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ABSTRACT

When software systems evolve, different amounts of code modifications can be
involved in different versions. These factors can affect the costs and benedisassion
testing techniques, and thus, there may be no single regression testing tetttatiguihe
most cost-effective technique to use on every version. To date, many regressign tes
techniques have been proposed, but no research has been done on the problem of helping
practitioners systematically choose appropriate techniques on new verssysteass
evolve. To address this problem, we propose adaptive regression testing (ARRg)estra
that attempt to identify the regression testing techniques that will beatecost-effective
for each regression testing session considering organization’s situationstizugd tes
environment. To assess our approach, we conducted an experiment focusing on test case
prioritization techniques. Our results show that prioritization techniquesesleg our

approach can be more cost-effective than those used by the control approaches.
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CHAPTER 1. INTRODUCTION

Regression testing is an important and necessary activity that can mthetai
guality of modified software systems. To date, many regression testimggees have
been proposed. For instance, regression test selection techniques (e.g., [1),i&jusd
testing costs by selecting test cases that are necessary to tetiedhprogram. Test case
prioritization techniques (e.g., [4], [5], [6]) reorder test cases, schedabhgdses with the
highest priority according to some criterion earlier in the testing pgdoegeld benefits
such as providing earlier feedback to testers and earlier fault detection.

While this research has made considerable progress in regressionaesasgone
important problem has been overlooked. As systems evolve, the types of maintenance
activities that are applied to them change. Differences between veraroms/olve
different amounts and types of code modifications, and these changes camaffests
and benefits of regression testing techniques in different ways. Thus, thebe may
single regression testing technique that is the most cost-effectivegqeeliaiuse on every
version. For instance, as we observed from our study, prioritization techniqueotksit
best, changes across versions.

We propose to address this lack by creating and empirically stuaéapt)jve
regression testing (ART) strategies. ART strategies are approaches that operass acr
system lifetimes, and attempt to identify the regression testing techrltptewill be the
most cost-effective for each regression testing session. ART stm&@luate regression
testing techniques in terms of decision criteria such as cost and beneft taud choose
the best alternative among techniques considering organization’s situattbfeedback

from prior regression testing sessions.



The problem of performing such evaluations is known as the “multiple criteria
decision making” (MCDM) problem, and MCDM approaches have been used in many
science, engineering, and business areas that involve complex decision prebtmas
technology investment, resource allocation, and layout design [7], [8]. To date, man
MCDM approaches have been proposed including the Weighted Sum Model (WSM), the
Weighted Product Model (WPM), the Analytical Hierarchy Process (ABR) other
variants. Among these MCDM methods, AHP has been one of the more popular methods,
having been used by researchers and practitioners in various areas includiagesof
engineering [9], [10], [11].

Therefore, in this research, as an initial approach to creating ARTg&#sateve
investigated AHP method [7] to see whether AHP can be effective fotisglappropriate
regression testing techniques across system lifetime, partictdadging on test case
prioritization techniques. To do this, we have designed and conducted a controlled
experiment using several Java programs with multiple versions consideringl sever
selection strategies. The results of our experiment show that the primnititchniques

selected by AHP can be more cost-effective than those used by the controtlaggroa

In the next section, we describe background information and related work relevant
to prioritization techniques and regression testing strategies. Chaptarbeg our
proposed approach, ART strategy. Chapter 4 presents our experiment setup, Chapter 5
presents results and analysis, and Chapter 6 address threats to validitgr Chlsgatusses

our results, and Chapter 8 presents conclusions and future work.



CHAPTER 2. BACKGROUND AND RELATED WORK

Regression testing attempts to validate modified programs to see whetige<ha
have produced unintended effects. Depending on various factors, such as the size and
complexity of the program and its test suite, regression testing pcaoebg very
expensive. Thus, many researchers have proposed numerous cost-effectbssoregre
testing techniques including regression test selection, test suite reduastionzation, and
test case prioritization, but here, we limit to our discussion to test casézaimm, which

is directly related to our work.

Test case prioritization techniques (e.qg., [6], [12]) reorder test qasedar to
increase the chance of early fault detection using various types of itifamragailable
from software artifacts, such as the coverage of code achieved by testshaode
information, or code complexity. For example, one technitptia, block coverage
prioritization, simply sorts the test cases in the order of the number of blocks they cover.
One variation of this techniquadlditional block coverage prioritization iteratively selects
a test case that yields the greatest block coverage, then adjusts thgeavi®rmation for
the remaining test cases to indicate their coverage of blocks not yetd;cusidhen

repeats this process until all blocks coverable by at least one test casedmeevieeed.

To date, numerous test case prioritization techniques have been proposed, and a
recent paper by Yoo and Harman [13] provides a comprehensive overview of these
techniques. While the goal of the proposed techniques is to improve the effectiveness of
regression testing, to be useful in practice, techniques should be applicablevaitbus

testing environments and contexts. Recent research on test case pranritiastemployed



empirical studies to evaluate the cost-benefit tradeoffs among technomnsegdering
various factors and testing contexts [14], [15], [16], [17], [18]. For instanzet@l. [14]
have studied regression testing under time constraints. They perform multiplenexper
to assess the effects of time constraints on the costs and benefits of pramitiza
techniques. At first, they show that time constraints can play a signifaart
determining both the cost-effectiveness of prioritization and the relaistebenefit trade-
offs among techniques. Later they manipulate the number of faults presentrampsdg
examine the effects of faultiness levels on prioritization and show that éssltievel
affects the relative cost-effectiveness of prioritization techniquescodf et al. [18]
present genetic algorithm to reorder test cases under time cons@airisal. [17]
consider prioritization in the context of configurable systems. They utiim@inatorial

testing techniques to model and generate configuration samples for gssi@gtesting.

Studies such as these have allowed researchers and practitioners to understand
factors that affect the assessment of techniques and to compare techmigues of costs
and benefits relative to actual software systems. However, studies to datehave
considered strategies for selecting appropriate techniques under padicularstances as
systems evolve. Only few studies [19], [20] have done on the problem of helping
practitioners choose appropriate techniques under particular system and proces
constraints. Harrold et al. [20] present a coverage based predictor model dics pne
cost effectiveness of a selective regression testing strategysibeythat only coverage
information cannot successfully predict the cost-effectiveness of regresst selection
method code modifications that has been made in the ongoing version play a significant

role to improve the accuracy of the prediction model. Elbaum et al. [19] perform



experiments exploring characteristics of program structure, testcguntposition, and
changes on prioritization, and identified several metrics charaaggtizeése attributes that
correlate with prioritization effectiveness. The empirical resultbaif study provide
insights into which prioritization technique is appropriate (or not appropriate) under
specific testing scenarios. Unlike our approach, these two studies evatimtigies
solely relied on software metrics and did not consider the notion of software evolution

context.

