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ABSTRACT 

 

A number of methods are currently in use for attenuating nitrates from wastewater 

with varying degrees of efficiency.  Bioremediation using bacteria may be an efficient 

and cost effective method.  In an anaerobic bioremediation system, nitrate can replace 

carbon dioxide as an electron acceptor and aids in nitrate attenuation by assimilatory 

reduction.  The purpose of this study was to investigate nitrate attenuation in a 

hyperfiltration system using a pure culture of strictly anaerobic, facultative 

Methanobrevibacter ruminantium bacteria.  Filtration experiments were conducted using 

amalgamated Na- montmorillonite clay-glass beads compacted at 500 psi differential 

hydraulic pressure with or without a biofilm.  A simulated agricultural wastewater of 

3.105×10
-4

 moles/L of NO3
-
 was bioremediated.  The use of bacteria in attenuating 

nitrates offers promising results on a bench-scale. 
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CHAPTER 1. INTRODUCTION 

 

This chapter addresses the following sections: 1) Nitrate pollution and its environmental 

impacts, 2) Nitrate removal technologies, 3) Hyperfiltration systems, 4) Hypothesis, 5) 

Objectives, 6) Scope and 7) Organization of thesis. 

 

1.1. Nitrate pollution and its environmental impacts 

Nitrate pollution of water bodies around the world is a great environmental concern and 

has a direct impact on the economic sustainability of many countries like the USA (Hudak, 2000; 

Nolan et al., 1997), UK, Denmark, Belgium, France (Fried, 1991; Strebel et al., 1989), and India 

(Agrawal et al., 1999).  Groundwater contamination in farming and rural districts worldwide has 

shown increasing levels of highly mobile nitrate nitrogen (NO3–N) at concentrations higher than 

the US Environmental Protection Agency (EPA) and World Health Organization’s (WHO) 

regulatory limits (World Health Organization, 2004).  Groundwater nitrate pollution from 

anthropogenic sources has increased significantly within the last ten years due to an increase of 

agricultural activities giving rise to human health risks (Barbash and Roberts, 1996; Hirata et al., 

1992; National Research Council, 1993; Trauth & Xanthpopoulos, 1997; Westrick et al., 1984).  

Previous studies have indicated that agricultural uses of nitrogenous fertilizer play a great role in 

introducing nitrate into groundwater bodies (Fetter, 1999; Hudak, 1999).  Elevated concentration 

of nitrates in drinking water is detrimental to human health causing illnesses such as 

methemoglobinemia (blue baby syndrome) in infants and stomach cancer in adults (Hajhamad 

and Almasri, 2009; Mirvish, 1991; Winton et al., 1971).  Apart from effects on human, nitrates 
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have also had an astounding effect on test animals causing heart and behavioral problems 

(Shuval and Gruener, 1972).  Even a nitrate concentration much lower than that of the maximum 

contaminant level for drinking water contribute to increased rates of eutrophication in surface 

waters (Cole 1983). 

Sources of nitrates contamination of groundwater can be broadly categorized as point and 

non-point sources.  Non-point sources of NO3-N include agricultural application of nitrogenous 

fertilizers and manure, leguminous crops, dissolved nitrogen in precipitation, irrigation return-

flows, and dry deposition (Leterme et al., 2006; Manassaram et al., 2006; Mattern et al., 2009; 

Nolan and Stoner, 2006).  Point sources of NO3-N include livestock and waste lagoons, spills 

and septic systems.  Cesspits can also a play major role in nitrate pollution (Hajhamad and 

Almasri, 2009; Joosten et al., 1998; Mitchell et al., 2003; Stournaras, 1998; Tait et al., 2008; 

Wolf et al., 2003). 

The background levels of nitrates tend to generally increase due to several factors such 

as: agricultural and refuse dump runoffs during high precipitation, low infiltration events for 

surface water, high infiltration and low runoff events for groundwater, or even natural 

cataclysmic events like faulting through a waste lagoon or sewer system (Liu et al., 2005; 

Mattern et al., 2009; Mitchell et al., 2003; Stournaras, 1998; Tait et al., 2008; Wolf et al., 2003).  

The increase in nitrate concentrations in groundwater worldwide has been attributed to a great 

demand for nitrogenous fertilizers as well as domestic and industrial wastewater discharge 

(Kross et al., 1993).  In fact, most countries have reported having levels of nitrates above 50 

mg/L of NO3-N (Billen and Garnier, 1999; Billen et al., 2001; Billen et al., 2005; Cinnirella et 

al., 2005; Garnier et al., 2005; McLay et al., 2001; Vinten and Dunn, 2001).  In the United States 

Great Plains region, low Nitrogen Use Efficiency (NUE) and nitrate leaching under irrigated and 
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dry land crop production systems have contributed to significant groundwater degradation.  The 

United States Geological Survey (USGS) estimates that about thirty percent of residential wells 

in North Dakota contain NO3-N at levels of 14 mg/L (Nolan et al., 1998).   

 

1.2. Nitrate removal technologies 

Nitrate removal from water bodies is difficult but active research continues in developing 

various physicochemical and biological processes to attenuate it.  The processes include 

distillation, reverse osmosis, ion exchange, biofilm-electrode reactor, electro-dialysis, and 

treatments that focus on biological methods (Clifford and Liu, 1993; Dhab, 1987; Dries et al., 

1988; Lin et al., 2011; Park et al., 2006; Van Der Hoek et al., 1988; Wang and Qu, 2003).  

Biological methods of remediation are usually known as bioremediation.       

1.2.1. Bioremediation  

Bioremediation can be defined as the process whereby pollutants and organic wastes are 

biologically remediated or degraded under controlled conditions to an innocuous state, or to 

levels below concentration limits established by regulatory authorities (Davis et al., 1994; Glazer 

and Nikaido, 1995; Holden and Firestone, 1997; Mallavarapu et al., 2011).  Because 

bioremediation uses relatively low-cost, low-technology, which generally have a high public 

acceptance and can often be carried out on site, it is becoming a popular technique of choice for 

the remediation of polluted soils and groundwater (Vidali, 2001).  Bioremediation uses various 

natural components including microbes in considerable amounts to clean the environment where 

factors such as temperature, nutrients and oxygen are adequate for bioremediation to occur 
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accurately and properly (Allard and Neilson, 1997; Margesin, 2000; Sparrow and Sparrow, 

1988).   

Microorganisms have shown tremendous success at remediation of aquifers that have 

become contaminated, yet much more work still needs to be done (Caterina et al., 2010; La 

Mantia et al., 2008).  Some of these microbes have been responsible for engulfing harmful 

pollutants such as, gasoline, chlorinated solvents and oil that have been introduced into the 

environment (Holliger et al., 1993; Melanie and Joseph, 1996).  Metal reducing bacteria in single 

well push-pull experiments have effectively reduced nitrate concentrations from groundwater 

(North et al., 2004).  Denitrifying bacteria have been efficacious in attenuation of nitrates in 

enhanced in-situ biological denitrification (EISBD) (Calderer et al., 2010).   

Denitrifying microorganisms can use nitrate as a terminal electron acceptor for 

respiration.  There are about 45 genera of bacteria and fungi which can reduce nitrate 

dissimilatively to nitrite (Payne, 1973).  This reduction of nitrate to nitrite does not result in a 

loss of fixed inorganic nitrogen.  Of interest are the denitrifying bacteria that are capable of 

reducing nitrate to the gaseous forms of molecular nitrogen (N2) and nitrous oxide (N2O), which 

may be easily lost to a surrounding ecosystem (NRC, 1993).  Facultative denitrifying 

microorganisms in the absence of oxygen replace aerobic respiration with anaerobic respiration 

which means that oxygen is replaced by an alternative electron acceptor such as nitrate (Sabina, 

2002; Kluber and Conrad, 1998).   

