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ABSTRACT 

Nanoscale zero-valent iron (NZVI) particles and iron cross-linked alginate (FCA) beads 

were successfully used for the first time for phosphate removal and recovery. NZVI was 

successfully used for phosphate removal and recovery. Batch studies indicated a removal of ~96 

to 100% phosphate in 30 min (1, 5, and 10 mg PO4
3-

-P/L with 400 mg NZVI/L). Phosphate 

removal efficiency by NZVI was 13.9 times higher compared to Microscale ZVI (MZVI) 

particles. The successful rapid removal of phosphate by NZVI from aqueous solution is expected 

to have great ramification for cleaning up nutrient rich waters. The presence of sulfate, nitrate, 

and humic substances and the change in ionic strength in the water marginally affected 

phosphate removal by NZVI.  A maximum phosphate recovery of ~78% was achieved in 30 min 

at pH 12.  

Novel iron cross-linked alginate (FCA) beads were synthesized, characterized and used 

for phosphate removal. The beads removed up to 37-100% phosphate from aqueous solution in 

24 h. Freundlich isotherm was found to most closely fit with experimental data and the 

maximum adsorption capacity was found to be 14.77 mg/g of dry beads. The presence of 

chloride, bicarbonate, sulfate, nitrate, and natural organic matters in aqueous solution did not 

interfere in phosphate removal by FCA beads.  The phosphate removal efficacy FCA beads was 

not affected due to change in pH (4-9). 

Nanosacle zero-valent iron (NZVI) and iron cross-linked alginate beads were also tested 

for phosphate removal using actual wastewater treatment plant effluent and animal feedlot 

runoff.  The FCA beads could remove ~63% and ~77% phosphate from wastewater and feedlot 

runoff in 15 min, respectively.   
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Bioavailability of phosphate was examined using algae and higher plants. Phosphate and 

iron bioavailability of the NZVI sorbed phosphate was examined by supplying spent particles 

(NZVI with sorbed phosphate) to Tyee Spinach (Spinacia oleracea) and algae (Selenastrum 

capricornutum). Results revealed that the phosphate was bioavailable for both the algae and 

spinach. Also, presence of the nanoparticles enhanced the algae growth and plant growth and 

increases in biomass and plant length were observed. Iron (from spent NZVI) was found to be 

bioavailable for spinach.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Phosphorus (P) exists in water in both particulate and dissolved forms. The usual forms 

of P in aqueous solutions are orthophosphates, polyphosphates and organic phosphates 

(Mezenner and Bensmaili 2009). Phosphorus is a necessary macronutrient for the growth of 

organisms and aquatic plants and is an excellent indicator of surface water quality. Excess P in 

waterbodies leads to deterioration of its overall health. The major point sources that contribute to 

phosphate (or phosphorus) built up in aquatic environment include municipal and industrial 

wastewaters while the run-offs from agriculture, including animal agriculture, are the major non-

point sources. Phosphates have become pollutants due to their over application as both synthetic 

and animal-based fertilizers. They are also used as a major constituent in many detergents and 

pigments (Smith et al., 1999). Excessive P present in natural waters is known to cause 

eutrophication (Penn and Warren 2009). Eutrophication is one of the most serious environmental 

problems affecting the quality and sustainability of enclosed water bodies worldwide. In addition 

to the very apparent excessive plant growth problem, eutrophication depletes dissolved oxygen 

in natural waters which eventually leads to fish death and adversely affects other aquatic life 

forms. The amount of P compounds originating from the sources and/or arriving at the receiving 

waters should be controlled to prevent eutrophication. Accelerated  eutrophication not only 

affects the aquatic life but impairs the economic advancement of communities that depend on 

aquatic food and other resources (Cleary et al., 2009). Dissolved phosphate of ~ 0.02 mg/L is 

considered to have potential to lead to profuse algal growth in waters which will in turn deplete 

the oxygen further leading to poor water quality (USEPA 1995). 
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Phosphate is recognized as one of the resources that will be in short supply in the near 

future. An assessment of future consumption of phosphorus fertilizers indicates that natural 

phosphate (PO4
3-

) deposits will last for approximately 60-240 years (Cornel and Schaum 2009), 

the phosphorus production rate is predicted to decline starting sometime in the year 2035 (Figure 

1.1) while the demand for P-based fertilizers is on the rise (Cordell et al., 2011). Phosphorus is 

one of the most essential nutrients for plants and its projected decline in production is a major 

concern. P-based fertilizers are extensively used in food crops all over the world and they are 

intricately related to global food security. The possible short supply of P-fertilizers is a threat to 

global food security.  

 

Figure 1.1: Global phosphorus production rate (modified after Cordell et al., 2009) 

Being a nonrenewable resource, it is, therefore, essential to recover P from 

nonconventional sources. Municipal wastewater contains adequate amount (5 -15 mg/L) of P 

which can possibly be recovered and used in agriculture (Blackall et al., 2002). A total of 118 

billion L/day of municipal wastewater is generated in the United States alone and total recovery 

of P from these wastewaters will amount to 1415 tons of P per year (USDD 2004). Further, there 
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are estimated 24773 eutrophic lakes (50% US lakes, 20% are hypereutrophic lakes) in the United 

States (USEPA, 2009). To top them all a huge amount of P-based fertilizers used in the United is 

wasted as run-off from agricultural fields. In addition, there is enough phosphorus generated in 

animal feedlot that can possibly be recovered with the appropriate technology. Recovery, 

however, involves a major challenge as most of these phosphorous exist in the water 

environment in diluted forms. While there are technologies to remove P (present as phosphate) 

from waters with varied degree of success and recovery of phosphate has not been a priority 

area. Enhanced removal and subsequent recovery of phosphate from waters are of considerable 

significance prior to their discharge into natural waters. By adopting the approach of ‘remove 

and recover’ two battles can be won together. Firstly, natural waters will be protected from 

phosphate pollution, and secondly, an important resource will be recovered.  

Various technologies have been used to remove phosphate from waters are discussed 

in Section 1.2.2. Extensive work has been done on using adsorption for phosphate removal. 

Adsorption is attractive because of its operational simplicity and low cost, especially when 

phosphate is low in concentration (Saha et al., 2009). The effectiveness of adsorption-based 

methods mainly depends on the type of adsorbent. Recently, several iron-based materials have 

been developed and used for phosphate removal (Almeelbi and Bezbaruah, 2012; Biswas et al., 

2007; Huang et al., 2009; Ogata et al., 2011; Zhang et al., 2011). Among them nanoscale zero-

valent iron (NZVI) particles stand out as they are very effective in phosphate removal (Almeelbi 

and Bezbaruah, 2012). NZVI particles are known to have much higher reactive surface area (25-

52 m
2
/g) when compared to micro scale iron particles (1-2 m

2
/g), iron filings or other iron based 

adsorbents, and have been previously used to remediate a wide range of environmental 

contaminants (Bezbaruah et. al., 2011; Zhang, 2003).   
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1.2. Literature Review  

1.2.1. Importance of phosphate  

Phosphorus (P) is a nonrenewable yet essential nutrient for plants and there is no 

substitute for it. Up in the food chain P is required to maintain important human body functions 

such as transporting energy to the brain and building cell walls (Cordell et al., 2012). The human 

consumption of P is estimated to be 1.2 g/person/day (Cordell et al., 2009) which are 

approximately 8300 tons of phosphorus for the global population annually. The phosphorus for 

human consumption typically comes from plants and animals. 

With an expanding world population the demand of P fertilizers for agricultural uses is on 

the rise. The P fertilizers come from phosphate rocks present on the Earth’s crust. Eighty percent 

(80%) of P extracted from the global reserves is used for agriculture (Smil, 2000). Fertilizer use 

in food crops is intricately related to global food security.  However, the world reserves of 

phosphate rocks are becoming increasingly scarce and it is estimated that that natural phosphate 

(PO4
3-

) deposits will last for approximately 60-240 years (Cornel and Schaum, 2009). P 

production rate is predicted to decline sometime in year 2035 while the demand for P-based 

fertilizers is on the rise (Cordell et al., 2011). Phosphorous for fertilizer production comes 

predominantly from select mines from Morocco, Western Saharan region, and China (Fig. 1.2, 

Cordell et al., 2009; USGS, 2012). The price of phosphate rock has risen many folds over time 

and sudden jumps in price have seen whenever there is a food crisis (Cordell, 2008). Short 

supply of P-fertilizer and the vulnerability in the global phosphate rock market are the major 

concern in food security area (Elser, 2012; Neset and Cordel, 2012). It is, therefore, essential to 

recover P from ‘wastes’ for possible reuse in agriculture. 
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Figure 1.2: Global phosphate reserves (data source: USGS, 2012) 

 

1.2.2. Phosphorus removal processes  

Phosphorus removal from wastewater can be achieved via biological uptake by 

microorganisms and via chemical precipitation with metal cations. Both processes may be 

applied in wastewater treatment plants to achieve the desired effluent concentration. A biological 

process is used to remove the bulk of the phosphorus, and chemical process follows to achieve 

the target effluent concentration.  

1.2.2.1. Biological phosphorus removal  

Biological process removes phosphorus using phosphate-accumulating organisms 

(PAOs). PAOs go through anaerobic conditions first and followed by aerobic conditions.  Under 

anaerobic conditions, phosphate (PO4
3-

) accumulated in their body is released by microorganisms 

as they break the bonds in the polyphosphate (the form in which phosphate is stored in biomass) 

while the microorganisms consume biodegradable organic compounds, mainly volatile fatty 
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acids (VFAs). The internal polyphosphate molecules are formed again under aerobic conditions 

where microbes take up the phosphate in a process called luxury uptake. In this process more 

phosphate is being taken up by the microbes than they release under the anaerobic conditions. 

Total phosphate concentration in water is being reduced as a result of the accumulation in the 

microbial biomass (Kang et al., 2008; Mulkerrins et al., 2004; Tchobanoglous et al., 2003).  

VFAs are readily biodegradable and expressed as readily biodegradable chemical oxygen 

demand (rbCOD, a part of total COD). A sufficiently high ratio of VFAs or rbCOD to ortho-

phosphorus is needed in the aenaerobic phase to maintain a healthy bacterial population. The 

minimum ratios of COD to total phosphorous (TP) and biochemical oxygen demand (BOD) to 

TP, VFA to TP are 45, 20 and 4, respectively,  to achieve 1 mg/L of total phosphorus in the 

effluent (Kang et al., 2008). Sufficient generation of VFAs is affected by temperature. 

Phosphorus uptake is reduced under temperatures higher than 30 °C and PAOs show serious 

inhabitation at 40 °C (Panswad et al. 2003; Rabinowitz et al. 2004).  

1.2.2.2. Chemical phosphorus removal  

Multivalent metal cations are used in chemical precipitation process. As the first step in 

this process,  phosphate species (e.g., H2PO4
1-

, HPO4
2-

) are converted to PO4
3- 

(Eq. 1.1).The most 

common multivalent ions used in the chemical precipitate process are calcium (Ca
2+

), ferric ion 

(Fe
3+

), and aluminum (Al
3+

) (Kang et al., 2008).  

HnPO4
(3-n)-

 +  nOH
-
  PO4

3-
 +  n H2O                                                                                 (Eq. 1.1) 

Calcium is commonly added in the form of lime [Ca(OH)2] which increases the pH as it 

reacts with natural bicarbonate alkalinity and precipitates out as CaCO3.The excess of Ca
2+

 then 

reacts with the phosphate as the pH of wastewater is increased above 10 (Eq. 1.2). The quantity 
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of the required lime depends on the alkalinity of the water being treated (Tchobanoglous et al., 

2003).  

10Ca
2+

 + 6PO4
3-

 + 2OH
-
 ↔ Ca10(PO4)6(OH)2                                                           (Eq. 1.2) 

The mechanism of phosphate precipitation by ferric ion (Fe
3+

) and aluminum ions (Al
3+

) 

is different than the precipitation using Ca
2+

.  Trivalent ions interact with the orthophosphate to 

form a metal-phosphate precipitate (Eqs. 1.3 and 1.4). Although the reaction seems simple, other 

competing reactions might take place and interfere with the precipitation process. The typically 

Fe
3+

 and Al
3+

 are supplied as ferric chloride (FeCl3) and alum (aluminum sulfate), respectively 

(Galarneau and Gehr, 1997; Tchobanoglous et al., 2003).  

Al
3+

 + HnPO4
3-n

 ↔ AlPO4 + nH
+
                                                                                         (Eq. 1.3) 

Fe
3+

 + HnPO4
3-n

 ↔ FePO4 + nH
+
                                                                                         (Eq. 1.4) 

In this process a phosphate containing floc is formed which can then be filtered or settled 

to be removed. As the applied ion concentrations increase the P concentration in the effluent 

decreases (Kang et al., 2008).   

1.2.3. Phosphate removal and recovery technologies 

Major research on phosphate removal and recovery has been done with wastewaters. 

There are a number of existing technologies that have been accepted for the removal of 

phosphate from wastewater.  The most used methods include chemical precipitation, biological 

methods, ion-exchange, and adsorption (Mezenner and Bensmail, 2009; Morse et al., 1998). 

Chemical methods for the removal of phosphate are very effective but they need high chemical 

inputs and generate sludge which needs additional treatment (Table 1.1). Chemical precipitation 
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of phosphate is achieved by adding of a coagulant to the wastewater. Calcium, aluminum and 

iron based coagulants are the commonly used. When lime Ca(OH)2 is used, phosphate removal is 

achieved by direct precipitation of calcium phosphate in form of hydroxyapatite Ca5(PO4)3OH 

(de-Bashan and Bashan, 2004). Precipitation with Fe or Al is a relatively complex process that is 

influenced by pH of the wastewater and the presence of other ions as well as organic matters. 

Different metal-P complexes and metal hydroxyl complexes are formed with Fe and Al (Aguilar 

et al., 2002) that precipitate out.   

The biological methods have been widely used by many because of the advantages they 

offer (Xiong et al., 2008). Biological treatment for phosphate removal from wastewater is 

achieved by stoichiometric coupling to microbial growth or enhanced storage of P as 

polyphosphate (poly-P in the biomass). This is the key mechanism in the enhanced biological 

phosphate removal (EBPR) process (Levin and Shapiro, 1965). In the EBPR process, a multiple-

stage reactor (anaerobic and aerobic phases) is used to circulate activated sludge where influent 

wastewater is introduced into the anaerobic phase first (Barnard, 1975, Tchobanoglous et al., 

2003). EBRP has potential to remove P from wastewater to low levels (<0.1 mg/L) at modest 

costs and with minimal additional sludge production (Barnard, 2006). Biological methods have 

a number of advantages over chemical methods. The advantages over chemical treatment include 

more effective treatment, less chemical usage, less energy consumption and less sludge 

production (Mulkerrins et al., 2003). However, some biological processes (e.g., EBPR) are 

reported to have high potential for process upsets, performance deterioration, and even failures 

(Blackalled et al., 2002).  

Crystallization or struvite (NH4MgPO4•6H2O) formation is one of the most practiced 

techniques for P recovery from municipal sludge (Parsons and Doyle, 2004, Parsons et al., 
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2010). It occurs spontaneously in wastewater treatment plants as stable white orthorhombic 

crystals in 1:1:1 Mg:N:P molar ratio (Corre et al 2009). Struvite is a directly usable P source for 

plants.   

In recent years phosphate recovery using adsorbent technologies is gaining momentum. 

The most commonly used low cost adsorbents are iron based adsorbents, red mud, natural ores 

and alum slag (Huang et al., 2011). The biggest concern associated with these adsorbents is their 

low adsorption capacity. Natural ores like calcite is reported to have a sorption capacity of 0.1 

mM PO4
3-

/g (i.e., 3.1 mg PO4
3-

-P/g, Karageorgiou et al., 2007). Goethite (FeOOH, 17.3 mg PO4
3-

-P/g, Chitrakar et al., 2006), active red mud (9.8 PO4
3-

-P/g, Yue et al., 2010), and activated 

carbon (3.02 mg PO4
3-

-P/g, Hussain et al., 2011) are the most effective sorbents so far used for 

the removal of phosphate.  

Iron-based adsorbents are gaining popularity for the removal of phosphate from 

wastewater. Iron is a non-toxic metal with the capability of adsorbing phosphate efficiently 

(Mezenner and Bensmail, 2009; Xiong, et al 2008). It is reported that the adsorbed phosphate can 

be recovered at certain conditions of temperature and pH (Huang et al., 2011).  The iron-based 

adsorbents so far used include iron fillings, iron oxides, and micro-sized iron particles. Although 

iron is a preferred adsorbent for the removal of phosphate, the adsorption capacity of the iron 

based adsorbents is less [11.2 (Yan et al., 2010a) to 19.02 mg PO4
3-

-P/g (Cordray 2008)]. Binary-

oxide sorbents such as iron-zirconia (adsorption capacity = 33.4 mg PO4
3-

-P/g) have been 

reported to be effective in phosphate removal from aqueous solutions but the possible adverse 

effects of zirconia have not been completely understood (Ren et al., 2012). 



 

 

Table 1.1: Summary of phosphate removal and recovery technologies (adopted from Morse et al. 1998) 

Removal 

Technology 

Recovery value 
Advantages Disadvantages 

Industrial Agriculture 

Chemical 

precipitation 

Low: metal bound P 

makes recycling difficult 

Moderate: P availability 

variable 

Established low technology 

Easy to install and operate 

P removal can be high 

Requires chemicals 

Sludge production 

increases P recyclability variable 

Biological 

phosphorus 

removal 

Moderate: biologically- 

bound P more recyclable 

Moderate: biologically- 

bound P more 

Available 

Establishing technology  

No need for chemicals  

N and P removal possible  

P more recyclable 

More complex technology to 

install and operate 

Sludge handling may be more 

difficult 

Crystallisation 

 

Very high: easily 

recycled by industry 

Moderate: P availability 

Variable 

Demonstrated technology 

recyclable 

Requires chemicals and 

operation skills 

Advanced 

chemical 

precipitation 

(HYPO) 

Low: metal-bound P 

makes recycling Difficult 

Moderate: P availability 

Variable 

Proven (pilot) technology 

Enhanced P and N removal. 

Part of a complete recycling 

concept 

Requires chemicals 

Complex technology 

P may not be in a 

convenient form 

Ion exchange 

(RIM-NUT) 

Moderate: would require 

modifications 

High: struvite is a good 

slow- release fertilizer 

High P removal  

Struvite produced  

has high recycling potential 

for agriculture 

for recycling 

Requires chemicals 

Complex technology 

Waste eluate 

Magnetic 

(Smit-Nymegen) 

Moderate: would require 

modifications 

Low: agricultural 

suitability unknown 

High P removal Unnecessarily complex 

Requires chemicals 

Phosphorus 

adsorbents 

Moderate: Recent 

developments are very 

promising. 