Since many factors can be involved in evolving systems, selecting appopriat
techniques for each version can be a multiple criteria decision making (NIpilem.
Analytic Hierarchy Process (AHP) is one of the widely used MCDM methadsnany
areas that involve complex decision problems, such as business, manufacturing, science
and engineering. For instance, Kamal and Al-Harbi [21] utilize AHP in project
management to determine the best contractors to complete the project. Theyctirest
AHP hierarchy with prequalification criteria and contractors. They piderthe criteria
and obtain a sorted list of contractors by applying the AHP process. AHP has also bee
used in determining the best manufacturing system [22], layout design [23], and the

evaluation of technology investment decisions [24].

Recently AHP has been used in software engineering areas. Barcusa and
Montibellerb [25] use AHP to allocate software development work in distributegteam
They develop a multi-criteria decision model to support the distributed team work
allocation decision by using decision conferencing and multi-attribute valuesiznaly
Finnie et al. [26] use AHP to prioritize software development productivity facods

Perini et al. [27] compare AHP with other alternative method in prioritizing acdétw



requirements. Karlsson et al. [9] investigate six methods for prioritiziqgirements:

analytic hierarchy process (AHP), hierarchy AHP, spanning tree miaible sort, binary
search tree, and priority groups. They apply all methods to prioritize 13lefeied

guality requirements on a small telephony system. They showed that tyigcanatarchy

process is the most promising method among those six methods. Yoo et al. [11] use AHP to
improve test case prioritization techniques by employing expert knowladdeompare

the proposed approach with the conventional coverage-based test case poaritizati
technique. Unlike their study, in this paper, we utilize AHP to develop adaptiessegrs

testing strategy, which helps identify the best test case prioritizatbnitgies across

system lifetime.



CHAPTER 3. ADAPTIVE REGRESSION TESTING (ART) STRATEGY

In this section, we describe AHP method and how AHP is used for creating ART

strategy using an example.

31 AHPMethod

The Analytic Hierarchy Process (AHP) is a technique for structuridg a
analyzing complex decision problems. It was developed by Thomas L. Satty in 1970.
Since then it has been studied by many practitioners. It is used in a widg ganaulti-
objective decision situations [22], [23].

To use AHP, decision makers first define a hierarchy that describes therprobl
they want to solve. As shown in Figure 3.1, adapted from [7], an AHP hierarchy consists
of a goal that they want to achieve, alternatives that are availablekothesgoal, and
criteria that are factors that may be used in decision making about thesatiaks. The

criteria can be further partitioned into sub-criteria if necessary.
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Figure 3.1. An AHP hierarchy



Once decision makers define an AHP hierarchy, two types of pairwise
comparisons are performed: between pairs of criteria and between paiesraitales as
shown in Figure 3.2. When comparing pairs of criteria (the upper left table) otecisi
makers assign relative importance weights to criteria; for example,dBieis
importance 4 relative to C4. After completing this matrix, the assigned vakies a
normalized and the local priority of each criterion is produced, which is shown in the
rightmost column of the table (and in the top row of the bottom table in the figure). The
local priority is calculated by the following equation:

ZN=1(RW1: )
Lp, = —=2=2 Y
t Zlivzlzﬁyﬂ(RWij)

, WhereLP; is a local priority of criteriom, RW; is a relative weight of criterionover
criterionj, andN is the number of criteria (The local priorities of alternatives are

calculated in the same way).

Comparisons between Criteria Comparisons between Alternatives
CL| 2| C3|ca| 5| Loca P
Priority . | Al Local
c1l s s 4 3 0.247 Priority
c3 1/2 1/5 1 1/3 1/2 0.07 Local ylel1a'M 0.56
c4a 1/4 1/3 S 1 4 0.186 Priority [0S 0.12
G5 | 1/3  1/2 zZ 14 1 0.11 Al 1 it || 5 0.23 0.36

A2 4 1 5 0.67 0.19
A3 1/3 15| 1 0.1

c1 [ c2 c3 ca cs Global
0247 |0387 |0.07 |0.186 |0.11 |Priority
Al 023 045 015 038 032 035

A2 0.67 0.36 0.37 0.4 0.56 0.47
A3 0.1 0.19 0.48 0.22 0.12 0.18

Figure 3.2. An AHP example



Similarly, matrices that show the relative importance of alternativesafth
criterion are constructed. In this example, five matrices are constipetause there are
five criteria (the upper right tables). Again, the assigned values are rwdhfr each
matrix, and local priorities are produced for each alternative (the resldtial priorities
appear in the bottom table in the figure).

After calculating the local priorities for criteria and alternatiagV x N matrix
is constructed, as shown in the bottom table in Figure 3.2, Whex¢he number of
alternatives considered ahds the number of criteria. In our exampiéjs 3 andN is 5.
Then, weighted sums of the values per technique are calculated; these are shown in the
rightmost column (“global priorities). The global priority is calculated by the following
equation:

GPy = YN 0(LPAyj % LP) oo )

,.whereGPy is a global priority for alternativie N is the number of criterid,PA is a

local priority of alternativé for criterionj, LP; is a local priority of criteriof. Based on

the weighted sum values, decision makers can determine which alternative should be
selected. In this exampl&2 (0.47) performs best arid (0.35) next best, witih3 (0.18)

far behind.

3.2. Applying AHP to Prioritization Strategy

We now describe how AHP is applied to prioritization strategy that we use in this
work. While we describe this in terms of test case prioritization using one of the
programs we used in our study, the approach could be applied to any regression testing

techniques and any system for which the required information is available.

9



As outlined in the prior section, to apply AHP to prioritization strategy, the

following steps are required:
1. Set a goal
2. ldentify alternatives that are available to reach the goal
3. ldentify evaluation criteria for alternatives

4. Pairwise comparisons: between pairs of criteria and between pairs of

alternatives
5. Obtain global priorities of alternatives
The following subsections describe each of these in detail.

1) Sep 1: Set a Goal: Suppose that the goal of test engineers is to choose the most
cost-effective test case prioritization technique in application to a yartgystem

version.

2) Sep 2: Identify Alternatives. To achieve this goal, test engineers consider
several different types of prioritization techniques as alternatieesnstance, test
engineers could consider traditional coverage-based test case @ationtiechniques,
such as total block coverage based test case prioritization, and additional blockecoverag

based test case prioritization.

