
ADAPTIVE REGRESSION TESTING STRATEGY:

AN EMPIRICAL STUDY

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Md. Junaid Arafeen

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Program:
Computer Science

July 2012

Fargo, North Dakota

North Dakota State University
Graduate School

Title
Adaptive Regression Testing Strategy:

An Empirical Study

By

Md. Junaid Arafeen

The Supervisory Committee certifies that this disquisition complies with
North Dakota State University’s regulations and meets the accepted
standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Hyunsook Do

Chair

Dr. Kenneth Magel

Dr. Saeed Salem

Dr. Zakaria Mahmud

Approved by Department Chair:

7/3/2012

Dr. Brian M. Slator

Date

Department Chair

iii

ABSTRACT

When software systems evolve, different amounts of code modifications can be

involved in different versions. These factors can affect the costs and benefits of regression

testing techniques, and thus, there may be no single regression testing technique that is the

most cost-effective technique to use on every version. To date, many regression testing

techniques have been proposed, but no research has been done on the problem of helping

practitioners systematically choose appropriate techniques on new versions as systems

evolve. To address this problem, we propose adaptive regression testing (ART) strategies

that attempt to identify the regression testing techniques that will be the most cost-effective

for each regression testing session considering organization’s situations and testing

environment. To assess our approach, we conducted an experiment focusing on test case

prioritization techniques. Our results show that prioritization techniques selected by our

approach can be more cost-effective than those used by the control approaches.

iv

ACKNOWLEDGMENTS

I would like to thank the advisory committee members and professors at North

Dakota State University (NDSU), Dr. Hyunsook Do, Dr. Kenneth Magel, Dr. Saeed Salem

and Dr. Zakaria Mahmud for their valuable support and guidance. As my advisory

committee chair, Dr. Hyunsook Do always made time in providing technical expertise and

guidance throughout the process. This would not have been possible without her constant

support.

I am also thankful to the National Science Foundation for funding this research.

v

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. BACKGROUND AND RELATED WORK .. 3

CHAPTER 3. ADAPTIVE REGRESSION TESTING (ART) STRATEGY 7

3.1. AHP Method ... 7

3.2. Applying AHP to Prioritization Strategy .. 9

CHAPTER 4. EMPIRICAL STUDY .. 13

4.1. Objects of Analysis ... 13

4.2. Variables and Measures .. 14

4.3. Setup and Procedure ... 16

CHAPTER 5. DATA AND ANALYSIS ... 21

CHAPTER 6. THREATS TO VALIDITY .. 32

6.1. Construct Validity ... 32

6.2. Internal Validity .. 32

6.3. External Validity ... 32

CHAPTER 7. DISCUSSION ... 34

vi

CHAPTER 8. CONCLUSION .. 36

REFERENCES .. 37

APPENDIX. EVOLUTIONARY AWARE ECONOMIC MODEL (EVOMO)................. 42

vii

LIST OF TABLES

Table Page

4.1. Experiment objects and associated data.. 14

4.2. Scale of weights .. 18

5.1. Experiment results for ant: relative cost-benefit values (dollars) 22

5.2. Experiment results for ant: relative cost-benefit values (dollars) 23

5.3. Experiment results for jmeter: relative cost-benefit values (dollars) 24

5.4. Experiment results for xml-security: relative cost-benefit values (dollars) 25

5.5. Experiment results for nanoxml: relative cost-benefit values (dollars) 26

5.6. Experiment results for nanoxml: relative cost-benefit values (dollars) 27

5.7. Experiment results for galileo: relative cost-benefit values (dollars) 27

5.8. Experiment results for galileo: relative cost-benefit values (dollars) 28

5.9. Experiment results for galileo: relative cost-benefit values (dollars) 28

5.10. Experiment results for galileo: relative cost-benefit values (dollars) 29

5.11. Experiment results for galileo: relative cost-benefit values (dollars) 29

viii

LIST OF FIGURES

Figure Page

3.1. An AHP hierarchy .. 7

3.2. An AHP example .. 8

3.3. AHP process ... 12

4.1. Random assignment of time constraint level .. 19

4.2. Regression testing strategy ... 20

5.1. The total number of versions that produced the best results... 30

1

CHAPTER 1. INTRODUCTION

Regression testing is an important and necessary activity that can maintain the

quality of modified software systems. To date, many regression testing techniques have

been proposed. For instance, regression test selection techniques (e.g., [1], [2], [3]) reduce

testing costs by selecting test cases that are necessary to test a modified program. Test case

prioritization techniques (e.g., [4], [5], [6]) reorder test cases, scheduling test cases with the

highest priority according to some criterion earlier in the testing process to yield benefits

such as providing earlier feedback to testers and earlier fault detection.

While this research has made considerable progress in regression testing areas, one

important problem has been overlooked. As systems evolve, the types of maintenance

activities that are applied to them change. Differences between versions can involve

different amounts and types of code modifications, and these changes can affect the costs

and benefits of regression testing techniques in different ways. Thus, there may be no

single regression testing technique that is the most cost-effective technique to use on every

version. For instance, as we observed from our study, prioritization technique, that works

best, changes across versions.

We propose to address this lack by creating and empirically studying adaptive

regression testing (ART) strategies. ART strategies are approaches that operate across

system lifetimes, and attempt to identify the regression testing techniques that will be the

most cost-effective for each regression testing session. ART strategies evaluate regression

testing techniques in terms of decision criteria such as cost and benefit factors and choose

the best alternative among techniques considering organization’s situations and feedback

from prior regression testing sessions.

2

The problem of performing such evaluations is known as the “multiple criteria

decision making” (MCDM) problem, and MCDM approaches have been used in many

science, engineering, and business areas that involve complex decision problems, such as

technology investment, resource allocation, and layout design [7], [8]. To date, many

MCDM approaches have been proposed including the Weighted Sum Model (WSM), the

Weighted Product Model (WPM), the Analytical Hierarchy Process (AHP), and other

variants. Among these MCDM methods, AHP has been one of the more popular methods,

having been used by researchers and practitioners in various areas including software

engineering [9], [10], [11].

Therefore, in this research, as an initial approach to creating ART strategies, we

investigated AHP method [7] to see whether AHP can be effective for selecting appropriate

regression testing techniques across system lifetime, particularly focusing on test case

prioritization techniques. To do this, we have designed and conducted a controlled

experiment using several Java programs with multiple versions considering several

selection strategies. The results of our experiment show that the prioritization techniques

selected by AHP can be more cost-effective than those used by the control approaches.

In the next section, we describe background information and related work relevant

to prioritization techniques and regression testing strategies. Chapter 3 describes our

proposed approach, ART strategy. Chapter 4 presents our experiment setup, Chapter 5

presents results and analysis, and Chapter 6 address threats to validity. Chapter 7 discusses

our results, and Chapter 8 presents conclusions and future work.

3

CHAPTER 2. BACKGROUND AND RELATED WORK

Regression testing attempts to validate modified programs to see whether changes

have produced unintended effects. Depending on various factors, such as the size and

complexity of the program and its test suite, regression testing process can be very

expensive. Thus, many researchers have proposed numerous cost-effective regression

testing techniques including regression test selection, test suite reduction/minimization, and

test case prioritization, but here, we limit to our discussion to test case prioritization, which

is directly related to our work.

Test case prioritization techniques (e.g., [6], [12]) reorder test cases in order to

increase the chance of early fault detection using various types of information available

from software artifacts, such as the coverage of code achieved by tests, code change

information, or code complexity. For example, one technique, total block coverage

prioritization, simply sorts the test cases in the order of the number of blocks they cover.