Limited resources 

available 

High removal and recovery 

efficiency of ~ 98% 

Low Cost 

By-products generation for 

adsorbents doped with certain 

metals 

Tertiary filtration None: no potential None: no potential Established technology Easy 

to retrofit and use 

Not a recovery technology (no 

useful product) 

Sludge treatments Low: difficult to re-cycle High: P re-use high Increases sludge value More complex technology 

Chemicals required 

Recovery from 

sludge ash 

High: P readily leached Moderate: P re-use 

possible 

Potential for recovering P at 

high concentrations 

Undeveloped technology 

Only possible if incineration is 

the usual disposal route 

1
0
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1.2.4. Nanoscale zero-valent iron (NZVI) 

The most basic and known form of NZVI is spherical Fe
(0)

, which has dimensions less 

than 100 nm. Iron nanoparticles used for environmental remediation have particle sizes in the 

range of 12.5- 80 nm (Bezbaruah et al., 2009; Bezbaruah et al., 2011; Cullen et al., 2011; Li et 

al., 2006). NZVI particles have much higher reactive surface areas when compared to other 

larger iron particles, micro particles and iron fillings which make them more sought after for 

environmental remediation. (Macé et al., 2006; Zhang, 2003). The BET surface areas of NZVI 

reported in literature range between 20- 30 m
2
g

-1 
(Bezbaruah et al., 2011; Zhang, 2003) 

compared to 1-2 m
2
g

-1
 for micro iron particles (Sigma-Aldrich, 2008).  

Nanoscale zero-valent Iron (NZVI) particles have been used to remediate a wide range of 

environmental contaminants including chlorinated compounds (Bezbaruah et al., 2011; Kim et 

al., 2010; Lien and Zhang 1999; Liu and Lowry 2006; Liu et al., 2005; Lowry and Johnson, 

2004; Song and Carraway, 2005; Wang and Zhang, 1997), heavy metals (Alowitz and Scherer 

2002; Kanel et al., 2005, Klimkova et al., 2011), pesticides (Bezbaruah et al., 2009; Joo and 

Zhao 2008) and explosives (Gregory et al., 2004).  

NZVI particles are known to be very good adsorbents and have been successfully utilized 

for the removal of numberous environmental contaminants such as arsenic (Tanboonchuy et 

al.,2011 ), methyl orange (Cheng et al., 2011), cadmium (Boparai et. al., 2011) and lead (Liu et. 

al., 2009). NZVI has been found to be a favorable adsorbent for the aqueous phosphate 

(Almeelbi and Bezbaruah 2012). 

1.2.5. Polymers for entrapment of NZVI 

The use of a number of biopolymers like alginate, Poly(methyl methacrylate) (PMMA), 

chitosan, and carrageenan have been explored for environmental remediation applications 
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(Bezbaruah et al., 2009; Bezbaruah et al., 2011; Crini 2005; Krajangpan et al., 2008; Krajewska 

2005; Ngila 2011; Vieira et al., 2011; Youssef et al., 2010). 

Alginate is a biopolymer derived from seaweeds, and it has been used for entrapment for 

microbial cells (Adinarayana et al., 2005; Hill and Khan, 2008; Lee and Heo, 2002) and NZVI 

(Bezbaruah et al., 2009, Kim et al., 2010).  The entrapped NZVI was found to work very 

efficiently for contaminants like trichloroethylene (TCE).  The entrapment process does not 

require sophisticated instrumentation and can be performed at ambient temperature and pressure. 

Ca-alginate is non-toxic, biodegradable, and sparsely soluble in water making it an ideal polymer 

for use in environmental applications (Bezbaruah et al., 2009a; Chan et al., 2010; Lai et al., 

2008).  The porous nature of Ca-alginate allows solutes to diffuse and come in contact with the 

entrapped NZVI (Bezbaruah et al., 2009).    

Ionic cross-linking refers to the ion exchange process between the monovalent ion on the 

water soluble alginate (e.g., sodium or potassium ions) and the multivalent ion (e.g., Ca
2+

) to 

give a sol/gel transition (Draget et al., 1998). The characteristic chelate-type ion-binding 

properties of alginates can be explained by ‘egg-box’ model in which electronegative cavities are 

formed by polyguluronic chains in alginate to host divalent cations (Grant et al., 1973; Morris et 

al., 1978). In this model, guluronate sequences are responsible for creating cavities where the 

multivalent ions coordinate along the alginate chains (Mehrotra, 1983).  The coordination of 

metal–carboxylate can occur in different ways: (a) an ionic or uncoordinated form, (b) unidentate 

coordination, (c) bidentate chelating coordination, and (d) bidentate bridging coordination (Fig. 

1.3, Papageorgiou et al., 2010). 
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Figure 1.3: Types of metal–carboxylate coordination (After Papageorgiou et al., 2010). (a) an 

ionic or uncoordinated form, (b) unidentate coordination, (c) bidentate chelating coordination, 

and (d) bidentate bridging coordination. 

Sodium alginate is the salt of alginic acid which consists of two uronic acids, b-D-

mannuronic acid and a-L-guluronic acid. Ca
2+

 is typically used to replace Na
+
 in alginate to 

produce Ca-alginate. This stable gels is formed as Ca
2+

 interact ionically with blocks of uronic 

acid residues to form a three-dimensional network that is usually described by the ‘egg-box’ 

model (Papageorgiou et al., 2010). Other di-valent ions such as Fe
+2

 can also be used to cross-

link with alginate. Fe
+2

 has been cross-linked with alginate and used in the biomedical research 

(Machida-Sano et al., 2009).  

1.2.6. Plant nanoparticles interaction  

Nanoparticles (size <100 nm) fall under the transitional zone between atom or molecules 

and bulk materials and are known to have different and unique physicochemical properties 

probably due to the small size (Taylor and Walton, 1993). Nanoparticles can affect components 

of our ecosystem including plants (Nel et al., Science, 2006) 

Nanoparticle-plant interactions have been explored in the past to understand how 

nanoparticles affect plants. The ubiquitous nature of nanoparticles has resulted in their presence 

everywhere including contaminated water which finally reaches plants and wetlands. Jacob et.al. 

(2013) studied the effects of TiO2 nanoparticles on two important plant species (Phaseolus 

vulgaris and Triticum aestivum). The results of this study revealed that titanium was bioavailable 
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for plants uptake, and significant concentrations of titanium was detected in the roots and shoots. 

A number of other researchers have reported increased photosynthesis and nitrogen metabolism 

in spinach (Spinacea oleracea) in the presence of TiO2 nanoparticles (Hong et al., 2005a; Hong 

et al., 2005b; Zheng et al., 2005; Yang et al., 2006). On the other hand TiO2 and ZnO 

nanoparticles have been found to reduce biomass in wheat (Triticum spp.) and bring about 

changes in soil enzyme activities (Du et al., 2011). Du et al., (2011) reported the presence of 

nanoparticles within primary root tips of wheat when the particles were introduced in bulk 

growth solution. Silver (Ag) and copper (Cu) nanoparticles in growth solution also caused 

decrease in plant biomass (Stampoulis et al., 2009). 

1.3. Need Statement 

Novel and inexpensive technologies are needed to manage phosphate in waters. All 

forms of phosphorus from waste streams and run-offs need to be removed as they are directly or 

indirectly related to eutrophication of surface water bodies. However, given that phosphorus is a 

nonrenewable and essential resource, recovery of phosphorus and subsequent agricultural 

application are important. There is no proven cost effective technology at present to remove 

phosphorus from water and recover it for application in agriculture. It is, therefore, felt necessary 

to develop a technology or technologies to address this need.   

1.4. Research Objectives 

The main objectives of this study are the development of efficient and cost effective 

techniques for the removal and recovery of phosphate from waters, and study of bioavailability 

of the recovered phosphate. 

The specific objectives of this study are:  
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 Phosphate removal using NZVI and biopolymers. 

 Phosphate recovery from used NZVI (i.e., NZVI used for phosphate removal). 

 Study the bioavailability of phosphate from used NZVI.  

 Application of the new technologies for phosphate removal from actual 

wastewaters. 

1.5. Hypotheses 

 Iron has high affinity for phosphate and the adsorption onto iron is known to be 

surface area dependent reaction. Therefore, nanoscale zero-valent iron (NZVI) 

particles with high reactive surface area (25-54 m
2
/g) will be able to remove 

phosphate very efficiently. 

 Calcium (Ca) cross-linked alginate is a porous biopolymer and entrapping NZVI 

in Ca-alginate matrix would help in retaining the particles within the matrix and 

the particles will be able to remove phosphate from aqueous solution.  

 Iron (Fe 
2+

) can be used to cross-link alginate instead of calcium (Ca
2+

) and the 

new iron cross-linked alginate will be able to adsorb phosphate very efficiently 

because of the presence of iron within it.  

 The phosphate adsorbed by different adsorbents will be bioavailable for uptake 

by plants.  

1.6. Expectations from This Study 

 NZVI will be used for the first time for the removal and recovery of phosphate 

from aqueous solution. 
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 The mechanism associated with the removal of phosphate by NZVI will be 

elucidated.  

 Iron cross-linked alginate beads will be synthesized for the first time to remove 

phosphate from wastewaters. 

1.7. Dissertation Organization  

Chapter 1 is an overview of the research problem and includes literature review, need 

statement and objectives of this research.  It also enlists the expectations from this study.  The 

rest of the chapters in the dissertation are presented in journal paper formats, and each chapter 

has already been published or will be submitted for publication to a peer reviewed journal. A 

paper on aqueous phosphate removal using NZVI published in the Journal of Nanoparticle 

Research (Almeelbi and Bezbaruah, 2012) is presented as Chapter 2. Chapter 3 describes the 

novel iron cross-linked alginate and its application to remove aqueous phosphate. The 

bioavailability of NZVI-sorbed phosphate has been discussed in Chapter 4. Phosphate 

availability to hydroponic Spinacia oleracea and Selenastrum capricornutum have been 

described in details in that chapter. While all results presented in Chapters 1 through 6 were 

based on experiments done with synthetic phosphate solution, Chapter 5 presents the data 

obtained from experiments done with actual wastewaters (municipal wastewater and animal 

feedlot runoff) and NZVI and iron cross-linked alginate were used for removal of phosphate 

from the wastewaters. Conclusions and future directions are summarized in Chapter 6. The 

dissertation also contains appendices dedicated to each chapter.    
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CHAPTER 2. AQUEOUS PHOSPHATE REMOVAL USING 

NANOSCALE ZERO-VALENT IRON
1
 

2.1. Abstract  

Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide 

variety of contaminants.  NZVI particles have high reactivity because of high reactive surface 

area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. 

Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO4
3-

-P/L 

with 400 mg NZVI/L) removed ~96 to 100% phosphate in 30 minutes. Efficacy of the NZVI in 

phosphate removal was found to 13.9 times higher than micro-ZVI particles (MZVI) with same 

NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, 

nitrate, and humic substances present in the water affected in phosphate removal by NZVI but 

they may not have any practical significance in phosphate removal in the field.  Phosphate 

recovery batch study indicated that better recovery is achieved at higher pH and it decreased with 

lowering of the pH of the aqueous solution. Maximum phosphate recovery of ~78% was 

achieved in 30 minutes at pH 12. The successful rapid removal of phosphate by NZVI from 

aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.  

 

This chapter was published as an article in JNPR (Almeelbi T, Bezbaruah AN (2012) Aqueous 

phosphate removal using nanoscale zero-valent iron. Journal of Nanoparticle Research, 14(7), 1-

14. 

 
1 The material in this chapter was co-authored by Talal Almeelbi and Dr. Achintya Bezbaruah. 

Talal Almeelbi had primary responsibility for conducting laboratory experiments. Talal Almeelbi 

was the primary developer of the conclusions that are advanced here. Talal Almeelbi also drafted 

and revised all versions of this chapter. Dr. Bezbaruah served as proofreader and checked the 

math in the statistical analysis conducted by Talal Almeelbi.  
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2.2. Introduction 

Phosphorus (P) exists in water in both particulate and dissolved forms. The usual forms 

of P in aqueous solutions are orthophosphates, polyphosphates and organic phosphates 

(Mezenner and Bensmaili 2009). Phosphorus is necessary for the growth of organisms and plants 

and is an indicator of surface water quality. Excessive P present in natural waters is known to 

cause eutrophication (Penn and Warren 2009). Eutrophication results in the depletion of oxygen 

that leads to fish death and affects other aquatic life forms adversely. The major point sources 

that contribute to P built up in aquatic environment include municipal and industrial wastewaters. 

Run-offs from agriculture, including animal agriculture, are the major non-point sources. The 

amount of P compounds in these sources should be controlled to prevent eutrophication in lakes 

and other surface waters. Accelerated eutophication not only affects the aquatic life but indirectly 

hinders the economic progress of communities that depend on aquatic food and other resources 

(Cleary et al., 2009). Dissolved phosphate of ~ 0.02 mg/L is considered to have potential that 

lead to profuse algal growth in waters (USEPA 1995). 

On the other hand, phosphorus is one of the required nutrients for plants. P-based 

fertilizers are extensively used in food crops and it is intricately related to global food security.  

Phosphorous for fertilizer production comes predominantly from select mines from Morocco, 

Western Saharan region, and China (Cordell et al., 2009). Phosphorus is a nonrenewable 

resource. While an assessment of future consumption of phosphorus fertilizers indicates that 

natural phosphate (PO4
3-

) deposits will last for approximately 60-240 years (Cornel and Schaum 

2009), P production rate is predicted to decline sometime in year 2035 while the demand for P-

based fertilizers is on the rise(Cordell et al., 2011). Short supply of P-fertilizer is a major concern 
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in food security area. It is, therefore, essential recover P from ‘wastes’ for possible reuse in 

agriculture. 

Chemical precipitation (de-Bashan and Bashan 2004), physico-chemical processes 

(Mishra et al., 2010), and enhanced biological phosphate removal (Gouider et al., 2011) are the 

frequently used techniques to remove aqueous phosphate. Among them chemical treatment 

methods for aqueous phosphate removal are widely practiced using chemicals like lime (Ahn and 

Speece 2006), alum (Babatunde and Zhao 2010), and ferric chloride (Caravelli et al., 2010). 

However, the high cost of chemicals and problems associated with sludge management make 

these methods unattractive for waters containing high amounts of phosphate (for example, 

wastewater with a typical total P of 4–14 mg/L, Tchobanoglous et al., 2003). 

Sorption has emerged as a viable option for phosphate removal from aqueous media. In 

the recent years considerable amount of emphasis has been put on the use of low cost 

(ad)sorbents. Cost effectiveness is identified as the prime criterion in the selection of a sorption 

technology whether it uses synthetic or natural sorbents (Mishra et al., 2010). Phosphate can be 

removed from water using sorbents such as oxides of iron, natural ores like calcite, and goethite 

(FeOOH), active red mud, and activated carbon. One of the problems encountered with these 

sorbents is that they have very low sorption capacities. For example, sorption capacities of iron 

oxides are 11.2 mg PO4
3-

/g (Yan et al., 2010a) and 19.02 mg PO4
3-

-P/g (Cordray 2008). 

Similarly, natural ores like calcite was reported to have a sorption capacity of 0.1 mM PO4
3-

/g 

(i.e., 3.1 mg PO4
3-

-P/g, Karageorgiou et al., 2007). Goethite (FeOOH, 17.3 mg PO4
3-

-P/g, 

Chitrakar et al., 2006), active red mud (9.8 PO4
3-

-P/g, Yue et al., 2010), and activated carbon 

(3.02 mg PO4
3-

-P/g, Hussain et al., 2011) are so far tried for P removal.  
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In the last two decades nanoscale zero-valent iron (NZVI) particles have received a lot of 

attention because of their unique reactive and sorbtive characteristics (Bezbaruah et al., 2009 and 

2011; Li et al., 2006). N ZVI particles show good sorbtive characteristics owing to their high 

surface to volume ratio (Yan et al., 2010b). However, most of the reported work on sorption by 

NZVI has been on metalloids and heavy metals including some actinides (Giasuddin et al., 2007; 

Kanel et al., 2005; Klimkova et al., 2011; Scott et al., 2011) and, to the best of authors’ 

knowledge,  there is no literature on phosphate removal and subsequent recovery using NZVI.  

The objective of this study is to investigate the efficacy of NZVI particles for phosphate 

removal and recovery from aqueous solutions. Phosphate removal was tried under different 

environmental conditions (temperature, ionic strength), and in the presence of interfering ions 

and organic compounds. Effect of particle size on phosphate removal was studied. Batch 

experiments were conducted under different pH conditions to investigate the optimal pH 

conditions for phosphate recovery from NZVI.  

2.3. Materials and Methods 

2.3.1. Chemicals and reagents 

Iron (III) chloride hexahydrate (FeCl3•6H2O, 98%, Alfa Aesar), sodium borohydride 

(NaBH4, 98%, Aldrich), methanol (production grade, BDH), calcium chloride (CaCl2, ACS 

grade, BDH), monopotassium phosphate (KH2PO4, 99%, EMD), potassium nitrate (KNO3, 99%,  

Alfa Aesar), sodium hydroxide (5 N NaOH, Alfa Aesar), potassium sulfate (K2SO4, ACS grade, 

HACH), natural organic matter (Suwannee River NOM, RO isolation, IHSS), and humic acid 

(H1452, Spectrum) were used as received unless and otherwise specified.  
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2.3.2. Synthesis of NZVI 

NZVI particles were synthesized using sodium borohydride reduction method (Eq. 2.1, 

Huang and Ehrman 2007). 

 

2FeCl3+ 6NaBH4 + 18H2O → 2Fe
0
 + 21H2 + 6B(OH)3+ 6NaCl                                         (2.1) 

Ferric chloride hydrate (1.35 g) was dissolved in 40 mL of deoxygenated de-ionized (DI) 

water (solution A), and 0.95 g of sodium borohydride was dissolved in 10 mL of deoxygenated 

DI water in a separate beaker (solution B).  Then solution A was added drop wise to solution B 

under vigorous stirring conditions (using a magnetic stirrer). The resultant black precipitates 

(NZVI) were centrifuged and washed with copious amount of deoxygenated DI water. The NZVI 

in slurry form was then stored in 20 mL vials in methanol to prevent oxidation, and used for 

experiments later. NZVI slurry in the vials was withdrawn using a pipette after vigorous stirring. 

The average weight of dry NZVI present in 1 mL well stirred slurry was measured to be 20 mg  

0.6 mg (n = 25). 

2.3.3. Phosphate removal batch studies  

Batch experiments were conducted using (a) NZVI, and (b) microscale zero-valent iron 

(MZVI) particles. Phosphate solution (50 mL of 1, 5, and 10 mg PO4
3-

-P /L) with 20 mg of 

NZVI (i.e., 400 mg/L) in multiple 50 mL polypropylene plastic vials fitted plastic caps 

(reactors). The reactors were rotated end-over-end at 28 rpm in a custom-made shaker to reduce 

mass transfer resistance.  One of the reactors was withdrawn at specific time interval (0, 10, 20, 

30 and 60 min) and the content was centrifuged at 4000 rpm. Bulk solution was collected for 

phosphate analysis from this reactor and reactor was sacrificed or used for phosphate recovery 

study (see ‘Phosphate recovery batch studies’). Ascorbic acid method (Eaton et al., 2005) was 



30 

 

used for phosphate analysis. This method depends on the formation phosphomolybdic acid 

during the reaction between orthophosphate and molybdate. Ascorbic acid reduces 

phosphomolybdic to form a blue complex. The color was measured in a UV-vis 

spectrophotometer (HACH, DR 5000) at wavelength of 880 nm. A five-point calibration was 

done routinely.  

