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ABSTRACT 
 

When software systems evolve, different amounts of code modifications can be 

involved in different versions. These factors can affect the costs and benefits of regression 

testing techniques, and thus, there may be no single regression testing technique that is the 

most cost-effective technique to use on every version. To date, many regression testing 

techniques have been proposed, but no research has been done on the problem of helping 

practitioners systematically choose appropriate techniques on new versions as systems 

evolve. To address this problem, we propose adaptive regression testing (ART) strategies 

that attempt to identify the regression testing techniques that will be the most cost-effective 

for each regression testing session considering organization’s situations and testing 

environment. To assess our approach, we conducted an experiment focusing on test case 

prioritization techniques. Our results show that prioritization techniques selected by our 

approach can be more cost-effective than those used by the control approaches. 
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CHAPTER 1. INTRODUCTION 

Regression testing is an important and necessary activity that can maintain the 

quality of modified software systems. To date, many regression testing techniques have 

been proposed. For instance, regression test selection techniques (e.g., [1], [2], [3]) reduce 

testing costs by selecting test cases that are necessary to test a modified program. Test case 

prioritization techniques (e.g., [4], [5], [6]) reorder test cases, scheduling test cases with the 

highest priority according to some criterion earlier in the testing process to yield benefits 

such as providing earlier feedback to testers and earlier fault detection. 

While this research has made considerable progress in regression testing areas, one 

important problem has been overlooked. As systems evolve, the types of maintenance 

activities that are applied to them change. Differences between versions can involve 

different amounts and types of code modifications, and these changes can affect the costs 

and benefits of regression testing techniques in different ways. Thus, there may be no 

single regression testing technique that is the most cost-effective technique to use on every 

version. For instance, as we observed from our study, prioritization technique, that works 

best, changes across versions. 

We propose to address this lack by creating and empirically studying adaptive 

regression testing (ART) strategies. ART strategies are approaches that operate across 

system lifetimes, and attempt to identify the regression testing techniques that will be the 

most cost-effective for each regression testing session. ART strategies evaluate regression 

testing techniques in terms of decision criteria such as cost and benefit factors and choose 

the best alternative among techniques considering organization’s situations and feedback 

from prior regression testing sessions. 
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The problem of performing such evaluations is known as the “multiple criteria 

decision making” (MCDM) problem, and MCDM approaches have been used in many 

science, engineering, and business areas that involve complex decision problems, such as 

technology investment, resource allocation, and layout design [7], [8]. To date, many 

MCDM approaches have been proposed including the Weighted Sum Model (WSM), the 

Weighted Product Model (WPM), the Analytical Hierarchy Process (AHP), and other 

variants. Among these MCDM methods, AHP has been one of the more popular methods, 

having been used by researchers and practitioners in various areas including software 

engineering [9], [10], [11]. 

Therefore, in this research, as an initial approach to creating ART strategies, we 

investigated AHP method [7] to see whether AHP can be effective for selecting appropriate 

regression testing techniques across system lifetime, particularly focusing on test case 

prioritization techniques. To do this, we have designed and conducted a controlled 

experiment using several Java programs with multiple versions considering several 

selection strategies. The results of our experiment show that the prioritization techniques 

selected by AHP can be more cost-effective than those used by the control approaches. 

In the next section, we describe background information and related work relevant 

to prioritization techniques and regression testing strategies. Chapter 3 describes our 

proposed approach, ART strategy. Chapter 4 presents our experiment setup, Chapter 5 

presents results and analysis, and Chapter 6 address threats to validity. Chapter 7 discusses 

our results, and Chapter 8 presents conclusions and future work. 
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CHAPTER 2. BACKGROUND AND RELATED WORK 

Regression testing attempts to validate modified programs to see whether changes 

have produced unintended effects. Depending on various factors, such as the size and 

complexity of the program and its test suite, regression testing process can be very 

expensive. Thus, many researchers have proposed numerous cost-effective regression 

testing techniques including regression test selection, test suite reduction/minimization, and 

test case prioritization, but here, we limit to our discussion to test case prioritization, which 

is directly related to our work. 

Test case prioritization techniques (e.g., [6], [12]) reorder test cases in order to 

increase the chance of early fault detection using various types of information available 

from software artifacts, such as the coverage of code achieved by tests, code change 

information, or code complexity. For example, one technique, total block coverage 

prioritization, simply sorts the test cases in the order of the number of blocks they cover. 

One variation of this technique, additional block coverage prioritization iteratively selects 

a test case that yields the greatest block coverage, then adjusts the coverage information for 

the remaining test cases to indicate their coverage of blocks not yet covered, and then 

repeats this process until all blocks coverable by at least one test case have been covered. 

To date, numerous test case prioritization techniques have been proposed, and a 

recent paper by Yoo and Harman [13] provides a comprehensive overview of these 

techniques. While the goal of the proposed techniques is to improve the effectiveness of 

regression testing, to be useful in practice, techniques should be applicable within various 

testing environments and contexts. Recent research on test case prioritization has employed 
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empirical studies to evaluate the cost-benefit tradeoffs among techniques considering 

various factors and testing contexts [14], [15], [16], [17], [18]. For instance, Do et al. [14] 

have studied regression testing under time constraints. They perform multiple experiments 

to assess the effects of time constraints on the costs and benefits of prioritization 

techniques. At first, they show that time constraints can play a significant role in 

determining both the cost-effectiveness of prioritization and the relative cost-benefit trade-

offs among techniques. Later they manipulate the number of faults present in programs to 

examine the effects of faultiness levels on prioritization and show that faultiness level 

affects the relative cost-effectiveness of prioritization techniques. Walcott et al. [18] 

present genetic algorithm to reorder test cases under time constraints. Qu et al. [17] 

consider prioritization in the context of configurable systems. They utilize combinatorial 

testing techniques to model and generate configuration samples for the regression testing. 

Studies such as these have allowed researchers and practitioners to understand 

factors that affect the assessment of techniques and to compare techniques in terms of costs 

and benefits relative to actual software systems. However, studies to date have not 

considered strategies for selecting appropriate techniques under particular circumstances as 

systems evolve. Only few studies [19], [20] have done on the problem of helping 

practitioners choose appropriate techniques under particular system and process 

constraints. Harrold et al. [20] present a coverage based predictor model that predicts the 

cost effectiveness of a selective regression testing strategy. They show that only coverage 

information cannot successfully predict the cost-effectiveness of regression test selection 

method   code modifications that has been made in the ongoing version play a significant 

role to improve the accuracy of the prediction model. Elbaum et al. [19] perform 
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experiments exploring characteristics of program structure, test suite composition, and 

changes on prioritization, and identified several metrics characterizing these attributes that 

correlate with prioritization effectiveness. The empirical results of their study provide 

insights into which prioritization technique is appropriate (or not appropriate) under 

specific testing scenarios. Unlike our approach, these two studies evaluate techniques 

solely relied on software metrics and did not consider the notion of software evolution 

context.  