One variation of this technique, additional block coverage prioritization iteratively selects

a test case that yields the greatest block coverage, then adjusts the coverage information for

the remaining test cases to indicate their coverage of blocks not yet covered, and then

repeats this process until all blocks coverable by at least one test case have been covered.

To date, numerous test case prioritization techniques have been proposed, and a

recent paper by Yoo and Harman [13] provides a comprehensive overview of these

techniques. While the goal of the proposed techniques is to improve the effectiveness of

regression testing, to be useful in practice, techniques should be applicable within various

testing environments and contexts. Recent research on test case prioritization has employed

4

empirical studies to evaluate the cost-benefit tradeoffs among techniques considering

various factors and testing contexts [14], [15], [16], [17], [18]. For instance, Do et al. [14]

have studied regression testing under time constraints. They perform multiple experiments

to assess the effects of time constraints on the costs and benefits of prioritization

techniques. At first, they show that time constraints can play a significant role in

determining both the cost-effectiveness of prioritization and the relative cost-benefit trade-

offs among techniques. Later they manipulate the number of faults present in programs to

examine the effects of faultiness levels on prioritization and show that faultiness level

affects the relative cost-effectiveness of prioritization techniques. Walcott et al. [18]

present genetic algorithm to reorder test cases under time constraints. Qu et al. [17]

consider prioritization in the context of configurable systems. They utilize combinatorial

testing techniques to model and generate configuration samples for the regression testing.

Studies such as these have allowed researchers and practitioners to understand

factors that affect the assessment of techniques and to compare techniques in terms of costs

and benefits relative to actual software systems. However, studies to date have not

considered strategies for selecting appropriate techniques under particular circumstances as

systems evolve. Only few studies [19], [20] have done on the problem of helping

practitioners choose appropriate techniques under particular system and process

constraints. Harrold et al. [20] present a coverage based predictor model that predicts the

cost effectiveness of a selective regression testing strategy. They show that only coverage

information cannot successfully predict the cost-effectiveness of regression test selection

method code modifications that has been made in the ongoing version play a significant

role to improve the accuracy of the prediction model. Elbaum et al. [19] perform

5

experiments exploring characteristics of program structure, test suite composition, and

changes on prioritization, and identified several metrics characterizing these attributes that

correlate with prioritization effectiveness. The empirical results of their study provide

insights into which prioritization technique is appropriate (or not appropriate) under

specific testing scenarios. Unlike our approach, these two studies evaluate techniques

solely relied on software metrics and did not consider the notion of software evolution

context.

Since many factors can be involved in evolving systems, selecting appropriate

techniques for each version can be a multiple criteria decision making (MCDM) problem.

Analytic Hierarchy Process (AHP) is one of the widely used MCDM methods, and many

areas that involve complex decision problems, such as business, manufacturing, science

and engineering. For instance, Kamal and Al-Harbi [21] utilize AHP in project

management to determine the best contractors to complete the project. They construct the

AHP hierarchy with prequalification criteria and contractors. They prioritize the criteria

and obtain a sorted list of contractors by applying the AHP process. AHP has also been

used in determining the best manufacturing system [22], layout design [23], and the

evaluation of technology investment decisions [24].

Recently AHP has been used in software engineering areas. Barcusa and

Montibellerb [25] use AHP to allocate software development work in distributed teams.

They develop a multi-criteria decision model to support the distributed team work

allocation decision by using decision conferencing and multi-attribute value analysis.

Finnie et al. [26] use AHP to prioritize software development productivity factors, and

Perini et al. [27] compare AHP with other alternative method in prioritizing software

6

requirements. Karlsson et al. [9] investigate six methods for prioritizing requirements:

analytic hierarchy process (AHP), hierarchy AHP, spanning tree matrix, bubble sort, binary

search tree, and priority groups. They apply all methods to prioritize 13 well-defined

quality requirements on a small telephony system. They showed that the analytic hierarchy

process is the most promising method among those six methods. Yoo et al. [11] use AHP to

improve test case prioritization techniques by employing expert knowledge, and compare

the proposed approach with the conventional coverage-based test case prioritization

technique. Unlike their study, in this paper, we utilize AHP to develop adaptive regressions

testing strategy, which helps identify the best test case prioritization techniques across

system lifetime.

7

CHAPTER 3. ADAPTIVE REGRESSION TESTING (ART) STRATEGY

In this section, we describe AHP method and how AHP is used for creating ART

strategy using an example.

3.1. AHP Method

The Analytic Hierarchy Process (AHP) is a technique for structuring and

analyzing complex decision problems. It was developed by Thomas L. Satty in 1970.

Since then it has been studied by many practitioners. It is used in a wide variety of multi-

objective decision situations [22], [23].

To use AHP, decision makers first define a hierarchy that describes the problem

they want to solve. As shown in Figure 3.1, adapted from [7], an AHP hierarchy consists

of a goal that they want to achieve, alternatives that are available to reach the goal, and

criteria that are factors that may be used in decision making about these alternatives. The

criteria can be further partitioned into sub-criteria if necessary.

Figure 3.1. An AHP hierarchy

8

Once decision makers define an AHP hierarchy, two types of pairwise

comparisons are performed: between pairs of criteria and between pairs of alternatives as

shown in Figure 3.2. When comparing pairs of criteria (the upper left table), decision

makers assign relative importance weights to criteria; for example, C1 is given

importance 4 relative to C4. After completing this matrix, the assigned values are

normalized and the local priority of each criterion is produced, which is shown in the

rightmost column of the table (and in the top row of the bottom table in the figure). The

local priority is calculated by the following equation:

��� � ∑ ��	
�����
∑ ∑ ��	
�����
��

……………..…………………. (1)

, where LPi is a local priority of criterion i, RWij is a relative weight of criterion i over

criterion j, and N is the number of criteria (The local priorities of alternatives are

calculated in the same way).

Figure 3.2. An AHP example

9

Similarly, matrices that show the relative importance of alternatives for each

criterion are constructed. In this example, five matrices are constructed because there are

five criteria (the upper right tables). Again, the assigned values are normalized for each

matrix, and local priorities are produced for each alternative (the resulting local priorities

appear in the bottom table in the figure).

After calculating the local priorities for criteria and alternatives, an M x N matrix

is constructed, as shown in the bottom table in Figure 3.2, where M is the number of

alternatives considered and N is the number of criteria. In our example, M is 3 and N is 5.

Then, weighted sums of the values per technique are calculated; these are shown in the

rightmost column (“global priorities” i). The global priority is calculated by the following

equation:

��� � ∑ ������ � �������� …………………………… (2)

,where GPk is a global priority for alternative k, N is the number of criteria, LPAkj is a

local priority of alternative k for criterion j, LPj is a local priority of criterion j. Based on

the weighted sum values, decision makers can determine which alternative should be

selected. In this example, T2 (0.47) performs best and T1 (0.35) next best, with T3 (0.18)

far behind.

3.2. Applying AHP to Prioritization Strategy

We now describe how AHP is applied to prioritization strategy that we use in this

work. While we describe this in terms of test case prioritization using one of the

programs we used in our study, the approach could be applied to any regression testing

techniques and any system for which the required information is available.

