CarSimulator” class has the highest

weight “7.619”. The “CruiseControl” class has the lowest weight “0”.

78

Class Name Weight Test Cases Percentage Test Cases Count

CarSimulator 7.619 51.58% 11

Controller 4.468 30.25% 7

SpeedControl 2.683 18.17% 4

CruiseControl 0 0 1

Table 5.5. Cruise Control Test Cases Calculations

Table 5.6 lists the class pair weight, Test cases percentage and the number of test cases

for each class in the “Elevator” application. The “Elevator” class has almost third of test cases of

the application while the “ElevatorGroup” class has just one test case.

Class name Weight

Test Cases

Percentage

Test Cases

Count

Elevator 27.407 29.97% 12

Floor 19.384 21.2% 9

ElevatorControl 12.715 13.9% 6

ElevatorInterface 9.469 10.36% 5

FloorInterface 7.657 8.37% 3

FloorControl 6.894 7.54% 3

ArrivalSensor 4.993 5.46% 2

ElevatorGroup 2.927 3.2% 1

Table 5.6. Elevator Test Cases Calculations

Table 5.7 lists the class pair weight, Test cases percentage and the number of test cases

for each class in the “Linked List” application.

Class Name Weight

Test Cases

Percentage Test Cases Count

MyListNode 7.732 34.85% 7

MyLinkedList 6.496 29.28% 6

MyLinkedListItr 5.103 23% 5

MyListBuilder 2.857 12.88% 3

Table 5.7. Linked List Test Cases Calculations

79

Table 5.8 lists the class pair weight, Test cases percentage and the number of test cases

for each class in the “Phone Directory” application.

Class Name Weight

Test Cases

Percentage Test Cases Count

Person 7.854 77.24% 12

phonelist 2.314 22.78% 4

phoneNumbers 0 0 1

Table 5.8. Phone Directory Test Cases Calculations

Table 5.9 lists the class pair weight, Test cases percentage and the number of test cases

for each class in the “Telephone” application.

Class Name Weight

Test Cases

Percentage

Test Cases

Count

TelNums 5.924 41.78% 11

TelNumsProxy 3.822 26.96% 7

RemoteTelNums 2.341 16.51% 5

TelephoneApp 2.093 14.76% 4

Setup 0 0 1

Table 5.9. Telephone Test Cases Calculations

The Table 5.10 lists the class pair weight, Test cases percentage and the number of test

cases for each class in the “Word Processor” application.

Class Name Weight Test Cases Percentage Test Cases Count

DocumentCommand 16.78 23.45% 9

CutCommand 13.951 19.5% 7

PasteCommand 13.305 18.59% 7

UndoCommand 11.165 15.6% 6

WordProcessor 10.704 14.96% 6

Document 5.662 7.91% 3

Table 5.10. Word Processor Test Case Calculations

80

The Table 5.11 lists the class pair weight, Test cases percentage and the number of test

cases for each class in the “Black Jack” application.

Class Name Weight Test Cases Percentage Test Cases Count

Hand 18.421 27.09% 13

Card 14.492 21.31% 10

FileUser 7.029 10.34% 7

User 9.892 14.55% 7

Dealer 5.4 7.94% 4

LogicFacade 5.4017 07.94% 4

BustedException 1.75 2.57% 2

DealTemplate 2.499 3.67% 2

FileFacade 2.825 4.15% 2

Player 0.292 0.43% 1

Table 5.11. Black Jack Test Cases Calculations

Developed Test Cases

 Table 5.12 shows the number of developed test cases and compares it with the number of

test cases that should go for each application. From the table we can see that we developed less

than 50% for seven applications: “linkedList”, “computer”, “WordProcessor”, “CruiseContol”,

“BlackJack”, “CoffeeMaker” and “Elevator” and we killed more than 80% of the mutants. We

stopped developing test cases when we killed 80% of the mutants.

Application Name Number of

Developed Test

Cases

Number of Test

Cases based on the

Calculations

Percentage of

Developed Test

Cases

linkedList 5 28 17.86%

computer 9 21 42.86%

WordProcessor 13 37 35.14%

CruiseContol 10 44 22.73%

BlackJack 13 38 34.21%

CoffeeMaker 11 28 39.29%

Elevator 21 52 40.39%

Bank 31 41 75.61%

phoneDirectory 15 17 88.24%

Telephone 12 23 52.17%

Table 5.12. Number Of Developed Test Cases

81

Mutation Testing Results

 We use mutation testing in order to evaluate our approach. Table 5.13 lists the percentage of

killed mutants. The results represents the mutants generated based on the chain of calls among

classes together in the application. The “linked List” and “Computer” application had all the

mutants killed with just a few test cases. In the “WordProcessor” application, there are 22

mutants and 20 of them are killed by just 13 test cases. “Elevator” and “Coffee Maker”

applications have almost the same percentage of killed mutants 85.12% and 85.19% respectively.

Four applications had more than 90% of the mutants killed: “WordProcessor”, “BlackJack”,

“Bank” and ”Telephone”. So we can see that our test cases killed 80% or more of the mutants.