Since many factors can be involved in evolving systems, selecting appropriate 

techniques for each version can be a multiple criteria decision making (MCDM) problem. 

Analytic Hierarchy Process (AHP) is one of the widely used MCDM methods, and many 

areas that involve complex decision problems, such as business, manufacturing, science 

and engineering. For instance, Kamal and Al-Harbi [21] utilize AHP in project 

management to determine the best contractors to complete the project. They construct the 

AHP hierarchy with prequalification criteria and contractors. They prioritize the criteria 

and obtain a sorted list of contractors by applying the AHP process. AHP has also been 

used in determining the best manufacturing system [22], layout design [23], and the 

evaluation of technology investment decisions [24].  

Recently AHP has been used in software engineering areas. Barcusa and 

Montibellerb [25] use AHP to allocate software development work in distributed teams. 

They develop a multi-criteria decision model to support the distributed team work 

allocation decision by using decision conferencing and multi-attribute value analysis. 

Finnie et al. [26] use AHP to prioritize software development productivity factors, and 

Perini et al. [27] compare AHP with other alternative method in prioritizing software 
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requirements. Karlsson et al. [9] investigate six methods for prioritizing requirements: 

analytic hierarchy process (AHP), hierarchy AHP, spanning tree matrix, bubble sort, binary 

search tree, and priority groups. They apply all methods to prioritize 13 well-defined 

quality requirements on a small telephony system. They showed that the analytic hierarchy 

process is the most promising method among those six methods. Yoo et al. [11] use AHP to 

improve test case prioritization techniques by employing expert knowledge, and compare 

the proposed approach with the conventional coverage-based test case prioritization 

technique. Unlike their study, in this paper, we utilize AHP to develop adaptive regressions 

testing strategy, which helps identify the best test case prioritization techniques across 

system lifetime. 
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CHAPTER 3. ADAPTIVE REGRESSION TESTING (ART) STRATEGY 

In this section, we describe AHP method and how AHP is used for creating ART 

strategy using an example. 

3.1. AHP Method 

The Analytic Hierarchy Process (AHP) is a technique for structuring and 

analyzing complex decision problems. It was developed by Thomas L. Satty in 1970. 

Since then it has been studied by many practitioners. It is used in a wide variety of multi-

objective decision situations [22], [23].  

To use AHP, decision makers first define a hierarchy that describes the problem 

they want to solve. As shown in Figure 3.1, adapted from [7], an AHP hierarchy consists 

of a goal that they want to achieve, alternatives that are available to reach the goal, and 

criteria that are factors that may be used in decision making about these alternatives. The 

criteria can be further partitioned into sub-criteria if necessary. 

 

Figure 3.1. An AHP hierarchy 
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Once decision makers define an AHP hierarchy, two types of pairwise 

comparisons are performed: between pairs of criteria and between pairs of alternatives as 

shown in Figure 3.2. When comparing pairs of criteria (the upper left table), decision 

makers assign relative importance weights to criteria; for example, C1 is given 

importance 4 relative to C4. After completing this matrix, the assigned values are 

normalized and the local priority of each criterion is produced, which is shown in the 

rightmost column of the table (and in the top row of the bottom table in the figure). The 

local priority is calculated by the following equation: 

��� �  ∑ ��	
��
���
∑ ∑ ��	
��
���

��

……………..…………………. (1) 

, where LPi is a local priority of criterion i, RWij is a relative weight of criterion i over 

criterion j, and N is the number of criteria (The local priorities of alternatives are 

calculated in the same way). 

 
Figure 3.2. An AHP example 
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Similarly, matrices that show the relative importance of alternatives for each 

criterion are constructed. In this example, five matrices are constructed because there are 

five criteria (the upper right tables). Again, the assigned values are normalized for each 

matrix, and local priorities are produced for each alternative (the resulting local priorities 

appear in the bottom table in the figure).  

After calculating the local priorities for criteria and alternatives, an M x N matrix 

is constructed, as shown in the bottom table in Figure 3.2, where M is the number of 

alternatives considered and N is the number of criteria. In our example, M is 3 and N is 5. 

Then, weighted sums of the values per technique are calculated; these are shown in the 

rightmost column (“global priorities” i). The global priority is calculated by the following 

equation:  

��� �  ∑ ������ �  ��������  …………………………… (2) 

 

,where GPk is a global priority for alternative k, N is the number of criteria, LPAkj is a 

local priority of alternative k for criterion j, LPj is a local priority of criterion j. Based on 

the weighted sum values, decision makers can determine which alternative should be 

selected. In this example, T2 (0.47) performs best and T1 (0.35) next best, with T3 (0.18) 

far behind. 

3.2. Applying AHP to Prioritization Strategy 

We now describe how AHP is applied to prioritization strategy that we use in this 

work. While we describe this in terms of test case prioritization using one of the 

programs we used in our study, the approach could be applied to any regression testing 

techniques and any system for which the required information is available. 
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As outlined in the prior section, to apply AHP to prioritization strategy, the 

following steps are required: 

1. Set a goal 

2. Identify alternatives that are available to reach the goal 

3. Identify evaluation criteria for alternatives 

4. Pairwise comparisons: between pairs of criteria and between pairs of 

alternatives 

5. Obtain global priorities of alternatives 

The following subsections describe each of these in detail. 

1) Step 1: Set a Goal: Suppose that the goal of test engineers is to choose the most 

cost-effective test case prioritization technique in application to a particular system 

version. 

2) Step 2: Identify Alternatives: To achieve this goal, test engineers consider 

several different types of prioritization techniques as alternatives. For instance, test 

engineers could consider traditional coverage-based test case prioritization techniques, 

such as total block coverage based test case prioritization, and additional block coverage 

based test case prioritization. 

3) Step 3: Identify Evaluation Criteria: As criteria, test engineers choose factors 

that are influential in evaluating test case prioritization techniques. For instance, test 

engineers could consider the cost factors that can affect the choice of techniques, such as 

the cost of applying test case prioritization technique or the cost of software artifact 

analysis. 
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4) Step 4: Pairwise Comparisons: Next, two types of pairwise comparisons are 

performed: between pairs of criteria and between pairs of techniques as we explained in 

Chapter 3.1. To do so, test engineers assign relative importance weights to criteria and 

techniques using the scale of weights they define. In this step, test engineers rely on their 

experiences and history data regarding the performance of test case prioritization 

techniques. 