10

As outlined in the prior section, to apply AHP to prioritization strategy, the

following steps are required:

1. Set a goal

2. Identify alternatives that are available to reach the goal

3. Identify evaluation criteria for alternatives

4. Pairwise comparisons: between pairs of criteria and between pairs of

alternatives

5. Obtain global priorities of alternatives

The following subsections describe each of these in detail.

1) Step 1: Set a Goal: Suppose that the goal of test engineers is to choose the most

cost-effective test case prioritization technique in application to a particular system

version.

2) Step 2: Identify Alternatives: To achieve this goal, test engineers consider

several different types of prioritization techniques as alternatives. For instance, test

engineers could consider traditional coverage-based test case prioritization techniques,

such as total block coverage based test case prioritization, and additional block coverage

based test case prioritization.

3) Step 3: Identify Evaluation Criteria: As criteria, test engineers choose factors

that are influential in evaluating test case prioritization techniques. For instance, test

engineers could consider the cost factors that can affect the choice of techniques, such as

the cost of applying test case prioritization technique or the cost of software artifact

analysis.

11

4) Step 4: Pairwise Comparisons: Next, two types of pairwise comparisons are

performed: between pairs of criteria and between pairs of techniques as we explained in

Chapter 3.1. To do so, test engineers assign relative importance weights to criteria and

techniques using the scale of weights they define. In this step, test engineers rely on their

experiences and history data regarding the performance of test case prioritization

techniques.

5) Step 5: Obtain Global Priorities: Once test engineers assign relative weights,

global priorities are calculated as explained in Chapter 3.1 and this step can be automated

by building an AHP tool. Based on global priorities, test engineers determine which

technique they should use for the particular version of the program. Steps 2 and 3 are

dependent on an organization’s testing practices and environment. Figure 3.3 summarizes

steps 4 and 5 graphically. As we can see from the figure, the test engineer may consider

three knowledge sources for educated judgment. He studies previous empirical study on

the test case prioritization technique he is using as alternatives. He obtains knowledge on

the criteria he is going to consider and the relationship between the criterion and test case

prioritization techniques. He investigates data of previous releases and test results history.

He develops the knowledge of using prioritization techniques on versions with various

degrees and types of modifications. Based on the knowledge he examines various

software artifacts for the current version, and assigns relative weights for criteria and

techniques. This process requires human judgment, so it is done manually. In practice,

often organizations rely on human experts’ opinions or experienced members’ judgment

when they make important technical decisions (e.g., which tools or techniques should be

used), so this is not an uncommon process in software industry.

12

Figure 3.3. AHP process

The rest of the processes can be automated. The AHP tool takes relative weights

of criteria and techniques, and produces matrices shown in Figure 3.1 and 3.2. Then,

finally the test engineer can decide which technique should be used based on global

priorities that the tool produced.

13

CHAPTER 4. EMPIRICAL STUDY

To investigate the potential use of the Analytic Hierarchy Process (AHP) method

in the adaptive regression testing strategy, we performed a controlled experiment

considering the following research question:

RQ: Is AHP effective for selecting appropriate test case prioritization

techniques across system lifetime?

The following subsections present, for this experiment, our objects of analysis,

variables and measures, experiment setup and design, and threats to validity. Following

this presentation, in Chapter 5 we present our data and analysis, in Chapter 6 we address

threats to validity, and in Chapter 7 we discuss practical implications of the results.

4.1. Objects of Analysis

We considered five Java programs obtained from the SIR infrastructure [28] as

our objects of analysis: ant, xmlsecurity, jmeter, nanoxml, and galileo. Ant is a Java-based

build tool, jmeter is a load testing tool for client/server application, and xml-security

provides security functionality for XML data. nanoxml is a small XML parser for Java,

and galileo is a Java bytecode analyzer. Several sequential versions of each of these

programs are available. The first three programs are provided with JUnit test suites, and

the last two are provided with TSL (Test Specification Language) test suites [29].

Table 4.1 lists, for each of our objects of analysis, data on its associated

“Versions” (the number of versions of the object program), “Classes” (the number of

class files in the latest version of that program), “Size (KLOCs)” (the number of lines of

code in the latest version of the program), and “Test Cases” (the number of test cases

14

available for the latest version of the program). To study the research question we require

fault data, so we utilized mutation faults provided with the programs [30]. The rightmost

column, “Mutation Faults”, is the total number of mutation faults of the program

(summed across all versions).

Objects Versions Classes Size
(KLOCs)

Test
Cases

Mutation
Faults

ant 9 914 61.7 877 412

jmeter 6 434 42.2 78 386

xml-sec 4 145 15.9 83 246

nanoxml 6 64 3.1 216 204

galileo 16 68 14.5 912 2494

Table 4.1. Experiment objects and associated data

4.2. Variables and Measures

1) Independent Variable: To investigate our research question, we manipulate one

independent variable: test case prioritization technique application mapping strategy,

which assigns specific test case prioritization techniques to a specific sequence of

versions Si, Si+1 , . . . Sj of system S. As test case prioritization techniques, we utilize

original order (Orig: the order in which test cases are executed in the original testing

scripts provided with the object programs), random order (Rand: in our experiment,

averages of runs of 30 random orders), and two test case prioritization heuristics total

block coverage (Tcov) and additional block coverage (Acov) prioritization techniques

(explained in Chapter 2).

We consider five mapping strategies as follows:

• Tcov-all: Use of the total coverage technique across versions (a control)

15

• Acov-all: Use of the additional coverage technique across versions (a second

control)

• Rand-all: Use of the random technique across versions (a third control)

• Orig-all: Use of the original technique across versions (a fourth control; it is used

as a baseline strategy)

• AHP: Evolutionary adaptation of techniques following the AHP method described

in Chapter 3. The AHP method selects the best technique among four

prioritization techniques (Tcov, Acov, Rand, and Orig) for each version based on

the criteria we identifies and expert’s opinion. More details on how we applied

AHP are described in Chapter 4.3

2) Dependent Variable and Measures: Our dependent variable is a relative cost-benefit

value produced by applying EVOMO economic model presented in [31] (see Appendix

A), using a further calculation described below (Equation 3). The cost and benefit

components are measured in dollars. To determine the relative cost-benefit of

prioritization technique T with respect to baseline technique base, we use the following

equation:

(BenefitT − CostT) − (Benefitbase − Costbase) ……………………………………(3)

When this equation is applied, positive values indicate that T is beneficial

compared to base, and negative values indicate otherwise. We used the original technique

as a baseline in this experiment. This means that the Orig-all strategy functions as a

baseline strategy when we consider the cost-benefit values across all versions of the

program.

16

EVOMO1 involves two equations as shown in Equations 4 and 5: one that

captures costs related to the salaries of the engineers who perform regression testing (to

translate time spent into monetary values), and one that captures revenue gains or losses

related to changes in system release time (to translate time-to-release into monetary

values).

���� � salary � ! ��"�#$�%� & �'��("�")"����%� & *"�#(�+,(%-,�%�.�%� &/
��0

1%��"-2,#(���%�� … �4�

5"."6%� �

"7"."#" � 8 9-"(%7":)%1"�%� ; <�"�#$�%� & �'��("�")"����%� &
/

��0

,.,(:�%��% ; 1� & *#.)">?.%@#"�%� & �"��AB">#�%�.�%� & *"�#(�+,(%-,�%�.�%� &

6,#(�C"�">�%�.C"(,:�%�DE … �5�

Significantly, the model accounts for costs and benefits across entire system

lifetimes, rather than on snapshots (i.e. single releases) of those systems, through

equations that calculate costs and benefits across entire sequences of system releases.

