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ABSTRACT

A number of methods are currently in use for attenuating nitrates from wastewater
with varying degrees of efficiency. Bioremediation using bacteria may be an efficient
and cost effective method. In an anaerobic bioremediation system, nitrate can replace
carbon dioxide as an electron acceptor and aids in nitrate attenuation by assimilatory
reduction. The purpose of this study was to investigate nitrate attenuation in a
hyperfiltration system using a pure culture of strictly anaerobic, facultative
Methanobrevibacter ruminantium bacteria. Filtration experiments were conducted using
amalgamated Na- montmorillonite clay-glass beads compacted at 500 psi differential
hydraulic pressure with or without a biofilm. A simulated agricultural wastewater of
3.105x10™ moles/L of NO3™ was bioremediated. The use of bacteria in attenuating

nitrates offers promising results on a bench-scale.
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CHAPTER 1. INTRODUCTION

This chapter addresses the following sections: 1) Nitrate pollution and its environmental
impacts, 2) Nitrate removal technologies, 3) Hyperfiltration systems, 4) Hypothesis, 5)

Objectives, 6) Scope and 7) Organization of thesis.

1.1.  Nitrate pollution and its environmental impacts

Nitrate pollution of water bodies around the world is a great environmental concern and
has a direct impact on the economic sustainability of many countries like the USA (Hudak, 2000;
Nolan et al., 1997), UK, Denmark, Belgium, France (Fried, 1991; Strebel et al., 1989), and India
(Agrawal et al., 1999). Groundwater contamination in farming and rural districts worldwide has
shown increasing levels of highly mobile nitrate nitrogen (NO3—N) at concentrations higher than
the US Environmental Protection Agency (EPA) and World Health Organization’s (WHO)
regulatory limits (World Health Organization, 2004). Groundwater nitrate pollution from
anthropogenic sources has increased significantly within the last ten years due to an increase of
agricultural activities giving rise to human health risks (Barbash and Roberts, 1996; Hirata et al.,
1992; National Research Council, 1993; Trauth & Xanthpopoulos, 1997; Westrick et al., 1984).
Previous studies have indicated that agricultural uses of nitrogenous fertilizer play a great role in
introducing nitrate into groundwater bodies (Fetter, 1999; Hudak, 1999). Elevated concentration
of nitrates in drinking water is detrimental to human health causing illnesses such as
methemoglobinemia (blue baby syndrome) in infants and stomach cancer in adults (Hajhamad

and Almasri, 2009; Mirvish, 1991; Winton et al., 1971). Apart from effects on human, nitrates



have also had an astounding effect on test animals causing heart and behavioral problems
(Shuval and Gruener, 1972). Even a nitrate concentration much lower than that of the maximum
contaminant level for drinking water contribute to increased rates of eutrophication in surface
waters (Cole 1983).

Sources of nitrates contamination of groundwater can be broadly categorized as point and
non-point sources. Non-point sources of NO3-N include agricultural application of nitrogenous
fertilizers and manure, leguminous crops, dissolved nitrogen in precipitation, irrigation return-
flows, and dry deposition (Leterme et al., 2006; Manassaram et al., 2006; Mattern et al., 2009;
Nolan and Stoner, 2006). Point sources of NOs-N include livestock and waste lagoons, spills
and septic systems. Cesspits can also a play major role in nitrate pollution (Hajhamad and
Almasri, 2009; Joosten et al., 1998; Mitchell et al., 2003; Stournaras, 1998; Tait et al., 2008;
Wolf et al., 2003).

The background levels of nitrates tend to generally increase due to several factors such
as: agricultural and refuse dump runoffs during high precipitation, low infiltration events for
surface water, high infiltration and low runoff events for groundwater, or even natural
cataclysmic events like faulting through a waste lagoon or sewer system (Liu et al., 2005;
Mattern et al., 2009; Mitchell et al., 2003; Stournaras, 1998; Tait et al., 2008; Wolf et al., 2003).
The increase in nitrate concentrations in groundwater worldwide has been attributed to a great
demand for nitrogenous fertilizers as well as domestic and industrial wastewater discharge
(Kross et al., 1993). In fact, most countries have reported having levels of nitrates above 50
mg/L of NOs-N (Billen and Garnier, 1999; Billen et al., 2001; Billen et al., 2005; Cinnirella et
al., 2005; Garnier et al., 2005; McLay et al., 2001; Vinten and Dunn, 2001). In the United States

Great Plains region, low Nitrogen Use Efficiency (NUE) and nitrate leaching under irrigated and
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dry land crop production systems have contributed to significant groundwater degradation. The
United States Geological Survey (USGS) estimates that about thirty percent of residential wells

in North Dakota contain NOs-N at levels of 14 mg/L (Nolan et al., 1998).

1.2.  Nitrate removal technologies

Nitrate removal from water bodies is difficult but active research continues in developing
various physicochemical and biological processes to attenuate it. The processes include
distillation, reverse osmosis, ion exchange, biofilm-electrode reactor, electro-dialysis, and
treatments that focus on biological methods (Clifford and Liu, 1993; Dhab, 1987; Dries et al.,
1988; Lin et al., 2011; Park et al., 2006; VVan Der Hoek et al., 1988; Wang and Qu, 2003).

Biological methods of remediation are usually known as bioremediation.

1.2.1. Bioremediation

Bioremediation can be defined as the process whereby pollutants and organic wastes are
biologically remediated or degraded under controlled conditions to an innocuous state, or to
levels below concentration limits established by regulatory authorities (Davis et al., 1994; Glazer
and Nikaido, 1995; Holden and Firestone, 1997; Mallavarapu et al., 2011). Because
bioremediation uses relatively low-cost, low-technology, which generally have a high public
acceptance and can often be carried out on site, it is becoming a popular technique of choice for
the remediation of polluted soils and groundwater (Vidali, 2001). Bioremediation uses various
natural components including microbes in considerable amounts to clean the environment where

factors such as temperature, nutrients and oxygen are adequate for bioremediation to occur



accurately and properly (Allard and Neilson, 1997; Margesin, 2000; Sparrow and Sparrow,

1988).

Microorganisms have shown tremendous success at remediation of aquifers that have
become contaminated, yet much more work still needs to be done (Caterina et al., 2010; La
Mantia et al., 2008). Some of these microbes have been responsible for engulfing harmful
pollutants such as, gasoline, chlorinated solvents and oil that have been introduced into the
environment (Holliger et al., 1993; Melanie and Joseph, 1996). Metal reducing bacteria in single
well push-pull experiments have effectively reduced nitrate concentrations from groundwater
(North et al., 2004). Denitrifying bacteria have been efficacious in attenuation of nitrates in
enhanced in-situ biological denitrification (EISBD) (Calderer et al., 2010).

Denitrifying microorganisms can use nitrate as a terminal electron acceptor for
respiration. There are about 45 genera of bacteria and fungi which can reduce nitrate
dissimilatively to nitrite (Payne, 1973). This reduction of nitrate to nitrite does not result in a
loss of fixed inorganic nitrogen. Of interest are the denitrifying bacteria that are capable of
reducing nitrate to the gaseous forms of molecular nitrogen (N) and nitrous oxide (N,O), which
may be easily lost to a surrounding ecosystem (NRC, 1993). Facultative denitrifying
microorganisms in the absence of oxygen replace aerobic respiration with anaerobic respiration
which means that oxygen is replaced by an alternative electron acceptor such as nitrate (Sabina,

2002; Kluber and Conrad, 1998).

1.2.2. Bioremediation techniques

Depending on the degree of saturation and aeration of an area, different techniques of

bioremediation are employed to clean variety of pollutants introduced into the environment. In
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the case of in situ remediation, microorganisms are applied to soil and groundwater at the site
with minimal disturbance whereas ex situ techniques are those that are applied to either
excavated soil or pumped groundwater (Lens et al., 2005; Mathur et al., 2011; Vidali, 2001).

One of the most common in situ treatment techniques, bioventing, involves supplying air
and nutrients through wells to contaminated soil to stimulate the indigenous bacteria (Lynch and
Moffat, 2005; USEPA, 2006; Vidali, 2001). Evans and Trute (2006) used gaseous electron
donor injection technology (GEDIT), an anaerobic variation of petroleum hydrocarbon
bioventing, to stimulate in situ biodegradation of groundwater nitrate and perchlorate.

Biosparging (which involves injection of air under pressure below the water table to
increase oxygen concentrations to enhance aerobic degradation of contaminants such as nitrates)
and bioaugmentation are other in situ techniques of bioremediation which can also be used for
nitrate attenuation on site (Dobson et al., 2004; USEPA, 2006; Vidali, 2001). Desired rates of
bioremediation depend on the effective oxygen diffusion rates. Thus in situ bioremediation
depends on the depth of the soil and can be treated effectively up to a certain depth (Dobson et
al., 2004; Lynch and Moffat, 2005; Maliyekkal et al., 2004; Vidali, 2001).

There are two types of ex situ bioremediation processes, the slurry phase and the solid
phase (Lens et al., 2005; Mathur et al., 2011; USEPA, 2006; Vidali, 2001). The slurry phase
involves combining water and the contaminated soil. After combining them both, they are
further degraded in a bioreactor. The solid phase involves placing the contaminated soil in
nutrient rich oxygen and moist environment where decomposition occurs (USEPA, 1996).
Bioremediation can also be affected by immobilizing microbes on a conservative matrix or in a

biofilm (Flemming, 1995).



1.2.3. Biofilms

Biofilms can be defined as a collection of microbial cells in nature that adhere onto
surfaces (Sutherland, 2001). They can occur in almost every moist environment where flow of
sufficient nutrient is available and where surface attachment can be achieved. Biofilms are
generally formed by many species of bacteria, fungi, algae and protozoa (Liang et al., 2011;
Singh et al., 2006; Sutherland, 2001). They can also be formed by single species of bacteria
(Costerton et al., 1994; Liang et al., 2011; Mary and O'toole, 2000). Approximately 97% of the
biofilm matrix is either water, which is bound to the capsules of microbial cells, or solvent, the
physical properties of which (such as viscosity) are determined by the solutes dissolved in it
(Singh et al., 2006). Biofilm formation can be described as a complex multifactorial process
because the microorganisms whether species of bacteria, fungi, algae or protozoa, grow on
different surfaces producing extra cellular polymers (Singh et al., 2006; Sutherland, 2001). They
are known to affect other compounds because of the physiological responses that they exhibit
during water, inorganic and organic solute absorption that prove to be beneficial especially for
remediation practices (Flemming, 1995). Biofilm-mediated bioremediation provides a safer and
proficient alternative to bioremediation with microorganisms because cells in the biofilms have
better chance of adaptation and survival as they are protected within the matrix (Singh et al.,
2006). A biofilm can exist in a hyperfiltration system as a component of an amalgamated

membrane system (Flemming and Schaule, 1988; Schneider et al., 2005).