2.3.4. Effect of initial NZVI concentration  

Batch studies were conducted with six different NZVI concentrations (80, 160, 240, 320, 

400, 480, and 560 mg/L) for an initial bulk PO4
3-

-P concentration of 5 mg/L. The experimental 

procedure described earlier (see ‘Phosphate removal batch studies’) was followed. Samples were 

withdrawn for phosphate
 
analysis at 30 min. 

2.3.5. Interference studies  

The effects ionic strength, presence of selected anions and cations, and humic substances 

were examined. Batch studies were conducted in room temperature (22±2 
o
C) using 400 mg 

NZVI/L and 40 mL of solution with an initial bulk phosphate concentration of 5 mg PO4
3-

-P /L. 

Sampling frequency was maintained as described earlier (see ‘Phosphate removal batch studies’). 

The ionic strength was varied from 0 to 10 mM by adding specific amounts of CaCl2 to 

the phosphate solution. The range of ionic strength was selected to represent groundwater 

conditions. The possible interference due to the presence of other important ions was also studied 

using two important anions (sulfate and nitrate). Potassium sulfate was used as the source of 

SO4
2- 

(0, 100, 500, 900 mg/L). The effect of NO3
-
 (0, 1, 5, 10 mg NO3

-
-N /L) was studied by 

adding KNO3. Humic substances present in water may affect phosphate removal by NZVI, and 

to evaluate such impacts Suwannee River (USA) natural organic matter (0, 1, 10, 50 mg/L) and 



31 

 

humic acids (0, 1, 10, 50 mg/L) were used in separate batch experiments. The batch experiments 

were conducted as described earlier (see ‘Phosphate removal batch studies’).    

2.3.6. Effect of temperature 

Experiments were conducted under deferent temperatures conditions (4, 22, and 60 
o
C) to 

find out the effect of temperature change on phosphate removal by NZVI. The temperature of 

phosphate solution was first adjusted to the desired temperature by keeping it in the specific 

environment for long enough periods (~24h).  NZVI particles (400 mg/L) were added to 

phosphate solution (40 mL, 5 mg/L) once the specific temperature was reached. Samples were 

shaken at 100 rpm under temperature-controlled environment using an incubator-cum-orbital 

shaker (Thermo Scientific, MaxQ4000).  

2.3.7. Effect of particle size 

Effect of zero-valent iron (ZVI) particle size on phosphate removal was evaluated using 

NZVI particles synthesized within this research and microscale zero-valent iron (MZVI) 

particles purchased from a supplier (Aldrich, 99.9% purity, used as received). ZVI reactions are 

known to be surface mediated (Thompson et al., 2010), and as such it was ensured that the same 

surface area concentrations were used in the experiments conducted with NZVI and MZVI.  The 

NZVI particles used in this experiment had a surface area of ~25 m
2
/g (Bezbaruah et al., 2009) 

and MZVI had a surface area of ~2 m
2
/g (reported by the manufacturer). NZVI and MZVI 

surface area concentration of 10 m
2
/L (400 mg/L NZVI and 5 g/L MZVI) was used in the study.  

2.3.8. Phosphate recovery batch studies  

An initial batch study was conducted to find out the pattern of desorption (recovery) of 

phosphate into water from NZVI used for phosphate removal. Batch experiments were run first 
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in 50 mL plastic vials fitted a plastic cap (reactors) with 400 mg/L NZVI and 50 mL of 5 mg 

PO4
3-

-P/L to get the phosphate sorbed onto NZVI. The batch reactors were withdrawn after 60 

min and centrifuged to separate the spent NZVI (i.e., NZVI particles with phosphate sorbed onto 

them).  The bulk solution was decanted out and phosphate concentration was measured. A 50 mL 

DI water was added to the spent NZVI and the pH was manipulated (2-12) with either 0.1 N HCl 

or NaOH. The reactors were closed and rotated end-over-end for 30 min. The reactors with the 

samples were then centrifuged and concentration of phosphate was measured in the bulk 

solution. The optimal pH for phosphate recovery (i.e., when maximum phosphate recovery) was 

determined based on this initial batch study results, and the rest of the phosphate recovery 

experiments were conducted at that particular (optimal) pH.   

Additional batch studies were conducted in sacrificial reactors at the optimal pH, and 

phosphate recovery was monitored over time (0, 10, 20, and 30 min). The data obtained from the 

removal experiments were normalized with respect to the original bulk phosphate concentration. 

For the data sets from the recovery studies, the initial phosphate concentration was calculated 

based on the mass of phosphate sorbed onto the NZVI and the data were normalized with respect 

to that.  

2.3.9. NZVI characterization 

X-ray diffraction (XRD) was done to find out NZVI composition. The samples were 

placed in stainless steel sample holders and XRD patterns were recorded using CuKα radiation 

( = 1.5418A˚) on a Philips X'Pert diffractometer operating at 40 kV and 40 mA between 5˚ and 

90˚ (2θ) at a step size of 0.0167˚(Xi et al., 2010). 

High-resolution transmission electron microscopy (HRTEM, JEOL JEM-2100-LaB6 

TEM) was used to observe the shape of NZVI particles and determine their particle size. NZVI 



33 

 

particles were vacuum dried and the dry particles were placed in ethanol and sonicated for 5 min 

to achieve proper dispersion.  Drops of the resulting solution were placed onto lacey carbon grids 

(Electron Microscopy Sciences, USA) and allowed to dry.  Images were taken using a Gatan 

ORIUS large format CCD camera. 

2.3.10. Quality control 

All experiments were done in triplicates during this research and the average values are 

reported along with the standard deviations. Blanks with only phosphate (without NZVI/MZVI) 

were run along with the NZVI and MZVI experiments. The analytical instruments and tools were 

calibrated before the day’s measurements. One-way ANOVA tests were performed to compare 

the variance between data sets as needed. Additionally, Dunnett Method was used to compare 

control with rest of the treatment data. Minitab 16 software (Minitab, USA) was used for all 

statistical analyses. 

2.4. Results and Discussion 

2.4.1. NZVI synthesis and characterization 

NZVI synthesized (Fig. 2.1a) during this research were mostly spherical in shape and had 

particle size distribution from 10 nm to 30 nm with an average size of 16.24±4.05 nm (n = 109, 

Fig. 2.1b). Huang and Ehrman (2007) reported particle size of 20 nm using the same method. 

The XRD spectrum (Fig. 2.1c) for the particles synthesized during this study shows three peaks 

of zero-valent iron (Fe
0
). A couple of iron oxide peaks were also observed which might be 

because of exposure of the particles to air during the XRD experiment. During the synthesis of 

NZVI, the particles were not bleed with air (as in Bezbaruah et al., 2009 and 2011) but there is 

still a possibility that a thin oxide layer around the particles was formed due to reaction with 
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atmospheric oxygen. A peak for iron chloride was also observed which might be from the left 

over reactants used for the synthesis of NZVI (see Eq. 2.1).  

2.4.2. Phosphate removal 

Batch experiments were conducted for phosphate removal using 400 mg/L NZVI and 

different phosphate concentrations (1, 5, 10 mg PO4
3-

-P/L). Rapid phosphate removal was 

observed in the first a few minutes of the experiment for all three concentrations. About 88-95% 

of phosphate was removed within the first 10 min and only minimal removal was observed 

beyond that (Fig. 2.2). Blanks didn’t show any removal of phosphate. Three consecutive data 

points (20, 30, and 60 min) showed no major change (maximum 2.7% variation) in phosphate 

removal for the two higher concentrations (5 and 10 mg PO4
3-

-P/L). while a much larger 

variation (~7.8% from 20 to 60 min) was observed for 1 mg PO4
3-

-P/L. While complete (100%) 

phosphate removal was observed for 1 mg PO4
3-

-P/L solution, 96.29±0.13 and 97.53±0.16 

percent removals were observed for 5 and 10 mg PO4
3-

-P/L, respectively. The sorption capacities 

at 60 min were found to be 2.27±0.00, 12.00±0.02, and 24.38±0.04 mg/g for 1, 5, and 10 mg 

PO4
3-

-P/L, respectively. The sorption capacity increased linearly (R
2
 = 0.9999) with the increase 

in phosphate concentration.    

For 5 mg PO4
3-

-P/L, 30 min was found to be long enough time to achieve equilibrium 

with 400 mg NZVI/L. As such all experimental data for 5 mg PO4
3-

-P/L  and 400 mg NZVI/L 

were collected up to 30 min.  Iron-based removal techniques are reported by others where 15-

100% phosphate removal has been achieved (Table 2.1). 
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Figure 2.1: (a) High-resolution transmission electron microscopy (HRTEM) image of NZVI; 

(b) Particles size distribution of the nanoparticles synthesized was 10-30 nm with an average 

size of 16.24±4.05 nm (n = 109); (c) X-ray diffraction (XRD) spectrum of NZVI with 

prominent peaks for Fe
0
. Peaks for oxides are from Fe-oxide layer on the NZVI, and the FeCl3 

peak is from residuals of raw materials used in NZVI synthesis  

 

a 

b 

c 
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Figure 2.2: Phosphate removal by NZVI/L from bulk solutions with different initial phosphate 

concentrations ( 10 mg PO4
3-

-P/L,  5 mg PO4
3-

-P/L ,  1 mg PO4
3-

-P/L,  

Blank). NZVI = 400 mg/L 

Hydroxides of iron were found to be most effective in the removal process but a wide 

range of efficiency (15-100%) has been reported (Chitrakar et al., 2006; Cordray 2008; 

Mezenner 2009; Yan 2010a). Synthetic goethite ( -FeOOH) was found to remove up to 1 mg 

P/L completely (100%) from NaH2PO4 solution (Chitrakar et al., 2006). Again 100% phosphate 

removal was observed with akaganeite ( -FeOOH) up to 0.3 mg P/L. It took 2-8 h to reach 

equilibrium in most of the reported phosphate removal experiments done with 

DI/distilled/wastewater (Chitrakar et al., 2006; Mezenner and Bensmaili 2009; Xiong et al., 

2008; Yan et al., 2010a) but took 24 h to reach equilibrium in seawater (Chitrakar et al., 2006).  

It is pertinent here to discuss treatment time in other sorption systems for comparison purposes. 

Hussain et al., (2011) reported 95% removal of phosphate with granular activated carbon over a 

150-min period. Sorption of ~95% of phosphate on calcite in 45 min was reported by 

Karageorgiou et al., (2007).  
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In the present study, very fast removal of phosphate (88-95% in 10 min) was achieved, 

and that makes this research very relevant for continuously flowing (pumped) water (i.e., 

required contact time will be short). The sorption capacities of NZVI after 10-min interaction 

with the aqueous solution containing phosphate were found to be 2.20±0.06, 11.87±1.20, and 

23.62±0.11 mg/g for 1, 5, and 10 mg PO4
3-

-P/L solutions, respectively. The sorption capacities of 

3.02-19.02 mg PO4
3-

-P/g reported by others (Chitrakar et al., 2006; Cordray 2008; Hussain et al., 

2011; Karageorgiou et al., 2007; Yan et al., 2010a and 2010b) are comparable to the sorption 

capacities achieved for the NZVI in this study. However, the reaction time is much shorter with 

NZVI. 

 Table 2.1: Different iron-based adsorbents used for phosphate removal and their performance 

data 

Type of Iron Type of Water/ 

Phosphate 

Removal 

(%, time) 

% Recovery 

 

Source 

Hydroxy-iron DI/KH2PO4 90%,  5.83 h - Yan et al., 

(2010a) 

Iron ore wastewater 97%, 15 d - Guo et al., (2009) 

Iron 

hydroxide-

eggshell waste 

Distilled 

water/KH2PO4 

73%, 3.67h  Mezenner and 

Bensmaili (2009) 

Steel slag  Distilled 

water/KH2PO4 

71–82%, 2 h - Xiong et al., 

(2008) 

Synthetic 

Goethite 

NaH2PO4 40-100%, 2-8 

h 

~82% Chitrakar et al., 

(2006) 

Akaganeite NaH2PO4 15-100%, 4-8 

h 

~90% Chitrakar et al., 

(2006) 

Synthetic 

Goethite 

Sea water + 

NaH2PO4 

60%, 24h - Chitrakar et al., 

(2006) 

The mechanism of  phosphate removal by NZVI in the present study can be explained 

based on point of zero charge (PZC) and ligand exchange (Eq. 2.2, Karageorgiou et al., 2007, 

and Fig. 2.3). PZC for NZVI is around 7.7 (Giasuddin et al., 2007), and when pH is less than 

PZC the surface of NZVI is positively charged which makes the surface suitable for anion (PO4
3-

) sorption. The initial pH of the test solutions used in this study was ~4.0 and final pH after 60 
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min reaction was ~7.5 which was still lower than the PZC of NZVI. The pH environment 

maintained in the reactor was ideal for PO4
3-

 sorption and that is why 97.53-100% removal was 

achieved in this study.     

 

                                                                             (pH < PZC)                                              (2.2) 

 

 

Figure 2.3: Phosphate sorption by NZVI under various pH conditions (after Cordray, 2008). 

Lower pH is more conducive for phosphate adsorption while desorption is the dominant 

phenomenon at higher pH 

2.4.3. Effect of initial NZVI concentration 

The removal of phosphate (C0 = 5 mg/L) was found to increase with increase in the initial 

NZVI concentration (Fig. 2.4) and followed a linear trend (R
2
 = 0.9539) as NZVI concentration 

increased from 0 to 560 mg/L. NZVI concentration beyond 400 mg/L didn’t improve PO4
3-

 

removal significantly. Phosphate removal of 100% was obtained for using 560 mg NZVI/L. 

When the initial NZVI concentration was increased from 80 to 560 mg/L, the removal of 

phosphate increased by ~78%.  The increase in phosphate removal efficiency with the increase in 

NZVI concentration was expected as the contaminant removal by NZVI is a surface area 

Fe OH + X
-
 

H
+ 

Fe O   
- 

H 

H 
X

-
 …

…. 
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mediated process. When NZVI concentration increased from 0 to 560 mg/L the reactive iron 

surface area in solution increased from 0 to 14 m
2
/L (NZVI surface area = 25 m

2
/g). The 

observations are consistent with findings by others with sorption media where surface area 

controls the sorption of phosphate (Mezenner and Bensmaili 2009). 

 

Figure 2.4: Effect of initial NZVI concentration on phosphate removal. Initial PO4
3-

-P = 5 mg/L  

2.4.4. Interference studies 

The interferences of various ions and organic matters on phosphate removal were studied 

with an objective to understand how NZVI is going to behave during real field applications. 

Ionic strength (varied from 0 to 10 mM) did not have any statistically significant effect on 

phosphate (C0 = 5 mg/L) removal by NZVI (Fig. 2.5a, α =0.005, p = 0.225). However, analysis 

of variance (ANOVA) showed statistically significant differences in the treatment data for nitrate 

(α =0.005, p = 0.001), sulfate (0-900 mg/L, α =0.005, p = 0.00), humic acid (0-50 mg/L, α 

=0.005, p = 0.00), and NOM (0-50 mg/L, α =0.005, p = 0.00).   Dunnett method was used to 
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further compare the control with rest of the treatment data. All nitrate concentrations (1, 5, 10 mg 

NO3
-
-N/L, Fig 2.5b) were found to significantly interfere in phosphate removal from aqueous 

solution. However, this statistically significant increase in phosphate removal (1.40-2.77%) may 

not have any practical significance bring very marginal. Again, the treatment data were 

significantly different from the control for all sulfate concentrations (100, 500, 900 mg/L). 

Phosphate removal by NZVI decreased by 5.16-6.27% in the presence of sulfate in the solution 

(Fig. 2.5c). While the presence of NOM (1, 10, 50 mg/L, Fig. 2.5d) decreased phosphate removal 

by 6.01-11.03% (all statistically significant), the presence of humic acid showed mixed results. 

The presence of 1 mg/L humic acid (Fig. 2.5e) significantly reduced (13.86%) phosphate 

removal but interference was not statistically significant when humic acid concentration was 

increased (10 and 50 mg/L).   

  Liu et al., (2011) have reported interference due to ionic strength during phosphate 

removal with lanthanum-doped activated carbon fiber. They increased ionic strength from 0 to 

10 mM and observed an 8.1% drop in phosphate removal (from 98.8 to 90.7%). Even 10 mM 

ionic strength did not affect the phosphate removal efficiency in the present study, and a removal 

of 96.0-98.5% was achieved in all cases (ionic strength varied from 0 to 10 mM).  Introducing 

competing anions was expected  to have negative effects on phosphate adsorption (Liu et al., 

2011). Fe
0
 was successfully used by others to remove nitrate from aqueous solution (Bezbaruah 

et al., 2009; Hwang et al., 2011) and so it was expected that nitrate will compete with phosphate 

for reactive/sorption sites on NZVI. Nitrate was found to interfere in phosphate removal in  

layered double hydroxides (Das et al., 2006) and ~12% reduction in phosphate removal in the 

presence of nitrate was reported.  Xue et al., (2009), however, did not find any interference of 

NO3
-
 during phosphate removal using basic oxygen furnace slag.  In the present study slight 
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increase (1.40-2.77%) in phosphate removal (though not environmentally significant) was 

observed. Further research would be needed to find out the possible reason for this increase but 

the authors would like to hypothesis that nitrate reacted with NZVI to produce iron (hydr)oxides 

with a higher affinity for phosphate. Sulfate was also reported to interfere with phosphate and 

reduced phosphate removal by 24.5% in  layered double hydroxides (Das et al., 2006). In this 

study, sulfate retarded the phosphate removal process and reduced removal efficiency as high 

6.27%. The adsorption of phosphate in presence of humic acid was studied by Antelo et al., 

(2007) and found that phosphate adsorption onto the surface of goethite decreased by 45 and 

25% in the presence of humic acid at pH of 4.5 and 7, respectively. This can be explained by the 

competition of the humic acids functional groups with phosphate for the sorption sites where the 

humic acid outcompeted the phosphate. Also, the sorption sites on the surface could be blocked 

by the relatively large size of humic acids (~15 Å in diameter, Simeoni et al., 2003), thus less 

sorption sites will be available for phosphate (~2.56 Å in diameter) (Antelo et al., 2007). Similar 

results were reported by others (Shuai and Zinati 2009).  In the presently study only low 

concentration (1 mg/L) of humic acid affected phosphate removal while higher concentration did 

not. This happened possibly because of increased sorption of phosphate onto NZVI due to 

lowering of solution pH (see Fig. 2.3) at higher humic acid concentrations.  Additional 

experiments are needed to investigate why the presence of the humic substances did not 

adversely affect phosphate removal by NZVI, the authors feel that NZVI reacts very fast with 

phosphate in the first 10 min or so the possible inferring compounds are not competitive enough. 

In this study, phosphate removal in the presence of Suwannee River NOM (1, 10, 50 mg/L) was 

found to be significantly different from the control (without NOM). Phosphate removal 

efficiency of NZVI reduced by 9.01-11.03% in the presence of NOM. This result was expected 
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as NOM negatively impacts NZVI reactivity.  Li et al., (2010) reported the minimum 

concentration of NZVI that inhibited E. coli growth after 24 h exposure as 5 mg NZVI/L. 

However, in the presence of NOM, the NZVI concentration had to be increased to 100 mg/L to 

achieve the same degree of inhibition. This happened possibly because the NZVI particles’ 

reactive surfaces were covered with NOM and, thus, reducing the overall reactivity of NZVI. 