The major cost components that EVOMO captures are as follows: costs for applying

regression testing techniques, costs associated with missed faults, costs for artifact

analysis, costs of delayed fault detection feedback, and costs associated with obsolete

tests.

4.3. Setup and Procedure

To measure costs of delayed fault detection feedback and costs for applying

regression testing techniques, we required object programs containing faults. Similar to

our early studies [14], [32], to obtain the fault data required to investigate our research

17

question, for each version of each program we randomly selected a mutant group from

the set of that version’s mutation faults. Each mutant group contained at most 10 mutants.

To apply AHP, we followed steps described in Chapter 3. As a human tester, one

graduate student who has three years of software industry experience performed the AHP

processes. The student considered the following criteria to evaluate prioritization

techniques:

• Cost of applying test case prioritization technique: the time required to run a test

case prioritization algorithm

• Cost of software artifact analysis: the costs of instrumenting programs and

collecting test execution traces

• Cost of delayed fault detection: the waiting time for each fault to be exposed

while executing test cases under a test case prioritization technique

• Cost of missed fault: the time required to correct missed faults

Next, the student performed pairwise comparisons using the scale of weights as

shown in Table 4.2, which has been commonly used by others [7], [11]. When the student

assigned relative weights, he utilized history data regarding the performance of test case

prioritization techniques observed from previous several empirical studies [14], [15],

[32], [33].

To support the rest of the processes, we implemented a Java Swing-based AHP

tool. The AHP tool takes relative weights of criteria and techniques, and produces local

and global priorities based on the AHP algorithm [7]. Finally the student determined

which technique should be used for each version of the program using global priorities.

18

Weight Definition of Weight

1 equally important
3 moderately more important
5 strongly more important
7 very strongly more important
9 Extremely more important

Table 4.2. Scale of weights

Often software companies have time pressure with the product release, due to the

constraint budgetary problem and competitive software market. In practice, situations in

which time constraints intervene to affect product release are frequent in the software

industry, and typically software companies cut back on testing activities in order to

ensure timely release of their product. Further, the degree of time constraints can vary as

systems evolve. For instance, for a certain release, a company could suffer more time

constraints compared to other releases due to the complex feature addition or the

technical personnel loss. Thus, in this experiment, we consider the situation with time

constraints that vary with each version when we evaluate test case prioritization

techniques.

To simulate this situation, for each of the test case prioritization techniques, we

randomly assigned the level of time constraints (25%, 50%, or 75%) for each version and

foreshortened the test execution process. For example, as shown in Figure 4.1,in the first

set of random assignment (Run 1) we randomly pick 50% time constraint for version one

(V1). It means that, we run 50% test cases of the current test suite of the version.

19

Figure 4.1. Random assignment of time constraint level

In the same way we choose 25% time constraint for version two (V2). It means

that we reduce the test suite by 25%. So we run 75% of total test cases. We follow the

same process for subsequent version of the program. It ends our run 1.

We ran five sets of random assignments across all versions for each program,

applied the AHP processes we just explained, and collected cost-benefit values for all

strategies. As we described in Chapter 4.2, for Tcov-all strategy, we run Tcov (total block

coverage) prioritization technique for each version of the program under test (Figure 4.2).

For Acov-all, Rand-all and Orig-all strategy, we run the Acov, Rand, Orig technique

respectively for each version of the program. For AHP strategy, we conduct our AHP

process and run the AHP tool. We run the technique chosen by the AHP tool. For

instance, our AHP tool chose Tcov technique for version 1 and Orig technique for

version 2 and so on.

20

Figure 4.2. Regression testing strategy

21

CHAPTER 5. DATA AND ANALYSIS

In this section, we present the results of our study. We summarize the data in

Tables 5.1 to 5.5. Each table consists of five sub tables, showing experiment results that

were collected by running five sets of random assignments (run 1 through run 5 in the

table) of three time constraint levels for each version of the program. Since the Orig-all

strategy is the baseline used in our relative cost-benefit calculation, results for that

strategy are not shown explicitly in the tables.

All of the data in these tables shows the relative cost-benefit value in dollar with

respect to the baseline technique (Orig) as defined according to the EVOMO model.

Higher values indicate greater cost-benefits. Within each sub table in the tables, the first

rows are labeled with five runs, for each run listing four test case prioritization testing

strategies. Rows are labeled with versions of the program and the last row (“Total”)

shows the sum of the cost-benefit values for all versions. Now, we describe each of these

tables.

Table 5.1and 5.2 show the results for ant. The results vary across versions, but the

total cost-benefit values indicate that the prioritization techniques selected by AHP were

more cost-effective than those used by the control strategies except for one case (Rand-all

in run 3 was better than AHP). In particular, the cost-benefit value gap between the AHP

strategy and the two control strategies (Tcov-all and Acovall) is large, and Tcov-all was

even worse than the baseline strategy in some cases (run 1 and run 4). Among the control

strategies, Rand-all produced the best results.

22

Run 1

Version Time constraint
Tcov-

all
Acov-

all
Rand-

all
AHP

V1 50% 135.00 77.00 -40.00 Rand -40.00
V2 25% 205.00 209.00 139.00 Acov 209.00
V3 75% -58.00 -62.00 48.00 Rand 48.00
V4 50% -66.00 14.00 0.00 Acov 14.00
V5 75% -99.00 -133.00 26.00 Rand 26.00
V6 25% -142.00 -180.00 7.00 Rand 7.00
V7 50% -160.00 -201.00 32.00 Rand 32.00
V8 25% -107.00 -248.00 146.00 Rand 146.00

Total -292.00 -524.00 358.00 442.00
Run 2

Version Time constraint
Tcov-

all
Acov-

all
Rand-

all
AHP

V1 75% 367.39 231.99 101.73 Rand 101.73
V2 25% 205.26 208.95 138.99 Acov 208.95
V3 50% -151.07 91.89 49.35 Rand 49.35
V4 75% -155.30 -71.81 -57.90 Rand -57.90
V5 50% -156.83 -190.82 17.52 Rand 17.52
V6 25% -142.06 -179.54 7.24 Rand 7.00
V7 75% 275.13 234.27 324.06 Rand 324.06
V8 25% -107.31 -248.32 146.06 Rand 146.06

Total 135.21 76.59 727.05 796.77
Run 3

Version Time constraint
Tcov-

all
Acov-

all
Rand-

all
AHP

V1 25% -18.94 -70.46 -98.40 Rand -98.40
V2 50% 206.77 208.91 79.32 Acov 208.91
V3 75% -57.83 -61.58 47.84 Rand 48.00
V4 25% 12.02 12.65 42.05 Acov 13.00
V5 75% -99.26 -133.39 25.57 Rand 26.00
V6 50% -37.32 -112.78 87.30 Tcov -37.32
V7 25% -141.54 -182.70 47.97 Rand 48.00
V8 50% 143.29 115.57 291.87 Rand 291.87

Total 7.19 -223.78 523.53 500.06

Table 5.1. Experiment results for ant: relative cost-benefit values (dollars)

23

Run 5

Version Time constraint Tcov-all
Acov-

all
Rand-

all
AHP

V1 75% 367.39 231.99 101.73 Rand 101.73
V2 50% 206.77 208.91 79.32 Acov 208.91
V3 25% -59.00 91.00 46.00 Rand 46.00

V4 75% -155.30 -71.81 -57.90 Rand -57.90
V5 25% -145.38 1.00 31.51 Rand 32.00

V6 50% -37.32 -112.78 87.30 Tcov -37.32
V7 75% 275.13 234.27 324.06 Rand 324.06
V8 50% 143.29 115.57 291.87 Rand 291.87

Total 595.58 698.14 903.88 909.35

Table 5.2. Experiment results for ant: relative cost-benefit values (dollars)

Table 5.3 shows the results for jmeter. Similar to the results on ant, the AHP

strategy was more cost effective than the control strategies except for run 2 and run 5.