1.2.2. Bioremediation techniques  

Depending on the degree of saturation and aeration of an area, different techniques of 

bioremediation are employed to clean variety of pollutants introduced into the environment.  In 
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the case of in situ remediation, microorganisms are applied to soil and groundwater at the site 

with minimal disturbance whereas ex situ techniques are those that are applied to either 

excavated soil or pumped groundwater (Lens et al., 2005; Mathur et al., 2011; Vidali, 2001).   

One of the most common in situ treatment techniques, bioventing, involves supplying air 

and nutrients through wells to contaminated soil to stimulate the indigenous bacteria (Lynch and 

Moffat, 2005; USEPA, 2006; Vidali, 2001).  Evans and Trute (2006) used gaseous electron 

donor injection technology (GEDIT), an anaerobic variation of petroleum hydrocarbon 

bioventing, to stimulate in situ biodegradation of groundwater nitrate and perchlorate.  

Biosparging (which involves injection of air under pressure below the water table to 

increase oxygen concentrations to enhance aerobic degradation of contaminants such as nitrates) 

and bioaugmentation are other in situ techniques of bioremediation which can also be used for 

nitrate attenuation on site (Dobson et al., 2004; USEPA, 2006; Vidali, 2001).  Desired rates of 

bioremediation depend on the effective oxygen diffusion rates.  Thus in situ bioremediation 

depends on the depth of the soil and can be treated effectively up to a certain depth (Dobson et 

al., 2004; Lynch and Moffat, 2005; Maliyekkal et al., 2004; Vidali, 2001).   

There are two types of ex situ bioremediation processes, the slurry phase and the solid 

phase (Lens et al., 2005; Mathur et al., 2011; USEPA, 2006; Vidali, 2001).  The slurry phase 

involves combining water and the contaminated soil.  After combining them both, they are 

further degraded in a bioreactor.  The solid phase involves placing the contaminated soil in 

nutrient rich oxygen and moist environment where decomposition occurs (USEPA, 1996).  

Bioremediation can also be affected by immobilizing microbes on a conservative matrix or in a 

biofilm (Flemming, 1995). 
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1.2.3. Biofilms  

Biofilms can be defined as a collection of microbial cells in nature that adhere onto 

surfaces (Sutherland, 2001).  They can occur in almost every moist environment where flow of 

sufficient nutrient is available and where surface attachment can be achieved.  Biofilms are 

generally formed by many species of bacteria, fungi, algae and protozoa (Liang et al., 2011; 

Singh et al., 2006; Sutherland, 2001).  They can also be formed by single species of bacteria 

(Costerton et al., 1994; Liang et al., 2011; Mary and O'toole, 2000).  Approximately 97% of the 

biofilm matrix is either water, which is bound to the capsules of microbial cells, or solvent, the 

physical properties of which (such as viscosity) are determined by the solutes dissolved in it 

(Singh et al., 2006).  Biofilm formation can be described as a complex multifactorial process 

because the microorganisms whether species of bacteria, fungi, algae or protozoa, grow on 

different surfaces producing extra cellular polymers (Singh et al., 2006; Sutherland, 2001).  They 

are known to affect other compounds because of the physiological responses that they exhibit 

during water, inorganic and organic solute absorption that prove to be beneficial especially for 

remediation practices (Flemming, 1995).  Biofilm-mediated bioremediation provides a safer and 

proficient alternative to bioremediation with microorganisms because cells in the biofilms have 

better chance of adaptation and survival as they are protected within the matrix (Singh et al., 

2006).  A biofilm can exist in a hyperfiltration system as a component of an amalgamated 

membrane system (Flemming and Schaule, 1988; Schneider et al., 2005). 

 



 

 

7 

 

1.3. Hyperfiltration systems 

 Hyperfiltration membranes have been used for both desalination as well as industrial 

water production practices (Baltasar and Lourdes, 2012; Malaeb and Ayoub, 2011; Wiesner and 

Aptel, 1996).  Hyperfiltration has been a highly effective process in the removal of organic and 

inorganic compounds from water bodies using natural and synthetic membranes (Huang et al., 

1998).  Hyperfiltration is a process in which the applications of hydraulic gradient results in a 

solute concentration increase on the high pressure side of the membrane and in a more dilute 

solution issuing out on the downstream side (Fritz, 1986; Fritz and Eady, 1985; Fritz and Marine, 

1983; Fritz and Whitworth, 1994; Oduor and Whitworth, 2005).  When the applied hydraulic 

pressure gradient across the membrane, ΔP, exceeds the osmotic pressure gradient (Δπ), 

hyperfiltration occurs (Fritz, 1986).  This phenomenon is possible due to inherent membrane 

imperfections stemming from unbalanced surficial charges on the clay (Oduor et al., 2006).  

Further, micron sized platelets with preferential orientation through compaction, and attendant 

small pores arising from compaction aid in providing sufficient conditions for chemical osmosis, 

thermo osmosis, and electro osmosis (Engelhardt and Gaida, 1963; McKelvey and Milne, 1960; 

Oduor et al., 2006; Young and Low, 1965).  Hyperfiltration process relies specifically on 

maintaining sufficient flux rates for the membranes.  The long term flux decline may contribute 

to membrane fouling brought about as a result of a combination of factors like influent rejected 

by (i) type of membrane, (ii) soluble inorganic compounds, (iii) colloidal or particulate matter, or 

even by (iv) the attachment and growth of microorganisms on the membrane surface also called 

foulant (Speth et al., 2000).  The foulant layer including biofilms are capable of creating compact 

cakes or film layer which serves as an extra barrier for filtration purposes (Gabelich et al., 2002; 

Speth et al., 2000).  In hyperfiltration some synthetic membranes have a great variety of bacteria 
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that they can harbor, for example, Mycobacterium spp., Flavobacterium spp., and Pseudomonas 

spp. (Schneider et al., 2005).  

1.3.1. Theory 

To analyze any solute depletion by a biofilm, an amalgamated membrane approach is 

required.  Such amalgamated membranes can be comprised of compacted Na-montmorillonite 

clay with an immobilized biofilm.  For simplicity, considering that the biofilm cements itself on 

the surface of the clay platelets then the whole system can be considered as an integral unit.  A 

disturbance (unbalanced surficial charge, attendant small pores etc.) in the integral system will 

result in significant attenuation of the first mobile ions creating a pseudo-equilibrium or non-

excited state (Oduor et al., 2009).  Diffusive flux can be adequately defined by Fick’s first law 

since the variation of the flux depends on distance and the concentration gradient varies with 

time (Semprini et al., 1990).  When the solution is advected through the membrane, the solute 

builds up at the high-pressure side and the concentration changes with time is a function of the 

advective solution flux (Jv), the diffusion coefficient of the solute (D), and the position of interest 

(x) within the high-pressure interface where x = 0 (Fritz and Marine, 1983; Fritz and Whitworth, 

1994).  This modified advective–diffusive differential equation can be expressed as (for example 

Fritz and Marine, 1983; Fritz and Whitworth, 1994; Kedem and Katchalsky, 1958):  
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where R is the retardation factor which is a function of concentration per unit area (Monod’s 

concentration, 
C

DD

D

c C
CK

C
r


 max

,

 where microbial biofilm is present (Kim and Corapcioglu, 

1997)).  In the Monod’s equation, CD denotes the contaminant mass concentration in the aqueous 

phase, µmax is the maximum specific growth rate achievable when KD << CD, and KD is the 

Monod half-saturation constant, which is the value of the concentration of the substrate where 

the specific growth rate has half of its maximum value.  For uniform water content, 