5) Step 5: Obtain Global Priorities: Once test engineers assign relative weights, 

global priorities are calculated as explained in Chapter 3.1 and this step can be automated 

by building an AHP tool. Based on global priorities, test engineers determine which 

technique they should use for the particular version of the program. Steps 2 and 3 are 

dependent on an organization’s testing practices and environment. Figure 3.3 summarizes 

steps 4 and 5 graphically. As we can see from the figure, the test engineer may consider 

three knowledge sources for educated judgment. He studies previous empirical study on 

the test case prioritization technique he is using as alternatives. He obtains knowledge on 

the criteria he is going to consider and the relationship between the criterion and test case 

prioritization techniques. He investigates data of previous releases and test results history. 

He develops the knowledge of using prioritization techniques on versions with various 

degrees and types of modifications. Based on the knowledge he examines various 

software artifacts for the current version, and assigns relative weights for criteria and 

techniques. This process requires human judgment, so it is done manually. In practice, 

often organizations rely on human experts’ opinions or experienced members’ judgment 

when they make important technical decisions (e.g., which tools or techniques should be 

used), so this is not an uncommon process in software industry. 
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Figure 3.3. AHP process 
 

The rest of the processes can be automated. The AHP tool takes relative weights 

of criteria and techniques, and produces matrices shown in Figure 3.1 and 3.2. Then, 

finally the test engineer can decide which technique should be used based on global 

priorities that the tool produced. 
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CHAPTER 4. EMPIRICAL STUDY 

To investigate the potential use of the Analytic Hierarchy Process (AHP) method 

in the adaptive regression testing strategy, we performed a controlled experiment 

considering the following research question: 

RQ: Is AHP effective for selecting appropriate test case prioritization 

techniques across system lifetime? 

The following subsections present, for this experiment, our objects of analysis, 

variables and measures, experiment setup and design, and threats to validity. Following 

this presentation, in Chapter 5 we present our data and analysis, in Chapter 6 we address 

threats to validity, and in Chapter 7 we discuss practical implications of the results. 

4.1. Objects of Analysis 

We considered five Java programs obtained from the SIR infrastructure [28] as 

our objects of analysis: ant, xmlsecurity, jmeter, nanoxml, and galileo. Ant is a Java-based 

build tool, jmeter is a load testing tool for client/server application, and xml-security 

provides security functionality for XML data. nanoxml is a small XML parser for Java, 

and galileo is a Java bytecode analyzer. Several sequential versions of each of these 

programs are available. The first three programs are provided with JUnit test suites, and 

the last two are provided with TSL (Test Specification Language) test suites [29]. 

Table 4.1 lists, for each of our objects of analysis, data on its associated 

“Versions” (the number of versions of the object program), “Classes” (the number of 

class files in the latest version of that program), “Size (KLOCs)” (the number of lines of 

code in the latest version of the program), and “Test Cases” (the number of test cases 
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available for the latest version of the program). To study the research question we require 

fault data, so we utilized mutation faults provided with the programs [30]. The rightmost 

column, “Mutation Faults”, is the total number of mutation faults of the program 

(summed across all versions). 

Objects Versions Classes Size 
(KLOCs) 

Test 
Cases 

Mutation 
Faults 

ant 9 914 61.7 877 412 

jmeter 6 434 42.2 78 386 

xml-sec 4 145 15.9 83 246 

nanoxml 6 64 3.1 216 204 

galileo 16 68 14.5 912 2494 

Table 4.1. Experiment objects and associated data 
 

4.2. Variables and Measures 

1) Independent Variable: To investigate our research question, we manipulate one 

independent variable: test case prioritization technique application mapping strategy, 

which assigns specific test case prioritization techniques to a specific sequence of 

versions Si, Si+1 , . . . Sj of system S. As test case prioritization techniques, we utilize 

original order (Orig: the order in which test cases are executed in the original testing 

scripts provided with the object programs), random order (Rand: in our experiment, 

averages of runs of 30 random orders), and two test case prioritization heuristics total 

block coverage (Tcov) and additional block coverage (Acov) prioritization techniques 

(explained in Chapter 2). 

We consider five mapping strategies as follows: 

• Tcov-all: Use of the total coverage technique across versions (a control) 
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• Acov-all: Use of the additional coverage technique across versions (a second 

control) 

• Rand-all: Use of the random technique across versions (a third control) 

• Orig-all: Use of the original technique across versions (a fourth control; it is used 

as a baseline strategy) 

• AHP: Evolutionary adaptation of techniques following the AHP method described 

in Chapter 3. The AHP method selects the best technique among four 

prioritization techniques (Tcov, Acov, Rand, and Orig) for each version based on 

the criteria we identifies and expert’s opinion. More details on how we applied 

AHP are described in Chapter 4.3 

2) Dependent Variable and Measures: Our dependent variable is a relative cost-benefit 

value produced by applying EVOMO economic model presented in [31] (see Appendix 

A), using a further calculation described below (Equation 3). The cost and benefit 

components are measured in dollars. To determine the relative cost-benefit of 

prioritization technique T with respect to baseline technique base, we use the following 

equation: 

(BenefitT − CostT ) − (Benefitbase − Costbase) ……………………………………(3) 

When this equation is applied, positive values indicate that T is beneficial 

compared to base, and negative values indicate otherwise. We used the original technique 

as a baseline in this experiment. This means that the Orig-all strategy functions as a 

baseline strategy when we consider the cost-benefit values across all versions of the 

program. 
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EVOMO1 involves two equations as shown in Equations 4 and 5: one that 

captures costs related to the salaries of the engineers who perform regression testing (to 

translate time spent into monetary values), and one that captures revenue gains or losses 

related to changes in system release time (to translate time-to-release into monetary 

values). 

���� � salary � ! ��"�#$�%� & �'��("�")"����%� & *"�#(�+,(%-,�%�.�%� &/
��0

1%��"-2,#(���%�� … … … … … … … … … … … … … … … … … … … … … … … … … … … … �4�  

5"."6%�   �

*"7"."#" � 8 9-"(%7"*:)%1"�%� ; <�"�#$�%� & �'��("�")"����%� &
/

��0

,.,(:�%��% ; 1� & *#.)">?.%@#"�%� & �"��AB">#�%�.�%� & *"�#(�+,(%-,�%�.�%�     &

6,#(�C"�">�%�.C"(,:�%�DE … … … … … … … … … … … … … … … … … … … … … … … … �5�  

Significantly, the model accounts for costs and benefits across entire system 

lifetimes, rather than on snapshots (i.e. single releases) of those systems, through 

equations that calculate costs and benefits across entire sequences of system releases. 