Application Name
Number of

Mutants

Killed

Mutants
Live Mutants

Percentage of killed

Mutant

linkedList 3 3 0 100%

computer 9 9 0 100%

WordProcessor 22 20 2 90.91%

CruiseContol 31 26 5 83.87%

BlackJack 22 20 2 90.91%

CoffeeMaker 27 23 4 85.19%

Elevator 47 40 7 85.12%

Bank 12 11 1 91.67%

phoneDirectory 25 22 3 88%

Telephone 15 14 1 93.33%

Table 5.13. Chain Calls Mutants Results
 Table 5.14 lists the percentage of killed mutant which are created based on the class,

specifically methods’ parameters, method return types and duplicate calls within the class. In the

“computer” application 96% of the mutants are killed. 75% of the mutants are killed in the

“Linked List” application. The percentage of killed mutants of “Coffee Maker”, “Bank”, “Word

Processor”, “Telephone”, “Black Jack”, “Elevator”, “Phone Directory”, and “Cruise Control” are

76.32 %, 76.92%, 71.43%, 62.5%, 59.57%, 57.78%, 59.1% and 33.33% respectively. The big

differences in the results between percentage of killed mutants in Table 12 and Table 13 are

because of the test cases. The test cases are created to mainly reveal the interaction errors

between modules only not the interaction within modules. Since the created mutants at class

82

level represent all the interaction within the module and among modules while the created

mutants based on the chain of calls represent just the interaction among modules, the results in

table 5.13 are much better than the results in Table 5.14.

Application Name
Number of

Mutants

Killed

Mutants
Live Mutants

Percentage of Killed

Mutant

Word Processor 49 35 14 71.43%

phone Directory 110 65 45 59.1%

telephone 24 15 9 62.5%

Linked List 16 12 4 75%

elevator 135 78 57 57.78%

cruise Control 39 13 26 33.33%

computer 25 24 1 96%

Coffee Maker 76 58 18 76.32%

black jack 94 56 38 59.57%

bank 26 20 6 76.92%

Table 5.14. Class Mutants Results

Inner Mutants

 During the experiments, we have noticed that the class level mutants are reflecting

interactions mutants within the class itself and with other classes which come with the built in

packages such as String, Integer, Hash table, and others. So we called these kinds of mutants

“Inner mutants” and remove them from our calculations because these mutants will be killed at

the unit level of testing.

 Table 5.15 shows the percentage of mutants killed excluding the inner mutants. The results

show that we have killed more than 80% of the mutants after removing inner mutants for the

whole applications except juts the “Elevator” application 78.79%. We have killed 100 % of the

mutants in the “LinkedList” application. Three applications: ”Computer”, “CoffeeMaker” and

“bank” achieved 90% in killing mutants. The percentage of killed mutants after removing inner

83

mutants of “WordProcessor”, “Telephone”, “BlackJack” and “phoneDirectory” are: 89.74%,

88.24%, 83.58% and 86.67% respectively.

Application Name
Number of

Mutants

Killed

Mutants

Live

Mutants

Inner

Mutants

Percentage of

Killed Mutant

Without Inner

Mutants

computer 25 24 1 0 96%

linkedList 16 12 4 4 100%

CoffeeMaker 76 56 18 16 93.33%

bank 26 20 6 4 90.91%

WordProcessor 49 35 14 10 89.74%

Telephone 24 15 9 7 88.24%

BlackJack 94 56 38 27 83.58%

Elevator 135 78 57 36 78.79%

phoneDirectory 110 65 45 32 83.33%

CruiseContol 39 13 26 24 86.67%

Table 5.15. Class Mutants Results Without Inner Mutants

Mutants

 Table 5.16 illustrates the results of Duplicate call mutants excluding the inner mutants. In

“CoffeeMaker” and “LinkedList” applications we killed all the Duplicate call mutants. In

addition the results show that we have achieved 80% for the whole applications except the

“Elevator” application. This is because in the “Elevator” application there are many calls in

many basic blocks in the same method. Application Name

Application Name

Duplicate

Call Mutants

Killed

Duplicate

Call

Mutants

Live

Total of

Mutants

Inner

Mutants

Percentage of

Killed Mutant

Without Inner

Mutants

Word Processor 26 14 40 10 86.67%

telephone 14 9 23 6 82.35%

phone Directory 47 39 86 29 82.46%

Linked List 3 2 5 2 100%

elevator 40 37 77 24 75.47%

cruise Control 4 21 25 20 80%

computer 21 1 22 0 95.46%

Coffee Maker 17 4 21 4 100%

black jack 14 15 29 12 82.35%

bank 18 6 24 4 90%

Table 5.16. Duplicate Call Mutants Results Without Inner Mutants

222llll

84

Table 5.17 shows the results for the parameter mutants (Giving initial values for the

parameter before using it). The results show that the number of created mutants is less than the

number of duplicate mutants because the number of parameter mutants is based on the number of

methods implementation. In addition the results provide a good indication about our approach in

creating test cases. In four applications: “Word Processor”, “Linked List”, “cruise Control” and

“Computer” the test cases killed all the mutants. And for the rest of the applications the test cases

killed 80% or more of the mutants.