0
x

xC  conditions with an insignificantly invariant flux of dissolved anion of 

concentration C0 adjacent to the dimensionless matrix and an initial concentration of dissolved 

anion, Ci the approximate solution for the Eq. (1) can be (Anar et al., 2012):  
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where Rmf is a dimensionless microbial retardation factor.  This factor can be evaluated as a 

function of concentration per unit area (C/A), total mass of the microbes (Mm), diffusion 

coefficient of the  solutes (D), and solution advective flux (Jv); that is,  JDMACFR mmf ,,, ( 

Anar et al., 2012).  Solute concentration adjacent to the amalgamated membrane on the influent 

side, C0, is usually higher than the influent concentration, Ci, and C0 can be determined by using 

Dirichlet or Type 1 boundary conditions (Oduor and Whitworth, 2004):    
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Diffusion in porous media occurs less rapidly than that in the free solution because of the 

tortuosity effects (Marshall, 1948; Wyllie, 1948).  Thus the term effective diffusion coefficient is 

used for porous media and is usually represented by D* (Marshall, 1948).  This effective 

diffusion coefficient can be defined by the relation D* = wD, where w is the tortuosity 

coefficient, a unitless constant determined empirically from laboratory experiments (Marshall, 

1948).  Tortuosity coefficient typically ranges between 0.01 and 0.5 (Freeze and Cherry, 1979).  

The value of the tortuosity coefficient depends on the sediment type and the coarser the 

sediments the higher the tortuosity coefficient and vice versa (Freeze and Cherry, 1979). 

To model the time varying effluent concentration, Equation (1) can be solved considering 

the boundary conditions C(0,0) = Ci, C (x,t) = Ce(t) when x = x and 0




x

C

x

 (Oduor and 

Whitworth, 2004): 

 

 

      

































































tJ

D

D

xJ
-C-CC

v

v
tite 2,0

8
11

2

Δ
exp1  (4) 

                       

According to the principle of mass conservation, the rate at which mass density increases 

at any point in the system must be equal to the rate at which matter flows toward that point (Fritz 

and Whitworth, 1994; Fritz and Marine, 1983; Oduor and Whitworth, 2005).  For a system 

containing n solutes (Ogata and Banks, 1961; Oduor and Whitworth, 2004): 
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where ΔP is the transmembrane pressure, Lp is the hydraulic permeability of a membrane, and σi 

is the reflection coefficient or membrane efficiency for solute i,    ee CCCC  00  (Fritz 

and Marine, 1983).  The theoretical osmotic pressure existing across the membrane as generated 

by solute i is denoted by ΔΠi and is calculated from Van’t Hoff equation (Alexander, 1990; 

Benzel and Graf, 1984; Bernstein, 1960; Fritz and Eady, 1985; Fritz and Marine, 1983; Fritz and 

Whitworth, 1994; Kemper, 1960; Kharaka and Smalley, 1976; Marshall, 1948; Mckelvey and 

Milne, 1962; Whitworth and Fritz, 1994; Wyllie, 1948).  For most dilute organic solutions, the 

osmotic pressure tends to go to zero unless an ionic solute component is a part of the 

transformation byproduct (Fritz and Marine, 1983).  RT is the total resistance due to membrane 

and adsorbed solutes on the surface of the membrane. For most of the ionic solutes, RT = 1 (Anar 

et al., 2012).  But for solutes that react with membrane matrix, this value is less than 1 and for 

solutes that are greatly sorbed, the value is greater than 1 (Anar et al., 2012).  

Because of the rejection of solute at the high-pressure side of the membrane, 

concentrations of the solutes increase adjacent to the membrane (Fig 1.1), and this buildup of 

solute concentration immediately adjacent to the membrane on the influent side is denoted by C0.  

This concentration is higher than the influent concentration, Ci.  The effluent concentration, Ce, 

increases with time until steady-state is attained after time, t, and at this point Ce ≈ Ci.  The 

distance x = Δx is equivalent to membrane thickness in cm.  The length x = δ corresponds to the 

distance where there is no effect of concentration buildup on the influent side.  C0 also gives rise 
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to a back diffusive flux, xCDJ d  , on the influent side (Alexander, 1990; Benzel and 

Graf, 1984; Fritz and Eady, 1985; Fritz and Marine, 1983; Fritz and Whitworth, 1994).  The 

solution flux, Jv exits through the membrane whereas, Js = CxJv, where Cx denotes the 

concentration at a distance x from the membrane, and Js is the solute advection toward the 

membrane by hydraulic forces (Oduor et al., 2006).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass balance across the membrane can be determined considering a closed system (Fritz 

and Eady, 1985; Fritz and Marine, 1983; Fritz and Whitworth, 1994; Oduor et al., 2006).  If we 

consider the efficiency of the system less than 100% as typical of geomembranes (Alexander, 

1990; Fritz and Eady, 1985; Fritz and Marine, 1983; Fritz and Whitworth, 1994; Whitworth and 

Fritz, 1994) then: 
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Fig 1.1 Illustration of concentration profile layer (from Oduor et al., 2006). 
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If δ is the thickness of the boundary layer cm, then applying the conditions of, Cx = Co 

(mM) at x = 0 and Cx = Ci at x = δ (cm), in steady state, integration of Equation (6) gives a 

relation for mass transfer (Fritz and Marine, 1983; Oduor et al., 2005): 
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where sq  (cm·s
-1

) is the mass transfer coefficient for molecular diffusive process and can be 

derived from  Dqs  , where, D (cm
2
·s

-1
) is the effective diffusion coefficient.  Equation (7) is 

known as the ‘film-model’ relationship (Oduor et al., 2009).   

 

Determination of effective diffusion coefficient in the presence of a biofilm 

Biofilms can act as cements or glues to bind clay platelets (Boley and Overcamp, 1998; 

Cheshire et al., 1983; Hozalski and Bouwer, 1998; Payne, 1988; Tisdall and Oades, 1982).  

Interactions between montmorillonite and biofilm will affect the cation exchange capacity and 

viscosity and hence the effectiveness of montmorillonite as a membrane (Anar et al., 2012).  To 

take the presence of microbial populations into account a solute transport equation can be applied 

based on the change in viscosity and effluent concentration especially for anaerobic degradation 

(Chambon et al., 2010).  For describing transport of solutes in the presence of a biofilm, the 

basic advection-diffusion transport equation (Eq. 1) needs to be modified.  If we consider that 

there is no biotransformation for the initial phase of solute transport, then (Clapp et al., 1999; 
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Domenico and Schwartz, 1998; Fetter, 1988; Haws and Rao, 1994; Olesen et al., 2001; Salvage, 

1998; Yeh et al., 1998): 
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the Rmf coefficient is evaluated as a function of porosity, η, θ Henry’s constant KH (cm
3
 

montmorillonite water per cm3־ 
montmorillonite air), and the linear partitioning coefficient 

between the biofilm and the solute, KmD (cm
3
 solution g

-1
 biofilm) (Anar et al., 2012; Olesen et 

al., 2001):  
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In this case, the total effective diffusion coefficient can be calculated from the relation (Anar et 

al., 2012): 
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where Dm and Ds, are substrate and solute effective diffusion coefficients in the microbial 

biofilm and membrane media respectively.  Rmf and Rs are microbial and membrane retardation 

factors.  
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1.4.  Hypothesis 

 Methanobrevibacter ruminantium can be effective in reducing NO3
-
 in influent solution 

hyperfiltrated through compacted 80% glass beads and 20% Na-montmorillonite clay. 

 

1.5. Objectives 

The objective of the research was to assess the efficacy of immobilized Methanobrevibacter 

ruminantium in attenuating nitrate.  

 

1.6. Scope 

 The study concentrated on utilization of compacted clay and glass beads in the presence 

of nitrate contaminated water and a particular strain of bacteria.  The examination was based on 

quantitative data collected over a period of two years, 2010 to 2012. 