1.3.  Hyperfiltration systems

Hyperfiltration membranes have been used for both desalination as well as industrial
water production practices (Baltasar and Lourdes, 2012; Malaeb and Ayoub, 2011; Wiesner and
Aptel, 1996). Hyperfiltration has been a highly effective process in the removal of organic and
inorganic compounds from water bodies using natural and synthetic membranes (Huang et al.,
1998). Hyperfiltration is a process in which the applications of hydraulic gradient results in a
solute concentration increase on the high pressure side of the membrane and in a more dilute
solution issuing out on the downstream side (Fritz, 1986; Fritz and Eady, 1985; Fritz and Marine,
1983; Fritz and Whitworth, 1994; Oduor and Whitworth, 2005). When the applied hydraulic
pressure gradient across the membrane, AP, exceeds the osmotic pressure gradient (Ax),
hyperfiltration occurs (Fritz, 1986). This phenomenon is possible due to inherent membrane
imperfections stemming from unbalanced surficial charges on the clay (Oduor et al., 2006).
Further, micron sized platelets with preferential orientation through compaction, and attendant
small pores arising from compaction aid in providing sufficient conditions for chemical osmosis,
thermo osmosis, and electro osmosis (Engelhardt and Gaida, 1963; McKelvey and Milne, 1960;
Oduor et al., 2006; Young and Low, 1965). Hyperfiltration process relies specifically on
maintaining sufficient flux rates for the membranes. The long term flux decline may contribute
to membrane fouling brought about as a result of a combination of factors like influent rejected
by (i) type of membrane, (ii) soluble inorganic compounds, (iii) colloidal or particulate matter, or
even by (iv) the attachment and growth of microorganisms on the membrane surface also called
foulant (Speth et al., 2000). The foulant layer including biofilms are capable of creating compact
cakes or film layer which serves as an extra barrier for filtration purposes (Gabelich et al., 2002;
Speth et al., 2000). In hyperfiltration some synthetic membranes have a great variety of bacteria
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that they can harbor, for example, Mycobacterium spp., Flavobacterium spp., and Pseudomonas

spp. (Schneider et al., 2005).

1.3.1. Theory

To analyze any solute depletion by a biofilm, an amalgamated membrane approach is
required. Such amalgamated membranes can be comprised of compacted Na-montmorillonite
clay with an immobilized biofilm. For simplicity, considering that the biofilm cements itself on
the surface of the clay platelets then the whole system can be considered as an integral unit. A
disturbance (unbalanced surficial charge, attendant small pores etc.) in the integral system will
result in significant attenuation of the first mobile ions creating a pseudo-equilibrium or non-
excited state (Oduor et al., 2009). Diffusive flux can be adequately defined by Fick’s first law
since the variation of the flux depends on distance and the concentration gradient varies with
time (Semprini et al., 1990). When the solution is advected through the membrane, the solute
builds up at the high-pressure side and the concentration changes with time is a function of the
advective solution flux (J,), the diffusion coefficient of the solute (D), and the position of interest
(x) within the high-pressure interface where x = 0 (Fritz and Marine, 1983; Fritz and Whitworth,
1994). This modified advective—diffusive differential equation can be expressed as (for example

Fritz and Marine, 1983; Fritz and Whitworth, 1994; Kedem and Katchalsky, 1958):
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where R is the retardation factor which is a function of concentration per unit area (Monod’s

concentration, r, = ﬁmﬁx—é C. Where microbial biofilm is present (Kim and Corapcioglu,
D + D

1997)). In the Monod’s equation, Cp denotes the contaminant mass concentration in the aqueous
phase, Umax IS the maximum specific growth rate achievable when Kp << Cp, and K is the
Monod half-saturation constant, which is the value of the concentration of the substrate where

the specific growth rate has half of its maximum value. For uniform water content,

6C/8X|X:w =0 conditions with an insignificantly invariant flux of dissolved anion of

concentration Cy adjacent to the dimensionless matrix and an initial concentration of dissolved

anion, C; the approximate solution for the Eq. (1) can be (Anar et al., 2012):

C —{CO_C‘} erfc Rug X =8 +erfc Rug X+ 3.1 +C (2)
072 2(DR 2 2(DR 12 !

where Ry is a dimensionless microbial retardation factor. This factor can be evaluated as a

function of concentration per unit area (C/A), total mass of the microbes (Mp,), diffusion
coefficient of the solutes (D), and solution advective flux (J,); thatis, R . = F(C/A,M_, D, J)(
Anar et al., 2012). Solute concentration adjacent to the amalgamated membrane on the influent

side, Cy, is usually higher than the influent concentration, C; and Cy can be determined by using

Dirichlet or Type 1 boundary conditions (Oduor and Whitworth, 2004):



C. for t=0

Co= [EH{H erf(JVth} +C, for t>0 @
2 4D

Diffusion in porous media occurs less rapidly than that in the free solution because of the

tortuosity effects (Marshall, 1948; Wyllie, 1948). Thus the term effective diffusion coefficient is
used for porous media and is usually represented by D* (Marshall, 1948). This effective
diffusion coefficient can be defined by the relation D* = wD, where w is the tortuosity
coefficient, a unitless constant determined empirically from laboratory experiments (Marshall,
1948). Tortuosity coefficient typically ranges between 0.01 and 0.5 (Freeze and Cherry, 1979).
The value of the tortuosity coefficient depends on the sediment type and the coarser the
sediments the higher the tortuosity coefficient and vice versa (Freeze and Cherry, 1979).

To model the time varying effluent concentration, Equation (1) can be solved considering

the boundary conditions Co0) = Ci, C (xy) = Cey When x = Ax and (1 " (Oduor and

OX

X=00

Whitworth, 2004):

C.)=Cr C(Ot{l- exp(‘]z"éxj(l— (1+ %m (4)

According to the principle of mass conservation, the rate at which mass density increases
at any point in the system must be equal to the rate at which matter flows toward that point (Fritz
and Whitworth, 1994; Fritz and Marine, 1983; Oduor and Whitworth, 2005). For a system

containing n solutes (Ogata and Banks, 1961; Oduor and Whitworth, 2004):
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where AP is the transmembrane pressure, L, is the hydraulic permeability of a membrane, and o;
is the reflection coefficient or membrane efficiency for solute i, o = (C, —C, )/(C, +C, ) (Fritz

and Marine, 1983). The theoretical osmotic pressure existing across the membrane as generated
by solute i is denoted by AIl; and is calculated from Van’t Hoff equation (Alexander, 1990;
Benzel and Graf, 1984; Bernstein, 1960; Fritz and Eady, 1985; Fritz and Marine, 1983; Fritz and
Whitworth, 1994; Kemper, 1960; Kharaka and Smalley, 1976; Marshall, 1948; Mckelvey and
Milne, 1962; Whitworth and Fritz, 1994; Wyllie, 1948). For most dilute organic solutions, the
osmotic pressure tends to go to zero unless an ionic solute component is a part of the
transformation byproduct (Fritz and Marine, 1983). Rt is the total resistance due to membrane
and adsorbed solutes on the surface of the membrane. For most of the ionic solutes, Rr =1 (Anar
et al., 2012). But for solutes that react with membrane matrix, this value is less than 1 and for
solutes that are greatly sorbed, the value is greater than 1 (Anar et al., 2012).

Because of the rejection of solute at the high-pressure side of the membrane,
concentrations of the solutes increase adjacent to the membrane (Fig 1.1), and this buildup of
solute concentration immediately adjacent to the membrane on the influent side is denoted by Co.
This concentration is higher than the influent concentration, C;. The effluent concentration, Ce,
increases with time until steady-state is attained after time, t, and at this point C. = Cj. The
distance x = Ax is equivalent to membrane thickness in cm. The length x = ¢ corresponds to the

distance where there is no effect of concentration buildup on the influent side. C, also gives rise
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to a back diffusive flux, J, =-D-0C/dx, on the influent side (Alexander, 1990; Benzel and
Graf, 1984; Fritz and Eady, 1985; Fritz and Marine, 1983; Fritz and Whitworth, 1994). The
solution flux, J, exits through the membrane whereas, Js = C,Jy,, where Cy denotes the
concentration at a distance x from the membrane, and Js is the solute advection toward the

membrane by hydraulic forces (Oduor et al., 2006).
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Fig 1.1 Hlustration of concentration profile layer (from Oduor et al., 2006).

Mass balance across the membrane can be determined considering a closed system (Fritz
and Eady, 1985; Fritz and Marine, 1983; Fritz and Whitworth, 1994; Oduor et al., 2006). If we
consider the efficiency of the system less than 100% as typical of geomembranes (Alexander,
1990; Fritz and Eady, 1985; Fritz and Marine, 1983; Fritz and Whitworth, 1994; Whitworth and

Fritz, 1994) then:

dC

cJ,+D-==CJ, (6)
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If 0 is the thickness of the boundary layer cm, then applying the conditions of, C, = C,
(mM) at x = 0 and Cx = Cj at x = ¢ (cm), in steady state, integration of Equation (6) gives a

relation for mass transfer (Fritz and Marine, 1983; Oduor et al., 2005):

C,-C,
g =Jvln{c e } )

0 e

where @, (cm-s™) is the mass transfer coefficient for molecular diffusive process and can be

derived fromQ, = (D/5), where, D (cm?-s™) is the effective diffusion coefficient. Equation (7) is

known as the ‘film-model’ relationship (Oduor et al., 2009).

Determination of effective diffusion coefficient in the presence of a biofilm

Biofilms can act as cements or glues to bind clay platelets (Boley and Overcamp, 1998;
Cheshire et al., 1983; Hozalski and Bouwer, 1998; Payne, 1988; Tisdall and Oades, 1982).
Interactions between montmorillonite and biofilm will affect the cation exchange capacity and
viscosity and hence the effectiveness of montmorillonite as a membrane (Anar et al., 2012). To
take the presence of microbial populations into account a solute transport equation can be applied
based on the change in viscosity and effluent concentration especially for anaerobic degradation
(Chambon et al., 2010). For describing transport of solutes in the presence of a biofilm, the
basic advection-diffusion transport equation (Eq. 1) needs to be modified. If we consider that

there is no biotransformation for the initial phase of solute transport, then (Clapp et al., 1999;
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Domenico and Schwartz, 1998; Fetter, 1988; Haws and Rao, 1994; Olesen et al., 2001; Salvage,

1998; Yeh et al., 1998):

GEL G I

the Ry coefficient is evaluated as a function of porosity, 5, @ Henry’s constant Ky (cm®
montmorillonite water per cm-> montmorillonite air), and the linear partitioning coefficient
between the biofilm and the solute, K (cm?® solution g™ biofilm) (Anar et al., 2012; Olesen et

al., 2001):

{2t

In this case, the total effective diffusion coefficient can be calculated from the relation (Anar et

al., 2012):

Dm DS
D:(mmfj+[nst (10)

where Dy, and Ds, are substrate and solute effective diffusion coefficients in the microbial
biofilm and membrane media respectively. Rnysand Rs are microbial and membrane retardation

factors.
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1.4. Hypothesis

Methanobrevibacter ruminantium can be effective in reducing NOs™ in influent solution

hyperfiltrated through compacted 80% glass beads and 20% Na-montmorillonite clay.