Rand-all and Acov-all were better than AHP in run 2 and 5 respectively. Among the

control strategies, Acov-all produced the best results (3 out of 5 runs), Rand-all

performed relatively well (2 out of 5 runs), but Tcov-all was even worse than the baseline

strategy in most cases. The cost-benefit values of Acov-all were significantly higher than

the other two control strategies in three runs- run 3, 4 and 5. Tcov-all’s cost-benefit

values were considerably lower than the Orig-all strategy in run 2, 3 and 4.

Run 4

Version Time onstraint
Tcov-

all
Acov-

all
Rand-

all
AHP

V1 50% 135.11 76.90 -39.81 Rand -39.81
V2 75% 55.41 325.98 160.74 Acov 325.98
V3 25% -59.00 91.00 46.00 Rand 46.00
V4 50% -65.83 13.65 -0.21 Acov 14.00
V5 25% -145.38 -179.41 31.51 Rand 32.00
V6 75% 336.66 406.57 560.18 Rand 406.57
V7 50% -160.07 -201.08 31.89 Rand 31.89
V8 75% -127.91 115.08 214.92 Rand 214.92

Total -31.01 648.69 1005.22 1031.55

24

Run 1

Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% 15.00 17.00 50.00 Acov 17.00

V2 50% -51.00 153.00 93.00 Acov 153.00

V3 75% 130.00 266.00 277.00 Rand 277.00

V4 50% 121.00 31.00 5.00 Tcov 121.00

V5 25% -196.00 -196.00 -135.00 Acov -196.00

Total 19.00 271.00 290.00 372.00

Run 2

Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 50% 47.04 134.78 179.63 Acov 134.78

V2 25% -84.55 -84.74 -6.20 Acov -84.74

V3 75% 130.03 265.52 276.71 Rand 276.71

V4 25% -64.17 -64.51 -142.30 Tcov -64.17

V5 50% -174.45 -144.16 -135.73 Tcov -174.45

Total -146.11 106.90 172.11 88.14

Run 3

Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% 15.00 17.00 50.00 Rand 50.00

V2 50% -51.00 153.00 93.00 Acov 153.00

V3 25% -66.00 22.00 -36.00 Acov 22.00

V4 75% 34.85 273.80 5.35 Acov 274.00

V5 50% -174.45 -144.16 -135.73 Tcov -174.45

Total -241.61 321.63 -23.38 324.55

Run 4

Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 75% -73.31 115.87 97.24 Acov 115.87

V2 50% -51.00 153.00 93.00 Acov 153.00

V3 25% -66.00 22.00 -36.00 Acov 22.00

V4 75% 34.85 273.80 5.35 Acov 273.80

V5 25% -196.00 -196.00 -135.00 Acov -196.00

Total -351.46 368.67 24.59 368.67

Run 5

Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% 15.00 17.00 50.00 Rand 50.00

V2 75% 170.62 345.14 272.15 Acov 345.14

V3 50% 70.67 172.68 101.72 Rand 101.72

V4 75% 34.85 273.80 5.35 Acov 273.80

V5 25% -196.00 -196.00 -135.00 Acov -196.00

Total 95.14 612.62 294.23 574.67

Table 5.3. Experiment results for jmeter: relative cost-benefit values (dollars)

25

Table 5.4 shows the results for xml-security. As the results show, the AHP

strategy was more cost-effective than the two control strategies (Tcov-all and Rand-all),

but it was not better than the Acov-all strategy. Unlike the results on ant and jmeter,

Tcov-all produced better results than the baseline strategy. It even produced better result

than the Rand-all strategy in all five runs.

Run 1
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 75% 177.00 274.00 88.00 Acov 274.00

V2 50% 26.00 117.00 -44.00 Acov 117.00

V3 25% 170.00 170.00 71.00 Tcov 170.00

Total 373.00 561.00 115.00 561.00

Run 2
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% 37.00 38.00 6.00 Acov 38.00

V2 50% 26.00 117.00 -44.00 Acov 117.00

V3 75% 498.75 545.99 315.02 Acov 545.99
Total 561.75 700.99 277.02 700.99

Run 3
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 50% 268.11 330.75 202.70 Acov 330.75
V2 75% -48.18 13.86 -189.91 Acov 13.86
V3 25% 170.00 170.00 71.00 Tcov 170.00

Total 389.92 514.61 83.79 514.61

Run 4
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% 37.00 38.00 6.00 Acov 38.00

V2 50% 26.00 117.00 -44.00 Acov 117.00

V3 75% 498.75 545.99 315.02 Tcov 499.00

Total 561.75 700.99 277.02 654.00

Run 5
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 50% 268.11 330.75 202.70 Acov 331.00

V2 25% 21.67 22.31 -62.38 Acov 22.31
V3 75% 498.75 545.99 315.02 Tcov 499.00

Total 788.53 899.05 455.34 852.31

Table 5.4. Experiment results for xml-security: relative cost-benefit values (dollars)

26

Table 5.5 and 5.6 show the results for nanoxml. Overall, the AHP strategy

outperformed all control strategies except for one case (Acov-all in run 2 was better than

AHP). Similar to the results on xml-security, Tcov-all produced better results than the

baseline strategy.

Run 1
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 50% 931.00 966.00 975.00 Rand 975.00

V2 75% 468.00 778.00 596.00 Acov 778.00

V3 25% -43.00 40.00 -27.00 Acov 40.00

V4 75% -48.00 -50.00 1.00 Tcov -48.00

V5 25% -27.00 39.00 -40.00 Acov 39.00

Total 1281.00 1773.00 1505.00 1784.00

Run 2
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 75% 928.09 961.65 859.79 Acov 859.79
V2 50% 564.71 789.52 682.78 Acov 789.52
V3 25% -43.25 39.86 -26.94 Acov 39.86
V4 75% -47.63 -49.75 0.54 Tcov -47.63
V5 50% 450.73 541.12 453.12 Acov 541.12

Total 1852.66 2282.39 1969.28 2182.65

Run 3
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% -59.29 -22.67 -14.67 Rand -15.00

V2 50% 564.71 789.52 682.78 Acov 789.52
V3 75% 163.25 657.23 525.29 Acov 657.23
V4 75% -48.00 -50.00 1.00 Acov -50.00

V5 25% -27.00 39.00 -40.00 Acov 39.00

Total 593.66 1413.09 1154.39 1420.76

Run 4
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 50% 931.00 966.00 975.00 Rand 975.00

V2 75% 468.00 778.00 596.00 Acov 778.00

V3 50% 509.00 563.00 482.00 Acov 563.00

V4 75% -48.00 -50.00 1.00 Tcov -48.00

V5 25% 451.00 541.00 453.00 Acov 541.00

Total 2311.00 2798.00 2507.00 2809.00

Table 5.5. Experiment results for nanoxml: relative cost-benefit values (dollars)

27

Run 5

Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 50% 931.00 966.00 975.00 Rand 975.00

V2 25% -255.00 -5.00 -111.00 Acov -5.00

V3 75% 163.25 657.23 525.29 Acov 657.23

V4 25% -47.00 -49.00 2.00 Acov -49.00

V5 50% 450.73 541.12 453.12 Acov 541.12

Total 1242.98 2110.35 1844.41 2119.35

Table 5.6. Experiment results for nanoxml: relative cost-benefit values (dollars)

From the Table 5.7 to 5.11 show the result for galileo. The results show that the

AHP strategy was more cost-effective than control strategies except for one case (Acov-

all in run 3 was better than AHP). Acov-all produced better results than Rand-all strategy

in all five runs. Tcov-all produced worse results than the baseline strategy in all cases.