The major cost components that EVOMO captures are as follows: costs for applying 

regression testing techniques, costs associated with missed faults, costs for artifact 

analysis, costs of delayed fault detection feedback, and costs associated with obsolete 

tests. 

4.3. Setup and Procedure 

To measure costs of delayed fault detection feedback and costs for applying 

regression testing techniques, we required object programs containing faults. Similar to 

our early studies [14], [32], to obtain the fault data required to investigate our research 
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question, for each version of each program we randomly selected a mutant group from 

the set of that version’s mutation faults. Each mutant group contained at most 10 mutants. 

To apply AHP, we followed steps described in Chapter 3. As a human tester, one 

graduate student who has three years of software industry experience performed the AHP 

processes. The student considered the following criteria to evaluate prioritization 

techniques: 

• Cost of applying test case prioritization technique: the time required to run a test 

case prioritization algorithm 

• Cost of software artifact analysis: the costs of instrumenting programs and 

collecting test execution traces 

• Cost of delayed fault detection: the waiting time for each fault to be exposed 

while executing test cases under a test case prioritization technique 

• Cost of missed fault: the time required to correct missed faults 

Next, the student performed pairwise comparisons using the scale of weights as 

shown in Table 4.2, which has been commonly used by others [7], [11]. When the student 

assigned relative weights, he utilized history data regarding the performance of test case 

prioritization techniques observed from previous several empirical studies [14], [15], 

[32], [33].  

To support the rest of the processes, we implemented a Java Swing-based AHP 

tool. The AHP tool takes relative weights of criteria and techniques, and produces local 

and global priorities based on the AHP algorithm [7]. Finally the student determined 

which technique should be used for each version of the program using global priorities. 
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Weight Definition of Weight 

1 equally important 
3 moderately more important 
5 strongly more important 
7 very strongly more important 
9 Extremely more important 

Table 4.2. Scale of weights 

Often software companies have time pressure with the product release, due to the 

constraint budgetary problem and competitive software market. In practice, situations in 

which time constraints intervene to affect product release are frequent in the software 

industry, and typically software companies cut back on testing activities in order to 

ensure timely release of their product. Further, the degree of time constraints can vary as 

systems evolve. For instance, for a certain release, a company could suffer more time 

constraints compared to other releases due to the complex feature addition or the 

technical personnel loss. Thus, in this experiment, we consider the situation with time 

constraints that vary with each version when we evaluate test case prioritization 

techniques. 

To simulate this situation, for each of the test case prioritization techniques, we 

randomly assigned the level of time constraints (25%, 50%, or 75%) for each version and 

foreshortened the test execution process. For example, as shown in Figure 4.1,in the first 

set of random assignment (Run 1) we randomly pick 50% time constraint for version one 

(V1). It means that, we run 50% test cases of the current test suite of the version.  
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Figure 4.1. Random assignment of time constraint level 
  

In the same way we choose 25% time constraint for version two (V2). It means 

that we reduce the test suite by 25%. So we run 75% of total test cases. We follow the 

same process for subsequent version of the program. It ends our run 1. 

We ran five sets of random assignments across all versions for each program, 

applied the AHP processes we just explained, and collected cost-benefit values for all 

strategies. As we described in Chapter 4.2, for Tcov-all strategy, we run Tcov (total block 

coverage) prioritization technique for each version of the program under test (Figure 4.2). 

For Acov-all, Rand-all and Orig-all strategy, we run the Acov, Rand, Orig technique 

respectively for each version of the program. For AHP strategy, we conduct our AHP 

process and run the AHP tool. We run the technique chosen by the AHP tool. For 

instance, our AHP tool chose Tcov technique for version 1 and Orig technique for 

version 2 and so on. 
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Figure 4.2. Regression testing strategy 
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CHAPTER 5. DATA AND ANALYSIS 

In this section, we present the results of our study. We summarize the data in 

Tables 5.1 to 5.5. Each table consists of five sub tables, showing experiment results that 

were collected by running five sets of random assignments (run 1 through run 5 in the 

table) of three time constraint levels for each version of the program. Since the Orig-all 

strategy is the baseline used in our relative cost-benefit calculation, results for that 

strategy are not shown explicitly in the tables. 

All of the data in these tables shows the relative cost-benefit value in dollar with 

respect to the baseline technique (Orig) as defined according to the EVOMO model. 

Higher values indicate greater cost-benefits.  Within each sub table in the tables, the first 

rows are labeled with five runs, for each run listing four test case prioritization testing 

strategies. Rows are labeled with versions of the program and the last row (“Total”) 

shows the sum of the cost-benefit values for all versions. Now, we describe each of these 

tables. 

Table 5.1and 5.2 show the results for ant. The results vary across versions, but the 

total cost-benefit values indicate that the prioritization techniques selected by AHP were 

more cost-effective than those used by the control strategies except for one case (Rand-all 

in run 3 was better than AHP). In particular, the cost-benefit value gap between the AHP 

strategy and the two control strategies (Tcov-all and Acovall) is large, and Tcov-all was 

even worse than the baseline strategy in some cases (run 1 and run 4). Among the control 

strategies, Rand-all produced the best results. 
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Run 1 

Version Time constraint 
Tcov-

all 
Acov-

all 
Rand-

all 
AHP 

V1 50% 135.00 77.00 -40.00 Rand -40.00 
V2 25% 205.00 209.00 139.00 Acov 209.00 
V3 75% -58.00 -62.00 48.00 Rand 48.00 
V4 50% -66.00 14.00 0.00 Acov 14.00 
V5 75% -99.00 -133.00 26.00 Rand 26.00 
V6 25% -142.00 -180.00 7.00 Rand 7.00 
V7 50% -160.00 -201.00 32.00 Rand 32.00 
V8 25% -107.00 -248.00 146.00 Rand 146.00 

Total   -292.00 -524.00 358.00   442.00 
Run 2 

Version Time constraint 
Tcov-

all 
Acov-

all 
Rand-

all 
AHP 

V1 75% 367.39 231.99 101.73 Rand 101.73 
V2 25% 205.26 208.95 138.99 Acov 208.95 
V3 50% -151.07 91.89 49.35 Rand 49.35 
V4 75% -155.30 -71.81 -57.90 Rand -57.90 
V5 50% -156.83 -190.82 17.52 Rand 17.52 
V6 25% -142.06 -179.54 7.24 Rand 7.00 
V7 75% 275.13 234.27 324.06 Rand 324.06 
V8 25% -107.31 -248.32 146.06 Rand 146.06 