1.5.  Objectives

The objective of the research was to assess the efficacy of immobilized Methanobrevibacter

ruminantium in attenuating nitrate.

1.6. Scope

The study concentrated on utilization of compacted clay and glass beads in the presence
of nitrate contaminated water and a particular strain of bacteria. The examination was based on

quantitative data collected over a period of two years, 2010 to 2012.

1.7.  Organization of thesis

This thesis presents the findings of the study carried to see the effectiveness of the
bacterial strain in reducing nitrate level concentrations in wastewater. This document begins
with an introduction which is Chapter 1, and literature review in Chapter 2. These two are
followed by a methodology section adopted for the experiment in Chapter 3. Results are
presented and discussed in Chapter 4. Chapter 5 contains the study findings in the form of a

conclusion. References and appendices are also included following Chapter 5.
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CHAPTER 2. LITERATURE REVIEW

This chapter addresses four sections: 1) Clay and clay minerals 2) Interactions between
bacteria and clay soils, 3) Methanogenic bacteria in bioremediation, and 4) Membrane bioreactor

and isolation.

2.1. Clay and clay minerals

Clay minerals are hydrous aluminosilicates and are the finest fraction of the inorganic
component of soils (Carter et al., 1986; Zhang, 2010). Clay minerals vary in their particle size,
chemical composition, surface charge properties, cation exchange capacity, and water retention
properties (Carter et al., 1986). The structure of clays consists of tetrahedron and octahedron
sheets (Birkeland, 1999). The geometric arrangement of the particular cations and anions
namely silicon, aluminum, magnesium, iron oxygen and hydroxide respectively make these two
types of structure (Fig 2.1). The principal clay minerals found in soils are members of the
kaolinite, montmorillonite, and illite groups (Birkeland, 1999). The difference between clay and
clay mineral is that clays are made of one type of mineral whereas clay minerals are made of

more than just one type of minerals (Bergaya and Lagaly, 2006).

2.1.1. Smectite

The smectite group of clay mineral consists of a large variety of minerals having a 2:1
geometric layer structure (Birkeland, 1999). There are three known forms of smectites found to
exist in soils namely Montmorillonite, Beidellite and Nontronite (Birkeland, 1999). Na-

montmorillonite is a mono-cationic form of smectites where the Na* ions form of
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montmorillonite varies the amounts of interlayer water and has a high cation exchange capacity:
and therefore high surface charges (Guichet, 2008). The cation exchange capacity is defined as
the ability to absorb cations nutrients or the total number of positive charges absorbed at a given

pH (Favre et al., 2006; Stucki et al., 1997).
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Fig 2.1 Structure of montmorillonite (redrawn from Schmidt et al., 2005).

2.2.  Interactions between clay and bacteria

Clay minerals, organic matter and microorganisms are closely associated and interact in
various environmental processes in soils (Bollag, 2008; Filip, 1973). These interactions are
especially important in areas like the sediment-water interface and the soil rhizosphere where

microbial activities are intense and low-molecular weight biochemicals are abundant (Bollag,

2008).

17



In his studies, Filip (1973) confirmed the significance of clay minerals as a factor
influencing the biochemical activity of soil microorganisms. The soil microflora is influenced
directly by the effect of clays on the microbial cells, and indirectly, by their effect on the
environment. The direct effects are projected into fundamental processes of the biogenic
element cycle, including humification processes. Filip (1973) also mentioned that character and
mechanism of the effect depend on the microorganism species, quantity and quality of the

mineral sorbents present in the soil and on other ecological factors.

Microbial activities play significant role in bioremediation (Lin et al., 2011; Park et al.,
2005; Vasiliadou et al., 2007). Formation of biofilms as a result of bacterial colonization shows
astounding effects not only on bacteria itself as a newly formed colony but it also greatly alters
the matrix or surfaces where they are attached (Bishop, 2007; Kim et al., 2002; Prakash et al.,
2003). Because of their diversity and abundance within the environment, bacteria tend to be a
highly regarded candidate for bioremediation (Flemming, 1995; Kim et al., 2002; Prakash et al.,
2003). Due to the relatively small size of the bacteria and taking into account its high surface
area in relation to volume, it can be concluded that these two features determine the fate of
contaminants that are interacting and present along with the bacteria in the soil (Filip, 1973).
Bacteria, as suggested by Korber et al. (1995) are almost always found attached onto surfaces.
Understanding the principle existing between the microbe and soil interaction requires the
thorough examination of the microbe while it is still attached onto the clay’s surface (Filip,
1973). Scanning electron microscopes (SEM) (Rogers et al, 1998) and atomic force microscopy
(AFM) (Grantham and Dove, 1996) are quite common techniques used to examine the microbial-

soil interaction.
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The activity of molecular nitrogen fixing microorganisms is likewise influenced by clay
minerals (Filip, 1973). Non-symbiotic microorganisms which fix nitrogen under anaerobic
conditions obtain the necessary energy by fermentation of carbohydrates by a process which is
influenced by the sorbents (Gupta and Roper, 2010). The metabolism of aerobic nitrogen fixers
have long been known to be influenced by mineral colloids and nitrogen fixation depends
quantitatively on the type of clay mineral and physical and chemical properties of the soil (Gupta
and Roper, 2010). In agreement with this it was found that the colloid particles of
montmorillonite, which increase the total active surface of the culture, influenced the fixation
process more than coarser particles (Filip, 1973). Macura and Pavel (1959) when added bacteria
from azotobacter genus to montmorillonite, observed that the amount of nitrogen fixed per
utilized glucose unit increased, as well the absolute amount of nitrogen compared with the
control. The addition of sorbents to sand cultures of clover inoculated with a rhizobe culture

stimulated nodulation and nitrogen fixation (Filip, 1973; Turner, 1955).

2.3.  Methanogenic bacteria in bioremediation

Methanogenic bacteria belong to the domain of Archaea, and fall within the kingdom
Euryarchaeota (Woese et al., 1990). These obligate anaerobes can unambiguously be
differentiated from other microorganisms since they all can produce methane as a major
catabolic product (Bergey, 1994). Methanogens from ruminants have also the distinction of
increasing atmospheric methane, a greenhouse gas; cattle typically lose 6 % of ingested energy
as methane (Johnson and Johnson, 1995). A number of methanogens have been isolated from

ruminants, but only a few have been consistently found in high numbers (Stewart et al., 1997). It
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is likely that major species of rumen methanogens are yet to be identified (Raskin et al., 1994,
Wolin et al., 1997). The most common species of methanogens that have been isolated from the
rumen are strains of Methanobrevibacter, Methanomicrobium, Methanobacterium, and

Methanosarcina (Wolin et al., 1997).

Though methanogens are metabolically restricted, they exhibit extreme habitat diversity.
Species have been isolated from virtually every habitat in which anaerobic biodegradation of
organic compounds occurs, including freshwater and marine sediments, digestive and intestinal
tracts of animals, and anaerobic waste digesters (William et al., 1987). They exist in different
shapes, sizes, forms, and physiologically can be represented by extremely thermophilic,
moderately thermophilic, and many mesophilic isolates (William et al., 1987). Strictly anaerobic
methanogenic bacteria derive their energy from conversion of simple substrates such as H,-CO»,
formate, acetate, and methanol to methane (Daniels et al., 1984; Negash et al., 1990). They are
also known to grow in areas where electron acceptors, for example, O,, NO3', Fe*" and SO, are
limited (Jones et al., 1987). These bacteria are very sensitive to changes within their immediate

environment and perform well within a pH range of 6.0 to 8.0 (Balch and Wolfe, 1976).

Methanobrevibacter ruminantium was proposed as a new species in a methanogenic group
by Smith and Hungate (1958). They are short, gram-positive coccobacilli. All isolates can use
H, and CO; as substrates for growth and methanogenesis. They use formate poorly, and do not
use acetate, methanol, and trimethylamine as substrates (Miller et al., 1986). This activity will
be lost unless strictly anaerobic conditions are maintained throughout the isolation and
incubation procedures. *H,, but not *H,0, was readily incorporated into methane (Frank et al.,

1979).
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The cell envelope of M. ruminantium has a distinctive triple-layered appearance (Zeikus,
1977). The cell wall consists of an inner electron-dense layer, closely adjoined to the plasma
membrane, followed by a thicker, more electron-transparent middle layer, and a rough, irregular
outer layer (Miller et al., 1986; Zeikus, 1977). Cells of M. ruminantium appear to be undergoing
constant cell division; before one cross wall is completed, a second division is initiated (Zeikus,
1977). Cells are nonmotile to poorly motile with an optimal growth range of 37 to 39° C. DNA
base composition range can be expected to include 27.5 to 32 mol% G + C. M. ruminantium
(Smith and Hungate, 1958). Balch and Wolfe (1958) designated the type species for the genus

Methanobrevibacter, as it was the first species characterized (Balch et al., 1979).

Nitrate can replace carbon dioxide as an electron acceptor with the generation of another
reduced product - in this case, ammonia, i.e. nitrate is reduced to nitrite and then to ammonia
(Leng, 2008; Van Nevel and Demeyer, 1996). Bacteria that reduce nitrate to ammonia are more
active in the rumen when substantial amounts of nitrate have been included in the diet for
extended periods (Leng, 2008). Ammonia is usually generated from degradation of dietary

protein or by supplementation with urea (Leng, 2008).

2.4. Membrane bioreactors and isolation

A number of experiments have been performed involving biofilm aiming at attenuation of
nitrates (Lin et al. 2011; North et al. 2004; Park et al. 2006; Park et al. 2005; Vasiliadou et al.
2007). Linetal. (2011) investigated the effectiveness of various rumen microbial fractions in

reducing nitrates and assessed the effect of nitrate on in vitro fermentation characteristics. Using
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both physical and chemical methods they differentiated the rumen microbial population into
Whole Rumen Fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu) and ran an incubation
studies for 24 h. During incubation they observed that WRF, Pr and Ba fractions had an ability
to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF
fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate
disappearance. Methane (CH,4) production was highest in the WRF fraction and the Pr fraction
had the highest prevailing H, concentration (p<0.05) and acetate to propionate ratio (p<0.05).
The Pr fraction as well as the Ba fraction appears to have important roles in nitrate reduction.
Figure 2.2 (from Lin et al. 2011) below depicts the nitrate depletion and nitrite accumulation for
6, 12 and 24 h in vitro incubation by different ruminal microbes fractions from cattle not adapted
to exogenous dietary nitrate.