 

1.7. Organization of thesis 

 This thesis presents the findings of the study carried to see the effectiveness of the 

bacterial strain in reducing nitrate level concentrations in wastewater.  This document begins 

with an introduction which is Chapter 1, and literature review in Chapter 2.  These two are 

followed by a methodology section adopted for the experiment in Chapter 3.  Results are 

presented and discussed in Chapter 4.  Chapter 5 contains the study findings in the form of a 

conclusion.  References and appendices are also included following Chapter 5. 
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CHAPTER 2. LITERATURE REVIEW 

 

This chapter addresses four sections: 1) Clay and clay minerals 2) Interactions between 

bacteria and clay soils, 3) Methanogenic bacteria in bioremediation, and 4) Membrane bioreactor 

and isolation. 

 

2.1. Clay and clay minerals 

Clay minerals are hydrous aluminosilicates and are the finest fraction of the inorganic 

component of soils (Carter et al., 1986; Zhang, 2010).  Clay minerals vary in their particle size, 

chemical composition, surface charge properties, cation exchange capacity, and water retention 

properties (Carter et al., 1986).  The structure of clays consists of tetrahedron and octahedron 

sheets (Birkeland, 1999).  The geometric arrangement of the particular cations and anions 

namely silicon, aluminum, magnesium, iron oxygen and hydroxide respectively make these two 

types of structure (Fig 2.1).  The principal clay minerals found in soils are members of the 

kaolinite, montmorillonite, and illite groups (Birkeland, 1999).  The difference between clay and 

clay mineral is that clays are made of one type of mineral whereas clay minerals are made of 

more than just one type of minerals (Bergaya and Lagaly, 2006).   

2.1.1. Smectite 

The smectite group of clay mineral consists of a large variety of minerals having a 2:1 

geometric layer structure (Birkeland, 1999).  There are three known forms of smectites found to 

exist in soils namely Montmorillonite, Beidellite and Nontronite (Birkeland, 1999). Na-

montmorillonite is a mono-cationic form of smectites where the Na
+
 ions form of 
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montmorillonite varies the amounts of interlayer water and has a high cation exchange capacity: 

and therefore high surface charges (Guichet, 2008).  The cation exchange capacity is defined as 

the ability to absorb cations nutrients or the total number of positive charges absorbed at a given 

pH (Favre et al., 2006; Stucki et al., 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Interactions between clay and bacteria  

Clay minerals, organic matter and microorganisms are closely associated and interact in 

various environmental processes in soils (Bollag, 2008; Filip, 1973).  These interactions are 

especially important in areas like the sediment-water interface and the soil rhizosphere where 

microbial activities are intense and low-molecular weight biochemicals are abundant (Bollag, 

2008). 
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Fig 2.1 Structure of montmorillonite (redrawn from Schmidt et al., 2005). 
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In his studies, Filip (1973) confirmed the significance of clay minerals as a factor 

influencing the biochemical activity of soil microorganisms.  The soil microflora is influenced 

directly by the effect of clays on the microbial cells, and indirectly, by their effect on the 

environment.  The direct effects are projected into fundamental processes of the biogenic 

element cycle, including humification processes.  Filip (1973) also mentioned that character and 

mechanism of the effect depend on the microorganism species, quantity and quality of the 

mineral sorbents present in the soil and on other ecological factors.  

Microbial activities play significant role in bioremediation (Lin et al., 2011; Park et al., 

2005; Vasiliadou et al., 2007).  Formation of biofilms as a result of bacterial colonization shows 

astounding effects not only on bacteria itself as a newly formed colony but it also greatly alters 

the matrix or surfaces where they are attached (Bishop, 2007; Kim et al., 2002; Prakash et al., 

2003).  Because of their diversity and abundance within the environment, bacteria tend to be a 

highly regarded candidate for bioremediation (Flemming, 1995; Kim et al., 2002; Prakash et al., 

2003).  Due to the relatively small size of the bacteria and taking into account its high surface 

area in relation to volume, it can be concluded that these two features determine the fate of 

contaminants that are interacting and present along with the bacteria in the soil (Filip, 1973).  

Bacteria, as suggested by Korber et al. (1995) are almost always found attached onto surfaces.  

Understanding the principle existing between the microbe and soil interaction requires the 

thorough examination of the microbe while it is still attached onto the clay’s surface (Filip, 

1973).  Scanning electron microscopes (SEM) (Rogers et al, 1998) and atomic force microscopy 

(AFM) (Grantham and Dove, 1996) are quite common techniques used to examine the microbial-

soil interaction.   
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The activity of molecular nitrogen fixing microorganisms is likewise influenced by clay 

minerals (Filip, 1973).  Non-symbiotic microorganisms which fix nitrogen under anaerobic 

conditions obtain the necessary energy by fermentation of carbohydrates by a process which is 

influenced by the sorbents (Gupta and Roper, 2010).  The metabolism of aerobic nitrogen fixers 

have long been known to be influenced by mineral colloids and nitrogen fixation depends 

quantitatively on the type of clay mineral and physical and chemical properties of the soil (Gupta 

and Roper, 2010).  In agreement with this it was found that the colloid particles of 

montmorillonite, which increase the total active surface of the culture, influenced the fixation 

process more than coarser particles (Filip, 1973).  Macura and Pavel (1959) when added bacteria 

from azotobacter genus to montmorillonite, observed that the amount of nitrogen fixed per 

utilized glucose unit increased, as well the absolute amount of nitrogen compared with the 

control.  The addition of sorbents to sand cultures of clover inoculated with a rhizobe culture 

stimulated nodulation and nitrogen fixation (Filip, 1973; Turner, 1955). 

 

2.3. Methanogenic bacteria in bioremediation 

Methanogenic bacteria belong to the domain of Archaea, and fall within the kingdom 

Euryarchaeota (Woese et al., 1990).  These obligate anaerobes can unambiguously be 

differentiated from other microorganisms since they all can produce methane as a major 

catabolic product (Bergey, 1994).  Methanogens from ruminants have also the distinction of 

increasing atmospheric methane, a greenhouse gas; cattle typically lose 6 % of ingested energy 

as methane (Johnson and Johnson, 1995).  A number of methanogens have been isolated from 

ruminants, but only a few have been consistently found in high numbers (Stewart et al., 1997).  It 
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is likely that major species of rumen methanogens are yet to be identified (Raskin et al., 1994; 

Wolin et al., 1997).  The most common species of methanogens that have been isolated from the 

rumen are strains of Methanobrevibacter, Methanomicrobium, Methanobacterium, and 

Methanosarcina (Wolin et al., 1997).  

Though methanogens are metabolically restricted, they exhibit extreme habitat diversity.  

Species have been isolated from virtually every habitat in which anaerobic biodegradation of 

organic compounds occurs, including freshwater and marine sediments, digestive and intestinal 

tracts of animals, and anaerobic waste digesters (William et al., 1987).  They exist in different 

shapes, sizes, forms, and physiologically can be represented by extremely thermophilic, 

moderately thermophilic, and many mesophilic isolates (William et al., 1987).  Strictly anaerobic 

methanogenic bacteria derive their energy from conversion of simple substrates such as H2-CO2, 

formate, acetate, and methanol to methane (Daniels et al., 1984; Negash et al., 1990).  They are 

also known to grow in areas where electron acceptors, for example, O2, NO3
-
, Fe

3+
 and SO4

2-
 are 

limited (Jones et al., 1987).  These bacteria are very sensitive to changes within their immediate 

environment and perform well within a pH range of 6.0 to 8.0 (Balch and Wolfe, 1976). 