Run 1

Version
Time

constraint
Tcov-

all
Acov-

all
Rand-

all
AHP

V1 50% 172.00 691.00 580.00 Acov 691.00
V2 25% -115.00 366.00 297.00 Acov 366.00
V3 50% 235.00 526.00 381.00 Acov 526.00
V4 75% 168.00 309.00 380.00 Rand 380.00
V5 25% -3.00 56.00 9.00 Tcov -3.00
V6 75% -115.00 344.00 283.00 Acov 344.00
V7 50% -186.00 216.00 130.00 Acov 216.00
V8 25% -75.00 379.00 289.00 Acov 379.00
V9 50% -311.00 204.00 118.00 Acov 204.00
V10 75% -77.00 456.00 151.00 Acov 456.00
V11 25% -4.00 575.00 528.00 Acov 575.00
V12 50% -105.00 148.00 154.00 Acov 148.00
V13 75% -72.00 112.00 250.00 Rand 250.00
V14 50% -86.00 -251.00 -249.00 Tcov -86.00
V15 75% -80.00 211.00 293.00 Acov 211.00
Total -654.00 4342.00 3594.00 4657.00

Table 5.7. Experiment results for galileo: relative cost-benefit values (dollars)

28

Run 2
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% -51.15 461.23 400.86 Acov 461.23
V2 50% -114.22 368.45 251.21 Acov 368.45
V3 25% 50.89 242.29 187.15 Rand 187.15
V4 75% -70.59 168.06 309.35 Rand 309.35
V5 50% 667.06 699.69 564.62 Tcov 667.06
V6 75% -114.67 343.69 282.93 Acov 343.69
V7 25% -97.62 224.29 170.15 Acov 224.29
V8 50% -126.05 364.02 246.35 Acov 364.02
V9 25% -248.82 223.81 145.96 Acov 223.81
V10 75% -76.57 455.59 151.01 Acov 455.59
V11 50% -173.85 578.74 462.42 Acov 578.74
V12 25% -3.11 135.87 177.39 Acov 135.87
V13 75% -72.24 111.84 250.43 Rand 250.43
V14 25% -82.61 -216.30 -123.53 Tcov -82.61
V15 75% -80.07 210.66 293.32 Acov 210.66
Total -593.63 4371.95 3769.61 4697.72

Table 5.8. Experiment results for galileo: relative cost-benefit values (dollars)

Run 3
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 75% -125.47 715.47 515.06 Acov 715.47
V2 50% -114.22 368.45 251.21 Acov 368.45
V3 75% -74.62 451.67 318.22 Acov 451.67
V4 25% 4.90 55.89 13.00 Rand 13.00
V5 50% 667.06 699.69 564.62 Tcov 667.06
V6 25% -49.00 228.00 246.00 Acov 228.00

V7 75% -76.04 284.67 250.32 Acov 284.67
V8 50% -126.05 364.02 246.35 Acov 364.02
V9 75% -76.23 469.01 374.21 Acov 469.01
V10 25% -74.00 405.00 256.00 Acov 405.00

V11 50% -173.85 578.74 462.42 Acov 578.74
V12 75% -84.18 228.27 232.47 Acov 228.27
V13 25% -85.00 -57.00 120.00 Rand 120.00

V14 75% -122.05 273.29 187.65 Tcov -122.05
V15 25% -111.36 -125.43 64.24 Rand -111.36
Total -620.11 4939.75 4101.76 4659.94

Table 5.9. Experiment results for galileo: relative cost-benefit values (dollars)

29

Run 4
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 25% 172.00 691.00 580.00 Acov 691.00

V2 75% -115.00 366.00 297.00 Acov 366.00

V3 25% 235.00 526.00 381.00 Acov 526.00

V4 50% 4.90 55.89 13.00 Rand 13.00
V5 75% -3.00 56.00 9.00 Tcov -3.00

V6 50% -39.87 272.38 261.82 Tcov -39.87
V7 25% -186.00 216.00 130.00 Acov 216.00

V8 75% -75.00 379.00 289.00 Acov 379.00

V9 25% -311.00 204.00 118.00 Acov 204.00

V10 50% -74.00 405.00 256.00 Acov 405.00

V11 75% -173.85 578.74 462.42 Acov 578.74
V12 25% -105.00 148.00 154.00 Acov 148.00

V13 50% -85.00 -57.00 120.00 Rand 120.00

V14 25% -86.00 -251.00 -249.00 Tcov -86.00

V15 50% -111.36 -125.43 64.24 Tcov 64.24
Total -953.18 3464.58 2886.47 3582.11

Table 5.10. Experiment results for galileo: relative cost-benefit values (dollars)

Run 5
Version Time constraint Tcov-all Acov-all Rand-all AHP

V1 50% 172.00 691.00 580.00 Acov 691.00

V2 25% -115.00 366.00 297.00 Acov 366.00

V3 75% -74.62 451.67 318.22 Acov 451.67
V4 75% 168.00 309.00 380.00 Rand 380.00

V5 25% -3.00 56.00 9.00 Tcov -3.00

V6 75% -115.00 344.00 283.00 Acov 344.00

V7 25% -97.62 224.29 170.15 Acov 224.29
V8 25% -75.00 379.00 289.00 Acov 379.00

V9 50% -311.00 204.00 118.00 Acov 204.00

V10 75% -77.00 456.00 151.00 Acov 456.00

V11 50% -173.85 578.74 462.42 Acov 578.74
V12 50% -105.00 148.00 154.00 Acov 148.00

V13 75% -72.00 112.00 250.00 Rand 250.00

V14 25% -82.61 -216.30 -123.53 Tcov -82.61
V15 75% -80.00 211.00 293.00 Acov 211.00

Total -1041.7 4314.41 3631.26 4598.10

Table 5.11. Experiment results for galileo: relative cost-benefit values (dollars)

30

The total cost savings across all versions are one measure that shows the

effectiveness of the strategies, but this measure can be misleading because abnormal cost-

benefit values for particular version could affect the entire outcome. Thus, we examined

how often the strategies produce the best results across all versions. Figure 5.1 presents

bar graphs of the results. The figure contains five subfigures that present results for each

of the object programs, and each subfigure contains bar graphs for four prioritization

strategies showing the total number versions that produced the best results by those

strategies, for the given object program and five runs. For instance, in run 1 for ant,

Tcov-all performed best for one version (version 1 in Table 5.1) and Acov-all performed

best for two versions (versions 2 and 4 in Table 5.1).

Figure 5.1. The total number of versions that produced the best results.

31

Overall, the AHP strategy produced the best results (20 out of 25 cases were

better than the control strategies – in total, we have the 20 observed data points.) and the

Acov-all strategy performed relatively well compared to other control strategies (11 out

of 25 cases performed best), but the trend varied across programs.

In the cases of ant and nanoxml, the AHP strategy was consistently better than all

three strategies across all runs with one exception. In the case of xml-security, Acov-all

was slightly better than AHP.