In their studies North et al. (2004) demonstrated that metal-reducing microorganisms can
effectively promote the precipitation and removal of nitrate from contaminated groundwater.
Stimulating microbial communities in the acidic subsurface by pH neutralization and adding
electron donor to wells, they conducted single-well push-pull tests at a number of treated sites
and found that nitrate, Fe(111), and uranium were extensively reduced and electron donors
(glucose, ethanol) were consumed. Their examination of sediment chemistry in cores sampled
immediately adjacent to treated wells 3.5 months after treatment showed that sediment pH
increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. They observed a
large diversity of 16S rRNA gene sequences in the subsurface sediments, including species from
the a, B, 6, and Y subdivisions of the class Proteobacteria, as well as low and high-G+C gram-
positive species. Following in situ biostimulation of microbial communities within contaminated

sediments, sequences related to previously cultured metal-reducing 3-Proteobacteria increased
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from 5% to nearly 40% of the clone libraries (Fig 2.3). During the later stages of successive
push-pull treatment, utilization of electron acceptors and the electron donor occurred

simultaneously in a parallel, linear relationship (North et al. 2004).
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Fig 2.2 The concentration of nitrate and nitrite in ruminal microbe
fractions at 6, 12 and 24 h in vitro incubation. Solid line represents
nitrate concentration during incubation periods; concentration of nitrite
is shown as a short dashed line on the right y-axis; WRF (m), whole
ruminal fluid; Pr (A), protozoa; Ba (e), bacteria; Fu (#), fungi (redrawn
from Lin et al., 2011).

The progress of biological phenol and nitrate removal in batch assays of mixed bacteria
culture were examined by Vasiliadou (Vasiliadou et al. 2007). They aimed to study the
performance of the culture under aerobic conditions for biological phenol and nitrate removal in
synthetic wastewater containing phenol and nitrates at various concentrations. They observed

maximal removal rates of 1.07 mg NO3-N I* h™* for feed concentrations 20 mg NOs-N 1" in a
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draw-fill experiment (Fig 2.4). The rates of biological nitrate removal were found to be inhibited
beyond 40 mg NO3--N I-1. Vasiliadou et al. (2007) also developed a kinetic model and
determined its kinetic parameters. Their proposed model is capable of describing accurately
enough, cellular growth, nitrate and nitrite utilization, in the presence of various concentrations

of nitrate (20-100mg NO3--N [-1).
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Fig 2.3 Rates of nitrate reduction in contaminated well FB34
(redrawn from North et al., 2004).

Some researchers also used electrode in bioremediation techniques as direct electron
donor to the microorganisms to reduce nitrates. For example, Park et al., 2006 investigated
nitrate reduction using an electrode as a direct electron donor in a biofilm-electrode reactor to
treat an aqueous solution containing high concentration of nitrate. In the biofilm-electrode
reactor, nitrate was reduced in the absence of organic substances by accepting electrons from the
electrode. As nitrate concentration decreased, oxidation-reduction potential (ORP) gradually

decreased from —80 to —260mV. From the biofilm electrode, they detected 10 bands out of
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which 4 bands (EB4, EB6, EB7, and EB10) were dominant. In gene analysis of 16S rDNA, the
researchers observed that the major populations are a-proteobacteria, 3-proteobacteria, Y-

proteobacteria and flavobacteria.
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Fig 2.4 Nitrate-, nitrite-nitrogen concentration vs. time for the draw-fill experiments:
(a) 10mg NO3™-N I and (b) 20mg NO3-N I™* (redrawn from Vasiliadou et al., 2007).

In their experiment, Park et al, (2006) observed that 70 mg of NOs™-N 1™ was rapidly
reduced to nitrogen with consumption of electrons from the electrode (Fig 2.5). The pH
increased slightly to 7.4 as the nitrate reduction proceeded. The dissimilatory reduction of NO3’
to N, produces a strong base. The release of alkalinity occurs when nitrite (NO, is reduced to
nitric oxide (NO) resulting in an increase in pH in this system.

In order to estimate the effect of initial concentration on nitrate reduction rate, they varied
initial nitrate concentration from 20 to 492 mgNO3--N I-1 (Fig 2.6). As the initial nitrate
concentration increased, the nitrate reduction rate increased and nitrite was accumulated during
nitrate reduction. However, the nitrite accumulated in the medium did not affect the nitrate

reduction rate.
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Fig 2.5 Biological nitrate reduction using electrons from cathode in a
biofilm electrode reactor. The electric current was maintained at 200
mA. Temperature was maintained at 30°C (redrawn from Park et al.,
2006).

Biofilm-electrode reactor (BER) is a reactor which employs autotrophic denitrifying
microorganisms immobilized on the surface of the cathode (Gregory et al., 2004; Park et al.,
2005; Park et al., 2006). In the BER, hydrogen produced from electrolysis of water can be used
as an electron donor. However, Gregory et al. (2004) reported that the hydrogen production rate
from the electrolysis of water was 6x10~" mmol h™, which is equivalent to a current of 2.6x10™
mA with a sterile electrode after a period of flushing with N,/CO,. This rate of hydrogen
production was 10,000-fold slower than the average rate of current consumption by nitrate-
reducing enrichments. Park et al. (2006) reported that the maximum nitrate reduction rate to
nitrogen gas under the condition of 200mA of current was 434.78 mg NOs —~N I'* h™*. For
reduced nitrate of 434.78 mg NOs” —N needed 2.16x10 > mol h™* (Fig 2.6). But, at an applied

current of 200 mA, the electrode produced hydrogen at a maximal rate of 1.38x10 " mol h™.

This rate of electrochemical hydrogen production was 100-fold lower than the rates of nitrate
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reduction. These results demonstrated that the enrichment culture reduced nitrates by using the

electron donor from the electrode.
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Fig 2.6 Biological nitrate reduction using electrons from cathode in a
biofilm-electrode reactor (redrawn from Park et al., 2006).

Park et al., (2005) performed a series of experiments in which nitrate was reduced by
using electrodes as direct electron donors in a biofilm-electrode reactor (Fig 2.7.) that showed
that 70 mg NO3-N/I was rapidly reduced to nitrogen with consumption of electrical current. The
nitrate was actually reduced when the micro-organisms consumed electrons from the electrodes-
in the absence of organic substances. They concluded that the nitrate was reduced as a result of
using electrons from the cathode once organic substances were not present. For example,

experimental results proved that 25 mg NO3 -N/I was reduced to 5mg NOj3 -N/I in 10 minutes.
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CHAPTER 3. METHODOLOGY

This chapter is divided into four sections: 1) Methanobrevibacter ruminantium growth, 2)

simulated wastewater, 3) experimental method, and 4) chemical analysis.

3.1.  Methanobrevibacter ruminantium growth

The Methanobrevibacter ruminantium was provided by the RIKEN BRC through the
National Bio-Resource Project of the MEXT, Japan. The strain was grown in a nitrate mineral
salt medium with 0.1% sterile methanol following the procedure provided by RIKEN BRC
(Appendix A, page 86). The medium as supplied by RIKEN BRC was prepared by dissolving
1.0 g MgS0Q,4.7H,0, 0.20 g CaCl,.6H,0, 2.0 ml chelated iron solution, 1.0 g KNO3, 0.5 ml trace
element solution, 0.272 g KH,PO,4, 0.717 g Na,HPO,4.12H,0, and 12.5 g purified agar in 1 liter
of deionized water. After adjusting the pH to 6.8 the solution was autoclaved at 121° C for 15
minutes. 1.0 ml of filter-sterilized methanol was added to prepare the growth medium. Chelated
iron solution was prepared by adding 0.5 g of Ferric (I11) chloride, 0.2 g EDTA, sodium salt, 0.3
ml HCI (concentrated) into 100 ml of deionized water. Trace element solution was prepared by
dissolving 500.0 mg of EDTA, 200.0 mg of FeSO,4.7H,0, 10.0 mg ZnSO,4.7H,0, 3.0 mg
MnCl,.4H,0, 20.0 mg H3BO3, 20.0 mg CoCl,.6H,0, 1.0 mg CaCl,.2H,0, 2.0 mg NiCl,.6H,0,

and 3.0 mg Na;Mo00,.2H,0 in 1.0 liter deionized water.

Methanobrevibacter ruminantium strains were then incubated at 37°C for 48-72 hours in
an anaerobic chamber (Whitley Workstation DG 250) with an anaerobic gas mixture of 80%

Nitrogen, 10% Carbon-dioxide and 10% Hydrogen using the Balch and Wolfe method (Balch
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and Wolfe, 1976). The bacteria along with the growth medium were then transferred to the

experimental cell inside the workstation area of the anaerobic chamber (Fig 3.1).

Fig 3.1 Bacterial transfer to the cell
inside anaerobic chamber.

3.1.1. SEM of Methanobrevibacter ruminantium bacteria

Bacteria samples on moist clay surface were treated by applying 2.5% glutaraldehyde in
sodium phosphate buffer (pH 7.4, Tousimis, Rockville MD, USA) with a pipette (Mussati et al.,
2005). A portion of about 1 cm? of the clay on the filter-paper substrate was cut out with a razor
blade and allowed to air dry at room temperature overnight. The dried section was adhered to a
cylindrical aluminum mount with silver paste. A conductive gold-palladium layer was applied to

the surface using a sputter coater (SCD 030, Balzers, Liechtenstein). Specimens were observed
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and imaged at 15 kV with a JEOL JSM-6490LV scanning electron microscope (JEOL USA,

Peabody MA).

3.2.  Simulated wastewater

0.055 g Sodium nitrate (Alfa Aesar, analytic grade 98%) salt was added to 2 L DI water
and dissolved thoroughly. The nitrate solution was then degassed using the Schlenk Flask
method (Fig 3.2). One end of the Schlenk flask was connected to the nitrate solution reservoir
and the other end was connected to a vacuum pump with plastic tubing. Degassing was then

done at an interval of 10 minutes until no bubbles were observed.

Fig 3.2 Degassing nitrate solution using Schlenk Flask.