Chen et al., (2011) also observed a 23% reduction in trichloroethylene (TCE) degradation by 

NZVI in the presence of Suwannee River NOM.  

2.4.5. Effects of temperature  

Experiments were conducted at 4, 22 and 60 
o
C during this study. The removal of 

phosphate at 4 and 22 °C was relatively slower than the removal at 60
 o
C. However, after 30 min, 

the removal was the more or less same (91.4-95.3%) for all temperatures (Fig. 2.6) and there was 

no significant differences between the values (one-way ANOVA: α =0.005, p = 0.144). This is in 

contrast to findings by others. Increasing the temperature from 25 to 45 °C increased the 

phosphate adsorption capacity of granular ferric hydroxide from 3.6 to 5.1 M P/g (i.e., 0.11-0.16 

mg/g, Saha et al., 2010). Liu et al., (2011) also reported increase adsorption capacity in 

lanthanum-doped activated carbon fibers from 8.54 to 9.41 mg/g of with the increase of 

temperature from 20 to 50 °C. Mezenner and Bensmaili (2009) reported ~60% increase in 

phosphate adsorption onto iron hydroxide-eggshell waste when the temprature was increased 

from 20 to 45 
o
C. Fast phosphate removal that takes place within the first 10 min may be the 

reason why no distinction could be made between removal achieved in three different 

temperatures. 
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Figure 2.5: (a) Phosphate removal under different ionic strength conditions (  0 mM ionic 

strength, 5 mM ionic strength, 10 mM ionic strength); (b) Phosphate removal in the 

presence of nitrate (  0 mg NO3
-
-N/L,  1 mg NO3

-
-N/L,  5 mg NO3

-
-N/L, 

10 mg NO3
-
-N/L); (c) Phosphate removal in the presence of sulfate (  0 mg SO4

2-
/L, 

 100 mg SO4
2-

/L, 500 mg SO4
2-

/L, 900 mg SO4
2-

/L); (d) Phosphate removal in 

the presence of natural organic matter (  0 mg NOM/L,  1 mg NOM/L, 10 mg 

NOM/L, 50 mg NOM/L); (e) Phosphate removal in the presence of humic acids (  0 

mg/L,  1 mg/L, 10 mg/L, 50 mg/L). For all figures:  Blank, NZVI = 400 

mg/L, Initial PO4
3-

-P = 5 mg/L 
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Figure 2.6: Effect of temperature on phosphate
 
removal by NZVI, (  4 

o
C,  22 

o
C, 

 60 
o
C,  Blank with only PO4

3-
 solution). NZVI = 400 mg/L, Initial PO4

3-
-P = 5 

mg/L. Blank shown here is for 22 
o
C only. The blanks at other temperatures followed similar 

trends and not shown here to maintain clarity 

2.4.6. Effect of particle size 

 Sorption is dependent on surface area and, hence, in this study the same surface area (10 

m
2
/L) was used for the comparison of phosphate removal by NZVI (particle size ~16 nm) and 

MZVI (<10 µm). MZVI removed only 23% of phosphate (C0 = 5 mg PO4
3-

-P/L) in 30 min 

whereas NZVI removed ~96% of phosphate over the same time period (Fig. 2.7). NZVI was 

13.9 times more efficient than MZVI in removing aqueous phosphate. Others reported similar 

observations with NZVI for other contaminants. Surface area normalized rate constant (ksa) of 

NZVI (surface area ~ 30–35 m
2
/g) for tetrachloromethane degradation was reported as over two 

orders of magnitude higher than that of MZVI (Li et al., 2006). Also, removal capacity of Cr(VI) 

using NZVI was more than 100 time that of the removal capacity using MZVI  (Li et al., 2006). 

Kanel et al., (2005) reported that the ksa for As(III) removal by NZVI was 1-3 orders of 

magnitude higher than MZVI. While using NZVI, ksa of alachlor degradation was found to be 
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~10 times that with MZVI (ksa-NZVI = 38.5 × 10
−5

 and ksa-MZVI = 3.8–7.7 × 10
−5

 L h
−1

m
−2

, 

Thompson et al., 2010)  

 

Figure 2.7: Effect of ZVI particles size on phosphate removal (  Micro-ZVI,  NZVI, 

 Blank). MZVI = 5 g/L; NZVI = 400 mg/L; Equal ZVI surface area concentrations (10 

m
2
/L) were used for both MZVI and NZVI, Initial PO4

3-
-P = 5 mg/L 

2.4.7. Phosphate recovery 

In the initial batch study run to find out the optimal pH for phosphate recovery maximum 

phosphate recovery was achieved at pH 12, and the recovery was minimal at acidic pH (data not 

shown).  In the follow up phosphate desorption (recovery) batch studies conducted at pH 12, 

78.4% phosphate recovery was obtained (Fig. 2.8). The 78.4% recovery is based on the mass of 

phosphate sorbed onto NZVI during removal experiment. If the recovery is calculated based on 

the mass of the phosphate present in the original bulk solution from which removal was achieved 

than the phosphate removal is 74.5%. In terms of practical applications, if 5 mg/L phosphate is 

present in bulk solution 4.80 mg/L (96% removal, see ‘Phosphate removal’ under ‘Results and 

discussion’) will be removed by NZVI and 3.73 mg/L (74.5% recovery) can be recovered back 

from the NZVI. Better phosphate recovery at higher pH was achieved possibly because of the 
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abundantly present hydroxide ions at a higher pH. The presence of these hydroxide ions would 

result in a net negative surface charge to which few phosphate anions would be bound. The 

opposite phenomena would occur at a lower pH which would result in more sorption. Poor 

recovery of phosphate at pH 4 and 6 supports the previously proposed mechanism where an 

electrostatic attraction between the phosphate ions and the surface of NZVI occur resulting in 

phosphate sorption on the surface of NZVI. Also, pH 12 is higher than PZC of NZVI and 

particles are negatively charged resulting in desorption of phosphate (Eq. 2.3, Karageorgiou et 

al., 2007 and Fig. 2.3). Research indicate that phosphate can be recovered from sorptive media 

under high pH conditions (Babatunde and Zhao 2010; Cordray 2008; Karageorgiou et al., 2007; 

Liu et al., 2011).  Similar results were reported by others using other forms of iron oxides (Yan 

et al., 2010a; Zeng et al., 2004).  

                                                                                                                      

(pH > PZC)                            ( 2.3) 

 
Figure 2.8: Phosphate removal and recovery using NZVI (  Removal,  Blank in 

removal experiment (PO4
3-

 solution),  Recovery,  Control in recovery experiment 

(pH adjusted DI water + fresh NZVI)). NZVI = 400 mg/L, Initial PO4
3-

-P = 5 mg/L. Control for 

the removal experiment was DI water with NZVI; no phosphate was detected in the sample, and 

the data points coincided with the control for the recovery experiment 
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2.5. Environmental Significance 

Phosphate removal using NZVI has potential applications in wastewater treatment plants, 

where phosphate removal is otherwise not very efficient. The speed of phosphate removal using 

NZVI (88-95% removal in the first 10 min) gives the nanoparticles an advantage over other 

sorbents. The high speed of phosphate removal by NZVI can be used to engineer a commercially 

viable treatment process with low detention time and minimal infrastructure.  More research is 

needed to optimize the recovery of phosphate from NZVI as pH 12 may not be a practical value 

from economic and hazard perspectives.  

2.6. Conclusions 

Results from the batch studies conducted during this study demonstrate the effectiveness 

of NZVI for phosphate removal and recovery with different initial phosphate concentrations (1, 

5, 10 mg PO4
3-

-P/L). Phosphate removal of 88-95% was achieved in the first 10 min itself and 

96-100% removal was achieved after 30 min. Increase in phosphate removal efficiency improved 

with the increase in initial NZVI concentration use and followed a linear trend (R
2
 = 0.9539).  

When the initial NZVI concentration was increased from 80 to 560 mg/L, the removal of 

phosphate increased by ~78% (C0 = 5 mg/L).  Little interference was observed in phosphate 

removal due to ionic strength and temperature change. Sulfate and natural organic matters had 

statistically significant negative impacts but nitrate marginally improved phosphate removal. The 

phosphate removal efficiency was also not affected by high concentrations of humic acid. 

Phosphate sorbed onto NZVI was successfully recovered (~78%). The phosphate recovery 

process was found to be pH dependent with maximum recovery achieved at pH 12. 
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CHAPTER 3. AQUEOUS PHOSPHATE REMOVAL USING IRON 

CROSS-LINKED ALGINATE 

3.1. Abstract  

Iron (II) corss-linked alginate (FCA) biopolymer was synthesized and investigated for 

phosphate removal. Phosphate was completely removed from water using the FCA beads in 12 h 

(C0 = 5 mg PO4
3-

–P/L). The second order reaction model fitted well for the reaction and reaction 

rate constants were found to be 0.771 and 2 × 10
-4

 per h for 5 and 100 mg PO4
3-

-P/L, 

respectively. Interference of Cl
-
, HCO3

-
, SO4

2-
, NO3

-
 and natural organic matter (NOM) were 

investigated and  no change in the removal efficiency of phosphate was observed. Maximum 

adsorption capacity was calculated as 14.77 mg/g of dry beads, and the experimental data were 

found to most closely fit Freundlich isotherm (R
2
 = 0.9078). On electron microscopic 

examination, nanoparticles with average size of 83.65±42.83 (n = 67) were observed inside the 

beads. For comparison purposes calcium cross-linked alginate entrapped NZVI (NCC) beads 

were also prepared. The NCC beads had a relatively very low phosphate removal rate and could 

completely remove PO4
3- 

after ~24 h (C0 = 5 mg PO4
3-

–P/L) while FCA beads removed 100% 

PO4
3-

 in 12 h. Calcium cross-liked beads (CC) (with no form of iron) could also removed PO4
3- 

to a great extent 88%, however they were saturated after ~8 h. The presence of iron increased the 

phosphate removal efficiency of NCC and FCA beads. Removal efficiency of PO4
3- 

by FCA 

beads was not affected when pH was changed (4- 9). Column studies using 15 and 30 PO4
3-

-P/L 

showed sharp decrease of phosphate removal efficiency from 99 to 57% after 4 bed volume for 

the higher concentration. In the case of lower phosphate concentration (15 mg PO4
3-

–P/L), the 

removal decreased gradually (only about 5% in the first 6 bed volumes).  
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Keywords: Iron nanoparticles, Phosphate removal, Phosphate recovery, Adsorption, 

Alginate, Iron cross-link  

3.2. Introduction  

While phosphorus (P) is essential for plant growth, excess P concentration (>1.0 mg/L P) 

in water bodies causes eutrophication of aquatic ecosystems resulting in deterioration of water 

quality (Smith 2003). Therefore, it is important to reduce P concentrations in water to improve 

water quality. On the other hand, with an increasing world population the demand of P for food 

production is estimated to peak sometime between 2030 and 2040 (Ashley et al., 2011), and it is 

imperative that P demand is met. While there is no opportunity to increase P supply from 

conventional sources (i.e., mining), alternative sources are worth exploring. Municipal 

wastewater, runoff from animal feedlot, agricultural runoff, and eutrophic lakes rich in 

phosphates can serve as nonconventional ‘mines’ for P. The phosphates present in these aquatic 

sources are otherwise considered pollutants (causing eutrophication). Mining phosphates from 

these sources will, thus, offer viable solutions to both pollution and global food security issues. 

The most common forms of P present in aqueous environments are orthophosphates, 

polyphosphates and organic phosphates (Mezenner and Bensmaili 2009). Orthophosphate is the 

most readily removable forms of phosphate. Physical, chemical, biological and combination of 

these methods have been utilized to remove phosphorus from water (de-Bashan and Bashan 

2004; Gouider et al., 2011; Mishra et al., 2010). While most of the methods can remove 

phosphate to reasonable degree, adsorption is getting more attention in recent years as it is cost 

effective and the adsorbed phosphate can be recovered under the right environmental conditions. 

Different adsorbents have been used for aqueous phosphate removal which include oxides of 

iron, natural ores like calcite, and goethite (FeOOH), active red mud, and activated carbon 
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(Chitrakar et al., 2006, Cordary 2008, Hussain et al., 2011, Karageorgiou et al., 2007, Yan et al., 

2010a-b).  

Alginate is a natural polysaccharide extracted from brown seaweed and composed of 

(1→4)-linked-d-mannuronic acid (M units) and –L-guluronic acid (G units) monomers (Fig. 

3.1). In the presence of multivalent cations (e.g., calcium, and iron) the polymer undergoes a sol-

gel transition because of the reactive carboxylate groups (Kroll et al., 1996). When alginate react 

with metal ions it forms stable organic–inorganic hybrid composite. Alginate polymers are 

widely investigated for water remediation because they are inexpensive, non-toxic, porous, and 

biodegradable (Bezbaruah et al., 2009, 2011).  It has been used as an immobilizing agent for 

nanoparticles used for water remediation (Bezbaruah et al., 2009, 2011).  

Iron [Fe(III)] cross-linked alginate has been used as source of Fe catalyst for Fenton-

enhanced decoloration/degradation of Orange II (Fernandez et al., 2000) and azo dyes (Dong et 

al., 2011). Sreeram et al., (2004) studied the interaction between iron (III) and alginate and 

suggested ‘site binding model’ where Fe(III) ions are bound to the binding sites in the alginate 

forming spatially separated iron(III) centers on the alginate backbone. 
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Figure 3.1: Chemical structures for the two monomers present in algiante 
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The objective of this paper is to synthesize and utilize Fe-cross-linked alginate (FCA) 

beads for phosphate removal from aqueous solution. The effects of interfering ions on phosphate 

removal using Fe-cross-linked alginate beads would be investigated as well. The new beads were 

expected to have high sorption capacity.   

3.3. Materials and Methods 

3.3.1. Chemicals 

Iron (II) chloride tetrahydrate (FeCl2•4H2O, reagent grade, J.T. Baker), calcium chloride 

(CaCl2, ACS grade, BDH), monopotassium phosphate (KH2PO4, 99% pure, EMD), sodium 

alginate (production grade, Pfaltz & Bauer), potassium nitrate (KNO3, 99%,  Alfa Aesar), 

sodium hydroxide (NaOH, ACS Grade, BDH), potassium sulfate (K2SO4, ACS grade, HACH), 

natural organic matter (Suwannee River NOM, RO isolation, IHSS), and humic acid (H1452, 

Spectrum) were used as received unless and otherwise specified. 

3.3.2. Alginate beads synthesis  

Sodium alginate (20 g) was dissolved in 1L of deionized (DI) water to form a 2% alginate 

solution. Fe-cross-linked alginate (FCA) beads were synthesized by adding the alginate solution 

to continuously stirred ferrous chloride (FeCl2) solution (2% w/v) at room temperature (22±2
o
C). 

The alginate solution was added drop wise into FeCl2 solution using a 10-mL disposable plastic 

syringe (Fig. 3.2). FCA beads were prepared in batches using 5 mL alginate solution in each 

batch. Alginate beads are formed immediately as the alginate come in contact with the ferrous 

chloride solution. The beads from each batch were kept separately in a polypropylene vial fitted 

with a plastic cap. Enough FeCl2 solution was added to each vial to completely submerge the 

beads, and the beads in the vials were allowed to harden in FeCl2 solution for an additional ~6 h.  
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Calcium cross-linked alginate (CCA) beads were also synthesized for use in control studies as 

per Bezbaruah et al., (2009). The hardened beads were then washed with DI water and the excess 

water is sorbed with tissue papers before using them in experiments. If necessary the beads were 

stored in FeCl2 solution in 20 mL vials and used in experiments with 24 h. 

 

Figure 3.2: Schematic of FCA beads synthesis procedure 

3.3.3. Entrapped NZVI beads synthesis  

Entrapped NZVI was prepared using method described elsewhere (Bezbaruah et al., 

2009), where 20 mg of  NZVI was mixed with 5 mL of sodium alginate solution (2% w/v) in a 

10 mL syringe. The content in the syringe was stirred vigorously for some time with a glass rod 

to ensure homogeneity. The NZVI-alginate mixture was then added drop wise into a 2% (w/v) 

deoxygenated solution of CaCl2 at room temperature. NZVI-Ca-alginate (NCC) beads were 

 

10 mL Syringe  

5 mL of 2% 
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2% FeCl2   Magnetic stirrer 
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formed as soon as the alginate drops came in contact with the CaCl2 solution.  The beads were 

kept in deoxygenated 2% CaCl2 solution for additional ~6 h for hardening. The beads were then 

washed with deoxygenated DI water and sorbed the excess water with tissue papers before using 

them in experiments. If necessary the beads were stored in deoxygenated CaCl2 solution in 20 

mL vials (with CaCl2 solution filled in completely to avoid any oxygen transfer) and used in 

experiments with 24 h.  

3.3.4. Batch studies  

Kinetic Studies: (a) NCC beads: Batch experiments were conducted using NCC beads. 

Beads produced in a single batch (0.121 g dry alginate and 20 mg NZVI in 50 mL or 2.42 g dry 

alginate/L and 0.4 g NZVI/L) were added to 50 mL phosphate solution (5 mg PO4
3-

-P/L) in 

multiple polypropylene plastic vials fitted plastic caps (reactors). Controls were run using CCA 

beads. The reactors and controls were rotated end-over-end at 28 rpm in a custom-made shaker 

to reduce mass transfer resistance.  A set of sacrificial reactors was withdrawn at specific time 

intervals (0, 0.5, 2, 4, 6, 8, 12, 18, and 24 h). The phosphate concentration in the bulk solution 

was measured and reported as average (with standard deviations) of readings from three 

replicates.  Ascorbic acid method (Eaton et al., 2005) was used for phosphate analysis. (b) FCA 

beads: Batch experiments were conducted using Fe-cross-linked alginate (FCA) beads (2.42 g 

dry alginate/L) using the same procedure described above (kinetic studies with CC beads with 

entrapped NZVI). Blanks (no FCA or CCA beads but only PO4
3- 

solution) were also run. 

Interference Studies: Removal of phosphate in the presence of selected ions as well as 

natural organic matter (NOM) found in surface waters were tried in batch experiments. 

Interference studies were carried out with known concentrations of chloride (Cl
-
, 50 to 500 

mg/L), bicarbonate (HCO3
-
, 10 to 100 mg/L), sulfate (SO4

2-
, 50 to 1000 mg/L), nitrate (NO3

-
, 10 
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to 100 mg/L as NO3
-
-N), and Suwanee River NOM (10 to 50 mg/L) using FCA and NCC beads 

with 5 mg/L of PO4
3-

 solution. The specific ion or NOM was mixed with the PO4
3-

 solution in a 

50 mL plastic vial and one batch FCA beads was added to it. The reactors were then capped and 

placed in an end over end shaker (28 rpm) for 24 h. The batch studies were carried out at room 

temperature (22 ± 2 ˚C) and triplicate reactors were run for each study.  

3.3.5. Column studies  

Column studies were conducted to simulate a real world application of the FCA beads for 

PO4
3-

 removal. Two concentrations of PO4
3-

 were used in the column studies (15 and 30 mg 

PO4
3-

-P/L) to simulate extreme conditions. Glass columns (height 30 cm and internal diameter 

1.5 cm) with an empty bed volume of 53 mL were used. Each column was filled with FCA beads 

(made with 1.2 grams alginate) and had a packed bed volume of 27 mL. PO4
3-

 solution was fed 

in an up-flow mode using a peristaltic pump at a flow rate of ~0.1 mL/min. Samples were 

collected over time from the effluent point at the top of the column (Fig 3.3)   and analyzed for 

PO4
3- 

concentration. 