Methanobrevibacter ruminantium was proposed as a new species in a methanogenic group 

by Smith and Hungate (1958).  They are short, gram-positive coccobacilli.  All isolates can use 

H2 and CO2 as substrates for growth and methanogenesis.  They use formate poorly, and do not 

use acetate, methanol, and trimethylamine as substrates (Miller et al., 1986).  This activity will 

be lost unless strictly anaerobic conditions are maintained throughout the isolation and 

incubation procedures. 
3
H2, but not 

3
H2O, was readily incorporated into methane (Frank et al., 

1979). 
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The cell envelope of M. ruminantium has a distinctive triple-layered appearance (Zeikus, 

1977).  The cell wall consists of an inner electron-dense layer, closely adjoined to the plasma 

membrane, followed by a thicker, more electron-transparent middle layer, and a rough, irregular 

outer layer (Miller et al., 1986; Zeikus, 1977).  Cells of M. ruminantium appear to be undergoing 

constant cell division; before one cross wall is completed, a second division is initiated (Zeikus, 

1977).  Cells are nonmotile to poorly motile with an optimal growth range of 37 to 39° C. DNA 

base composition range can be expected to include 27.5 to 32 mol% G + C. M. ruminantium 

(Smith and Hungate, 1958).  Balch and Wolfe (1958) designated the type species for the genus 

Methanobrevibacter, as it was the first species characterized (Balch et al., 1979). 

Nitrate can replace carbon dioxide as an electron acceptor with the generation of another 

reduced product - in this case, ammonia, i.e. nitrate is reduced to nitrite and then to ammonia 

(Leng, 2008; Van Nevel and Demeyer, 1996).  Bacteria that reduce nitrate to ammonia are more 

active in the rumen when substantial amounts of nitrate have been included in the diet for 

extended periods (Leng, 2008).  Ammonia is usually generated from degradation of dietary 

protein or by supplementation with urea (Leng, 2008).   

 

2.4. Membrane bioreactors and isolation 

A number of experiments have been performed involving biofilm aiming at attenuation of 

nitrates (Lin et al. 2011; North et al. 2004; Park et al. 2006; Park et al. 2005; Vasiliadou et al. 

2007).  Lin et al. (2011) investigated the effectiveness of various rumen microbial fractions in 

reducing nitrates and assessed the effect of nitrate on in vitro fermentation characteristics.  Using 
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both physical and chemical methods they differentiated the rumen microbial population into 

Whole Rumen Fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu) and ran an incubation 

studies for 24 h.  During incubation they observed that WRF, Pr and Ba fractions had an ability 

to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF 

fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate 

disappearance.  Methane (CH4) production was highest in the WRF fraction and the Pr fraction 

had the highest prevailing H2 concentration (p<0.05) and acetate to propionate ratio (p<0.05).  

The Pr fraction as well as the Ba fraction appears to have important roles in nitrate reduction.   

Figure 2.2 (from Lin et al. 2011) below depicts the nitrate depletion and nitrite accumulation for 

6, 12 and 24 h in vitro incubation by different ruminal microbes fractions from cattle not adapted 

to exogenous dietary nitrate. 

In their studies North et al. (2004) demonstrated that metal-reducing microorganisms can 

effectively promote the precipitation and removal of nitrate from contaminated groundwater.  

Stimulating microbial communities in the acidic subsurface by pH neutralization and adding 

electron donor to wells, they conducted single-well push-pull tests at a number of treated sites 

and found that nitrate, Fe(III), and uranium were extensively reduced and electron donors 

(glucose, ethanol) were consumed.  Their examination of sediment chemistry in cores sampled 

immediately adjacent to treated wells 3.5 months after treatment showed that sediment pH 

increased substantially (by 1 to 2 pH units) while nitrate was largely depleted.  They observed a 

large diversity of 16S rRNA gene sequences in the subsurface sediments, including species from 

the α, β, δ, and ϒ subdivisions of the class Proteobacteria, as well as low and high-G+C gram-

positive species.  Following in situ biostimulation of microbial communities within contaminated 

sediments, sequences related to previously cultured metal-reducing δ-Proteobacteria increased 
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from 5% to nearly 40% of the clone libraries (Fig 2.3).  During the later stages of successive 

push-pull treatment, utilization of electron acceptors and the electron donor occurred 

simultaneously in a parallel, linear relationship (North et al. 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The progress of biological phenol and nitrate removal in batch assays of mixed bacteria 

culture were examined by Vasiliadou (Vasiliadou et al. 2007).  They aimed to study the 

performance of the culture under aerobic conditions for biological phenol and nitrate removal in 

synthetic wastewater containing phenol and nitrates at various concentrations.  They observed 

maximal removal rates of 1.07 mg NO3
-
-N l

-1
 h

-1
 for feed concentrations 20 mg NO3

-
-N l

-1
 in a 

Time (Hour)

0 5 10 15 20

N
O

3
-N

 C
o

n
c
e
n
tr

a
ti
o

n
 (

m
m

o
l/
l)

0

1

2

3

4

5

6

7

WRF

Protozoa

Bacteria

Fungi

 

Fig 2.2 The concentration of nitrate and nitrite in ruminal microbe 

fractions at 6, 12 and 24 h in vitro incubation. Solid line represents 

nitrate concentration during incubation periods; concentration of nitrite 

is shown as a short dashed line on the right y-axis; WRF (■), whole 

ruminal fluid; Pr (▲), protozoa; Ba (●), bacteria; Fu (♦), fungi (redrawn 

from Lin et al., 2011). 



 

 

24 

 

draw-fill experiment (Fig 2.4).  The rates of biological nitrate removal were found to be inhibited 

beyond 40 mg NO3--N l-1.  Vasiliadou et al. (2007) also developed a kinetic model and 

determined its kinetic parameters.  Their proposed model is capable of describing accurately 

enough, cellular growth, nitrate and nitrite utilization, in the presence of various concentrations 

of nitrate (20–100mg NO3--N l-1). 

 

 

 

 

 

 

 

 

 

 

 

Some researchers also used electrode in bioremediation techniques as direct electron 

donor to the microorganisms to reduce nitrates.  For example, Park et al., 2006 investigated 

nitrate reduction using an electrode as a direct electron donor in a biofilm-electrode reactor to 

treat an aqueous solution containing high concentration of nitrate.  In the biofilm-electrode 

reactor, nitrate was reduced in the absence of organic substances by accepting electrons from the 

electrode.  As nitrate concentration decreased, oxidation-reduction potential (ORP) gradually 

decreased from −80 to −260mV.  From the biofilm electrode, they detected 10 bands out of 

Fig 2.3 Rates of nitrate reduction in contaminated well FB34 

(redrawn from North et al., 2004). 
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which 4 bands (EB4, EB6, EB7, and EB10) were dominant.  In gene analysis of 16S rDNA, the 

researchers observed that the major populations are α-proteobacteria, β-proteobacteria, ϒ-

proteobacteria and flavobacteria. 

 

 

 

 

 

 

 

 

In their experiment, Park et al, (2006) observed that 70 mg of NO3
-
-N l

-1
 was rapidly 

reduced to nitrogen with consumption of electrons from the electrode (Fig 2.5).  The pH 

increased slightly to 7.4 as the nitrate reduction proceeded.  The dissimilatory reduction of NO3
-
 

to N2 produces a strong base.  The release of alkalinity occurs when nitrite (NO2
−)

 is reduced to 

nitric oxide (NO) resulting in an increase in pH in this system. 