Total   135.21 76.59 727.05   796.77 
Run 3 

Version Time constraint 
Tcov-

all 
Acov-

all 
Rand-

all 
AHP 

V1 25% -18.94 -70.46 -98.40 Rand -98.40 
V2 50% 206.77 208.91 79.32 Acov 208.91 
V3 75% -57.83 -61.58 47.84 Rand 48.00 
V4 25% 12.02 12.65 42.05 Acov 13.00 
V5 75% -99.26 -133.39 25.57 Rand 26.00 
V6 50% -37.32 -112.78 87.30 Tcov -37.32 
V7 25% -141.54 -182.70 47.97 Rand 48.00 
V8 50% 143.29 115.57 291.87 Rand 291.87 

Total   7.19 -223.78 523.53   500.06 

Table 5.1. Experiment results for ant: relative cost-benefit values (dollars) 
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Run 5 

Version Time constraint Tcov-all 
Acov-

all 
Rand-

all 
AHP 

V1 75% 367.39 231.99 101.73 Rand 101.73 
V2 50% 206.77 208.91 79.32 Acov 208.91 
V3 25% -59.00 91.00 46.00 Rand 46.00 

V4 75% -155.30 -71.81 -57.90 Rand -57.90 
V5 25% -145.38 1.00 31.51 Rand 32.00 

V6 50% -37.32 -112.78 87.30 Tcov -37.32 
V7 75% 275.13 234.27 324.06 Rand 324.06 
V8 50% 143.29 115.57 291.87 Rand 291.87 

Total   595.58 698.14 903.88   909.35 
 

Table 5.2. Experiment results for ant: relative cost-benefit values (dollars) 
 

Table 5.3 shows the results for jmeter. Similar to the results on ant, the AHP 

strategy was more cost effective than the control strategies except for run 2 and run 5. 

Rand-all and Acov-all were better than AHP in run 2 and 5 respectively. Among the 

control strategies, Acov-all produced the best results (3 out of 5 runs), Rand-all 

performed relatively well (2 out of 5 runs), but Tcov-all was even worse than the baseline 

strategy in most cases. The cost-benefit values of Acov-all were significantly higher than 

the other two control strategies in three runs- run 3, 4 and 5. Tcov-all’s cost-benefit 

values were considerably lower than the Orig-all strategy in run 2, 3 and 4. 

Run 4 

Version Time onstraint 
Tcov-

all 
Acov-

all 
Rand-

all 
AHP 

V1 50% 135.11 76.90 -39.81 Rand -39.81 
V2 75% 55.41 325.98 160.74 Acov 325.98 
V3 25% -59.00 91.00 46.00 Rand 46.00 
V4 50% -65.83 13.65 -0.21 Acov 14.00 
V5 25% -145.38 -179.41 31.51 Rand 32.00 
V6 75% 336.66 406.57 560.18 Rand 406.57 
V7 50% -160.07 -201.08 31.89 Rand 31.89 
V8 75% -127.91 115.08 214.92 Rand 214.92 

Total   -31.01 648.69 1005.22   1031.55 
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Run 1 

Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% 15.00 17.00 50.00 Acov 17.00 

V2 50% -51.00 153.00 93.00 Acov 153.00 

V3 75% 130.00 266.00 277.00 Rand 277.00 

V4 50% 121.00 31.00 5.00 Tcov 121.00 

V5 25% -196.00 -196.00 -135.00 Acov -196.00 

Total   19.00 271.00 290.00   372.00 

Run 2 

Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 50% 47.04 134.78 179.63 Acov 134.78 

V2 25% -84.55 -84.74 -6.20 Acov -84.74 

V3 75% 130.03 265.52 276.71 Rand 276.71 

V4 25% -64.17 -64.51 -142.30 Tcov -64.17 

V5 50% -174.45 -144.16 -135.73 Tcov -174.45 

Total   -146.11 106.90 172.11   88.14 

Run 3 

Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% 15.00 17.00 50.00 Rand 50.00 

V2 50% -51.00 153.00 93.00 Acov 153.00 

V3 25% -66.00 22.00 -36.00 Acov 22.00 

V4 75% 34.85 273.80 5.35 Acov 274.00 

V5 50% -174.45 -144.16 -135.73 Tcov -174.45 

Total   -241.61 321.63 -23.38   324.55 

Run 4 

Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 75% -73.31 115.87 97.24 Acov 115.87 

V2 50% -51.00 153.00 93.00 Acov 153.00 

V3 25% -66.00 22.00 -36.00 Acov 22.00 

V4 75% 34.85 273.80 5.35 Acov 273.80 

V5 25% -196.00 -196.00 -135.00 Acov -196.00 

Total   -351.46 368.67 24.59   368.67 

Run 5 

Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% 15.00 17.00 50.00 Rand 50.00 

V2 75% 170.62 345.14 272.15 Acov 345.14 

V3 50% 70.67 172.68 101.72 Rand 101.72 

V4 75% 34.85 273.80 5.35 Acov 273.80 

V5 25% -196.00 -196.00 -135.00 Acov -196.00 

Total   95.14 612.62 294.23   574.67 

Table 5.3. Experiment results for jmeter: relative cost-benefit values (dollars) 
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Table 5.4 shows the results for xml-security. As the results show, the AHP 

strategy was more cost-effective than the two control strategies (Tcov-all and Rand-all), 

but it was not better than the Acov-all strategy. Unlike the results on ant and jmeter, 

Tcov-all produced better results than the baseline strategy. It even produced better result 

than the Rand-all strategy in all five runs. 