Application

Name

Parameter

Mutants

Killed

Parameter

Mutants

Live

Total of

Mutants

Inner

Mutants

Percentage of

Killed Mutant

Without Inner

Mutants

Word Processor 6 0 6 0 100%

phone Directory 8 4 12 2 80%

Linked List 3 2 5 2 100%

elevator 24 7 31 2 82.76%

cruise Control 1 1 2 1 100%

computer 3 0 3 0 100%

Coffee Maker 18 7 25 5 90%

black jack 20 8 28 3 80%

Table 5.17. Parameter Mutants Results Without Inner Mutants
 Table 5.18 shows the results for the return mutants (Returning initial values for the methods

which return data type). The results show that five applications have achieved 100% in killing

mutants, and the other killed 80 % or more except the “Elevator” application.

85

Application

Name

Return Mutants

Killed

Return

Mutants

Live

Total of

Return

Mutants

Inner

Mutants

Percentage of

Killed Mutants

Without Inner

Mutants

Word Processor 2 0 2 0 100%

telephone 1 0 1 0 100%

phone Directory 8 2 10 1 88.89%

Linked List 5 0 5 0 100%

elevator 9 13 22 10 75%

cruise Control 8 4 12 3 88.89%

Coffee Maker 22 7 29 7 100%

black jack 20 15 35 12 86.96%

Bank 2 0 2 0 100%

Table 5.18. Returns Mutants Results Without Inner Mutants

 Table 5.19 shows the percentage of killed mutants that are created based on swapping

parameter for the whole applications. The results show that the test cases killed all the mutants of

each application.

Application Name

Swap Parameter

Mutants Killed

Swap

Parameter

Mutants live

Total of

Swap

parameter

Mutants

Percentage of

Killed Mutant

Word Processor 1 0 1 100%

phone Directory 2 0 2 100%

Linked List 1 0 1 100%

elevator 5 0 5 100%

Coffee Maker 1 0 1 100%

black jack 2 0 2 100%

Table 5.19. Swap Parameters Mutants Results

 Table 5.20 shows that for four applications: “Word Processor”, ”Linked List”, “Black Jack”

and “Bank” all the swap methods mutants are killed. Other applications achieved 80% or more of

killed mutants.

86

Application Name

Swap

Method

Killed

Swap

Method

Live

Swap Method

Mutants

Percentage of Killed

Mutants

Word Processor 9 0 9 100%

Telephone 5 1 6 83.33%

phone Directory 9 1 10 90%

Linked List 1 0 1 100%

Elevator 16 2 18 88.89%

cruise Control 9 2 11 81.82%

Coffee Maker 6 1 7 85.71%

black jack 8 0 8 100%

Bank 4 0 4 100%

Table 5.20. Swap Methods Mutants Results
 Table 5.21 shows the results for deleting a call from a chain of calls mutants. From the

results we can see that in two applications: “Linked List” and “Computer” the test cases achieved

100% in killing mutants. The test cases have killed 85% and more of mutants in three

applications: “Phone Directory”, “Cruise Control” and “Coffee Maker”. While for the other

applications the test cases killed 80% or more of the mutants.

Application Name
Deleting a

Call Killed

Deleting a

Call Live

Mutants

Total of

Deleting a

Call Mutants

Percentage of Killed

Mutants

Word Processor 11 2 13 84.62%

Telephone 9 0 9 100%

phone Directory 13 2 15 86.67%

Linked List 2 0 2 100%

Elevator 24 5 29 82.76%

cruise Control 17 3 20 85%

Computer 9 0 9 100%

Coffee Maker 17 3 20 85%

black jack 12 2 14 85.71%

Bank 7 1 8 87.5%

Table 5.21. Deleting A Call Mutation Results

87

CHAPTER 6. CONCLUSION AND FUTURE WORK

This research has presented a new approach for integration testing. The goal of the

approach is to reduce the cost of integration testing while retaining as much as possible of its

effectiveness by limiting the number of integration test cases. The second goal of this research is

presenting a method for evaluating integration testing.

Contribution

In this research, we developed a methodology to specifically lower the cost of integration

testing and generally lower the cost of software. Our methodology assumes that the probability

that a method call will be erroneous is correlated significantly to the degree in which the calling

method and called method depend upon each other. We used an information retrieval technique

called Latent Semantic Indexing (LSI) as a proxy to calculate the dependency among methods

since the current artificial techniques are not sufficiently developed to identify the degree of the

dependency among methods. The similarity among methods is calculated through representing

each method as a vector and finding the cosine angle among them. Next, the class pair weight is

computed from the method pair weights for the methods in the two classes by adding all the

method pair weights.

 We calculated the total pair weight through adding all the class pair weights. Each class

pair weight is divided by the total pair weight to form the adjusted class pair weight. Next, we

determined the number of test cases by multiplying the total number of the integrated class by 5.