Comparing the control strategies, Rand-all outperformed others in ant, and it was

even better than AHP for one case (run 3). However, in other cases, Rand-all did not

perform well. In particular, in the case of xml-security, Rand-all did not produce any

single best result. Overall, Tcov-all performed worst. Only in three programs (ant, jmeter,

and xml-security), it produced the best result for one version. In other programs, it did not

produce any single best result.

Overall, the trends we observed from this figure are consistent with those we

observed from the above five tables, but we also found some differences. While AHP

outperformed 18 out 25 cases when we considered the total cost-benefit values, it

outperformed 20 out of 25 cases when we considered the total number of versions that

performed best. In the case of jmeter, the total cost-benefit of Acov-all was higher than

that of AHP, but it did not perform better than AHP when we compared the number of

versions that produced the best results by Acov-all and AHP.

32

CHAPTER 6. THREATS TO VALIDITY

This section describes the construct, internal and external validity threats to the

validity of our study.

6.1. Construct Validity

Two issues involve threats to construct validity. (1) We identified four evaluation

criteria to apply the AHP method mainly considering the costs that are associated with

test case prioritization techniques. Other evaluation criteria, such as risks for estimated

cost-benefit factors, applicability of a technique to a certain type of software artifact, and

relevance to the specific testing process, could be considered. (2) The pairwise

comparison value in AHP is subject to human judgment (in our case, a graduate student)

and thus the results can be biased by personnel’s knowledge and experience.

6.2. Internal Validity

The inferences we made about the effectiveness of AHP could have been affected

by potential faults in our experiment tools. To control this threat, we validated our AHP

tool using several examples. Other tools were from SIR [28], and they have been

validated through numerous experiments.

6.3. External Validity

Three issues limit the generalization of our results. (1) MCDM approach and test

case prioritization technique representativeness. In this study, we considered only one

type of MCDM approaches and two conventional test case prioritization techniques, so

our results cannot be generalized because they are not representative of MCDM

33

approaches and test case prioritization techniques. (2) Object program and mutation fault

representativeness. The object programs are of small and medium size. Complex

industrial programs with different characteristics may be subject to different cost-benefit

tradeoffs. We used mutation faults generated by our mutation tool, but there is some

evidence that mutation faults can be representative of real faults [30], [34]. Control for

these threats can be achieved only through additional studies with wider populations of

programs and faults, and different prioritization techniques.

34

CHAPTER 7. DISCUSSION

We now draw on the results of our analyses, together with additional consideration

of our data, to derive practical implications of these results.

ART strategy results: Our results indicate that the prioritization techniques selected

by AHP across the entire system lifetime can be more cost-effective than those used by the

control approaches with the exception of some cases.

Through the empirical study, we observed the following trends. Overall, the AHP

strategy’s performance was stable across all programs for all runs, and the Acov-all

strategy also produced better results compared to other control strategies and in some cases

(run 4 and 5 in xml-security and run 3 in galileo), it even outperformed the AHP strategy.

However, it was not as stable as the AHP strategy. For instance, on ant for all runs, the

Acov-all strategy was worse than all other strategies, and on jmeter, it was close to the

worst case for half of the cases.

In the case of the Rand-all strategy, it was better than the Tcov-all strategy in most

cases (except for all cases in xml-security). However, since our results for the random

technique involve averages of multiple runs, individual random orders may vary widely in

performance. The Tcov-all strategy was not worst for all cases, but overall performance is

not preferable to others. In particular, in several cases (two runs in ant, three runs in jmeter,

and all runs in galileo), it was even worse than the baseline strategy.

Practical implications of the results: So far we have discussed our major findings

and the results of our experiment. Now, we discuss practical implications of our results.

From several prior empirical studies of prioritization [14], [15], [32], [33], we learned that

typically prioritization heuristics are more cost-effective compared to control techniques,

35

but we also learned that various factors related to software, its associated artifacts (e.g.,

program size, test suite size, test suite granularity, and the amount of change between

versions), and organization’s testing environment could affect the relationships between

techniques. Thus, adopting different types of test case prioritization techniques considering

such factors is potentially a practical approach for organizations that have time pressure

with the product release, due to the constraint budgetary problem and competitive software

market.

To our knowledge, our study is the first attempt to investigate the effectiveness of

adaptive regression testing strategy. Our proposed strategy produced promising results, and

we believe that our empirical methodology and findings from our study provide insights

into how such investigation can be performed and what types of MCDM approaches and

evaluation criteria can be considered.

36

CHAPTER 8. CONCLUSION

In this paper, we have investigated an adaptive regression testing (ART) strategy

that utilizes one of the multiple criteria decision making (MCDM) approaches, Analytic

Hierarchy Process (AHP), and presented an empirical study assessing the ART strategy.

Our results show that our ART strategy can assist researchers and practitioners in choosing

cost-effective techniques across system lifetime.

As with all empirical studies, our study also has several limitations as we discussed

in Chapter 6. These limitations can be addressed only through further studies of additional

artifacts and regression testing techniques. For future work, we intend to investigate ART

strategies further considering several aspects.

First, in this study, we chose the AHP method to implement an ART strategy, but

there are many other MCDM approaches available including Weighted Sum Model and

modified AHP methods. Thus, the next natural step is to investigate whether different types

of approaches help improve ART strategies.

Second, in this study, we used only 4 evaluation criteria, but in order to limit threats

to validity as we addressed in Chapter 6, we intend to investigate ART strategies

considering other types of evaluation criteria.

Third, we considered only two test case prioritization heuristics, but we intend to

investigate ART strategies that employ other types of prioritization techniques including

other regression testing techniques, such as regression test selection techniques. Also, we

intend to develop new regression testing techniques so that we can improve our chances of

detecting faults under time-constrained situations.

37

REFERENCES

[1] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large software

systems,” in Proceedings of the International Symposium on Foundations of Software

Engineering, vol. 29, issue 6, Nov. 2004, pp. 241–251.

[2] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A tool for change

impact analysis of Java programs,” in Proceedings of the International Conference on

Object-Oriented Programming Systems, Languages, and Applications, vol. 39, issue 10,

Oct. 2004, pp. 432 –448.

[3] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection technique,”

ACM Transactions on Software Engineering and Methodologies, vol. 6, no. 2, Apr. 1997,

pp. 173–210.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing test cases for regression

testing,” in Proceedings of the International Symposium on Software Testing and Analysis,

vol. 27, issue 10, Aug. 2000, pp. 102–112.

[5] A. Srivastava and J. Thiagarajan, “ Effectively prioritizing tests in development

environment,” in Proceedings of the International Symposium on Software Testing and

Analysis, vol. 27, issue 4, Jul. 2002, pp. 97–106.

[6] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of effective

regression testing in practice,” in Proceedings of the International Symposium on Software

Reliability Engineering, Nov. 1997, pp. 230–238.

[7] T. L. Saaty, The Analytic Hierarchy Process. McGraw-Hill, 1980.

38

[8] E. Triantaphyllou and K. Baig, “The impact of aggregating benefit and cost criteria in

four MCDA methods,” IEEE Transactions on Engineering Management, vol. 25, no. 2,

Feb. 2005, pp. 213–226.

[9] B. R. J. Karlsson, C. Wohlin, “An evaluation of methods for prioritizing software

requirements,” Information and Software Technology, vol. 39, 1998, pp. 939–947.