Run 1 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 75% 177.00 274.00 88.00 Acov 274.00 

V2 50% 26.00 117.00 -44.00 Acov 117.00 

V3 25% 170.00 170.00 71.00 Tcov 170.00 

Total   373.00 561.00 115.00   561.00 

Run 2 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% 37.00 38.00 6.00 Acov 38.00 

V2 50% 26.00 117.00 -44.00 Acov 117.00 

V3 75% 498.75 545.99 315.02 Acov 545.99 
Total   561.75 700.99 277.02   700.99 

Run 3 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 50% 268.11 330.75 202.70 Acov 330.75 
V2 75% -48.18 13.86 -189.91 Acov 13.86 
V3 25% 170.00 170.00 71.00 Tcov 170.00 

Total   389.92 514.61 83.79   514.61 

Run 4 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% 37.00 38.00 6.00 Acov 38.00 

V2 50% 26.00 117.00 -44.00 Acov 117.00 

V3 75% 498.75 545.99 315.02 Tcov 499.00 

Total   561.75 700.99 277.02   654.00 

Run 5 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 50% 268.11 330.75 202.70 Acov 331.00 

V2 25% 21.67 22.31 -62.38 Acov 22.31 
V3 75% 498.75 545.99 315.02 Tcov 499.00 

Total   788.53 899.05 455.34   852.31 

Table 5.4. Experiment results for xml-security: relative cost-benefit values (dollars) 
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Table 5.5 and 5.6 show the results for nanoxml. Overall, the AHP strategy 

outperformed all control strategies except for one case (Acov-all in run 2 was better than 

AHP). Similar to the results on xml-security, Tcov-all produced better results than the 

baseline strategy.  

Run 1 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 50% 931.00 966.00 975.00 Rand 975.00 

V2 75% 468.00 778.00 596.00 Acov 778.00 

V3 25% -43.00 40.00 -27.00 Acov 40.00 

V4 75% -48.00 -50.00 1.00 Tcov -48.00 

V5 25% -27.00 39.00 -40.00 Acov 39.00 

Total   1281.00 1773.00 1505.00   1784.00 

Run 2 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 75% 928.09 961.65 859.79 Acov 859.79 
V2 50% 564.71 789.52 682.78 Acov 789.52 
V3 25% -43.25 39.86 -26.94 Acov 39.86 
V4 75% -47.63 -49.75 0.54 Tcov -47.63 
V5 50% 450.73 541.12 453.12 Acov 541.12 

Total   1852.66 2282.39 1969.28   2182.65 

Run 3 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% -59.29 -22.67 -14.67 Rand -15.00 

V2 50% 564.71 789.52 682.78 Acov 789.52 
V3 75% 163.25 657.23 525.29 Acov 657.23 
V4 75% -48.00 -50.00 1.00 Acov -50.00 

V5 25% -27.00 39.00 -40.00 Acov 39.00 

Total   593.66 1413.09 1154.39   1420.76 

Run 4 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 50% 931.00 966.00 975.00 Rand 975.00 

V2 75% 468.00 778.00 596.00 Acov 778.00 

V3 50% 509.00 563.00 482.00 Acov 563.00 

V4 75% -48.00 -50.00 1.00 Tcov -48.00 

V5 25% 451.00 541.00 453.00 Acov 541.00 

Total   2311.00 2798.00 2507.00   2809.00 

Table 5.5. Experiment results for nanoxml: relative cost-benefit values (dollars) 
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Run 5 

Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 50% 931.00 966.00 975.00 Rand 975.00 

V2 25% -255.00 -5.00 -111.00 Acov -5.00 

V3 75% 163.25 657.23 525.29 Acov 657.23 

V4 25% -47.00 -49.00 2.00 Acov -49.00 

V5 50% 450.73 541.12 453.12 Acov 541.12 

Total   1242.98 2110.35 1844.41   2119.35 

Table 5.6. Experiment results for nanoxml: relative cost-benefit values (dollars) 

From the Table 5.7 to 5.11 show the result for galileo. The results show that the 

AHP strategy was more cost-effective than control strategies except for one case (Acov-

all in run 3 was better than AHP). Acov-all produced better results than Rand-all strategy 

in all five runs. Tcov-all produced worse results than the baseline strategy in all cases. 

 
Run 1 

Version 
Time 

constraint 
Tcov-

all 
Acov-

all 
Rand-

all 
AHP 

V1 50% 172.00 691.00 580.00 Acov 691.00 
V2 25% -115.00 366.00 297.00 Acov 366.00 
V3 50% 235.00 526.00 381.00 Acov 526.00 
V4 75% 168.00 309.00 380.00 Rand 380.00 
V5 25% -3.00 56.00 9.00 Tcov -3.00 
V6 75% -115.00 344.00 283.00 Acov 344.00 
V7 50% -186.00 216.00 130.00 Acov 216.00 
V8 25% -75.00 379.00 289.00 Acov 379.00 
V9 50% -311.00 204.00 118.00 Acov 204.00 
V10 75% -77.00 456.00 151.00 Acov 456.00 
V11 25% -4.00 575.00 528.00 Acov 575.00 
V12 50% -105.00 148.00 154.00 Acov 148.00 
V13 75% -72.00 112.00 250.00 Rand 250.00 
V14 50% -86.00 -251.00 -249.00 Tcov -86.00 
V15 75% -80.00 211.00 293.00 Acov 211.00 
Total   -654.00 4342.00 3594.00   4657.00 

Table 5.7. Experiment results for galileo: relative cost-benefit values (dollars) 
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Run 2 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% -51.15 461.23 400.86 Acov 461.23 
V2 50% -114.22 368.45 251.21 Acov 368.45 
V3 25% 50.89 242.29 187.15 Rand 187.15 
V4 75% -70.59 168.06 309.35 Rand 309.35 
V5 50% 667.06 699.69 564.62 Tcov 667.06 
V6 75% -114.67 343.69 282.93 Acov 343.69 
V7 25% -97.62 224.29 170.15 Acov 224.29 
V8 50% -126.05 364.02 246.35 Acov 364.02 
V9 25% -248.82 223.81 145.96 Acov 223.81 
V10 75% -76.57 455.59 151.01 Acov 455.59 
V11 50% -173.85 578.74 462.42 Acov 578.74 
V12 25% -3.11 135.87 177.39 Acov 135.87 
V13 75% -72.24 111.84 250.43 Rand 250.43 
V14 25% -82.61 -216.30 -123.53 Tcov -82.61 
V15 75% -80.07 210.66 293.32 Acov 210.66 
Total   -593.63 4371.95 3769.61   4697.72 

Table 5.8. Experiment results for galileo: relative cost-benefit values (dollars) 

Run 3 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 75% -125.47 715.47 515.06 Acov 715.47 
V2 50% -114.22 368.45 251.21 Acov 368.45 
V3 75% -74.62 451.67 318.22 Acov 451.67 
V4 25% 4.90 55.89 13.00 Rand 13.00 
V5 50% 667.06 699.69 564.62 Tcov 667.06 
V6 25% -49.00 228.00 246.00 Acov 228.00 

V7 75% -76.04 284.67 250.32 Acov 284.67 
V8 50% -126.05 364.02 246.35 Acov 364.02 
V9 75% -76.23 469.01 374.21 Acov 469.01 
V10 25% -74.00 405.00 256.00 Acov 405.00 