The test cases were allocated to each pair of classes by multiplying the adjusted class pair weight

by the total number of test cases and rounding up.

88

Another contribution of this research is developing a new tool to evaluate the integration

testing process in order to evaluate our approach. We accomplished this by extending the

mutation testing approach from unit testing into integration testing. We developed a set of

integration mutation operators to support development of integration mutation testing. The

operators seed integration errors into the application under test by, for example, swapping

method parameters, calling a wrong method, deleting a call from a chain of calls, and

misinterpreting the result of a method call. In addition, we conducted experiments on 10 Java

applications: BlackJack, CruiseControl, LinkedList, Telephone, WordProcessor, Bank, Elevator,

Phone Directory, Computer, and CoffeeMaker.

Our experimental results show that the percentage of killed mutants of the chain call

mutants reached 100% for two applications, linkedList and Computer; 90% or more for four

applications, WordProcessor, BlackJack, Bank and Telephone; and 83% or more for the other

four applications, CruiseContol, CoffeeMaker, Elevator and phoneDirectory. In addition, the

results show that the percentage of killed mutants of the class mutants reached 100% for one

application, linkedList; 90% or more for three applications, Computer, CoffeeMaker, and bank;

80% or more for five applications, WordProcessor, Telephone, BlackJack, phoneDirectory and

CruiseContol, and one application, Elevator reached 78.79%. The hypothesis of killing at least

60% of the mutants at integration level was approved since the lowest percentage of the killed

mutants in all applications was 78.79%. In our experiments, we developed less than 50% of the

number of test cases based on our approach for most of the applications, which means if we

develop the exact number of the test cases we would get more killed mutants.

89

Future Work

This research addresses two main problems in integration testing: what the best order in

which to integrate the classes currently available for integration is and which external method

calls should be tested and in what order for maximum effectiveness. In this research, we did not

explore which the test case selections are likely to be most effective in finding integration

problems. We are planning to use the Latent Semantic Indexing (LSI) to find the similarity

among test cases and other methods, and based on the methods pair weight, we would choose the

test case that is most similar to the methods pair.

Our approach used the methods to determine the dependency among modules. The fields

can be used in determining the dependency as well, so we plan to include the fields in computing

the dependency. Moreover, we are planning to use basic blocks instead of methods in finding the

dependency among modules since one method can have many basic blocks. Furthermore, we use

an arbitrary value and multiply it with the number of classes in order to specify the number of

test cases for the whole application. We are planning to derive this arbitrary value from the

dependency among modules.

We did not evaluate our approach with other integration testing approaches mentioned in

Chapter 3 because most of them are theoretical and we did not find any experiment data or tool

for other approaches to compare with our approach. We are planning to enhance and add new

features to the Mutation Integration Tool (MIT) by running the mutants against test cases

automatically, generating reports, and trying to separate integration mutants based on the internal

interaction (within the module) from external interaction among the modules. Moreover, we need

to expand the MIT to create mutants in other programming languages such as C#, C++, and

VB.net.

90

REFERENCES

[1] Victor Basili and Barry T. Perricone, “Software errors and complexity, an empirical

investigation. In Software engineering metrics I, Martin Shepperd (Ed.). McGraw-Hill, Inc., New

York, NY, USA, pp. 168-183, 1993.

[2] Huo Yan Chen and T. H. Tse and T. Y. Chen Taccle, “a methodology for object oriented

software testing at the class and cluster levels”, ACM Transactions on Software Engineering and

Methodology, Vol.10, No.1, pp.56-109, 2001.

[3] Martin Jung and Francesca Saglietti, “Supporting Component and Architectural Re-usage by

Detection and Tolerance of Integration Faults”, In Proceedings of the Ninth IEEE International

Symposium on High-Assurance Systems Engineering (HASE '05), IEEE Computer Society,

Washington, DC, USA, pp.47-55,2005.

[4] Paul C. Jorgensen and Carl Erickson, “Object-oriented integration testing”,Commun, ACM

,Vol.37,No.9, pp. 30-38, September 1994.

[5] Boris Beizer,“Software Testing Techniques”, (2nd Ed.). Van Nostrand Reinhold Co., New

York, NY, USA,1990.

[6] Overbeck, J., “Integration Testing for Object-Oriented Software,” Ph.D. thesis, Vienna

University of Technology, Vienna, Austria, 1994.

[7] W. T. Tsai and Xiaoying Bai and Ray Paul and Weiguang Shao and Vishal Agarwal, “End-

To-End Integration Testing Design”, IEEE 2001.

[8] DoD OASD C3I Investment and Acquisition, “Year 2000 Management Plan”, 1999.

[9] S Ali, L Briand, M Rehman, H Asghar, M Iqbal, A Nadeem, “A state-based approach to

integration testing based on UML models”, Information and Software Technology Butterworth-

Heinemann,2007.

91

[10]Patrizio,P, Henry.M. Antonio,B and Fabrizio.F, “TeStor: Deriving Test Sequences from

Model-Based Specifications”, Springer-verlag Berlin Heidlberg ,pp.267-282, 2005.