3) Sep 3: Identify Evaluation Criteria: As criteria, test engineers choose factors
that are influential in evaluating test case prioritization techniquesn&ance, test
engineers could consider the cost factors that can affect the chééohoiques, such as
the cost of applying test case prioritization technique or the cost of sofvdaet

analysis.
10



4) Sep 4: Pairwise Comparisons. Next, two types of pairwise comparisons are
performed: between pairs of criteria and between pairs of techniqueseagplained in
Chapter 3.1. To do so, test engineers assign relative importance weightsitoamder
techniques using the scale of weights they define. In this step, test engaheerstheir
experiences and history data regarding the performance of test casiatimmit

techniques.

5) Sep 5: Obtain Global Priorities: Once test engineers assign relative weights,
global priorities are calculated as explained in Chapter 3.1 and this stiep aatomated
by building an AHP tool. Based on global priorities, test engineers determiale whi
technique they should use for the particular version of the program. Steps 2 and 3 are
dependent on an organization’s testing practices and environment. Figure 3.3igasimar
steps 4 and 5 graphically. As we can see from the figure, the test engiyemnsider
three knowledge sources for educated judgment. He studies previous empiricahstudy
the test case prioritization technique he is using as alternatives. Hesdbtawledge on
the criteria he is going to consider and the relationship between theorded test case
prioritization techniques. He investigates data of previous releases arebtdtst history.
He develops the knowledge of using prioritization techniques on versions with various
degrees and types of modifications. Based on the knowledge he examines various
software artifacts for the current version, and assigns relative wéaglasteria and
techniques. This process requires human judgment, so it is done manually. In practice,
often organizations rely on human experts’ opinions or experienced members’ judgment
when they make important technical decisions (e.g., which tools or techniques should be

used), so this is not an uncommon process in software industry.

11
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Figure 3.3. AHP process

The rest of the processes can be automated. The AHP tool takes relative weight

of criteria and technigues, and produces matrices shown in Figure 3.1 and 3.2. Then,

finally the test engineer can decide which technique should be used based on global

priorities that the tool produced.
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CHAPTER 4. EMPIRICAL STUDY

To investigate the potential use of the Analytic Hierarchy ProcedR)#nethod
in the adaptive regression testing strategy, we performed a controllechexpieri
considering the following research question:

RQ: 1s AHP effective for selecting appropriate test case prioritization
techniques across system lifetime?

The following subsections present, for this experiment, our objects of analysis,
variables and measures, experiment setup and design, and threats to validityngollow
this presentation, in Chapter 5 we present our data and analysis, in Chaptetdtess a

threats to validity, and in Chapter 7 we discuss practical implications ofsthésre

4.1. Objectsof Analysis

We considered five Java programs obtained from the SIR infrastructure [28] as
our objects of analysisnt, xmlsecurity, jmeter, nanoxml, andgalileo. Ant is a Java-based
build tool,jmeter is a load testing tool for client/server application, amttsecurity
provides security functionality for XML dataanoxml is a small XML parser for Java,
andgalileo is a Java bytecode analyzer. Several sequential versions of each of these
programs are available. The first three programs are provided with J&trstitees, and

the last two are provided with TSL (Test Specification Language)uiss $29].

Table 4.1 lists, for each of our objects of analysis, data on its associated
“Versions” (the number of versions of the object program), “Classes” (the number of
class files in the latest version of that program), “Size (KLOCEB¥ (umber of lines of

code in the latest version of the program), and “Test Cases” (the humbercafsest

13



available for the latest version of the program). To study the researcloguestrequire
fault data, so we utilized mutation faults provided with the programs [30]. The rightmos
column, “Mutation Faults”, is the total number of mutation faults of the program

(summed across all versions).

Objects Versions Classes Size Test Mutation
(KLOCs) Cases Faults
ant 9 914 61.7 877 412
jmeter 6 434 42.2 78 386
xml-sec 4 145 15.9 83 246
nanoxml 6 64 3.1 216 204
galileo 16 68 14.5 912 2494

Table 4.1. Experiment objects and associated data

4.2. Variablesand Measures

1) Independent Variable: To investigate our research question, we manipulate one
independent variabléest case prioritization technique application mapping strategy,
which assigns specific test case prioritization techniques to a spgifience of
versions Si, Si+1 , ... Sj of syst&nAs test case prioritization techniques, we utilize
original order (Orig: the order in which test cases are executed in ¢ieabtesting
scripts provided with the object programs), random order (Rand: in our experiment,
averages of runs of 30 random orders), and two test case prioritization heuridtics tota
block coverage (Tcov) and additional block coverage (Acov) prioritization techniques
(explained in Chapter 2).

We consider five mapping strategies as follows:

e Tcov-all: Use of the total coverage technique across versions (a control)

14



e Acov-all: Use of the additional coverage technique across versions (a second
control)
e Rand-all: Use of the random technique across versions (a third control)
e Orig-all: Use of the original technique across versions (a fourth contrelysed
as a baseline strategy)
e AHP: Evolutionary adaptation of techniques following the AHP method described
in Chapter 3. The AHP method selects the best technique among four
prioritization techniques (Tcov, Acov, Rand, and Orig) for each version based on
the criteria we identifies and expert’'s opinion. More details on how we applied
AHP are described in Chapter 4.3
2) Dependent Variable and Measures: Our dependent variable ig@ative cost-benefit
value produced by applying EVOMO economic model presented in [31] (see Appendix
A), using a further calculation described below (Equation 3). The cost and benefit
components are measured in dollars. To determinesliieve cost-benefit of
prioritization techniqud@ with respect to baseline technicoase, we use the following
equation:

(Benefity — Cost ) — (Benefitase™ COShasd <+ vvvvrreremmrieiiiiniecieiieiieainnns 3)

When this equation is applied, positive values indicate that T is beneficial
compared to base, and negative values indicate otherwise. We used the odlgmauée
as a baseline in this experiment. This means that the Orig-all strateggrigras a
baseline strategy when we consider the cost-benefit values acrossiathsef the

program.

15



EVOMOL1 involves two equations as shown in Equations 4 and 5: one that
captures costs related to the salaries of the engineers who perforssigggtesting (to
translate time spent into monetary values), and one that captures revenue lgasesor
related to changes in system release time (to translate tireke&se into monetary

values).
Cost = salary * Z?zz(setup(i) + obsoleteTests(i) + resultValidation(i) +

MISSEAF AUIES (1)) 1ov cev cer cer ere ere eee eet eet et et een een een een een ees ten een een een een een sen sen nen een oen (D)

Benefit =

n
reveneue x Z (deliveryTime(i) — (setup(i) + obsoleteTests(i) +
=2

analysis(i — 1) + runTechnique(i) + testExecution(i) + resultValidation(i) +
faultDetectionDelay(i))) TR €9

Significantly, the model accounts for costs and benefits across entimm syste
lifetimes, rather than on snapshots (i.e. single releases) of those sylstengh t
equations that calculate costs and benafitess entire sequences of system releases.