3.3.6. Alginate beads characterization 

Scanning electron microscopy along with energy dispersive spectroscopy (SEM/EDS, 

JEOL JSM-6300, JEOL Ltd.) was used to observe surface morphology and characterize the 

elemental composition of the beads. SEM analyses were performed in a wide beam current range 

to determine the microstructure of the dry FCA beads before (new FCA beads) and after using 

them for PO4
3-

 removal (used FCA beads). New and used beads were dried overnight in a 

vacuum oven under nitrogen environment, and cross sectional samples of the dry beads were 

used for imaging and EDS analyses. 
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Figure 3.3: Schematic FCA beads column study set-up 

3.4. Results and Discussion 

3.4.1. Synthesis and characterization of alginate beads 

FCA, CCA, and NCC beads were synthesized successfully (Fig. 3.4). All the beads were 

approximately spherical in shape with average diameters of 3.09±0.16 (FCA), 3.02±0.04 (CCA), 

and 4.55±0.88 mm (NCC).  Similar bead size and shape was reported for NCC by Bezbaruah et 

al., (2009). Average number of beads produced per batch was 124±4 (n = 5) for FCA and CCA 

beads and 53±10 (n = 5) for NCC beads. For NCC beads, there was a possibility that some NZVI 

particles might have been left behind in the syringe and that would result in erroneous 

interpretations of the results. The loss of NZVI was accounted for by rinsing the syringe with 

copious amount of deoxygenated DI water and measuring the weight of iron particles in the rinse 

water as per Bezbaruah et al., (2009). The rinsed iron particles were dried overnight in a vacuum 
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oven in nitrogen environment. The average amount leftover iron (not entrapped) was found to be 

0.0007 g (out of total 0.02 g) which corresponds to an error of 3.5%.  

To know the dry weights of the beads, the beads were dried overnight in a vacuum oven 

in nitrogen environment. Each batch of dry FCA beads weighted 0.121±0.002 g, while dry CCA 

and NCC beads weighed 0.155±0.025 g and 0.224±0.016 g, respectively.  

 

  

Figure 3.4: Images of the synthesized beads (a) Fe-cross-linked alginate (FCA) beads, (b) Ca-

cross-linked alginate (CCA) beads, and (c) NZVI entrapped Calcium cross-linked alginate 

(NCC) beads 

The size of the dry FCA beads was ~1 mm and the dry beads had a uniform hard texture 

(Fig. 3.5a and b). Nanoparticles with average size of 74.45±35.60 nm (n =97) were observed 

inside the fresh beads (Fig. 3.5e). The surface morphology of the beads changed completely once 

phosphate was adsorbed (fresh bead in Fig. 3.5c and used bead in Fig 3.5d). A fragile outer layer 

was formed around the hard core after phosphate was adsorbed (Fig. 3.5d). The size of 

nanoparticles increased marginally after phosphate adsorption. The average size of nanoparticles 

was 83.65±42.83 nm (n=67) inside the used beads (Fig. 3.5f). Nanoparticle size was measured 

using ImageJ software.  

a b c 
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Figure 3.5: (a) SEM image of the surface of a fresh dry FCA bead, (b) light microscope image 

of an used FCA bead, (c and e) SEM image of the cross-section of the center of a fresh dry FCA 

bead, (d and f) SEM image of the cross-section of the center of an used dry FCA bead 

EDS analysis of fresh (Fig. 3.6a) and the used beads (Fig 3.6b) revealed a consistent 

carbon weight % and similar iron weight % except for one point in the fresh beads which 

a 

c d 

e f 

b 
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indicates heterogeneous distribution of iron inside the beads. Chloride (~ 30%) present in the 

fresh beads was not observed in the used beads. It is suspected that the nanoparticles are some 

form of iron but further investigations are needed to completely characterize the particles. 

 

 

Figure 3.6: (a) EDS spectrum of one point of a freshFCA bead, and (b) EDS spectrum of one 

point of a used FCA bead 

3.4.2. Batch Studies 

3.4.2.1. Kinetic studies  

Batch experiments were conducted to determine the kinetic parameters for PO4
3-

 removal 

(C0 = 5 and 100 mg PO4
3-

-P/L) with FCA beads. Zero, first, and second order reaction equations 

were fitted to determine the type of reaction and reaction rate constants (Fig. 3.7). The second 

a 

b 
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order reaction model fitted better for both the concentrations and observed reaction rates were 

found to be 0.771 and 2 × 10
-4

 per h for 5 and 100 mg PO4
3-

-P/L, respectively. Even though 

complete removal of PO4
3- 

was observed within ~12 h (Fig 3.8, the curve achieved a plateau after 

that), a contact time of 24 h was chosen to conduct the rest of the FCA experiments to ensure 

completion of the reactions  

  

Figure 3.7: Second order reaction rate equations fitted the best for 5 and 100 mg PO4
3-

-P/L 

removal by FCA beads 

 

Figure 3.8: Phosphate removal over time using FCA beads, C0= 5 and 100 mg PO4
3-

-P/L 
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3.4.2.2. Comparison Between bare NZVI, FCA, and NCC 

Removal of PO4
3-

 using FCA, CCA, and NCC beads was compared (Fig. 3.9) in this 

study while work on bare NZVI has been reported elsewhere (Almeelbi and Bezbaruah, 2012). 

Bare NZVI particles have high PO4
3- 

removal rate (96-100 % phosphate in 30 min, Almeelbi and 

Bezbaruah 2012) but the spent NZVI particles are difficult to be recovered from the environment 

after PO4
3- 

sorption has taken place.  There are concerns about ecotoxicity of NZVI (El-Temsah 

and Joner, 2012; Kirschling et al., 2010, Phenrat et al., 2009). Entrapment of NZVI in alginate 

(NCC beads) allows for better post-use collection of NZVI. NCC beads had a relatively low 

removal rate and could completely remove PO4
3- 

after ~24 h.  However, FCA beads removed 

PO4
3- 

faster and achieved 100% removal at ~12 h. It is important to note that CC beads (with no 

form of iron) could sorb PO4
3- 

to a great extent 88% but was saturated after ~8 h. The presence of 

iron increased the removal efficiency in case of NCC and FCA beads (Table 3.1). 

Table 3.1: Reaction rate constants calculated based on the obtained results 

 

Co Ce Equilibrium time 

Zero Order First Order Second Order 

 
---mg/L--- h Kobs

* R
2 Kobs

** R
2 Kobs

*** R 

FCA 5 0 12 0.5402 0.6728 0.4369 0.931 0.7709 0.9682 

CC 5 0.72 8 0.1344 0.4115 0.0741 0.5791 0.0578 0.7914 

NCC 5 0 24 0.1987 0.4295 0.1349 0.7766 0.1633 0.9868 

Bare NZVI
# 5 0 2 4.06 0.3487 2.3633 0.4044 3.3441 0.5443 

 * mg/L/min; ** per min; *** L/mg/min; # Based on data presented in Almeelbi and Bezbaruah (2012).  
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Figure 3.9: Phosphate removal using FCA, CCA, and NCC beads, C0= 5  mg PO4
3-

-P/L 

3.4.2.3. Effect of interfering ions 

Effect of the presence of Cl
-
, HCO3

-
, SO4

2-
, NO3

-
 and NOM on PO4

3-
 (C0 = 5 mg PO4

3- 
-

P/L) removal efficiency of FCA beads was examined. No interference in the removal of PO4
3-

 

was observed because of the presence of these ions (Table 3.2). The ions used in this interference 

study are usually present in wastewater, surface water, and groundwater. Lee et al., (2011) 

reported a 78% reduction in PO4
3-

 removal by slag microspheres in the presence of HCO3
-
.The 

addition of SO4
2-

 was reported to decrease the PO4
3-

 removal efficiency by ~60% in a polymer-

based nanosized hydrated ferric oxides system (Pan et al., 2009), and the efficiency reduction 

was 24.5 % when layered double hydroxides were used (Das et al., 2006).  SO4
2- 

and Cl
-
 were 

found have a negative impact on PO4
3-

reomval from lake water using high gradient magnetic 

separation (Vicente et al., 2011). In the presence of NO3
-
, PO4

3-
 removal decreased by 29.2% 

while using layered double hydroxides (Das et al., 2006) and by 6.27% while using NZVI 

(Almeelbi and Bezbaruah, 2012). NOMs are present in surface waters, and known to interfere 

with PO4
3-

 removal in adsorption processes (Guan et al., 2006, Vicente et al., 2008). However, 
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no effect of NOM on PO4
3-

 removal was observed in this study. Similar findings were reported 

earlier with bare NZVI (Almeelbi and Bezbaruah, 2012). The lack of interference by the 

dominant ions and NOM makes an FCA bead system a potential candidate for field application 

for PO4
3- 

removal. 

Table 3.2: Phosphate removal percentages in the presence of different concentration of 

interfering ions, C0=5 mg/L, contact time= 24 h 

 

 

3.4.2.4. Isotherm studies  

A set of experiments were conducted to understand the isotherm behavior of the FCA 

beads during PO4
3- 

removal. One batch of FCA beads was used in each batch reactor and PO4
3- 

in 

the bulk solution was analyzed after 24 h to calculate the sorption capacity of FCA beads (Eq. 

3.1). Initial concentration of phosphate was varied from 5 to 100 mg/L. 

  

                                                                                                                                                    (3.1) 

 

Ion  Concentration, mg/L % Phosphate Removal 

SO4
2-

 50 100 

100 100 

1000 99.3 

NO3
-
 10 100 

50 99.3 

100 99.7 

HCO3
-
 5 100 

10 99 

50 99.5 

Cl
-
 50 100 

100 98 

1000 99.7 

NOM 5 100 

10 100 

50 100 
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Where q is the unit mass (mg) of PO4
3-

-P per g of dry FCA bead, C0 and Ce are the initial and 

equilibrium concentrations of PO4
3-

-P in mg/L, V is the volume of PO4
3- 

solution in mL and m is 

mass of dry FCA beads in g.  

Freundlich isotherm was found to most closely fit with experimental data (R
2
 = 0.9078, 

Fig. 3.10). Maximum adsorption capacity was found to be 14.77 mg/g of dry FCA beads. Others 

(Chitrakar et al., 2006; Ogata et al., 2011) have reported that Freundlich describes sorption 

behavior better when dual sobents (alginate and iron in this study) are present. Freundlich 

isotherm model has been used to describe PO4
3-

 adsorption behavior onto sulfate-coated zeolite, 

hydrotalcite, and activated alumina while the adsorption behaviors of the same materials without 

coating were described better by Langmuir isotherm model (Choi et al., 2012).   

 

Figure 3.10: Freundlich and Langmuir isotherms models for the PO4
3-

 removal by FCA beads  

3.4.2.5. Effect of pH 

The effect of pH on phosphate removal (C0 = 5 mg PO4
3-

-P /L) by FCA was investigated 
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bare NZVI (Fig. 3.11). Changing the pH did not affect removal of PO4
3-

 by FCA beads, and 

100% removal was achieved in all pH values. However, PO4
3- 

removal by bare NZVI was 

reported decreased with increasing pH as theorized by Almeelbi and Bezbaruah, 2012. The most 

marked decrease was observed between pH 8 and 9. Removal efficiency of PO4
3- 

decreased from 

84% at pH 8 to 49% at pH 9. It should be noted that the point of zero charge (PZC) for bare 

NZVI was ~7.7 (Giasuddin et al., 2007). That pH did not affect the PO4
3- 

removal efficiency of 

FCA has important practical implications. The pH in eutrophic lakes ranges from 7.5 to 8.5 

(Michaud, 1991) and FCA can possibly be used for phosphate removal in eutrophic lakes. 

 

 
Figure 3.11: PO4

3-
 removal using FCA beads and NZVI at pH 4, 7, and 9 (C0 = 5 mg PO4

3-
-P/L, 

Run time = 30 min) 

3.4.3. Column studies 

Breakthrough behavior in FCA bead columns was studied with 15 and 30 mg PO4
3-

-P/L 

and a flow rate of ~0.1 mL/min. (Fig. 3.12). For the higher concentration (30 mg PO4
3-

-P /L), the 

breakthrough (Ce = 0.05 C0) was achieved after 2 bed volumes when removal dramatically 
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decreased gradually in the first 3 bed volumes (only ~5% decrease). The adsorption capacity 

increased from 0.97 to 1.81 mg/g of dry beads when initial PO4
3-

-P concentration was increased 

from 15 to 30 mg PO4
3-

-P/L which is much lower than the adsorption capacity obtained in batch 

study (14.77 mg/g of dry FCA beads). 

 

Figure 3.12: FCA bead column study results (C0= 15 and 30 mg PO4
3-

-P/L) 

3.5. Conclusions 

 Ferrous iron cross-linked alginate (FCA) beads were successfully synthesized and 

utilized for phosphate removal. Complete (100%) removal of aqueous phosphate was achieved 

after 12 h. The comparison between the three types of alginate based sorptive media (viz., Fe-

cross-linked alginate/FCA, Ca-cross-linked alginate/CCA, and NZVI entrapped in Ca-cross-

linked alginate/NCC) revealed that FCA media/beads works much better for phosphate removal. 

Further, there was no interference by Cl
-
, HCO3

-
, SO4

2-
, NO3

-
 and NOM in phosphate removal 

with FCA beads. Freundlich isotherm could best describe the phosphate sorption behavior of 

FCA beads. It was inferred (see Fig 3.8) that presence of iron in alginate beads increased the 
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phosphate removal capacity of the beads. Additional research is needed to find out the techno-

economic feasibility of using FCA beads for phosphate removal. 
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CHAPTER 4. IRON NANOPARTICLE-SORBED PHOSPHATE: 

BIOAVAILABILITY AND IMPACT ON SPINACIA OLERACEA AND 

SELENASTRUM CAPRICORNUTUM GROWTH 

4.1. Abstract  

In this study, nanoscale zero-valent iron (NZVI) particles have been used for phosphate 

recovery from aqueous solutions. The bioavailability of the sorbed phosphate onto NZVI 

particles was determined by supplying these particles to Spinach (Spinacia oleracea) and algae 

(Selenastrum capricornutum) grown in hydroponic solution. Spent NZVI (particles after 

phosphate adsoption) were added to the algae growth media as the only source of P and Fe. The 

concentration of algae increased by 5.7 times when the only source of phosphate was spent 

NZVI as compared to algae grown in standard all-nutrient media (including phosphate). Again, 

removing PO4
3-

 from the growth media decreased the algae concentration 3 fold when compared 

to algae grown in all-nutrient media. In the spinach study, plant biomass increased in the 

presence of spent NZVI (where nanoparticles the only source of phosphate) by 4 time than the 

plant treated with all-nutrient solution. Iron and phosphorus uptakes by plants were determine in 

the presence of spent NZVI as the only source of P and Fe. Results indicated 20, 11, and 7 times 

more Fe content in the roots, stems, and leaves of the plant treated with spent NZVI, 

respectively, as compared to the controls. Amount of P in the biomass also found to be 

significantly higher in the plants treated with spent NZVI.  

Keywords: Iron nanoparticles, Phosphate removal, Phosphate recovery, Adsorption, 

Spinacia oleracea, Selenastrum capricornutum, Bioavailability, Eutrophication 
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4.2. Introduction  

Phosphorus (P) is a vital macronutrient for plants. Plants and other organisms mostly 

uptake dissolved aqueous orthophosphate, and incorporate it into their tissues (Shen et al., 2011). 

Dissolved organic phosphate (DOP) cannot be used by plants in the organic form. DOP is 

transformed into orthophosphate due to enzymatic hydrolysis, and is available for plants 

(Walker, 2012).  

Phosphorus is an essential element for food production and there is no substitute for P 

(Cordell et al 2011).  The amount of P in plants ranges from 0.05% to 0.30% of total dry weight.  

Although P is abundant in the most types of soils, only a tiny fraction is available for plants 

uptake (Vanec 2011). Low-phosphorus availability for plants has been tackled by addition of 

phosphate fertilizers to the soil. However, the amount of bioavailability of phosphate is reduced 

due to chemical immobilization of some of it in soil matrix (Shen et al., 2011). The extensive 

application of P fertilizers leads to a P buildup in the soil which in turn increases the potential for 

P loss to surface waters through surface or subsurface run-off. Increase in phosphate 

concentration in waterbodies leads to eutrophication.  

Undesired loss of P and resulting non-point source pollution is only one aspect of the 

bigger problem. The major issue is the impact of excessive use of fertilizers on global food 

security given the fact that phosphorus is a nonrenewable resource. Phosphorous fertilizers are 

produced predominantly from ores from select mines in Morocco,  Western Saharan region, and 

China (Cordell et al., 2009). Phosphorus bearing ore production rate is predicted to decline 

starting around 2035 (Cordell et al., 2011) the use of P fertilizers will be increasing under the 

current agriculture practices (Gilbert, 2009). The possible short supply of P fertilizers is a major 

concern for global food security. While there is no way of increasing the amount of natural 
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phosphorous supply, the spotlight has been shifted to sustainable practices related to P fertilizers 

including efficient recover and reuse of phosphates.  

Almeelbi and Bezbaruah (2012) reported up to 100 removal rates of phosphate using 

nanoscale zero-valent iron (NZVI) particles and found them to be more efficient than larger size 

particles. Others have used iron oxide nanoparticles to remove (70-90%) phosphate (Jianbo et al., 

2013; Martin et al., 2009; Pan et al., 2009; Zach-Maor et al., 2011).  Phosphate removal by NZVI 

and iron oxide nanoparticles is known to be a sorptive process and the sorbed phosphate remains 

in the nanoparticles. It was hypothesized in this research that the sorbed phosphate would be 

bioavailable to plants.  

Selenastrum capricornutum is a group of common green algae (Chlorophyceae) found in 

most fresh waters. It is readily available from suppliers and can be easily cultured, and, hence,  

has been widely used in the laboratory for growth inhibition and standard toxicity studies 

(Abouwaly et al., 1991; Brown and Button, 1979; Scherfig and Dixon, 1979; Errécalde and 

Campbell 2000; Francko, 1989; ISO 8692, 1989, Hall and Golding, 1998; Gutierrez-Wing et al., 

2012). Higher plants like Allium cepa (onion bulbs) Lolium perenne (ryegrass), Cucurbita pepo 

(zucchini), Cucurbita mixta (pumpkin), and others in hydroponic systems have been used by 

others for growth studies (Ghodake et al , 2011; Lin and Xing, 2008; Stampoulis et al., 2009; 

Wang et al., 2011).  

The objective of this research was to examine bioavailability of phosphate from spent 

NZVI (used for phosphate removal) using Selenastrum capricornutum and Spinacia oleracea 

(Spinach).  
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4.3. Materials and Methods 

4.3.1. Chemicals 

Chemicals (Table 4.1) were used as received unless and otherwise specified. 

4.3.2. Synthesis and preparation of iron nanoparticles 

NZVI Synthesis:  NZVI particles were synthesized using sodium borohydride reduction 

method (Eq. 1, Huang and Ehrman 2007; Almeelbi and Bezbaruah, 2012). 