V11 50% -173.85 578.74 462.42 Acov 578.74 
V12 75% -84.18 228.27 232.47 Acov 228.27 
V13 25% -85.00 -57.00 120.00 Rand 120.00 

V14 75% -122.05 273.29 187.65 Tcov -122.05 
V15 25% -111.36 -125.43 64.24 Rand -111.36 
Total   -620.11 4939.75 4101.76   4659.94 

Table 5.9. Experiment results for galileo: relative cost-benefit values (dollars) 
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Run 4 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 25% 172.00 691.00 580.00 Acov 691.00 

V2 75% -115.00 366.00 297.00 Acov 366.00 

V3 25% 235.00 526.00 381.00 Acov 526.00 

V4 50% 4.90 55.89 13.00 Rand 13.00 
V5 75% -3.00 56.00 9.00 Tcov -3.00 

V6 50% -39.87 272.38 261.82 Tcov -39.87 
V7 25% -186.00 216.00 130.00 Acov 216.00 

V8 75% -75.00 379.00 289.00 Acov 379.00 

V9 25% -311.00 204.00 118.00 Acov 204.00 

V10 50% -74.00 405.00 256.00 Acov 405.00 

V11 75% -173.85 578.74 462.42 Acov 578.74 
V12 25% -105.00 148.00 154.00 Acov 148.00 

V13 50% -85.00 -57.00 120.00 Rand 120.00 

V14 25% -86.00 -251.00 -249.00 Tcov -86.00 

V15 50% -111.36 -125.43 64.24 Tcov 64.24 
Total   -953.18 3464.58 2886.47   3582.11 

Table 5.10. Experiment results for galileo: relative cost-benefit values (dollars) 

Run 5 
Version Time constraint Tcov-all Acov-all Rand-all AHP 

V1 50% 172.00 691.00 580.00 Acov 691.00 

V2 25% -115.00 366.00 297.00 Acov 366.00 

V3 75% -74.62 451.67 318.22 Acov 451.67 
V4 75% 168.00 309.00 380.00 Rand 380.00 

V5 25% -3.00 56.00 9.00 Tcov -3.00 

V6 75% -115.00 344.00 283.00 Acov 344.00 

V7 25% -97.62 224.29 170.15 Acov 224.29 
V8 25% -75.00 379.00 289.00 Acov 379.00 

V9 50% -311.00 204.00 118.00 Acov 204.00 

V10 75% -77.00 456.00 151.00 Acov 456.00 

V11 50% -173.85 578.74 462.42 Acov 578.74 
V12 50% -105.00 148.00 154.00 Acov 148.00 

V13 75% -72.00 112.00 250.00 Rand 250.00 

V14 25% -82.61 -216.30 -123.53 Tcov -82.61 
V15 75% -80.00 211.00 293.00 Acov 211.00 

Total   -1041.7 4314.41 3631.26   4598.10 

Table 5.11. Experiment results for galileo: relative cost-benefit values (dollars) 
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The total cost savings across all versions are one measure that shows the 

effectiveness of the strategies, but this measure can be misleading because abnormal cost-

benefit values for particular version could affect the entire outcome. Thus, we examined 

how often the strategies produce the best results across all versions. Figure 5.1 presents 

bar graphs of the results. The figure contains five subfigures that present results for each 

of the object programs, and each subfigure contains bar graphs for four prioritization 

strategies showing the total number versions that produced the best results by those 

strategies, for the given object program and five runs. For instance, in run 1 for ant, 

Tcov-all performed best for one version (version 1 in Table 5.1) and Acov-all performed 

best for two versions (versions 2 and 4 in Table 5.1). 

 

Figure 5.1. The total number of versions that produced the best results. 
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Overall, the AHP strategy produced the best results (20 out of 25 cases were 

better than the control strategies – in total, we have the 20 observed data points.) and the 

Acov-all strategy performed relatively well compared to other control strategies (11 out 

of 25 cases performed best), but the trend varied across programs.  

In the cases of ant and nanoxml, the AHP strategy was consistently better than all 

three strategies across all runs with one exception. In the case of xml-security, Acov-all 

was slightly better than AHP.  

Comparing the control strategies, Rand-all outperformed others in ant, and it was 

even better than AHP for one case (run 3). However, in other cases, Rand-all did not 

perform well. In particular, in the case of xml-security, Rand-all did not produce any 

single best result. Overall, Tcov-all performed worst. Only in three programs (ant, jmeter, 

and xml-security), it produced the best result for one version. In other programs, it did not 

produce any single best result. 

Overall, the trends we observed from this figure are consistent with those we 

observed from the above five tables, but we also found some differences. While AHP 

outperformed 18 out 25 cases when we considered the total cost-benefit values, it 

outperformed 20 out of 25 cases when we considered the total number of versions that 

performed best. In the case of jmeter, the total cost-benefit of Acov-all was higher than 

that of AHP, but it did not perform better than AHP when we compared the number of 

versions that produced the best results by Acov-all and AHP. 
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CHAPTER 6. THREATS TO VALIDITY 

This section describes the construct, internal and external validity threats to the 

validity of our study. 

6.1. Construct Validity 

Two issues involve threats to construct validity. (1) We identified four evaluation 

criteria to apply the AHP method mainly considering the costs that are associated with 

test case prioritization techniques. Other evaluation criteria, such as risks for estimated 

cost-benefit factors, applicability of a technique to a certain type of software artifact, and 

relevance to the specific testing process, could be considered. (2) The pairwise 

comparison value in AHP is subject to human judgment (in our case, a graduate student) 

and thus the results can be biased by personnel’s knowledge and experience. 

6.2. Internal Validity 

The inferences we made about the effectiveness of AHP could have been affected 

by potential faults in our experiment tools. To control this threat, we validated our AHP 

tool using several examples. Other tools were from SIR [28], and they have been 

validated through numerous experiments. 

6.3. External Validity 

Three issues limit the generalization of our results. (1) MCDM approach and test 

case prioritization technique representativeness. In this study, we considered only one 

type of MCDM approaches and two conventional test case prioritization techniques, so 

our results cannot be generalized because they are not representative of MCDM 



 

33 

approaches and test case prioritization techniques. (2) Object program and mutation fault 

representativeness. The object programs are of small and medium size. Complex 

industrial programs with different characteristics may be subject to different cost-benefit 

tradeoffs. We used mutation faults generated by our mutation tool, but there is some 

evidence that mutation faults can be representative of real faults [30], [34]. Control for 

these threats can be achieved only through additional studies with wider populations of 

programs and faults, and different prioritization techniques.
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CHAPTER 7. DISCUSSION 

We now draw on the results of our analyses, together with additional consideration 

of our data, to derive practical implications of these results. 