3.3.  Experimental method

Two grams of Wyoming (Crook County) bentonite, whose X-ray diffraction indicated as
Na-montmorillonite, and 8 g of glass beads (Ferro Corporation, Sample ID 2332.5) were mixed

together with 50 ml of deionized water and stirred for half an hour to prevent flocculation. The
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mixture was poured into an acrylic tube (6.0” in length) that was held in place by aluminum rods
and custom made plastic fittings with one end closed by filter paper, one 0.2 micron and one 0.1
micron Milipore® Nylon membrane (Fig 3.3). The top plastic fitting had 3 pairs of electrodes
(4.5",5.0" and 5.5” of length) to determine the conductivity inside the cell at three different
depths (Fig 3.4). These electrodes were coated with 1/1000ths Teflon® film (PCI #425013,
Precision Coatings Inc., St. Paul, Minnesota, USA) for corrosion resistance with an exposed
conductive tip of 0.5”. Conductivity inside the experimental cell was measured using a Keithley
Picoammeter (Model no 6485). The end caps were fitted with Swagelok® stainless-steel fittings
for influent and effluent intake and flow through, respectively. The influent line was further
connected to a Swagelok® gage (0— 500 psi) with one end attached to a Mighty Mini® HPLC

pump (runs at a fixed pressure of 500 psi) and solution delivery module (Fig 3.5).

Fig 3.3 Acrylic tube and plastic fittings.

32



Fig 3.4 Top plastic fittings with Fig 3.5 Mighty mini pump.
electrodes.

After the entire compaction process, the deionized water was replaced by a nitrate
solution. The nitrate solution was then hyperfiltrated through both control and main experiment
setups. For the controls, NaNOj3 solution was hyperfiltrated for 18 days until a steady state was
attained. The effluent was periodically collected and the solution flux was determined at each
sample collection time. The pump had a secondary pressure gage with auto-off settings for
selective pressure settings and a flow meter that was calibrated in ml/min. Solution delivery was
accomplished through stainless steel tubing from Swagelok® that could withstand fluid
pressures of more than 500 psi. The clay was compacted by setting the pump flow rate to 3
ml/min at 500 psi. At the end of 12 hours, the flow rate was reduced to 1.5 ml/min with same
pump setting of 500 psi. After the compaction, the pump flow setting was further reduced to a
flow rate value of 0.1 ml/min at 500 psi. The picture of the complete experimental setup is

shown in Figure 3.6 and a schematic diagram of the setup is given in Figure 3.7.

33



Fig 3.6 Complete experimental setup.
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Fig 3.7 Schematic diagram of the experimental setup.
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For the bacterial system, M. ruminantium bacteria along with the growth medium were
injected into the experimental cells in suspension inside the anaerobic chamber. The bacterial
components later became inoculated onto the clay membrane. Degassed nitrate solutions were
then added to the system and hyperfiltrated through the biomembrane. Effluent samples were
then collected at different time intervals for 24 days (13 days for repeated experiment) until a
steady state was attained. In the initial run, the pump stopped working several times because of
the back pressure generated on the reservoir tank, and the stop time intervals were unaccounted.
The samples were collected in 125 ml glass bottles and their contents weighed. The effluent
weight was determined, collection time noted, and temperature values recorded in °C. The
pressure setting recorded by the pump and pressure gage was also noted. The samples collected
were then stored in a refrigerator for further chemical analysis. After the sampling was
completed, the membrane was extracted in order to measure membrane thickness and for taking

SEM images.

3.4.  Chemical analysis

The chemical analysis involved testing Ultra-high purity water, deionized water, and
various parts per million standard concentrations of NaNOj3 along with the effluent samples.
This was accomplished using a Dionex lon Chromatograph 2000 (ICS 2000) System. The ICS
2000 system requires initial calibration, and thereafter priming of the pump for 15 to 20 minutes
followed by the creation of a program, method, and sequence setup which involves particular
settings for the analysis of the samples. The ICS 2000 system has an EluGen KOH cartridge of

which the created eluent concentration was set to 20.0 mM KOH (lower than norm value), an

35



operating temperature of 30° C, an injection volume of 20 ul and an anion atlas electrolytic
suppressor that detects the analytes. The samples were all individually transferred to 5 ml vials
with filter caps up to their respective fill lines and placed into cassettes, holding six vials each.
Filter caps were used to prevent inadvertent evaporation, contamination, and spillage prior to
analysis. Samples were automatically injected into the ICS2000 (Fig 3.8) from the AS40
autosampler based on a programed sequence. The first three samples in the analysis were buffers
of MilliQ water (Ultrahigh purity water), which were followed by three vials containing
deionized water. Ultrahigh purity water was used: (a) to flush out detrital ions in the ICS 2000
and (b) as a buffer since the first few samples usually drift. Subsequent vials included four
standards consisting of sodium nitrate solutions, and 16 — 20 effluent samples. All the samples
were loaded automatically and injected through an AS40 autosampler. Ultrahigh purity helium
gas was used to stabilize the system background pressure. All samples were analyzed in
triplicate. Nitrate peak specification window was set + 0.535 minutes, and the peak ranged

between 9.715 minutes and 10.785 minutes (Cheshire et al., 1983).

NsanNy

Fig 3.8 Dionex ICS 2000 lon Chromatograph.
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CHAPTER 4. RESULTS AND DISCUSSIONS

This chapter includes the following sections: 1) SEM images of Methanobrevibacter

ruminantium and glass beads-clay mixture, and 2) Solution flux and attenuation of nitrate.

4.1. SEM Images of Methanobrevibacter ruminantium and glass beads-clay mixture

Figure 4.1 shows the SEM image of the bacteria while Figures 4.2 and 4.3 show the SEM
images of the glass beads and glass beads-clay mixture, respectively. The shape of the bacteria

in SEM image is found to be little bit distorted because of the air drying method used.

it o
415KV ¢ X25,000  1um

Fig 4.1 SEM image of Methanobrevibacter ruminantium bacteria.
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Fig 4.3 SEM image of glass beads-Na montmorillonite mixture.
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A biofilm of Methanobrevibacter ruminantium on the glass beads-clay surface is shown

in Figure 4.4.

Fig 4.4 SEM image of the biofilm on glass beads-Na montmorrilonite
surface.

4.2.  Solution flux and attenuation of nitrate

Variation of the solution flux, J,, with time, t, for the control system is depicted in Figure
4.5. The solution flux, J,, variation with time, t, for bacterial system is presented in Figure 4.6.
Time variation was measured as cumulative time passed after each successive sample was
collected. The characteristic decay-curve variation is typical of a membrane system with initial
rapid decline state followed by quasi-steady and steady-state variations. For the control system,
the initial flux value of the blank experiment was J, = 1.455x10® m/s which is higher than the

experimental J, value. At steady state the value of solution flux decreased to 0.065x10® m/s.

39



1.6 [ LN AL LA AL AL AL L R R L L L R R AL L R R AL LR DL L AL L R R L AL AL R R
149, b
121 - — —— Jv vs Time
104 :

084 | ]

J, (*10°m/s)

0.6 { ]
0.4 4 X .

024 \

0.0 I At T EE— T EE— T EE— T EE— T E— T E— T E— T EE— ]
2 4 6 8 10 12 14 16 18

Time (* 10° Seconds)
Fig 4.5 Solute flux variation with time for control.

The initial flux value for the bacterial system was J, = 1.598x10”" m/s and at onset of
steady state the value decreased to 0.115x10”" m/s. This indicates that the presence of biofilm
reduced the solution flux through the membrane. The lower steady-state values might be the
result of increased osmotic pressure with significant solute retentions, development of biofilm,
and possible fouling which led to retardation of nitrates passing through the compacted glass
beads-Na montmorillonite bio-membrane.

The concentrations of the solution after being filtrated through compacted glass beads-
clay-bacteria and glass beads-clay (control) is depicted in Figure 4.7(a). The glass-beads and
Na-montmorillonite mixture (control) showed minimal membrane properties and effluent nitrate

concentrations were found to be very close to the reservoir nitrate concentrations.
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Fig 4.6 Solute flux variation with time for bacterial system.

When filtered through glass-beads and Na-montmorillonite, influent nitrate concentration
of 3.105x10™ moles/L was reduced to 2.826x10™ moles/L, which is around 8.99 % reduction.
Saindon and Whitworth (2006) investigated the membrane properties of five different mixtures
of clay and glass beads at low compaction pressure and found that the higher the percentage of

glass beads, the lower the membrane properties. They observed a reflection coefficient of 0.07

using a mixture of 12 % clay and 88 % glass beads. The presence of Methanobrevibacter

ruminantium played a significant role in reducing nitrate concentrations of the reservoir solution
filtered through the system. For the first run with the bacteria, after the 11th day of the
experiment effluent nitrate concentration reached as low as 2.50 x 10-7 moles/L, which is about

99.9 % reduction in the concentrations (Fig 4.7 (a) and 4.8 (a)).

41



()

(b)

0.00035 T—————————————————————————
B e aaan et S S S il dantant 28 2L /
0.00030 .
—_ [ o
ﬁ 0.00025 - —&—— Control ]
Q O Bacteria
g — —w— —  Reservoir
< 0.00020 - ]
c
.
S 0.00015 4 ]
c
m -
S i Q
S 0.00010 - o ]
8 i
0.00005 4 © ¢ o ]
[ 000 o
L o]
L o (o]
0.00000 +———+—+———+ O 0 O .
0 5 10 15 20 25
Time (* 10° Seconds)
DLl
bo00z0d T T TV ¥ VYV v vy-vy ]
ﬁ 0.00025 A ——e&——  Control ]
Q o Bacteria
g — —w— —  Reservoir
< 0.00020 - ]
S o
= (e}
£ 0.00015 1 i
c
o [
o -
S 0.00010 A o 1
@) [ ¢}
i o o—0—-0—-0 o
0.00005 { o ]
[ ° o
0.00000
0 2 4 6 8 10 12 14 16 18

Time (* 10° Seconds)

Fig 4.7 (a) Effluent nitrate concentrations filtered through the various

system, (b) values for repeated experiment with the bacteria.
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When the experiment was repeated, NO, effluent concentration reached as low as 1.03 x

10 moles/L after the 4™ day of the experiment, which is around 96% reduction in influent
nitrate concentration (Fig 4.7 (b) and 4.8 (b)). The control system showed a maximal value of
9% nitrate reduction (Fig 4.7 (a)), which indicates that, the nitrate reduction in the bacterial
system results can probably be attributed to the presence of the biofilm. For the first set of
experiment, after around 72 hours the rate of nitrate reduction slows down and showed a steady
state reduction of nitrate (Fig 4.8 (a)). After the 11" day, the effluent nitrate concentration again
started to increase although the effluent nitrate concentrations were below the influent nitrate
concentration throughout the experiment. Initially the effluent nitrate concentrations showed a
decreasing trend. This might be because of the development of the biofilm. Methanobrevibacter
ruminantium usually takes 2-3 days to appear after incubation depending on the number of

colonies and energy sources (Miller et al., 1986).