[11] Alessandro Orso Ph.D, Thesis, “Integration Testing of Object-Oriented Software”,

Politecnico di Milano. Milan, Italy 1999.

[12] Roger T. Alexander, James M. Bieman, Sudipto Ghosh, and Bixia Ji, 2002. “Mutation of

Java Objects”, In Proceedings of the 13th International Symposium on Software Reliability

Engineering (ISSRE '02), IEEE Computer Society, Washington, DC, USA, pp.341,2002.

[13] Tom Maibaum and Zhe (Jessie)Li, “A Test framework for integration testing of object

oriented programs”, Proceeding CASCON '07 Proceedings of the 2007 conference of the center

for advanced studies on Collaborative research, ACM New York, NY, USA©2007.

[14] “The CommUnity team and ATX Software SA. CDE Documentation”,

http://www.atxsoftware.com/CDE/.

[15] Dominik Hura and Michał Dimmich, “A method facilitating Integration Testing of

Embedded Software”, Proceeding WODA '11 Proceedings of the Ninth International Workshop

on Dynamic Analysis, ACM,New York, NY, USA©2011.

[16] Rattikorn Hewett and Phongphun Kijsanayothin, “Automated Test Order Generation for

Software Component Integration Testing”, Proceeding ASE '09 Proceedings of the 2009

IEEE/ACM International Conference on Automated Software Engineering IEEE Computer

Society Washington, DC, USA ©2009.

[17] Leonard Gallagher and Jeff Offutt, “Automatically Testing Interacting Software

Components”, Proceeding AST '06 Proceedings of the 2006 international workshop on

Automation of software test ACMNew York, NY, USA©2006.

http://dl.acm.org/author_page.cfm?id=81100525684&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81340490516&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://www.acm.org/publications
http://www.atxsoftware.com/CDE/
http://dl.acm.org/author_page.cfm?id=81487655142&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81487653583&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://issta11.unl.edu/
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81100451130&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81384591783&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81100068133&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81100103236&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://www.icse-conferences.org/2006/
http://www.acm.org/publications

92

 [18] Hai Yuan and Tao Xie, “substra: a Framework for automatic Generation of Integration

Tests”, ACM Press, pp.76-70, 2006.

[19] Nam Hee Lee and Tai Hyo Kim and Sung Deok Cha, “Construction of Global Finite State

Machine for Testing Task Interactions written in message Sequence Chart”, In The Fourteenth

International Conference on Software Engineering and Knowledge Engineering (SEKE’02),

2002.

[20] Aynur Abdurazik and Jeff Offutt, “coupling-based Class Integration and Test Order”,

Proceeding AST '06 Proceedings of the 2006 international workshop on Automation of software

test, ACM, New York, NY, USA©2006.

 [21] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen, “A test strategy for object-oriented

programs”, In 19
th

 Computer Software and Applications Conference (COMPSAC 95), pp.239-

244, Dallas, TX, August 1995.

[22] L. Briand, J. Feng, and Y. Labiche, “Using genetic algorithms and coupling measures to

devise optimal integration test orders”, In Proceedings of the 14
th

 International Conference on

Software Engineering and Knowledge Engineering, pp. 43-50, Ischia, Italy, 2002.

[23] L. Briand, Y. Labiche, and Y. Wang, ”Revisiting strategies for ordering class integration

testing in the presence of dependency cycles”, Technical report SCE-01-02, Careleton

University, 2001.

[24] L. C. Briand, Y. Labiche, and Y. Wang, “An investigation of graph-based class integration

test order strategies”, IEEE Transactions on Software Engineering, Vol.29,No.7, pp.594-607,

July 2003.

http://dl.acm.org/author_page.cfm?id=81314487726&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81100103236&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://www.icse-conferences.org/2006/
http://www.acm.org/publications

93

[25] M. J. Harrold and J. D. McGregor, “Incremental testing of object-oriented class structures”,

In 14th International Conference on Software Engineering, pp. 68-80, Melbourne, Australia,

May 1992.

[26] K.-C. Tai and F. Daniels, “Test order for inter-class integration testing of object-oriented

software”, In The Twenty-First Annual International Computer Software and Applications

Conference (COMPSAC '97), pp. 602-607, Santa Barbara CA, 1997.

[27] Y. L. Traon, T. Jeron, J.-M. Jezequel, and P. Morel, “Efficient object-oriented integration

and regression testing”, IEEE Transactions on Reliability, pp. 12-25, March 2000.

[28] Benz, Sebastian, “Combining Test Case Generation for Component and integration

Testing”, Proceedings of the 3rd international workshop on Advances in model based testing

AMOST 07, ACM Press, pp.23-30, 2007.

[29] Konstantin Rubinov, “Generating Integration Test Cases Automatically”, Proceeding FSE

'10 Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of

software engineering, ACMNew York, NY, USA©2010.