In order to estimate the effect of initial concentration on nitrate reduction rate, they varied 

initial nitrate concentration from 20 to 492 mgNO3--N l-1 (Fig 2.6).  As the initial nitrate 

concentration increased, the nitrate reduction rate increased and nitrite was accumulated during 

nitrate reduction.  However, the nitrite accumulated in the medium did not affect the nitrate 

reduction rate. 
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Fig 2.4 Nitrate-, nitrite-nitrogen concentration vs. time for the draw-fill experiments: 

(a) 10mg NO3
-
-N l

-1 
and (b) 20mg NO3

-
-N l

-1
 (redrawn from Vasiliadou et al., 2007). 
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Biofilm-electrode reactor (BER) is a reactor which employs autotrophic denitrifying 

microorganisms immobilized on the surface of the cathode (Gregory et al., 2004; Park et al., 

2005; Park et al., 2006).  In the BER, hydrogen produced from electrolysis of water can be used 

as an electron donor.  However, Gregory et al. (2004) reported that the hydrogen production rate 

from the electrolysis of water was 6×10
−7

 mmol h
−1

, which is equivalent to a current of 2.6×10
−5

 

mA with a sterile electrode after a period of flushing with N2/CO2. This rate of hydrogen 

production was 10,000-fold slower than the average rate of current consumption by nitrate-

reducing enrichments.  Park et al. (2006) reported that the maximum nitrate reduction rate to 

nitrogen gas under the condition of 200mA of current was 434.78 mg NO3
-
 −N l

−1
 h

−1
.  For 

reduced nitrate of 434.78 mg NO3
-
 −N needed 2.16×10

−5
 mol h

−1
 (Fig 2.6).  But, at an applied 

current of 200 mA, the electrode produced hydrogen at a maximal rate of 1.38×10
−7

 mol h
−1

.  

This rate of electrochemical hydrogen production was 100-fold lower than the rates of nitrate 
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Fig 2.5 Biological nitrate reduction using electrons from cathode in a 

biofilm electrode reactor. The electric current was maintained at 200 

mA. Temperature was maintained at 30°C (redrawn from Park et al., 

2006). 
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reduction.  These results demonstrated that the enrichment culture reduced nitrates by using the 

electron donor from the electrode. 

 

 

 

  

 

 

  

 

 

 

 

Park et al., (2005) performed a series of experiments in which nitrate was reduced by 

using electrodes as direct electron donors in a biofilm-electrode reactor (Fig 2.7.) that showed 

that 70 mg NO3 -N/l was rapidly reduced to nitrogen with consumption of electrical current.  The 

nitrate was actually reduced when the micro-organisms consumed electrons from the electrodes- 

in the absence of organic substances. They concluded that the nitrate was reduced as a result of 

using electrons from the cathode once organic substances were not present.  For example, 

experimental results proved that 25 mg NO3 -N/l was reduced to 5mg NO3 -N/l in 10 minutes.  
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Fig 2.6 Biological nitrate reduction using electrons from cathode in a 

biofilm-electrode reactor (redrawn from Park et al., 2006). 
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Fig 2.7 Biological nitrate reduction using electrons from cathode in a bio-film-

electrode reactor (redrawn from Park et al., 2005). 
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CHAPTER 3. METHODOLOGY 

 

This chapter is divided into four sections: 1) Methanobrevibacter ruminantium growth, 2) 

simulated wastewater, 3) experimental method, and 4) chemical analysis. 

 

3.1. Methanobrevibacter ruminantium growth 

The Methanobrevibacter ruminantium was provided by the RIKEN BRC through the 

National Bio-Resource Project of the MEXT, Japan.  The strain was grown in a nitrate mineral 

salt medium with 0.1% sterile methanol following the procedure provided by RIKEN BRC 

(Appendix A, page 86).  The medium as supplied by RIKEN BRC was prepared by dissolving 

1.0 g MgSO4.7H2O, 0.20 g CaCl2.6H2O, 2.0 ml chelated iron solution, 1.0 g KNO3,  0.5 ml trace 

element solution,  0.272 g KH2PO4 ,  0.717 g Na2HPO4.12H2O, and 12.5 g purified agar in 1 liter 

of deionized water.  After adjusting the pH to 6.8 the solution was autoclaved at 121
0 

C for 15 

minutes.  1.0 ml of filter-sterilized methanol was added to prepare the growth medium. Chelated 

iron solution was prepared by adding 0.5 g of Ferric (III) chloride, 0.2 g EDTA, sodium salt, 0.3 

ml HCl (concentrated) into 100 ml of deionized water.  Trace element solution was prepared by 

dissolving 500.0 mg of EDTA, 200.0 mg of FeSO4.7H2O, 10.0 mg ZnSO4.7H2O, 3.0 mg 

MnCl2.4H2O, 20.0 mg H3BO3, 20.0 mg CoCl2.6H2O, 1.0 mg CaCl2.2H2O, 2.0 mg NiCl2.6H2O, 

and 3.0 mg Na2MoO4.2H2O in 1.0 liter deionized water.  

 Methanobrevibacter ruminantium strains were then incubated at 37°C for 48-72 hours in 

an anaerobic chamber (Whitley Workstation DG 250) with an anaerobic gas mixture of 80% 

Nitrogen, 10% Carbon-dioxide and 10% Hydrogen using the Balch and Wolfe method (Balch 



 

 

30 

 

and Wolfe, 1976).  The bacteria along with the growth medium were then transferred to the 

experimental cell inside the workstation area of the anaerobic chamber (Fig 3.1). 

 

 

 

 

 

 

 

 

 

3.1.1. SEM of Methanobrevibacter ruminantium bacteria 

 Bacteria samples on moist clay surface were treated by applying 2.5% glutaraldehyde in 

sodium phosphate buffer (pH 7.4, Tousimis, Rockville MD, USA) with a pipette (Mussati et al., 

2005).  A portion of about 1 cm
2
 of the clay on the filter-paper substrate was cut out with a razor 

blade and allowed to air dry at room temperature overnight.  The dried section was adhered to a 

cylindrical aluminum mount with silver paste.  A conductive gold-palladium layer was applied to 

the surface using a sputter coater (SCD 030, Balzers, Liechtenstein).  Specimens were observed 

Fig 3.1 Bacterial transfer to the cell 

inside anaerobic chamber. 
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and imaged at 15 kV with a JEOL JSM-6490LV scanning electron microscope (JEOL USA, 

Peabody MA). 

 

3.2. Simulated wastewater 

0.055 g Sodium nitrate (Alfa Aesar, analytic grade 98%) salt was added to 2 L DI water 

and dissolved thoroughly. The nitrate solution was then degassed using the Schlenk Flask 

method (Fig 3.2).  One end of the Schlenk flask was connected to the nitrate solution reservoir 

and the other end was connected to a vacuum pump with plastic tubing.  Degassing was then 

done at an interval of 10 minutes until no bubbles were observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Experimental method 

Two grams of Wyoming (Crook County) bentonite, whose X-ray diffraction indicated as 

Na-montmorillonite, and 8 g of glass beads (Ferro Corporation, Sample ID 2332.5) were mixed 

together with 50 ml of deionized water and stirred for half an hour to prevent flocculation.  The 

 
Fig 3.2 Degassing nitrate solution using Schlenk Flask. 
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mixture was poured into an acrylic tube (6.0″ in length) that was held in place by aluminum rods 

and custom made plastic fittings with one end closed by filter paper, one 0.2 micron and one 0.1 

micron Milipore
®
 Nylon membrane (Fig 3.3).  The top plastic fitting had 3 pairs of electrodes 

(4.5″, 5.0″ and 5.5″ of length) to determine the conductivity inside the cell at three different 

depths (Fig 3.4).  These electrodes were coated with 1/1000ths Teflon
®
 film (PCI #425013, 

Precision Coatings Inc., St. Paul, Minnesota, USA) for corrosion resistance with an exposed 

conductive tip of 0.5″.  Conductivity inside the experimental cell was measured using a Keithley 