Methanogenic bacteria are capable of utilizing nitrates as an alternative energy source
and could potentially replace urea in diets to provide nitrogen for microbial protein production
and growth (Belay et al., 1990; Guo et al., 2009; Leng, 2008). In a different experimental setup,
Guo et al. (2009) observed that NO3-N disappeared to background level and was not detectable

to microbial cells after 24 hours of incubation.

After some time the effluent nitrate concentrations started to increase. This might be due
to bacterial depletion. The bacteria might have started depleting due to (a) water level decrease
in the reservoir which possibly increased infusion of dissolved oxygen into the feed solution, and
(b) an increase in pressure gradient across the membrane that might have affected the microbial
biophysical integrity.
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The results of the experiments indicate that the Methanobrevibacter ruminantium is
capable of attenuating nitrates from the simulated wastewater though the mechanism of nitrate
depletion in the experiment with bacteria is not well understood. But the chromatographs for the
bacterial system showed both nitrate and nitrite peaks (see Appendix C). It is worthwhile to note
that various studies have indicated that biofilms constantly change in composition, thus may
create variables which may include gradients of organic nutrients and inorganic materials such as
oxygen, nitrogen and phosphates that are pertinent for many biological processes (Zheng and
Bennett, 2002). Other nitrate reduction studies with other strains of bacteria were successful
because those bacteria used nitrates in their anaerobic respiration processes (Casey et al., 1998;
Kalinowski et al., 2002).

Conductivity inside the cell was measured at three different depths (4.5", 5.0"” and 5.5")
using three pairs of probes. The distance between the tip of the probes and the surface of the
membrane were 0.35, 0.85 and 1.35 inches. The conductivity values at these depths for the
control system are depicted in Figure 4.9. For this system, higher conductivity values were
observed for the probes farthest from the membrane surface and lower values for the closest.
This might be because of the fact that, the probes farthest from the surface of the membrane
covers more area and volume hence more ions of solution than that for probes closest to the
surface. The conductivity values for the bacterial system are presented in Figure 4.10. The
values for the bacterial system are much lower than those of the control system. This is because
of the less ionic activity in the bacterial system resulting from the microbial utilization of the
nitrate ion. For the bacterial system, higher conductivity values were observed at the middle

depth. The conductivity values observed for the systems did not follow the conceptual trends.
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More research needs to be carried out to confirm the trends and reasons behind the observed
trends.

The surface-fit robust plane feature of the Table Curve® 3D was used to ideally fit the
outliers to a plane. This robust model was used to lessen the impact of outliers upon the overall
surface fits. This model uses a simple plane equation with four minimization criteria available
within the Table Curve® 3D’s non-linear fitting algorithm. These models were then ranked
based on their R2 value. The difference between the best fits of the bacterial system and control
system will be useful in finding out the microbial retardation factor. Comparisons between
control and bacterial system for all the four equations based on rank are shown in Figure 4.11,

4.12,4.13 and 4.14 respectively.
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Fig 4.9 Conductivity at different depths inside the cell for control systems.
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Fig 4.11 Comparison between the systems using surface-fit robust plane rank 1.
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Fig 4.12 Comparison between the systems using surface-fit robust plane rank 2.
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Fig 4.13 Comparison between the systems using surface-fit robust plane rank 3.
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Fig 4.14 Comparison between the systems using surface-fit robust plane rank 4.

49



CHAPTER 5. CONCLUSIONS

Groundwater contamination by nitrates is a major issue worldwide. The continuous
development and expansion of the agricultural sector presents remarkable challenges to agencies
dealing with environmental issues that are tasked with implementing more stringent policies to
ensure balance between anthropogenic impacts on water quality. It is imperative that future
work continue to evaluate remediation techniques that would enhance remediation processes and
minimize amount or reduce toxicity of pollutants in the environment. Bioremediation offers one
possible solution in minimizing nitrate pollution. Studies have indicated that microbes are
capable of consuming various natural and artificial pollutants.

This study harnessed biostimulated remediation of simulated wastewater. An
experimental analysis was executed in an attempt to determine if Methanobrevibacter
ruminantium was capable of reducing nitrate levels in waste water. The experimental setup
involved the assemblage of a static cell encased in an acrylic tube held together by aluminium
fittings. The Methanobrevibacter ruminantium bacterium was then introduced into separate
experimental cells for analysis and these in turn ingested nitrates in the ambient simulated
wastewater. Microbial activity of Methanobrevibacter ruminantium played a significant role in
the attenuation of nitrate.

If we intend to model the effluent concentration and the evolution of the transient
concentrations at a distance from the high pressure side of compacted montmorillonite, glass
beads and Methanobrevibacter ruminantium membranes to a reasonable degree, the solution to
advective—diffusive differential equation needs to be modified to factor in the microbial

retardation. This factor will be helpful in providing the general correctness for the modified bio-
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membranes. The general trend difference observed between the conductivities of the control and
microbial system might be useful in finding out the microbial retardation factor. A fouling
correction may also need to be incorporated into the models. The development of models
depends highly on accurate and representative diffusion coefficient values and constant
temperature conditions.

The experiment was successful in this laboratory setup; however, it is not yet
conclusively known if such a bench-scale system could be applied in real-life scenarios. The
probable applications of these models may be to provide an insight in defining the fate and
transport of contaminants through barriers with high microbial activities under anaerobic
conditions.

There are a lot of research opportunities in this field. Research work can be carried out to
calculate the microbial retardation factor and then the developed microbial retardation factor can
be applied to the ion transport in the presence of a biofilm. Research work can also be carried
out to find out the Concentration Profile Layer development on the high pressure side of the
membrane using conductivity parameters. In this experiment only one influent concentration
value was used to gauge the effectiveness of M. ruminantium in attenuating nitrate. In the future,
research can be carried out to determine the effective range of concentrations M. ruminantium

can reasonably attenuate.
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RIKEN BRC ODGSDDG

MATERIAL TRANSFER AGREEMENT
(For Distribution to a Not-For-Profit Organization)

RECIPIENT

Recipieat Scieatist:  Peter Oduor

Recipient Organization: Nerth Dakota Stats Universily
Addreis: Stevans Hall Room No. 227

1240 Bollsy Drive, Fargo, ND- 58102, USA

This Materin) Tronsfer Agreement sets forth the terms ond cooditions under which RIKEN
BioRssource Center (herelnafier ieferred 10 a5 'RIKEN BRC") will provide with the RECIPIENT, 2nd
the RECIPTENT will recalve, the biological material specified s Metwanosmvbacter Rumb (oM1343}

and lts derivalives (hereinafier referred 10 os the 'BIOLOGICAL RESOURCE’) in response to the
RECIPIENT 2 request, and with which the RECIPIENT scientist and organization agree before the
RECIPIENT receives the BIOLOGICAL RESOURCEH:

1.

The RIKEN BRC, a non-profit public organizatioa financed by tha Jopancss Govemmenl, is
cagaged in collection, maiatenance, storige, propagation, quality control and disteibutioa the
bielogical resousces, in order to contribute (o the Japsnese and international sclentific community
in the field of life sciences,

{s) The RECIPIENT shall vse the BIOLOGICAL RESOURCE for the following specific
parpose: Graduale Reseaich Project fied "Biostmutaled remediation of wastewaler”

(b) The RECIPIENT shall obtain a writlen prior permission from the RIKEN BRC for the ussge
of the BIOLOGICAL RESOURCE for amy other purposes than the purpose specified above,

The RECIPIENT shall not use the BIOLOGICAL RESOURCE foc dingnosis or trestmen? of
humans or other direct npplications to humsan bodies or ns food source for humans,

The RECIPIENT ogrees to uss the BIOLOGICAL RESOURCE complying with the following
tesms and conditions requested by the DEPOSITOR, which are specified (n the RIKEN BRC
Catalog or Website: T, ppsfhic foe o

In the cuse requested by the DEPOSITOR, the RECIPIENT shoald obtain an appeoval fram the
DEPOSITOR ssing the APPROVAL FORM prior to eaterog the AGREEMENT with the
RIKEN BRC.

(leinn)
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The RECIPIENT agrees to expressly describe that "the BIOLOGICAL RESOURCE (the
resource name) was provided by the RIKEN BRC through the National Bio-Resource Project of
the MEXT, Japan” in Materials and Methods, the Acknowledgement or any other appropriate
section in any publication reporting the nse thereof. The RECIPIENT also sprees to send
information regarding such publication to the RIKEN BRC. The RIKEN BRC may reques! the
RECIPIENT to report on progress andfor results obtaimed through the use of (he BIOLOGICAL
RESOURCE, and the KECIPIENT shall respond trothtully fo sech a request by the RIKEN BRU.
The RIXEN BRC may disclose publicly swch informetion to increase the value of the

BIOLOGICAL RESOURCE, and to demonstrate the contribution of the RIKEN BRC.

The RECIPIENT shall bear the cost of shipping, handling, part of production and other expeases

necessary for preparation or distribation of the BIOLOGICAL RESOURCE for the RECIPIENT,

The occess to the BIOLOGICAL RESOURCE is limited to the RECIPIENT and the

RECIPIENT's co-workers and stedents who work for the purpose specitied in Section 2(a) ender
the direct supervision and full responsibility of the RECIPIENT. The RECIPIENT shall not
disicibote, resell or otherwise dispose of the BIOLOGICAL RESOURCE (o any third party.
The disposition herevnder shall inchade any acts 1o transfer all or any part of the intellectual
properly or gruni a license thereunder with respect to the BIOLOGICAL RESOURCE.

Nothing in this AGREEMENT shzll be interpreded that the RIKEN BRC grants the RECIPIENT
any rights under any palents or other intellectual property, or licenses thereundes with respect 1o
the BIOLOGICAL RESOURCE.

The RECIPIENT shall assume all lizbility for claims 2gainst the RECIPIENT and the RIKEN

BRC by third pattics relating to alleged infringement of any patent, copyright, trademark or other
intelbectus) propedty rights, which may arise from the use, storage or disposal by the RECIPIENT
of Ihe BIOLOGICAL RESCURCE.

The RECIPIENT acknowledges that the BIOLOGICAL RESOURCE delivered pursnant to this
AGREEMENT may have defective, hazardous or faulty propecties and may not nccessanly fit
for a particular purpose and that the RECIPIENT assumes all liabilily for any consequeaces

resulting from the vse by the RECIPIENT of the BIOLOGICAL RESOURCE.