[30] Harry M. Sneed Anecon GmbH, “testing object oriented software systems”. Proceeding

ETOOS '10 Proceedings of the 1st Workshop on Testing Object-Oriented Systems, ACM, New

York, NY, USA©2010.

[31] Srinivasan Desikan, Gopalaswamy Ramesh Software Testing Principles and practices.

Pearson Education India, Sep 1, 2006 - 486 pages TextBook.

[32] K. N. Leung and L. White, “A study of integration testing and software regression at the

integration level”, In Proceedings of the conference on Software. Maintenance-90, pp.290.301,

San Diego, California, 1990.

http://dl.acm.org/author_page.cfm?id=81472654670&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://fse18.cse.wustl.edu/
http://fse18.cse.wustl.edu/
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81100372374&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://2010.ecoop.org/
http://www.acm.org/publications
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Srinivasan+Desikan%22
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Gopalaswamy+Ramesh%22

94

[33]Yu-Seung MaYong-Rae KwonJeff Offutt, “Inter class Mutation Operators for Java”,

Proceeding ISSRE '02 Proceedings of the 13th International Symposium on Software Reliability

Engineering IEEE Computer Society Washington, DC, USA ©2002.

[34] “IEEE Standard for Software Test Documentation", IEEE Std 829-1998 , vol., no., pp.i,

1998,doi: 10.1109/IEEESTD.1998.88820.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741968&isnumber=16010

[35] Berger, A et al, “Bridging the Lexical Chasm: Statistical Approaches to Answer Finding”,

In Proc. Int. Conf. Research and Development in InformationRetrieval, 192-199,2000.

[36] Jeff OffuttYu-Seung Ma and Yong-Rae Kwon, “The Class-Level Mutants of MuJava”,

Proceeding AST '06 Proceedings of the 2006 international workshop on Automation of software

test, ACM New York, NY, USA ©2006.

[37] Sun-woo Kim and John A. Clark and John A. Mcdermid, “Assessing test set adequacy for

object-oriented programs using class mutation”, 28 JAIIO: Symposium on Software Technology

(SoST`99) pp. 72-83, 1999.

[38] Yu-Seung MaMary Jean Harrold and Yong-Rae Kwon, “Evaluation of mutation testing for

object-oriented programs”, Proceeding ICSE '06 Proceedings of the 28
th

 international conference

on Software engineering, ACM New York, NY, USA ©2006.

[39] Paul E. Black, “Mutation Operators for Specifications”, In Proceedings of 15 th IEEE

International Conference on Automated Software Engineering, IEEE Computer Society, pp.81-

88, 2000.

[40] Máarcio E. Delamaro, José C. Maldonado and Aditya P. Mathur, “Interface Mutation: An

Approach for Integration Testing”, Journal IEEE Transactions on Software Engineering archive,

Vol.27, No.3, IEEE PressPiscataway, NJ, USA, March 2001.

http://dl.acm.org/author_page.cfm?id=81452599589&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81452599589&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81100103236&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741968&isnumber=16010
http://dl.acm.org/author_page.cfm?id=81100103236&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81100103236&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81408592406&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://www.icse-conferences.org/2006/
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81452599589&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81452599589&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81408592406&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://www.icse-conferences.org/2006/
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81430654508&coll=DL&dl=ACM&trk=0&cfid=82827172&cftoken=96181824
http://dl.acm.org/author_page.cfm?id=81100169140&coll=DL&dl=ACM&trk=0&cfid=82827172&cftoken=96181824
http://dl.acm.org/author_page.cfm?id=81100380230&coll=DL&dl=ACM&trk=0&cfid=82827172&cftoken=96181824
http://dl.acm.org/citation.cfm?id=J390&picked=prox&cfid=82827172&cftoken=96181824

95

[41] S. Madiraju and S. Ramakrishnan A. J, “Hurst Towards automated mutation testing”, 2004.

[42] Mresa, Elfurjani S. and Bottaci, Leonardo, “Efficiency of mutation operators and selective

mutation strategies: An empirical study”, Softw. Test., Verif. Relia,. pp.205-235, 1999.

[43] David SchulerValentin DallmeierAndreas Zeller, “Efficient Mutation Testing by Checking

Invariant Violations”, Proceeding ISSTA '09 Proceedings of the eighteenth international

symposium on Software testing and analysis ACM New York, NY, USA ©2009.

[44] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Integration Testing Using Interface

Mutation”, In Proceedings of International Symposium on Software Reliability Engineering

(ISSRE ’96), pp. 112–121, April 1996.

[45] Sun-woo Kim and John A. Clark and John A. Mcdermid, “Assessing Test Set Adequacy for

ObjectOriented Programs Using Class Mutation”, JAIIO: Symposium on Software Technology

(SoST`99),pp. 72-83, 1999.

[46] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland Untch and Christian Zapf, “An

Experimental Determination of Sufficient Mutation Operators”, ACM Trans. on Software

Engineering & Methodology, Vol. 5, pp. 99–118, April 1996.