2FeCl3+ 6NaBH4 + 18H2O → 2Fe
0
 + 21H2 + 6B(OH)3+ 6NaCl                                              (4.1) 

Ferric chloride hydrate (1.35 g) was dissolved in 40 mL of deoxygenated de-ionized (DI) 

water (solution A), and 0.95 g of sodium borohydride was dissolved in 10 mL of deoxygenated 

DI water in a separate beaker (solution B).  Then solution A was added drop wise to solution B 

under vigorous stirring conditions (using a magnetic stirrer). The resultant black precipitates 

(NZVI) were centrifuged and washed with copious amount of deoxygenated DI water and 

methanol (Almeelbi and Bezbaruah, 2012) to remove the undesired chemicals. The washed 

NZVI were dried in vacuum oven under nitrogen environment and then were ground using a 

mortar and pestle. 

Phosphate adsorption:  NZVI (20 mg) was added to phosphate solution (50 mL of 100 

mg PO4
3-

-P /L) in multiple 50 mL polypropylene plastic vials fitted plastic caps (reactors). The 

concentration of 100 mg/L for phosphate was decided based adsorption capacity studies 

(Appendix 4.A). The reactors were rotated end-over-end at 28 rpm in a custom-made shaker for 

24 h and then content was centrifuged at 4000 rpm. The supernatant was collected for phosphate 

analysis. Ascorbic acid method (Eaton et al., 2005) was used for phosphate analysis. The 

precipitated iron particles were dried in vacuum oven under nitrogen environment and ground 
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using mortar and pestle. Others have reported that phosphate gets sorbed on NZVI (Almeelbi and 

Bezbaruah, 2012). The dried particles were characterized using X-ray photoelectron 

spectroscopy (XPS) and Energy Dispersive X-Ray Spectrometer (EDS). The dried particles were 

used in algae and plants growth studies. 

Table 4.1: List of chemicals used in this study 

Chemical Formula Chemical Name Supplier Grade/Purity 

NaOH Sodium Hydroxide BDH ACS 

Ca(NO3)2∙4H2O Calcium Nitrate Tetrahydrate  BDH ACS 

KNO3 Potassium nitrate Alfa Aesar  99% 

KH2PO4 Potassium Phosphate Monobasic BDH ACS 

MgSO4 Magnesium Sulfate Aldrich +97% 

K2SiO3 Potassium Silicate Alfa Aesar >99% 

FeCl3∙6H2O Iron(III) Chloride Hexahydrate Mallinckrodt ACS 

MnSO4∙4H2O Manganese Sulfate Alfa Aesar 99% 

CuSO4 Copper(II) Sulfate Alfa Aesar 99% 

ZnSO4 Zinc Sulfate Heptahydrate Alfa Aesar ACS 

H3BO3 Boric Acid Alfa Aesar ACS 

Na2MoO4∙2H2O Sodium Molybdate Dihydrate J.T. Baker ACS 

HNO3 Nitric Acid BDH ACS 

NaNO3 Sodium Nitrate  Fluka >99% 

CaCl2·2H2O  Calcium Chloride Dihydrate BDH ACS 

K2HPO4 Potassium Phosphate Dibasic BDH ACS 

NaCl Sodium Chloride EMD ACS 

4.3.3. Algae studies 

All glassware were washed with phosphate-free detergent and rinsed thoroughly with tap 

water, soaked in acid bath (10% HCl) overnight, rinsed with deionized (DI) water, and 

autoclaved for ~20 minute before use.  

Cultivation of Algae: S. capricornutum (UTEX 1648) was obtained from the University 

of Texas Culture Collection (Austin, TX, USA) (UTEX, 2012). Erlenmeyer flask of 500 mL 

(nursery reactors) was used to culture the algal in liquid Bristol medium (Table 2). The culture 

was aerated and illuminated with cool-white fluorescent light on a 12-h light and 12-h dark cycle 

at room temperature (22±2.0
o
C). The light intensity was 3.17 log Lum m

-2
 (HOBO U12-012 

temp/RH/light external data logger, Onset Computer Corporation, Bourne, MA, USA). 
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Exponential growth phase was maintained as per the supplier’s instructions through repetitive 

subculturing with freshly prepared medium every 4 days.  

Growth Studies: Glass bottles (500 mL) were used as reactors, and 400 mL of different 

growth media and 5 mL of algae seed (S. capricornutum) obtained from the laboratory culture 

(see ‘Cultivation of Algae’ above) were added to the reactor. The algae were incubated for 28 

days in the reactors illuminated with cool-white fluorescent light. During the incubation period, 

the reactors were manually shaken and aerated for 10 min once every day to maintain aerobic 

conditions. Five different growth nutrient solutions were used and algae growth was measured at 

the end of the test period. Each experiment was repeated three times. The five nutrient solutions 

used were: (1) Only DI water, (2) Bristol medium (Table 4. 2, no virgin NZVI added), (3) Bristol 

medium with virgin NZVI, (4) Bristol medium without PO4
3-

 (no NZVI), and (5) Bristol medium 

without PO4
3-

 but with spent NZVI. The only DI water (nutrient solution 1) was used to check 

whether residual nutrients from the laboratory algae culture were affecting algae growth. 

Additional nutrients (from the stock solution) were and nanoparticles are added once every week. 

Samples (10 mL) were collected from each reactor for biomass analysis after 28 days and 

analysis were preformed immediately.  

4.3.4. Spinach studies 

 Germination and Plant Preparation: Spinach (Tyee spinach, Spinacia oleracea, Lake 

Valley Seed Company, Bolder, CO) seed was purchased from a local outlet. Seeds were washed 

then soaked in DI water over night. The seeds were then placed on moist filters paper in petri-

dishes and kept in the dark at room temperature until germination. The germinated seeds were 

planted on sand in a glass tray. Nutrients solution (Table 4.3) was added to the growth media 
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(sand) everyday and the plants were illuminated with cool-white fluorescent light (12-h light and 

12-h dark). The light intensity was 3.17 log Lum m
-2

. 

Table 4.2: Composition of Bristol media used for algae growth (Source: UTEX, 2012) 

Salt Stock Solution 

g/400mL DI H2O 

Volume used  

mL/L 

Molar Conc. used 

mM 

NaNO3 10 10 2.94 

CaCl2·2H2O  1 10 0.17 

MgSO4·7H2O  3 10 0.3 

K2HPO4 3 10 0.43 

KH2PO4 7 10 1.29 

NaCl 1 10 0.43 

 

Table 4.3: Composition of hydroponic growth nutrient solution (USU, 2012) 

Salt Stock solution Conc. Starter Pre-anthesis Post-anthesis 

 mM ----------------------- mL/10 L ----------------------- 

Ca(NO3) 1000 10 10 5 

K(NO3) 1000 10 40 20 

KH2PO4 500 10 10 10 

MgSO4 500 10 10 5 

K2SiO3 100 10 10 0 

FeCl3 50 2 0.5 0.5 

MnSO4 60 0.5 1 0.5 

CuSO4 2 0 1.5 1 1 

ZnSO4 20 3 1.5 1.5 

H3BO3 40 0.5 0.25 0.1 

Na2MoO4 1 1 0.5 0.5 

HNO3 1000 0.5 0.5 0.5 

 

Growth Studies: After 5 days (during the early stage of stem and leaf formation) the 

seedlings were removed from the sand media, roots were thoroughly washed with DI water, and 

transplanted into hydroponic reactors (Figure 4.1 and 4.2). Plastic containers (2 L nutrient 

solution) were used for hydroponic culture. Three plants were placed into a foam disk float with 

the shoots supported above with non-absorbent cotton and roots below the disk (Jacob et al., 

2013). The floats with the plants were then placed in the reactors. The arrangement of putting the 

plants in the floats ensured continuous root contact with the nutrient solution. The nutrient 

solution was aerated constantly with air throughout the experiment and the solution was replaced 
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every 4 days. Light was provided in 14-h light 10-h dark cycles with cool white bulbs with a 

light intensity of 3.17 log Lum m
-2

. Three different treatments were run to study the effects of 

spent iron nanoparticles (NZVI that sorbed PO4
3-

) on plants. Treatment 1 was 0.15 g The amount 

of nanoparticles was decided based on the concentration of sorbed PO4
3-

 on the particles. Spent 

iron (0.15 g) was used in the reactor. Equivalent amount of PO4
3-

 in the nutrients solution was 

added each time. In another container (treatment 2 or control 1) all nutrients was used (Table 

4.3). The last treatment was all nutrient except PO4
3-

 and Fe
3+

 (Control 2). Each treatment was 

run in triplicate. The assignments of the reactor’s place and plants were randomized. First the 

containers were numbered and each place was assigned a number randomly. Then plants were 

picked from sand washed thoroughly with DI-water then places randomly in a container until the 

last plant was places in the last container.   

4.3.5. Analytical procedures 

Algae measurement: Algae samples were collected and algae biomass was estimated by 

measuring chlorophyll a (Chl a) concentration using a pigment extraction method (Globbelaar et 

al., 1984; Lorenzen, 1967). Ten milliliters of algal culture was filtered using a Whatman GF/F 

glass fiber filters (pore size 0.5 to 0.7 µm, 47 mm diameter).  Pigment (chlorophyll) extraction 

was done by soaking the filter (with algal biomass retained on them) in 5 mL of 95% ethanol and 

keeping it in the dark for 20 h. The solvent was then filtered through a GF/F a glass fiber filter. 

Absorbance of the extracted sample (solvent with the pigment dissolved) was measured on a DR 

5000 UV spectrophotometer using a 1-cm path length cuvette at 665 nm and 750 nm. The 

sample was then treated with 1N HCl and absorbance was measured again at 665 nm and 750 

nm. . The following equation was used to calculate Chl a concentration (Globbelaar et al., 1984; 

Lorenzen, 1967):  
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Figure 4.1: Schematic of hydroponic system setup 

 

 

Figure 4.2: Experimental set-up for the hydroponic system for spinach studies. 
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Chl a (mg/m
3
 or µg/L)    = 

LV

V x )E(E7.26

f

a  665 665 o

                                                              (4.2)

 

Where, 

V = volume of ethanol used for extraction (mL) 

Vf = water filtered (L) 

L = path length of cuvette (cm) 

E665 o = turbidity-corrected absorption at 665nm before acidification (A 665o – A 750o) 

E 665 a = turbidity-corrected absorption at 665nm after acidification (A 665a- A 750 a) 

 

To ensure reproducibility and data reliability this experiments was ran in triplicate at 

different times and concentration of Chl a was measured in triplicate for each treatment.  

Plant measurement: Plants were harvested after 28 days of hydroponic growth. The 

harvested plants were washed with DI water, and the height of shoots and roots were recorded. 

Roots were washed with 10 mM CaCl2 solution to remove NZVI physically attached onto the 

surface (Jacob et al., 2013). Roots, stem and leafs were separated and then dried at 80
o
C for 48 h 

before measuring the weight (Bezbaruah and Zhang, 2009). The similar parts (e.g., roots) of 

plants from each reactor (3 plants each) were combined together and the combined weight has 

been reported and further analyses were done assuming such combined mass as one entity.  

Iron measurement: The dry plant tissue (roots, stems, shoots) were ground and digested 

in a CEM Mars Xpress microwave digester using. Concentrated nitric acid (HNO3, 3 mL) was 

added to the ground plant tissue or standard reference material (NCS DC 73350 leaves of poplar, 

China National Analysis Center of Iron and Steel) in a 55 ml PFA venting vessel.  Weight of 

plant tissue was measure before digestion. Samples were divided into three groups based on their 

weight and reference samples were prepared accordingly. DI waster (3 mL) was added after 20 

min of pre-digestion then the samples were digested at 200 °C for 15 minutes at 1600 W 100% 

power (for 28 vessels) after 10 minutes ramp time. The digests were analyzed for Fe and P with a 
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Spectro Genesis ICP-OES with Smart Analyzer Vision software (v. 3.013.0752), crossflow 

nebulizer (three replicate measurements, 21 seconds integration time). Analysis of control 

standard was done after every 10 samples and checked whether it was within acceptable limits 

(10%).  

Statistical Analysis: Analysis of variances (ANOVA) and Bonferroni Simultaneous Tests 

were used to analyze the result using Minitab 16 software.  

 
Figure 4.3: Schematic of the experimental design 
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4.4. Results and Discussion 

4.4.1. Particles characterization  

Average particles size of virgin NZVI was found to be 16.24±4.05 nm (Almeelbi and 

Bezbaruah, 2012). NZVI particles were synthesized and analyzed using XPS and EDS to 

confirm the presence of the phosphate (Figs. 4.4 and 4.5). High Resolution X-ray Photoelectron 

Spectroscopy (HR-XPS) was performed on a Surface Science SSX-100 spectrometer with an Al 

anode (Kα X-rays at 1486.66 eV) operated at 10 kV and 20 mA. Samples were mounted on the 

sample stage using conductive carbon sticky tape and transferred to the analysis chamber (with a 

pressure below 1×10
–8

 torr).  

  

Figure 4.4: XPS spectra of (a) virgin NZVI, (b) spent NZVI, after PO43- adsorption 

From XPS spectrum of the new NZVI (Fig. 4.4 a), peaks at 711 and 725 eV represent the 

binding energies of 2p3/2, and 2p1/2, respectively which can be assigned to the metallic Fe
0
 and 

the oxide layer on the metal core. In addition, O 1s peak at 531 and adventitious carbon on the 

sample peak at 285 eV BE. Peaks at 1071 and 192 eV BE from Na 1s and B 1s, respectively, 

indicate considerable concentrations of Na and B from residual NaBH4. This finding is in 
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agreement with others (Jabeen et al 2011; Li and Zhang, 2006; Martin et al., 2008). The new 

peak at 133 eV (Fig. 4.4 b) is attributed to the presence of phosphate adsorbed onto the surface of 

the spent NZVI particles (Jianbo et al 2013; Zach-Maor, 2011). The HR-XPS spectra of Fe 2p 

(Fig. 4.5) shows a small shoulder at around 707 eV for virgin NZVI only which can be assigned 

to 2p3/2 peaks of Fe
0
.  Since the nanoparticle surface is covered with an oxidized iron layer 

(Krajangpan et al., 2012), only small amount of Fe
0
 is exposed to XPS (5−50 Å in depth) (Li and 

Zhang, 2006).  

 
Figure 4.5: HR-XPS survey on the Fe 2p for virgin NZVI and spent  NZVI.  

Elemental composition of virgin spent NZVI was determined using scanning electron 

microscopy with energy dispersive spectroscopy (SEM/EDS, JEOL JSM-6300, JEOL Ltd.). The 

percentage of oxygen in the virgin NZVI was 12.10%.  The amount of oxygen in the spent NZVI 
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air. Krajangpan et al (2012) also reported 15.66% of oxygen in NZVI. While there was no 
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was at the part number 1 which was a relatively large particle (circled in Fig. 4.6b). The isotherm 

experiments also determined adsorption capacity of NZVI as 63 mg PO4
3—

P/ g NZVI (i.e., 6.3%) 

(Appendix Fig.A.6). The presence of a very low amount (0.51%, Table 4.4 and Fig. 4.6) of 

sodium was observed in the virgin NZVI but was not present in the spent NZVI. Sodium was 

possibly left as the residual from sodium borohydride (NaBH4) used in the NZVI synthesis 

process.  

 

 

Figure 4.6: EDS spectrum of (a) Virgin NZVI, (b) Spent NZVI 
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Table 4.4: Weight percentage of elements present in virgin and spent NZVI.   

Particles Type Part  % Weight 

Number* O Fe Na P 

Virgin NZVI
 

1 12.10 87.39 0.51 0.00 

2 10.37 89.32 0.31 0.00 

3 10.90 88.70 0.39 0.00 

Spent NZVI 1 25.15 66.90 0.00 7.95 

2 13.13 84.77 0.00 2.10 

3 13.02 85.31 0.00 1.67 

* The part numbers used for analysis are identified in the SEM images (Figs. 5a and 5b)  

4.4.2. Algae growth  

The concentration of chlorophyll a (Chl a) is an indicator of algae health and a measure 

of growth.  Chl a increased substantially when virgin NZVI and PO4
3-

 sorbed NZVI
 
used as 

compared to other treatments (Table 5 and Fig. 6). Bonferroni test (α=0.05) identified two groups 

of experimental data based on the statistically significant differences. The first group included 

results from algae treated with DI water, all nutrients, and all nutrients expect PO4
3
, and the 

second group was treated with virgin and spent NZVI particles. The algae batches treated with 

DI water provided the baseline data for comparison. There was slight increase in the 

concentration of Chl a when all nutrients expect PO4
3-

 were added as the growth media (from 21 

to 107 µg/L). The increase was very similar to what was seen in the DI water batch (from 21 to 

108 µg/L). It should be noted all treatments (including DI water batch) had some initial growth 

nutrients as the seed algae was grown in Bristol media (Table 4.2), and the nutrients got 

transferred to each batch when 5 mL of seed was taken from the nursery reactor. The presence of 

the PO4
3-

 the Chl a concentration increased 1.8 times as compared to the batch without PO4
3-

. 

The results from the second batch showed significant difference with the first group. The algae 

batch treated with all nutrients and virgin NZVI showed an increase of algae concentration from 

21 to 1673 µg/L. When spent NZVI particles (with PO4
3- 

sorbed onto them as the PO4
3-

 source) 

were used the algae growth was even more profuse (from 21 to 2003 µg Chl a/L). It is very 
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evident that the presence of iron nanoparticles significantly increased the growth of algae. The 

growth of algae was profuse when spent NZVI apparently supplied the PO4
3-

needed for algae 

growth  and the final algae concentration was 5.7 times more that the batch with all nutrients (no 

NZVI).  

The presence of nanoparticles definitely played a major role in algae growth as has been 

evident from the comparison of data obtained from the two groups. However, it is difficult to 

postulate a reason for that. Bioavailability of iron from NZVI may be another possible reason for 

enhanced algae growth. It is worth mentioning that the Bristol media do not contain iron as a 

nutrient for algal growth. Kadar et al., (2012) have reported a normal growth of three different 

types of marine algae (Pavlova lutheri, Isochrysis galbana and Tetraselmis suecica) in the 

presence of NZVI. In particular Tetraselmis suecica showed 30% higher growth rate in the 

presence of NZVI. Another study (Liu et al., 2008) has also indicated that iron content in the 

growth media affected the algae growth of marine micro-algae (Chlorella vulgaris). However, 

Ruangsomboon, (2012) reported no significant effect of iron on green algae (Botryococcus 

braunii) biomass using FeSO4 as source of iron. In this study, the comparison between the two 

batches in the second group indicates that PO4
3- 

sorbed onto NZVI was possibly bioavailable for 

algal growth. Phosphate plays a major role in algae growth as could be observed from the Chl a 

growth in batches 1-B and 1-C (Table 4.5). The final concentration of Chl a without PO4
3- 

 (108 

µg Chl a/L in 1-C) was ~3 times less than Chl a concentration when the nutrient solution 

contained PO4
3- 

(300 µg Chl a/L in 1-B). Others have also reported PO4
3- 

as a limiting nutrient 

for algal growth (Meeuwig, 1996). Fried et al., (2012) reported a positive effect of PO4
3- 

on algae 

growth. Based on this logic it is reasonable to say that PO4
3- 

sorbed in NZVI was bioavailable to 

algae and that is why similar growths were onbseved in batches 2-A and 2-B (Table 4.5). 