The major cost components that EVOMO captures are as follows: costs for gpplyin
regression testing techniques, costs associated with missed faut$pcastifact
analysis, costs of delayed fault detection feedback, and costs assodiateldsalete

tests.

4.3. Setup and Procedure

To measure costs of delayed fault detection feedback and costs for applying
regression testing techniques, we required object programs containing fiawilia. ®
our early studies [14], [32], to obtain the fault data required to investigate oaratese

16



guestion, for each version of each program we randomly selentetdrat group from
the set of that version’s mutation faults. Each mutant group contained at most 1&mutant
To apply AHP, we followed steps described in Chapter 3. As a human tester, one
graduate student who has three years of software industry experiencenpdrfoe AHP
processes. The student considered the following criteria to evaluatézaimnn
techniques:
e Cost of applying test case prioritization technique: the time required to rah a te
case prioritization algorithm
e Cost of software artifact analysis: the costs of instrumenting prograchs
collecting test execution traces
e Cost of delayed fault detection: the waiting time for each fault to be exposed
while executing test cases under a test case prioritization technique
e Cost of missed fault: the time required to correct missed faults
Next, the student performed pairwise comparisons using the scale of weights as
shown in Table 4.2, which has been commonly used by others [7], [11]. When the student
assigned relative weights, he utilized history data regarding the penfoeroatest case
prioritization techniques observed from previous several empirical studies34], [
[32], [33].
To support the rest of the processes, we implemented a Java Swing-based AHP
tool. The AHP tool takes relative weights of criteria and techniques, and prodcaks |
and global priorities based on the AHP algorithm [7]. Finally the student dagami

which technique should be used for each version of the program using globalegrioriti

17



Weight Definition of Weight
1 equally important
3 moderately more important
5 strongly more important
7 very strongly more important
9 Extremely more important

Table 4.2. Scale of weights

Often software companies have time pressure with the product release, due to the
constraint budgetary problem and competitive software market. In practiciogis in
which time constraints intervene to affect product release are frequent aftthare
industry, and typically software companies cut back on testing activitieden tor
ensure timely release of their product. Further, the degree of time cosstemntary as
systems evolve. For instance, for a certain release, a company couldnswédme
constraints compared to other releases due to the complex feature addition or the
technical personnel loss. Thus, in this experiment, we consider the situatidimeit
constraints that vary with each version when we evaluate test case jationtiz
techniques.

To simulate this situation, for each of the test case prioritization teclsnigae
randomly assigned the level of time constraints (25%, 50%, or 75%) for each version and
foreshortened the test execution process. For example, as shown in Figure 4.itgnh the f
set of random assignment (Run 1) we randomly pick 50% time constraint for version one

(V1). It means that, we run 50% test cases of the current test suite ofsiomve
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Figure 4.1. Random assignment of time constraint level

In the same way we choose 25% time constraint for version two (V2). It means
that we reduce the test suite by 25%. So we run 75% of total test cases.owelfell
same process for subsequent version of the program. It ends our run 1.

We ran five sets of random assignments across all versions for each program
applied the AHP processes we just explained, and collected cost-benefitfoakies
strategies. As we described in Chapter 4.2, for Tcov-all strategy, we oun(total block
coverage) prioritization technique for each version of the program under tpsie(Bi2).
For Acov-all, Rand-all and Orig-all strategy, we run the Acov, Rand, Orig technique
respectively for each version of the program. For AHP strategy, we condutitiBur
process and run the AHP tool. We run the technique chosen by the AHP tool. For
instance, our AHP tool chose Tcov technique for version 1 and Orig technique for

version 2 and so on.

19



Tcov-all

Acov-all

Rand-all

Orig-all

AHP

Figure 4.2. Regression testing strategy
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CHAPTER 5.DATA AND ANALYSIS

In this section, we present the results of our study. We summarize the data in
Tables 5.1 to 5.5. Each table consists of five sub tables, showing experimenthasults t
were collected by running five sets of random assignments (run 1 through run 5 in the
table) of three time constraint levels for each version of the program. BenCrig-all
strategy is the baseline used in our relative cost-benefit calculations fesuhat
strategy are not shown explicitly in the tables.

All of the data in these tables shows the relative cost-benefit value in diaHar w
respect to the baseline technique (Orig) as defined according to the EVOMO mode
Higher values indicate greater cost-benefits. Within each sub table taliles, the first
rows are labeled with five runs, for each run listing four test case madiain testing
strategies. Rows are labeled with versions of the program and the last aiel"§T
shows the sum of the cost-benefit values for all versions. Now, we describe eageof th
tables.

Table 5.1and 5.2 show the resultsdat. The results vary across versions, but the
total cost-benefit values indicate that the prioritization techniques eglegtAHP were
more cost-effective than those used by the control strategies except tasen@and-all
in run 3 was better than AHP). In particular, the cost-benefit value gap betwedARhe
strategy and the two control strategies (Tcov-all and Acovall) is langkeTcov-all was
even worse than the baseline strategy in some cases (run 1 and run 4). Among the control

strategies, Rand-all produced the best results.
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Run 1

Version Time constraing 1c0V- | ACOV- Rand- AHP
all all all
V1 50% 135.00{ 77.00| -40.00| Rand -40.00
V2 25% 205.00| 209.00| 139.00| Acov 209.00
V3 75% -58.00| -62.00f 48.00/ Rand 48.00
V4 50% -66.00| 14.00 0.00| Acov 14.00
V5 75% -99.00| -133.00f 26.00| Rand 26.00
V6 25% -142.00| -180.00 7.00] Rand 7.00
V7 50% -160.00| -201.00; 32.00/ Rand 32.00
V8 25% -107.00| -248.00| 146.00, Rand | 146.00
Total -292.00| -524.00| 358.00 442.00
Run 2
Version Time constraing 1c0V- | ACOV- Rand- AHP
all all all
V1 75% 367.39| 231.99| 101.73| Rand | 101.73
V2 25% 205.26| 208.95| 138.99| Acov 208.95
V3 50% -151.07| 91.89| 49.35| Rand 49.35
V4 75% -155.30| -71.81| -57.90| Rand -57.90
V5 50% -156.83| -190.82| 17.52| Rand 17.52
V6 25% -142.06| -179.54 7.24| Rand 7.00
V7 75% 275.13| 234.27| 324.06| Rand | 324.06
V8 25% -107.31| -248.32| 146.06/ Rand | 146.06
Total 135.21| 76.59| 727.05 796.77
Run 3
Version Time constraing 1 c2Y" | ACOV- Rand- AHP
all all all
V1 25% -18.94| -70.46| -98.40| Rand -98.40
V2 50% 206.77| 208.91| 79.32| Acov 208.91
V3 75% -57.83| -61.58| 47.84| Rand 48.00
V4 25% 12.02| 12.65| 42.05| Acov 13.00
V5 75% -99.26| -133.39| 25.57| Rand 26.00
V6 50% -37.32| -112.78| 87.30| Tcov -37.32
V7 25% -141.54| -182.70| 47.97| Rand 48.00
V8 50% 143.29| 115.57| 291.87| Rand | 291.87
Total 7.19| -223.78| 523.53 500.06