[47] Examensarbete I Datalogi and Mattias Bybro and Examinator Prof and Stefan Arnborg, ”A

Mutation Testing Tool for Java Programs Ett verktyg för mutationstestning av Javaprogram”,

2003.

[48] Ben H. Smith and Laurie Williams, “On Guiding the Augmentation of an Automated Test

Suite via Mutation Analysis”, Journal Empirical Software Engineering archive,Vol.14, No.3,

Kluwer Academic PublishersHingham, MA, USA, June 2009.

http://dl.acm.org/author_page.cfm?id=81351592684&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81351592684&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://dl.acm.org/author_page.cfm?id=81100307506&coll=DL&dl=ACM&trk=0&cfid=82230053&cftoken=24839854
http://www.cse.msu.edu/issta09/
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81339529028&coll=DL&dl=ACM&trk=0&cfid=82342355&cftoken=87518182
http://dl.acm.org/author_page.cfm?id=81100005737&coll=DL&dl=ACM&trk=0&cfid=82342355&cftoken=87518182
http://dl.acm.org/citation.cfm?id=J856&picked=prox&cfid=82342355&cftoken=87518182

96

[49] Bradbury, J.S.; Cordy, J.R.; Dingel, J, “Mutation operators for concurrent java (j2se

5.0)”, in Proceedings of the Second Workshop on Mutation Analysis, IEEE Computer Society,

pp. 11–11,2006.

[50] M. Delamaro, M. Pezz, A. M. R. Vincenzi, and J. C. Maldonado, “Mutant operators for

testing concurrent java programs”, in XV Simpsio Brasileiro de Engenharia de Software, Rio de

Janeiro, RJ, Brasil, pp. 272 – 285,2001.

[51] Leon Wu and Gail Kaiser, “Empirical Study of Concurrency Mutation Operators for Java”,

Department of Computer Science Columbia University New York, NY 10027, 2010.

[52] M. Scholive, V. Beroulle, C. Robach, M. L. Flottes and B. Rouzeyre, “Mutation Sampling

Technique for the Generation of Structural Test Data”, Proceeding DATE '05 Proceedings of the

conference on Design, Automation and Test in Europe, Vol.2, IEEE Computer

SocietyWashington, DC, USA©2005.

[53] Lech Madeyski, Norbert Radyk, “Judy - a mutation testing tool for Java", IET Software,vol.

4, No. 1, pp. 32-42,2010.

[54] Macario Polo, Mario Piattini and Ignacio Garc´ıa-Rodr´ıguez, “Decreasing the cost of

mutation testing with second-order mutants”, SOFTWARE TESTING, VERIFICATION AND

RELIABILITY Softw. Test. Verif. Reliab, (19),pp.111-131, 2009.

[55] Upsorn Praphamontripong and Jeff Offutt, “Applying Mutation Testing to Web

Applications”, Software Testing, Verification, and Validation Workshops (ICSTW), 2010.

[56] Francesca Lonetti and Eda Marchetti, “X-MuT: A Tool for the Generation of XSLT

Mutants”, Proceeding QUATIC '10 Proceedings of the 2010 Seventh International Conference

on the Quality of Information and Communications Technology IEEE Computer Society

Washington, DC, USA, 2010.

http://dl.acm.org/author_page.cfm?id=81100357994&coll=DL&dl=ACM&trk=0&cfid=82342355&cftoken=87518182
http://dl.acm.org/author_page.cfm?id=81331488524&coll=DL&dl=ACM&trk=0&cfid=82342355&cftoken=87518182
http://dl.acm.org/author_page.cfm?id=81100419145&coll=DL&dl=ACM&trk=0&cfid=82342355&cftoken=87518182
http://dl.acm.org/author_page.cfm?id=81100558395&coll=DL&dl=ACM&trk=0&cfid=82342355&cftoken=87518182
http://dl.acm.org/author_page.cfm?id=81100186090&coll=DL&dl=ACM&trk=0&cfid=82342355&cftoken=87518182
http://www.date-conference.com/
http://dl.acm.org/author_page.cfm?id=81300161401&coll=DL&dl=ACM&trk=0&cfid=64194680&cftoken=57827653
http://dl.acm.org/author_page.cfm?id=81100170657&coll=DL&dl=ACM&trk=0&cfid=64194680&cftoken=57827653

97

[57]. Manning, Christopher D. , Raghavan, Prabhakar.Schütze, Hinrich, “Introduction to

information retrieval”, New York, Cambridge University Press, 2008.

[58] Grossman, David , and Frieder, Ophir, “Information retrieval algorithms and heuristics”,

Boston : Kluwer, 1998.

[59] Cherukuri, Aswani Kumar and Suripeddi, Srinivas, “On the performance of Latent Semantic

Indexing-based Information Retrieval”, CIT, (17) pp. 259-264, 2009.

[60] Vincent Wolowski, “Fuzzy Information Retrieva”, Presentation, Seminar Softcomputing,

Department of Computer Science, Chair of Applied Computer Science VII, Intelligent

Information and Communication Systems Group of Prof. Helbig, University of Hagen, Hagen,

Germany, May 27.