Picoammeter (Model no 6485).  The end caps were fitted with Swagelok
®
 stainless-steel fittings 

for influent and effluent intake and flow through, respectively.  The influent line was further 

connected to a Swagelok
®

 gage (0– 500 psi) with one end attached to a Mighty Mini® HPLC 

pump (runs at a fixed pressure of 500 psi) and solution delivery module (Fig 3.5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Fig 3.3 Acrylic tube and plastic fittings. 
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After the entire compaction process, the deionized water was replaced by a nitrate 

solution.  The nitrate solution was then hyperfiltrated through both control and main experiment 

setups.  For the controls, NaNO3 solution was hyperfiltrated for 18 days until a steady state was 

attained.  The effluent was periodically collected and the solution flux was determined at each 

sample collection time.  The pump had a secondary pressure gage with auto-off settings for 

selective pressure settings and a flow meter that was calibrated in ml/min.  Solution delivery was 

accomplished through stainless steel tubing from Swagelok® that could withstand fluid 

pressures of more than 500 psi.  The clay was compacted by setting the pump flow rate to 3 

ml/min at 500 psi.  At the end of 12 hours, the flow rate was reduced to 1.5 ml/min with same 

pump setting of 500 psi.  After the compaction, the pump flow setting was further reduced to a 

flow rate value of 0.1 ml/min at 500 psi.  The picture of the complete experimental setup is 

shown in Figure 3.6 and a schematic diagram of the setup is given in Figure 3.7. 

 

 

Fig 3.4 Top plastic fittings with 

electrodes. 

 

Fig 3.5 Mighty mini pump. 
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Fig 3.6 Complete experimental setup. 

 

Fig 3.7 Schematic diagram of the experimental setup. 
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For the bacterial system, M. ruminantium bacteria along with the growth medium were 

injected into the experimental cells in suspension inside the anaerobic chamber.  The bacterial 

components later became inoculated onto the clay membrane.  Degassed nitrate solutions were 

then added to the system and hyperfiltrated through the biomembrane.  Effluent samples were 

then collected at different time intervals for 24 days (13 days for repeated experiment) until a 

steady state was attained.  In the initial run, the pump stopped working several times because of 

the back pressure generated on the reservoir tank, and the stop time intervals were unaccounted.  

The samples were collected in 125 ml glass bottles and their contents weighed.  The effluent 

weight was determined, collection time noted, and temperature values recorded in ºC.  The 

pressure setting recorded by the pump and pressure gage was also noted.  The samples collected 

were then stored in a refrigerator for further chemical analysis.  After the sampling was 

completed, the membrane was extracted in order to measure membrane thickness and for taking 

SEM images.   

 

3.4. Chemical analysis 

The chemical analysis involved testing Ultra-high purity water, deionized water, and 

various parts per million standard concentrations of NaNO3 along with the effluent samples.  

This was accomplished using a Dionex Ion Chromatograph 2000 (ICS 2000) System.  The ICS 

2000 system requires initial calibration, and thereafter priming of the pump for 15 to 20 minutes 

followed by the creation of a program, method, and sequence setup which involves particular 

settings for the analysis of the samples.  The ICS 2000 system has an EluGen KOH cartridge of 

which the created eluent concentration was set to 20.0 mM KOH (lower than norm value), an 
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operating temperature of 30° C, an injection volume of 20 μl and an anion atlas electrolytic 

suppressor that detects the analytes.  The samples were all individually transferred to 5 ml vials 

with filter caps up to their respective fill lines and placed into cassettes, holding six vials each.  

Filter caps were used to prevent inadvertent evaporation, contamination, and spillage prior to 

analysis.  Samples were automatically injected into the ICS2000 (Fig 3.8) from the AS40 

autosampler based on a programed sequence.  The first three samples in the analysis were buffers 

of MilliQ water (Ultrahigh purity water), which were followed by three vials containing 

deionized water.  Ultrahigh purity water was used: (a) to flush out detrital ions in the ICS 2000 

and (b) as a buffer since the first few samples usually drift.  Subsequent vials included four 

standards consisting of sodium nitrate solutions, and 16 – 20 effluent samples.  All the samples 

were loaded automatically and injected through an AS40 autosampler.  Ultrahigh purity helium 

gas was used to stabilize the system background pressure.  All samples were analyzed in 

triplicate.  Nitrate peak specification window was set ± 0.535 minutes, and the peak ranged 

between 9.715 minutes and 10.785 minutes (Cheshire et al., 1983). 

  

 

Fig 3.8 Dionex ICS 2000 Ion Chromatograph. 
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CHAPTER 4. RESULTS AND DISCUSSIONS 

 

This chapter includes the following sections: 1) SEM images of Methanobrevibacter 

ruminantium and glass beads-clay mixture, and 2) Solution flux and attenuation of nitrate. 

 

4.1. SEM Images of Methanobrevibacter ruminantium and glass beads-clay mixture 

Figure 4.1 shows the SEM image of the bacteria while Figures 4.2 and 4.3 show the SEM 

images of the glass beads and glass beads-clay mixture, respectively.  The shape of the bacteria 

in SEM image is found to be little bit distorted because of the air drying method used. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 4.1 SEM image of Methanobrevibacter ruminantium bacteria. 
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 Fig 4.2 SEM image of glass beads used. 

 

 Fig 4.3 SEM image of glass beads-Na montmorillonite mixture. 
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A biofilm of Methanobrevibacter ruminantium on the glass beads-clay surface is shown 

in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Solution flux and attenuation of nitrate 

Variation of the solution flux, Jv, with time, t, for the control system is depicted in Figure 

4.5.  The solution flux, Jv, variation with time, t, for bacterial system is presented in Figure 4.6.  

Time variation was measured as cumulative time passed after each successive sample was 

collected.  The characteristic decay-curve variation is typical of a membrane system with initial 

rapid decline state followed by quasi-steady and steady-state variations.  For the control system, 

the initial flux value of the blank experiment was Jv = 1.455×10
-6

 m/s which is higher than the 

experimental Jv value.  At steady state the value of solution flux decreased to 0.065×10
-6

 m/s.  

 

 Fig 4.4 SEM image of the biofilm on glass beads-Na montmorrilonite 

surface. 
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The initial flux value for the bacterial system was Jv = 1.598×10
-7

 m/s and at onset of 

steady state the value decreased to 0.115×10
-7

 m/s.  This indicates that the presence of biofilm 

reduced the solution flux through the membrane.  The lower steady-state values might be the 

result of increased osmotic pressure with significant solute retentions, development of biofilm, 

and possible fouling which led to retardation of nitrates passing through the compacted glass 

beads-Na montmorillonite bio-membrane. 

The concentrations of the solution after being filtrated through compacted glass beads-

clay-bacteria and glass beads-clay (control) is depicted in Figure 4.7(a).  The glass-beads and 

Na-montmorillonite mixture (control) showed minimal membrane properties and effluent nitrate 

concentrations were found to be very close to the reservoir nitrate concentrations.   
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Fig 4.5 Solute flux variation with time for control. 
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When filtered through glass-beads and Na-montmorillonite, influent nitrate concentration 

of 3.105×10
-4

 moles/L was reduced to 2.826×10
-4

 moles/L, which is around 8.99 % reduction.  