Table 5.1. Experiment results for ant: relative cost-benefit valudsiglol
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Run 4

Version| Time onstraint| 1c0V- | ACOv- Rand- AHP
all all all
V1 50% 135.11] 76.90| -39.81 Rand -39.81
V2 75% 55.41| 325.98| 160.74 Acov 325.98
V3 25% -59.00| 91.00 46.00 Rand 46.00
V4 50% -65.83| 13.65 -0.21 Acov 14.00
V5 25% -145.38| -179.41 31.51 Rand 32.00
V6 75% 336.66| 406.57| 560.18 Rand 406.57
V7 50% -160.07| -201.08 31.89 Rand 31.89
V8 75% -127.91| 115.08| 214.92 Rand 214.92
Total -31.01| 648.69| 1005.22 1031.55
Run 5

Version | Time constraint| Tcov-all A(;(l)lv- Rglr;d- AHP

V1 75% 367.39| 231.99| 101.73 Rand 101.73
V2 50% 206.77| 208.91 79.32 Acov 208.91
V3 25% -59.00 91.00 46.00 Rand 46.00
V4 75% -155.30| -71.81| -57.90 Rand -57.90
V5 25% -145.38 1.00/ 31.51| Rand 32.00
V6 50% -37.32| -112.78 87.30 Tcov -37.32
V7 75% 275.13| 234.27| 324.06 Rand 324.06
V8 50% 143.29| 115.57| 291.87 Rand 291.87
Total 595.58| 698.14| 903.88 909.35

Table 5.2. Experiment results for ant: relative cost-benefit valudsigol

Table 5.3 shows the results jareter. Similar to the results cant, the AHP

strategy was more cost effective than the control strategies excey f and run 5.
Rand-all and Acov-all were better than AHP in run 2 and 5 respectively. Among the
control strategies, Acov-all produced the best results (3 out of 5 runs), Rand-all
performed relatively well (2 out of 5 runs), but Tcov-all was even worse thangbknea
strategy in most cases. The cost-benefit values of Acov-all wereicigmiy higher than

the other two control strategies in three runs- run 3, 4 and 5. Tcov-all's cost-benefi

values were considerably lower than the Orig-all strategy in run 2, 3 and 4.
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Run 1

Version Time constraint Tcov-all Acov-all Rand-all AHP
V1 25% 15.00 17.00 50.00| Acov 17.00
V2 50% -51.00 153.00 93.00| Acov 153.00
V3 75% 130.00 266.00 277.00| Rand 277.00
va 50% 121.00 31.00 5.00| Tcov 121.00
V5 25% -196.00| -196.00| -135.00| Acov -196.00
Total 19.00 271.00 290.00 372.00
Run 2
Version Time constraint Tcov-all Acov-all Rand-all AHP
V1 50% 47.04| 134.78| 179.63| Acov 134.78
V2 25% -84.55 -84.74 -6.20| Acov -84.74
V3 75% 130.03| 265.52| 276.71| Rand 276.71
V4 25% -64.17 -64.51| -142.30| Tcov -64.17
V5 50% -174.45| -144.16| -135.73| Tcov -174.45
Total -146.11 106.90 172.11 88.14
Run 3
Version Time constraint Tcov-all Acov-all Rand-all AHP
V1 25% 15.00 17.00 50.00| Rand 50.00
V2 50% -51.00 153.00 93.00| Acov 153.00
V3 25% -66.00 22.00 -36.00| Acov 22.00
v4 5% 34.85| 273.80 5.35| Acov 274.00
V5 50% -174.45| -144.16| -135.73| Tcov -174.45
Total -241.61 321.63 -23.38 324.55
Run 4
Version Time constraint Tcov-all Acov-all Rand-all AHP
Vi 5% -73.31|  115.87 97.24| Acov 115.87
V2 50% -51.00 153.00 93.00| Acov 153.00
V3 25% -66.00 22.00 -36.00| Acov 22.00
V4 75% 34.85|  273.80 5.35| Acov 273.80
V5 25% -196.00| -196.00| -135.00| Acov -196.00
Total -351.46 368.67 24.59 368.67
Run 5
Version Time constraint Tcov-all Acov-all Rand-all AHP
V1 25% 15.00 17.00 50.00| Rand 50.00
V2 75% 170.62| 345.14| 272.15| Acov 345.14
V3 50% 70.67 172.68| 101.72| Rand 101.72
va 75% 34.85 273.80 5.35| Acov 273.80
V5 25% -196.00| -196.00| -135.00| Acov -196.00
Total 95.14 612.62 294.23 574.67

Table 5.3. Experiment results for jmeter:
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Table 5.4 shows the results famnl-security. As the results show, the AHP
strategy was more cost-effective than the two control strategies-@llcavd Rand-all),
but it was not better than the Acov-all strategy. Unlike the resuldstaandjmeter,
Tcov-all produced better results than the baseline strategy. It even pidmhitsr result

than the Rand-all strategy in all five runs.