ART strategy results: Our results indicate that the prioritization techniques selected 

by AHP across the entire system lifetime can be more cost-effective than those used by the 

control approaches with the exception of some cases.  

Through the empirical study, we observed the following trends. Overall, the AHP 

strategy’s performance was stable across all programs for all runs, and the Acov-all 

strategy also produced better results compared to other control strategies and in some cases 

(run 4 and 5 in xml-security and run 3 in galileo), it even outperformed the AHP strategy. 

However, it was not as stable as the AHP strategy. For instance, on ant for all runs, the 

Acov-all strategy was worse than all other strategies, and on jmeter, it was close to the 

worst case for half of the cases. 

In the case of the Rand-all strategy, it was better than the Tcov-all strategy in most 

cases (except for all cases in xml-security). However, since our results for the random 

technique involve averages of multiple runs, individual random orders may vary widely in 

performance. The Tcov-all strategy was not worst for all cases, but overall performance is 

not preferable to others. In particular, in several cases (two runs in ant, three runs in jmeter, 

and all runs in galileo), it was even worse than the baseline strategy. 

Practical implications of the results: So far we have discussed our major findings 

and the results of our experiment. Now, we discuss practical implications of our results. 

From several prior empirical studies of prioritization [14], [15], [32], [33], we learned that 

typically prioritization heuristics are more cost-effective compared to control techniques, 
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but we also learned that various factors related to software, its associated artifacts (e.g., 

program size, test suite size, test suite granularity, and the amount of change between 

versions), and organization’s testing environment could affect the relationships between 

techniques. Thus, adopting different types of test case prioritization techniques considering 

such factors is potentially a practical approach for organizations that have time pressure 

with the product release, due to the constraint budgetary problem and competitive software 

market. 

To our knowledge, our study is the first attempt to investigate the effectiveness of 

adaptive regression testing strategy. Our proposed strategy produced promising results, and 

we believe that our empirical methodology and findings from our study provide insights 

into how such investigation can be performed and what types of MCDM approaches and 

evaluation criteria can be considered. 
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CHAPTER 8. CONCLUSION 

In this paper, we have investigated an adaptive regression testing (ART) strategy 

that utilizes one of the multiple criteria decision making (MCDM) approaches, Analytic 

Hierarchy Process (AHP), and presented an empirical study assessing the ART strategy. 

Our results show that our ART strategy can assist researchers and practitioners in choosing 

cost-effective techniques across system lifetime.  

As with all empirical studies, our study also has several limitations as we discussed 

in Chapter 6. These limitations can be addressed only through further studies of additional 

artifacts and regression testing techniques. For future work, we intend to investigate ART 

strategies further considering several aspects. 

First, in this study, we chose the AHP method to implement an ART strategy, but 

there are many other MCDM approaches available including Weighted Sum Model and 

modified AHP methods. Thus, the next natural step is to investigate whether different types 

of approaches help improve ART strategies. 

Second, in this study, we used only 4 evaluation criteria, but in order to limit threats 

to validity as we addressed in Chapter 6, we intend to investigate ART strategies 

considering other types of evaluation criteria. 

Third, we considered only two test case prioritization heuristics, but we intend to 

investigate ART strategies that employ other types of prioritization techniques including 

other regression testing techniques, such as regression test selection techniques. Also, we 

intend to develop new regression testing techniques so that we can improve our chances of 

detecting faults under time-constrained situations. 
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APPENDIX. EVOLUTIONARY AWARE ECONOMIC MODEL 

(EVOMO) 

EVOMO has two equations as shown in Equation 6 and 7: 

1. To calculate the cost of applying regression testing process. 

���� � PS � 8<�I�%� & �J��%� & �JK�%� & '�%� � �+� & ��%� � CF�%�D
/

��0
… … … … . . �6� 

2. To calculate the benefits gained from applying the regression testing process. 

5"."6%� � REV � ! �AC�%� ; <�I�%� & �J��%� & �JK�%�&,�/�% ; 1� � ���/�% ;/
��0

1�& ,SK�% ; 1� � ��SK�% ; 1� & �T�%� & '�%� � <�A�%� & �+��%� & �+U�%�D &

CD�%��D … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . �7�  

The term and coefficients are described as follows: 

• Cost of test setup (CS). This is the costs associated with setting up the system for 

testing, compiling the version under test, and configuring test drivers and scripts. 

• Cost of identifying obsolete test cases (COi ). This is the costs associated with 

manually inspect a version and its test cases. 

• Cost of repairing obsolete test cases (COr ). This is the costs to examine the 

specifications, test cases, and test drivers, and modify the test cases for the version 

under test.  

• Cost of supporting analysis (CA). This is the costs to instrument programs (CAin) 

and collect test traces (CAtr ). 

• Cost of technique execution (CR). This is the time needed to execute a regression 

testing technique itself. 

• Cost of test execution (CE). This is the time needed to execute test cases. 
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• Cost of test result validation (automatic via differencing) (CVd ). This is the 

time needed to run a differencing tool on test outputs as test cases are executed. 

• Cost of test result validation (human via inspection) (CVi ). This is the time 

required by engineers to inspect test output comparisons. 

• Number and cost of missing faults (c and CF). Regression testing technique could 

not find all kinds of faults in the system. It could fail to discover some of them. 

There is a cost associated with each missing fault. To estimate the cost of missed 

faults, we follow the earlier study (Do, 2006), choose 1.5 person hours to localizing 

and correcting one fault. 

• Cost of delayed fault detection feedback (CD). To calculate the cost we follow an 

earlier study (Do, 2006). We measure the rate of fault detection of a test suite. 

Then, we translate this rate into the cumulative cost (in time) of waiting for each 

fault to be exposed while executing test cases under a particular order, defined as 

delays. 

• Revenue (REV). We calculate the revenue by utilizing revenue values cited in a 

survey of software products ranging from $116,000 to $596,000 per employee (Do, 

2006). Because of the small size of the programs, we consider the least revenue 

value mentioned, and an employee headcount of ten. 

• Programmer salary (PS). We consider a figure of $100 per person-hour, obtained 

by adjusting an amount cited in (Do, 2006) by an appropriate cost of living factor. 

• Expected time-to-delivery (ED). In our empirical work we rely on comparisons of 

techniques to a control suite using Equation 2; this approach cancels out the ED 

values because these are the same for all cases considered. 