89 

 

Table 4.5: Concentrations of chlorophyll a at 0 and 28 days of algae growth 

Batch Growth Medium 
Chlorophyll a concentration (µg/L) 

0 d 28 d 

1-A DI-Water 20.80±1.83 81.58±22.84 

1-B All Nutrients 20.80±1.83 300.38±14.59 

1-C All nutrients (No PO4
3-

) 20.80±1.83 107.54±45.73 

2-A All nutrients (No- PO4
3-

) + Spent NZVI 20.80±1.83 2002.50±981.45 

2-B All nutrient + Virgin NZVI 20.80±1.83 1673.20±270.10 

 

 

Figure 4.7: Chl a concentrations at 0 and 28 days. Treatments are as follow: (1) DI Water, (2) 

All Nutrients, (3) All nutrients (No PO4
3-

), (4) All nutrients (No PO4
3-

) + spent NZVI (with PO4
3-

sorbed onto NZVI), and (5) All nutrients + Virgin NZVI 

4.4.3. Plant growth 

Seeds germination started after 5 d and continued till 10 d. The percent of seed 

germination varied from 72 to 100%. Plant with similar germination time and growth were 

selected for the batch studies (Fig. 4.8).  

Root and shoot lengths: Spinacia oleracea plants were harvested after 30 d of hydroponic 

growth. The length of shoots and roots were recorded immediately after harvesting (Table 4.6 

and Fig. 4.9). In the plants treated with spent NZVI particles (with PO4
3-

 sorbed onto them) the 

lengths of roots and shoots were 13.1±2.8 and 20.9±0.3 cm, respectively. The lengths of roots 
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and shoots in Control 1 (plants treated with all nutrients, Table 4.3) were 3.8±1.0 and 5.9±0.6 

cm, respectively, while the corresponding values for Control 2 (all nutrient but no PO4
3-

 and Fe) 

were 3.2±0.5 and 5.8±1.0 cm.  Bonferroni test (α=0.05) put the data sets into two groups with 

data from spent NZVI in the first group and data from the two controls in the second group based 

on the statistically significant differences. Plants treated with only DI water showed no growth 

and died in 10 d.   

  
 

Figure 4.8: (a) Germinated seeds after 5 d. The percent of seed germination varied from 72 to 

100%, and (b) Plant seedlings in sand bed 
 

When the length of roots and shoots from the NZVI treated plants compared with those 

from Control 1 it was evident that the present of the spent NZVI had an major impact on plant 

growth. The roots and shoots of the plants treated with spent NZVI were ~3.5 longer than those 

from the plants in Control 1. This observation, however, does not help in concluding that PO4
3-

 

and Fe from NZVI was bioavailable given the fact that there are no significant differences in data 

obtained from Control 1 and Control 2. However, visual observation (Fig.4.10) indicate that 

plants supplied with PO4
3-

 and Fe (Plate 3a and Plate 3c) were healthier and the leaves were 

vibrant green, while Control 2 (no PO4
3-

 and Fe, Plate 3b) has weathered leaves and the stems 

were skinner.  Ewa et al., (2012) reported plants (Avena sativa L. Arab, Polar, and Szakal) 

deprived of PO4
3-

 showed a reduction in shoot growth with simultaneous root elongation. It is, 

a b 
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there, safe to conclude that plants treated with spent NZVI and Control 1 (all nutrients) had 

uptaken PO4
3-

 and Fe.  

 

Figure 4.9: Length of roots and shoots after 30 d of hydroponic growth. Control 1: All nutrients,   

Blank: All nutrients but no PO4
3-

 and Fe 

   
 

Figure 4.10: Plants after 30 d of hydroponic treatment. Plant were supplied with (a) All 

nutrients, (b) All nutrients (but no PO4
3-

 and Fe), and (c) All nutrients (but no PO4
3-

 and Fe) + 

Spent NZVI 
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Plant biomass: Everage shoots and roots biomass of individual plants from each of the 

three groups of plants after 30 d was measured (Table 4.6 and Fig. 4.11). Plants grown in only 

DI-water died after 10 d and no measurement could be made.  

Table 4.6: Length and weight of plants parts for each treatment 

Treatment Length (cm) Weight (mg) 

Roots Shoots Roots Shoots 

Blank* ------------------Seedling died in 10 d----------------------- 

Control 1** 3.8±1.04 5.89±0.59 3.8±0.3 36.7±5.6 

Control 2*** 3.22±0.54 5.78±0.96 2.5±0.6 16.9±5.2 

PO4
3-

 sorbed NZVI 13.06±2.76 20.94±0.35 15.3±7.0 81.7±2.8 

* DI-Water, ** All nutrients   ***All nutrients but (PO4
3-

 and Fe) 

In the plants treated with spent NZVI particles (with PO4
3-

 sorbed onto them) the average 

biomass of roots and shoots (per plant) were 15.3±7.0 and 81.7±2.8 mg, respectively. The 

biomass of roots and shoots in Control 1 (plants treated with all nutrients, Table 4.3) were 

3.8±0.3 and 36.7±5.6 mg, respectively, while the corresponding values for Control 2 (all nutrient 

but no PO4
3-

 and Fe) were 2.5±0.6 and 16.9±5.2 mg.  Bonferroni test (α=0.05) put the data sets 

into two groups with data from spent NZVI in the first group and data from the two controls in 

the second group based on the statistically significant differences. The treatment with 

nanoparticles had a significant effect on plant biomass.  The plants treated with NZVI had ~4 

times more root biomass that Control 1, and similarly had ~2.2 times higher shoot biomass. The 

most effect of nanoparticles was on roots weight with increase 3 times as compared to controls 1.  

Shoots also has increased by 1.22. Other researchers have reported both positive and negative 

impacts of different nanoparticles on plants (Table 4.7).  
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Figure 4.11: Weights of roots, stems, and leaves  

Table 4.7: ANOVA analysis for Fe and P concentrations in plant parts.  

Plant  

Part 

Element P- value 

mg/kg- dry weight  mg/biomass 

Root  Fe 0.006 0.01 

P 0.066 0.033 

Stem Fe 0.080 0.052 

P 0.003 0.000 

Leaf Fe 0.042 0.017 

P 0.027 0.002 

Significance level is (P < 0.05) 

Iron and Phosphorus analysis: Iron and phosphorus contents in plant were analyzed.  

There was significant deferences in Fe and P concentrations between control and NZVI 

treatments in roots and leaves, however, in stems concentration of Fe was not significatnt (Fig. 

4.12 and Table 1.7). Concentration of Fe in the stem increased by 1.9 times in the plants treated 

with spent NZVI (590.54±279.54) when compared to the control (205.34±57.72). Concentration 

of Fe was expressed in mg of Fe or P/kg of the dry weight.  
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Figure 4.12: Fe and P analysis data  in control and spent NZVI treatments, (a) Fe in stems and 

leaves, (b) P in stems and leaves, (c) Fe and P in roots, (d) Total Fe in stems and leaves, (e) Total 

Fe in roots, and (f) Total P in stems, leaves, and roots. Biomass was measured for each plant 

separately. 
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Table 4.8: Nanoparticle-plant interactions  

Nanoparticle Plant Medium Effects Source 

 

TiO2 Triticum (Wheat)  Murashige 

and Skoog 

(MS)  

Accumulation of nanoparticles  in the roots, No 

major impact on seed germination and vegetation  

development   
Camille et al., 2012 

Multiwall carbon 

nanotubes 

Solanum lycopersicum 

(Tomato) 

 MS Increase in germination and growth rate Khodakovskaya, et 

al 2009 

CuO and ZnO Triticum (Wheat) Soil  Reduction on roots growth  Bioaccumulation of NP 

were detected in the shoots 
Christian et al., 

2012 

ZnO Lolium perenne 

(ryegrass) 

Hydroponic  Significant reduction of biomass, NPs aggregation 

in the roots, inhibition of the seedling growth Lin and Xing, 2008 

CoOx and ZnO Allium cepa (Tnion) Hydroponic Roots inhibition by both, and roots damaged by 

ZnO accumulation   
Gajanan et al., 

2011 

Al2O3, SiO2, 

Fe3O4, and ZnO 

Arabidopsis thaliana 

(mouseear cress) 

 MS Phytotoxicity: ZnO > Fe3O4 > SiO2 

 Al2O3 was found to be not Phytotoxic 
Lee et al., 2010 

NZVI  Linum usitatissimum 

(Flax), Lolium perenne 

(ryegrass) Hordeum 

vulgare (barley) 

Soil and 

hydroponic 

Complete inhibition of germination at 1-2 g NZVI/L 

El-Temsah and 

Joner, 2010 

Fe3O4 Cucurbita 

Maxima 

Hydroponic 

and sand  

NPs translocateed, and accumulated in the plant 

tissues. Level of uptake and accumulation in 

hydroponic was more than soil 
Zhu et al., 2011 

TiO2 and ZnO Triticum (Wheat) Soil NPs are found to reduce biomass. Zn was dissolved 

in the soil increasing Zn uptake by the plant Du et al., 2011 

Ag and Cu Cucurbita pepo 

(zucchini) 

hydroponic Ag and Cu reduced biomass by 57and 90%, 

respectively  

Stampoulis et al., 

2009 
 

9
5
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In the case of P concentration there was higher concentration in all plant parts of the 

control but after calculating the amount of P present in the biomass of the plant there was more P 

in plants from spent NZVI treatment than those from controls. The results are strong evidence 

that the adsorbed PO4
3-

 was bioavailable for plant uptake. In the roots total Fe uptake increased ~ 

20 times from in control 0.012±0.006 to 0.251±0.011 mg in the presence of spent NZVI, 

respectively.  In the stems and leaves, Fe increased by ~7 and 11 times in the presence of NZVI. 

The significant increase of Fe concentration in the plant tissues indicates that the Fe from NZVI 

was bioavailable as well. 

4.5. Conclusions 

In this study the bioavailability of phosphate and iron from PO4
3-

 sorbed iron nanoparticles 

was examined using Selenastrum capricornutum  (algae) and Spinacia oleracea (Spinach). NZVI 

was synthesized and used for phosphate removal from aqueous solution. The particles 

characterization using  XPS and SEM/EDS confirmed the presence of the PO4
3- 

on the surface of 

nanoparticles. Algae Growth increased significantly in the presence of the iron nanoparticles 

(virgin and spent NZVI). Algae growth when spent NZVI was the only source of PO4
3-

 increased 

by 5.7 times more than the algae growth in stadard all-nutrient solution. It can be concluded that 

the PO4
3-

 sorbed onto spent NZVI was bioavailable for algal growth. Spinach growth experiment 

also produced similar results where presence of spent NZVI enhanced the growth of the plants 

and increased the plant biomass by 4 times as compared to control where PO4
3-

 was supplied 

from the all-nutrient hydroponic solution. Fe content significantly increased in all plant parts 

(roots, stems, and leaves) when NZVI was added. Roots of the plants exposed to spent NZVI had 

the heights concentration of Fe (increased ~20 times as compared to the control). Fe content also 

increased in the stem and leaves of the plant treated with spent NZVI by 7 and 11 times as 



97 

 

compared to the control, respectively. All parts of plants treated with spent NZVI also had higher 

content of P than the control plants. It is evident that Fe and P was bioavialable for plants when 

the only source of P and Fe was the spent nanoparticles. Furtrher research is needed to 

consolidate the finding and evaluate phosphate sorbed NZVI particles as fertilizer and Fe 

fortifier. 
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CHAPTER 5. BARE NZVI AND IRON CROSS-LINKED 

ALGINATE BEADS: APPLICATIONS FOR PHOSPHATE 

REMOVAL FROM ACTUAL WASTEWATERS 

5.1. Abstract  

Applications of nanosacle zero-valent iron (NZVI) and iron corss-linked alginate 

(FCA) beads were explored in this study for phosphate removal from actual wastewaters.  

Wastewater treatment plant effluent (WTPE) and animal feedlot effluent/runoff (AFLE) 

samples were used in the phosphate removal studies. While FCA beads removed 97% of 

the PO4
3-

 in 2 h from WTPE, NZVI removed 84%. However, the difference was not 

statistically significant. Fast removal rate was observed with FCA used to remove 

phosphate from AFLE (~77% removal at the end of 15 min). The FCA beads continued 

to remove phosphate fater than NZVI till ~ 60 min. Results have indicated that FCA 

beads were more efficient (85%) as compared to NZVI particles (57%) in the first hour. 

The overall PO4
3-

 removal by FCA beads reduced from 85% in 1 h to 75% at 24 h. This 

removal rate has possible application in the field with hiegh flowrate systems. 

Keywords: Nanoscale zero-valent iron, iron cross-linked alginate, municipal 

wastewater, feedlot runoff, phosphate removal 

5.2. Introduction 

Excessive discharge of phosphorus (P) in surface water causes deterioration of 

water quality. Nutrient (P) richness in surface water bodies results in eutrophication of 

the water bodies. Eutroiphication has significant economic impacts on local communities. 
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Two of the major sources of phosphate in surface water are wastewater effluent 

(point-source) and animal feedlot runoff (nonpoint-source). The estimated contributions 

of P sources to municipal wastewater from human wastes, laundry detergents, and other 

cleaners are 0.6, 0.3, and 0.1 kg P/capita/year, respectiveluy (Sengupta et al 2011). 

Municipal wastewater contains adequate amount (5 -15 mg/L) of P (Blackall et al., 2002). 

Even though the contribution of laundry detergents in inceasing P in wastewater 

successfully reduced nowadays, P concentration in WWT effluent would reduce be only 

to 4–5 mg/L P (USGS, 1999). This effluent with high concentration of P finds its way to 

lakes and surface waters. Various studies have indicated that concentrations of P above 

0.02 mg/L accelerate eutrophication of water bodies (Sharpley et al., 2003; Seviour et al., 

2003). 

The objective of this study is to examine the phosphate removal efficiency of NZVI 

and FCA beads from actual wastewater plant effluent and animal feedlot runoff.  

5.3. Materials and Methods  

5.3.1. Chemicals 

Iron (II) chloride tetrahydrate (FeCl2•4H2O, reagent grade, J.T. Baker), calcium 

chloride (CaCl2, ACS grade, BDH), monopotassium phosphate (KH2PO4, 99% pure, 

EMD), sodium alginate (production grade, Pfaltz & Bauer), potassium nitrate (KNO3, 

99%,  Alfa Aesar), sodium hydroxide (NaOH, ACS Grade, BDH), sodium borohydride 

(NaBH4, 98%, Aldrich), methanol (production grade, BDH) were used as received unless 

and otherwise specified. 
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5.3.2. NZVI synthesis  

NZVI was prepared as described by (Almeelbi, 2012). Briefly, FeCl3 solution was 

dropped into sodium borohydride solution and stirred for 30 min. The black resultant 

black precipitate (NZVI) was separated, washed by methanol and water using a 

centrifuge. The washed (NZVI) particles were dried using a vacuum oven under N2 

environment overnight and then ground using a mortar and pestle. The fine black powder 

was stored in a 20 mL vial for later use. Particles were not stored more than two weeks. 

The detailed method of NZVI has been reported by Almeelbi and Bezbaruah (2012). 

5.3.3. Beads synthesis 

A minor modification has been made to the procedure of FCA beads synthesis 

described in Chapter 3. Alginate solution (5 mL of 2% w/v) was dropped into FeCl2 

solution (35 mL of 2% w/v) in a 50 mL polypropylene plastic vial using a pump with 

very small tube track to reduce the loss of alginate. Moreover, the first batch was 

sacrificed to ensure eliminate any effect of alginate volume reduction due to alginate that 

might have remained within the tubings. Rest of the produre was same as described uin 

Chapter 3. Beads were kept in the FeCl2 solution for at least 6 h with vial was capped. 

The beads were prepared for the experiments as described earlier (Chapter 3).  

5.3.4. Samples collection and storage 

Municipal Wastewater Treatment Plant (WTPE) Effluent: Samples were obtained 

from the City of Moorhead Wastewater Treatment Plant (Moorhead, MN, USA). 

Moorhead follows a pure oxygen activated sludge treatment scheme.  The secondary 

treated wastewater is subjected to tertiary treatment that involved nitrogen removal and 
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additional polishing for organics and suspended solids. Tertiary treated wastewater 

samples from the effluent sampling point in outlet leading to the Red River outfall were 

collected in plastic containers (~8L). The WTPE was filtered through a 1.2 m pore-size 

Whatman glass microfiber filter (GF/C) before use in the experiments or stored in the 

refrigerator at 4
o
C for later use. Stored samples were used within a month.  

Animal Feedlot Effluent (AFE): Samples were collected from a privately owned 

cattle feedlot at Sargent County, North Dakota, USA. Unfiltered samples were used 

immediately or stored in a plastic container (~8L) in the refrigerator at 4
o
C for later use. 

Stored samples were used within a month. 

5.3.5. Batch studies 

WTPE and AFLE samples were used in PO4
3-

 removal studies with NZVI and 

FCA beads as the sorbents. One batch of FCA beads (0.121g dry weight) or 0.02 g NZVI 

were added to 50 mL of wastewater in multiple polypropylene plastic vials fitted plastic 

caps (reactors). The reactors were rotated end-over-end at 28 rpm in a custom-made 

shaker to reduce mass transfer resistance.  A set of sacrificial reactors was withdrawn at 

specific time interval. The phosphate concentration in the bulk solution was measured 

and reported as average (with standard deviations) of readings from three replicate 

studies. 

5.3.6. Phosphate analysis 

Ascorbic acid method (Eaton et al., 2005) was used for phosphate analysis. This 

method depends on the direct reaction of orthophosphare with molybdate anions to form 

a yellow-colored phosphomolybdate complex. Ascorbic acid reduces phosphomolybdic 
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to form molybdenum blue species that has a broad absorbance range in between 700 nm 

to 900 nm. The color was measured in a UV-vis spectrophotometer (HACH, DR 5000) at 

wavelength of 880 nm. A five-point calibration was done routinely.  

5.3.7. Quality control  

All experiments were done in triplicates during this research and the average values 

are reported along with the standard deviations. Blanks with only wastewater/runoff 

(without NZVI/FCA beads) were run along with the NZVI and FCA bead experiments. 

The analytical instruments and tools were calibrated before the day’s measurements. 

One-way ANOVA tests were performed to compare the variance between data sets as 

needed. Minitab 16 software (Minitab, USA) was used for all statistical analyses. 

5.4. Results and Discussion  

5.4.1. Beads characterization 

FCA bead characterization has been reported in Chapter 3.  Beads were 

approximately spherical in shape with average diameters of 3.09±0.16 mm and each 

batch of dry FCA beads weighted 0.121±0.002 g. SEM analysis of the beads were done 

after drying the beads for 24 h in a vacuum oven under nitrogen environment. Iron 

nanoparticles was observed inside the dried the beads (Fig. 5.1), and the nanoparticles 

had an average size of 74.45±35.60 nm (n = 97).  
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Figure 5.1: SEM image a fresh dry FCA beads 

5.4.2. NZVI characterization    

Almeelbi and Bezbaruah (2012) have used TEM to determine the size of NZVI 

and reported the particle size as 16.24±4.05 nm (n = 109). Characterization the particles 

morphology by SEM/EDS and XPS has been reported in Chapter 3.  