Run 1
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 75% 177.00f 274.00 88.00| Acov 274.00
V2 50% 26.00| 117.00 -44.00| Acov 117.00
V3 25% 170.00f 170.00 71.00| Tcov 170.00
Total 373.00/ 561.00| 115.00 561.00
Run 2
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 25% 37.00 38.00 6.00| Acov 38.00
V2 50% 26.00| 117.00 -44.00| Acov 117.00
V3 75% 498.75| 545.99| 315.02| Acov 545.99
Total 561.75| 700.99| 277.02 700.99
Run 3
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
V1 50% 268.11| 330.75| 202.70| Acov 330.75
V2 75% -48.18 13.86| -189.91| Acov 13.86
V3 25% 170.00f 170.00 71.00| Tcov 170.00
Total 389.92| 514.61 83.79 514.61
Run 4
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 25% 37.00 38.00 6.00| Acov 38.00
V2 50% 26.00| 117.00 -44.00| Acov 117.00
V3 75% 498.75| 545.99| 315.02| Tcov 499.00
Total 561.75| 700.99| 277.02 654.00
Run 5
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 50% 268.11| 330.75| 202.70| Acov 331.00
V2 25% 21.67 22.31| -62.38| Acov 22.31
V3 75% 498.75| 545.99| 315.02| Tcov 499.00
Total 788.53| 899.05| 455.34 852.31

Table 5.4. Experiment results for xml-security: relative cost-lievedties (dollars)
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Table 5.5 and 5.6 show the resultsrianoxml. Overall, the AHP strategy
outperformed all control strategies except for one case (Acov-all in ras detter than

AHP). Similar to the results omnl-security, Tcov-all produced better results than the

baseline strategy.

Run 1
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 50% 931.00| 966.00 975.00| Rand 975.00
V2 75% 468.00| 778.00| 596.00| Acov 778.00
V3 25% -43.00 40.00 -27.00| Acov 40.00
V4 75% -48.00 -50.00 1.00| Tcov -48.00
V5 25% -27.00 39.00 -40.00| Acov 39.00
Total 1281.00| 1773.00| 1505.00 1784.00
Run 2
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
V1 75% 928.09| 961.65| 859.79| Acov 859.79
V2 50% 564.71| 789.52| 682.78| Acov 789.52
V3 25% -43.25 39.86 -26.94| Acov 39.86
V4 75% -47.63 -49.75 0.54| Tcov -47.63
V5 50% 450.73| 541.12| 453.12| Acov 541.12
Total 1852.66| 2282.39| 1969.28 2182.65
Run 3
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
V1 25% -59.29| -22.67| -14.67| Rand -15.00
V2 50% 564.71| 789.52| 682.78| Acov 789.52
V3 75% 163.25| 657.23| 525.29| Acov 657.23
V4 75% -48.00 -50.00 1.00| Acov -50.00
V5 25% -27.00 39.00 -40.00| Acov 39.00
Total 593.66| 1413.09| 1154.39 1420.76
Run 4
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 50% 931.00| 966.00 975.00| Rand 975.00
V2 75% 468.00| 778.00| 596.00| Acov 778.00
V3 50% 509.00f 563.00| 482.00| Acov 563.00
V4 75% -48.00 -50.00 1.00| Tcov -48.00
V5 25% 451.00| 541.00| 453.00| Acov 541.00
Total 2311.00| 2798.00| 2507.00 2809.00

Table 5.5. Experiment results for nanoxml: relative cost-benefit vgtialars)
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Run 5
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
V1 50% 931.00 | 966.00 | 975.00 | Rand 975.00
V2 25% -255.00 -5.00 | -111.00 | Acov -5.00
V3 75% 163.25 | 657.23 | 525.29 | Acov 657.23
V4 25% -47.00 -49.00 2.00 | Acov -49.00
V5 50% 450.73 | 541.12 | 453.12 | Acov 541.12
Total 124298 | 2110.35 | 1844.41 2119.35

Table 5.6. Experiment results for nanoxml: relative cost-benefit y¥gtladlars)

From the Table 5.7 to 5.11 show the resultgfrleo. The results show that the
AHP strategy was more cost-effective than control strategies exceptd case (Acov-
all in run 3 was better than AHP). Acov-all produced better results than Rastckthy

in all five runs. Tcov-all produced worse results than the baseline stratatfgases.

Run 1
Version Time _ Tcov- | Acov- | Rand- AHP
constraint all all all

V1 50% 172.00| 691.00| 580.00| Acov | 691.00
V2 25% -115.00| 366.00| 297.00| Acov | 366.00
V3 50% 235.00| 526.00| 381.00f Acov | 526.00
V4 75% 168.00| 309.00{ 380.00| Rand | 380.00
V5 25% -3.00| 56.00 9.00| Tcov -3.00
V6 75% -115.00{ 344.00| 283.00| Acov | 344.00
V7 50% -186.00| 216.00{ 130.00| Acov | 216.00
V8 25% -75.00| 379.00f 289.00f Acov | 379.00
V9 50% -311.00{ 204.00| 118.00| Acov | 204.00
V10 75% -77.00| 456.00f 151.00f Acov | 456.00
V11 25% -4.00| 575.00| 528.00| Acov | 575.00
V12 50% -105.00| 148.00| 154.00| Acov | 148.00
V13 75% -72.00/ 112.00f 250.00f Rand | 250.00
V14 50% -86.00| -251.00| -249.00| Tcov -86.00
V15 75% -80.00| 211.00{ 293.00| Acov | 211.00
Total -654.00| 4342.00| 3594.00 4657.00

Table 5.7. Experiment results for galileo: relative cost-benefitega{dollars)
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Run 2
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
V1 25% -51.15| 461.23| 400.86| Acov 461.23
V2 50% -114.22| 368.45| 251.21| Acov 368.45
V3 25% 50.89| 242.29| 187.15| Rand 187.15
V4 75% -70.59| 168.06| 309.35| Rand 309.35
V5 50% 667.06| 699.69| 564.62| Tcov 667.06
V6 75% -114.67| 343.69| 282.93| Acov 343.69
V7 25% -97.62| 224.29| 170.15| Acov 224.29
V8 50% -126.05| 364.02| 246.35| Acov 364.02
V9 25% -248.82| 223.81| 145.96| Acov 223.81
V10 75% -76.57| 455.59| 151.01| Acov 455,59
V11 50% -173.85| 578.74| 462.42| Acov 578.74
V12 25% -3.11| 135.87| 177.39] Acov 135.87
V13 75% -72.24| 111.84| 250.43| Rand 250.43
Via 25% -82.61| -216.30| -123.53| Tcov -82.61
V15 75% -80.07| 210.66| 293.32| Acov 210.66
Total -593.63| 4371.95| 3769.61 4697.72

Table 5.8. Experiment results for galileo: relative cost-benefilega{dollars)