[10] J. E. Steiguer, J. Duberstein, and V. Lopes, “The analytic hierarchy process as a means

for integrated watershed management,” in Interagency Conference on Research on the

Watersheds, Oct. 2003, pp. 736–740.

[11] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to achieve

effective and scalable prioritization incorporating expert knowledge,” in Proceedings of the

International Conference on Software Testing and Analysis, Jul. 2009, pp. 201–212.

[12] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for

regression testing,” IEEE Transactions on Software Engineering, vol. 27, no. 10, Oct.

2001, pp. 929–948.

[13] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:

A survey,” Software Testing, Verification, and Reliability, vol. 22, issue 2, Mar. 2010, pp.

67–120.

[14] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects of time constraints

on test case prioritization: A series of controlled experiments,” IEEE Transactions on

Software Engineering, vol. 26, no. 5, Sep. 2010.

[15] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A family

of empirical studies,” IEEE Transactions on Software Engineering, vol. 28, no. 2, Feb.

2002, pp. 159–182.

39

[16] A. Malishevsky, G. Rothermel, and E. S., “Modeling the cost benefits tradeoffs for

regression testing techniques,” in Proceedings of the International Conference Software

Maintenance, Oct. 2002, pp. 204–213.

[17] X. Qu, M. Cohen, and R. G., “Configuration-aware regression testing: An empirical

study of sampling and prioritization,” in Proceedings of the International Conference on

Software Testing and Analysis, Jul. 2008, pp. 75–86.

[18] A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, “Time-aware test suite

prioritization,” in Proceedings of the International Conference on Software Testing and

Analysis, Jul. 2006, pp. 1–12.

[19] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky, “Selecting a cost-

effective test case prioritization technique,” Software Quality Journal, vol. 12, no. 3, Sep

2004, pp. 185–210.

[20] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker,“Empirical studies of a

prediction model for regression test selection,” IEEE Transactions on Software

Engineering, vol. 27, no. 3, Mar. 2001, pp. 248–263.

[21] K. M. A.S. Al-Harbi, “Application of AHP in project management,” International

Journal of Project Management, vol.19, Jan. 2001, pp. 19–27.

[22] R. N. Wabalickis, “Justification of FMS with the analytic hierarchy process,” IEEE

Transactions on Software Engineering, vol. 7, 1988, pp. 175–182.

[23] K. E. Cambron and G. W. Evans, “Layout design using the analytic hierarchy

process,” Computers and Industrial Engineering, vol. 20, issue 2, 1991, pp. 221–229.

40

[24] T. O. Boucher and E. L. MacStravic, “Multi attribute evaluation within a present value

framework and its relation to the analytic hierarchy process,” The Engineering Economist,

vol. 37, no. 1, 1990, pp. 55–71.

[25] A. Barcusa and G. Montibeller, “Supporting the allocation of software development

work in distributed teams with multi-criteria decision analysis,” in Multiple Criteria

Decision aking for Engineering, Jun. 2008, pp. 464–475.

[26] G. E. W. Gavin R. Finnie and D. I. Petkov, “Prioritizing software development

productivity factors using the analytic hierarchy process,” Journal of Systems and

Software, vol. 22, Aug. 1993, pp. 129–139.

[27] A. S. Anna Perini, Filippo Ricca, “Tool-supported requirements prioritization:

Comparing the AHP and CBRank methods,” Information and Software Technology, vol.

51, Jun. 2009, pp. 1021–1032.

[28] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact,” International Journal on

Empirical Software Engineering, vol. 10, no. 4, 2005, pp. 405–435.

[29] T. Ostrand and M. J. Balcer, “The category-partition method for specifying and

generating functional tests,” Communications of the ACM, vol. 31, no. 6, Jun. 1988, pp

676-686.

[30] H. Do and G. Rothermel, “On the use of mutation faults in empirical assessments of

test case prioritization techniques,” IEEE Transactions on Software Engineering, vol. 32,

no. 9, Sep. 2006, pp. 733–752.

41

[31] H. Do and G. Rothermel, “Using sensitivity analysis to create simplified economic

models for regression testing,” in Proceedings of the International Conference on Software

Testing and Analysis, Jul. 2008, pp. 51–62.

[32] H. Do and G. Rothermel, “An empirical study of regression testing techniques

incorporating context and lifecycle factors and improved cost-benefit models,” in

Proceedings of the ACM SIGSOFT Symposium on Foundations of Software Engineering,

Nov. 2006, pp. 71–82.

[33] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold, “Test case prioritization: An

empirical study,” in International Conference of Software Maintenance, Aug. 1999, pp.

179–188.

[34] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for

testing experiments?” in International Conference of Software Engineering, May 2005, pp.

402–411.

42

APPENDIX. EVOLUTIONARY AWARE ECONOMIC MODEL

(EVOMO)

EVOMO has two equations as shown in Equation 6 and 7:

1. To calculate the cost of applying regression testing process.

���� � PS � 8<�I�%� & �J��%� & �JK�%� & '�%� � �+� & ��%� � CF�%�D
/

��0
… … … … . . �6�

2. To calculate the benefits gained from applying the regression testing process.

5"."6%� � REV � ! �AC�%� ; <�I�%� & �J��%� & �JK�%�&,�/�% ; 1� � ���/�% ;/
��0

1�& ,SK�% ; 1� � ��SK�% ; 1� & �T�%� & '�%� � <�A�%� & �+��%� & �+U�%�D &

CD�%��D … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . … . . �7�

The term and coefficients are described as follows:

• Cost of test setup (CS). This is the costs associated with setting up the system for

testing, compiling the version under test, and configuring test drivers and scripts.

• Cost of identifying obsolete test cases (COi). This is the costs associated with

manually inspect a version and its test cases.

• Cost of repairing obsolete test cases (COr). This is the costs to examine the

specifications, test cases, and test drivers, and modify the test cases for the version

under test.

• Cost of supporting analysis (CA). This is the costs to instrument programs (CAin)

and collect test traces (CAtr).

• Cost of technique execution (CR). This is the time needed to execute a regression

testing technique itself.

• Cost of test execution (CE). This is the time needed to execute test cases.

43

• Cost of test result validation (automatic via differencing) (CVd). This is the

time needed to run a differencing tool on test outputs as test cases are executed.

• Cost of test result validation (human via inspection) (CVi). This is the time

required by engineers to inspect test output comparisons.

• Number and cost of missing faults (c and CF). Regression testing technique could

not find all kinds of faults in the system. It could fail to discover some of them.

There is a cost associated with each missing fault. To estimate the cost of missed

faults, we follow the earlier study (Do, 2006), choose 1.5 person hours to localizing

and correcting one fault.

• Cost of delayed fault detection feedback (CD). To calculate the cost we follow an

earlier study (Do, 2006). We measure the rate of fault detection of a test suite.

Then, we translate this rate into the cumulative cost (in time) of waiting for each

fault to be exposed while executing test cases under a particular order, defined as

delays.

• Revenue (REV). We calculate the revenue by utilizing revenue values cited in a

survey of software products ranging from $116,000 to $596,000 per employee (Do,

2006). Because of the small size of the programs, we consider the least revenue

value mentioned, and an employee headcount of ten.

• Programmer salary (PS). We consider a figure of $100 per person-hour, obtained

by adjusting an amount cited in (Do, 2006) by an appropriate cost of living factor.

• Expected time-to-delivery (ED). In our empirical work we rely on comparisons of

techniques to a control suite using Equation 2; this approach cancels out the ED

values because these are the same for all cases considered.