[61] Scott Deerwester and Susan T. Dumais and George W. Furnas and Thomas K. Landauer and

Richard Harshman, “indexing by latent semantic analysis”, JOURNAL OF THE AMERICAN

SOCIETY FOR INFORMATION SCIENCE, Vol.41, No.6, pp. 391—407, 1990.

[62] DI LUCCA, G. A., DI PENTA, M., AND GRADARA, S, “An approach to classify software

maintenance requests”, In Proceedings of the IEEE International Conference on Software

Maintenance (Montr´eal, Qu´e., Canada), IEEE Computer Society Press, Los Alamitos,

CA, pp.93–102, 2002.

[63] MAAREK, Y., BERRY, D., AND KAISER, G, “An information retrieval approach for

automatically constructing software libraries”, IEEE Trans. Softw. Eng. Vol.17, NO. 8, pp.800–

813, 1991.

[64] ARNOLD, S. P., AND STEPOWAY, S. L, “The reuse system: Cataloging and retrieval of

reusable software”, In Software Reuse: Emerging Technology, W. Tracz, Ed. IEEE Computer

Society Press, Los Alamitos, CA, pp.138–14,1988.

https://catalog.library.ndsu.edu/search~S1?/aManning%2C+Christopher+D./amanning+christopher+d/-3,-1,0,B/browse
https://catalog.library.ndsu.edu/search~S1?/aRaghavan%2C+Prabhakar./araghavan+prabhakar/-3,-1,0,B/browse
https://catalog.library.ndsu.edu/search~S1?/aRaghavan%2C+Prabhakar./araghavan+prabhakar/-3,-1,0,B/browse
https://catalog.library.ndsu.edu/search~S1?/aGrossman%2C+David+A.%2C+1965-/agrossman+david+a+1965/-3,-1,0,B/browse
https://catalog.library.ndsu.edu/search~S1?/aFrieder%2C+Ophir./afrieder+ophir/-3,-1,0,B/browse

98

[65] BURTON, B. A., ARAGON, R. W., BAILEY, S. A., KOELHER, K., AND MAYES, L. A,

”The reusable software library”, In Software Reuse: Emerging Technology,W. Tracz, Ed. IEEE

Computer Society Press, Los Alamitos, CA, 129–137,1987.

[66] PIGHIN, M, “A new methodology for component reuse and maintenance”. In Proceedings

of 5th European Conference on Software Maintenance and Reengineering (Lisbon, Portugal),

IEEE Computer Society Press, Los Alamitos, CA, pp.196–199,2001.

[67] Robert Tairas and Jeff Gray, “An information retrieval process to aid in the analysis of code

clones”, Journal Empirical Software Engineering archive,Vol.14, No.1, Kluwer Academic

Publishers Hingham, MA, USA, February 2009.

[68] Denys Poshyvanyk , Andrian Marcus , Rudolf Ferenc , and Tibor Gyimóthy, “Using

information retrieval based coupling measures for impact analysis”, Journal Empirical Software

Engineering archive Vol.14, No.1, Kluwer Academic Publishers Hingham, MA, USA. February

2009.

[69] Meghan Revelle , Malcom Gethers , and Denys Poshyvanyk, “Using structural and textual

information to capture feature coupling in object-oriented software”, Journal

Empirical Software Engineering archive, Vol.16, No. 6, Kluwer Academic Publishers Hingham,

MA, USA December 2011.

[70] LORMANS, M. AND VAN DEURSEN, A, ‘Can LSI help reconstructing requirements

traceability in design and test?”, In Proceedings of 10th European Conference on Software

Maintenance and Reengineering (Bari, Italy), pp.45–54,2006.

[71] SETTIMI, R., CLELAND-HUANG, J., BEN KHADRA, O., MODY, J., LUKASIK, W.,

AND DEPALMA, C, “Supporting software evolution through dynamically retrieving traces to

99

UML artifacts”, In Proceedings of 7th International Workshop on Principles of Software

Evolution (Kyoto, Japan), IEEE Computer Society Press, Los Alamitos, CA, pp.49–54, 2004.

[72] Salton, G. & Buckley, C, “Term-weighing approaches in automatic text retrieval”, In

Information Processing & Management, Vol.24, No.5, pp.513-523, 1988.

[73] Salton, A. Wang, C. Yang, “A vector-space model for information retrieval”, Journal of the

American Society for Information Science, 1975.

[74] Grossman, David , and Frieder, Ophir, “Information retrieval algorithms and heuristics”,

Boston : Kluwer, 2004.

[75] Trevor.S, Meghan.R, and Denys.p, “FLAT3: Feature Location and Textual Tracing Tool”,

ICSE '10, Cape Town, South Africa, Copyright © 2010.

https://catalog.library.ndsu.edu/search~S1?/aGrossman%2C+David+A.%2C+1965-/agrossman+david+a+1965/-3,-1,0,B/browse
https://catalog.library.ndsu.edu/search~S1?/aFrieder%2C+Ophir./afrieder+ophir/-3,-1,0,B/browse