Run 3
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
V1 75% -125.47| 715.47| 515.06] Acov 715.47
V2 50% -114.22| 368.45| 251.21| Acov 368.45
V3 75% -74.62| 451.67| 318.22| Acov 451.67
V4 25% 4.90 55.89 13.00| Rand 13.00
V5 50% 667.06| 699.69| 564.62| Tcov 667.06
V6 25% -49.00| 228.00| 246.00| Acov 228.00
V7 75% -76.04| 284.67| 250.32| Acov 284.67
V8 50% -126.05| 364.02| 246.35| Acov 364.02
V9 75% -76.23| 469.01| 374.21| Acov 469.01
V10 25% -74.00| 405.00| 256.00| Acov 405.00
V11 50% -173.85| 578.74| 462.42| Acov 578.74
V12 75% -84.18| 228.27| 232.47| Acov 228.27
V13 25% -85.00 -57.00| 120.00| Rand 120.00
Via 75% -122.05| 273.29| 187.65| Tcov -122.05
V15 25% -111.36| -125.43 64.24| Rand -111.36
Total -620.11| 4939.75| 4101.76 4659.94

Table 5.9. Experiment results for galileo: relative cost-benefilega{dollars)
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Run 4

Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 25% 172.00| 691.00| 580.00| Acov 691.00
V2 75% -115.00| 366.00| 297.00| Acov 366.00
V3 25% 235.00| 526.00| 381.00| Acov 526.00
V4 50% 4.90 55.89 13.00/ Rand 13.00
V5 75% -3.00 56.00 9.00| Tcov -3.00
V6 50% -39.87| 272.38| 261.82| Tcov -39.87
\4 25% -186.00| 216.00| 130.00| Acov 216.00
V8 75% -75.00| 379.00| 289.00| Acov 379.00
V9 25% -311.00| 204.00| 118.00| Acov 204.00
V10 50% -74.00| 405.00| 256.00| Acov 405.00
V11l 75% -173.85| 578.74| 462.42| Acov 578.74
V12 25% -105.00| 148.00| 154.00| Acov 148.00
V13 50% -85.00 -57.00| 120.00| Rand 120.00
V14 25% -86.00| -251.00| -249.00| Tcov -86.00
V15 50% -111.36| -125.43 64.24| Tcov 64.24
Total -953.18| 3464.58| 2886.47 3582.11

Table 5.10. Experiment results for galileo: relative cost-benefiegdldollars)

Run 5
Version Time constraint | Tcov-all | Acov-all | Rand-all AHP
Vi 50% 172.00| 691.00| 580.00| Acov 691.00
V2 25% -115.00| 366.00| 297.00| Acov 366.00
V3 75% -74.62| 451.67| 318.22| Acov 451.67
V4 75% 168.00| 309.00| 380.00| Rand 380.00
V5 25% -3.00 56.00 9.00| Tcov -3.00
V6 75% -115.00| 344.00| 283.00f Acov 344.00
V7 25% -97.62| 224.29| 170.15| Acov 224.29
V8 25% -75.00( 379.00f 289.00| Acov 379.00
V9 50% -311.00| 204.00| 118.00f Acov 204.00
V10 75% -77.00| 456.00| 151.00f Acov 456.00
V11l 50% -173.85| 578.74| 462.42| Acov 578.74
V12 50% -105.00| 148.00| 154.00| Acov 148.00
V13 75% -72.00( 112.00f 250.00f Rand 250.00
V14 25% -82.61| -216.30| -123.53| Tcov -82.61
V15 75% -80.00( 211.00f 293.00f Acov 211.00
Total -1041.7| 4314.41| 3631.26 4598.10

Table 5.11. Experiment results for galileo: relative cost-benefiegdldollars)
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The total cost savings across all versions are one measure that shows the
effectiveness of the strategies, but this measure can be misleading lzdnarseal cost-
benefit values for particular version could affect the entire outcome. Thus awenexd
how often the strategies produce the best results across all versions.S-igpresents
bar graphs of the results. The figure contains five subfigures that presgts ieaseach
of the object programs, and each subfigure contains bar graphs for four ptiontiza
strategies showing the total number versions that produced the best redutiseby t
strategies, for the given object program and five runs. For instance, irffouart,
Tcov-all performed best for one version (version 1 in Table 5.1) and Acov-altpedo

best for two versions (versions 2 and 4 in Table 5.1).

e
| ant
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that produced the best results

Total number of versions
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Total number of versions
that produced the best results

% Tcov-all

Acov-all
# Rand-all
H AHP

Total number of versions
that produced the best results

Run 1 Run 2 Run 3 Run 4 Run 5

Figure 5.1. The total number of versions that produced the best results.
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Overall, the AHP strategy produced the best results (20 out of 25 cases were
better than the control strategies — in total, we have the 20 observed data pointe) and t
Acov-all strategy performed relatively well compared to other costrategies (11 out
of 25 cases performed best), but the trend varied across programs.

In the cases dnt andnanoxml, the AHP strategy was consistently better than all
three strategies across all runs with one exception. In the casksscurity, Acov-all
was slightly better than AHP.

Comparing the control strategies, Rand-all outperformed othard,iand it was
even better than AHP for one case (run 3). However, in other cases, Rand-all did not
perform well. In particular, in the case»afl-security, Rand-all did not produce any
single best result. Overall, Tcov-all performed worst. Only in threergnog ént, jmeter,
andxml-security), it produced the best result for one version. In other programs, it did not
produce any single best result.

Overall, the trends we observed from this figure are consistent with those we
observed from the above five tables, but we also found some differences. While AHP
outperformed 18 out 25 cases when we considered the total cost-benefitivalues,
outperformed 20 out of 25 cases when we considered the total number of versions that
performed best. In the casejokter, the total cost-benefit of Acov-all was higher than
that of AHP, but it did not perform better than AHP when we compared the number of

versions that produced the best results by Acov-all and AHP.
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CHAPTER 6. THREATSTO VALIDITY

This section describes the construct, internal and external validitysthoethie

validity of our study.

6.1. Construct Validity

Two issues involve threats to construct validity. (1) We identified four evaluation
criteria to apply the AHP method mainly considering the costs that areaaedogith
test case prioritization techniques. Other evaluation criteria, suctkagar estimated
cost-benefit factors, applicability of a technique to a certain type evaatartifact, and
relevance to the specific testing process, could be considered. (2) Thes@airwi
comparison value in AHP is subject to human judgment (in our case, a graduaté stude

and thus the results can be biased by personnel’s knowledge and experience.

6.2. Internal Validity

The inferences we made about the effectiveness of AHP could have bewdaffec
by potential faults in our experiment tools. To control this threat, we validated our AHP
tool using several examples. Other tools were from SIR [28], and they have been

validated through numerous experiments.