The RECIPIENT agrees that any handling or other activities of the BIOLOGICAL RESOURCE
in its laboratory shall be conducted in compliance with all applicable Taws, regulations and
guidelines, The RECIPIENT shall, if necessary, take all sleps or procedures to comply with Jegal

requirements for bandling of the BIOLOGICAL RESOURCE.

Both parties shal] discuss 10 enable amicable resolution of any accidents during shipment of the
BIOLOGICAL RESCURCE.

In case the RECIPIENT is in breach of this AGREEMENT, the RIKEN BRC may request the
RECIPIENT to cease its subsequent use of (he BIODLOGICAL RESCURCE aid other resovrces
of the RIKEN BRC.

Raoth parties shall diccuss in gond faith to enable the anncable resolution of matters, arising m
connection with the interpretation o performance hereof as well as the matters which are not
expressly set forth in this AGREEMENT.

. Any maiter or dispute which cannot be settled through said amicable discussion shall be subject

to the exclusive jurisdiction of Tokyo District Coart, Japan. This AGREEMENT shall be

(10.0703)
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governed in accordance with the Jaws of Japan,

The RECIPIENT and the RIKEN BRC do hereby sign two eriginal copies of this AGREEMENT and
each party holds one signed copy.

RIKEN BioResource Center
3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
Director
Yuichi Obata, Ph.D.
Sigmsture: 4 %MA
D Qﬁm_/;,za/z
[4
RECIPIENT
Organization: North Dakota State Universily
Address 228, Stevens Hall, 1340 Bojley Drive, NDSU, Fargo, ND 58108, USA
Name of Authorized Represeatative: Kevin D. McCaul
Job Title: Dean of the College of Sclence and Malhematics
o] “f) ;zzﬁr
Lrar KU /j‘/
Signature:
Date: /3 'M ', ’
Name of Scdenlist: pgtar G, Oduor
Job Title: Associale Professor
Date: yi .3/93///

(e
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OD(JOD[D JAPAN COLLECTION OF MICROORGANISMS

Microbe Division, RIKEN BioResource Center Phore : + B! 48-467-9560

¥ : . ! Fax : +B1-48-462-4617
2-1 Hirosawa, Wako, Saitama 351-0198, Japan E-mall | maury @ cmriken jp

REF NO. 110619
Date: 25/01/2012

DELIVERY SLIP

Dr. Peter G. Oduor
North Dakota State University

Dear Sir/Madam:

The microbial culture(s) that you ordered is/are enclosed. Please verify the
contents and return the enclosed receipt. Damaged or missing culture (sl must
be reported within 1 month of the receipt. The culturels) is/are nonreturnable

For data on culture conditions, such as media formulations and cultivation
temperature, and for other information, please visit our online catalog of
strains at http://www, jen. riken. jp/JCM/catalogue. shtml. Inquiries regarding
methods for cultivation should be addressed to inquiryjcm riken. ip

I1 the research perfoined using this/these culture(s) is published, it would
be a valuable reference for our catalog database. You are required to send us
a reprint of vour published article or other information on your research

Please note that you MUST NOT transfer these cultures to a third party

Your order number: _ )
Request for payment of this order will be senl separately

Microorganisms JCM no. Qty
MD: (JCM medium number) TN: cultivation temperature
Methanobrevibacter ruminantium 13430 4
MD: 530 ™: 31C
* Anagrobic *
- Total: I strains 4 tubes
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HOW TO REVIVE LYOPHILIZED OR L-DRIED CULTURES

1) Keep the ampoule on a flat place, and make a
file-cut at the neck.

2) Wipe the ampoule with cotton wool containing 70%
alcohol.

3) Cover the ampoule with a sterile cotton sheet. and
cut it carcfully at the neck. Do not use a cotton sheet
containing alcohol.

4) Using a sterile Pasteur pipette, add 0.3 10 0.5 ml of a
suitable rehydration fluid* into the ampoule.

*See the JOM On-line Catalogue (hutp://www jem.nken. jp/
JCM/catalogue html).

5) Spread the sample on a suitable plate and incubate it
under the directed condition. The subculture should
be established in fresh media only after confirming
its purity. A careless single-colony isolation may
lead to picking up an unusual strain, It is
recommended to revive the strain simultaneously
using liquid culture.

Japan Collection of Microorganisms, RIKEN BioResource Center
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Control System

Bacterial System

Reservoir solution
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Control System

Bacterial System

Sample 1
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Control System

Bacterial System

Sample 2
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Chromatographs of Repeated Experiment using Bacteria
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Appendix Table 1: Calculation for Bacterial System

A B C D E F G H |
! Pressure | Pressure Mass Mass Amount of
Sample Date Time Temp .

(Pump) | (Meter) B+L B+L+S [ Nitrate (ppm)
MRB1 11/24/201/6:42 PM 23.5 500 0 99.160| 160.000| 16.77056334
MRB2 11/26/201/10:5 AM 22.9 500 0 98.960| 154.100| 3.399991928
MRB3 11/27/20111:44 AM 24.5 500 0 99.130| 190.000| 2.860726408
MRB4 11/28/201/5:1 PM 24.4 500 0 99.505| 149.885| 2.436078854
MRB5 11/29/201/4:8 PM 20.4 500 0 99.720| 174.000 2.26935032
MRB6 11/30/201/5:43 PM 18.1 500 0 99.885| 164.000| 2.107052699
MRB7 12/2/2011/8:41 AM 20.7 500 0 99.005| 180.000| 1.560470799
MRB8 12/4/2011/10:28 AM 19.2 500 0 99.625| 182.000| 0.320780845
MRB9 12/5/2011/5:14 PM 21.0 500 0 99.285| 158.000 0.0155
MRB10 12/7/2011/9:42 AM 20.6 500 0 99.400| 170.000| 0.054726552
MRB11 12/8/2011/3:59 PM 21 500 0 99.260| 164.000 0.03316288
MRB12 12/10/201/10:40 AM 21.6 500 0 100.005| 194.000| 0.834226021
MRB13 12/11/201/10:10 AM 19.8 500 0 99.875| 176.000| 2.108809371
MRB14 12/15/201/10:12 AM 18.2 500 0 99.485| 224.000| 3.199795496
MRB15 12/16/201/9:12 AM 21.0 500 0 99.535| 164.000 6.61283432
MRB16 12/17/201/11:12 AM 20.7 500 0 99.640| 134.340| 5.700136437
Cell1 13.61767207
Cell 2 13.63978066
[Reservior 19.25321128
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Solution Flux

Time Solute Flux (i) [ (amA2afal Lp v Amount of
(Minutes) (cmA3/s) o P £ (m~3/N-s) (m/s) Nitrate (mmoles)
0
1377 0.000736383 1.59768E-05| 4.63446E-13| 4.63446E-14 1.59768E-07 0.000270476
3140 0.000292675 6.34995E-06( 1.84197E-13| 1.84197E-14 6.34995E-08 5.4835E-05
4678 0.000323749 7.02415E-06( 2.03753E-13| 2.03753E-14 7.02415E-08 4.61378E-05
5954 0.000141026 3.05973E-06| 8.87552E-14| 8.87552E-15 3.05973E-08 3.92891E-05
7341 0.000168642 3.6589E-06| 1.06136E-13| 1.06136E-14 3.6589E-08 3.66001E-05
8875 0.000120404 2.61231E-06| 7.57767E-14| 7.57767E-15 2.61231E-08 3.39825E-05
11213 0.000120389 2.61198E-06| 7.57671E-14| 7.57671E-15 2.61198E-08 2.51673E-05
14200 9.66843E-05 2.09769E-06| 6.08487E-14| 6.08487E-15 2.09769E-08 5.17355E-06
16045 6.09899E-05 1.32325E-06| 3.83843E-14| 3.83843E-15 1.32325E-08 2.49984E-07
18473 6.36966E-05 1.38198E-06| 4.00877E-14| 4.00877E-15 1.38198E-08 8.82629E-07
20290 5.31789E-05 1.15378E-06| 3.34684E-14| 3.34684E-15 1.15378E-08 5.34851E-07
22850 6.85594E-05 1.48748E-06| 4.31482E-14| 4.31482E-15 1.48748E-08 1.34544E-05
24259 5.23002E-05 1.13472E-06| 3.29154E-14| 3.29154E-15 1.13472E-08 3.40109E-05
28821 7.20048E-05 1.56223E-06| 4.53166E-14| 4.53166E-15 1.56223E-08 5.16063E-05
30200 3.55767E-05 7.71881E-07| 2.23904E-14| 2.23904E-15 7.71881E-09 0.000106652
31760 1.82095E-05 3.95077E-07| 1.14602E-14| 1.14602E-15 3.95077E-09 9.19318E-05

0.000219626

0.000219982

0.000310516
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o, 1) Cle, t) erfc =i S Cx=0.4,t) | C(x=0.8,t)

: : {(x-Jvt)/2v(Dt)} {c-Ivt)/2v(Dt)} | {(x-Jvt)/2v(Dt)} : 2
Nitrate Nitrate Nitrate Nitrate

x=0.4 x=0.8 x=1.2
0.000466035 0.000149637 4.9538E-11 2.64998E-10 6.51231E-10 0.000312603| 0.000321679
0.000466369 0.000197845 4.05878E-11 4.1309E-10 1.17501E-09 0.000312229| 0.000327954
0.00046666 0.000216673 1.05151E-11 4.11048E-10 1.39173E-09 0.000310961 0.0003279
0.000466902 0.00022675 3.42171E-13 3.47064E-10 1.43218E-09 0.00031053| 0.000325217
0.000467165 0.000234747 3.33038E-11 2.42257E-10 1.36162E-09 0.000311929| 0.000320795
0.000467456 0.000241424 1.58089E-10 1.18499E-10 1.17956E-09 0.000317236| 0.000315553
0.000467899 0.000248951 6.15154E-10 2.45326E-12 7.80357E-10 0.000336739| 0.000310621
0.000468465 0.000255821 1.87063E-09 1.8434E-10 2.59094E-10 0.000390544| 0.000318402
0.000468814 0.000259104 3.14122E-09 6.00451E-10 4.95389E-11 0.000445199| 0.000336261
0.000469274 0.000262676 5.52937E-09 1.64144E-09 4.44853E-11 0.000548282| 0.000381099
0.000469618 0.000264932 7.93616E-09 2.87453E-09 3.29212E-10 0.000652516| 0.000434391
0.000470103 0.000267653 1.23689E-08 5.41309E-09 1.29111E-09 0.000845162| 0.000544498
0.00047037 0.000268968 1.53886E-08 7.27028E-09 2.16049E-09 0.000976803 0.0006253
0.000471234 0.000272558 2.84226E-08 1.59556E-08 7.06282E-09 0.001547791| 0.001005084
0.000471495 0.000273483 3.34538E-08 1.94965E-08 9.28437E-09 0.001769175| 0.001160603
0.00047179 0.000274458 3.98201E-08 2.40783E-08 1.22753E-08 0.002049943| 0.001362308
Jv N
C(x=1.2,t) o Time . 107(m/s) Change in Amount of % Nitrate
Nitrate Nitrate (Seconds) . Concentration | Nitrate (mmoles) Reduction
Bacteria
0.000310516