Saindon and Whitworth (2006) investigated the membrane properties of five different mixtures 

of clay and glass beads at low compaction pressure and found that the higher the percentage of 

glass beads, the lower the membrane properties.  They observed a reflection coefficient of 0.07 

using a mixture of 12 % clay and 88 % glass beads.  The presence of Methanobrevibacter 

ruminantium played a significant role in reducing nitrate concentrations of the reservoir solution 

filtered through the system.  For the first run with the bacteria, after the 11th day of the 

experiment effluent nitrate concentration reached as low as 2.50 × 10-7 moles/L, which is about 

99.9 % reduction in the concentrations (Fig 4.7 (a) and 4.8 (a)).   
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Fig 4.6 Solute flux variation with time for bacterial system. 
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Fig 4.7 (a) Effluent nitrate concentrations filtered through the various 

system, (b) values for repeated experiment with the bacteria. 
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When the experiment was repeated, 


3NO effluent concentration reached as low as 1.03 × 

10
-5

 moles/L after the 4
th

 day of the experiment, which is around 96% reduction in influent 

nitrate concentration (Fig 4.7 (b) and 4.8 (b)).  The control system showed a maximal value of 

9% nitrate reduction (Fig 4.7 (a)), which indicates that, the nitrate reduction in the bacterial 

system results can probably be attributed to the presence of the biofilm.  For the first set of 

experiment, after around 72 hours the rate of nitrate reduction slows down and showed a steady 

state reduction of nitrate (Fig 4.8 (a)).  After the 11
th

 day, the effluent nitrate concentration again 

started to increase although the effluent nitrate concentrations were below the influent nitrate 

concentration throughout the experiment.  Initially the effluent nitrate concentrations showed a 

decreasing trend.  This might be because of the development of the biofilm.  Methanobrevibacter 

ruminantium usually takes 2-3 days to appear after incubation depending on the number of 

colonies and energy sources (Miller et al., 1986). 

Methanogenic bacteria are capable of utilizing nitrates as an alternative energy source 

and could potentially replace urea in diets to provide nitrogen for microbial protein production 

and growth (Belay et al., 1990; Guo et al., 2009; Leng, 2008).  In a different experimental setup, 

Guo et al. (2009) observed that NO3-N disappeared to background level and was not detectable 

to microbial cells after 24 hours of incubation.  

After some time the effluent nitrate concentrations started to increase.  This might be due 

to bacterial depletion.  The bacteria might have started depleting due to (a) water level decrease 

in the reservoir which possibly increased infusion of dissolved oxygen into the feed solution, and 

(b) an increase in pressure gradient across the membrane that might have affected the microbial 

biophysical integrity. 
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Fig 4.8 (a) Percent nitrate reduction with time for bacterial systems, (b) 

Percent nitrate reduction for the repeated experiment. 
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The results of the experiments indicate that the Methanobrevibacter ruminantium is 

capable of attenuating nitrates from the simulated wastewater though the mechanism of nitrate 

depletion in the experiment with bacteria is not well understood. But the chromatographs for the 

bacterial system showed both nitrate and nitrite peaks (see Appendix C).  It is worthwhile to note 

that various studies have indicated that biofilms constantly change in composition, thus may 

create variables which may include gradients of organic nutrients and inorganic materials such as 

oxygen, nitrogen and phosphates that are pertinent for many biological processes (Zheng and 

Bennett, 2002).  Other nitrate reduction studies with other strains of bacteria were successful 

because those bacteria used nitrates in their anaerobic respiration processes (Casey et al., 1998; 

Kalinowski et al., 2002). 

Conductivity inside the cell was measured at three different depths (4.5″, 5.0″ and 5.5″) 

using three pairs of probes.  The distance between the tip of the probes and the surface of the 

membrane were 0.35, 0.85 and 1.35 inches.  The conductivity values at these depths for the 

control system are depicted in Figure 4.9.  For this system, higher conductivity values were 

observed for the probes farthest from the membrane surface and lower values for the closest.  

This might be because of the fact that, the probes farthest from the surface of the membrane 

covers more area and volume hence more ions of solution than that for probes closest to the 

surface. The conductivity values for the bacterial system are presented in Figure 4.10.  The 

values for the bacterial system are much lower than those of the control system.  This is because 

of the less ionic activity in the bacterial system resulting from the microbial utilization of the 

nitrate ion.  For the bacterial system, higher conductivity values were observed at the middle 

depth.  The conductivity values observed for the systems did not follow the conceptual trends.  



 

 

46 

 

More research needs to be carried out to confirm the trends and reasons behind the observed 

trends. 

The surface-fit robust plane feature of the Table Curve® 3D was used to ideally fit the 

outliers to a plane.  This robust model was used to lessen the impact of outliers upon the overall 

surface fits.  This model uses a simple plane equation with four minimization criteria available 

within the Table Curve® 3D’s non-linear fitting algorithm.  These models were then ranked 

based on their R2 value.  The difference between the best fits of the bacterial system and control 

system will be useful in finding out the microbial retardation factor.  Comparisons between 

control and bacterial system for all the four equations based on rank are shown in Figure 4.11, 

4.12, 4.13 and 4.14 respectively.     
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Fig 4.9 Conductivity at different depths inside the cell for control systems. 
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Fig 4.10 (a) Conductivity at different depths inside the cell for bacterial 

systems (b) Values for the repeated experiment. 
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Fig 4.11 Comparison between the systems using surface-fit robust plane rank 1. 
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Fig 4.12 Comparison between the systems using surface-fit robust plane rank 2. 
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Fig 4.13 Comparison between the systems using surface-fit robust plane rank 3. 
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Fig 4.14 Comparison between the systems using surface-fit robust plane rank 4. 
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CHAPTER 5. CONCLUSIONS 

 

Groundwater contamination by nitrates is a major issue worldwide.  The continuous 

development and expansion of the agricultural sector presents remarkable challenges to agencies 

dealing with environmental issues that are tasked with implementing more stringent policies to 

ensure balance between anthropogenic impacts on water quality.  It is imperative that future 

work continue to evaluate remediation techniques that would enhance remediation processes and 

minimize amount or reduce toxicity of pollutants in the environment.  Bioremediation offers one 

possible solution in minimizing nitrate pollution.  Studies have indicated that microbes are 

capable of consuming various natural and artificial pollutants.  

This study harnessed biostimulated remediation of simulated wastewater.  An 

experimental analysis was executed in an attempt to determine if Methanobrevibacter 

ruminantium was capable of reducing nitrate levels in waste water.  The experimental setup 

involved the assemblage of a static cell encased in an acrylic tube held together by aluminium 

fittings.  The Methanobrevibacter ruminantium bacterium was then introduced into separate 

experimental cells for analysis and these in turn ingested nitrates in the ambient simulated 

wastewater.  Microbial activity of Methanobrevibacter ruminantium played a significant role in 

the attenuation of nitrate.   

If we intend to model the effluent concentration and the evolution of the transient 

concentrations at a distance from the high pressure side of compacted montmorillonite, glass 

beads and Methanobrevibacter ruminantium membranes to a reasonable degree, the solution to 

advective–diffusive differential equation needs to be modified to factor in the microbial 

retardation. This factor will be helpful in providing the general correctness for the modified bio-



 

 

51 

 

membranes. The general trend difference observed between the conductivities of the control and 

microbial system might be useful in finding out the microbial retardation factor. A fouling 

correction may also need to be incorporated into the models. The development of models 

depends highly on accurate and representative diffusion coefficient values and constant 

temperature conditions.  

The experiment was successful in this laboratory setup; however, it is not yet 

conclusively known if such a bench-scale system could be applied in real-life scenarios. The 

probable applications of these models may be to provide an insight in defining the fate and 

transport of contaminants through barriers with high microbial activities under anaerobic 

conditions. 

There are a lot of research opportunities in this field.  Research work can be carried out to 

calculate the microbial retardation factor and then the developed microbial retardation factor can 

be applied to the ion transport in the presence of a biofilm.  Research work can also be carried 

out to find out the Concentration Profile Layer development on the high pressure side of the 

membrane using conductivity parameters.  In this experiment only one influent concentration 

value was used to gauge the effectiveness of M. ruminantium in attenuating nitrate.  In the future, 

research can be carried out to determine the effective range of concentrations M. ruminantium 

can reasonably attenuate.    
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Appendix Table 1: Calculation for Bacterial System 
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Appendix Table 2: Calculation for Control System 
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