6.3. External Validity

Three issues limit the generalization of our results. (1) MCDM approach and test
case prioritization technique representativeness. In this study, we cedsidy one
type of MCDM approaches and two conventional test case prioritization technsgue

our results cannot be generalized because they are not representative of MCDM
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approaches and test case prioritization techniques. (2) Object program atdmfantet
representativeness. The object programs are of small and medium sizeexCompl
industrial programs with different characteristics may be subjectfeyeht cost-benefit
tradeoffs. We used mutation faults generated by our mutation tool, but there is some
evidence that mutation faults can be representative of real faults [30|C[84}ol for

these threats can be achieved only through additional studies with wider populations of

programs and faults, and different prioritization techniques.
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CHAPTER 7. DISCUSSION

We now draw on the results of our analyses, together with additional consideration
of our data, to derive practical implications of these results.

ART strategy results: Our results indicate that the prioritization techniques selected
by AHP across the entire system lifetime can be more cost-effélctimehose used by the
control approaches with the exception of some cases.

Through the empirical study, we observed the following trends. Overall, the AHP
strategy’s performance was stable across all programs for all runsieaAdav-all
strategy also produced better results compared to other control strategiesame icases
(run 4 and 5 ixml-security and run 3 irgalileo), it even outperformed the AHP strategy.
However, it was not as stable as the AHP strategy. For instanast, fon all runs, the
Acov-all strategy was worse than all other strategies, anohaer, it was close to the
worst case for half of the cases.

In the case of the Rand-all strategy, it was better than the Tcovaadigstrin most
cases (except for all casesximl-security). However, since our results for the random
technique involve averages of multiple runs, individual random orders may vary widely in
performance. The Tcov-all strategy was not worst for all cases, butlqenfarmance is
not preferable to others. In particular, in several cases (two rans ifree runs ipmeter,
and all runs irgalileo), it was even worse than the baseline strategy.

Practical implications of the results: So far we have discussed our major findings
and the results of our experiment. Now, we discuss practical implications iefsouls.

From several prior empirical studies of prioritization [14], [15], [32], [38} learned that

typically prioritization heuristics are more cost-effective comgpaoecontrol techniques,
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but we also learned that various factors related to software, its asdaitifacts (e.g.,
program size, test suite size, test suite granularity, and the amount of chiavegnbe
versions), and organization’s testing environment could affect the relationshipgmbetwe
techniques. Thus, adopting different types of test case prioritization technansdering
such factors is potentially a practical approach for organizations thatitmevpressure
with the product release, due to the constraint budgetary problem and competitaeesof
market.

To our knowledge, our study is the first attempt to investigate the effeetisef
adaptive regression testing strategy. Our proposed strategy produced proraidisgard
we believe that our empirical methodology and findings from our study provide msight
into how such investigation can be performed and what types of MCDM approaches and

evaluation criteria can be considered.
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CHAPTER 8. CONCLUSION

In this paper, we have investigated an adaptive regression testing (A&R&Q)pt
that utilizes one of the multiple criteria decision making (MCDM) approacesytic
Hierarchy Process (AHP), and presented an empirical study assbeshigT strategy.

Our results show that our ART strategy can assist researchers anibpeastinh choosing
cost-effective techniques across system lifetime.

As with all empirical studies, our study also has several limitations aésaessed
in Chapter 6. These limitations can be addressed only through further studidgionhal
artifacts and regression testing techniques. For future work, we intend togatestRT
strategies further considering several aspects.

First, in this study, we chose the AHP method to implement an ART strategy, but
there are many other MCDM approaches available including Weighted Sum Model and
modified AHP methods. Thus, the next natural step is to investigate whethemdifjgres
of approaches help improve ART strategies.

Second, in this study, we used only 4 evaluation criteria, but in order to limitsthreat
to validity as we addressed in Chapter 6, we intend to investigate ARIg&sat
considering other types of evaluation criteria.

Third, we considered only two test case prioritization heuristics, but we intend to
investigate ART strategies that employ other types of prioritizatmmtgues including
other regression testing techniques, such as regression test selection tecisqueve
intend to develop new regression testing techniques so that we can improve our chances of

detecting faults under time-constrained situations.
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APPENDIX.EVOLUTIONARY AWARE ECONOMIC MODEL

(EVOMO)

EVOMO has two equations as shown in Equation 6 and 7:

1. To calculate the cost of applying regression testing process.

n

Cost = PS * Z(CS(L’) + CO;(i) + €O, (i) + b(@) * CV; + C(i) * CF(D)) wvv vvv vev vnv - (6)

i=2

2. To calculate the benefits gained from applying the regression testirgsproc

Benefit = REV+ )" (ED()) — (CS(0) + CO;(i) + COp(D)+am(i — 1) * CAn (i —

D+ ap (i — 1) * CA-(i — 1) + CR() + b(@) * (CEQ) + CV;(@) + CV4 (D)) +

0103 ) T USROS /4

The term and coefficients are described as follows:

Cost of test setup (CS). This is the costs associated with setting up the system for
testing, compiling the version under test, and configuring test drivers and scripts.
Cost of identifying obsolete test cases (COi ). This is the costs associated with
manually inspect a version and its test cases.

Cost of repairing obsolete test cases (COr ). This is the costs to examine the
specifications, test cases, and test drivers, and modify the test gabesviersion
under test.

Cost of supporting analysis (CA). This is the costs to instrument programs (CAin)
and collect test traces (CAtr ).

Cost of technique execution (CR). This is the time needed to execute a regression
testing technique itself.

Cost of test execution (CE). This is the time needed to execute test cases.
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Cost of test result validation (automatic via differencing) (Cvd ). This is the

time needed to run a differencing tool on test outputs as test cases are executed.
Cost of test result validation (human via inspection) (CVi ). This is the time
required by engineers to inspect test output comparisons.

Number and cost of missing faults (c and CF). Regression testing technique could
not find all kinds of faults in the system. It could fail to discover some of them.
There is a cost associated with each missing fault. To estimate the cossed

faults, we follow the earlier study (Do, 2006), choose 1.5 person hours to localizing
and correcting one fault.

Cost of delayed fault detection feedback (CD). To calculate the cost we follow an
earlier study (Do, 2006). We measure the rate of fault detection of a test suit
Then, we translate this rate into the cumulative cost (in time) of waitirepfdr

fault to be exposed while executing test cases under a particular order @sfine
delays.

Revenue (REV). We calculate the revenue by utilizing revenue values cited in a
survey of software products ranging from $116,000 to $596,000 per employee (Do,
2006). Because of the small size of the programs, we consider the least revenue
value mentioned, and an employee headcount of ten.

Programmer salary (PS). We consider a figure of $100 per person-hour, obtained
by adjusting an amount cited in (Do, 2006) by an appropriate cost of living factor.
Expected time-to-delivery (ED). In our empirical work we rely on comparisons of
techniques to a control suite using Equation 2; this approach cancels out the ED

values because these are the same for all cases considered.
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