0.000337948 0.513906851 82620 1.597675447 4.00405E-05 0.000270476 12.89482439
0.000360117 0.404274314 188400 0.634995152 0.000255681 5.4835E-05 82.3406711
0.000369376 0.365835154 280680 0.702414724 0.000264378 4.61378E-05 85.14157986
0.000371181 0.346214271 357240 0.305972665 0.000271227 3.92891E-05 87.34717063
0.000368289 0.331121609 440460 0.365889517 0.000273916 3.66001E-05 88.2131474
0.000360657 0.318858606 532500 0.261230921 0.000276533 3.39825E-05 89.0561103
0.000343781 0.305431272 672780 0.261197902 0.000285349 2.51673E-05 91.89501985
0.0003216 0.293591109 852000 0.209768551 0.000305342 5.17355E-06 98.33388591
0.00031264 0.288095144 962700 0.132325225 0.000310266 2.49984E-07 99.91949404
0.000312429 0.28225658 1108380 0.138197621 0.000309633 8.82629E-07 99.71575398
0.000324703 0.278655933 1217400 0.115378249 0.000309981 5.34851E-07 99.82775424
0.000366325 0.274413293 1371000 0.148748243 0.000297062 1.34544E-05 95.66708628
0.00040406 0.272408038 1455540 0.113471738 0.000276505 3.40109E-05 89.04698627
0.00061797 0.267111589 1729260 0.156223342 0.00025891 5.16063E-05 83.38047787
0.000715334 0.265795258 1812000 0.077188098 0.000203864 0.000106652 65.65338427
0.000846728 0.264433351 1905600 0.039507748 0.000218584 9.19318E-05 70.39387555
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Appendix Table 2: Calculation for Control System

. Pressure | Pressure Mass Mass Time
Sample Date Time Temp 3
(Pump) (Meter) B+L B+L+S (Minutes)
0

MJB001 |6/4/2011 [11:10 AM 20.7 500 0 22.700| 179.620 1494
MJB002 |6/5/2011 [10:52 AM 20.6 500 0 22.585| 157.559 2915
MJB003 |6/6/2011 [10:42 AM 20,2 500 0 22.340| 159.048 4344
MJB004 |6/7/2011 [9:35 AM 2.3 500 0 22.615| 151.365 5717
MJB0O05 |6/8/2011 [9:34 AM 20.7 500 0 22.975| 158.579 7155
MJB006 |6/8/2011 |5:32 PM 20.7 500 0 22.125 66.340 7633
MJB0O07 |6/9/2011 |3:46 PM 20.6 500 0 22.765| 144.750 8967
MJB008 |6/10/201112:46 PM 20.2 500 0 22.550| 137.765 10227
MJB00S |6/11/201112:19 PM 20.4 500 0 22.445| 152.397 11639
MJB010 |6/12/201110:31 AM 19.7 500 0 22.125| 141.840 12971
MJB011 |6/13/20113:36 PM 21.0 500 0 22.480| 132.110 14715
MJB012 |6/14/20114:49 PM 21.3 500 0 22.180| 149.020 16227
MJB013 |6/15/20116:15 PM 20.9 500 0 22.690| 120.605 17752
MJB014 |6/16/20116:23 PM 21.0 500 0 22.135| 112.365 19200
MJB015 |6/17/20116:16 PM 20.7 500 0 22.185| 139.990 20632
MJB016 |6/18/20114:0 PM 20.7 500 0 22.520| 126.865 21935
MJB017 |6/20/20118:57 AM 20.7 500 0 22.465| 222.860 24392
MJB018 |6/21/20118:49 AM 20.4 500 0 22.760| 108.850 25823
Reservior

Cell 1

Cell 2

Cell 3

Cell 4

116




Solution Flux

Jv

Time

Amount of

SZ:I:::;;':)X (CTV/S) Lp (cm”2s/g) (m"l?:;)N-s) (m/s) (Seconds) (r:r:r:It:s)
0.001750558| 0.000145476 4.2199E-12( 4.2199E-13| 1.45476E-06 89640| 0.000284927
0.000771721| 6.41321E-05| 1.86031E-12| 1.86031E-13| 6.41321E-07 174900| 0.000291731
0.000524509( 4.35881E-05| 1.26438E-12| 1.26438E-13| 4.35881E-07 260640 0.0002906
0.000375343 3.1192E-05| 9.04803E-13| 9.04803E-14( 3.1192E-07 343020| 0.000288463
0.000315872( 2.62498E-05| 7.61444E-13| 7.61444E-14| 2.62498E-07 429300( 0.000283412
9.65435E-05| 8.02303E-06| 2.32728E-13| 2.32728E-14| 8.02303E-08 457980( 0.000290026
0.000226729( 1.88418E-05| 5.46555E-13| 5.46555E-14| 1.88418E-07 538020| 0.000286878
0.000187763| 1.56036E-05| 4.52622E-13| 4.52622E-14| 1.56036E-07 613620| 0.000291799
0.000186087| 1.54643E-05| 4.48582E-13| 4.48582E-14| 1.54643E-07 698340| 0.00029072
0.000153824| 1.27832E-05| 3.70809E-13| 3.70809E-14| 1.27832E-07 778260| 0.000294921
0.00012417| 1.03189E-05| 2.99326E-13| 2.99326E-14| 1.03189E-07 882900 0.000285116
0.000130277| 1.08263E-05| 3.14046E-13| 3.14046E-14| 1.08263E-07 973620 0.00028518
9.19286E-05| 7.63951E-06( 2.21604E-13| 2.21604E-14| 7.63951E-08 1065120| 0.000282585
7.83247E-05| 6.50899E-06 1.8881E-13| 1.8881E-14| 6.50899E-08 1152000| 0.000284439
9.51637E-05| 7.90836E-06| 2.29402E-13| 2.29402E-14| 7.90836E-08 1237920| 0.000295777
7.92835E-05| 6.58867E-06( 1.91121E-13| 1.91121E-14| 6.58867E-08 1316100| 0.000294042
0.000136927 1.1379E-05| 3.30076E-13| 3.30076E-14| 1.1379E-07 1463520| 0.000297083
5.55642E-05| 4.61753E-06( 1.33943E-13| 1.33943E-14| 4.61753E-08 1549380| 0.000293226
0.000310516
0.000322964
0.000323054
0.000320456
0.000381962
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Reservoir Cc(o,t) Cle, t) e eHie e C(x=0.4,t)
Concentration Nitrate Nitrate {behvth V(DO} (e El 2V (B0} {the lut)/2¥(DD) Nitrate
x=0.4 x=0.8 x=1.2

(mmoles)

0.000310516| 0.000474777| 0.000168 1.94892E-11 2.71478E-11 2.20088E-10| 0.00031138
0.000310516| 0.000483298| 0.000208 6.15999E-10 1.29386E-10 4.28368E-12| 0.00033934
0.000310516| 0.000491788| 0.000227 2.82989E-09 1.35309E-09 4.15017E-10| 0.00044946
0.000310516| 0.000499833| 0.000238 7.442E-09 4.54799E-09 2.36298E-09| 0.00069212
0.000310516| 0.000508106| 0.000246 1.58965E-08 1.10288E-08 7.04834E-09| 0.00116127
0.000310516| 0.000510816| 0.000248 1.9706E-08 1.40713E-08 9.38316E-09( 0.00137961
0.000310516| 0.000518255| 0.000254 3.3439E-08 2.53711E-08 1.84152E-08| 0.00219204
0.000310516| 0.000525098| 0.000258 5.11974E-08 4.04355E-08 3.09419E-08| 0.00328615
0.000310516| 0.000532531| 0.000261 7.75174E-08 6.32797E-08 5.04855E-08| 0.00497195
0.000310516| 0.000539291| 0.000264 1.0943E-07 9.1471E-08 7.51206E-08| 0.00709135
0.000310516| 0.000547742| 0.000267 1.63034E-07 1.39553E-07 1.17897E-07| 0.01078612
0.000310516| 0.000554678| 0.00027 2.2169E-07 1.92825E-07 1.65973E-07| 0.01497146
0.000310516| 0.000561285| 0.000272 2.9362E-07 2.58765E-07 2.26111E-07| 0.02025388
0.000310516| 0.000567187| 0.000274 3.74929E-07 3.33864E-07 2.95181E-07| 0.02637589
0.000310516| 0.000572659| 0.000275 4.68878E-07 4.21173E-07 3.76027E-07| 0.03360223
0.000310516| 0.00057732| 0.000276 5.66944E-07 5.12765E-07 4.61307E-07( 0.04128092
0.000310516| 0.000585286| 0.000279 7.87307E-07 7.19803E-07 6.55324E-07| 0.05890427
0.000310516| 0.000589436| 0.00028 9.38705E-07 8.62767E-07 7.90031E-07| 0.07122706
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C(x=0.4,t)
Nitrate

C(x=0.8,t)
Nitrate

C(x=1.2,t)
Nitrate

Nitrate

Jv
*107 (m/s)

0.00031138

0.00031172

0.00032031

0.47664486

1.454760568

0.00033934

0.00031657

0.00031072

0.39907468

0.641320878

0.00044946

0.00037695

0.00033089

0.36906816

0.435880993

0.00069212

0.00054373

0.00043168

0.35493114

0.311919743

0.00116127

0.00090076

0.00068773

0.34719906

0.262498412

0.00137961

0.00107392

0.00081957

0.34559502

0.080230257

0.00219204

0.00173808

0.00134669

0.34278794

0.188418299

0.00328615

0.00266066

0.00210889

0.34171916

0.15603592

0.00497195

0.00411578

0.00334641

0.3416877

0.154643303

0.00709135

0.00597852

0.00496536

0.3423878

0.127831807

0.01078612

0.00927737

0.00788587

0.3439532

0.103188896

0.01497146

0.01306256

0.01128675

0.34564566

0.108263438

0.02025388

0.01788642

0.0156685

0.34749684

0.076395145

0.02637589

0.02352103

0.02083172

0.34928722

0.065089891

0.03360223

0.03021504

0.02700953

0.35102258

0.07908356

0.04128092

0.03736569

0.03364705

0.35253273

0.06588671

0.05890427

0.05388043

0.04908172

0.35512099

0.113789788

0.07122706

0.06549012

0.05999512

0.35644228

0.046175311
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