5.4.3. Phosphate removal from WTPE 

In batch studies conducted using NZVI and FCA beads for PO4
3-

 removal 

from WTPE, FCA beads removed 97% of the PO4
3-

 in 2 h while NZVI removed only 

84% (Fig. 5.2). NZVI was faster in removing PO4
3-

 as compared FCA in the first 15 min, 

and removed 80% PO4
3-

 while FCA beads removed only 63%. NZVI continued to 

perform better till ~30 min beyond which FCA removed PO4
3-

 at better rate than NZVI. 

However, ANOVA analysis indicates that there is no significant difference between the 

PO4
3-

 removal efficiencies by NZVI and FCA beads after 2 h (p = 0.629). The finding is 

important from field application perspective. While it may be difficult to use and then 
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recover NZVI particles (average diameter ~16 nm) in wastewater treatment plant or 

similar set-ups, the  FCA beads whch are much larger (average diameter ~3 mm)  will be 

easily recoverable. Further, there are still a number of unknowns about the toxicity of 

NZVI. Saleh et al., (2008) found that coated NZVI can remain mobile in aqueous media 

even after 8 months of application and may be toxic to humans. There are also other 

reports on toxicity of NZVI (Keller, 2012; Li, 2010; Phenrat, 2009; Xiu, 2010) that call 

for caution in wide scale application of the bare or unmodified nanoparticles. 

 

Figure 5.2: Removal of PO4
3-

 from WTPE using bare NZVI and FCA beads 

5.4.4. Phosphate removal from AFLE  

Batch study results have indicated that FCA beads were more efficient (85%) as 

compared to NZVI particles (57%) in the first hour (Fig. 5.3) of reaction in removing 

PO4
3- 

from animal feedlot effluent (AFLE). Statistical analysis indicate that the results 

from these two sets of experiments are significantly different (one-way ANOVA, p = 

0.00). Data points could not be collected exactly at 2 h for all the samples due to 

management issues and, therefore, have not been compared.  
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Figure 5.3: PO4
3-

 removal from animal AFLE using NZVI and FCA beads 

The batch studies with the AFLE were continued till 24 h and it was observed that 

the overall PO4
3-

 removal by FCA beads reduced from 85% in 1 h to 75% at 24 h. There 

is no immediate explanation for this behavior of the beads till further research is 

conducted. However, a possible reason may have to do with the presence of 

orthophosphate in the particulate form. AFLE was used as received (without any 

filtration) for PO4
3-

 removal using NZVI and FCA beads. A layer of visible black 

particles were observed on the beads at the end of the reaction which may be the 

particulate PO4
3-

 and they might have contributed to the increase in PO4
3-

 concentration. 

Further studies may be needed to understand this behavior of the beads. It is, however, 

clear that FCA beads can be used to remove phosphate from AFLE.  PO4
3- 

removal was 

~77% at the end of 15 min (Table 5.1). The short contact time needed for PO4
3-

 removal 

is expected to have major ramifications as FCA beads can possibly be used in high flow 

system (e.g., pumped system).   
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Figure 5.4: PO4
3-

 removal from AFLE using NZVI and FCA beads over a 24 h period 

 

Table 5.1: PO4
3-

 removal from AFLE using NZVI and FCA beads 

Time, h              % PO4
3-

 Removal 

FCA NZVI 

0.25 76.85 35.23 

0.50 84.07 50.39 

1.00 85.27 57.22 

2.75 85.66 72.91 

4.00 83.80 - 

6.00 81.05 - 

8.00 81.67 - 

12.00 79.50 - 

18.00 83.03 - 

24.00 75.21 94.06 

Data at 4, 6, 8, 12, and 18 h were not collected for NZVI studies 

5.5. Conclusions 

NZVI and FCA beads successfully removed PO4
3-

 from both municipal 

wastewater (WTPE) and animal feedlot effluent (AFLE). The fact that FCA beads could 

remove 63% and 77% PO4
3- 

from WTPE and AFLE, respectively, within the first 15 min 
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provides a huge advantage for their application in high flow systems. NZVI particles 

were also effective in removing PO4
3-

from waters. However, FCA beads performed better 

with AFLE. More experiments need to be conducted to determine the possibility of PO4
3-

 

recovery from FCA beads.  
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CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS  

6.1. Conclusions  

NZVI was successfully synthesized in the laboratory and HRTEM analysis 

revealed average of particles size of 16.24±4.05 nm (n = 109).  Batch studies conducted 

to examine the effectiveness of NZVI for phosphate removal and recovery (C0=1, 5, 10 

mg PO4
3-

-P/L) revealed that PO4
3-

removal of 88-95% was achieved in the first 10 min, 

and 96-100% PO4
3-

removal was achieved in 30 min. Increasing the initial NZVI 

concentration from 80 to 560 mg/L increased the removal of phosphate by ~78% (C0 = 5 

mg/L) and the effect of initial NZVI concentration on phosphate removal followed a 

linear trend (R
2
 = 0.9539).  Ionic strength and changing temperature showed little 

interference with phosphate removal. While nitrate marginally improved phosphate 

removal, presence of sulfate and natural organic matters has statistically significant 

negative impacts on the removal efficiencies. There was no change in phosphate removal 

efficiency in the presence of high concentrations of humic acid. The sorbed phosphate 

onto NZVI was successfully recovered (~78%). The phosphate recovery process was 

found to be pH dependent with maximum recovery achieved at pH 12.  

NZVI has potential applications in wastewater treatment plants for phosphate 

removal, where phosphate removal is otherwise not very efficient. The fact that NZVI 

removed 88-95% of the phosphate the first 10 min gives the nanoparticles an advantage 

over other sorbents. A commercially viable treatment system with low detention time and 

minimal infrastructure can be designed using NZVI. Recovery of phosphate from NZVI 
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at pH 12 may not be a practical proposition from economic and hazard perspectives. 

More research is needed to phosphate recovery from spent NZVI..  

Phosphate removal by by NZVI entrapped in calcium alginate beads were 

compared with the novel ferrous iron cross-linked alginate beads. Complete (100%) 

removal of aqueous phosphate was achieved after 12 h with the new Fe cross-linked 

alginate beads. The comparison between the two types of alginate based sorptive media 

and control (viz., Fe-cross-linked/FCA, alginate entrapped NZVI/NCC, and Ca-cross-

linked/CCA) revealed that FCA media/beads works much better for phosphate removal. 

Further, there was no interference by Cl
-
, HCO3

-
, SO4

2-
, NO3

-
 and NOM in phosphate 

removal with FCA beads. Phosphate sorption behavior of FCA beads is best described 

with Freundlich isotherm. The presence of iron in alginate increased the phosphate 

removal capacity of the beads. FCA beads performed better than NZVI under higher pH 

conditions. Removal up to 100% was achieved for a wide range of pH (4-9) which gives 

the FCA beads another advantage for the field application where pH ranges between 7 

and 9 depending upon the water source. SEM imaging of the new and used beads 

revealed the presence of nanoparticles inside the bead.  

NZVI and FCA beads successfully removed PO4
3-

 from both municipal 

wastewater effluent (WTPE) and animal feedlot effluent (AFLE). FCA beads could 

remove 63% and 77% PO4
3- 

from WTPE and AFLE, respectively, within the first 15 min 

and that provides a huge advantage for FCA for possible application in high flow 

systems. More experiments need to be performed to determine the possibility of PO4
3-

 

recovery from the spent FCA beads. 
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6.2. Future direction  

 Test PO4
3-

 removal using FCA beads from eutrophic lake waters. 

 Test PO4
3-

 removal by FCA beads in high flow through systems. 

 Study bioavailability of PO4
3- 

and Fe available in used FCA beads. 

 Study bioavailability of other nutrients sorbed by NZVI (e.g., Se). 

 Dried FCA beads for PO4
3-

 removal. 

 Study the mechanism of PO4
3- 

removal by FCA beads.  

 Additional characterization of the FCA beads.   
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APPENDIX 

 

Figure A.1: Publisher permission for Almeelbi and Bezbaruah, 2012 
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Table A.1: Phosphate removal by NZVI/L from bulk solutions with 5 mg/L initial 

phosphate concentrations 

Time  5 ppm 

 
Data set Adsorption capacity mg Phosphate-P/g of NZVI 

60.00  Adsorb Capacity Average STDEV 

 
I 12.50 

12.00 0.87 
 

II 12.50 

 
III 10.99 

30.00 I 12.50 

11.81 1.20 
 

II 12.50 

 
III 10.42 

15.00 I 12.50 

11.62 1.53 
 

II 9.85 

 
III 12.50 

10.00 I 12.50 

11.52 1.70 
 

II 12.50 

 
III 9.56 

 

Table A.2: Phosphate removal by NZVI/L from bulk solutions with 10  mg/L initial 

phosphate concentrations 

Time  10 ppm 

 
Data set Adsorption capacity mg Phosphate-P/g of NZVI 

60.00  Adsorb Capacity Average STDEV 

 
I 24.39 

24.38 0.04 
 

II 24.34 

 
III 24.42 

30.00 I 23.66 

24.09 0.38 
 

II 24.22 

 
III 24.38 

15.00 I 23.59 

23.72 0.17 
 

II 23.66 

 
III 23.90 

10.00 I 23.70 

23.62 0.11 
 

II 23.49 

 
III 23.66 
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Table A.3: Effect of initial NZVI concentration on phosphate removal.  

Initial PO4
3—

P = 5 mg/L  

NZVI Removal % Stdv 

0 0 0 

40 27.75836 3.276542 

160 27.25811 7.719856 

240 48.22925 10.53162 

320 65.17985 4.422103 

400 97.23285 4.792843 

480 95.11395 0.926586 

560 100 0 

 

Table A.4: Phosphate removal using FCA beads C0= 100 mg PO4
3-

-P mg/L 

 

PO43- Conc mg/L Normalized Conc. 

Time A b c Average a b c average STDEV 

0 96.334 

  

96.334 1.000 

  

1.000 0.000 

0.5 85.384 89.164 83.168 85.905 0.886 0.926 0.863 0.892 0.031 

2 81.864 85.775 80.560 82.733 0.850 0.890 0.836 0.859 0.028 

4 84.471 80.951 81.473 82.298 0.877 0.840 0.846 0.854 0.020 

6 73.570 71.973 69.806 71.783 0.764 0.747 0.725 0.745 0.020 

8 72.772 72.772 74.711 73.418 0.755 0.755 0.776 0.762 0.012 

12 66.197 66.197 66.832 66.409 0.687 0.687 0.694 0.689 0.004 

18 60.371 63.867 63.443 62.560 0.627 0.663 0.659 0.649 0.020 

24 58.571 62.490 60.689 60.583 0.608 0.649 0.630 0.629 0.020 

 

Table A.5: Phosphate removal using FCA beads C0= 5 mg PO4
3-

-P mg/L 

Time  

 

a b c Average SD 

 

Removal 
0 5.571948 5.203922 5.624523 5.466797733 0.2291694 1 

0.5 2.791131 2.633405 2.869993 2.764842987 0.1204646 0.505752 

2 1.403452 1.371906 1.332475 1.369277727 0.0355611 0.250472 

4 0.236285 0.370351 0.39401 0.333548913 0.0850596 0.061014 

6 0.259944 0.236285 0.259944 0.25205756 0.0136594 0.046107 

8 0.136493 0.173296 0.157523 0.155770858 0.0184638 0.028494 

12 0 0 0 0 0 0 

18 0 0 0 0 0 0 

24 0 0 0 0 0 0 
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Table A.6: Fruendlich and Langmuir isotherm, corresponding to figure 3.9 

C0 Ce C-sorbed Qe lnQe lnCe Qe Ce/Qe 

12.78 2.13 10.65 4.40 1.48 0.76 
4.40 0.48 

15.92 3.15 12.77 5.28 1.66 1.15 
5.28 0.60 

35.78 9.17 26.61 11.00 2.40 2.22 
11.00 0.83 

59.00 25.92 33.08 13.67 2.62 3.25 
13.67 1.90 

96.33 60.58 35.75 14.77 2.69 4.10 
14.77 4.10 

 

Table A.7: Column study corresponding to Figure 3.10 
 

Sample Time 

Time 

min  ppm 

Norm 

Conc 

Flow rate 

mL/min Volume BV C 

ID 

     

0.000 

 

mg of P 

C1-1 3 180 0.395 0.028 0.101 18.180 0.673333 0.2727 

C1-2 15 900 0.115 0.008 0.101 90.900 3.366667 1.3635 

C1-3 27 1620 0.593 0.042 0.101 163.620 6.06 2.4543 

C1-4 39 2340 1.828 0.131 0.101 236.340 8.753333 3.5451 

C1-5 51 3060 4.480 0.320 0.101 309.060 11.44667 4.6359 

C1-6 63 3780 7.791 0.557 0.101 381.780 14.14 5.7267 

C1-7 75 4500 9.406 0.673 0.101 454.500 16.83333 6.8175 

C1-8 87 5220 12.651 0.905 0.101 527.220 19.52667 7.9083 

C1-9 99 5940 13.178 0.942 0.101 599.940 22.22 8.9991 

C1-10 111 6660 13.705 0.980 0.101 672.660 24.91333 10.0899 

C1-11 123 7380 13.985 1.000 0.101 745.380 27.60667 11.1807 

         

C2-1 3 180 0.033 0.001 0.07 12.600 0.466667 0.378 

C2-2 15 900 0.049 0.002 0.07 63.000 2.333333 1.89 

C2-3 27 1620 0.033 0.001 0.07 113.400 4.2 3.402 

C2-4 39 2340 13.159 0.423 0.07 163.800 6.066667 4.914 

C2-5 51 3060 21.101 0.679 0.07 214.200 7.933333 6.426 

C2-6 63 3780 27.179 0.874 0.07 264.600 9.8 7.938 

C2-7 75 4500 28.761 0.925 0.07 315.000 11.66667 9.45 

C2-8 87 5220 29.057 0.935 0.07 365.400 13.53333 10.962 

C2-9 99 5940 29.164 0.938 0.07 415.800 15.4 12.474 

C2-10 111 6660 29.206 0.940 0.07 466.200 17.26667 13.986 

C2-11 123 7380 31.083 1.000 0.07 516.600 19.13333 15.498 
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Figure A.2: Bare NZVI column study in sand medium 

 

Flow rate = 0.8 mL/min 

Column Volume = 53mL 

Inner diameter = 1.5 cm 

Length= 30 cm 

PO4
3-

 -P C0 = 5 mg/L 
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Figure A.3: pH vs ORP curve for phosphate removal by NZVI, C0= 5 mg/L 
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Figure A.4: Conductivity study for FCA beads synthesis  

 

k1: Conductivity before adding alginate to the solution 

k2: Conductivity after adding alginate to the solution  

Concentrations used in the experiments: [Fe
2+

]= 28 mom, [Alginate unit]= 50 mom  

~Molar ratio = 1:2  
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Figure A.5: Formation and chemical structure of Fe (II) alginate coordination polymer 

 

Based on the molar ratio of alginate to Fe (II) of 1: 2 (from the conductivity 

study), the above structure can be predicted where the iron ion coordinates with carboxyl 

group  on the L-guluronic acid (G units).  Other forms of hydrogen bonds between the 

iron ion and other hydroxyl groups might take place as well.   
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Figure A.6: Adsorption capacity of phosphate adsorption by NZVI 
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Table A.8: Plants length measurements 

 Treatment  Plant  Total length   Root Length  

1 I 9 3 

II 11 4.5 

III 5 1.5 

2 I 17 11 

II 11 3.5 

III 6.5 0.5 

3 I 11 5.5 

II 10.5 4.5 

III 11 5 

4 I 18 8 

II 11 4 

III  Plant dead  Plant dead 

5 I  Plant dead  Plant dead 

II 15 4.5 

III 14 4 

6 I 15 5 

II 12 3.2 

III 8 2.5 

7 I 46 26 

II 40 20 

III 32 13 

8 I 32 10 

II 55 35 

III 43 20 

9 I 36 9 

II 40 18 

III 35 16 

10 I 6.5 1 

II 10 4 

III 11 3.5 

11 I 8 3 

II 5 1 

III 10 5 

12 I 10 2.5 

II 12 4 

III 6 2.5 

13 I 39 17 

II 40 18 

III 30 12 

14 I 32 12 

II 33 12 

III 39 16 

15 I 29 8 

II 32 9 

III 32 13.5 
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Table A.9: Plants weight 

Treatment  

Weight (g) 

Leaf Stem Roots total 

1 0.0592 0.0605 0.0113 0.131 

2 0.0656 0.0543 0.0108 0.1307 

3 0.0569 0.0338 0.0123 0.103 

4 0.0361 0.0484 0.0141 0.0986 

5 0.0361 0.053 0.013 0.1021 

6 0.0666 0.0483 0.012 0.1269 

7 0.1538 0.1301 0.0344 0.3183 

8 0.1841 0.144 0.0463 0.3744 

9 0.0994 0.113 0.0222 0.2346 

10 0.0337 0.0178 0.0052 0.0567 

11 0.0203 0.0144 0.0081 0.0428 

12 0.0436 0.0222 0.0089 0.0747 

13 0.1889 0.1236 0.0566 0.3691 

14 0.114 0.1571 0.0215 0.2926 

15 0.0683 0.0831 0.0593 0.2107 
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Table A.10: Plants tissue ICP analysis raw data 

Treatment   Fe P Se 

    Average  STDEV Average STDEV Average STDEV 

1 

Roots 3167.970 1741.987 2653.674 407.501 * * 

Stem 205.342 57.715 3733.219 527.125 * * 

Leaf 147.130 42.779 4101.511 758.703 * * 

2 

Roots 4839.244 1878.509 2564.629 913.257 102.656 * 

Stem 69.757 NA 3756.372 NA 145.730 * 

Leaf 103.699 27.206 4035.783 557.249 274.287 68.301 

3 

Roots 7214.168 4039.056 6765.511 1051.899 80.481 24.540 

Stem 126.886 53.657 5935.990 434.192 * * 

Leaf 542.791 101.550 6268.751 158.424 8.923 2.378 

5 

Roots 17202.919 4297.736 1953.036 257.467 * * 

Stem 590.539 279.538 1441.796 359.265 * * 

Leaf 653.498 275.420 1684.243 378.415 * * 

*  Under detection limit 

 

Table A.11: Amount of Fe and P in plant biomass 

mg Fe/kg Biomass 

 

mg P 

  Leaf Stem Roots Leaf Stem Roots 

0.003855 0.002798 0.0182633 0.098205 0.087387 0.01161 

0.002891 0.004349 0.0118248 0.080906 0.063745 0.009387 

0.002159 0.00267 0.0056193 0.06881 0.037682 0.009312 

0.001854 NA 0.0199355 0.074678 NA 0.025215 

0.002372 NA 0.0425618 0.061997 NA 0.015052 

0.00171 0.001123 0.0205681 0.100684 0.060478 0.007207 

0.031568 0.00609 0.0368118 0.326438 0.243966 NA 

0.026192 0.003252 0.1742044 0.373478 0.276006 0.115894 

0.019409 0.006497 0.0528703 0.210489 0.242279 0.044561 

0.053411 0.011164 0.3674385 0.1229 0.074515 0.040571 

0.017432 0.037231 0.142525 0.053833 0.05711 0.014669 

 

0.021874 0.2420629 NA 0.039506 0.032848 

 


